Lawrence Berkeley National Laboratory

LBL Publications

Title

Decay Studies of Neutron-Deficient Nuclei Near the Z=64 Subshell: 141Dy, 141Tb, 141Gdg+m, and 141Eum

Permalink

https://escholarship.org/uc/item/88k7137x

Authors

Gilat, J Nitschke, J M Wilmarth, P A <u>et al.</u>

Publication Date

1989-07-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

| LOAN COPY |Circulates |for 2 weeks

Bldg.

5 0

Copy 2 Library.

_BL-23407

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Submitted to Physical Review C

Decay Studies of Neutron-Deficient Nuclei near the Z=64 Subshell: ¹⁴¹Dy, ¹⁴¹Tb, ¹⁴¹Gd^{g+m}, and ¹⁴¹Eu^m

J. Gilat, J.M. Nitschke, P.A. Wilmarth, and R.B. Firestone

July 1989

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-23407

Decay studies of neutron-deficient nuclei near the Z=64 subshell: ¹⁴¹Dy, ¹⁴¹Tb, ¹⁴¹Gdg+m, and ¹⁴¹Eu^m

J. Gilat[†], J.M. Nitschke, P.A. Wilmarth, and R.B. Firestone

Nuclear Science Division Lawrence Berkeley Laboratory I Cyclotron Road Berkeley, California 94720

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

ABSTRACT

The β/γ and delayed proton decays of mass separated A=141 isotopes with Z=63-66 were investigated with the OASIS mass separator on-line at the LBL SuperHILAC. Branching ratios have been redetermined for the total β decay of the 2.7(3) s, 11/2⁻ isomer ¹⁴¹Eu^m at 96.5 keV ($13^{+4}_{-2}\%$), and for the direct β feeding of the 1.58 keV 3/2⁺ level of ¹⁴¹Sm in the decay of 40-s ¹⁴¹Eu^g [73(5)%]. Detailed decay schemes have been constructed for the decays of the 11/2⁻ isomer ¹⁴¹Gd^m [11(2)% IT] and the 1/2⁺ ground state, ¹⁴¹Gd^g. Half-lives of 24.5(5) s and 14(4) s, respectively, have been determined for these isomers. A delayed proton branch of 0.03(1)% was identified in the decay of ¹⁴¹Gd^g. A detailed decay scheme was also constructed for 3.5(2) s ¹⁴¹Tb and a J^π = 5/2⁻ was assigned to its ground state, at variance with the systematics of heavier, odd-mass, Tb isotopes. All γ -ray assignments to the various isotopes are based on X γ and $\gamma\gamma$ coincidences and on half-life measurements. A 0.9(2) s half-life for ¹⁴¹Dy was determined from its delayed proton decay. All spin assignments proposed in this paper are discussed in terms of Nilsson level diagrams and nuclear shapes.

I. INTRODUCTION

The shapes of nuclei with $50 \le Z$, $N \le 82$ and their effect on the structure and spectroscopic properties of these nuclei have been the subject of considerable recent interest. Ragnarsson *et al.*^{1,2} and Leander and Möller³ have predicted relatively stable prolate ground state shapes for N<76. Meyer-Ter-Vehn⁴ proposed a quasiparticle coupled to a triaxial core configuration to interpret the spectra of N=74-78 odd A nuclei in the A=135 region. More recently, Cizewski and Gülmez⁵ concluded that the Z=64 shell gap disappears below N=78, with the resulting onset of prolate or triaxial deformation. Rather extensive calculations based on the Strutinsky method and a Woods-Saxon potential for 50<Z, N<82, reported by Kern *et al.*,⁶ also predict a region of triaxial deformation around N=76 to 78. Self-consistent calculations by Redon *et al.*⁷ of the potential-energy surface for triaxial quadrupole deformations in neutron-deficient samarium isotopes again predict triaxial deformations at N=76.

Experimental data lag appreciably behind the theoretical predictions, with an emphasis on in-beam studies of rotational bands more relevant to high spin spectrometry than to ground-state shapes and deformations of the investigated nuclides.⁸⁻¹³ The growing body of spectroscopic data [E₄₊/E₂₊ ratios, B(E2) values, moments of inertia, etc.] yields experimental support to theoretical predictions regarding the shapes of 72<N<80 nuclei, including a triaxially deformed transition region near N=76.6, 7, 10-13

To throw additional light on these topics, we have undertaken a systematic study of the β/γ^{14} , and β -delayed proton¹⁵ decays of nuclides near Z=64 and close to the proton drip line, using mass-separated sources produced by (HI, xn yp) reactions. Radioactive β -decay studies offer advantages over in-beam spectrometry for the assignment of ground state spins, the identification of long-lived isomeric states, and the spectroscopy of high multipolarity γ transitions. Some examples of the use of radioactive decay data to address the problem of shape changes in neutron deficient rare earth nuclides can be found in the work of Kern *et al.*⁶ and of Redon *et al.*¹⁶

In the present paper, we report our results for the A=141 isobaric chain, including detailed level schemes for ¹⁴¹Tb and ¹⁴¹Gd, as well as the identification of a 24.5 s, β decaying, 11/2⁻ isomer in ¹⁴¹Gd, with an 11% IT branch. Some preliminary results of this study, including the identification of the new isotopes ¹⁴¹Dy (0.9 s) and ¹⁴¹Tb (3.5 s) were published elsewhere.^{14, 15, 17, 18} Complementary results on the adjacent even mass chains with A=140 and A=142 will be published separately.

II. EXPERIMENTAL

The desired nuclides were produced by bombarding ⁹²Mo targets (enriched to 97.4%) with ⁵⁴Fe and ⁵²Cr beams from the Berkeley SuperHILAC (Heavy-Jon Linear <u>AC</u>celerator). The self-supporting metal foil targets, about 2 mg/cm² thick, were mounted inside the high temperature surface ionization source of the OASIS (Qn-line <u>Apparatus</u> for <u>SuperHILAC</u> Isotope Separation) on-line mass separator facility¹⁹ in a configuration optimized for low transverse velocity recoils from compound nucleus reactions. After mass separation of the evaporation residues, a beam of the mass 141 reaction products was deflected by an electrostatic mirror to a shielded spectroscopy laboratory located ~4 m above the mass separator. There, the activity was deposited on a programmable moving tape which positioned it, in a user selectable time cycle, in the center of an array of β , γ and charged particle detectors (see below). In the A=141 experiments reported here, tape cycles of 2.4, 4, 12.8, 40 and 128 s were used.

The heavy-ion beam energies (276 and 210 MeV at the center of the target for the 54 Fe and 52 Cr beams, respectively) were chosen to correspond to the peaks of the excitation functions for the production of the desired mass 141 species, as calculated with the ALICE²⁰ evaporation code. Table I shows the calculated production cross sections of A=141 isobars for the two target-projectile combinations and projectile energies. Since the beam energy loss in our targets (typically 25-30 MeV) is comparable to the FWHM of the calculated excitation functions, uncertainties in the calculation should have only a minor effect on the overall efficiency and optimization of the experiments. The beam intensities, limited by target integrity and ion source temperature, were in the range of 0.1-0.2 particle microamperes.

