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Abstract
Time course transcriptome datasets are commonly used to predict key gene regulators

associated with stress responses and to explore gene functionality. Techniques developed

to extract causal relationships between genes from high throughput time course expression

data are limited by low signal levels coupled with noise and sparseness in time points. We

deal with these limitations by proposing the Cluster and Differential Alignment Algorithm

(CDAA). This algorithm was designed to process transcriptome data by first grouping genes

based on stages of activity and then using similarities in gene expression to predict influen-

tial connections between individual genes. Regulatory relationships are assigned based on

pairwise alignment scores generated using the expression patterns of two genes and some

inferred delay between the regulator and the observed activity of the target. We applied the

CDAA to an iron deficiency time course microarray dataset to identify regulators that influ-

ence 7 target transcription factors known to participate in the Arabidopsis thaliana iron defi-

ciency response. The algorithm predicted that 7 regulators previously unlinked to iron

homeostasis influence the expression of these known transcription factors. We validated

over half of predicted influential relationships using qRT-PCR expression analysis in mutant

backgrounds. One predicted regulator-target relationship was shown to be a direct binding

interaction according to yeast one-hybrid (Y1H) analysis. These results serve as a proof of

concept emphasizing the utility of the CDAA for identifying unknown or missing nodes in

regulatory cascades, providing the fundamental knowledge needed for constructing predic-

tive gene regulatory networks. We propose that this tool can be used successfully for similar

time course datasets to extract additional information and infer reliable regulatory connec-

tions for individual genes.
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Introduction
Transcriptome studies are commonly used to assess differential gene activity. Differentially
expressed genes identified as having DNA binding activity, termed Transcription Factors
(TFs), are of interest due to their ability to control the activation and repression of gene expres-
sion, directly influencing the accumulation of RNA and proteins that control growth and stress
responses. Given the importance of transcription factors in plant stress responses, develop-
ment, and cell differentiation [1], the identification of key plant transcriptional regulators and
their targets continues to be an area of intense research. Though many high throughput time
course transcriptomic datasets are available, the prediction of regulator-target relationships
between individual genes from these datasets remains an on-going area of research.

Much of what has been inferred from time course transcriptomic analysis regarding tran-
scription factor involvement in stress responses comes from visual assessment of gene expres-
sion behavior followed by mutant screens [2–6]. These techniques are limited at inferring
regulatory relationships between genes. Moreover, mutant screens in the absence of specific
predictions can be time consuming and genes without mutant phenotypes are often disre-
garded. This lack of mutant phenotypes is because the combinatorial and often redundant
function of a gene in a pathway results in the absence of a dramatic phenotype, making experi-
mental identification and verification difficult. Computational inference approaches can
increase our understanding of transcription factor involvement in stress response by creating
testable hypotheses concerning regulatory relationships, revealing networks of interactions
that could be easily missed when using mutant screens. Many regulatory network inference
algorithms that use gene expression data start with a refined set of genes to generate predic-
tions. These algorithms, therefore, can require extensive prior knowledge and are most appro-
priate for inferring structure [7–9] and/or mathematical relationships [10–12] based on a
subset of genes consisting of known major players in the response. There remains a need for
further development of computational algorithms that are able to predict gene regulatory rela-
tionships based on a full transcriptomic dataset with little prior knowledge.

We sought to develop such a computational approach to identify key regulator-target rela-
tionships involved in the iron deficiency stress response in Arabidopsis thaliana. Iron deficiency
is a useful stress to help develop and test such an algorithm because: (1) iron homeostasis is
tightly regulated by transcription factors [13]; (2) a previously published iron deficiency time
course microarray data in A. thaliana roots was available [2, 4]; and (3) several transcription fac-
tors involved in iron deficiency homeostasis have been characterized and understanding the reg-
ulation of these transcription factors would be valuable to assist in the development of future
applications in agriculture.

Previous iron deficiency studies have led to the identification of several key iron homeostasis
transcription factors including bHLH39 [14], bHLH101 [15], bHLH115 [4], PYE [4],MYB10
[6],MYB72 [6], and BTS [4, 16, 17]. These genes have altered expression after 12 hours of expo-
sure to iron deficient conditions [4]. Little is known about transcription factors that are active
before 12 hours or about how early regulators target or influence the expression of known iron
homeostasis transcription factors. We focused on formulating and implementing a computa-
tional approach that can be applied to the iron deprivation dataset in Dinneny et al. [2] as well
as other typical transcriptome time course datasets (microarray or RNA-Seq) to identify
unknown regulator-target relationships under a series of challenges (e.g. missing prior informa-
tion) that are common to other stress analyses. Given that more than 80% of biological
time course stress datasets in A. thaliana include less than 8 (typically unevenly spaced) time
points [18] and 3 or less replicates [2, 19, 20], we focused on addressing the identification of
relationships in low resolution, unevenly sampled, and noisy time course data. We focused on
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formulating an algorithm that can work on as few as 4 time points. Effectiveness of the algo-
rithm would in all likelihood increase with additional time resolution, particularly depending on
the timing of the biological process of interest and sampling point selection with respect to this
process. We also wanted to create an algorithm whose output is in the form of regulator-target
connections between individual genes. An algorithm of this type would identify players involved
in a transcriptional response cascade. With these players known and validated, further computa-
tional tools can be used to create more complex and predictive gene regulatory networks that
capture the response of corresponding biological processing over time and that can be used to
make predictions on various experimental scenarios [21]. A critical aspect of this is that the
algorithm should result in a manageable set of putative candidates that can be experimentally
validated. We emphasize here that in the case of the iron deficiency response, very few genetic
players have been identified. This lack of knowledge prevents the accurate development of a
dynamic gene regulatory network of the iron deficiency response. It is the case for this and
many other stresses that identification of these initial set of players and relationships is a funda-
mental step toward the dynamic modeling and further analysis of these responses.

