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ABSTRACT OF THE DISSERTATION

A Class of kNN-Type Entropy Estimators: Algorithm, Convergence, and
Application to Molecular Modeling

by

Chao Fan

Doctor of Philosophy in Mathematics

University of California San Diego, 2021

Professor Bo Li, Chair

Entropy is a fundamental concept in science. It describes the disorder, randomness,

and uncertainty of a physical, biological, or social system. While understanding entropy has

far-reaching impact to advancing our knowledge in many scientific areas and our society,

the development of rigorous theories and computational technologies for entropy is a rather

challenging task due to the vast complexity of an underlying system. In the context of

biological molecules such as proteins and DNAs, entropy as defined in statistical mechanics

and thermodynamics is a critical part of the total free energy of such molecules in a

chemical environment. Efficient and accurate calculations of such entropy is of particular

x



interest as the calculation of free energy, which is fundamental to physical and biological

processes, is known to be notoriously difficult. The need and recent interest in advanced

computational methods for entropy in biological molecular systems have motivated directly

this dissertation work.

The basic mathematical and statistical definition of entropy, the Shannon entropy in

information theory, for a random variable in an Euclidean space is the negative expectation of

the natural logarithm of the probability density function (PDF) for the random variable. The

entropy of a physical and biological system can be written in the form of, or approximated by,

the Shannon entropy with a suitably defined PDF that has physical meanings. Practically,

the dimension of an underlying random variable can be very high, and in addition, its PDF

may not be known. The goal of my study is to develop efficient and accurate computational

methods for the Shannon entropy with the application to the calculation of entropy of a

particle system that may consist of many particles, forming a liquid.

In this dissertation work, I begin with a formal derivation of a class of nonparametric

kNN-type estimators of the entropy, including the classical kNN estimator, the kpN

estimator introduced recently by some physicists, and a new estimator called kp-kernel

estimator that I have constructed. One of my objectives here is to understand if theses

estimators can better capture some properties that are related to singular behaviors of an

underlying PDF, such as the “tail” part of the PDF. My extensive numerical simulations

using these estimators with several different PDFs show some of such advanced features.

These include a better description of a strongly correlated system and more accurate

sampling of the tail part of a given distribution. I will then present a convergence analysis

to show that some of these estimators converge in expectation, under some realistic

assumptions.

Subsequently, I apply these kNN-type entropy estimators to calculate the entropy of

simple molecular systems. Here a statistical mechanics theory of simple liquids is invoked,
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and the entropy is expressed in a series of terms, each is a Shannon entropy, where the

first two terms are known to be the most important. I implement the Markov chain Monte

Carlo method to sample an underlying molecular system, and then I use the kNN and kpN

methods to estimate the entropy.

Finally, I present my related work on the molecular dynamics (MD) simulations of

the solvation of an ion in water. Using the radial distribution function of water molecules

surrounding an ion, obtained from the MD simulations, I find the effective radius of the

ion. I also compare the results of the MD simulations with those of a stochastic ordinary

differential equation (SODE) model to examine the validity of such an SODE approach. The

work presented here is a first step toward combining statistical methods and computational

analysis to tackle one of the very complex problems in mathematical modeling and computer

simulations of biological molecules.

My detailed studies of a class of nonparametric entropy estimators and their appli-

cation to molecular modeling demonstrate that these methods are promising. More work

remains to improve the efficiency of some of these estimators, and to develop a complete

theory of convergence. Further theories and more related methods are needed for better

applications of these estimators in molecular modeling.
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Chapter 1

Introduction

Entropy describes the disorder of a physical, biological, or social system. It is a

fundamental concept and quantity in thermodynamics, statistical mechanics, information

theory, and many other disciplines of science [6, 42]. In this dissertation work, I am

primarily interested in understanding the entropy in biological molecular systems and

developing computational methods for the calculation of such entropy. Specifically, my

objectives are to construct and test new kNN-type entropy estimators, and combine them

with simulation methods to estimate the entropy of biomolecular systems. I also provide

some convergence analysis.

In this introductory chapter, I will first describe the background of my work. It has

two parts. One is a class of kNN-type entropy estimators (cf. subsection 1.1), and the other

is the derivation and approximation of the entropy of a particle system (cf. subsection 1.2).

I will then present my main research results and describe their significance (cf. subsection

1.3).
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1.1 The Shannon entropy and its kNN-type estimators

Let X ∈ Rd be a random variable with the probability density function (PDF)

f : Rd → R. The Shannon entropy of the PDF f (or the random variable X ∈ Rd) is

defined to be

H(f) = E[− log f(X)] = −
∫

Rd
f(x) log f(x)dx,

where the expectation E[− log f(X)] is assumed to exists and is finite. Throughout this

dissertation, I use log to denote the natural logarithmic function and I use the convention

that 0 log 0 = 0. I also only consider random variables in Rd. A non-parametric estimator of

entropy is obtained by replacing the PDF f in the definition of entropy by its non-parametric

kernel or histogram estimator [7].

Let x1, ..., xn ∈ Rd be data points sampled independently according to the PDF f .

Let k be an integer such that 1 ≤ k ≤ n. For each i (1 ≤ i ≤ n), let εi be the kth nearest

neighbor (kNN) distance of sample points xj (1 ≤ j ≤ n, j 6= i) to xi. The kNN entropy

estimator Hn of H(f) is then defined as [39]

Hn(f) = ψ(n)− ψ(k) +
d

n

n∑
i=1

logVol(B(xi, εi)),

where

ψ(n) =


n∑
i=1

1

i
− γ if n ≥ 2,

ψ(1) = −γ if n = 1,

γ = 0.5722... is Euler’s constant, and Vol(B(xi, εi)) is the volume of the d-dimensional ball

B(xi, εi) centered at xi with radius εi. The idea is based on the following approximation

f(xi)Vol(B(xi, εi)) ≈
k

n
.

2



This leads to

f(xi) ≈
k

n

1

Vol(B(xi, εi))
.

Note that the special case k = 1 is the classical Kozachenko–Leonenko (KL) estimator

[30]. This estimator has been used in various studies, especially in entropy estimation in

molecular systems [22, 23, 24, 28, 48].

Based on the idea of the kNN entropy estimator, Lombardi and Pant [35] propose a

new estimator, the kpN estimator of H(f):

H(kpN)
n (f) = ψ(n)− ψ(k) +

1

n

n∑
i=1

log
Gp,i

gp,i(xi)
,

where gp,i(x) is a function proportional to a Gaussian function approximated by using the

p-nearest neighbours of xi, and Gp,i is the integral of function gp,i(x) over the ball B(xi, εi).

It has been demonstrated initially that the kpN estimator can better describe the “tail”

property of the PDF f than the kNN method.

In this dissertation work, I follow the framework of the kpN estimator and construct

a new entropy estimator, the kp-kernel estimator:

Ĥ(kpK)
n (f) = ψ(n)− ψ(k)− 1

n

n∑
i=1

log(tp,i(xi)) +
1

n

N∑
i=1

log Tp,i,

where tp,i(x) is kernel density function approximated by using the p-nearest neighbouring

data points x1
i , ..., x

p
i of xi,

tp,i(x) =
1

phd

p∑
j=1

K(
x− xji
h

),

K(x) =
exp(−||x||2/2)

v1,d

,
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v1,d =

∫
Rd
e−||x||

2/2dx.

I conduct extensive numerical simulations to compare the kNN, kpN, and kp-kernel

estimators for some distributions that have some special properties, such as the strong

correlation and some degeneracies. I also estimate the efficiency of each of these estimators.

1.2 Entropy of a particle system

Consider a system of N particles in a computational box of volume V . For the

ith particle, let us denote the mass of the particle by mi, the position of the particle

by ri, the momentum of the particle by pi : pi = miṙi (i = 1, ..., N). Let fN be the

N -body distribution in positions and momenta, fk the kth particle one-body distribution

of momenta, gN the N particle correlation function.

The total entropy of the underlying particle system is given by [5, 10, 26, 36, 43, 51]

Sliquid = −Rh
3N

N !

∫ ∫
fN log fNdrNdpN ,

with R the gas constant and h the Planck constant. The separability of the momentum

can be exploited to divide the total entropy Sliquid into two parts: the momentum entropy

Smom and configuration entropy Sconf :

Sliquid = Smom + Sconf .

The configurational entropy of a fluid is a function of the interatomic correlations and can

4



be expressed in terms of correlation functions.

RρN

N !

∫
gN(r) log gN(r)dr︸ ︷︷ ︸

Sconf

= S1solute − I2solute + I3solute − ...

In this work, I only consider the most severe truncation generates what is called the

conditional one particle entropy (C1PE) S1solute defined by Irwin and Huggins [25].

Early work on the calculation of entropy for a molecular system included the work

done by Karplus [27] and others [23, 28, 31]. Evaluating solvation entropies directly and

combining with direct energy calculations is one way of calculating free energies of solvation

[3, 27, 47]. A main approach developed in recent years is to calculate the entropy directly

from a truncated series of integrals over the correlation functions. Many studies truncate

all terms higher than the solvent-solute correlations.

Molecular Dynamics (MD) simulations and Monte Carlo (MC) simulations are very

powerful tools to describe the motion of a particle system with many degrees of freedom. In

such simulations, many different states of an underlying system are randomly sampled to

provide statistical quantities, such as the averages or probability densities. MC simulations

have many applications in computational physics, chemistry, and biology, particularly

for strongly coupled solids, charged molecular systems, and cellular structures. In this

dissertation, I use the Metropolis–Hastings algorithm to sample a particle system and

combine it with the kNN and kpN estimators to calculate the entropy of such a system.

The Metropolis–Hasting algorithm is a Markov chain Monte Carlo method. More details

about the MC acceleration are discussed in Chapter 3. I present more additional MD

simulations in Chapter 4 to investigate more properties of the solvation of an ion.

5



1.3 Main results and organization of this thesis

The main contributions of my dissertation work include:

(1) The construction of a new entropy estimator: the kp-kernel estimator, using Gaussian

kernel functions.

(2) The design and implementation of the corresponding entropy estimation algorithms,

and extensive simulations for several distributions. For a high-correlation 3-dimensional

Gaussian distribution and a 4-dimensional Gaussian distribution with determinant of

covariance matrix close to 0, it is found that the kp-kernel method and kpN method

outperforms the kNN method.

(3) An alternative proof of the convergence of kNN-type entropy estimators in mean under

a realistic assumption: all sample data lie in a bounded computational box.

(4) Extensive MC simulations and the related kNN and kpN entropy calculations for two

particle systems.

(5) Additional simulation results: conduct MD simulations of the solvation of ions, and

determine the radial distribution and effective radius of an ion.

It is hoped that the mathematical and numerical methods developed here can be used to

solve other problems in other related scientific area.

The rest of this dissertation thesis is organized as follows. In chapter 2, I review a

general framework of entropy estimators and construct a new entropy estimator, the kp-

kernel estimator. I compare kNN, kpN, and kp-kernel estimators via numerical experiments

for different known probability density functions. I then provide a convergence analysis for

the kNN method.

In chapter 3, I investigate the entropy calculation of a molecular system. I implement

the Metropolis–Hastings Monte Carlo algorithm for particle system simulations. I simulate

6



the Lennard-Jones potential model and an ionic particle model and apply the kNN and

kpN entropy estimators for these models.

In Chapter 4, I report additional MD simulations results for the solvation of ions

and investigate the ion radius by the MD simulation and a stochastic ordinary differential

model.

Finally, in Chapter 5, I discuss briefly my results and draw conclusions. I also point

out some future directions of further studies.

7



Chapter 2

The kNN, kpN and kp-kernel Entropy

Estimators

2.1 Entropy: Definition and example

Let (Ω,A, P ) be a probability space. Let X : Ω→ Rd be a random variable. Assume

that the distribution of X, the Borel measure µx = P ◦X−1 : BRd → R (where BRd is the

Borel σ-algebra of Rd) has an L1(Rd)–density f : Rd → R with respect to the Lebesgue

measure on Rd. The probability density function (PDF) f is characterized by the following

properties: f ∈ L1(Rd), f ≥ 0 in Rd, and
∫

Rd fdx = 1.