The identification of 141 Dy in these experiments^{17, 18} shows that the sensitivity of the system is sufficient for the detection and study of products with sub-millibarn cross sections, in runs of about 24 hours duration. In other mass chains, we have been able to measure rare earth activities with half-lives shorter than 100 ms, such as 70 ms 155 Lu, proving the capability of the system to detect radioactive species in the tens of milliseconds range.

Table I lists no products with Z>66 or Z<63; ¹⁴¹Er and ¹⁴¹Ho can indeed be produced in the ⁵⁴Fe induced reaction, but with cross sections that are well below our detection limits. No ¹⁴¹Sm (and lower Z) nuclei can be produced from the ⁹²Mo target directly. Production from heavier mass Mo impurities in the target is negligible, due to the high target enrichment and low bombarding energy. Thus, any measured ¹⁴¹Sm activity must result from the β decay of ¹⁴¹Eu. As shown in a subsequent section, this observation is of crucial importance in the establishment of genetic relations and the absolute intensity and branching ratio normalizations of our data.

The detector array used for the measurements consisted of a Si Δ E-E particle telescope and a hyperpure Ge (HPGe) detector facing the front (deposit) side of the tape, and of a 1-mm thick plastic scintillator and a 24% n-type Ge detector on the opposite side of the tape. A third Ge detector (n-type, 52% efficiency), oriented at 90° to the other two, was placed ~4.5 cm from the radioactive source. In the 52Cr experiment series, the relative positions of the 24% and 52% Ge detectors were interchanged. The HPGe detector was used primarily as a high resolution (~700 eV at 122 keV) x-ray spectrometer, but could also serve (with a parallel low-gain amplifier and in conjunction with the E detector of the particle telescope) as the E detector in a ΔE -E electron/positron spectrometer for endpoint measurements up to ~10 MeV. The close geometry Ge detector served as the main γ -ray spectrometer. However, since our Z assignment of the observed particle and γ decays is based primarily on coincident characteristic x rays, this detector was also used (with a separate parallel high-gain amplifier) as a second x-ray spectrometer. The 90° detector was used primarily for $\gamma\gamma$ coincidence measurements. Since the intensity of γ -ray peaks in the close-geometry detector is subject to large multiplicity-dependent summing effects, singles spectra taken with the 90° detector were used in some experiments for the normalization of relative transition intensities.

* 2 3 3

- . · · · ·

n i di

4

Coincidences between the various detectors were recorded event-by-event and monitored by on-line sorting with preselected gates; all events were tagged with a time signal relative to the beginning of a tape cycle for half-life information. Singles data were also taken with the main γ -ray and x-ray detectors in a multispectrum mode in which the tape cycle was divided into eight equal time intervals. These singles spectra were used for the determination of precise half-lives, transition energies, and intensities as well as for the identification of non-coincident isomeric transitions (IT).

A modified version of the SAMPO code²¹ was used for the analysis of all γ spectra. An important feature of this version is the ability to resolve strongly overlapping K x-ray peaks from sources containing up to four adjacent-Z rare earth x-ray emitters. The total electron capture EC branching for a given isobar could be determined from the K_{\alpha} and K_{\beta} intensities observed in the HPGe detector after subtraction of internal conversion contributions and suitable corrections for fluorescence yields and I_{EC(K)}/I_{EC(tot)}. The positron branching was calculated from a multilinear analysis²² of the γ^{\pm} (511 keV) intensity (correcting for annihilation-in-flight and source geometry) with respect to the intensities of representative γ rays for each parent. The total decay strength for each isobar could then be

normalized to the sum of the EC and β^+ intensities. Half-lives were extracted from multicomponent decay curves using the least-squares code CLSQ.²³

The OASIS mass separator was operated with a nominal mass resolving power of 880, which reduces source contamination by adjacent masses to negligible levels. The selected mass value is stabilized to ±0.01 u using a feedback system controlled by a PDP 11/10 computer. To avoid transient effects, the 50 keV beam of particles from the mass separator is interrupted by a fast deflection circuit within about one microsecond of any malfunction or disturbance (high voltage sparks, etc.). Indeed, in all our experiments on a variety of rare earth mass chains over a period of several years, we found no evidence for contamination by neighboring masses. Background peaks in the singles spectra not attributable to the mass separated reaction products are usually quite low and readily identifiable: natural γ sources (⁴⁰K, Th and U decay series), γ -induced fluorescence in the support structure, detector and shielding materials (Au, Pb K x rays), and neutron activation products (²⁸Al, ⁷¹Ge^m, ⁷⁵Ge^m). Stable rare earth mass markers (e.g. ¹⁴¹Pr for the A=141 experiments), placed as trace quantities in the ion source, were used to select the desired mass chain, with suitable corrections for the different mass defects of the radioactive species. We, therefore, consider the mass assignments of the observed transitions as very reliable. The Z assignments are based mostly on the observation of coincident characteristic K x rays, and are similarly unambiguous. Weaker lines and higher energy transitions often cannot be seen in the coincidence spectra, and their half-life determination may be uncertain due to poor counting statistics, parent-daughter equilibria and interference from partially resolved lines from other isotopes. Assignment errors, although rather improbable, may be possible in these cases.

III. RESULTS

A. 141Eug+m

The decay of the 40 s ¹⁴¹Eug was thoroughly investigated by Deslauriers, Gujrathi and Mark,²⁴ who were able to assign 49 γ lines between 200 and 2250 keV to this decay. Over 40 of these transitions were also observed in our experiments, and apart from minor differences in the relative intensities of a few γ rays, our results are in excellent agreement with the earlier data and will, therefore, not be presented in detail. However, from our Sm K x-ray and 511-keV annihilation radiation intensities (as described in Section II), we obtain EC/ β +=0.22(2) for ¹⁴¹Eug decay and an intensity of 9(2)% for the 394.0 keV

transition, rather than the 14(3)% derived in Ref. 24 from the growth of the ¹⁴¹Sm daughter. With this renormalization, and the data from Ref. 24, the direct β branch to the 3/2⁺ level at 1.58 keV increases from 59% to 73(5)%.

In the same paper,²⁴ the identification of a 3.3(3) s $11/2^{-141}$ Eu^m isomer, decaying by a 96.4-keV E3 transition to the 40-s $5/2^+$ ground state of 141 Eu, and by β decay primarily to the 176-keV 11/2⁻ level in ¹⁴¹Sm was also reported. On the basis of the observed growth of the 196.9-keV γ ray, characteristic of the decay of 22.6 min ¹⁴¹Sm^m, a branching ratio of 67% for the β decay of the ¹⁴¹Eu^m isomer was derived.²⁴ This branching ratio corresponds to an unusually low log*ft* value of 4.1 for the $\pi h_{11/2} \rightarrow v h_{11/2}$ β transition.

