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Abstract

An Open Source Real-time Controller for Resource-constrained Autonomous Vehicles

and Systems

by

Aaron Hunter

The use of autonomous systems is burgeoning in the world for applications in many

fields from scientific, industrial, to military. At the same time, advances in semicon-

ductor technology have enabled ever smaller, complex, and use-specific microproces-

sors and microcontrollers. This work details the design and implementation of an open

source real-time hardware controller for resource-constrained autonomous vehicles and

systems. It is intended to be integrated inside a distributed control architecture consist-

ing of the real-time hardware controller, a guidance and navigation computer, and an

edge tensor processing unit for machine learning inferences. While the latter two pro-

cessors are commercially available, a dedicated, modular real-time controller is not,

providing the motivation for this work. To demonstrate the versatility of our open

source real-time controller we present several use cases including a ground vehicle,

marine vessel, quadcopter, and fixed-wing aircraft. The power of the distributed ar-

chitecture is the ability to solve complex sensing, guidance, navigation, and control

challenges even in resource-constrained systems. One such challenge is the simultane-

ous localization of an autonomous system while mapping an environment. In this work

we develop the components of a novel hybrid sensor combining a visual camera and Li-

DAR sensor that is mounted on the ground vehicle. This sensor is trained to recognize

landmarks in the environment using object detection frameworks and deployed on the

edge tensor processing unit. At the same time, the LiDAR sensor provides range and

bearing information for objects within its field of view. By combining the two we can

get fast detections of arbitrary landmarks in the environment as well as determine their

position relative to the sensor, thus enabling simultaneous localization and mapping

functionality.
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Chapter 1

Introduction

1.1 Motivation

The civilian use of autonomous craft for scientific as well as commercial purposes

has grown significantly in the last few years. A 2018 report from the National Oceanic

and Atmospheric Administration detailed the use of un-crewed systems, UxS1, for the

agency [26]. The number of types of un-crewed aerial vehicles (UAVs) employed by

the agency doubled in a one year period and the number of total vehicles deployed in-

creased by 38% for the same year. Use of other UxS by the agency show a similar trend.

In the same report they detail the use of UxS from space (in the form of satellites) to

the ocean floor (remotely operated vehicles) and nearly every environment in between.

UxS are also used to monitor dangerous environments. A New York Times article

from 2021 [38] demonstrated the use of a novel autonomous surface vessel (ASV) that

collected video imagery from within the eye of Hurricane Sam. There are examples

in the literature of the use of UAVs to monitor wildfires [33] and indeed commercial

products exist for that purpose [30].

UxS are in use in commercial sectors as well. In agriculture, for example, many

types of systems exist for crop health monitoring [1], water use monitoring [16], crop

phenotyping [45], and even autonomous weeding for organic crop production [5]. Other

1The ‘x’ in UxS indicates multiple vehicle types are in use, e.g., aerial, surface, and ground vehicles.
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commercial applications exist in filmmaking, sports broadcasting, real estate sales,

house cleaning, personal use, etc.

UxS are even deployed on other planets. NASA currently has an autonomous

ground vehicle (AGV) on Mars, the “Perseverance,” but also a UAV specifically de-

signed for the thin atmosphere of the planet [24].

Clearly the use of these systems is widespread and growing. At the same time the

autonomy requirements for the systems are growing more challenging. The ASV cited

in the New York Times article, for example, can be deployed on missions up to one

year in duration and the Mars Rover mission duration is likely longer. The implication

for these longer duration missions is that vehicles must have onboard path finding capa-

bilities, automated data capture and sample analysis, failure detection algorithms, data

storage, and communication abilities to name just a few.

Processing power requirements for autonomous systems are increasing as well,

driven by the need for computationally expensive operations such as onboard computer

vision, LiDAR sensor processing, and for evaluating machine learning (ML) models

for object detection, image classification, and natural language processing. Longer du-

ration missions and navigating complex environments place additional demands on the

onboard processors. Finally, interacting in multi-agent environments, that is, environ-

ments with multiple autonomous systems adds dramatically to the complexity of the

control system.

Designing a modern autonomous system involves significant engineering effort and

requires expertise in multiple areas. The resulting system may involve complex inter-

actions with many specialized processing systems.