Definition 1. The Shannon entropy of the PDF f , or the random variable X ∈ Rd with

its PDF f is

H(f) = E[− log f(X)] = −
∫

Rd
f(x) log f(x)dx. (2.1.1)

Here and below I define 0 log 0 = 0. I assume H(f) is well-defined and is finite. The

Shannon entropy or differential entropy (2.1.1) depends only on the probability density of

the random variable, and therefore is sometimes written as H(f) rather than H(X). The

concept of differential entropy was introduced in Shannon’s original paper [38]. Since then,

8



entropy has been applied in many scientific areas.

Example 1. (Entropy of a multivariate Gaussian distribution) If X ∈ Rd is the multivariate

Gaussian random variable with mean µ and covariance matrix Σ, then its PDF is

f(x) =
1√

(2π)d det(Σ)
exp(−1

2
(x− µ)TΣ−1(x− µ)).

The entropy of the random variable X is:

H(f) = −
∫

Rd
f(x) log f(x)dx

=

∫
Rd
f(x)

1

2
(x− µ)TΣ−1(x− µ)dx−

∫
Rd
f(x)

1

2
log((2π)ddet(Σ))dx.

The second term equals 1
2

log((2π)ddet(Σ) since it is a constant. The first term equals

1√
(2π)d det(Σ)

∫
Rd

exp(−1

2
(x− µ)TΣ−1(x− µ))

1

2
(x− µ)TΣ−1(x− µ)dx.

By the change of variables y = Σ−1/2(x− µ), the first term is

∫
Rd
f(x)

1

2
(x− µ)TΣ−1(x− µ)dx

=
1√

(2π)d det(Σ)

∫
Rd

exp(−1

2
yTy)

1

2
yTydy

=
1√

(2π)d det(Σ)
2
d
2

∫
Rd

exp(−|z|2)|z|2dz

=
1√

(2π)d det(Σ)
2
d
2

∫
Rd

(z2
1 + ...+ z2

d) exp(−z2
1 − ...− z2

d)dz1...dzd

=
1√

(2π)d det(Σ)
2
d
2d

∫
R
z2

1e
−z21dz1

∫
R
e−z

2
2dz2...

∫
R
e−z

2
ddzd

=
1√

(2π)d det(Σ)
2
d
2d

√
π

2
(
√
π)d−1

=
d

2
.
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In these calculations, I used ∫ ∞
−∞

e−x
2

dx =
√
π.

and ∫ ∞
−∞

x2e−x
2

dx =

√
π

2
.

Hence,

H(f) =
d

2
+

1

2
log((2π)ddet(Σ) =

1

2
log[(2πe)d det(Σ)].

2.2 The kth nearest distance and entropy estimators

2.2.1 The kth nearest distance

My aim is to estimate the entropy H(f) from n samples x1, ..., xn. Let us define

the Monte Carlo estimator of the entropy as

Hn(f) = − 1

n

n∑
i=1

log(f(xi)). (2.2.1)

If f is unknown, an estimate of f must be substituted in equation (2.2.1). Singh et al. [39]

provide a reasonable estimator f̂(xi) of f(xi).

f̂(xi) =
k

n

1

Vol(B(xi, εi))
,

where εi is the kth distance from sample xi to its kth nearest sample.

Instead of approximate the unknow function f(xi) directly, one can derive the kNN

estimator through approximating the mass probability of the ball B(xi, εi) = {x ∈ Rd :

||x− xi|| < ε} with respect to the distribution f .
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This mass probability is defined by

Pi(ε) =

∫
B(xi,ε)

f(x)dx. (2.2.2)

Consider the probability distribution pi(ε) for the distance between xi and its kth nearest

neighbour. The probability pi(ε)dε is equal to the probability that exactly one point in

[ε, ε+ dε], exactly k − 1 points are at distance less than the kth nearest neighbor sample,

and remaining n− k − 1 points are farther than the kth nearest neighbor sample. Then it

follows that

pi(ε)dε =

(
k

1

)(
n− 1

k

)
dPi(ε)

dε
dε(Pi(ε))

k−1(1− Pi(ε))n−k−1.

Remarks: dPi(ε)
dε

dε represents the probability that there exists one sample point which

Figure 2.1: A depiction of k-nearest neighbour and ε-ball: B(xi, εi).

the distance between sample xi is ε, Pi(ε)k−1 represents, the probability that there exists

k − 1 sample points which the distance between sample xi is less than ε, (1− Pi(ε))n−k−1

represents the probability that there exist n− k − 1 points which the disstance between

sample xi is greater than ε.
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The expected value of log(Pi) can be obtained from the definition of Pi(ε) and pi(ε)

[29, 53]:

E(logPi) =

∫ ∞
0

logPi(ε)pi(ε)dε

= k

(
n− 1

k

)∫ ∞
0

dPi(ε)

dε
dε(Pi)

k−1(1− Pi)n−k−1 logPi

= k

(
n− 1

k

)∫ 1

0

dt(t)k−1(1− t)n−k−1 log t (consider t = Pi(ε))

= ψ(k)− ψ(n),

(2.2.3)

where ψ is the digamma function. See Lemma 1 for proof.

Lemma 1. Proof of equation (2.2.3)

k

(
n− 1

k

)∫ 1

0

(p)k−1(1− p)n−k−1 log p dp = ψ(k)− ψ(n).

Proof. The Beta function is defined by

B(x, y) =

∫ 1

0

px(1− p)ydp.

A key property of the beta function is its close relationship to the gamma function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (2.2.4)

Take partial derivative on B(x, y) with respect to x,

∂B(x, y)

∂x
=

∫ 1

0

∂

∂x
px−1(1− p)y−1dp =

∫ 1

0

px−1(1− p)y log p dp.
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Take logarithm on both sides of (2.2.4),

logB(x, y) = log Γ(x) + log Γ(y)− log Γ(x+ y). (2.2.5)

Take partial derivative on equation (2.2.5) with respect to x,

1

B(x, y)

∂

∂x
B(x, y) = ψ(x)− ψ(x+ y), (2.2.6)

where ψ(x) = Γ′(x)
Γ(x)

is the digamma function. Setting x = k, y = n− k in equation (2.2.6),

we obtain
1

B(k, n− k)

∫ 1

0

px−1(1− p)y log p dp = ψ(k)− ψ(n).

Hence,

k

(
n− 1

k

)∫ 1

0

(p)k−1(1− p)n−k−1 log p dp = ψ(k)− ψ(n).

This completes the proof.

2.2.2 A general framework of kNN-type entropy estimators

Assume the probability mass Pi(εi) defined in (2.2.2) can be written as the following

form

Pi(εi) = ηif(xi). (2.2.7)

Taking logarithm on equation (2.2.7), we obtain

log f(xi) = logPi(εi)− log ηi. (2.2.8)
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Combine equation (2.2.1) and equation (2.2.8). The entropy estimator can be written as

Hn(f) = − 1

n

n∑
i=1

log(f(xi)) =
1

n

n∑
i=1

log ηi −
1

n

n∑
i=1

logPi(εi).

By property of equation (2.2.3), one can propose a general entropy estimator [35]

Hn(f) = ψ(n)− ψ(k) +
1

n

n∑
i=1

log ηi. (2.2.9)

The main challenge is how to estimate the mass probability defined in equation

(2.2.2). Generally, the more precise equation (2.2.2) estimate, the better for entropy

estimator. Lombardi and Pant [35] proposed a kpN method in 2016. The central idea is to

estimate the probability mass around each sample point by a local Gaussian approximation.

The local approximation is obtained by looking at p neighbors around the sample point.

the tails of the true probability distribution are better captured. However, there still exists

some error.

A graphical demonstration of the difference in the integrals of probability density

considered by the kNN, kpN and kp-kernel estimators is shown in Figure 2.2. While near

the mode of the distribution the approximations to the integral of the probability density

are similar for the two estimators, in the tails the integral is better captured by the kpN

estimator as a local Gaussian is constructed and is much better captured by the kp-kernel

estimator. In each plot, the true distribution (Gaussian) is shown by a solid (black) line

and the 50 samples are shown with “+” green symbols. For the two points (shown by

solid vertical lines), the integration region B(xi, εi) with k = 3 is shown by dashed vertical

lines, and the integrals are shown in shaded gray. In the upper-left panel, the true area

of integration is shown. In the upper-right panel shows the uniform approximation to

this area, the left-bottom panel shows the area approximations by the local Gaussian

approximation with p = 10, and right-bottom panel shows the area approximations by the
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local kernel Gaussian approximation with p = 10. Two different points – one near the tails

and one near the mode – of a Gaussian distribution are shown.

Figure 2.2: Demonstration of the differences of integration over local region between
uniform, Gaussian and Gaussian Kernel.

In Table 2.1 and Table 2.2, I extract 10000 and 5000 samples from the Gamma

distribution. I calculate the local integration inside B(xi, εi) approximated by uniform

distribution, local Gaussian distribution and local Gaussian Kernel distribution. I present

the 5 times average of relative errors in Table 2.1 and Table 2.2.
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Table 2.1: Uniform, Gaussian and Gaussian Kernel methods calculate the tail part of
integration - 10000 Samples.

Different index of sample from tail part

1 2 3 4 5 6

Uniform 4.4176% 4.5223% 4.4826% 4.2809% 4.4576% 1.5299%

Gaussian 2.0076% 5.3505% 5.2208% 7.6908% 8.2297% 3.5533%

Gaussian Kernel 2.6139% 1.5459% 1.4998% 5.5317% 5.6564% 3.2706%

Table 2.2: Uniform, Gaussian and Gaussian Kernel methods calculate the tail part of
integration - 5000 Samples.

Different index of sample from tail part

1 2 3 4 5 6

Uniform 12.4301% 8.1695% 3.5782% 0.9154% 0.8921% 0.4962%

Gaussian 13.0452% 8.5605% 4.305% 1.0897% 1.0621% 0.7158%

Gaussian Kernel 4.9901% 1.9007% 7.1924% 1.0734% 1.0749% 1.236%

2.3 The kNN, kpN and kp-kernel estimators: Definition

and algorithm

Let x1, ..., xn be random and independent samples in Rd of a random variable X

with the PDF f .

2.3.1 The kNN estimator

The key problem is how to derive a reasonable estimator of ηi in equation (2.2.2).

The classical estimate by Kozachenko and Leonenko [30] and its extension by Singh et al.

[39] assume that the probability density f(x) is constant f(xi) inside B(xi, εi). So,

P (kNN)(x) = Vol(B(xi, εi))f(xi) = cdε
d
i f(xi) = ηif(xi), (2.3.1)
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where cd is the volume of the d-dimensional unit-ball. The expression cd depends on

the type of the norm I apply to calculate the distances. I take Euclidean norm (L2),

cd = πd/2/Γ(1 + d/2), where Γ is the Gamma function. I substitute equation (2.3.1) in

equation (2.2.9),

ηi = cdε
d
i .

I obtain the kNN estimator of the entropy H(f) by:

H(kNN)
n = ψ(n)− ψ(k) + log(cd) +

d

n

n∑
i=1

log(εi).

where

ψ(n) =


n∑
i=1

1

i
− γ if n ≥ 2,

ψ(1) = −γ if n = 1,

and γ = 0.5722... is Euler’s constant. This estimator is referred as the kNN estimator in

the remainder of this thesis.