Our measurements confirm the 96.4-keV E3 IT decay of ¹⁴¹Eu^m with a slightly shorter half-life of 2.7(3) s. We cannot, however, support the high β branch in the decay of this isomer. In the 4- and 12.8-s tape cycle experiments, the intensities of the 2.7 s component of the annihilation radiation and of the Sm K_{α} x rays are too low for a direct determination of the ¹⁴¹Eu^m β decay; such a low intensity is not compatible with a 67% β branch. Since, as mentioned above, ¹⁴¹Sm can be produced in our experiments only through the decay of ¹⁴¹Eu, the activity ratio of the 22.6 min ¹⁴¹Sm^m and the 10.2 min ¹⁴¹Sm^g is a measure of the of the β /IT ratio in the decay of ¹⁴¹Eu^m. In the 128-s tape cycle experiment all the intermediate species leading to the ¹⁴¹Sm isomers have essentially decayed and the branching ratio can be extracted without detailed evaluation of the growth and decay of all the nuclides in the isobaric chain. From the measured intensities of the 196-keV (74% abundance in the decay of ¹⁴¹Sm^m) and of the 404- and 438-keV (42.5% and 38%, respectively, in the decay of 141Smg) y rays, we derive a 141Sm^m/141Smg activity ratio (at saturation) of 0.124(6). The value of the β branch in the decay of ¹⁴¹Eu^m that corresponds to this ratio depends on the relative amount of ¹⁴¹Eug not resulting from IT decay of ¹⁴¹Eu^m, i.e. produced either directly in the reaction or by the decay of ¹⁴¹Gdg+m. Assuming no independent production of ¹⁴¹Eug and branching ratios of 2% for the feeding of ¹⁴¹Sm^m from ¹⁴¹Eug decay (Ref. 24, renormalized as mentioned above) and for the feeding of ¹⁴¹Smg from ¹⁴¹Eu^m, we derive a lower limit of 11.3(5)% for the β branch in the decay of ¹⁴¹Eu^m. A more realistic estimate of the production of ¹⁴¹Eu^g, based on calculated²⁰ reaction cross sections (see Table I), an isomer ratio of 20 for the preferential production of high-spin isomers in heavy-ion reactions and decay data for ¹⁴¹Gd and ¹⁴¹Tb from this study (see Sections III B and III C below), leads to a value of 13^{+4}_{-2} % for the branching ratio. This result is quite insensitive to the assumptions regarding the decay of higher members of the chain, the isomer ratios and the reaction cross sections; reasonable uncertainties associated with all three sources are included in the uncertainty estimate given above. The log *ft* value for the $\pi h_{11/2} \rightarrow \nu h_{11/2}$ transition corresponding to the 13%

branching ratio and the decay scheme of Ref. 24 is 5.2(2), in good agreement with log*ft* systematics in this region. This log*ft* assumes no feeding of higher excited levels in this decay; the true value is therefore expected to be somewhat higher.

B. 141Gdg+m

The discovery of ¹⁴¹Gd was first reported in a preliminary presentation of this work.^{17, 18} Concurrently, Redon *et al.*¹⁶ determined a ¹⁴¹Gd half-life of 22(3) s, assigned 6γ rays to its decay and placed them in a tentative decay scheme. More recently, Turcotte *et al.*²⁵ proposed rather detailed and extensive decay schemes for 20.8(8) s ¹⁴¹Gd^m (β and IT) and 1.3(7) s ¹⁴¹Gd^g. These decay schemes comprise 45 γ transitions between 28 excited levels in ¹⁴¹Eu, as well as 4 levels and 6 transitions in ¹⁴¹Gd associated with the IT decay of ¹⁴¹Gd^m. There is substantial overlap between the data of Ref. 25 and our results, but there are also some major differences.

Figure 1 shows a coincident γ spectrum gated on the Eu K_{α} x rays, obtained in a 40-s tape cycle experiment. The high resolution of the detector and good statistics of the data permit an unambiguous identification and assignment of more than 30 transitions to the decay of ¹⁴¹Gd. Some additional (relatively weak or high energy) γ rays were assigned to this decay on the basis of suitably gated coincidence spectra, half-lives, and energies matching the level scheme established by the other lines. Table II lists all of the γ rays we attribute to transitions in ¹⁴¹Eu following the β decay of ¹⁴¹Gd, along with their relative intensities and level scheme placements. Coincident γ rays observed in spectra gated on the relatively intense peaks are listed in Table III.

Table II also includes rather strong γ transitions at 59.8, 85.2, 113.2, 119.6, 145.0, 198.4 and 258.2 keV that are not seen in Fig. 1. A coincidence spectrum gated on the Gd K_{α} x rays shown in Fig. 2 clearly identifies these lines as transitions in ¹⁴¹Gd. Since their half-life is the same, within statistical errors, as that of the prominent γ rays associated with the β decay of ¹⁴¹Gd, we have assigned these transitions¹⁴ to an IT cascade from the 11/2⁻ isomeric level at 377.8 keV to the 1/2⁺ ground state of ¹⁴¹Gd. The 119.6-keV γ ray is the only one of the seven transitions in the cascade that is not also seen in the decay of 3.5 s ¹⁴¹Tb, and is clearly the E3 transition to the 5/2⁺ state at 258.2 keV. The placement of the intermediate levels at 198.4 and 113.2 keV is based on coincidence relationships and intensity balances of the γ rays in the cascade. The J π =3/2⁺ assignment to these levels is based on level systematics of N=77 nuclei, shown in Fig. 3. This sequence of levels seems to be more in line with the trends established by the other three isotones than that proposed

by Turcotte *et al.*,²⁵ who place the two $3/2^+$ levels at 60 and 145 keV, respectively. Recently, Béraud *et al.*²⁶ in an analysis of their own data confirmed our interpretation.

In the 128-s tape cycle experiment, the decay of the most prominent of the γ rays assigned to the IT and β decays of ¹⁴¹Gd could be followed for well over three half-lives, allowing an accurate and reliable determination of their half-life. Most of these γ rays had a half-life of 24 s. Since the 96.4-keV isomeric decay of the 11/2⁻¹⁴¹Eu^m (in equilibrium with its parent) as well as transitions associated with the IT decay of ¹⁴¹Gd^m are included in this group, the 24 s activity is identified as the 11/2⁻ isomer, ¹⁴¹Gd^m. From a weighted average of 8 γ rays (some seen independently in two detectors), a half-life of 24.5(5) s is adopted.