1.2 Problem Statement

Given the widespread interest and use of autonomous systems there exists a need

for a vehicle-agnostic controller—or autopilot—to enable the research and development

efforts for new vehicles and new vehicle types. This autopilot should be capable of real-

2



time computation (that is, temporally deterministic); easily modifiable in order to adapt

to different vehicle configurations; and open-sourced (both firmware and hardware) in

order to be accessible to a wide audience of users and contributors.

Furthermore, the autopilot may form the real-time core of a larger, distributed con-

trol system that also includes a single board computer (SBC) for non-real-time tasks

and a tensor processing unit (TPU) to enable onboard ML capabilities. This architec-

ture allows a developer to take advantage of the advancements in computing for SBCs

and TPUs as well as to solve the issue of handling real-time tasks and non-real-time

tasks simultaneously. To enable a distributed control system the autopilot must inte-

grate with the external modules using a standard interface and a lightweight, extensible

binary communication protocol.

This architecture offers unique capabilities for autonomous vehicles. There are

several sub-problems that can be specifically addressed with this architecture. The first

is the means to develop and integrate real-time algorithms such as state estimation and

vehicle control onto the autopilot. The embedded firmware operates using the simplest

structure possible, with a hardware timer to dictate sensor and control update intervals.

This structure allows an algorithm or sensor measurement to be encapsulated into a

single function (with a standard input and output) and therefore replaced or modified

with minimal disruption to the remainder of the firmware. The controller can be adapted

to any type of vehicle with relative ease, for example, or to evaluate different state

estimation algorithms by changing one function and recompiling the firmware.

Second, the SBC enables new capabilities for autonomous vehicles. Typically, the

SBC has a Linux operating system (OS) providing access to standard functionality such

as file storage, internet access, camera integration, USB devices, and running WiFi ac-

cess points. These capabilities allow storage of sensor and vehicle state information

into files from the vehicle, run mission planning software, or connect to USB periph-

erals such as the TPU. The OS also opens up extensive capabilities provided by open

source software. For example, scientific software such as SciPy, computer vision soft-

ware (e.g., OpenCV), ML packages (e.g., Tensor Flow), or even convex optimization

3



software (e.g., CVXPY) are all readily available to download onto the SBC. These

advanced computational packages enable capabilities such as optimal trajectory gener-

ation, mapping of landmarks, and advanced vision sensors.

Finally, the TPU is a specialized processor that is designed to speed up ML infer-

encing tasks. The increased use of machine vision has made the need for onboard ML

capabilities an attractive feature for many types of autonomous systems. It enables fast

object detection or image classification without placing a computational burden on the

SBC. For example, object detection allows for identification of landmarks or obstacles.

The TPU integrates seamlessly with the SBC via a USB interface and as in the case of

the SBC runs open source software if possible.

In summary, the increasing demands on autonomous systems and the technological

advances in SBCs, TPUs, and sensing technology, suggest that a modular, distributed

control system that includes a dedicated real-time autopilot is needed for the develop-

ment of new autonomous vehicle classes. Small, resource-constrained systems benefit

the most from this architecture and motivate this work.

1.3 Related Work

Given the proliferation of autonomous systems it is somewhat surprising that real-

time controllers are not more ubiquitous, few of the ones that do exist use open source

firmware, and fewer still have open source hardware.

The most promising one is a vehicle-agnostic control system: the modular rapid

prototyping system, R2P [4]. The project hardware and software are both open source.

The system is designed so that each sensor or actuator is a standalone module called

a node. The authors have developed a publisher-subscriber middleware to connect the

nodes, a protocol called RTCAN. A series of connected nodes form the robot architec-

ture. One downside to this approach is that the developer is restricted to the modules

that have been developed for the system, that is, the system doesn’t have the ability to

communicate directly with off-the-shelf sensors, nor can they easily be created by the
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user. Furthermore, each module is separately controlled with its own microcontroller

and has an RJ45 wired connector so a complex system rapidly becomes unwieldy with

many small boards wired together. Another downside for optimal real-time perfor-

mance is the use of a real-time operating system (RTOS), specifically the ChibiOS/RT

[7]. This is a powerful, lightweight and widely-used RTOS with a hardware abstrac-

tion layer (HAL) that allows for re-use of peripheral drivers across different hardware

platforms. However, modifying the firmware of a given module for a custom algorithm

may be difficult to debug for real-time performance. For example, the inertial mea-

surement unit (IMU) module has its own attitude estimation algorithm encoded in it.