Although several gene regulatory connection inference algorithms exist in the literature [7,
22–24], the characteristics of the iron deprivation dataset and insufficient prior knowledge
about interactions between iron response regulators present unique challenges that must be
addressed. Gene regulatory network inference algorithms presented in the literature are shown
in Table 1; none of which fully address the challenges associated with iron response analysis.
Some algorithms require expression data from a limited set of genes [7–9] where others use
expression data from evenly spaced time course experiments [24–26]. Some algorithms do not
resolve regulator-target interactions between individual genes and focus more on broad rela-
tionships between clusters of genes [22]. In particular, a recent time-course based computa-
tional approach presented in Windram et al. [22] looked at formulating regulatory connections
between plant transcription factor families in response to pathogen infection. By analyzing 24
equally spaced transcriptome samples under stressed and unstressed conditions, the authors
were able to infer connections between clusters of genes that responded at different time stages.
Using this approach to extract specific regulators that influence known iron homeostasis tran-
scription factors would be challenging since inter-cluster connections do not imply relation-
ships between all genes from the connected clusters [27]. Other algorithms that extract causal
influences between pairs of genes, such as the Event Method algorithm in Kwon et al. [24], can
be modified to analyze general datasets with uneven time course measurements. However,
these algorithms can result in an extensive number of pairwise predictions. The application of
a modified Event Method algorithm to the iron deprivation dataset yielded results that were
unable to resolve the roles (regulator/target) for a significant number of individual gene pairs.
Moreover, most connections that we found and experimentally validated were not resolved by
the modified algorithm, as detailed in the Results section. Other algorithms require multiple
transcriptome datasets [28, 29] or predict connections between genes based on correlation [30,
31], which without modification ignore temporal evidence provided by the type of dataset [24]
and are likely to result in the prediction of coexpressed genes rather than regulator-target
relationships.

We developed the Cluster and Differential Alignment Algorithm (CDAA) to address the
unique challenges associated with better understanding regulator-target interactions in the
iron deprivation stress response. Key aspects of the algorithm include co-expression analysis
[32] to associate each gene with a stage in the response process, relevance network inference
techniques [33] to identify causal relationships between genes, and thresholding [18] to miti-
gate the effects of noise in the data. The algorithm groups genes showing transcriptional activ-
ity at different time intervals into stages and looks for similarities in expression behavior of
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genes in adjacent stages considering a delay in order to make regulatory predictions. We
applied the CDAA to iron deficiency microarray time course data from Dinneny et al. [2] to
identify putative regulators involved in the control of known iron homeostasis transcription
factors. Our results revealed distinct stages of the transcriptional response during 72 hours of
exposure to iron deficient conditions. We identified transcription factors that are active within
the first 12 hours of iron deficiency and experimentally validated their influence on 7 known
iron transcription factors using quantitative real-time PCR (qRT-PCR). A majority (53%) of
such influential predictions were validated, and one relationship was shown to be a direct bind-
ing interaction through yeast one-hybrid (Y1H) analysis. The CDAA was able to make testable
and valid predictions that extend our understanding of the iron deficiency transcriptional cas-
cade and can be used on comparable datasets to obtain a better understanding of regulatory
responses in a variety of conditions.

Results and Discussion
We developed the Cluster and Differential Alignment Algorithm (CDAA) to make testable
predictions about regulatory influences based on time course transcriptome data. The CDAA
contains three consecutive steps: Stage Separation, Gene to Stage Assignment, and Interaction
Inference. These steps, implemented in MatLab source code for the CDAA (S1 File), delimit
temporal stages of cascaded stress response, distribute differentially expressed genes across
these stages based on expression activity, and identify potential regulations between genes in
adjacent stages. The CDAA uses time course transcriptome data as an input and assumes that
differential expression analysis has already been implemented based on specifics associated
with the experimental approach (i.e. microarray [34] or RNA-Seq [35, 36]). It is important to
note that as the CDAA operates solely on gene expression data, any posttranscriptional regula-
tion will not be captured by its predictions. The algorithm starts by calculating normalized
expression values to enforce compatibility across datasets obtained using different approaches:

giðtkÞ ¼
grawi ðtkÞ � �g raw

i

sgrawi

; i ¼ 1; . . . ; P; k ¼ 1; . . . ;N; ð1Þ

where grawi ðtkÞ is the raw expression value of differentially expressed gene i at the k-th time
point, �g raw

i and sgraw
i

are the mean and standard deviation of the raw expression values, P is the

number of differentially expressed genes, and N is the number of sampling time points.

Table 1. Regulatory interactions inference algorithms.

Paper Algorithm Capabilities

Whole genome analysis Uneven time course Causality inference Pairwise connections

Windram et al. [22] ✔ ✔

Nie et al. [23] ✔ ✔ ✔

Kwon et al. [24] ✔ ✔ ✔

Bickel et al. [25]

Schmitt et al. [26]

Barker et al. [7] ✔ ✔ ✔

Zhao et al. [8]

Misra et al. [9]

doi:10.1371/journal.pone.0136591.t001
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CDAA—Stage Separation
The first step of the CDAA separates a time course of all differentially expressed genes into dis-
tinct stages based on their transcriptional activity. This provides a mechanism to computation-
ally assess the dynamic landscape of a transcriptional cascade. Stage separation is based on
the assumption that transcriptional cascades are characterized by waves of activity, with early
transcription factor activity (Initiation) triggering expression activity in subsequent stages
(Response). Time intervals where groups of genes exhibit high expression activity can be iden-
tified and separated. The Stage Separation step of the CDAA assigns borders between dynamic
stages by identifying the time interval where the majority of differentially expressed genes have
their largest change in expression. This is based on the assumption that waves of expression
activity increase in magnitude as they propagate until peak activity is reached.