The prominent 215.8-keV γ ray, however, had a significantly shorter apparent single component half-life. This is illustrated in Fig. 4, which shows the decay of the 215.8- and 223.9-keV γ rays. Based on this difference, clearly outside statistical error margins, we assign the 215.8-keV line to the decay of the 1/2^{+ 141}Gdg. Using coincidence data and energy differences, several additional γ rays were assigned to this decay. Also, the ~20 s delayed proton activity observed in the decay of ¹⁴¹Gd was attributed to ¹⁴¹Gdg on the basis of the observed final state feedings in the delayed proton decay daughter ¹⁴⁰Sm,²⁷ and a delayed proton branch of 0.03(1)% was determined.

As can be seen from Fig. 4, the single component half-life of 141 Gd^g appears to be about 20 s, i.e. very close to that of 141 Gd^m. The apparent single component half-life of the 215.8-keV γ ray extracted from the 40-s tape cycle experiment is 20.3(5) s, while the value extracted from the 128-s cycle is 22.1(5) s. Similar discrepancies are also exhibited by the 336.2-keV γ ray [18.6(9) s and 23.3(9) s, respectively] and by the β -delayed protons [16(4) s and 23(3) s, respectively]; they can be explained by differences in the relative contribution of 141 Gd^g produced directly, and by decay of 141 Tb and 141 Gd^m between the 54 Fe and 52 Cr induced reactions used, respectively, in the two experiments. From a growthdecay analysis of transitions assigned to the decay of 141 Gd^g in the 128-s cycle experiment, we determined a half-life value of 14(4) s for 141 Gd^g. In our 2.4- and 4-s tape cycle data we see no evidence of a short-lived component that would be consistent with the 1.3(7) s half-life claimed by Turcotte *et al.*²⁵ A similar conclusion was also reached by Béraud *et al.* in Ref. 26.

Using energy differences, intensity balances and coincidence data, all γ rays could be uniquely assigned to either the ground state or isomeric state decays of ¹⁴¹Gd, and partial decay schemes for both isomers are shown in Fig. 5. The total β decay strength from the sum of the EC and β ⁺ intensities could be determined only for the combined ¹⁴¹Gd^{m+g} decay. Relative to I_{351,1}=100, the β ⁺ and EC strengths were I_{β+}=550(140) and

I_{EC}=200(40). However, the sum of the γ -ray intensities (corected for internal conversion) in the ¹⁴¹Eu daughter agreed well with the aggregate β strength, so the low- and high-spin normalizations could be determined from the sum of the γ -ray intensities feeding the 5/2⁺ ground state and the 96.5 keV 11/2⁻ isomeric state, respectively. From the decay scheme, the branching for IT decay was determined to be 11(2)%. The double placement of the 526-keV γ ray is supported by intensity considerations and coincidence with the 301-keV transition. The double placement of the 1073-keV γ ray is based on energy differences alone. The major difference between our scheme and that of Ref. 25 is in the placement of the 216-keV transition, and the resulting assignment and identification of low-spin levels.

C. ¹⁴¹Tb

For the study of the decay of 141 Tb, we used the data from the 4- and 12.8-s tape cycles. A coincident γ -ray spectrum gated on Gd K_{α} x rays is shown in Fig. 6. Due to the lower production cross section (see Table I above), the counting statistics are appreciably lower than in the case of ¹⁴¹Gd decay. However, peaks associated with the decay of ¹⁴¹Tb can be clearly identified. A list of 36 γ rays between 50 and 650 keV that we have assigned to this decay is presented in Table IV. Most of these γ rays exhibit a single component decay behavior with a weighted average half life of 3.5(2) s. Six of the transitions associated with the IT decay of 24.5-s ¹⁴¹Gd^m (see Section III B above) also have a 3.5-s component. This shows that the low-lying, spin 5/2+ and 3/2+ states at 258, 198 and 113 keV are populated quite strongly in the decay of ¹⁴¹Tb. Gamma-gamma coincidences seen with various gates are listed in Table V. Using these coincidence relationships along with energy differences and intensity balances, almost all the observed γ transitions can be placed in a level scheme comprising 16 excited levels in ¹⁴¹Gd, shown in Fig. 7. This level scheme reproduces and considerably expands the scheme recently proposed by Béraud et al.²⁶ The γ transitions included in the decay scheme (after corrections for internal conversion) account for ~85% of the total β strength [I_{B+}=425(100) and I_{EC}=~250, relative to I_{293.3}=100] associated with the decay of ¹⁴¹Tb. In view of the high Q-value, some unobserved feeding of higher lying levels should be expected, however, intensity balance through the first six excited levels indicates that the intensity of transitions not included in the scheme is low. These intensity considerations leave little room for significant direct β feeding of either the 1/2⁺ ground state or the 377.8-keV 11/2- isomeric level in ¹⁴¹Gd, as would be expected if the postulated^{25, 26} 1/2+, 11/2- spin assignments for ¹⁴¹Tb were indeed correct. Turcotte et al.²⁵ claim to have observed the low-spin member of the isomeric pair with a half-life of 7.9(6) s. We see no indication of this longer half-life; within statistical uncertainties, all the γ rays we assign to

 141 Tb decay with a single half-life of 3.5 s, and we are unable to separate our decay scheme into low- and high-spin branches.

It can be seen that both high- and low-spin levels in ¹⁴¹Gd appear to be populated with comparable intensity in the decay of ¹⁴¹Tb. In particular, the levels at 551.6 and 895.2 keV, fed by low log*ft* β transitions, deexcite through 5/2⁺ and 11/2⁻ levels, and the 752.6-keV level, also fed by a low log*ft* transition, deexcites through a 3/2⁺ level. This is only consistent with a J^π assignment of 5/2⁻ or 7/2⁻ for the ¹⁴¹Tb parent. Based on a consideration of available Nilsson model states (see below) we propose a spin of 5/2⁻ for the ground state of ¹⁴¹Tb.

The experimental situation in ¹⁴¹Tb differs from that seen by Redon *et al.*¹⁶ in the decay of ¹⁴³Tb. A strong β feeding of the 45 keV, 3/2+ first excited state of ¹⁴³Gd is also observed, indicating a positive parity for the ground state of ¹⁴³Tb, to which the authors assign a spin of 5/2+. Redon *et al.*¹⁶ also postulate the existence of an 11/2- isomer, which is expected from systematics, but for which there is no compelling evidence in the data. It is quite likely that in both ¹⁴¹Tb and ¹⁴³Tb the excitation energy of the 11/2- level is such that there is no long-lived isomeric state.

