
UC Berkeley
UC Berkeley Previously Published Works

Title
Active Preference-Based Learning of Reward Functions

Permalink
https://escholarship.org/uc/item/88k894w7

ISBN
9780992374730

Authors
Sadigh, Dorsa
Dragan, Anca
Sastry, Shankar
et al.

Publication Date
2017

DOI
10.15607/rss.2017.xiii.053

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/88k894w7
https://escholarship.org/uc/item/88k894w7#author
https://escholarship.org
http://www.cdlib.org/

Active Preference-Based
Learning of Reward Functions

Dorsa Sadigh, Anca D. Dragan, Shankar Sastry, and Sanjit A. Seshia
University of California, Berkeley, {dsadigh, anca, sastry, sseshia}@eecs.berkeley.edu

Abstract—Our goal is to efficiently learn reward functions
encoding a human’s preferences for how a dynamical system
should act. There are two challenges with this. First, in many
problems it is difficult for people to provide demonstrations
of the desired system trajectory (like a high-DOF robot arm
motion or an aggressive driving maneuver), or to even assign
how much numerical reward an action or trajectory should
get. We build on work in label ranking and propose to
learn from preferences (or comparisons) instead: the person
provides the system a relative preference between two trajec-
tories. Second, the learned reward function strongly depends
on what environments and trajectories were experienced
during the training phase. We thus take an active learning
approach, in which the system decides on what preference
queries to make. A novel aspect of our work is the complexity
and continuous nature of the queries: continuous trajectories
of a dynamical system in environments with other moving
agents (humans or robots). We contribute a method for
actively synthesizing queries that satisfy the dynamics of
the system. Further, we learn the reward function from
a continuous hypothesis space by maximizing the volume
removed from the hypothesis space by each query. We assign
weights to the hypothesis space in the form of a log-concave
distribution and provide a bound on the number of iterations
required to converge. We show that our algorithm converges
faster to the desired reward compared to approaches that are
not active or that do not synthesize queries in an autonomous
driving domain. We then run a user study to put our method
to the test with real people.

I. Introduction

Reward functions play a central role in specifying how
dynamical systems should act: how an end-user wants
their assistive robot arm to move, or how they want their
autonomous car to drive. For many systems, end-users
have difficulty providing demonstrations of what they
want. For instance, they cannot coordinate 7 degrees of
freedom (DOFs) at a time [2], and they can only show
the car how they drive, not how they want the car to
drive [5]. In such cases, another option is for the system
to regress a reward function from labeled state-action
pairs, but assigning precise numeric reward values to
observed robot actions is also difficult.

In this paper, we propose a preference-based approach
to learning desired reward functions in a dynamical
system. Instead of asking for demonstrations, or for the
value of the reward function for a sample trajectory (e.g.,
“rate the safety of this driving maneuver from 1 to 10”),
we ask people for their relative preference between two
sample trajectories (e.g., “is ξ1 more safe or less safe than
ξ2?”).

Active preference-based learning has been successfully
used in many domains [1, 6, 7, 14], but what makes
applying it to learning reward functions difficult is the
complexity of the queries, as well as the continuous
nature of the underlying hypothesis space of possible
reward functions. We focus on dynamical systems with
continuous or hybrid discrete-continuous state. In this
setting, queries consist of two candidate continuous state
and action space trajectories that satisfy the system’s dy-
namics, in an environment or scenario that the learning
algorithm also needs to decide on, consisting of an initial
state and the trajectories of other agents in the scene.
Consider again the example of autonomous driving. In
this situation, a query would consist of two trajectories
for the car from some starting state among other cars
following their own trajectories.

Typically in preference-based learning, the queries are
actively selected by searching some discrete or sampled
set (e.g., [3, 9, 12, 13, 20, 21]). Our first hypothesis is
that in our setting, the continuous and high-dimensional
nature of the queries renders relying on a discrete set
ineffective. Preference-based work for such spaces has
thus far collected data passively [18, 22]. Our second
hypothesis is that active generation of queries leads to
better reward functions faster.

We contribute an algorithm for actively synthesizing
queries from scratch. We do continuous optimization in
query space to maximize the expected volume removed
from the hypothesis space. We use the human’s response
to assign weights to the hypothesis space in the form of a
log-concave distribution, which provides an approximation
of the objective via a Metropolis algorithm that makes it
differentiable w.r.t. the query parameters. We provide a
bound on the number of iterations required to converge.

We compare our algorithm to non-active and non-
synthesis approaches to test our hypotheses. We use an
experimental setup motivated by autonomous driving,
and show that our approach converges faster to a desired
reward function. Finally, we illustrate the performance
of our algorithm in terms of accuracy of the reward
function learned through an in-lab usability study.