The CDAA first normalizes changes in expression with respect to time using the difference
in sample times to account for unevenly spaced time course data, typical in available time
course datasets [2, 19, 20]. This allows the CDAA to compare small expression changes over
small time intervals and large expression changes over large time intervals without bias. The
normalized change in expression of gene gi over the time interval (tk,tk+1) is defined as:

sðgi; kÞ ¼
giðtkþ1Þ � giðtkÞ

tkþ1 � tk
; k ¼ 1; . . . ;N � 1: ð2Þ

Each gene gi is then assigned to a set Gn, 1� n� N − 1, if its maximum change in expression
appears at the time interval (tn,tn+1) (s(gi,n) = maxk = 1,. . .,N − 1 s(gi,k)). The set Gb, 1� b� N
− 1, with maximum cardinality (number of elements) represents the time interval where the
majority of genes have their highest activity, leading to assignment of the time boundary tb at
the time point preceding this interval. We refer to this boundary as the Initiation-Response
(I-R) boundary. All time intervals to the left of the I-R boundary are denoted as the Initiation
stage and all time intervals to the right of the I-R boundary are denoted as the Response stage.
The Response stage can then be subdivided into Primary and Secondary response to account
for genes that start exhibiting a change in expression directly after the I-R boundary or after
some delay (Fig 1).

The approach above provides a systematic way of preliminarily partitioning genes based on
the hypothesis that the activity of a few genes (Initiation stage) triggers later activity of a large
set of genes (Response stage). The presence, characteristics, and duration of these stages will
differ from process to process and dataset to dataset. The sampling scheme of the dataset will
heavily influence the presence/duration of the Initiation stage, existence of a Secondary or even
Tertiary response in the Response stage, and/or multiple I-R boundaries. The primary goal of
this initial partitioning is to capture at least two distinct stages that would allow for later extrac-
tion of regulator (stage 1 gene) / target (stage 2 gene) interactions. A sampling scheme that
results in less than two stages, which is highly unlikely to occur, would result in a dataset where
regulator-target interactions would be difficult to predict.

CDAA—Gene to Stage Assignment
The second step of the CDAA further characterizes activity in the Initiation, Primary Response,
and Secondary Response stages and assigns genes to these stages based on their expression pat-
terns. Genes are assigned to a specific stage based on the time intervals where expression activ-
ity for that gene is first seen. For example, genes active during the Initiation stage are classified
as Initiation genes, regardless of their expression activity during subsequent stages. This assign-
ment is determined using a stage specific clustering scheme. This scheme clusters expression
values across the different stages, starting first with time points corresponding to the Initiation
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stage then iteratively adding time points from subsequent stages. This approach enables stage
specific clustering, allowing for the effective partitioning of activity at each stage while elimi-
nating the effect that dominant expression activity over small intervals can have on whole time
course clustering. Clustering using Initiation stage time points starts by centering the expres-
sion values for all genes:

gIi ðtkÞ ¼ giðtkÞ � �g I
i ; i ¼ 1; . . . ; P; k ¼ 1; . . . ; b; ð3Þ

where �g I
i is the mean gene expression value for gene gi over time points tk� tb. The number of

clusters chosen is not fixed and varies depending on the dataset. The ultimate goal of clustering
is to partition genes into clusters that show activity during the Initiation stage and a cluster of
genes that show little to no activity during the Initiation stage. This can be achieved heuristi-
cally or via cluster number defining techniques [37, 38]. Genes belonging to clusters with activ-
ity during the Initiation stage are assigned to the Initiation stage and genes with no apparent
activity are assigned to the Response stage. Response stage genes are centered again, this time
using expression values corresponding to Initiation and Primary Response stages:

gRj ðtkÞ ¼ gjðtkÞ � �gR
j ; j ¼ 1; . . . ; P � PI ; k ¼ 1; . . . ; bþ c: ð4Þ

Here PI represents the number of genes assigned to the Initiation stage, �g R
j is the mean expres-

sion value for gj,j = 1,. . .,P − PI, over time points tk � tb+c, and c stands for the number of inter-
vals in the Primary Response stage. Clustering is applied for a second time to isolate a group of
genes with no activity after extending the time range. Genes belonging to active clusters are
classified as Primary Response genes and genes belonging to the inactive cluster are Secondary
Response genes. This incremental approach to clustering allows for the identification of waves
of activity—the first wave containing clusters of genes active during the Initiation stage, the

Fig 1. Gene to Stage Assignment.Genes active before the Initiation-Response (I-R) boundary are assigned to the INITIATION STAGE. Genes that start
their activity after the I-R boundary are assigned to the RESPONSE STAGE. Primary response genes are active right after the I-R boundary and Secondary
response genes are active later.

doi:10.1371/journal.pone.0136591.g001
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second wave containing clusters of genes whose activity starts at the Primary Response stage,
and the final wave containing clusters of genes active only at the Secondary Response stage.
This process can be adjusted based on the number of stages identified in the dataset.