D. ¹⁴¹Dy

Due to its low production cross section, we could study in detail only the delayed proton branch in the decay of this isotope. As reported in Refs. 14, 15, and 18, the half-life of ¹⁴¹Dy is 0.9(2) s. No γ rays following its β decay were previously identified, but transitions of 307.3, 503.8, and 647.5 keV in the daughter ¹⁴¹Tb are now known from inbeam work by Goettig *et al.*¹⁰ We observed Tb K_{β1} x rays and two, very weak γ rays at 53.0(1) and 307.3(2) keV in the 2.4- and 4-s tape cycle data with short (<1 s) half-lives and have tentatively assigned these transitions to ¹⁴¹Dy β decay. Feedings of final states in ¹⁴⁰Gd observed in the delayed proton decay of ¹⁴¹Dy (specifically the intensity ratio of the 4+ \rightarrow 2+ and 2+ \rightarrow 0+ transitions) are not consistent with a single low-spin (1/2+) or high-spin (11/2-) precursor.²⁷ The data can be reconciled by assuming contributions from both spins²⁷ or by postulating a single intermediate spin value of 7/2- or 9/2- for the ¹⁴¹Dy precursor. On the basis of available Nilsson states (see below) we suggest a J^π of 9/2- for ¹⁴¹Dy. This would be in agreement with the systematics of the lighter N=75 isotones ¹³¹Ba 28, ¹³³Ce ²⁸, and ¹³⁵Nd ²⁹ where 1/2+, 9/2- isomer pairs have been seen, and with ¹³⁷Sm ^{16, 30} and ¹³⁹Gd ¹³ where 9/2- states have been observed.

IV. SUMMARY AND CONCLUSIONS

Above, we have presented and interpreted experimental data on the β/γ decay of $^{141}\text{Eu}^{\text{m}}$, $^{141}\text{Gdg+m}$, ^{141}Tb and ^{141}Dy . What conclusions can be drawn from this body of data with regard to the fundamental nuclear structure questions of shape changes and disappearance of the Z=64 shell below N=78? For ^{141}Eu , our data confirm previously published results; 24 the amended log*ft* value of 5.2(2) for the $\pi h_{11/2} \rightarrow v h_{11/2} \beta$ transition from $^{141}\text{Eu}^{\text{m}}$ removes an apparent anomaly in log*ft* systematics in the 50<Z, N<82 region. The B(E3) value for the 96.4-keV $11/2^-\rightarrow 5/2^+$ isomeric transition is 0.8 W.U. This lack of hindrance is indicative of the single particle nature of the relevant Z=63 proton levels.

The low-lying, low-spin levels in ¹⁴¹Gd, as well as the position of the 11/2⁻ isomeric state, follow closely the systematics established by the N=77 isotones of lower Z (see Fig. 3). The lack of Z=64 shell closure effects should not, however, be construed as evidence for the disappearance of the closure, since the N=81 level systematics from Ce to Gd also exhibit a smooth sequence (see Fig. 13 of Ref. 16). The B(E3) value of the 119.6 keV $11/2^{-} \rightarrow 5/2^{+}$ isomeric transition is only 8×10^{-4} Weisskopf units, which is about 5-10 times slower then the measured rate in the other three isotones.³¹ This additional hindrance may be related to shape differences or to residual effects of the Z=64 shell. The increase of the energy gap between the $11/2^{-}$ and $1/2^{+}$ states between N=79 and N=77 in Ce, Nd, and Sm nuclei has been attributed to changes in deformation near N=77.¹⁶ We observe a very similar increase of the energy gap in Gd, again indicating no appreciable effect of the Z=64 shell closure.

For ¹⁴¹Tb, our ground state J^{π} assignment of 5/2⁻ deviates from the previously assumed 11/2⁻ ground state (or 11/2⁻, 1/2⁺ isomeric pair).^{25, 26} This assumption is based on an extrapolation from heavier (spherical) Tb nuclides. Figures 8(a) and 8(b) show Nilssontype level diagrams for protons and neutrons, respectively, in the appropriate Z and N regions, based on the folded Yukawa potential .³² For a spherical nucleus, 11/2⁻ is indeed the most probable ground state spin for Z=65. For deformations in the ε_2 =0.1-0.2 range, the preferred candidate for the Fermi level of Tb is the 5/2⁻ [532] state of the *h*_{11/2} orbital [Fig. 8(a)], in excellent agreement with the decay scheme of Fig 7. A 7/2⁻ assignment, also compatible with the data, is ruled out by the lack of suitable candidates in the Nilsson diagram.

The 5/2+ assignment for the ground state of ¹⁴³Tb ¹⁶ is more difficult to justify on the basis of the Nilsson diagram of Fig. 8(a). However, the energy of the 5/2+ [402] state increases rapidly with deformation; at ε_2 =~0.1, its energy is very close to that of 4 or 5 other states, so that the possibility of it becoming the ground state is not excluded by the Nilsson diagram.

Turning to the neutron diagram [Fig. 8(b)], we find that the 9/2⁻ [514] state of the $h_{11/2}$ orbital is an obvious Fermi level candidate for the N=75 ¹⁴¹Dy, over a wide range of deformations. This is in good agreement with our interpretation of experimental results in Section III D above. The 9/2⁻ J^{π} assignment for ¹⁴¹Dy is further supported by the systematics of the other N=75 isotones. This may be another example of a relatively abrupt onset of shape changes near N=76, or of the softness of nuclei in this region.

In conclusion, the results reported in this paper provide ample evidence for the occurrence of shape changes and for the disappearance of the Z=64 shell gap below N=78. The overall consistence of ground state J^{π} assignments with the Nilsson level diagrams of Fig. 8, suggests prolate deformations, in agreement with theoretical predictions. Unfortunately, the data from a single mass chain are not sufficient to search for signatures of triaxiality, or for other far-reaching conclusions. Further β decay studies of other mass chains in this poorly characterized transitional region are necessary to establish the systematics from which deeper nuclear structure insights can be obtained.

ACKNOWLEDGEMENTS

One of us (J. G.) would like to thank the Lawrence Berkeley Laboratory for its hospitality during the course of this work. We would also like to express our thanks to Peter Möller for performing the Nilsson model calculations and for helpful discussions, and to Kari Vierinen for his interest and assistance. The excellent technical support and efficient cooperation of the LBL SuperHILAC staff and of L.F. Archambault and A.A. Wydler are gratefully acknowledged. This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