Algorithm 1: Algoritm to estimate kNN entropy
Input : • xi ∈ Rd, i = 1, 2, ..., n: the samples

• k: the number of nearest neighbors for calculating εi
Output :H(f): the kNN entropy estimate

1 cd ← πd/2/Γ(1 + d/2)
2 H(f) = ψ(n)− ψ(k) + cd
3 for i← 0 to n do
4 εi ← L2 distance to the kth nearest neighbor of xi.
5 H(f)← H(f) + (d/n) log(εi)

6 end for
7 return H(f)
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2.3.2 The kpN estimator

The primary cause of high error in the kNN estimator is the assumption of constant

density in each local region B(xi, εi). This may be unjustified when the sample xi lies

in the tail part of the density function, see Figure 2.2. In such cases, a constant density

assumption in B(xi, εi) leads to an overestimation of the probability mass and hence the

entropy estimate. To remedy this, an alternate formulation for ηi in equation (2.2.7) is

sought. Contrary to a constant density assumption in Kozachenko and Leonenko Estimator,

I assume the probability density in B(xi, ε) is represented as

f (kpN)(x) = f(xi)
gp,i(x)

gp,i(xi)
.

Essentially, the probability density is assumed to be proportional to a Gaussian function

gp,i(x) approximated by using p-nearest neighbours of xi.

gp,i(x) = exp (−1

2
(x− µi)TS−1

i (x− µi)).

where µi and Si represent the empirical mean and covariance matrix of the p-nearest

neighbouring data points x1
i , ..., x

p
i of xi. In order to guarantee the inverse of empirical

covariance matrix Si exist, I apply pseudo-inverse in implementation. Consequently, the

probability mass in B(xi, εi) can be written as

P
(kpN)
i (εi) =

∫
B(xi,εi)

f (kpN)(x)dx = f(xi)
1

gp,i(xi)
Gp,i, (2.3.2)

where

Gp,i =

∫
B(xi,εi)

gp,i(x)dx.
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I substitute equation (2.3.2) in equation (2.2.8),

ηi =
1

gp,i(xi)
Gp,i.

I then obtain the kpN estimator of the entropy H(f) by:

H(kpN)
n = ψ(n)− ψ(k)− 1

n

n∑
i=1

log(gp,i(xi)) +
1

n

n∑
i=1

logGp,i,

where εi is the distance of the ith sample xi to its kth nearest neighbor.

Algorithm 2: Algoritm to estimate kpN entropy
Input : • xi ∈ Rd, i = 1, 2, ..., n: the samples

• k: the number of nearest neighbors for calculating εi
• p: the number of nearest neighbors for calculating the local

Gaussian approximation (p ≥ k)
Output :H(f): the kpN entropy estimate

1 for i← 0 to n do
2 {xi}p ← set of p-nearest neighbors of xi (L∞ norm)
3 end for
4 for i← 0 to n do
5 εi ← L∞ distance to the kth nearest neighbor of xi.
6 B(xi, εi)← xi ± εie; e being the canonical basis
7 µi ← mean of {xi}p
8 Si ← covariance of {xi}p
9 Gi ← integral of local Gaussian in B(xi, εi) using EMPGP

10 gi ← local Gaussian density value at xi
11 H(f)← H(f) + n−1[log(Gi)− log(gi)]

12 end for
13 H(f) = ψ(n)− ψ(k)

Remarks: To compute the integration Gp,i, a multivariate Gaussian definite integral

inside B(xi, εi) has to be computed. Since I adopt the L∞ distance, this operation amounts

to computing the integral of a multivariate Gaussian inside a box. The expectation

propagation multivariate Gaussian probability (EPMGP) method, proposed in [14], is

chosen. A brief description about expectation propagation multivariate Gaussian probability
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(EPMGP) method is below.

I define the Gaussian distribution p0(x) = N (x;m;K) as

p0(x) =
1

(2π)n/2|K|n/2
exp−1

2
(x−m)TK−1(x−m),

where x ∈ Rd is a vector with d real valued elements, m ∈ Rd is the mean vector, and

K ∈ Rn×n is the symmetric, positive semidefinite covariance matrix. I consider the

probability that a draw from p0(x) falls in a region A ⊆ Rd, which we will denote as

Prob(x ∈ A) =

∫
A
p0(x)dx =

∫ u1

l1

...

∫ ud

ld

p0(x)dx1...dxd,

where l1, ..., ld and u1, ..., ud ∈ R and A ⊆
∏d

i=1[li, ui]. We consider an intractable distribu-

tion p(x) is a product of a prior distribution p0(x) and one or more likelihood functions or

factors ti(x):

p(x) = p0(x)
d∏
i=1

ti(x).

where ti(x), i = 1, ..., d is an indicator function defined in a particular direction, namely:

ti(x) = 1{li < cTi < ui} =


1 li < cTi x < ui,

0 otherwise.

The unnormalised Gaussian approximation is

q(x) = p0(x)
d∏
i=1

t̃i(x),

We will require the cavity distribution for the derivation of the updates, which is defined as

q\i(x) =
q(x)

t̃i(x)
= Z\iN (x;u\i, V \i), (2.3.3)

20



The above step is the cavity step of Expectation Propagation [14]. We now must do the

projection operation, which involves moment matching the approximation t̃i(x)q\i(x) to the

appropriate moments of ti(x)q\i(x). Here, we only consider ti(x) have rank one structure:

Ẑi =

∫
ti(x)q\i(x)dx

ûi = µ̂ici

V̂i = σ̂2
i cic

T
i ,

where {Ẑi, µ̂i, σ̂2
i } depend on the factor ti(x) and ci is the rank one direction as in equation

(2.3.3). See more projection step in [14].

Now, by the definition of the approximation, we can calculate the new approximation

q(x) as the product q(x) = p0(x)
∏d

i=1 t̃i(x):

q(x) = ZN (µ,Σ)

where µ = Σ(K−1m+
m∑
i=1

µ̃i
σ̃2
i

ci), Σ = (K−1 +
m∑
i=1

1

σ̃2
i

cic
T
i )−1.

Lastly, once the algorithm has converged, we can calculate the normalisation constant of

q(x). While this step is again general to Gaussian EP, we highlight

logZ = −1

2
(mTK−1m+ log |K|)

+
m∑
i=1

(log Z̃i −
1

2
(
µ̃2
i

σ̃2
i

+ log σ̃2
i + log(2π)))

+
1

2
(µTΣ−1µ+ log |Σ|).

In the above we have broken this equation up into three lines to clarify that the normalisation

term logZ has contribution from the prior p0(x) (first line), the approximate factors (the

second line), and the full approximation q(x) (third line).
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2.3.3 The kp-kernel estimator

Similar to the idea of kpN estimator assumption, in order to improve the accuracy

of the local probability density, I proposed a local kernel density function instead of a local

Gaussian to approximate the local region mass probability. Essentially, the probability

density is assumed to be proportional to a Gaussian function approximated by using p

nearest neighbors of xi. The idea is that the p neighbors kernel density function would

capture the local nonuniformity of the true probability density inside B(xi, εi) more precisely.

Assume the local probability density in B(xi, εi) has the form:

f (kpK)(x) = f(xi)
tp,i(x)

tp,i(xi)
,

where tp,i(x) is kernel density function approximated by using p-nearest neighbours {xji}, j =

1, 2, ..., p of xi.

tp,i(x) =
1

phd

p∑
j=1

K(
x− xji
h

),

where K : Rd → R is a smooth function called kernel function and h > 0 is the smoothing

bandwidth that controls the amount of smoothing. I apply Silverman’s rule of thumb, i.e.

h = σ̂( 4
3n

)−1/5, where σ̂ is the p local sample variance.

I select Gaussian kernel function:

K(x) =
exp(−||x||2/2

v1,d)
,

and

v1,d =

∫
exp{−||x||2/2}dx.
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Consequently, the probability mass in B(xi, εi) can be written as

P
(kpK)
i (ε) =

∫
B(xi,ε)

f (kpK)(x)dx = f(xi)
1

tp,i(xi)
Tp,i, (2.3.4)

where

Tp,i =

∫
B(xi,εi)

tp,i(x)dx.

I substitute equation (2.3.4) in equation (2.2.8),

ηi =
1

tp,i(xi)
Tp,i.

I then obtain the kp-kernel estimator of the entropy H(f) by:

H(kpK)
n = ψ(n)− ψ(k)− 1

n

n∑
i=1

log(tp,i(xi)) +
1

n

N∑
i=1

log Tp,i,

where εi is the distance of the ith sample xi to its kth nearest neighbor. Remarks: I apply

the EMPGP algorithm p times to calculate the integration of the kernel density function.

2.4 Simulation results

In this section, I test the different estimators of mutual information and compare

them against each other. I compare three different entropy estimators using three classes

of numerical tests on simulated samples. The first class aims at studying the Gaussian

distribution function with different cases validating the proposed kp-kernel estimator, and

compare with existing kNN method and kpN method. Several relevant properties about

Gaussian distribution are investigated in more complicated setting, including correlation,

determinant of the Gaussian distribution and dimension increase effect. The second class

is beta distribution. The third class study a constructed bounded parabola distribution
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Algorithm 3: Algoritm to estimate kp-kernel entropy
Input : • xi ∈ Rd, i = 1, 2, ..., n: the samples

• k: the number of nearest neighbors for calculating εi
• p: the number of nearest neighbors for calculating the local

Kernel approximation (p ≥ k)
Output :H(f): the kp-kernel entropy estimate

1 for i← 0 to n do
2 {xi}p ← set of p-nearest neighbors of xi (L∞ norm)
3 end for
4 H(f) = ψ(n)− ψ(k)
5 for i← 0 to n do
6 εi ← L∞ distance to the kth nearest neighbor of xi.
7 B(xi, εi)← xi ± εie; e being the canonical basis
8 f ip(x)← kernel density approximation using {xi}p
9 Tp,i ← integral of kernel density f ip(x) in B(xi, εi) using EMPGP p times

10 tp(xi)← local kernel density f ip(x) at xi
11 H(f)← H(f) + n−1[log(Tp,i)− log(tp(xi))]

12 end for
13 return H(f)

function.

2.4.1 A Gaussian distribution

The first family of distribution is a simple 1-dimensional Gaussian, the second family

of distribution is 3-dimensional multivariate Gaussian with covariance vary geometrically

from [0, 1]. Generally, I model the random variable X ∈ Rd as:

X ∼ N (0,Σ).

where Σ is the covariance of the variable X. The multivariate normal distribution is:

f(x) =
1√

(2π)d det(Σ)
exp(−1

2
(x− µ)TΣ−1(x− µ)).
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The exact entropy for random variable X is:

H(f) =
1

2
log[(2πe)d det(Σ)].

I do three tests on the Gaussian distribution, including simple 1-dimensional Gaussian dis-

tribution, 3-dimensional Gaussian distribution with high-correlation variance, 4-dimensional

Gaussian distribution with variance determinant close to 0.

Test1: 1-dimensional Gaussian distribution, I estimate the error of the estimator, plot

against sample size n for each estimators. I also plot the relative error against sample size

n. The results is shown in Figure 2.3. Note that all three method perform closely well

when number of samples goes to large.

25



Figure 2.3: Error analysis for a 1-dimensional Gaussian distribution. The entropy
estimation results for kNN (blue dot line), kpN (black dot line), kp-kernal (pink dot
line) and theory (red solid line) results are presented on the left of the figure. Error
of Entropy estimation is presented on the middle of figure. Relative error of entropy
estimation is presented on the right of figure. Log-log error of entropy estimation is
presented on the bottom right of figure.

Test2: I consider 3-d normally distributed variables with standard deviation σi,i = 1 and

correlation σi,j = 1− α, i 6= j. For each α ∈ {3−j : j = 2, ..., 18} a sample of size n = 10000

is drawn and the 3-d gaussian entropy estimated by kNN, kpN, kp-kernel and true entropy

is drawn in Figure 2.4. Note that the error for both kNN and kp-kernel method increase up

tp 30% when α < 10−4. Initially, kNN captured redundant local ball area, and kp-kernel

method’s multiple kernel function overfitting on the local region when the correlation is

small. kp-kernel method perform better than kpN and kNN when α ∈ (10−3, 10−1) since it
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capture the local region better.