If a developer needs a different attitude estimation algorithm it may be challenging to

implement it and still guarantee the latency needed for the application. Nevertheless

this system allows robot developers a path to quickly build and test a prototype robot,

particularly if autonomy isn’t required and size of the control system is not a factor.

An open source autonomous vehicle platform is found in the literature, the F1/10

platform [27]. Although the project labels itself as an autonomous cyber-physical sys-

tem platform, it is a 1/10 scale race car, employing an NVIDIA Jetson TX2 SBC run-

ning the Robot Operating System (ROS) middleware. While this is a powerful SBC

and ROS is a widely adopted middleware for robots, it is not real-time. In fact, the

recent launch of ROS2 in part is due to the need for lower latency operations—a closer

approximation to real-time, although it isn’t strictly real-time as it continues to operate

on the Linux OS. In any case, this project is dedicated to a specific racing platform and

therefore not easily adapted for other purposes.

Aerial vehicles provide the richest source for real-time controllers, some of which

have been adapted to different classes of vehicles. Table 1.1, adapted from a recent

survey of open source UAV hardware controllers[11] list the ones active as recently

as 2018. Most of the platforms listed that use the STM microcontroller are designed

to operate with an RTOS as the middleware, with the autopilot firmware loaded over

it. The exceptions to this is the Chimera, which uses the Paparazzi autopilot firmware
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which has both an RTOS based firmware as well as a ‘bare metal’ implementation2.

The most prevalent autopilot firmware packages are PX4, Ardupilot, and LibrePilot

(formerly OpenPilot). The other devices in the table, FlyMaple, APM2.8, Erle-Brain

and PXFmini are no longer available.

Both PX4 and Ardupilot support non-aerial vehicles to some extent. However, mod-

ifying the firmware within the RTOS is notoriously challenging due to the complexity

of the code base. It is particularly difficult to implement a new vehicle type but also

challenging to guarantee that latency requirements are met when modifying the estima-

tion or control algorithms. These firmware packages are better suited to projects where

modifying any of the underlying algorithms isn’t desired.

The topic of an RTOS versus a bare metal application merits further discussion and

will be covered in a later chapter.

Platform MCU Sensors License Interfaces

Pixhawk STM32F427 b, m BSD c, s, a, pp, sb, ds

Pixhawk 2 STM32F427 b, m CC-BYSA-3.0 c, s, a, pp, sb, ds

PixRacer STM32F427 b, m CC-BY 4.0 c, pp, sb, ds

Pixhawk 3 Pro STM32F427 b, m CC BY 4.0 c, s, pp, sb, ds

PX4 FMUv5 and v6 STM32F427 b, m CC BY 4.0 c, s, a, pp, sb, ds

Sparky2 STM32F405 b, m CC BY-NC-SA 4.0 c, pp, sb, ds, da

Chimera STM32F767 b, m, p GPLv2 c, s, a, da, pp, sb, ds, x, au

CC3D STM32F103 None GPLv3 pp, ds, sb

Atom STM32F103 None GPLv3 pp, ds, sb

APM 2.8 ATmega2560 b GPLv3 pp, a

FlyMaple STM32F103 b, m GPLv3 None

Erle-Brain 3 Raspberry Pi b, m CC BY-NC-SA a

PXFmini Raspberry Pi b, m CC BY-NC-SA a

Table 1.1: Comparison of open source hardware UAV controllers from a recent survey
[11]. Abbreviations are b: barometer, m: magnetometer, p: pitot tube sensor, c: CAN,
s: SPI, a: ADC, pp: PPM, sb: S.BUS, ds: DSM, da: DAC, x: XBEE, au: AUX.

2Bare metal refers to programming the microcontroller with no underlying operating system.
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There are many papers on self-driving cars that describe vehicle control systems

but very few discuss ones suitable for resource-constrained vehicles. [17], for example,

demonstrates a distributed architecture of a full size autonomous racecar that requires

computational resources far beyond those available to resource-constrained systems.