REFERENCES

- [†] On leave of absence from the Soreq Nuclear Research Center, Yavne 70600, Israel.
- ¹ I. Ragnarsson, A. Sobiczewski, R.K. Sheline, S.E. Larsson, and B. Nerlo-Pomorska, Nucl. Phys. <u>A233</u>, 329 (1974).
- ² I. Ragnarsson and R.K. Sheline, Phys. Scr. <u>29</u>, 385 (1984).
- ³ G.A. Leander and P. Möller, Phys. Lett. <u>110B</u>, 17 (1982).
- ⁴ J. Meyer-Ter-Vehn, Nucl. Phys. <u>A249</u>, 111 (1975); <u>A249</u>, 141 (1975).
- ⁵ J.A. Cizewski and E. Gülmez, Phys. Lett. <u>175B</u>, 11 (1986).
- ⁶ B.D. Kern, R.L. Mlekodaj, G.A. Leander, M.O. Kortelahti, E.F. Zganjar, R.A. Braga, R.W. Fink, C.P. Perez, W. Nazarewicz, and P.B. Semmes, Phys. Rev. C <u>36</u>, 1514 (1987).
- ⁷ N. Redon, J. Meyer, M. Meyer, P. Quentin, P. Bonche, H. Flocard, and P.-H. Heenen, Phys. Rev. C <u>38</u>, 550 (1988).
- ⁸ S. Lunardi, F. Scarlassara, F. Soramel, S. Beghini, M. Morando, and S. Signorini, Z. Phys. A <u>321</u>, 177 (1985).
- ⁹ C.J. Lister, B.J. Varley, R. Moscrop, W. Gettetly, P.J. Nolan, D.J.G. Love, P.J. Bishop, A. Kirwan, D.J. Thornley, L.Ying, R. Wadsworth, J.M. O'Donnel, H.G. Price, and A.H. Nelson, Phys. Rev. Lett. <u>55</u>, 810 (1985).
- ¹⁰ L. Goettig, W. Gelletly, C.J. Lister, R. Moscrop, and B.J. Varley, Nucl. Phys. <u>A475</u>, 569 (1987).
- ¹¹ F. Soramel, S. Lunardi, S. Beghini, M. Morando, C. Signorini, W. Meczynski, G. Fortuna, G. Montagnoli, and A.M. Stefanini, Phys. Rev. C <u>38</u>, 537 (1988).
- ¹² E.S. Paul, K. Ahn, D.B. Fossan, Y. Liang, R. Ma, and N. Xu, Phys. Rev. C <u>39</u>, 153 (1989).
- ¹³ R. Ma, K. Ahn, Y. Liang, E.S. Paul, N. Xu, and D.B. Fossan, Phys. Rev. C <u>39</u>, 530 (1989).
- ¹⁴ J. Gilat, J.M. Nitschke, P.A. Wilmarth, K. Vierinen, and R.B. Firestone, in *Proceedings* of the Fifth International Conference on Nuclei Far From Stability (Rosseau Lake, Ontario, Canada, 1987), AIP Conf. Proc. No. 164, edited by I.S. Towner (AIP, New York, 1988), p. 463.
- ¹⁵ J.M. Nitschke, P.A. Wilmarth, J. Gilat, P. Möller, and K.S. Toth, in *Proceedings of the Fifth International Conference on Nuclei Far From Stability (Rosseau Lake, Ontario, Canada, 1987)*, AIP Conf. Proc. No. 164, edited by I.S. Towner (AIP, New York, 1988), p. 697.
- ¹⁶ N. Redon, T. Ollivier, R. Béraud, A. Charvet, R. Duffait, A. Emsallem, J. Honkanen, M. Meyer, J. Genevey, A. Gizon, and N. Idrissi, Z. Phys. A <u>325</u>, 127 (1986).

- ¹⁷ J.M. Nitschke, P.A. Wilmarth, P.K. Lemmertz, W.-D. Zeitz, and J.A. Honkanen,
 Z. Phys. A <u>316</u>, 249 (1984).
- ¹⁸ P.A. Wilmarth, J.M. Nitschke, R.B. Firestone, and J. Gilat, Z. Phys. A <u>325</u>, 485 (1986).
- ¹⁹ J.M. Nitschke, Nucl. Instr. and Meth. <u>206</u>, 341 (1983).
- ²⁰ W.G. Winn, H.H. Gutbrod, and M. Blann, Nucl. Phys. <u>A188</u>, 423 (1972); M. Blann and J. Bisplinghoff, "Code ALICE/Livermore 1982", U.S. DOE Report UCID-19614 (1982).
- ²¹ J.T. Routti and S.G. Prussin, Nucl. Instr. and Meth. <u>72</u>, 125 (1969).
- ²² R.B Firestone, J.M. Nitschke, P.A. Wilmarth, and K. Vierinen, Nuclear Science Division 1986-87 Annual Report, LBL Report No. 25295, (1988 unpublished) p 46.
- ²³ J.B. Cumming, in Proc. of a Symposium on Applications of Computers to Nuclear and Radiochemistry, Gatlinburg, Tenn., Oct. 17-19, 1962, NAS-NS 3107, edited by G.D. O'Kelly (1963) p.25.
- ²⁴ J. Deslauriers, S.C. Gujrathi, and S.K. Mark, Z. Phys. A <u>283</u>, 33 (1977).
- ²⁵ R. Turcotte, H. Dautet, S.K. Mark, N. de Takacsy, E. Hagberg, V.T. Koslowsky, J.C. Hardy, H. Schmeing, and X.J. Sun, in *Proceedings of the Fifth International Conference on Nuclei Far From Stability (Rosseau Lake, Ontario, Canada, 1987)*, AIP Conf. Proc. No. 164, edited by I.S. Towner (AIP, New York, 1988), p. 473.
- ²⁶ R. Béraud, R. Duffait, A. Emsallem, M. Meyer, N. Redon, D. Rolando-Eugio, D. Barnéoud, J. Blachot, J. Genevey, and A. Gizon, in *Third International Conference on Nucleus Nucleus Collisions, Saint-Malo, France, June 6-11, 1988*, edited by C. Estève, C. Grégoire, D. Guerreau, and B. Tamain (Centre de Publications de l'Université de Caen, Caen Cedex, France, 1988) p. 3.

÷.,

۰.. د

- ²⁷ P.A. Wilmarth, Ph.D. Thesis, University of California, Berkeley, 1988, Lawrence Berkeley Laboratory Report 26101.
- ²⁸ Table of Isotopes, 7th Edition, edited by C.M. Lederer and V.S. Shirley (John Wiley & Sons, New York, 1978).
- ²⁹ M.O. Kortelahti, H.K. Carter, R.A. Braga, R.W. Fink, and B.D. Kern, Z. Phys. A <u>332</u>, 229 (1989); K.S. Vierinen, J.M. Nitschke, P.A. Wilmarth, R.B. Firestone, and J. Gilat, Nucl. Phys. A (accepted for publication).
- ³⁰ E.S. Paul, R. Ma, C.W. Beausang, D.B. Fossan, W.F. Piel, Jr., S. Shi, N. Xu, and J.-y. Zhang, Phys. Rev. Lett. <u>61</u>, 42 (1988).
- ³¹ J. Deslauriers, S. Gujrathi, S.K. Mark, and S.P. Sud, Z. Phys. A <u>325</u>, 421 (1986).
- ³² P. Möller, private communication; P. Möller and J.R. Nix, Nucl. Phys. <u>A361</u>, 117 (1981).

TABLE I. Cross sections for the production A=141 isobars in the 54 Fe + 92 Mo and
$^{52}Cr + ^{92}Mo$ reactions, calculated with the ALICE ²⁰ evaporation code.