Figure 2.4: Error analysis for a 3-dimensional Gaussian distribution with varies of
correlation α ∈ (10−6, 1). The entropy estimation results for kNN (blue dot line), kpN
(black dot line), kp-kernal (pink dot line) and theory (red solid line) results are presented
on the top left of the figure. Relative Error of Entropy estimation is presented on the
top right of figure. Error of entropy estimation is presented on the bottom left of figure.
Log-log error of entropy estimation is presented on the bottom right of figure.
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Table 2.3: Absolute errors of the kNN, kpN, kp-kernel methods for 3-dimensional
Gaussian Distribution with value of α = 0.01

Different number of k

3 4 5 6 7

kNN Method 0.0925 0.1081 0.0861 0.0465 0.0535

kpN Method

p = 50 0.0557 0.1260 0.1773 0.2002 0.2443
p = 100 0.0293 0.0189 0.0537 0.0566 0.0900
p = 150 0.0633 0.0246 0.0021 0.0026 0.0249
p = 200 0.0807 0.0476 0.0263 0.0347 0.0104

kp-kernel Method

p = 50 0.0728 0.0649 0.0457 0.0517 0.0282
p = 100 0.0791 0.0878 0.0754 0.0877 0.0723
p = 150 0.0666 0.0878 0.0764 0.0903 0.0765
p = 200 0.0603 0.0853 0.0738 0.0883 0.0753

Test3: The next example is 4-dimensional multivariate Gaussian. The covariance of

4-dimensional multivariate Gaussian in the simulation is:

Σ =



18 −3 2 −4

−3 11 1 −2

2 1 1 −2

−4 −2 −2 4 + α


,

The determinant of Σ, det Σ = 115α, hence when α goes to 0, the determinant of Σ goes to

0. I study the entropy of the 4-dimensional Gaussian when α is close to 0. I estimate H(f)

for variant α and I set number of samples n = 10000 in Figure 2.5. In this simulation, it

can be observed from the results that the kp-kernel outperforms other estimators especially

kNN method when α is around 0. The kpN estimator’s performance still better than kNN

and kp-kernel when the correlation is high (i.e. determinant of covariance is nearly equal

to 0). I set the parameter α = 0.01, number of samples n = 10000, k varies from 3 and 7,

and set p vary from 10 to 25. I compare the kNN, kpN and kp-kernel methods.
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Figure 2.5: Error analysis for a 4-dimensional Gaussian distribution with determinant
of covariance close to 0. The entropy estimation results for kNN (blue dot line), kpN
(black dot line), kp-kernal (pink dot line) and theory (red solid line) results are presented
on the top left of the figure. Relative Error of Entropy estimation is presented on the
top right of figure. Error of entropy estimation is presented on the bottom left of figure.
Log-log error of entropy estimation is presented on the bottom right of figure.
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Table 2.4: Absolute errors table of the kNN, kpN, kp-kernel methods for 4-dimensional
Gaussian Distribution with fixed value α = 0.01.

Different number of k

3 4 5 6 7

kNN Method 1.1411 1.2116 1.3188 1.3341 1.4095

kpN Method

p = 50 0.1026 0.1658 0.1998 0.2701 0.2788
p = 100 0.0220 0.0660 0.0803 0.1418 0.1348
p = 150 0.0147 0.0198 0.0262 0.0811 0.0676
p = 200 0.0380 0.0072 0.0039 0.0455 0.0269

kp-kernel Method

p = 50 0.9362 0.9948 0.9332 0.9383 0.8881
p = 100 1.0208 1.0994 1.0545 1.0749 1.0384
p = 150 1.0725 1.1630 1.1285 1.1590 1.1314
p = 200 1.1069 1.2052 1.1785 1.2160 1.1948

2.4.2 A beta distribution

Consider the beta distribution function.

f(x) =
Γ(α)Γ(β)

Γ(α + β)
xα−1(1− x)β−1x ∈ (0 ≤ x ≤ 1),

where Γ is the Gamma function. The exact entropy for random variable X is:

H(f) = log(B(α, β)))− (α− 1)ψ(α)− (β − 1)ψ(β) + (α + β − 2)ψ(α + β),

where ψ is the digamma function [32].

I set the beta distribution function parameter α = 2 and β = 8. I estimate the error

of the estimator, plot against sample size N for each estimators. I also plot the relative

error against sample size N . The results is shown in Figure 2.6. Note that all three method

perform closely well when number of samples goes to large.
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Figure 2.6: Error analysis for a 1-dimensional beta distribution with parameters α = 2
and β = 8. The entropy estimation results for kNN (blue dot line), kpN (black dot line),
kp-kernal (pink dot line) and theory (red solid line) results are presented on the top left
of the figure. Relative Error of Entropy estimation is presented on the top right of figure.
Error of entropy estimation is presented on the bottom left of figure. Log-log error of
entropy estimation is presented on the bottom right of figure.
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2.4.3 A parabola distribution

Consider a parabola distribution:

f(x) =


3

4
(−x2 + 1) x ∈ [−1, 1],

0 else.

The exact entropy for random variable X is:

H(f) =

∫
[−1,1]

log f(x)f(x)dx = 0.5681.

I use numerical method to calculate the integral of the parabola distribution. I estimate

the error of the estimator, plot against sample size n for each estimators. I also plot the

relative error against sample size n. The results is shown in Figure 2.7.
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Figure 2.7: Error analysis for a 1-dimensional parabola distribution. The entropy
estimation results for kNN (blue dot line), kpN (black dot line), kp-kernal (pink dot line)
and theory (red solid line) results are presented on the top left of the figure. Relative
Error of Entropy estimation is presented on the top right of figure. Error of entropy
estimation is presented on the bottom left of figure. Log-log error of entropy estimation
is presented on the bottom right of figure.

A kNN-based entropy estimator that is efficient in high dimensions and in the pres-

ence of large nonuniformity is proposed. The idea relies on the introduction of a Gaussian

and Gaussian kernel interpolation, which in turn is based on an empirical evaluation of p

nearest neighbors. By this introduction, the local nonuniformity of the underlying probabil-

ity distribution is captured while retaining all the appealing computational advantages of

classical kNN estimators. Across all the tests, the kpN estimator and proposed kp-kernel
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estimator is shown consistently to outperform the classical kNN estimator. The main

perspective of the current work is that the proposed estimator can be used to construct

estimators for other quantities of interest such as mutual information, particularly in high

dimensions.

2.4.4 Efficiency

In this section, I evaluate the efficiency of the estimators for different sample size n.

I fix the ratio of local sample in the kpN method prkpN and kp-kernel method prkpk be the

same 0.02 . In Figure 2.8, I plot the average computational time spent of each estimator

variant sample size n using the bivariate Gaussian model with correlation σ = 0. The

computation is implemented in MATLAB R2019b, in a Laptop with h CPU 8th Generation

Intel R CoreTM i7-8700 and RAM 16 GB.

Figure 2.8: Computational Time for kNN, kpN and kp-kernel entropy estimators for
bivariate Gaussian distribution. The ratio of local sample in kpN method prkpN = 0.02.
The ratio of local sample in kp-kernel method prkpk = 0.02.

In Figure 2.11, I plot the average time spent of each estimator variant number of local
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sample in the kp-kernel method pkpk using the bivariate Gaussian model with correlation

σ = 0. I can observe the time complexity for kp-kernel method is higher than kpN and kNN

method since kp-kernel using calculate p times integration when calculating the integration

of local density function.

Figure 2.9: Computational Time for kNN, kpN and kp-kernel entropy estimators for
bivariate Gaussian distribution. The number of local sample in kpN method is fixed
pkpN = 20. The number of local sample in kp-kernel method pkpk varies.
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2.5 Convergence analysis

In this section, I will introduce a new framework for convergence analysis of the

kNN-type estimators. It is comprised of two contributions: a statistical error related to the

MC integration, and an analytical error resulting from the hypothesis of constant density

in B(xi, εi). I apply a finite-sample analysis of a general framework derived by Singh and

Poczos [41] for using the expectation of upper bound of the k-nearest neighbor statistics.

Theorem 1. Let x1, ..., xn be random samples from the distribution having PDF f : Rd → R.

The error between the Monte Carlo estimate of the entropy Hn(f) and the entropy H(f)

converges to 0 in probability as the number of data n→∞, i.e.,

lim
n→∞

[Hn(f)−H(f)] = 0 in probability,

the error converges to 0 in order of n−1/2, regardless of the dimension d of the integral.

Furthermore, the error between the Monte Carlo estimate Hn(f) and the entropy H(f) in

mean is 0, i.e.,

E[Hn(f)−H(f)] = 0.

Proof. Consider {xi}ni=1 are independent random sample of random variable X follows the

probability density function f .

The weak law of large numbers (also called Khinchin’s law) states that the sample average

converges in probability towards the expected value. Hence,

lim
n→∞

Hn = lim
n→∞

1

n

n∑
i=1

log(
1

f(xi)
)→ E(− log(f(X))) in probability.

This approximation converges, by the weak law of large numbers, as n → ∞, to the

analytical entropy H(f). On the other hand, since {xi}ni=1 are independent random sample
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of random variable X,

E[Hn(f)] = E[
1

n

n∑
i=1

log(
1

f(xi)
)]

= − 1

n

n∑
i=1

E[log f(xi)]

= − 1

n

n∑
i=1

E[log f(X)]

= H(f).

Theorem 2. Let x1, ..., xn ∈ [−A,A]d be random sample from the distribution having PDF

f : Rd → R, where A > 0 is a constant. f ∈ C2(Rd) and f ≥ f∗ (f∗ constant > 0) on

[−A,A]d. Then the error on the kNN entropy estimator converges to 0 in mean as the

number of sample n→∞, i.e.,

lim
n→∞

E[H(kNN)
n −H(f)] = 0.

Proof. The error between the kNN estimator H(kNN)
n and the exact entropy H(f) can be

divided into three parts.

H(kNN)
n −H(f) = (H(kNN)

n −H(P )
n ) + (H(P )

n −H(MC)
n ) + (H(MC)

n −H(f)), (2.5.1)

where

H(P )
n = H(kNN)

n +
1

n

n∑
i=1

log
Pi

P
(kNN)
i

.

For the first part of equation (2.5.1), the unbiasedness in mean for 1
n

∑n
i=1 log Pi

P
(kNN)
i

is presented in Lemma 2.

For the second part of equation (2.5.1), the kNN approximation of P (kNN)
i is
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introduced, obtained:

H(P )
n −H(MC)

n = H(kNN)
n +

1

n

n∑
i=1

log
Pi

P
(kNN)
i

−H(MC)
n

=
d

n

n∑
i=1

log(εi) + log(cd) + ψ(n)− ψ(k) +
1

n

n∑
i=1

log
Pi

P
(kNN)
i

− 1

n

n∑
i=1

log
1

f(xi)
.

(2.5.2)

Hence,
n∑
i=1

log
Pi

P
(kNN)
i

=
n∑
i=1

logPi −
n∑
i=1

logP
(kNN)
i

=
n∑
i=1

logPi −
n∑
i=1

log f(xi)−
n∑
i=1

log(εdi cd).

(2.5.3)

Combined equation (2.5.2) and equation (2.5.3) derive,

H(P )
n −H(MC)

n = ψ(n)− ψ(k) +
1

n

n∑
i=1

logPi.

By equation (2.2.3) in section 2.2,

E[
1

n

n∑
i=1

logPi] = ψ(k)− ψ(n).

Therefore,

E[HP
n −H(MC)

n ] = 0.

For the third part of the error, by Theorem 1, H(MC)
n converges to H(f) in mean.

Error in the approximation of the probability mass of kNN estimator

The error of the kNN estimator is analysed. First, the error on the probability mass

in a generic B(xi, ε) is computed, and the result is used to compute the error on the entropy.