One exception to that, however, comes from [3], which reviews four different archi-

tectures with a focus on how resource-constrained systems can inform design choices

for full size vehicles. All the architectures they review are modular with the low level

(i.e., real-time) control functions deployed on a microcontroller and higher level tasks

performed by various systems—either ROS or a custom-designed middleware. The

real-time control in two cases use a HAL, the others do not.

Within the Autonomous Systems Laboratory (ASL) there is an important related

work called the Santa Cruz Low-Cost UAV GNC Subsystem (SLUGS)[21], which was

an early autopilot intended for UAVs. It was programmed using the embedded code

generation capability of Matlab and Simulink. This project, though successful, was

never widely adopted. One reason is that Matlab and Simulink are expensive commer-

cial software packages and come with a significant learning curve. Another is that the

project wasn’t open source limiting access to vehicle developers or potential contrib-

utors. These limitations motivate this work which is open source, both hardware and

firmware.

1.4 Contributions

The contributions described in this work are summarized in the following list:

• An open source design of a real-time autopilot that is vehicle agnostic, that is,

easily adaptable to many different types of craft. It fits within a modular system

architecture of our design suitable for resource-constrained autonomous systems

along with open source libraries for many common functions.

• An open source repository including hardware design files, microcontroller ini-

tialization code, sensor and actuator libraries for common sensors and outputs,
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attitude estimation and other navigation algorithms, and vehicle control algo-

rithms.

• A benchmark algorithm to evaluate real-time hardware performance and an eval-

uation of the performance of four different processors (three microcontrollers and

one SBC) using the benchmark.

• A ground vehicle platform suitable for demonstration of the controller capabil-

ities presented in detail here. Three additional use cases using the real-time

controller within the distributed architecture that are either completed or under

development.

• A custom object detection algorithm trained to identify landmarks in the environ-

ment and deployed to a TPU.

• A sensor module consisting of a camera, a lightweight LiDAR, and a panning

servo designed to be used in conjunction with the object detection algorithm for

mapping landmarks.

1.5 Dissertation Organization

This dissertation is organized as follows. Chapter 2 is a review of the requirements

for the real-time controller. Chapter 3 details the hardware development process, ar-

chitecture, electrical design, and the final controller. Chapter 4 details the software

design, architecture, and development process. In Chapter 5 we propose a benchmark

algorithm to quantify the performance of the real-time controllers. Chapter 6 shows

the results of using the benchmark on four different processors, three real-time systems

using microcontrollers and one SBC running Debian Linux. Chapter 7 details the de-

velopment of an AGV from the chassis to autonomous navigation used as the main test

platform for the controller. Chapter 8 covers three new cases for different autonomous

systems (a USV, a quadcopter, and a fixed-wing aircraft) that use this architecture or are
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in the process of deploying it. Chapter 9 demonstrates several areas where this work

can be extended. Finally, Chapter 10 provides the conclusions.

There are two supplementary appendices.Appendix A is a derivation of the com-

plementary filter, the basic algorithm behind the benchmark. Appendix B details the

application of the autoregression with external inputs method for system identification

using a simple motor model as an example.
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Chapter 2

Requirements

In this chapter we discuss the requirements for a real-time, vehicle agnostic autopi-

lot, starting with the intended use case, a taxonomy of real-time tasks, hardware and

peripherals, interface requirements, and finally firmware.

2.1 Intended Use

The primary motivation for this work is to provide a means for an autonomous

vehicle developer to rapidly prototype the real-time guidance, navigation and control

system of a new vehicle. To enable this we decided at the inception of the project to

make the design and firmware open source and named it the Open Source Autonomous

Vehicle Controller, or OSAVC for short. The advantages provided by open source

methodologies to a would-be vehicle developer are that the designs and algorithms are

freely accessible, they are easily modifiable (e.g., for a custom application), and can

be sourced from numerous vendors. From the project side open sourcing allows con-

tributors from all over the globe to add new functionality, to test and provide feedback,

and iterate on the designs. Indeed, during the development of this project we were able

to participate in the Google Summer of Code program which hires student interns to

contribute to open source projects. Over the course of two summer sessions, the OS-

AVC project (under the guidance of the Center for Research in Open Source Software)
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received over 45 applications from students all over the globe, and was able to provide

six paid internships. Additionally, the OSAVC prototype was used by two other gradu-

ate researchers for an ASV and a quadcopter which was an early demonstration of the

capability and modularity of the project.