II. Problem Statement

Modeling Choices. Our goal is to model the behavior
and preferences of a human for how a dynamical system
should act. We denote this dynamical system that should

match human preferences by H, and it interacts with
other systems (robots) in an environment. We model the
overall system including H, and all the other agents as a
fully-observable dynamical system. The continuous state
of the environment x ∈ X includes the state of H and
all the other agents. We let uH denote the continuous
control input of H. For simplicity, we assume that there
is only one other agent (robot) R locally visible in the
environment, and we let uR be its continuous control
input. The dynamics of the state changes based on the
actions of both agents through fHR:

xt+1 = fHR(xt, uR, uH). (1)

We define a trajectory ξ ∈ Ξ, where ξ =
(x0, u0

R, u0
H), . . . , (xN , uN

R , uN
H) is a finite horizon sequence

of states and actions of all agents. Here, Ξ is a set of all
feasible continuous trajectories. A feasible trajectory is
one that satisfies the dynamics of H and R. We first
parameterize the preference reward function as a linear
combination of a set of features:

rH(xt, ut
R, ut

H) = w>φ(xt, ut
R, ut

H), (2)

where w is a vector of weights for the feature func-
tion φ(xt, ut

R, ut
H) evaluated at every state and action

pair. We assume a d-dimensional feature function, so
φ(xt, ut

R, ut
H) ∈ Rd. Further, for a finite horizon N, we

let x = (x0, . . . , xN)> be a sequence of states, uH =
(u0

H , . . . , uN
H)
> a sequence of human actions, and uR =

(u0
R, . . . , uN

R)
> a sequence of robot actions. We define RH

to be the human’s expected reward over horizon N:

RH(x0, uR, uH) =
N

∑
t=0

rH(xt, ut, ut
H). (3)

For simpler notation, we combine the N + 1 elements
of φ so Φ = ∑N

t=0 φ(xt, ut
R, ut

H). Therefore, Φ(ξ) evaluates
over a trajectory ξ. We finally reformulate the reward
function as an inner product:

RH(ξ) = w ·Φ(ξ). (4)

Our goal is to learn RH .
Approach Overview. Inverse Reinforcement Learning
(IRL) [15, 19, 23] enables us to learn RH through demon-
strated trajectories. However, IRL requires the human to
show demonstrations of the optimal sequence of actions.
Providing demonstrations can be challenging for many
human-robot tasks. Furthermore, generating interesting
training data that actively explores RH through atypical,
interesting environments (which is necessary in many
cases for resolving ambiguities) works well [8, 16] but in
practice can make (good) demonstrations infeasible: the
algorithm cannot physically manufacture environments,
and therefore relies on simulation, which makes demon-
strations only possible through teleoperation.

For these reasons, we assume demonstrations are not
available in our work. Instead, we propose to leverage

preference-based learning, which queries H to provide
comparisons between two candidate trajectories. We pro-
pose a new approach for active learning of a reward
function for human preferences through comparisons.

We split trajectories ξ into two parts: a scenario and the
trajectory of the agent H whose reward function we are
learning. We formalize a scenario to be the initial state
of the environment as well as the sequence of actions for
the other agent(s) R, τ = (x0, u0

R, . . . , uN
R). Given an en-

vironment specified by scenario τ ∈ T , the human agent
will provide a finite sequence of actions uH = u0

H , . . . , uN
H

in response to scenario τ. This response, along with the
scenario τ defines a trajectory ξ showing the evolution
of the two systems together in the environment.

We iteratively synthesize queries where we ask the
human to compare between two trajectories ξA and ξB
defined over the same fixed scenario τ as shown in Fig. 1
(a). Their answer provides us information about w. In
what follows, we discuss how to update our probability
distribution over w given the answer to a query, and
how to actively synthesize queries in order to efficiently
converge to the right w.

III. Learning Reward Weights

from Preferences of Synthesized Queries

In this section, we describe how we update a distribu-
tion over reward parameters (weights w in equation (4))
based on the answer of one query. We first assume that
we are at iteration t of the algorithm and an already
synthesized pair of trajectories ξA and ξB in a common
scenario is given (we discuss in the next section how to
generate such a query). We also assume H has provided
her preference for this specific pair of trajectories at
iteration t. Let her answer be I, with It = +1 if she
prefers the former, and It = −1 if she prefers the latter.
This answer gives us information about w: she is more
likely to say +1 if ξA has higher reward than ξB, and
vice-versa, but she might not be exact in determining
It. We thus model the probability p(I|w) as noisily
capturing the preference w.r.t. RH :

p(It|w) =

exp(RH(ξA))

exp(RH(ξA))+exp(RH(ξB))
It = +1

exp(RH(ξB))
exp(RH(ξA))+exp(RH(ξB))

It = −1

(5)

We start with a prior over the space of all w, i.e., w
is uniformly distributed on the unit ball. Note that the
scale of w does not change the preference It, so we can
constrain ||w|| ≤ 1 to lie in this unit ball. After receiving
the input of the human It, we propose using a Bayesian
update to find the new distribution of w:

p(w|It) ∝ p(w) · p(It|w). (6)

Let
ϕ = Φ(ξA)−Φ(ξB) (7)

Then our update function that multiplies the current
distribution at every step is:

fϕ(w) = p(It|w) =
1

1 + exp(−Itw>ϕ)
(8)

Updating the distribution of w allows us to reduce the
probability of the undesired parts of the space of w, and
maintain the current probability of the preferred regions.