CDAA—Interaction Inference
The final step of the CDAA predicts putative regulatory relationships between genes in adja-
cent stages. This step is based on the assumption that the expression activity of regulator genes
in one stage will be reflected in the expression activity of corresponding target genes in a subse-
quent stage with some delay in regulation [24, 26, 39]. Regulators are selected from genes clas-
sified in one particular stage and targets are selected from genes classified in the subsequent
adjacent stage (i.e. Initiation and Primary Response). The Interaction Inference procedure uses
changes in expression over time rather than expression values to assess trend similarities
between putative regulators and targets. Changes in expression values are first normalized with
respect to maximum change:

snðgi; kÞ ¼
sðgi; kÞ

max
1�n�N�1

jsðgi; nÞj
; k ¼ 1; . . . ;N � 1: ð5Þ

Here, sn(gi, k) is a signal that ranges from –1 to 1 over all k, where a value of –1 (or 1) corre-
sponds to the largest negative (or positive) change.

The signal sn(gi, k) is discrete (one value represents an entire time interval), which limits the
assessment of delayed similarities between a target gene, gT, and some putative regulator, gR.
This problem is exacerbated when samples are sparse and non-uniform. The CDAA assigns
values at intermediate time points by assuming that the change in expression is constant
between sample time points. This assumption results in a zeroth-order approximation of sn(gi,
k):

s0nðgi; tÞ ¼ snðgi; kÞ; tk < t � tkþ1; k ¼ 1; . . . ;N � 1: ð6Þ

Next, a dissimilarity score between the approximated expression change signal of a candi-
date regulator, s0nðgR; tÞ, and a delayed (shifted) version of the approximated expression change
signal of a candidate target, s0nðgT ; t þ DtÞ, is calculated using a modification of pattern align-
ment technique [7, 40]. A smaller dissimilarity score corresponds to a higher chance that the
behavior in the regulator influences the expression activity of the target. Dissimilarity scores
are calculated for a candidate pair, (gR, gT), for a set of delays:

dðgR; gT ;mDTÞ ¼ 1

M

X
ti2T

js0nðgR; tiÞ � s0nðgT ; ti þmDTÞj; m ¼ 0; 1; . . . ;M � 1; ð7Þ

where T is the set of time points in the regulator’s stage, ΔT is the largest common divisor of
the time intervals in the time course data, and M represents the maximum number of ΔT that
can fit in each time interval corresponding to regulator’s and target’s stages. The resulting dis-
similarity score quantifies likelihood of a positive influence between a regulator and its target
assuming similar, yet delayed, expression behavior. Dissimilarity scores for the inverted regula-

tor expression d̂ðgR; gT ;mDTÞ are also calculated to detect possible negative influences. The
smaller of d(gR,gT,mΔT) and d̂ðgR; gT ;mDTÞ is taken for each time delaymΔT, and the pre-
dicted influence type (positive or negative regulation) is recorded. Dissimilarity scores for a
potential target are organized into a dissimilarity table where rows correspond to potential reg-
ulators and columns to delays. Rows at which the minimal dissimilarity score is achieved at a
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delay of 0 hrs are discarded to avoid assigning a regulatory connection between genes that are
co-expressed.

Noise in expression data can often disrupt the accuracy of alignment algorithms [18]. The
algorithm addresses the possibility that some small changes in gene activity may be due to
experimental error or noise by applying thresholding to normalized gene expression changes,
s0nðgi;mDTÞ, to convert changes into events of upregulation (1), downregulation (–1), or no
regulation (0) [24]:

s0n;thrðgi; tjÞ ¼

1; if s0nðgi;mDTÞ > thr;

0; if js0nðgi;mDTÞj < thr;

�1; if s0nðgi;mDTÞ < �thr:

ð8Þ

8>>><
>>>:

Dissimilarity tables for multiple thresholded versions of the signal s0n;thrðgi;mDTÞ along with
the unthresholded version, s0nðgi;mDTÞ, are generated. Different threshold values assume dif-
ferent levels of noise and will result in different dissimilarity tables for the same potential target.
A maximum dissimilarity cutoff is used to identify candidate regulators that are more likely to
influence a potential target at each threshold. Consensus over multiple thresholds results in
CDAA regulatory predictions that can be experimentally validated.

Application of the CDAA
We applied the CDAA to the iron deficiency dataset from Dinneny et al. [2] with P = 2754 dif-
ferentially expressed genes sampled at N = 7 time points in Arabidopsis thaliana roots 0, 3, 6,
12, 24, 48, and 72 hours after exposure to iron deficient conditions (S2 File). Differentially
expressed genes were defined in Long et al. [4] as genes that were at least 1.5-fold differentially
regulated with a false discovery rate (Q-value) less than 10−4. We maintained this designation
for application of the CDAA. We calculated changes in expression for each differentially
expressed gene using Eq (2) and assembled the sets Gn,n = 1,. . .,6, with genes whose maximum
change occurs over the interval (tn, tn+1). The number of genes in each set Gn (cardinality) is
shown in Fig 2. The set G4, corresponding to the interval between 12 and 24 hrs, contains the
maximum number of genes. We assigned the I-R boundary to the time point preceding this
interval, tb = 12 hrs (b = 4), and defined the stages as Initiation: 0� t� 12 hrs and Response:
12< t� 72 hrs. We assigned Primary Response (defined as the interval of high activity follow-
ing the I-R boundary) to 12< t� 24 hrs. The transcriptional iron deficiency response as
described by the CDAA, therefore, has at least 3 waves of activity, with the first wave ending at
12 hours.