2.2 Real-time Task Taxonomy

The OSAVC provides real-time control of the vehicle actuators and measurement of

the sensors. In the context of control systems, real-time refers to a fixed output period

of the controller, i.e., the period between updating the vehicle actuators (or other algo-

rithms such as attitude estimation) is deterministic and constant. All modern control

systems are digital, that is they do not provide continuous outputs, instead they update

the outputs on a fixed clock cycle. The systems under control, however, exist in the

continuous real world. If the controller clock cycle, τc, is short compared to the dy-

namics of the vehicle, then the digital controller approximates a continuous controller.

In other words, if the rise time1 of a system in response to a step change in input is

τv, then the digital control system approximates the continuous case when τc << τv.

In the frequency domain a usual figure of merit is that the update rate is 1/20th-1/30th

the bandwidth of the system [12]. A finite clock cycle introduces a lag in the response

of the controlled system. In addition to having as small a lag as is practical, it is also

important to minimize the variation in the clock cycle. Small variations are inevitable

but larger variations can lead to poor control or, in the worst case, instability.

Not all tasks in an autonomous system require real-time control. For example, log-

ging of telemetry data for post-mission use does not require a fixed clock—the system

can buffer the data until it is convenient to store it. Thus, when designing a distributed

control system it is natural to divide tasks into real-time and non-real-time categories.

Real-time tasks are the domain of the real-time controller and all others belong to a pro-

cessor with an OS. Note that some control systems attempt to handle all tasks within

1Rise time is defined as the time for a system to change from 10% to 90% of its steady state value
after a step change in input.
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the same processor by using an RTOS. We discuss the tradeoffs of this type of OS in

Section 2.6.1.

Strictly real-time tasks are ones that support the control of the vehicle. These com-

prise the measurement of all the inputs and computation of the algorithms necessary

to provide the actuator output. These include any sensor that is used to estimate the

vehicle’s state (typically position, velocity, and attitude). A non-comprehensive list of

these sensors include wheel encoders, airspeed sensors, GPS, gyroscopes, accelerome-

ters, magnetometers, barometers, etc. Accordingly, the navigation tasks, which include

state estimation, are also real-time as they provide the input to the controller. Although

mapping of the environment isn’t a strictly real-time task, simultaneous localization

and mapping (SLAM) [9] is, as it provides vehicle state information (namely position

and orientation). Communications generally do not have real-time requirements with

the exception of remote control, when the system is operated manually using a radio.

Finally, the controller itself must operate on a fixed cycle.

All other tasks are non-real-time. Note that this doesn’t imply that they are not

time-sensitive. For example, a range sensor might be used for obstacle avoidance, or a

camera may be used to identify landmarks in the environment. In both cases, these data

are needed to support guidance of the vehicle. Guidance is the process of determining

the vehicle trajectory and therefore must be done quickly, but not necessarily on a fixed

clock. Generally, guidance tasks (including mapping) are not real-time but are typically

time sensitive. Other tasks, such as logging of data, measurement of sensors not used

for state estimation, and general communications (e.g., communicating to a ground

control station) are non-real-time.

A generic taxonomy of the tasks of an autonomous system is summarized in Ta-

ble 2.1 showing the classification of real-time versus non-real-time as discussed above.
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Real-time Non-real-time

Sensors (state measurement) Sensors (all others)

Communication (remote control) Communications (all others)

Navigation Guidance

SLAM Mapping

Control File system tasks

Data logging

User interface

Table 2.1: A control system taxonomy of tasks required in an autonomous system.