IV. Synthesizing Queries

through Active Volume Removal

The previous section showed how to update the dis-
tribution over w after getting the response to a query.
Here, we show how to synthesize the query in the first
place: we want to find the next query such that it will
help us remove as much volume (the integral of the
unnormalized pdf over w) as possible from the space
of possible rewards.
Formulating Query Selection as Constrained Opti-
mization. We synthesize experiments by maximizing the
volume removed under the feasibility constraints of ϕ:

max
ϕ

min{E[1− fϕ(w)], E[1− f−ϕ(w)]}

subject to ϕ ∈ F
(9)

The constraint in this optimization requires ϕ to be in
the feasible set F:

F = {ϕ : ϕ = Φ(ξA)−Φ(ξB), ξA, ξB ∈ Ξ,

τ = (x0, uA
R) = (x0, uB

R)}
(10)

which is a set of the difference of features over feasible
trajectories ξA, ξB ∈ Ξ defined over the same scenario τ.

In this optimization, we maximize the minimum of the
split between the two spaces preferred by either choices
of the human agent. Each term in the minimum is the
volume removed depending on the input of the human
It, i.e., the preference. The expectation is taken w.r.t. to
distribution over w. Solution. We first reformulate our
problem as an unconstrained optimization, where we en-
force the feasibility of trajectories by directly optimizing
over the query components, x0, uR, uA

H , uB
H , as opposed

to optimizing in the desired feature difference ϕ:

max
x0,uR ,uA

H ,uB
H

min{E[1− fϕ(w)], E[1− f−ϕ(w)]} (11)

Here, ϕ remains a function of x0, uR, uA
H , uB

H . We will
solve this by local optimization using a Quasi-Newton
method (L-BFGS [4]). To do so, we need a differentiable
objective.

The distribution p(w) can become very complex and
there is no simple way to compute the volume removed
by a Bayesian update, let alone differentiate through it.
We therefore resort to sampling, and optimize an ap-
proximation of the objective obtained via samples, where
weights are sampled in proportion to their probability.
Assume we sample w1, . . . , wM independently from the

distribution p(w). Then we can approximate p(w) by the
empirical distribution composed of point masses at wi’s:

p(w) ∼ 1
M

M

∑
i=1

δ(wi). (12)

Then the volume removed by an update fϕ(w) can be
approximated by:

E[1− fϕ(w)] ' 1
M

M

∑
i=1

(1− fϕ(wi)). (13)

Given such samples, the objective is now differentiable
w.r.t. ϕ, which is differentiable w.r.t. the starting state
and controls – the ingredients of the query which are
the variables in (11). What remains is to get the actual
samples. To do so, we take advantage of the fact that
p(w) is a log-concave function, and the update function
fϕ(w) defined here is also log-concave in w as shown in
Fig. 1 (c); therefore, the posterior distribution of w stays
log-concave. Note we do not need to renormalize the dis-
tribution p(w) after a Bayesian update, i.e. divide p(w)
by its integral. Instead, we use Metropolis Markov Chain
methods to sample from p(w) without normalization.

Log-concavity is useful because we can take advantage
of efficient polynomial time algorithms for sampling
from the current p(w) [17]1. In practice, we use an
adaptive Metropolis algorithm, where we initialize with
a warm start by computing the mode of the distribution,
and perform a Markov walk [11].

We could find the mode of fϕ from (8), but it requires a
convex optimization. We instead speed this up by choos-
ing a similar log-concave function whose mode evaluates
to zero always, and which reduces the probability of
undesired w by a factor of exp(Itw>ϕ):

fϕ(w) = min(1, exp(Itw>ϕ)) (14)

Fig. 1 (c) shows this simpler choice of update function
in black with respect to p(It|w) in gray. The shape is
similar, but enables us to start from zero, and a Markov
walk will efficiently sample from the space of w.

In Fig. 1 (b), we show a simple diagram demonstrating
our approach. Here, w first uniformly lies on a unit d-
dimensional ball. For simplicity, here we show a 3D ball.
The result of a query at every step is a state and trajec-
tories that result in a feature difference vector ϕ, normal
to the hyperplane {w : w>ϕ = 0}, whose direction
represents the preference of the human, and its value lies
in F defined in equation (10). We reduce the volume of w
by reducing the probability distribution of the samples
of w on the rejected side of the hyperplane through the
update function fϕ(w) that takes into account noise in
the comparison.

1Note that computing the actual volume removed can be converted
to the task of integrating a log-concave function, for which efficient
algorithms do exist. The purpose of using samples instead is to have
an expression suitable for maximization of volume removed, i.e. an
expression differentiable w.r.t. the query.

φ

"#

"$

"%

ℋ ℋ
ℛℛ

#$ #%

(a) Preference query. (b) Query response effect. (c) log-concave update of w.

#$ or #% → '(

Fig. 1: In (a) two candidate trajectories are provided for comparison to the human oracle. ξA shows a smoother trajectory without
any collisions. In (b) the unit ball is representing the space of w. We synthesize experiments that correspond to a separating
hyperplane {w : w · ϕ = 0}, and reweigh samples of w on each side of the hyperplane in order to update the distribution
of w. In (c) we show the two choices of log-concave update functions. Here, f 1

ϕ(w) = p(It|w) is the Bayesian update, and
f 2
ϕ(w) = min(1, exp(Itw>ϕ)) is our choice of simpler update function.