After the Stage Separation step, we clustered all differentially expressed genes based on
expression patterns during the Initiation stage for Gene to Stage Assignment (Fig 3). We chose
k-means clustering for this procedure since it is not as computationally intensive as hierarchi-
cal clustering or self-organizing maps but is shown to produce similar results when applied to
transcriptome datasets [38]. Clustering revealed four behavioral patterns: decrease in expres-
sion (Fig 3A), increase in expression (Fig 3B), oscillatory behavior (Fig 3C), and no change in
expression (Fig 3D). We assigned genes from Clusters 1 through 3 to the Initiation stage, and
used the inactive Cluster 4 for the second round of clustering. Cluster 4 contained 1752 genes
(63% of all genes in the dataset) and 97 known transcription factors (72% of all known tran-
scription factors in the dataset). Hence, the majority of activity associated with iron deficiency
occurs after 12 hours of exposure. Clusters 1 through 3 contain 36 transcription factors, none
of which have so far been implicated in the iron deficiency response, meaning that these
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regulators may trigger the plant’s overall response to the stress. The list of genes annotated as
transcription factors is shown in S3 File.

We added the Primary Response stage time point t5 = 24 hrs to the expression patterns to
classify the remaining genes. The results of clustering applied to Cluster 4 after adding the 24
hrs time point are shown in Fig 4. Genes from Clusters 4.2 and 4.4 show a rise in expression
after 12 hours, genes from Cluster 4.1 show a decrease in expression, and genes from Cluster
4.3 are inactive during the whole interval from 0 to 24 hours. Thus, we assigned genes from
Clusters 4.1, 4.2, and 4.4 to the Primary Response stage. Cluster assignments for each gene are
listed in S4 File.

We selected 7 transcription factors with published roles in the iron deficiency response and
used the Interaction Inference stage of the CDAA to predict relationships involving these genes
as a means of focusing validation to a feasible set. We were limited to genes that were present
in the Affymetrix chip used for this particular expression analysis. Therefore, transcriptome
data for the master iron deficiency regulator FIT1 and its heterodimer partner bHLH38 were
not available for analysis by the CDAA. The known iron homeostasis transcription factors cho-
sen for this study were bHLH39 [14], bHLH101 [15], bHLH115 [4], PYE [4],MYB10 [6],
MYB72 [6], and BTS [4, 16].

All 7 known iron related transcription factors were assigned to the Primary Response stage
by the CDAA (bHLH39, bHLH101, and bHLH115 appeared in Cluster 4.2 and the remaining
transcription factors appeared in Cluster 4.4). We hypothesized that regulators from the Initia-
tion stage (Clusters 1–3) may be responsible for influencing the known iron homeostasis tran-
scription factors. Since the Initiation stage regulators and known iron transcription factors
appeared in adjacent stages, we applied the CDAA to test this hypothesis.

We calculated normalized changes in expression for each transcription factor from the Initi-
ation stage (regulator) and each known iron transcription factor (target). The largest common
divisor for time intervals in Initiation and Response stages is 3 hours, so this value served as the
delay step size (i.e. ΔT = 3 hours). Since each stage is 12 hours long, a maximum of 4ΔT can fit
in each stage (i.e.M = 4).

Fig 2. Number of genes in each gene set (cardinality).Gene set Gn, n = 1,. . .,6, is comprised of genes
whose maximum change occurs over the interval (tn, tn+1).

doi:10.1371/journal.pone.0136591.g002
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We selected thresholds for the noise reduction portion of the Interaction Inference step to
account for different levels of signal fluctuations. We first applied a set of thresholds to Initiation
Stage gene expression changes, sn(gi, k), k = 1,. . .,4, to obtain the average number of changes per
gene above the threshold (Fig 5). Based on these results, we set thresholds equal to 0.2 and 0.4 so
that 25% and 50% of possible changes per gene, respectively, were attributed to noise. Using
these thresholds, we produced two more versions (s0n;0:2ðgi;mDTÞ and s0n;0:4ðgi;mDTÞ) of the nor-
malized change in expression signal s0nðgi;mDTÞ for each regulator from the Initiation stage and
each known iron transcription factor.

We calculated dissimilarity values between all regulators from the Initiation stage and one
of the targets, PYE, at multiple time delays for each threshold and organized them into dissimi-
larity tables (S1 Fig). We chose a cutoff of 0.4 to remove potential regulators with high dissimi-
larity over all delays. This cutoff produces a testable number of predicted regulators (3–5) per
target. A deviation by 0.1 from this value adds or eliminates 1 to 3 candidate regulators. The 4
regulators that appeared in 2 out of 3 dissimilarity tables were assigned as potential regulators
of PYE (Table 2).

Using the same procedure, we determined potential regulators for the remaining targets, for
which dissimilarity tables are shown in S5 File. All 7 targets were predicted to be regulated by a
set of 7 regulators. These predictions resulted in a small network of interactions containing
14 nodes and 32 edges (Fig 6). The majority of the edges (26 out of 32) were predicted to be

Fig 3. 4 points based clustering. Clustering based on centered expression values gI
iðtkÞ; i ¼ 1; . . . ; 2754; k ¼ 1; . . . ; 4. ngenes—number of genes in each

cluster and nTF—number of Transcription Factors in each cluster.

doi:10.1371/journal.pone.0136591.g003
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positive regulations. 6 of the 7 regulators are named genes, though only 3 have been character-
ized (WRKY57 [41, 42], ASIL2 [43, 44], and LRL3 [45]) and none are currently linked to iron
homeostasis. The remaining regulator (At2g36720) was named Early Transcription Factor 9
(ETF9).