Isotope	⁵⁴ Fe + ⁹² Mo (276 MeV)	⁵² Cr + ⁹² Mo (210 MeV)
¹⁴¹ Dy	0.7 mb	0.1 mb
¹⁴¹ Tb	15 mb	11 mb
¹⁴¹ Gd	46 mb	100 mb
141Eu /	18 mb	100 mb

TABLE II. Transition energies, level assignments, and relative intensities for $^{141}Gdg^{+m}$. The β^+ and EC strengths for m+g decay were I $_{\beta+}=550(140)$ and I_{EC}=200(40), relative to I_{351.1}=100.

E(keV) ^a	Level	I (rel) ^{b,c}
Eud Ko2		73 (7)
Eua Kal		146 (15)
Eua K β_1		49 (5)
$Eu^{\alpha} K_{\beta 2}$		14 (3)
$Gd^e K_{\alpha 2}$		10 (2)
$Gac K_{\alpha 1}$		20 (2)
Gde K _{B1}		6 (2) 2 (1)
$Ga^{\alpha} K\beta_{2}$	259.2	2 (1) 5 (2)
$59.6^{1}(1)$	258.2	5 (2) 2 (1)
$85.2^{1}(1)$	198.4	3 (1) 12(2)
90.48(1)	90.5	13 (2)
$113.2^{4}(1)$	115.2	9(2)
$119.0^{\circ}(1)$	377.8	5 (2) 10 (2)
$120.0^{11}(1)$	330.2	19 (2)
$145.0^{4}(1)$	258.2	6(2)
$1/3.1^{n}(1)$	509.3	6(2)
$189.7^{\text{II}}(1)$	525.9	7 (2)
$198.4^{4}(1)$	198.4	27 (3)
215.8"(1)	215.8	111 (12)
223.9(1)	320.4	72 (7)
$238.2^{1}(1)$	500.2	23(2)
293.3" (2) 200 7 (1)	509.5	4 ⁴ (2))
300.7(1)	925.2	10(2)
350.2" (1)	550.2 AA7 9	55 (4) 100 (10)
351.1(1) 361.2(1)	447.0 1576	100(10)
389.2 (1)	837.1	$\frac{42}{14}$
4122(1)	869.9	17(2) 13(2)
457.6 (1)	457.6	9(2)
475.4 (1)	923.2	13(2)
487.5 (1)	,	12(2)
509.0 (5)	509.3	
525.9 ^h (2)	525.9	35 ^k (6)
526.0 (2)	622.5	19 ^k (5)
544.3 (1)		5 (2)
557.5 (1)		5 (2)
560.5 (1)	656.7	27 (3)
574.9 (1)	671.7	57 (6)
590.0 (1)	1047.4	13 (2)
599.6 (1)	1047.4	12 (2)
647.3 (1)	967.7	23 (2)
652.9 (1)	749.4	21 (2)
657.0 (2)		4 (2)
700.6 (1)		8 (2)
740.7 (1)	837.1	18 (2)
746.4 (1)		7 (2)

E(keV) ^a	Level	I (rel) ^{b,c}
773.5 (1)	869.9	15 (2)
826.7 (1)	923.2	9 (2)
841.4 (1)		7 (2)
864.4 (1)		6 (2)
972.2 (1)	2019.6	10 (2)
976.2 (1)	1072.6	9 (2)
1036.4 (1)		4 (2)
$1072.6^{h,l}(2)$	1408.6	2 (1)
1072.6 ¹ (2)	1072.6	2 (1)
1097.6 (1)		12 (2)
1148.5 (1)	1820.4	5 (2)
1164.0 (1)	1820.4	5 (2)
1172.2 (1)		6 (2)
1192.8 ^h (1)	1408.6	14 (2)
1338.0 (2)	1795.7	6 (3)
1348.0 (2)	1795.7	6 (2)
1397.2 (2)		9 (2)
1922.8 (2)	2019.6	6 (2)

^a Assigned to decay of ¹⁴¹Gd^m to levels in ¹⁴¹Eu, except where noted. ^b Intensity relative to I 351,1=100.

^c For absolute intensity per 100 decays of ¹⁴¹Gd^m, multiply by 0.138.

^d Prompt x-rays only. Conversion of 96.4 keV E3 IT decay of ¹⁴¹Eu^m not included.

^e From conversion of IT decay of ¹⁴¹Gd^m.

^f From IT decay of ¹⁴¹Gd^m. For absolute intensity per 100 ¹⁴¹Gd^m decays, multiply by 0.138.

g From IT decay of ¹⁴¹Eu^m.

^h Assigned to ¹⁴¹Gdg decay. For absolute intensity per 100 ¹⁴¹Gdg decays, multiply by 0.48.

ⁱ Seen only in coincidence.

^j Masked by 511keV annihilation radiation.

k The 526-keV intensity divided between the 525.9 \rightarrow 0 and the 622.4 \rightarrow 96.4 transitions on the basis of coincidence data and γ intensity balance.

¹By energy difference, the 1072.6(2) γ ray can fit both the 1072.6 \rightarrow 0 transition in ¹⁴¹Gd^m decay and the 1408.6 \rightarrow 336.2 transition in ¹⁴¹Gd^g decay. The intensity is apportioned equally.

Gate	Coincident gamma rays
Eu K x rays	121, 173, 190, 216, 224, 293, 301, 336, 351,
	361, 389, 412, 458, 475, 487, 526, 544, 560,
	575, 590, 600, 647, 653, 701, 741, 773, 827
Gd K x rays	60, 85, 113, 120, 145, 198, 258
60	85, 113, (120), 198
85	60, 113, 120
113	60, 85, 120, 145
121	173, 190, 216
145	113, 120
198	60, 120
216	120, 173, 190, (293)
224	488, 647
258	120
336	190
351	389, 475, 600
361	412, 590
389	351
526	301

TABLE III. Gamma-gamma coincidences observed in ¹⁴¹Gd^{g+m} decays.

31

ŧ

;