V. Algorithm and Performance Guarantees

Armed with a way of generating queries and a way of
updating the reward distribution based on the human’s
answer to each query, we now present our method for
actively learning a reward function in Alg. 1. The inputs
to the algorithm are a set of features φ, the desired
horizon N, the dynamics of the system fHR, and the
number of iterations iter. The goal is to converge to the
true distribution of w, which is equivalent to finding the
preference reward function RH(ξ) = w ·Φ(ξ).

We first initialize this distribution to be uniform over a
unit ball in line 3. Then, for M iterations, the algorithm
repeats these steps: volume estimation, synthesizing a
feasible query, querying the human, and updating the
distribution.

We sample the space of w in line 5. Using these
samples, and the dynamics of the system, SynthExps
solves the optimization in equation (11): it synthesizes
a feasible pair of trajectory that maximizes the expected
volume removed from the distribution of p(w). The
answer to the query is received in line 7. We compute
fϕ(w), and update the distribution in line 10.

Algorithm 1 Preference-Based Learning of
Reward Functions

1: Input: Features φ, horizon N, dynamics f , iter
2: Output: Distribution of w: p(w)
3: Initialize p(w) ∼ Uniform(B), for a unit ball B
4: While t < iter:
5: W ← M samples from AdaptiveMetropolis(p(w))
6: (x0, uR, uA

H , uB
H)← SynthExps(W, f)

7: It ← QueryHuman(x0, uR, uA
H , uB

H)
8: ϕ = Φ(x0, uR, uA

H)−Φ(x0, uR, uB
H)

9: fϕ(w) = min(1, It exp(w>ϕ))
10: p(w)← p(w) · fϕ(w)
11: t← t + 1
12: End for

Regarding the convergence of Alg. 1, one cannot gen-
erally make any strict claims for several reasons: We
replace the distribution p(w) by an empirical distribu-
tion, which could introduce errors. The maximization
in line 6 is via non-convex optimization which does
not necessarily find the optimum, and even if it was
guaranteed that the global optimum is found, it could
potentially make very little progress in terms of volume
removal, since the set F can be arbitrary.

Putting aside the issues of sampling and global opti-
mization, we can compare what Alg. 1 does to the best
one could do with the set F. Alg. 1 can be thought of as
a greedy volume removal.

Theorem V.1. Under the following assumptions:
• The update function is fϕ as defined in equation (8),
• The human inputs are noisy similar to equation (5),
• The errors introduced by sampling and non-convex opti-

mization are ignored,
Alg. 1 removes at least 1 − ε times as much volume as
removed by the best adaptive strategy after ln(1

ε) times as
many iterations.

Proof: Removed volume can be seen to be an adap-
tive submodular function, defined in terms of the choices
ϕ and the human input It, as defined in [10]. It is
also adaptive monotone; thus, the results of [10] imply
that greedy volume removal for l steps in expectation
removes at least (1 − exp(−l/k))OPTk where OPTk is
the best solution any adaptive strategy can achieve after
k steps. Setting l = k ln(1

ε) gives us the desired result.
One caveat is that in equation (8) the human input

It is treated as worst case, i.e., in the synthesis step,
one maximizes the minimum removed volume (over the
possible It). Namely maximizing the following quantity:

min{Ew[1− Pr[It = +1|w]]), Ew[1− Pr[It = −1|w]])}.
(15)

Normally the greedy strategy in adaptive submodular

maximization should treat It as probabilistic. In other
words instead of the minimum one should typically
maximize the following quantity:

Pr[It = +1] ·Ew[1− Pr[It = +1|w]]+

Pr[It = −1] ·Ew[1− Pr[It = −1|w]].
(16)

However, note Ew[1−Pr[It = +1|w]] is simply Pr[It =
−1] and similarly Ew[1− Pr[It = +1|w]] is Pr[It = +1].
Therefore Alg. 1 is maximizing min(Pr[It = −1], Pr[It =
+1]), whereas greedy submodular maximization should
be maximizing 2 Pr[It = −1]Pr[It = +1]. It is easy to see
that these two maximizations are equivalent, since the
sum Pr[It = −1] + Pr[It = +1] = 1 is fixed.

VI. Simulation Experiment

In this section, we evaluate our theory using a semiau-
tonomous driving example. Our goal is to learn people’s
preferred reward function for driving. In this context,
our approach being preference-based is useful since it
allows the users to only compare two candidate trajec-
tories in various scenarios instead of requiring the user
to demonstrate a full trajectory (of how they would like
to drive, not how they actually drive). In addition, our
approach being active enables choosing informative test
cases that are otherwise difficult to encounter in driving
scenarios. For example, we can address the preference of
drivers in moral dilemma situations (deciding between
two undesirable outcomes), which are very unlikely to
arise in standard collected driving data. Finally, our
approach synthesizes these test cases from scratch, which
should help better exploit the continuous and high-
dimensional space of queries. We put these advantages
to the test in what follows.
Experimental Setup. We assume a human driven vehicle
H living in an environment with another vehicle R,
and we synthesize trajectories containing two candidate
sequence of actions for the human driven car, while for
every comparison we fix the synthesized scenario (i.e.,
the initial state of the environment and the sequence of
actions of R). Fig. 1 (a) shows an example of this com-
parison. The white vehicle is R, and the orange vehicle
corresponds to H. The white and orange lines show the
path taken by the human and robot, respectively, in the
two cases over a horizon of N = 5. We assume a simple
point-mass dynamics model for both of the vehicles:

[ẋ ẏ θ̇ v̇] =
[
v · cos(θ) v · sin(θ) v · u1 u2 − α · v

]
.