Validation of predicted relationships
We used quantitative real time PCR (qRT-PCR) to validate predicted regulator-target relation-
ships by measuring transcript of targets in a background with significantly altered expression
of the predicted regulator. Ideally, multiple mutant alleles could be tested for each regulator,
but due to limited availability of lines with significantly altered expression, only one mutant
allele per regulator was tested (with the exception of ASIL2 for which 2 lines were tested and
LRL3 for which no suitable line was identified during validation). We sequenced insertion loca-
tions; 4 are exonic (etf9-1, asil2-1,myb55-1, and asil2-2), 2 are intronic (wrky57-3 and col4-1),
and 1 is in a promoter (obp4-1) (S2 Fig). Insertions in the introns and promoter led to reduced
regulator expression and no full product was made in mutants with exon insertions (S3 Fig, S4
Fig, S5 Fig). We measured transcript levels of predicted targets for each regulator in the mutant
backgrounds as compared to wild-type (either Col-0 or Ler) in 7 day old seedlings, 3 days
after shift from iron sufficient to deficient media (Fig 7, S4 Fig). We considered target expres-
sion significantly affected if it differed from wild-type values with a p-value of 0.05 or less. We

Fig 4. 5 points based subclustering.Clustering based on centered expression values gR
j ðtkÞ; j ¼ 1; . . . ; 1752; k ¼ 1; . . . ; 5. ngenes—number of genes in

each cluster and nTF—number of Transcription Factors in each cluster.

doi:10.1371/journal.pone.0136591.g004
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considered significantly altered target expression in either direction as support for an influen-
tial relationship and considered altered expression in the correct direction (i.e. lower target
expression in the mutant of a predicted positive influencer) as support for a specific type of
influential relationship. In the case of ASIL2, for which 2 mutant lines were available, we con-
sidered significantly affected expression in either mutant line as support.

Based on qRT-PCR results, we were able to validate 17 out of 32 influential relationships
(53%) (S6 Fig). Interestingly, though a majority of influential relationships were validated,

Fig 5. Average number of changes above the threshold per gene.Changes in expression (sn(gi, k),
k = 1,. . .,4) for Initiation stage genes were thresholded with a range of cutoff values. The graph shows the
average number of changes that exceed the threshold per gene out of 4 possible changes.

doi:10.1371/journal.pone.0136591.g005

Table 2. PYE dissimilarity tables summary.

Regulator Differential pattern

No Thr. Thr. = 0.2 Thr. = 0.4

ASIL2 ✔ ✔ ✔

ETF9 ✔ ✔

WRKY57 ✔ ✔

MYB55 ✔ ✔

GNU1 ✔

TG ✔

LRL3 ✔

WRKY26 ✔

RD26 ✔

COL4 ✔ ✔

TGA2 ✔

OBP4 ✔

Table lists regulators that appeared in dissimilarity tables for each thresholded version of expression

patterns. Regulators that appeared for at least 2 patterns (ASIL2, ETF9, WRKY57, MYB55, and COL4)

were identified as potential regulators of PYE.

doi:10.1371/journal.pone.0136591.t002
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some of the type specific (activation or inhibition) predictions were incorrect. This may be
because the CDAA was based on the assumption that change in expression of a potential regu-
lator leads to change in the expression of its target gene in isolation (a rise in a target can only
be the result of a rise in its regulator if these genes have a positive influential relationship). This
assumption does not take into account combinatorial effects of multiple transcription factors
acting on the expression of one gene, and the resulting algorithm predictions of positive or neg-
ative influence are unable to assess to what extent each regulator controls the expression of
each target in combination. Also, it may be possible that similar yet delayed expression patterns
could instead be indicative of a regulator acting to continuously dampen expression of targets
that are activated by another regulator. This effect is a likely explanation for the results seen
for ETF9 and ASIL2, which both were predicted as positive regulators of their targets by the
CDAA due to trend similarities. Experimentally measured expression of regulators and targets
using qRT-PCR indicate, however, that target expression is increased in both mutant back-
grounds. This may indicate that under iron deprivation, increased expression of the regulators
works to constrain the expression of the targets. Thus, the assumption on the type of influence
between a potential regulator and its target, widely used in gene regulatory network inference
algorithms, appears to be limited in the case of our application.

Transcription factors that were not predicted to be regulated by the 7 regulators (dissimilar-
ity value higher than 0.4 at at least 2 out of 3 thresholds) were chosen as negative control genes.
Expression of each negative control gene was not significantly different in the mutant back-
grounds, indicating that the expression alterations seen are specific to the predictions of the
algorithm and not indicative of widespread expression alterations in the mutants (S4 Fig,
S7 Fig).

While other algorithms have been developed to infer regulatory relationships based upon
transcriptomic data, they are typically driven by substantial prior knowledge of regulator-target
relationships or are of limited utility for minimal, unevenly spaced datasets. For example, the
Event Method [24], similar to the CDAA, aims to infer causal relationships between genes by
aligning their differential expression patterns with an assumption of a possible delay in regula-
tion, but required modification to work with an unevenly sampled time course dataset. After
implementing a linear interpolation step as a modification to the Event Method algorithm and
limiting a set of genes to transcription factors, we obtained predictions for the same known

Fig 6. Regulatory relationships predicted by the CDAA. Predicted regulations between 7 early stage transcription factors and 7 known iron homeostasis
transcription factors. Edges indicating positive regulations are green and edges indicating negative regulations are red.

doi:10.1371/journal.pone.0136591.g006
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Fig 7. Expression validation of predicted targets in mutant regulator backgrounds. Root tissue was collected from seedlings grown 4 days on iron
sufficient media and transferred to iron deficient media for 3 days. Expression values are normalized to β-tubulin and to WT (Col-0) expression for each gene.
Error bars indicate ±SEM (n = 4). Mutant backgrounds are (A)obp4-1, (B)wrky57-3, (C)etf9-1, (D)col4-1, (E)asil2-1, and (F)myb55-1. Asterisk indicates
significant difference fromWT (Student’s t-test, p < 0.05).

doi:10.1371/journal.pone.0136591.g007
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iron response genes used with the CDAA. The predictions resulted in a network containing 44
nodes and 144 edges. Only 2 regulatory connections that were identified by the CDAA and
experimentally validated were found in the Event Method prediction set. Thus, the CDAA is
an improvement on currently available regulatory inference algorithms.