2.3 Overall Requirements

From a high level, the OSAVC should support the main hardware and communica-

tion interfaces used by commercially-available components. The components needed

for a vehicle will include sensors, radios (both for remote control and general com-

munication, e.g, with a ground control station), and actuators (e.g., motors, solenoids,

indicators, etc.). Additionally, as a real-time subsystem, the OSAVC module should

communicate efficiently and quickly to the larger vehicle control system. For example,

a vehicle may have an onboard guidance and navigation SBC that requires periodic

communication of the vehicle state variables in order to plan a route. The module

should support the real-time requirements of latency and speed for a vehicle. That is,

it should be able to operate as quickly as needed by the vehicle and meet the deter-

ministic latency requirement for the control algorithms. A final requirement is that the

OSAVC provide power, signal conditioning, and pwer management for the sensors and

processor, and optionally for any external peripherals or modules (e.g., the SBC).
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2.4 Peripherals

The most common hardware interfaces are the inter-integrated circuit (I2C) inter-

face, the serial peripheral interface (SPI), the universal serial bus (USB), and the uni-

versal asynchronous receiver-transmitter (UART)—commonly known as a serial port.

Less common but used extensively in automobiles and robotics is the controller area

network bus (CAN bus).

Other peripherals needed for the OSAVC are hardware timers, input capture mod-

ules (IC)—used for decoding incoming digital signals, and output compare modules

(OC) used for generating pulse-width modulated (PWM) signals needed for motor and

servo actuator control. Finally, general purpose input-output pins (GPIO) are useful for

turning on LEDs, setting switches, and other requirements.

The OSAVC should have most or all of these hardware peripherals in order to sup-

port the broadest range of applications; while tradeoffs can be made with respect to

capability versus size, weight, and power, we typically fall on the side of greater capa-

bility in this work.

2.5 Hardware

2.5.1 Printed Circuit Board

The printed circuit board (PCB) requirements are that it be as small and light as

practical while also allowing for hand assembly—as many users may not have reflow

ovens to solder the components. These requirements therefore drive the use of surface-

mount components to minimize the size of the assembly but limits some component

types which are difficult to solder by hand (e.g., ball grid arrays). The PCB is limited

to four layers to minimize cost.
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2.5.2 Connectors

Many vehicles experience high levels of vibration during operation. It is therefore

imperative that the connectors used be robust to vibration while minimizing board area

use. They must also be easily sourced, not too expensive, and capable of hand assembly.

2.6 Firmware

The firmware is written entirely in the C programming language for speed and ef-

ficiency. The most important requirement of the firmware is modularity. Each sensor

driver, estimation algorithm, and control algorithm is modular. Each module has a

header file which provides the interfaces to public methods and a source file containing

the code; each source file has a built-in test harness to allow for module troubleshooting

outside of an application.

To maximize efficient utilization of the processor each sensor module is non-blocking.

This requirement forces the use of vectored interrupts and each sensor has a unique in-

terrupt priority assigned to it.

The firmware library contains a selection of commonly used sensors needed for

vehicle autonomy both to provide a minimum of functionality for a new developer as

well as a template for new sensor drivers.

The application itself should be as simple as possible to achieve the desired control.

An example application for an AGV will be provided as a template for other applica-

tions. The application is a bare metal application consisting of an infinite loop with

a hardware timer for task scheduling. This avoids the complexity and overhead of an

RTOS. This requirement merit some discussion and is covered in Section 2.6.1.

2.6.1 RTOS vs bare metal

An RTOS is a piece of software that brings in real-time and non-real-time tasks

into the same controller. It uses a HAL that allows for programmers with no expertise
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in embedded programming to communicate with various sensors without any under-

standing of the underlying hardware. It also provides for standard OS features like data

logging and directory structures. The difficulty in using an RTOS lies in modifying the

real-time tasks. Even with well-structured code, debugging the latency of a new real-

time algorithm can be challenging. Autopilot firmware running on an RTOS typically

implements the algorithms with tuneable parameters (e.g., the extended Kalman filter

in Ardupilot). This may work well for many cases, but modifying an algorithm for

faster operation or for different parameters is challenging. Developing a new algorithm

is even more difficult. Of course any OS increases the complexity of an application as

well using more computational resources.

A bare metal application, on the other hand, allows for strict control over the sensing

and control elements of an autonomous system. Measuring the latency is straightfor-

ward using a hardware timer of the processor, as is managing processor bandwidth.