(17)
Here, the state x =

[
ẋ ẏ θ̇ v̇

]
includes the coor-

dinates of the robot x and y, the heading θ, and the
velocity v. The control input of this dynamical system
is u =

[
u1 u2

]
, where u1 is the steering input, and u2

is the acceleration. We also use α as a friction coefficient.
We learn the reward function of the human’s prefer-

ences based on queries similar to Fig. 1 (a). We define a
set of features that allow representing this cost function.

First, f1 ∝ c1 · exp(−c2 · d2) corresponds to penalizing
getting close to the boundaries of the road, where d is
the distance between the vehicle and these boundaries,
and c1 and c2 are appropriate scaling factors. We use a
similar feature f2 for enforcing staying within a single
lane by penalizing leaving the boundaries of the lane.
We also encourage higher speed for moving forward
through f3 = (v− vmax)2, where v is the velocity of the
vehicle, and vmax is the speed limit. Also, we would like
the vehicle to have a heading along with the road using
a feature f4 = θH ·~n, where θH is the heading of H, and
~n is a normal vector along the road. Our last feature
f5 corresponds to collision avoidance, and is a non-
spherical Gaussian over the distance of H and R, whose
major axis is along the robot’s heading. Then, we aim to
learn a distribution over the weights corresponding to
these features w = [w1, w2, w3, w4, w5] so RH = w ·Φ(ξ)
best represents the preference reward function.
Conditions. We compare our algorithm with two base-
lines: non-active and non-synthesis.

First, we compare it to a non-active version. Instead
of actively generating queries that will remove the most
volume, we uniformly sample a scenario. We do not use
totally random trajectories for the cars as this would be a
weak baseline, instead we sample two candidate weight
vectors wA and wB from the current distribution on w.
We then maximize the reward functions wA ·Φ(ξA) and
wB ·Φ(ξB) to solve for optimal uA

H and uB
H . That creates

our query, comparing two reward functions, but no
longer optimized to efficiently learn w. The trajectories
generated through this other approach are then used
to query the human, and update the distribution of
p(w) similar to Alg.1. Second, we compare it against
a non-synthesis (discrete) version. Instead of solving a
continuous optimization problem to generate a query,
we do a discrete search over a sampled set of queries.
Metric. We evaluate our results using a hidden reward
function Rtrue = wtrue · Φ(ξ). We query an ideal user
who knows Rtrue and uses it to compare pairs of tra-
jectories, and show the w computed by our algorithm
efficiently converges to wtrue.

At every step of the iteration, we compute the follow-
ing measure of convergence:

m = E[
w ·wtrue

|w||wtrue|
]. (18)

Here, m computes the average heading of the current
distribution of w with respect to wtrue – how similar
the learned reward is. Since the prior distribution of w
is symmetric (uniformly distributed on a unit ball), this
expectation starts at 0, and moves closer to 1 at every
step of the iteration.
Hypotheses.

H1. The reward function learned through our algorithm is
closer to the true reward compared to the non-active baseline.

1.0 0.5 0.0 0.5 1.0
w4 for Heading

0.0

0.5

1.0

1.5

2.0

2.5

PD
F

1.0 0.5 0.0 0.5 1.0
w1 for Road Boundary

1.0

0.5

0.0

0.5

1.0

w
4
 fo

r H
ea

di
ng

1.0 0.5 0.0 0.5 1.0
w2 for Staying within Lanes

1.0

0.5

0.0

0.5

1.0

w
4
 fo

r H
ea

di
ng

1.0 0.5 0.0 0.5 1.0
w3 for Keeping Speed

1.0

0.5

0.0

0.5

1.0

w
4
 fo

r H
ea

di
ng

1.0 0.5 0.0 0.5 1.0
w5 for Collision Avoidance

1.0

0.5

0.0

0.5

1.0

w
4
 fo

r H
ea

di
ng

1.0 0.5 0.0 0.5 1.0
w4 for Heading

0.0

0.5

1.0

1.5

2.0

2.5

PD
F

1.0 0.5 0.0 0.5 1.0
w1 for Road Boundary

1.0

0.5

0.0

0.5

1.0

w
4
 fo

r H
ea

di
ng

1.0 0.5 0.0 0.5 1.0
w2 for Staying within Lanes

1.0

0.5

0.0

0.5

1.0

w
4
 fo

r H
ea

di
ng

1.0 0.5 0.0 0.5 1.0
w3 for Keeping Speed

1.0

0.5

0.0

0.5

1.0

w
4
 fo

r H
ea

di
ng

1.0 0.5 0.0 0.5 1.0
w5 for Collision Avoidance

1.0

0.5

0.0

0.5

1.0

w
4
 fo

r H
ea

di
ng

Fig. 2: Distribution of w4, the weight for the heading feature, relative to the other features. The top plots shows the starting
distribution, and the bottom plot shows the distribution at convergence. The orange dot and dotted line show the ground truth
for the weights.