E(keV) ^a	Level	I (rel) ^{b,c}
Gd K _{α2}		133 (13)
$Gd K_{\alpha 1}$		241 (24)
Gd K _{β1}		74 (7)
$Gd K_{\beta 2}$		20 (2)
59.3 (1)	551.6	18 (4)
59.8 ^d (1)	258.2	10 (2)
$85.2^{\alpha}(1)$	198.4	11(2)
91.5 (1)	/52.0	2(1)
94.5 (1) 112.2d (1)	040.1	$\begin{array}{c} 1 \\ 1 \\ 7 \\ 5 \end{array}$
$113.2^{\circ}(1)$ 110.6e (1)	115.2	47 (5)
$119.0^{\circ}(1)$ 131.6 (1)	577.0 646 1	C 17 (5)
131.0(1) 1367(1)	51 <i>A</i> A	47 (J) 85 (D)
130.7(1) 145 0 ^d (1)	258.2	22 (3)
1739(1)	551.6	15(2)
$198.4^{d}(1)$	198.4	88 (9)
206.7 (2)	758.3	4 (3)
234.5 (1)	492.3	5 (2)
248.8 (1)	895.2	5 (2)
258.2 ^d (1)	258.2	70 (7)
268.3 (2)	646.1	29 (3)
293.3 (1)	551.6	100 (10)
343.6 (1)	895.2	97 (10)
379.2 (1)	492.3	29 (3)
389.0 (1)	940.5	11 (2)
402.9 (1)	895.2	28 (7)
406.8 (1)	o / o . e	8 (2)
426.0 (1)	940.5	7 (2)
463.4 (1)	661.4	22 (3)
475.4 (1)	989.7	51 (5)
480.3 (1)	402.2	32 (3)
492.2 (1)	492.3	41 (4)
494.3 (1)	/52.0	40 (4) 54 (5)
500.2(1)	/38.3	54 (5) 27 (2)
517.5 (1)	895.2	$\frac{27}{5}$
JJU.Y (2) 551 D (1)	757 6	13 (2)
JJ4.2 (1) 595 6 (1)	132.0	20 (2)
505.0(1)	020 7	$\frac{21}{8}$ (2)
617.0(1)	707./ 1121 Q	0 (2) 28 (3)
6360(1)	205 7	20 (J) 11 (J)
000.7 (1)	073.4	II (4)

TABLE IV. Transition energies, level assignments and relative intensities for ¹⁴¹Tb. The β^+ decay strength is 425(100) and the EC strength is ~250, realtive to I_{293.3}=100.

^a Assigned to decay of ¹⁴¹Tb, except where noted.
^b Intensity relative to I 293,3=100.
^c For absolute intensity per 100 decays of ¹⁴¹Tb, multiply by 0.168.
^d Also in ¹⁴¹Gd^m IT decay. Intensity corrected to include only the 3.5 s component from ¹⁴¹Tb decay.
^e IT decay of ¹⁴¹Gd^m.

Gate	Coincident gamma rays
Gd K x rays	59, 60, 85, 92, 113, 120, 132, 137, 145, 174, 198,
	249, 258, 268, 293, 344, 379, 389, 403, 407, 426,
	463, 475, 480, 492, 500, 531, 554, 586, 617, 637
59+60	85, 113, 198, 293, 344, 379, 492
85	60, 113, (120), 293, 344, 389, 554
113	59, 60, 85, 120, 145, 293, 344, 379, 494, 554
137	132, 426, 475, 586
145	113, 293, 344
198	60, 293, 344, 463, 500, 554
258	120, 293, 344, 500, 637
293	60, 85, 113, 145, 198, 258, 344, 389
344	60, 85, 113, 145, 174, 198, 258, 293
379	113

TABLE V. Gamma-gamma coincidences observed in ¹⁴¹Tb decays

FIGURE CAPTIONS

- FIG. 1. Gamma-ray spectrum of ¹⁴¹Gd decay gated on Eu K_{α} x rays (40-s tape cycle). Peaks marked by energy identify transitions assigned to the decay of ¹⁴¹Gd^{g+m}. Peaks associated with the IT decay of ¹⁴¹Gd^m do not appear in this spectrum.
- FIG. 2. Gamma-ray spectrum of ¹⁴¹Gd decay gated on Gd K_{α} x rays (40-s tape cycle). Unless marked otherwise, all the peaks are associated with the IT decay cascade of ¹⁴¹Gd^m.
- FIG. 3. Systematics of the first four excited levels of neutron deficient N=77 nuclides. Data for ¹⁴¹Gd from this work, ¹³⁹Sm data from Ref. 31, and ¹³⁷Nd and ¹³⁵Ce data from Ref. 28.
- FIG. 4. Decay curves of the 216- and 224-keV γ rays populated in ¹⁴¹Gd decay, taken with two different detectors. Differences in slope outside statistical error margins are clearly visible.
- FIG. 5. Decay scheme for the decay of ¹⁴¹Gd^{g+m} to levels in ¹⁴¹Eu. The level energies have been calculated from a least-squares fit of the γ-ray energies to the level scheme. The intensities given in parentheses for each transition are relative photon intensities and are not corrected for intenal conversion. For absolute γ intensities per 100 decays of ¹⁴¹Gd^m or ¹⁴¹Gd^g, multiply by 0.138 or by 0.48, respectively. The log*ft* values were calculated without taking into account unobserved transitions to higher lying levels; actual log*ft* values are therefore expected to be lower by 0.1-0.2 units. Except for the IT decay cascade, spin and parity assignments are tentative, based on β and γ selection rules. The Q_{EC} value is from S. Liran and N. Zeldes, At. Data Nucl. Data Tables <u>17</u>, 431 (1976).
- FIG. 6. Gamma-ray spectrum of ¹⁴¹Tb decay gated on Gd K_{α} x rays (4-s tape cycle). Peaks marked by energy identify transitions assigned to the decay of ¹⁴¹Tb.

- FIG. 7. Decay scheme for the decay of ¹⁴¹Tb to levels in ¹⁴¹Gd. The level energies have been calculated from a least-squares fit of the γ-ray energies to the level scheme. The intensities given in parentheses for each transition are relative photon intensities; multiply by 0.168 for absolute γ intensities per 100 ¹⁴¹Tb decays. The log*ft* values were calculated without taking into account unobserved transitions to higher lying levels; actual log*ft* values are therefore expected to be lower by 0.1-0.2 units. Spin and parity assignments are tentative, based on β and γ selection rules. The Q_{EC} value is from S. Liran and N. Zeldes, At. Data Nucl. Data Tables <u>17</u>, 431 (1976).
- FIG. 8. Proton (a) and neutron (b) single-particle level energies for ¹⁴¹Dy as a function of spheroidal deformation, based on the Nilsson model with a folded Yukawa potential described in Ref. 32. In the calculations, the range of the Yukawa function was a_p=a_n=0.80 fm and the proton and neutron spin-orbit interaction strengths were λ_p=31.52 and λ_n=34.14, respectively. A constant ε₄=0.04 was assumed.

Counts / 0.6 keV

X.

Э

24

€

€

4

Figure 2.

j

3/2 + 83			
2/2 + 83	3/2 + 109	3/2 + 112	3/2+ 113
	3/2+ 269	3/2 + 223	<u>3/2 + 258</u> <u>3/2 + 198</u>
3/2+ 296 5/2+ 296	5/2 + 286	5/2 + 267	5/2+ 259
20 s		10 3	$\frac{11/2}{24} = \frac{378}{378}$
11/2 - 447		$\frac{11/2}{10} = \frac{457}{10}$	
	1.6 s		

Figure 3.

11/2 - 520

Figure 4.

Counts / 0.6 keV

×.

ź

3 . 1

.

30

Figure 7.

h

Figure 8.

-

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT 1 CYCLOTRON ROAD BERKELEY, CALIFORNIA 94720