Identification of direct connections using enhanced yeast one-hybrid
Though the CDAA can predict influential relationships between transcription factors and their
targets, it can not differentiate between direct (binding) or indirect connections. We utilized
yeast one-hybrid (Y1H) analysis to identify direct regulatory connections involving one of the
target genes, PYE, and to see if any of these connections correspond to CDAA predictions. We
cloned the promoter region of PYE into Y1H reporter constructs and screened it against an
expanded collection of A. thaliana root specific transcription factors [46, 47]. We identified 20
transcription factors that bind to the PYE promoter (S1 Table). Two of these transcription fac-
tors are differentially expressed under iron deficiency and were thus a part of CDAA analysis.
It is likely that other interactions could have been missed in the Y1H analysis because this
assay is conducted in vitro and independent of iron availability. Some direct interactions may
require other regulatory machinery found only in plants or only under iron deficiency.

One of the two iron-responsive transcription factors that bound the PYE promoter is
ASIL2, which was predicted and validated to affect the expression pattern of PYE (Fig 7, S4
Fig). Interestingly, ASIL1, the close homolog to ASIL2, also binds the PYE promoter (S1
Table). The other iron-responsive transcription factor that targets PYE, HB-12, was not pre-
dicted to regulate PYE expression via the CDAA because the minimum dissimilarity in the
alignment of HB-12 and PYE expression occurred at a delay of 0 hrs, where the CDAA is
unable to distinguish between genes affecting each other and genes that are co-expressed.

The close homolog to ASIL2, ASIL1, is known to bind to the GT-box-like-element
(GTGATT) [48]. This element is found in the PYE promoter region. Given that PYE was vali-
dated as a direct connection, it is possible that ASIL1 and ASIL2 share this binding element. It
could also be possible that ASIL2 binds to other unidentified promoter elements. The CDAA
as an expression analysis tool will therefore be particularly effective in tandem with promoter
analysis and high throughput transcription factor binding data including Y1H and chromatin
immunoprecipitation sequencing (ChIP-Seq). These additional experiments could improve the
specificity of further predictions by revealing characteristics that are common specifically to
direct connections. It is striking that even though binding predictions were not the immediate
goal of the CDAA, one such connection was detected.

The 7 regulators predicted to influence known iron regulators come from distinct transcrip-
tion factor families and are all previously unlinked to iron homeostasis. Several of the validated
transcription factors (S6 Fig) have known or predicted roles in stress and development. COL4
(At5g24930) has a predicted B-box zinc finger domain and CCT motif [49]. Although COL4 is
uncharacterized, it is closely related to COL3, involved in light signaling and root growth [50].
ASIL2 (At3g14180) has been shown to play a role in regulating embryo maturation together
with its close homolog ASIL1 [43]. Both ASIL1 and ASIL2 are members of the trihelix tran-
scription factor family. ASIL1 recognizes and binds to a specific element in promoter
sequences, and over 1000 genes are misregulated in the asil1-1mutant background [48]. Early
chlorophyll accumulation during embryo development is seen in both asil1 and asil2mutants,
and more strongly in an asil1asil2 double mutant [43]. Given the requirements of iron for chlo-
rophyll biosynthesis, as well as links between seed iron content and embryogenesis [16, 51–53],
it is possible that ASIL2’s role in embryo development is related to its role in iron homeostasis.
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We did not observe visual phenotypic differences from wild type for any of the mutants
when grown under iron deficient conditions (data not shown). This result is not necessarily
unexpected, especially given the modest alterations in target expression seen. The algorithm
assigns multiple regulators to each iron homeostasis gene of interest, indicating that combina-
torial effects may be in effect. Therefore, it will likely be necessary to examine higher order
mutants to observe more dramatic phenotypes.

Conclusion
The CDAA was able to make specific predictions about regulatory relationships between genes.
A set of 931 potential regulatory relationships between 133 differentially expressed transcrip-
tion factors and the 7 chosen targets was reduced by the CDAA to a very testable subset of 32
connections. The majority of the relationship predictions (53%) were experimentally validated
by significantly altered target expression in a background with altered regulator expression.
The regulators identified were previously unlinked both to a role in iron deficiency and to the pre-
dicted targets. One of the connections predicted by this algorithm was a direct connection, vali-
dated by Y1H analysis. Together, these results yield a small network of interactions which has
expanded our understanding of the iron deficiency response in A. thaliana to novel genes
and connections (Fig 8). Thus, the developed CDAA is capable of making predictions with bio-
logical significance and can be used to reveal gene regulatory connections in distinct fields of
study.

Materials and Methods

Plant Growth and Materials
The Arabidopsis thaliana ecotypes Columbia (Col-0) and Landsberg erecta (Ler) were
used as wild type, depending on mutant background. T-DNA insertion lines for obp4-1
(SALK_118463), wrky57-3 (GK-078H12), etf9-1 (SALK_025328), col4-1 (SALK_092012C),

Fig 8. Experimentally validated regulatory relationships. Validated regulations between 4 early stage transcription factors and 7 known iron homeostasis
transcription factors. Edges indicating positive regulations are green and edges indicating negative regulations are red. Edge indicating a direct connection
validated by Y1H is darker.