The analytical contribution to the error is due to the approximation of the probability
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mass Pi. Consider a Taylor expansion of f centered around xi:

Pi =

∫
B(xi,ε)

f(xi) + (ξ − xi) · ∇f(xi) +
1

2
(ξ − xi)T∇2f(ηi)(ξ − xi)dξ, (2.5.4)

where ∇2f(ηi) is the Hessian matrix of f computed in ηi, ηi ∈ B(xi, ε). The first term of

the series yields the kNN approximation P (kNN)
i . Here, assume P (kNN)

i > 0.

P
(kNN)
i =

∫
B(xi,ε)

f(xi)dξ = Vol(B(xi, ε))f(xi).

The second term in equation (2.5.4) vanishes since it is the integral of an even function

over a symmetric interval.

Pi = P
(kNN)
i +

1

2

∫
B(xi,ε)

(ξ − xi)T∇2f(ηi)(ξ − xi)dξ.

Define

hi =
1

2

∫
B(xi,ε)

(ξ − xi)∇2f(ηi)(ξ − xi)dξ.

A standard estimation for quadratic form is derived:

λmin||ξ − xi||2 ≤ (ξ − xi)T∇2f(ηi)(ξ − xi) ≤ λmax||ξ − xi||2, (2.5.5)

where λmin = −||∇2f ||∞ and λmax = ||∇2f ||∞.

Then, the integral of the quadratic form over B(xi, ε) is,

∫
B(xi,ε)

||ξ − xi||2dξ =
d∑
i=1

∫
B(xi,ε)

(ξj − xi,j)2dξ. (2.5.6)
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Let B(xi, ε) = [xi,j − εi, xi,j + εi] × [xi,k − εi, xi,k + εi]
d−1, k 6= j. This integral can be

computed for just one j and then multiplied by d.

∫
B(xi,ε)

(ξj − xi,j)2dξ = (2ε)d−1

∫ ε

−ε
η2dη = (2ε)d−1 2

3
ε3. (2.5.7)

By equation (2.5.6) and equation (2.5.7). We obtained the bounds for hi:

∫
B(xi,ε)

||ξ − xi||2dξ =
2

3
2d−1dεd+2. (2.5.8)

Combine equation (2.5.5) and equation (2.5.8), the bound of hi:

λmin

3
d2d−1εd+2 ≤ hi ≤

λmax

3
d2d−1εd+2,

where λmin = −||∇2f ||∞ and λmax = ||∇2f ||∞.

Lemma 2. Let x1, x2, ... xn ∈ [−A,A]d be random sample from the distribution having

PDF f : Rd → R, where A > 0 is a constant. Assume f ≥ f∗ = constant > 0 on [−A,A]d,

f ∈ C2(Rd).

E[
1

n

n∑
i=1

log(1 +
hi

P
(kNN)
i

)]→ 0 as n→∞.

Proof. Divide the
∑n

i=1 log(1 + hi

P
(kNN)
i

) into two parts,

n∑
i=1

log(1 +
hi

P
(kNN)
i

) =
∑

+

log(1 +
hi

P
(kNN)
i

) +
∑
−

log(1 +
hi

P
(kNN)
i

). (2.5.9)

where ∑
+

log(1 +
hi

P
(kNN)
i

) =
∑

f(xi)≥f∗
hi

P
(kNN)
i

>−1/2

log(1 +
hi

P
(kNN)
i

),
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and ∑
−

log(1 +
hi

P
(kNN)
i

) =
∑

f(xi)≥f∗
hi

P
(kNN)
i

≤−1/2

log(1 +
hi

P
(kNN)
i

).

By Lemma 3 below, for x > −1
2
,

x

1 + x
≤ log(1 + x) ≤ x. (2.5.10)

After setting x = hi

P
(kNN)
i

in equation (2.5.10), we get

hi

hi + P
(kNN)
i

≤ log(1 +
hi

P
(kNN)
i

) ≤ hi

P
(kNN)
i

.

To derive the lower bound of log(1 + hi

P
(kNN)
i

), I consider the left hand side,

hi

hi + P
(kNN)
i

≥ min(hi)

max(hi) + P
(kNN)
i

≥ λmind2d−1εd+2
i

λmaxd2d−1εd+2
i + 3P

(kNN)
i

. (2.5.11)

To derive the upper bound of log(1 + hi

P
(kNN)
i

), let us consider the right hand side,

hi

P
(kNN)
i

≤ max(hi)

P
(kNN)
i

≤ λmaxd2d−1εd+2
i

3P
(kNN)
i

. (2.5.12)

By using equation (2.5.11) and (2.5.12), we can derive the error bound

d2d−1

3n

∑
+

(λmin)εd+2
i

(λmax)d2d−1εd+2
i + 3P

(kNN)
i

≤ 1

n

∑
+

log(1 +
hi

P
(kNN)
i

)

≤ d2d−1

3n

∑
+

λmax

P
(kNN)
i

εd+2
i .
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By Lemma 5 below with α = 2, we obtain

E(
d2d−1

3n

∑
+

λminεd+2
i

λmaxd2d−1εd+2
i + 3P

(kNN)
i

) =

E(
d2d−1

3n

∑
+

λminε2i
λmaxd2d−1ε2i + 3f(xi)

)→ 0 as n→∞.

and

E(
d2d−1

3n

n∑
i=1

λmax

P
(kNN)
i

εd+2
i )→ 0 as n→∞.

Hence,

E(
1

n

∑
+

log(1 +
hi

P
(kNN)
i

))→ 0 as n→∞

Secondly, consider hi

P
(kNN)
i

≤ −1
2
, summuation terms

∑
− log(1 + hi

P
(kNN)
i

).

Let ηn = maxi,f(xi)≥f∗,hi≤0
|hi|

f(xi)cdε
d
i
, Hence, ∀i

|hi|
f(xi)cdεdi

≤
1
2
||∇2f ||∞ε2i
f∗cd

=
C

f∗
ε2i ,

where C =
1
2
||∇2f ||∞
cd

. Hence,

log
1

2
≤ log(1− ηn) ≤ ηn ≤ max

i,f(xi)≥f∗,hi≤0

|hi|
f(xi)cdεdi

≤ C

f∗
ε2i . (2.5.13)

By Lemma 5, take α = 2, then

E[ε2i ] ≤ C2(
k

f∗n
)
2
d . (2.5.14)

Combined by equation (2.5.13) and (2.5.14), derive

E[ηn] ≤ CC2

f∗
(
k

f∗n
)
2
d → 0 as n → ∞. (2.5.15)
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Since
1

n

∑
−

log(1− ηn) ≤ 1

n

∑
−

log(1 +
hi

P
(kNN)
i

) ≤ 0.

To show limn→∞
∑
−

1
n

log(1+ hi

P
(kNN)
i

) = 0, only need to show limn→∞E( 1
n

∑
− log(1−ηn)) =

0.

Proof by contradiction: Assume there exists a constant β < 0, s.t.

lim
n→∞

E[log(1− ηn)] = β < 0. (2.5.16)

By equation (2.5.15), Since ηn converges to 0 in mean, by theorem 2.30 in Folland [17],

there exists a subsequence ηnk , s.t. {ηnk} converges to 0. Since by equation (2.5.16),

lim
k→∞

E[log(1− ηnk)] = β < 0.

One the other hand, since ηnk is bounded by

max(
1

2
, max
i,hi≤0

|hi|
f(xi)cdεdi

) ∈ L1.

By the Lebesgue Dominated Convergence Theorem [17]

lim
k→∞

∫
log(1− ηnk)dp =

∫
lim
k→∞

log(1− ηnk)dp = 0.

This leads to a contradiction. Then limn→∞E(log(1−ηn)) ≥ 0, and limn→∞E(log(1−ηn)) =

0. Hence,

lim
n→∞

E[
1

n

∑
−

log(1 +
hi

P
(kNN)
i

)] = 0.

Therefore,

E[
1

n

n∑
i=1

log(1 +
hi

P
(kNN)
i

)]→ 0 as n→∞.
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Lemma 3. For all x > −1,
x

1 + x
≤ log(1 + x) ≤ x.

Proof. Let t = x+ 1 > 0, we consider the function f(t) = log(t)− t+ 1,

f ′(t) =
1

t
− 1.

We have f ′(1) = 0. When t > 1, f ′(1) < 0. When t < 1, f ′(1) > 0. Hence, f(t) < 0 for all

t > 0. For the lower bound, consider the inequality,

log y ≤ y − 1,

for y > 0, Let t = 1
y
> 0. We have

log(
1

t
) ≤ 1

t
− 1⇔ log(t) ≥ t− 1

t
,

Let x = t− 1. We then derive
x

1 + x
≤ log(1 + x).

Lemma 4. Let x1, ...xn ∈ [−A,A]d be random sample from the distribution having PDF

f : Rd → R, where A > 0 is a constant. Suppose density function f : [−A,A]d satisfy the

tail condition.

E[

∫ ∞
ρ

[1− P (B(X, f−1(r)))]n] ≤ CT
n

for some constant CT > 0. Suppose F : (0, ρ) → R is continuously differentiable, with
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F ′ > 0. Then for any x ∈ [−A,A]d, we have the upper bound

E[F (εk(x))] ≤ F ((
k

f∗n
)
1
d ) +

(e/k)k

d(nf∗)
1
d

∫ nf∗ρd

k

e−yy
dK+1−d

d F ′((
y

nf∗
)
1
d )dy,

where F is a nonnegative function.

Proof. See Singh and Poczos [40].

Lemma 5. Consider F (x) = xα, α > 0 in the setting of Lemma 4, we have

E[εαk (x)] ≤ C2(
k

f∗n
)
α
d ,

where C2 = 1 + α
d
.

Proof. See Singh and Poczos [40].
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Chapter 3

Entropy Estimation for a Particle

System

3.1 Entropy for a particle system

Consider a canonical ensemble of mechanical system. Each system contains N

particles in a volume V computational box. For each ith particle, the mass of the particle is

mi, the position of the particle is ri, the momentum of the particle is pi = miṙi (i = 1, ..., N).

The phase space Γ = {(p, r) : p = (p1,p2, ...,pN), r = (r1, r2, ..., rN) ∈ R3N}. Define

Hamiltonian H : Γ→ R by

H(p, r) =
N∑
k=1

1

2m
|pi|2 + V (r1, ..., rN ) = K(p) + V (r),

where K is the momentum potential, and V is the internal potential. We have the N body

distribution in positions and momenta

fN = fN({r}N , {p}N) = gN({r}N)
N∏
k=1

fk(pk),
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where fk is the kth particle one-body distribution of momenta, gN is the N particle

correlation function. The total entropy of a bulk fluid is given by

Sliquid = −Rh
3N

N !

∫ ∫
fN log fNdrNdpN ,

with R the gas constant and h the Planck constant. Then, the separability of the momentum

can be exploited to give

Sliquid = Smom + Sconf ,

which is written explicitly as

Sliquid = −NR
ρ

∫
f1(p1) log f1(p1)dp1︸ ︷︷ ︸

Smom

− Rρ
N

N !

∫
gN(r) log gN(r)dr︸ ︷︷ ︸

Sconf

.

The momentum terms are the same as those of an ideal gas where the one-body distribution

of momenta is given by

f1(p) = ρ(2πmkT )−3/2 exp
( p2

2mkT

)
,

where k is the Boltzmann constant, ρ is the number density of the equivalent ideal gas,

and m is the mass of the atom. Then,

Smom = −NR
ρ

∫
f1(p1) log f1(p1)dp1 =

3NR

2
−NR log(ρλ3),

where λ the thermal wavelength of an atom in the liquid. By the theory of conditional

entropy [19],
RρN

N !

∫
gN(r) log gN(r)dr︸ ︷︷ ︸

Sconf

= S2 − I3 + I4− ...
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For a system with a solute,

RρN

N !

∫
gN(r) log gN(r)dr︸ ︷︷ ︸

Sconf

= S1solute − I2solute + I3solute − ...