1.0 0.5 0.0 0.5 1.00.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

PD
F

w1 for Road Boundary
w2 for Staying within Lanes
w3 for Keeping Speed
w4 for Heading
w5 for Collision Avoidance

1.0 0.5 0.0 0.5 1.00.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

PD
F

Fig. 3: Distribution over all weights before/after convergence.
The dotted lines show the ground truth of the weights.

H2. The reward function learned through our algorithm
is closer to the true reward compared to the non-synthesis
baseline.
Results. We run a paired t-test for each hypothesis.
Supporting H1, we find that our algorithm significantly
outperforms the non-active version (t(1999) = 122.379,
p < .0001), suggesting that it is important to be doing ac-
tive learning in these continuous and high-dimensional
query spaces. Supporting H2, we find that our algo-
rithm significantly outperforms the non-synthesis ver-
sion (t(1999) = 35.39, p < .0001), suggesting the impor-
tance of synthesizing queries instead of relying on a dis-
crete set. Note these results hold even with conservative
Bonferroni corrections for multiple comparisons.

Fig. 3 shows the distribution of w for our algorithm
corresponding to the five features after 200 iterations,
showing convergence to close to the true weights (in
dotted lines). The mode of the distribution of w1 has a
negative weight enforcing staying within the roads, and
w2 has a positive weight enforcing staying within your
own lane. w3 also shows a slight preference for keeping

speed, and w4 shows a significant preference for keeping
heading. w5 also shows the distribution for the weight
of collision avoidance.

Further, we show the initial and final two dimensional
projection of the density of w4, the weight of the heading
feature, with respect to all the other w’s in Fig. 2. This
shift and convergence of the distribution is clear from the
top plot to the bottom plot. The orange dot in all plots,
as well as the orange dotted line show the ground truth
of wtrue. Fig. 2 shows our algorithm clearly converges to
close to the ground truth for all features.

We show the convergence of the distribution p(w)
in Fig 4. The dark red line shows the mean result of
Alg. 1. It outperforms, according to metric m, both the
non-active condition (black), as well as the non-synthesis
(discretized) condition (dark blue). The results are the
average of 10 runs of the algorithms (since sampling
is nondeterministc). The bar graph in the middle also
shows the converged value of m after 200 queries.

In a thought experiment, we also investigated to what
extent we see these effects because we are generating real
trajectories for dynamical systems. To test this, we used
the three algorithms to produce abstract queries that a
simulation could answer, consisting of only a feature
difference ϕ as opposed to two feasible real trajectories.
The value of m after 200 iterations for these versions of
the algorithms are shown in the bar graph with lighter
colors. Because these approaches are unencumbered by
the need for feasibility of the queries (or even producing
actual concrete queries), they overall perform better than
when the algorithms need to generate real queries. In
this case, being active is still important, but the ability

Queries are real
trajectories

Queries are abstract
feature difference.

Fig. 4: A comparison of our algorithm (red) with a non-
active (black) and a non-synthesis (blue) version. Both deciding
on queries actively and synthesizing them instead of relying
on a predefined set improve performance by a statistically
significant margin. On the right, we run an experiment to
argue that these things are really important when synthesizing
real queries for continuous high-dimensional and constrained
systems: the lighter colors are for a version that only generates
a query in feature diference space, without rendering it into
actual (feasible) trajectories – the algorithm is allowed to make
a fake query. There, being active and especially doing synthesis
don’t matter (synthesis even hurts, likely because it is a local
search and a discrete set of queries can better cover the space).

to perform synthesis is no longer useful compared to
relying on a discrete set. Without needing to produce
trajectories, a discrete set covers the much lower dimen-
sional space of feature differences, and discrete search
is not bottlenecked by local optima. This suggests that
indeed, synthesis is important when we are dealing
with learning reward functions for dynamical systems,
requiring queries in a continuous, high-dimensional, and
dynamically constrained space.

Overall, the results suggest that doing active query
synthesis is important in reward learning applications of
preference-based learning, with our results supporting
both of our central hypotheses and demonstrating an
improvement over prior methods which are either non-
active or non-synthesis.

VII. Usability Study

Our experiments so far supported the value of our
contribution: active preference-based learning that syn-
thesizes queries from scratch outperformed both non-
active and non-synthesis learning. Next, we ran a usabil-
ity study with human subjects. The purpose of this study
is not to compare our algorithm once again with other
methods. Instead, we wanted to test whether a person
can interact with our algorithm to recover a reasonable
reward function for dynamical systems with continuous
state and action spaces.

A. Experimental Design
In the learning phase of the experiments, we jumpstart

the weights w with a reference starting distribution, and
only update that based on the data collected for each
user. We ask for 10 query inputs to personalize the
distribution of w for each user.

Fig. 5: Car trajectories (orange) in a scenario obtained by
optimizing different weights. On the left, we see the trajectories
optimized based on the learned weight w∗, and the middle
and right plots correspond to optimizing with w1 (slightly per-
turbed w∗), and w2 (highly perturbed w∗). The perturbations
result in safe lane changes as well, but slower trajectories in
this particular scenario.