doi:10.1371/journal.pone.0136591.g008
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asil2-1 (SAIL_258_F06),myb55-1 (GK-460G09), and asil2-2 (ET8777) were confirmed using
primers listed in S2 Table. A. thaliana seedlings were grown on iron sufficient media (+Fe)
containing Murashige and Skoog basal salt solution supplemented with 0.05% (w/v) MES,
1% (w/v) sucrose, and 0.1 mM Fe-EDTA in the place of iron sulfate. Iron deficient media
(–Fe) is prepared as described above except 0.3 mM of the iron chelator ferrozine is substi-
tuted for iron sulfate. Prior to plating, seeds were sterilized in 70% EtOH for 5 minutes, 30%
bleach and 0.02% Triton X-100 for 15 minutes, and then rinsed 3 times in dH2O. Seeds were
stratified in dH2O for 2–3 days at 4°C. For expression analysis, seeds were sown directly on
100 μmNitex Nylon mesh (Genesee Scientific) on square plates filled with iron sufficient
media for 4 days, and transferred to iron deficient media for 3 days.

qRT-PCR
Total RNA was isolated from pooled roots of A. thaliana seedlings using the RNeasy Plant
Mini Kit (Qiagen). cDNA was synthesized using the SuperScript1 III cDNA synthesis kit (Life
Technologies) with oligo(dT) primers. qRT-PCR was performed using iTaq™Universal
SYBR1 Green Supermix (Bio-Rad) and the StepOnePlus™ Real-Time PCR System (Applied

Biosystems). Primers are listed in S2 Table. Relative expression was calculated using the 2�DDCT

method, normalized to β-tubulin and wild type. Statistical analysis was performed using Stu-
dent’s t-test (p< 0.05) (n = 4).

Plasmid Construction
The PYE promoter construct was created as described in Long et al.[4]. Briefly, 1120 bp
upstream of the PYE start codon was amplified using primers listed in S2 Table and cloned
into the pDONR™ P4-P1R (Invitrogen) vector. This fragment was recombined into HIS3 and
LacZ promoter:reporter vectors for enhanced yeast one-hybrid (Y1H) screening, as described
in Gaudinier et al. [47].

Supporting Information
S1 Fig. Dissimilarity tables for PYE at different thresholds. Dissimilarity scores between
PYE and its putative regulators at a range of delays based on differential expression
patterns with (A) No threshold, (B) Threshold of 0.2, or (C) Threshold of 0.4. ‘-i’
signifies that smaller dissimilarity scores were obtained for inverted regulator expression

(d̂ðgR;gT ;mDTÞ < dðgR;gT ;mDTÞ 8m); ‘-a’ signifies that smaller dissimilarity scores were

obtained for non-inverted regulator expression (dðgR;gT ;mDTÞ < d̂ðgR;gT ;mDTÞ 8m).
(TIFF)

S2 Fig. Location of T-DNA insertions and qRT-PCR primers in regulator genes. Regulator
genes shown with exons in blue, untranslated regions (UTR) in gray, and promoters and
introns as lines. Insertion locations are indicated with triangles and lines underneath genes
indicate region spanned by qRT-PCR primers.
(TIFF)

S3 Fig. Expression of regulators in mutant backgrounds. Root tissue was collected from
seedlings grown 4 days on iron sufficient media and transferred to iron deficient media for 3
days. Expression values are normalized to β-tubulin and to WT (Col-0) expression for each
gene. Error bars indicate ±SEM (n = 4). Expression of (A) OBP4, (B)WRKY57, (C) ETF9, (D)
COL4, (E) ASIL2, and (F)MYB55 in respective mutant regulator backgrounds. Asterisk
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indicates significant difference fromWT (Student’s t-test, p< 0.05).
(TIFF)

S4 Fig. Expression validation in alternate allele asil2-2. Root tissue was collected from seed-
lings grown 4 days on iron sufficient media and transferred to iron deficient media for 3 days.
Expression values are normalized to β-tubulin and to WT (Ler) expression for each gene. Error
bars indicate ±SEM (n = 4). Expression of (A) ASIL2 regulator, (B) ASIL2 targets, and (C) neg-
ative control gene IAA27 in asil2-2mutant background. Asterisk indicates significant differ-
ence fromWT (Student’s t-test, p< 0.05).
(TIFF)

S5 Fig. No accumulation of full-length transcript in exonic insertions. Root tissue was col-
lected from seedlings grown 4 days on iron sufficient media and transferred to iron deficient
media for 3 days. PCR was performed on cDNA using primers for full length product (TOPO
F&R) for (A) ETF9, (B) ASIL2, and (C)MYB55, each shown with β-tubulin (bTUB) transcript
as a control and run until saturation (35 cycles).
(TIFF)

S6 Fig. Predicted and tested relationships between regulators and known iron homeostasis
transcription factors.
(TIFF)

S7 Fig. Expression of negative control genes in mutant backgrounds. Root tissue was
collected from seedlings grown 4 days on iron sufficient media and transferred to iron defi-
cient media for 3 days. Expression values are normalized to β-tubulin and to WT (Col-0)
expression for each gene. Error bars indicate ±SEM (n = 4). Expression of (A) ERF3, (B)
IAA27, (C) IAA27, (D) UPB1, (E) IAA27, and (F) UPB1 negative control genes in mutant
regulator backgrounds. All values are not significantly different fromWT (Student’s t-test,
p< 0.05).
(TIFF)

S1 Table. Transcription factors that bind to the PYE promoter in Y1H analysis. Transcrip-
tion factors with gene activity under iron deficiency are indicated in red and the connection
predicted by the CDAA is indicated in bold.
(TIFF)

S2 Table. Primers used in this study.
(TIFF)

S1 File. MatLab source code for the CDAA.
(M)

S2 File. Transcriptome data.
(CSV)

S3 File. List of transcription factors.
(CSV)

S4 File. Gene cluster membership.
(CSV)

S5 File. Dissimilarity tables for targets.
(PDF)
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