It is at this point I choose a truncation of Sconfiguration. The most severe truncation

generates what I will call the conditional one particle entropy (C1PE),

∆S1|S = S1solute = −Rρ0

∫
g

(1)
N (r1|s) log g

(1)
N (r1|s)dr1.

g
(1)
N is the unitless ratio of the number density of molecular at r in the presence of the

solute to the bulk density, g(1)
N = ρ(r)

ρ0
, ρ0 is the number of bulk density, V ρ0 = N . ρ(r) is

the one-point number density of molecular at locations r. This is achieved by removing all

integrals with a subscript greater than 1.

It is convenient to construct estimator to measure the quantity S1solute

S1solute = −Rρ0

∫
g

(1)
N (r1|s) log g

(1)
N (r1|s)dr1. (3.1.1)

Replace the g(1)
N by ρ(r)

ρ
in equation (3.1.1),

S1solute = −Rρ0

∫
g

(1)
N (r1|s) log g

(1)
N (r1|s)dr1

= −R
∫
ρ0g

(1)
N (r1|s) log[ρ0g

(1)
N (r1|s)/ρ0]dr1

= −R
∫
ρ(r1)[log ρ(r1)− log ρ0]dr1

= −R
∫
ρ(r1) log ρ(r1)dr1 +RN log ρ0.

(3.1.2)
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Use the normalized density function f = ρ/N in equation (3.1.2),

S1solute = −R
∫
ρ(r) log ρ(r)dr1 +RN log ρ0

= −R
∫
fN log fNdr1 +RN log ρ0

= −RN
∫

[f log f + logN ]dr1 +RN log ρ0

= −RN
∫

[f log f ]dr1 +RN logN −RN log ρ0 = −RN
∫

[f log f ]dr1 +RN log V.

(3.1.3)

In latter section, I will focus on calculating the C1PE entropy S1solute to represents

the entropy I interested in the particle systems. In the following, I mainly consider two

particle system: Lennard-Jones system and Ionic system.

A Lennard-Jones system. Consider a molecular system with N neutral particles.

For a given configuration of the system, the Hamiltonian is defined to be the work needed to

bring all the molecular from infinity to their current positions. It is the sum of all pairwise

interaction energies between all the particles, including the fixed particle in the center of

the computational box. I only consider the hard-sphere contribution, which defined simply

as impenetrable spheres that cannot overlap in space and the Lennard-Jones potential.

Therefore, define the total potential energy of the system to be

U =
∑

1≤i<j≤N

uij,

where

uij = 4ε[
(σ
r

)12

−
(σ
r

)6

].

where r is the distance between particle ith and jth particle.

An Ionic system. Consider an electrolyte with m species of ions. For each

i (1 ≤ i ≤ n), denote by zi the valence and vi the volume of an ion of the ith species.
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Denote Ni the total number of ions of the ith species. The total number of all ions is

N =
∑m

i=1Ni. Assume that there is a spherical colloidal particle - a charged macroion - of

radius R inside the electrolyte solution and that its charge effect is described effectively by

a constant surface charge density, denoted σ. Assume the system charge neutrality

ze+
M∑
i=1

Nizie = 0,

where z = 4πR2σ/e is the valence of the macroion and e is the elementary charge.

For a given configuration of the system, the Hamiltonian is defined to be the work

needed to bring all the ions from infinity to their current positions. It is the sum of all

pairwise interaction energies between all the ions, including the macroion. Only consider

the hard-sphere contribution and the Coulomb interaction. Therefore, define the total

potential energy of the system to be

U =
∑

0≤j<k≤N

ujk,

where

βujk =


lB ẑj ẑk
rjk

if rjk ≥ R̂j + R̂k,

∞ else.

Here β = (kBT )−1, lB = e2β/(4πεε0) is the Bjerrum length, and rjk is the center-center

distance between ith and kth ions. Consider the water solvent at room-temperature and

thus take lB = 7Å.

For both Lennard-Jones and ionic system, I will assume to use periodic boundary

condition.
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3.2 Monte Carlo Simulations

In this section, I use an unrestricted primitive model for our underlying particle

system and apply the canonical ensemble MC simulations with the Metropolis criterion

[2, 18, 49]. Consider n particles in a computational box, I will examine a simple Monte

Carlo simulation, whose energy function is given by:

U =
∑

1≤i<j≤N

Ui,j,

where Ui,j is the internal potential between ith particle and jth particle. The simulation

will be performed at fixed reduced temperature T . Our simulation progresses through

iterations of the following basic Monte Carlo step:

Figure 3.1: One Monte Carlo Step in Particle System

• Randomly pick one of N particles.

• Perturb each of the x, y, z coordinates separately by three random values taken from

the uniform distribution on the interval [−rmax, rmax]. Here, rmax is the maximum

displacement.

• Compute the change in potential energy due to the particle move, ∆U = Unew − Uold.
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• Use the Metropolis criterion to decide whether or not to accept the move, i.e. If

∆U < 0, accept the move. If ∆U > 0, compute pacc = e−∆Uβ. Draw a random

number r on the interval [0.0, 1.0] and accept the move if and only if pacc > r.

• If the move is accepted, keep the new configuration and update any running aver-

ages with it (e.g., the potential energy). If the move is rejected, discard the new

configuration and update any running averages with the original state.

In canonical Metropolis MC simulations, one MC move is accepted if

pacc = e−∆Uβ > r.

and rejected otherwise. Here, ∆U is the change of internal energies of the N-particle

simulation ensemble before and after the one possible MC move, respectively. r denotes a

random number which is uniformly distributed over the interval [0, 1]. After a sufficient

number of such displacements, the potential energies of the molecules will conform to a

Boltzmann distribution.

3.2.1 Simulation results of a Lennard-Jones system

In Lennard-Jones system, I divided the entire MC simulation into two parts: ac-

celeration part and equilibration. I dynamically change the value of β in the first part of

moves, to speed up the thermal equilibration of the crowded system of particles. I generate

a geometrical sequence of 105N terms with the first and last terms being β = 1 and β = 7,

respectively. In the mth MC move with m ≤ 105N , the parameter β is taken to be the

mth term in the geometrical sequence. After the first 105N moves, I fix β = 7 for all of the

rest MC moves. I run another 9× 105N moves so that the system can reach an equilibrium.

I start to record the equilibrium state after 6× 105N .
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Table 3.1: Parameters Setting for Lennard-Joines Fluids Monte Carlo Simulation

Number of particles n 900
Computational Box Size L 27.376Å
Total Monte Carlo Steps 106n

initial maximum length ∆max 1Å
LJ parameter ε 0.215 [kcal/mol]

LJ parameter σ 3.06 Å

See Table 3.1 for key parameters setting for Lennard-Jones Monte Carlo Simulation.

Throughout the entire simulation, I keep the percentage of acceptance of MC moves by

adaptively adjusting the value of the maximum length ∆max. Initially, I set ∆max = 1Å.

Then change it after every 100 moves. If the acceptance rate is larger than 50 in current

100 moves, I increase max by multiplying it by 1.05 but always keep the new value of max

to be less than or equal to 2Å. If the acceptance rate is smaller than 20 in current 100

moves, I decease max by multiplying it by 0.95, and I keep the new max to be greater. In

Figure 3.2, I show the initial of the positions of the particles in initial stage and steady

state. In the left panel of Figure 3.2, the points colored by blue are the initial positions of

particles. In the right panel of Figure 3.2, the points colored by blue are the final positions

of particles.

3.2.2 Simulation results of an ionic system

In ionic system, the entire MC simulation is divided into two parts: acceleration

part and equilibration part. I dynamically change the value of β in the first part of moves,

a total of 105N of them, to speed up the thermal equilibration of the crowded system of

particles. Generate a geometrical sequence of 105N terms with the first and last terms

being β = 1 and β = 7, respectively. In the mth MC move with m ≤ 105N , the parameter

β is taken to be the mth term in the geometrical sequence. After the first 105N moves, fix

β = 7 for all of the rest MC moves. I run another 9× 105N moves so that the system can
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Figure 3.2: A Lennard-Jones system initial and steady state positions

reach an equilibrium.

Table 3.2: Parameters Setting for ionic Monte Carlo Simulation

Number of particles n 200
charge of ion n +1

radius of ion n 1Å
Computational Box Size L 50Å
Total Monte Carlo Step 106n = 108

value of the maximum length ∆max 0.5Å

See Table 3.2 for key parameters setting for ionic Monte Carlo Simulation. Through-

out the entire simulation, I keep the percentage of acceptance of MC moves by adaptively

adjusting the value of the maximum length ∆max. Initially, I set ∆max = 0.5Å. I then

change it after every 100 moves. If the acceptance rate is larger than 50 in current 100

moves, I increase max by multiplying it by 1.05 but always keep the new value of max to

be less than or equal to 2Å. If the acceptance rate is smaller than 20 in current 100 moves,

I decease max by multiplying it by 0.95, and I keep the new max to be greater. The total

accepted rate is: 35.67%. In Figure 3.3, I show the initial of the positions of the particles
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in initial stage and steady state. In the left panel of Figure 3.3, the points colored by blue

are the initial positions of particles. In the right panel of Figure 3.3, the points colored by

blue are the final positions of particles.

Figure 3.3: An ionic system initial and steady State Positions

3.3 Numerical entropy calculation of particle systems

In this section, I compare three different entropy estimation methods: KL method,

kpN method and kp-kernel methods under two particle systems: Lennard-Jones system

and ionic system. In Lennard-Jones system, I compare the entropy result with Huggins

[25]. In ionic system, I apply histogram method as benchmark to compare with the kNN

and kpN method.

The histogram method uses MC sampling data to estimate the various densities in

the equation (3.1.3) by counting the instances of molecules in each voxels:

f(l) =
nl

nfVvox
.
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Here, nl is the number of MC frames for which a water is found in voxels l, nf is the

number of MC frames, Vvox = R3
vox is the volume of cubic voxel, where Rvox is the length

of the voxel. Thus, the histogram method estimates equation (3.1.3) is

Shist = −R[
∑
l∈L

[
nl
nf
Vvox log(

nl
nf
Vvox)− 3 log(Rvox)− log(V )R]. (3.3.1)

Here, the contribution of the entropy in region L is estimated in terms of the quantities

summed over voxels l ∈ L.

The kNN estimator for an C1PE term, given F sufficiently uncorrelated MD frames

containing N particles, is given by the expression

SkNN =
1

NF

N∑
i=1

F∑
j=1

log(
4NFπε3ij

3V
)− ψ(k).

The kpN estimator for an C1PE term, is given by the expression

SkpN =
1

NF

N∑
i=1

F∑
j=1

log(
NFπGp,ij

gp,ijV
)− ψ(k).

A Lennard-Jones system

Under the Monte Carlo Computation Setting in section 3.2.3, I extract the MC

samples when the system reach equilibrium, i.e. the samples after 1× 105N MC steps. I

record the particles positions for every 200 MC cycles after the system reach equilibrium

for getting uncorrelated sample data in the computational box. I apply kNN, kpN and

histogram method to compute the entropy of Lennard-Jones system and compared with

the benchmark (C1PE) entropy value is: −0.541 [25]. For each simulation, I set the local

number of samples parameter p = 0.07× n, where n represents the number of samples. For

histogram method, I set the length of the voxel Rvox = 0.07Å. I set the length of the voxel
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Rvox = 0.07Å in histogram method.

Table 3.3: kNN, kpN methods for Lennard-Jones System

k = 1 k = 3 k = 5
kNN kpN kNN kpN kNN kpN

num of frames = 100 -1.0524 -0.9855 -0.9347 -0.8858 -0.6718 -0.7498
num of frames = 200 -0.8987 -0.8599 -0.8595 -0.8382 -0.652 -0.7116
num of frames = 400 -0.8217 -0.7833 -0.8114 -0.7784 -0.648 -0.6868

In Table 3.3, I present the entropy calculation results for cases k = 1, k = 3 and

k = 5. It clearly state that when number of frames increase, the estimated value is getting

closer to the exact experiment result −0.541. The parameter k = 5 is better than the other

two cases.