Unlike our simulation experiments, here we do not
have access to the ground truth reward function. Still,
we need to evaluate the learned reward function. We
thus evaluate what the users think subjectively about the
behavior produced on a 7 point Likert scale.
Manipulated Factors. In order to calibrate the scale,
we need to compare the reward’s rating with some
baseline. We choose to perturb the learned reward for
this calibration. Thus we only manipulate one factor:
perturbation from the learned weights. We ask users to
compare trajectories obtained by optimizing for reward
with three different values for the weights: i) w∗ = E[w]
providing the mode of the learned distribution from
Alg. 1, ii) w2 a large perturbation of w∗ which enables
us to sanity check that the learned reward is better
than a substantially different one, and iii) w1 a slight
perturbation of w∗ which is a harder baseline to beat
and enables us to test that the learned reward is a
local optimum. The weights thus vary in distance or
alignment with the learned weight, from identical to very
different. We simply add a zero mean Gaussian noise to
perturb w∗. For w1, we add a Gaussian with standard
deviation of 0.1 × |w∗|, and similarly with a standard
deviation of |w∗| for w2. Our choice of perturbation is
also affected by the test scenarios. In practice, we sample
from possible w1 and w2 until the distance between
the human trajectories is significant enough to create
interesting scenarios that differentiate the weights (some
simple scenarios have the car drive almost the same
regardless of the reward function).

The 3 weights lead to 3 conditions. Fig. 5 shows one
of the test environments where the robot (white car)
decides to change lanes, and the human driver can take
any of the three depicted orange trajectories. Here the
trajectories correspond to the optimal human actions
based on w∗, w1, and w2 from left to right. The learned
reward function results in a longer and faster trajectory
where the human driver changes lane. The perturbations
also result in a safe lane change; however, they result in
much slower trajectories.
Dependent Measures. For 10 predefined scenarios (ini-

Fig. 6: Here we show the human trajectories of all users for
a specific scenario based on optimizing the learned reward
function w∗. We plot the value of weights w∗ for the five
features for all users. This figure uses the same legend as Fig. 3.

tial state and actions of the other car R), we generate
the 3 trajectories corresponding to each condition. We
ask users to rate each trajectory on a 7 point Likert scale
in terms of how closely it matches their preference.
Hypothesis.

H3. Perturbation from the learned weights negatively im-
pacts user rating: the learned weights outperform the per-
turbed weights, with the larger perturbation result in the
smallest rating.
Subject Allocation. We recruited 10 participants (6 fe-
male, 4 male) in the age range of 26 − 65. All owned
drivers license with at least 8 years of driving experience.
We ran our experiments using a 2D driving simulator,
where we asked preference queries similar to Fig. 6.

B. Analysis
We ran an ANOVA with perturbation amount (mea-

sured via our metric m relative to the learned weights)
as a factor and user rating as a dependent measure.
Supporting H3, we found a significant negative effect of
perturbation (positive effect of similarity m) on the user
rating (F = 278.2, p < .0001). This suggests the learned
weights are useful in capturing desired driving behavior,
and going away from them decreases performance.

In Fig. 7, we show the aggregate result of the 1− 7
rating across all scenarios and users. As shown in this
figure, the highest rating in orange corresponds to the
learned reward weights w∗, and our users preferred the
slightly perturbed trajectories over the highly perturbed
trajectories since the rating for w1 is higher than w2.

We found that, perhaps due to the fairly simple
features we used, users tended to converge to similar
weights, likely representing good driving in general.
In Fig. 6, we show the learned weight distribution for
every feature is shown for all 10 users, and the resulting
optimal trajectories for all our users. These have very
high overlap, further suggesting that users converged
to similar reward functions. In future work, we aim
to look at a more expressive feature set that enables

0 1 2 3 4 5 6 7
User rating of ξ ∗w

w∗

w1

w2

Fig. 7: User ratings. The orange bar corresponds to the learned
weights w∗, and the gray bars correspond to the perturbations
of w∗. Our users preferred w∗ over the slightly perturbed ones
w1, and preferred w1 over the highly perturbed ones w2.

people to customize their car to their individual desired
driving style, as opposed to getting the car to just do the
one reasonable behavior possible (which is what might
have happened in this case). Nonetheless, the result is
encouraging because it shows that people were able to
get to a behavior that they and other users liked.

VIII. Discussion

Summary. We introduce an algorithm that can efficiently
learn reward functions representing human preferences.
While prior work relies on a discrete predefined set
of queries or on passively learning the reward, our
algorithm actively synthesizes preference queries: it op-
timizes in the continuous space of scenario parameters
and trajectory pairs to identify a comparison to present
to the human that will maximize the amount of ex-
pected volume that the answer will remove in the space
of possible reward functions. We leverage continuous
optimization to synthesize feasible queries, and assign
a log-concave distribution over reward parameters to
formulate an optimization-friendly criterion. We provide
convergence guarantees for our algorithm, and compare
it to a non-active and non-synthesis based approaches.
Our results show that both active learning and synthesis
are important. A user study suggests that the algorithm
helps real end-users attain useful reward functions.
Limitations and Future Work. Our work is limited in
many ways: we use a local optimization method for
query synthesis which converges to local optima, we use
an approximately rational model of the human when
in fact real people might act differently, we assume
that the robot has access to the right features, and we
only consider one other agent in the world rather than
multiple. Furthermore, our study shows that people can
arrive at useful reward functions, such alignment with
the reward leads to higher preference for the emerging
trajectory, but it does not yet show that people can use
this to customize their behavior – most users end up
with very similar learned weights, and we believe this
is because of the limitations of our features and our
simulator. We plan to address these in the future.
Acknowledgments. This work was supported in part by
the VeHICaL project (NSF grant #1545126).

References

[1] Nir Ailon and Mehryar Mohri. Preference-based
learning to rank. Machine Learning, 80(2-3):189–211,
2010.

[2] Baris Akgun, Maya Cakmak, Karl Jiang, and
Andrea L Thomaz. Keyframe-based learning
from demonstration. International Journal of Social
Robotics, 4(4):343–355, 2012.

[3] Riad Akrour, Marc Schoenauer, and Michèle Sebag.
April: Active preference learning-based reinforce-
ment learning. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases,
pages 116–131. Springer, 2012.

[4] Galen Andrew and Jianfeng Gao. Scalable training
of l 1-regularized log-linear models. In Proceedings of
the 24th international conference on Machine learning,
pages 33–40. ACM, 2007.

[5] Chandrayee Basu, Qian Yang, David Hungerman,
Anca Dragan, and Mukesh Singhal. Do you want
your autonomous car to drive like you? In 2017 12th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2017.

[6] Darius Braziunas. Computational approaches to
preference elicitation. Department of Computer Sci-
ence, University of Toronto, Tech. Rep, 2006.

[7] Klaus Brinker, Johannes Fürnkranz, and Eyke
Hüllermeier. Label ranking by learning pairwise
preferences. Technical report, Technical Report
TUD-KE-2007-01, Knowledge Engineering Group,
TU Darmstadt, 2007.

[8] Christian Daniel, Malte Viering, Jan Metz, Oliver
Kroemer, and Jan Peters. Active reward learning.
In Robotics: Science and Systems, 2014.

[9] Johannes Fürnkranz, Eyke Hüllermeier, Weiwei
Cheng, and Sang-Hyeun Park. Preference-based
reinforcement learning: a formal framework and a
policy iteration algorithm. Machine learning, 89(1-2):
123–156, 2012.

[10] Daniel Golovin and Andreas Krause. Adaptive
submodularity: Theory and applications in active
learning and stochastic optimization. Journal of
Artificial Intelligence Research, 42:427–486, 2011.

[11] Heikki Haario, Eero Saksman, and Johanna Tammi-
nen. An adaptive metropolis algorithm. Bernoulli,
pages 223–242, 2001.

[12] Rachel Holladay, Shervin Javdani, Anca Dragan,
and Siddhartha Srinivasa. Active comparison based

learning incorporating user uncertainty and noise.
[13] Ashesh Jain, Shikhar Sharma, Thorsten Joachims,

and Ashutosh Saxena. Learning preferences for
manipulation tasks from online coactive feedback.
The International Journal of Robotics Research, 2015.

[14] Amin Karbasi, Stratis Ioannidis, et al. Comparison-
based learning with rank nets. arXiv preprint
arXiv:1206.4674, 2012.

[15] Sergey Levine and Vladlen Koltun. Continuous
inverse optimal control with locally optimal exam-
ples. arXiv preprint arXiv:1206.4617, 2012.

[16] Manuel Lopes, Francisco Melo, and Luis Monte-
sano. Active learning for reward estimation in
inverse reinforcement learning. In Joint European
Conference on Machine Learning and Knowledge Dis-
covery in Databases, pages 31–46. Springer, 2009.

[17] László Lovász and Santosh Vempala. Fast algo-
rithms for logconcave functions: Sampling, round-
ing, integration and optimization. In 2006 47th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 57–68. IEEE, 2006.

[18] Constantin Rothkopf and Christos Dimitrakakis.
Preference elicitation and inverse reinforcement
learning. Machine Learning and Knowledge Discovery
in Databases, pages 34–48, 2011.

[19] Dorsa Sadigh, Shankar Sastry, Sanjit Seshia, and
Anca D. Dragan. Planning for autonomous cars that
leverages effects on human actions. In Proceedings
of the Robotics: Science and Systems Conference (RSS),
June 2016.

[20] Hiroaki Sugiyama, Toyomi Meguro, and Yasuhiro
Minami. Preference-learning based inverse rein-
forcement learning for dialog control. In INTER-
SPEECH, pages 222–225, 2012.

[21] Aaron Wilson, Alan Fern, and Prasad Tadepalli. A
bayesian approach for policy learning from trajec-
tory preference queries. In Advances in neural infor-
mation processing systems, pages 1133–1141, 2012.

[22] Christian Wirth, Johannes Fürnkranz, and Gerhard
Neumann. Model-free preference-based reinforce-
ment learning. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[23] Brian D Ziebart, Andrew L Maas, J Andrew Bag-
nell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI, pages 1433–1438,
2008.

	Introduction
	Problem Statement
	Learning Reward Weights from Preferences of Synthesized Queries
	Synthesizing Queries through Active Volume Removal
	Algorithm and Performance Guarantees
	Simulation Experiment
	Usability Study
	Experimental Design
	Analysis

	Discussion