Table 3.4: kNN, kpN methods for Lennard-Jones System with k = 7

Data Set 1 Data set 2 Data Set 3
kNN kpN kNN kpN kNN kpN

num of frames = 100 -0.6020 -0.5961 -0.5986 -0.5972 -0.6086 -0.6068
num of frames = 200 -0.5722 -0.5719 -0.5714 -0.5684 -0.5760 -0.5678
num of frames = 400 -0.5369 -0.5383 -0.5432 -0.5436 -0.5511 -0.5540

In Table 3.4, I present the entropy calculation results for cases k = 7 with three

different data set. In each cases, the kpN method is generally better than the kNN method.

A ionic system

Under the Monte Carlo Computation Setting in section 3.2.4, I extract the MC

samples when the system reach equilibrium, i.e. the samples after 1×105n MC steps. Then

I apply histogram method as the benchmark to compute the entropy of ionic system. I set

the length of the voxel Rvox = 0.07Å in histogram method. I apply kNN and kpN methods

to compute the entropy of the system.

In Table 3.5, I present the entropy calculation results for cases k = 7 with three

different data set. I use histogram method as the benchmark. For the histogram method,
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Table 3.5: kNN, kpN methods for ionic system with k = 7

Data Set 1 Data set 2 Data Set 3
kNN kpN kNN kpN kNN kpN

num of frames = 100 -18.1912 -19.5026 -18.3377 -19.5569 -18.5162 -19.6400
num of frames = 200 -18.7926 -19.7559 -18.7499 -19.7242 -18.9509 -19.9232
num of frames = 400 -19.1326 -20.0629 -19.2012 -20.1921 -19.2517 -20.4478

I set the length of the voxel Rvox in formula (3.3.1) as 0.9 Å. I applied 2000 frames and

then apply the histogram method to calculate the entropy, the benchmark entropy value is

−20.4864.
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Chapter 4

Additional Results: Molecular

Dynamics Simulations of Hydration of a

Single Ion

Molecular dynamics (MD) simulations are a popular class of methods to study the

dynamic properties of charged molecules (such as an ion, a protein, a membrane, etc.)

in water. Many large–scale simulation program have been developed for MD simulations

[8, 9, 37]. In MD simulations, all the molecular atoms and water molecules are treated as

particles, and their motions are governed by Newton’s law. Mathematically, one tracks all

the particle motions by solving a system of second-order ordinary differential equations

(ODEs) for the coordinates of all these particles in a computational box. A different class of

approach, called implicit-solvent models, treat water as a continuum instead of individual

particles. These models are more efficient and less accurate, compared with MD simulations.

A key quantity in implicit-solvent modeling is an interface (called solute-solvent interface)

that separates a solute molecule (e.g., an ion or protein) from the water environment (called

solvent). A basic question here is how to determine an effective solute-solvent interface. In
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this chapter, I intend to answer this question for an ion immersed in water.

I will first describe briefly MD simulations. I will then describe a variational implicit-

solvent model (VISM) [11, 15, 33] and also a stochastic Ordinary differential equation

(SODE) model for the effective radius of an ion. Then I will report MD simulations for the

system of ion in water. I use the resulting radial distribution function (which is a scaled

density of water molecules around the ion) and design different methods to determine an

effective radius of an underlying ion. Finally, I compare my MD simulations results with

those obtained from the SODE model.

4.1 Molecular dynamics simulations

Consider N particles in a computational box Ω = (−L,L)3 for some L > 0. A

particle here can be an atom of a protein, or a water molecule, or an ion in water. I denote

by mi and xi = xi(t) the mass and the position vector at time t of the ith particle. The

velocity and acceleration vectors of the ith particle of time t are vi = ẋi and ai = ẍi,

respectively, where a dot denotes the time derivative. Suppose Fi is the force exerted on

the ith particle. Then, the Newton’s law of motion states that

Fi = miẍi(t), i = 1, 2, ..., N.

I shall assume that the force is governed by a potential U : R3N → R, i.e., the force, Fi,

exerted on the ith particle is given by

Fi = −∇xiU(x),

where x = (x1, x2, ..., xN).
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The potential of the system is given by

U(x) = UvdW (x) + Uelec(x) + Umech(x).

The first term UvdW (x) is the van der Waals potential, given by

UvdW (x) =
∑
i,j

ULJ(|xi − xj|),

where the sum is taken over pairs of non-bonded solute atoms (xi, xj) with i < j and

ULJ(|xi − xj|) = 4εij

[( σij
|xi − xj|

)12

−
( σij
|xi − xj|

)6]
.

is a Lennard-Jones (LJ) potential. The parameters εij and σij can vary with particles.

The second term Uele(x) is the electrostatic interaction, the Coulomb interaction potential,

given by

Uele(x) =
∑
i,j

QiQj

4πεε0|xi − xj|
,

where the sum is taken over all pairs of particles (xi, xj) with i < j. The parameters ε0 is

the vacuum permittivity and ε is the relative permittivity, and Qi, Qj are the charges of

the particles xi and xj, respectively. The last term Gmech is the energy of the molecular

mechanical interactions among all the particles x1, ..., xN . This includes the usual bonding,

bending, and torsion energies. Specifically, I use [12, 13, 21, 50]

Umech(x) =
∑
i,j

Wbond(xi, xj) +
∑
i,j,k

Wbend(xi, xj, xk) +
∑
i,j,k,l

Wtorsion(xi, xj, xk, xl).

Here the term
∑

i,jWbond(xi, xj) accounts for the bonding energy of particles. The

term
∑

i,j,kWbend(xi, xj, xk) accounts for the bending energy of solute atoms. The term∑
i,j,k,lWtorsion(xi, xj, xk, xl) accounts for the torsion energy. Specific formulas of Wbond,
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Wbend and Wtorsion can be found in [13].

The kinetic energy of the system is defined as

K(p) =
1

2

N∑
i=1

miv
2
i =

1

2

N∑
i=1

p2
i

mi

.

Then the total energy of the particle system at a given time is

H(x,p) = U(x) +K(p).

The Hamiltonian equations that describe the motion of these N particles are then given by


ẋi = ∇piH(x,p),

ṗi = −∇xiH(x,p),

i = 1, . . . , N. (4.1.1)

A widely used algorithm for integrating the equations of motion (4.1.1) is the so-

called Verlet algorithm [45]. For a chosen small time increment ∆t, I have the position

update: For each index i,


xn+1
i = 2xni − xn−1

i +
1

mi

F n
i (∆t)2,

pn+1
i = mi

xn+1
i − xn−1

i

2∆t
,

i = 1, . . . , N.

where xni , F n
i , and pni approximate xi(tn), Fi(tn) and pi(tn), respectively, and tn = t0 + n∆t.

In a typical MD simulation study, one first sets up the quantitative system (model)

of interest under a given condition (e.g., fixed number of particles and constant total

energy). Then, successive configurations of the system, as a function of time, are generated

by following Newton’s laws of motion. After a period of time for “equilibration” one can

start to collect “data” from this computer experiment the data consist of a sequence of

snapshots that record the positions and velocities of the particles in the system during a
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period of time. Based on trajectories, one can estimate “typical characteristic”, which can

often be expressed as the time average of a function of the realized configurations, of the

simulated physical system [34].

If an underlying system is ergodic, then the average over a period of time of a function

of the system configuration, as the time period goes to infinity, is equal to the average

of that function over all configurations weighted by the Boltzmann factor exp{−βU(x)},

where U(x) is the potential energy of the system and β = 1
kBT

, kB is the Boltzmann

constant, and T is the temperature; that is,

lim
t→∞

1

t

∫ t

0

h(x(s),p(s))ds = Z−1

∫ ∫
h(x) exp{−βH(x,p)}dxdp,

where Z is a normalizing constant, called the partition function, defined by

Z =

∫ ∫
exp{−βH(x,p)}dxdp.

One can derive many interesting ensemble averaged physical quantities, e.g. the ensemble

free energy by using MD simulations. In this chapter, I will apply a popular package:

GROMACS for MD simulation.

4.2 Implicit-solvent modeling

I consider the solvation of a charged solute molecule (such as a protein or an ion) in

an aqueous solvent (i.e. water or salted water) that is treated implicitly as a continuum

[4, 44]. I assume that the solute consists of N atoms that are located at x1, ..., xN and

carry partial charges Q1, ..., QN , respectively. The region of solvation Ω is divided into

the solvent region Ωw (w stands for water), the solute region Ωp = ∪mi=1Ω
(i)
p (p stands for

protein), and the solute-solvent interface (i.e., the dielectric boundary) Γ = ∪mi=1Γ(i), where
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Ω
(i)
p is a connected component of Ωp and Γ(i) = ∂Ω

(i)
p is the boundary of Ω

(i)
p . The solute

region Ωp contains all the solute atoms xj carrying partial charges Qj (j = 1, . . . , N), with

each component Ω
(i)
p containing Ni atoms. See Figure 4.2 for illustration.

In the variational implicit-solvent model (VISM) (cf. figure 4.1) one minimizes the

solvation free energy function [11, 15]

G[Γ] = Pvol(Ωp) +

∫
Γ

γdS + ρw

N∑
i=1

∫
Ωw

Ui(|x− xi|)dV +Gelec[Γ]. (4.2.1)

among all possible solute-solvent interfaces Γ.

Figure 4.1: A schematic diagram of charged molecules immersed in an aqueous solvent.
Γ is the solute-solvent interface, for each ith particle in the system, it carries charge Qi
with position xi.

The first term in equation (4.2.1), proportional to the volume of solute region Ωp,

describes the work it takes to create a solute cavity in the solvent, P is the pressure

difference between the solvent liquid and solute vapor. The second term is the surface
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energy, where γ is the surface tension. It is known that at the molecular scale the surface

tension depends on local geometry of the surface. Here, I use γ = γ0(1− 2τH), where γ0 is

the surface tension for a planar interface, τ is the curvature correction coefficient or the

Tolman length, and H is the mean curvature defined as the average of the two principal

curvatures [54]. I call the sum of the first two terms in (4.2.1) the geometrical part of the

solvation free energy.

For each i (1 ≤ i ≤ N), Ui(|x− xi|) in equation (4.2.1) is the van der Waals (vdW)

type interaction potential between the solute particle at xi and a solvent molecule at x

that is coarse grained. The summation term represents the vdW interaction between the

solute and solvent, where ρw is the bulk density of the solvent. Here, I use Ui to be the

Lennard-Jones (LJ) potential

Ui(r) = 4εi

[(σi
r

)12 −
(σi
r

)6
]
,

where the parameters εi of energy and σi of length can vary with different solute atoms.

The last term Gelec[Γ] in equation (4.2.1) is the electrostatic part of the solvation free

energy. The first representation of last term in equation (4.2.1) is by Poisson-Boltzmann

Theory [1, 46]. It is given by

Gelec[Γ] =
1

2

N∑
i=1

Qiψreac(xi)−
1

2

∫
Ωw

M∑
j=1

qjc
∞
j ψe

−βqjψdx− β−1

∫
Ωw

M∑
i=1

c∞j (e−βqjψ − 1)dx.

Here, ψ = ψ(x) is the electrostatic potential, ψreac = ψ − ψref is the reaction field, and

ψref is the potential for the reference state

ψref =
N∑
i=1

Q

4πε0εm|x− xi|
,

with ε0 being the vacuum permittivity and εm the dielectric coefficient of solutes. I have
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assumed here that there are M ionic species in the solvent, with c∞j and qj being the bulk

concentration and charge for the jth species. In equation (4.2.3), β−1 = kBT with kB the

Boltzmann constant and T the absolute temperature.

A different form of the last term in equation (4.2.1) is the Coulomb-field approxima-

tion (CFA):

Gelec[Γ] =
1

32π2ε0

(
1

εw
− 1

εm

)∫
Γw

∣∣∣∣∣
L∑
i=1

Qi(x− ri)
|x− ri|3

∣∣∣∣∣
2

dVx,

where ε0 being the vacuum permittivity and εm the dielectric coefficient of solutes.

I now consider a spherical solute of radius R = R(t) at time t, carrying a single

point charge Q at its center that is assumed to be the origin of R3. See Figure 4.2.

Figure 4.2: Schematic of an ion (big circle in center) surrounded by water molecules
(small solid circles).

The region of solvation is Ω = R3. In the spherical coordinates, the dielectric

boundary Γ(t), solute region Ωp(t), and solvent region Ωw(t) are defined by r = R(t),

r < R(t), and r > R(t), respectively, where r = |r| and r = (x, y, z) ∈ R3. Since there is
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N = 1 solute atom, I denote ULJ = U
(1)
LJ , ε = ε1, and σ = σ1 i.e., I set

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
.

I shall assume that the external force in stochastic Navier–Stokes arises from a potential

Uext, i.e.,

Fext = −nw∇Uext with Uext(∞) = 0.

I have the total surface force density F (R), the derivation see detail in [16, 52].

F (R) = Pp(R)− P∞ − 2γ0

(
1

R
− τ

R2

)
+ nw [ULJ(R) + Uext(R)] + felec(R), (4.2.2)

Pp(R) =
3kBT

4πR3
,

felec(R) =
Q2

32π2ε0

[(
1

εw
− 1

εp

)
1

R4
− κ2

εw(1 + κR)2R2

]
.

Practically, the stochastic time-independent Stokes equation is preferred, as for a

system at molecular scale the the inertia is weak and can be neglected. Then the radius

R = R(t) of the spherical charged molecule with a point charge Q at its center satisfies the

time-dependent Stokes equation:

4µwṘ

R
= F (R) + ξ, (4.2.3)

where ξ = ξ(t) is a Gaussian white noise with

〈ξ(t)ξ(t′)〉 =
4

3
µwkBTδ(t− t′).

In my simulations for the time-independent Stokes equation (4.2.3), I choose ∆t =

10−1 picoseconds and run 106 steps. I collect the histogram data of the simulated radius
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R(t) and use the Gaussian convolution to filter the histogram. In Figure 4.3, I plot the

probability distribution of the simulated radius for equation. Note that the peak of the

distribution corresponds to the optimal radius, which is very close to but not exactly the

same as the equilibrium radius Req defined by F (Req) = 0 with F (R) given in equation

(4.2.8).

Figure 4.3: The probability distribution of the radius R = R(t) obtained from the
simulation of the time-independent Stokes equation (4.2.9). The vertical line in the plot
shows the equilibrium radius defined by F (R) = 0 with F (R) given in (3.3).

4.3 Determining effective radius of an ion in water

In this section, I use the radial distribution function of water molecules surrounding

an ion, obtained from the MD simulation, I find the effective radius of the ion. I compare

the results of effective radius of the ion with the solution of the Rayleigh-Plesset equation.

I now consider a typical charged ion in water solvent as illustrated by Figure 4.3.

To determine the radius of the single ion, I consider two different methods: (1) Using the
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radial distribution function of water molecules surrounding an ion, obtained from the MD

simulation, find the effective radius of the ion. (2) Apply the dynamic implicit-solvent

modeling framework to derive the radius of the ion.

The radial distribution function (RDF), denoted by g(r) is the probability of finding

a particle (here water molecule) at a distance r from the fixed ion. It is given by

g(r) =
dnr

4πr2drρ
,

where dnr is the number of particles within a shell of thickness dr, ρ = N/V is the average

number density of water molecules. See figure 4.3 from Wikipedia for illustration of the

radial distribution function.

Figure 4.4: The radial distribution of water molecules around a fixed ion (in the center,
red) is a scaled local density of water molecules.

I use the GROMACS MD simulations package with the SPC/E water model and

OPLS/AA force field. I also use Particle Mesh Ewald (PME) summation for the calculation

of electrostatic interactions. The temperature is set to be T = 298K, and the simulation
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box is a cube of size around 50 Å × 50 Å × 50 Å. At the center of this box, I place

an artificial ion of point charge Q with Q = +1, −1, +2, or −2. I also place around

4, 050 water molecules, and a few Na+ and Cl− ions in the simulation box. The ion-water

Lennard-Jones (LJ) parameters are fixed to be σ = 3.5 Å and ε = 0.3 kBT . See Table 4.1

for more parameters. In each simulation, I run for 1, 000, 000–10, 000, 000 time steps with

each step of 1 femtosecond.

Table 4.1: Parameters for MD simulations.

Parameter Symbol Value Unit
temperature T 298 K
solvent dynamic viscosity µw 0.2 kBT · ps/Å3

solvent number density nw 0.0333 Å−3

solvent mass density ρw 2.42× 10−3 kBT · ps2/Å5

bulk solvent pressure P∞ 2.46× 10−5 kBT/Å3

surface tension γ0 0.175 kBT/Å2

Tolman length τ 1 Å
LJ length parameter σ 3.5 Å
LJ energy parameter ε 0.3 kBT
vacuum permittivity ε0 1.4372× 10−4 e2/(kBT · Å)
solute dielectric constant εp 1
solvent dielectric constant εw 78

inverse Debye length κ 0.025 Å−1

point charge Q 1 e

From such a distribution, I can extract four different radii of the ion as illustrated

in the subplot (a). They are:

(1) The “First nonzero" radius, marked by × on the horizontal axis in subplot (a), defined

to be the first distance to the center of the ion at which the distribution is nonzero;

(2) The “Peak" radius, defined to be the distance to the center of the ion at which the

distribution reaches its first maximum;

(3) The “Half peak" radius, defined to be the distance to the center of the ion at which

the distribution reaches half of its first peak value; and
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(4) The “Bulk" radius, defined to be the distance at which the distribution reaches the

bulk value for the first time.

We also solve the generalized RP equation (4.2.3) with the same parameters as

those in the MD simulations and others in Table 4.1. I record in Table 4.2 all the four radii

defined from the radial distribution of water around the ion and the radius determined by

the generalized RP equation for all the four ions (defined by the four Q-values).

I observe from Table 4.1 that the SODE radius for each of the anions (with negative

Q value) is larger than any of those radii defined from the water distribution, while the

Figure 4.5: The radial distribution of water molecules around an artificial ion carrying
the point charge Q: In (a), the dash-dotted line, broken line, and the line with symbol +
are used to define the peak, half-peak, and bulk values of water distribution. The cross
sign × between 2 and 3 on the horizontal axis of (a) defines the first point of distance to
the center of the ion with a nonzero distribution.
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Table 4.2: Effective ionic radii determined by the radial distribution of water from
MD simulations (First nonzero, Peak, Half-peak, and Bulk) and by the generalized RP
equation for four artificially designed ions.

Ion Q (e) First nonzero (Å) Peak (Å) Half-Peak (Å) Bulk (Å) RP (Å)
1 1 2.48 3.32 3.00 3.03 2.80
2 −1 1.56 2.04 1.90 1.86 2.80
3 2 2.32 2.96 2.83 2.81 2.46
4 −2 1.46 1.86 1.74 1.67 2.46

SODE radius is always smaller than those defined from such distributions for cations (with

positive Q value). The SODE does not distinguish the sign of charge Q. This is known

to be an issue of the continuum electrostatic model that is unable to capture the charge

asymmetry [20]. However, the SODE radius approximates very well the averaged peak

radius over those for the two ions with the same amount of charge (same absolute value

of Q) i.e., average over Q = +1 and Q = −1 or over Q = +2 and Q = −2. In general,

the SODE radius approximates those of cation better than an anion. A good value of the

effective radius for an anion will be the SODE radius minus 0.5 Å.

MD simulations usually take much longer time. For an experiment above in Table

4.2, it took around 16 hour to finish one experiment. Our numerical results indicate that

the fluctuation-dissipation balance is reached for the stochastic time-independent Stokes

equation. Although this stochastic differential equation is only for a spherical molecule,

it can be used to test theories and methods for more complex systems, and also used for

further mathematical analysis.

Chapter 4, in part, has been submitted for publication of the material as it may

appear in SIAM Journal of Applied Mathematics, 2020, Chao Fan; Bo Li; Michael White,

2020. All authors contributed essentially equally to the article.
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Chapter 5

Conclusions and Discussions

In this dissertation, I study a class of kNN-type entropy estimators with application

to particle systems. I implemented the kNN, kpN and tested these methods under different

cases. In addition to kNN and kpN methods, I introduced the new method: kp-kernel

method. I also couple Monte Carlo simulation and these entropy estimators for calculating

the entropy of the particle systems. Finally, I studied a modeling framework combined

of a static variational model and a stochastic fluid mechanics approach. I have presented

my related work on the molecular dynamics simulations of the solvation of a single ion in

water.

In Chapter 2, I have studied a formal derivation of class of kNN estimators of

Shannon entropy, including the kNN entropy estimator, the kpN estimator introduced by

some physicists, and a new kNN-type estimator kp-kernel entropy estimator. The most

important object is to improve the accuracy to capture the probability density function

in the "tail" parts. I have completed several numerical experiments and compared with

theses three different entropy estimators. In implementation part, we apply a fast local

integration method called: expectation propagation multivariate Gaussian probability

(EPMGP) method to calculate the integration of a local approximated Gaussian density
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function and Gaussian kernel density function in kpN and kp-kernel methods. I have

provided an alternative proof of the convergence of kNN in mean. The main assumption is

the all the sample we extract is within the computational box, i.e. there’s a lower bound

of the distribution, and this is the f∗, ∃f∗,∀xi, f(xi) > f∗, i = 1, 2, ...n has been made,

where xi are samples under a unkonwn distribution function f . Under this assumption, we

studied the convergence in expectation for the kNN distance. And we apply this result to

our kNN, kpN and kp-kernel method for convergence analysis. By the proof of Singh et al.

[39], we know the fact the assumption is not necessary for kNN method, a reasonable guess

is that we may try to proof the kpN and kp-kernel method without bounded assumption.

The correctness is to be verified. However, if it is true, kpN and kp-kernel method can be

applied in wildly scientific area related to entropy estimation.

In chapter 3, I have studied a very important and challenging subject: entropy

calculation in particle system. In this thesis, I focus on calculating the most contributed

entropy in particle system: conditional one particle entropy (C1EP). I implemented the

Monte Carlo Markov Chain method, specifically the metropolis hasting algorithm for

particle simulation. I applied the kNN class entropy estimator in some simple particle

system to observe the accuracy of these estimators. I apply histogram method, kNN and

kpN method with varies of k increase and number of frames increase on both Lennard-Jones

system and charged ions system.

In chapter 4, I have presented my related work on the molecular dynamics simulations

of the solvation of a single ion in water. A brief introduction of molecular dynamics

simulation has been presented and I have applied a popular MD package: Gromacs to

simulate the particles moves in a fixed size computational box. I have compared developed

several mathematical algorithms to calculate the interface (i.e. radius) of a single ion in

water solvent determined by the radial distribution function. Then I compared these results

with the radius by derived RP equation.
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In the future, two main parts can be improved in Chapter 2. The first one is more

interesting estimators followed by the formal derivation of class of kNN-type estimators

may be developed to fit different complex cases. The second one is in implementation part,

a more efficient algorithm is hoped to constructed to calculate the Gaussian kernel density

in a local region. In Chapter 3, two parts can be improved. The first part is we could

also consider the condition two particle entropy (C2EP). Even the contributed is not that

large compared to C1EP, it can improve the accuracy of the whole particle system if the

formula of the C2EP can be constructed. The second part is we can apply our estimator

into more complicated system, i.e. protein binding (p53-MDM2) to observe the efficiency

and accuracy of kNN-type estimators. In Chapter 4, a better way to compare the interface

(radius) is to calculate the free energy of the single ion in water solvent. Both variational

implicit solvation method(VISM) or lambda-method developed in Groamcs can be applied.
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