Debugging the function is similarly simplified. The challenge in programming on bare

metal is the need for an understanding of the hardware (sensors, peripherals, and pro-

cessor performance) in order to configure it properly, although device manufacturers

often offer configuration apps or software development kits (SDK) to ease this pro-

cess. Another benefit of bare metal programming is efficiency due to the much lower

overhead. The main downside for bare metal applications is the challenge in duplicat-

ing the common features of a standard OS. For this reason, a bare metal application is

suited better for a distributed architecture where the real-time and non-real-time tasks

are strictly segregated between the real-time core and the SBC as discussed earlier.
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Chapter 3

Hardware Design, Assembly and

Testing

3.1 Development Process

The design of the OSAVC PCB consisted of two development efforts. As we had no

prior experience designing a PCB we decided to start with a ‘daughter board’—a sim-

pler I/O PCB that could interface with a commercially available development board1.

The first daughter board was hand-wired to determine an initial layout and to kickstart

the development process. This allowed us to develop PCB layout and assembly skills

and at the same time acted as a platform to test sensor driver modules. The I/O board—a

simple two layer PCB—required two revisions before its performance was satisfactory.

We also selected a vehicle platform for the AGV test bed on which to validate

OSAVC. To complement the AGV we purchased a suite of sensors that are widely used

for small autonomous vehicles and proceeded to develop a library of sensor drivers

and integrated the sensors onto the vehicle. The discussion of the software design

is found in Chapter 4. Once a complete set of sensors were developed and tested, we

implemented a basic remote control application to verify the functionality of the Max32

as well as the AGV platform. Details on the AGV are presented in Chapter 7.
1The chipKit Max32 by Digilent, unfortunately no longer offered for sale.
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Figure 3.1: The complete evolution of the OSAVC PCB designs. The board on the left
is the original hand-wired prototype daughter board. The middle image shows the final
design of the I/O daughter board. The image on the right hand side is the first version
of the OSAVC.

The second phase of development was the design of the OSAVC PCB itself. This

was a more difficult effort beginning with the electrical design, followed by the PCB

layout, unit testing of the assembly, and integration with the vehicle. A single revision

of the design provided a working PCB. Fig. 3.1 shows the evolution of the designs,

beginning with the first hand-wired daughter board, the completed daughter board PCB,

and the initial OSAVC design.

3.2 Architecture

We designed the OSAVC with a few goals in mind. The most important of which

being that the controller be vehicle agnostic—that is, adaptable to a large class of vehi-

cle types. This translates into the hardware supporting as wide a variety of interface and

output protocols as practical. Fig. 3.2 shows a more detailed view of the controller. The

firmware architecture was designed to be as simple and as temporally deterministic as
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Figure 3.2: Block diagram of the OSAVC. The heart of the OSAVC is the PIC32MX795
microcontroller which controls all the I/O and the hardware peripherals. The OSAVC
accepts a wide variety of interface protocols for sensing and many output protocols for
vehicle control. It includes a USB interface for debugging with an external computer
or for use with an SBC. It has a separate 5V power supply to provide power to external
components. It also has capability of sending sensor and state information to a remote
ground station and accepts remote control manual input.

possible. To this end the dynamic control algorithm and the state estimation algorithms

are modular. This allows these algorithms to be designed and tested in control-specific

software (e.g., Matlab and Simulink) and ported out as C functions which can then be

compiled with the vehicle firmware directly2. We demonstrate this approach in Chap-

ter 5. We also required the sensor drivers to be non-blocking and the control loop to

operate using a hardware timer to minimize timing jitter. The last goal is to enable as

large a community as possible. To support this goal the hardware design and firmware

are open source and hosted online [28].

2Note that this can be done by hand or by the automatic C-code generation capability of the Matlab
embedded coder.
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3.3 Sensors, Peripherals and Connectors

The sensors we selected are ones typically used in resource-constrained autonomous

vehicles. Possibly the most common one is the inertial measurement unit, or IMU. This

sensor consists of three triaxial sensors in a single package: gyroscopes to measure

angular rotation rates, accelerometers to measure specific force, and magnetometers to

measure the earth’s magnetic field strength. The gyroscopes are used to compute the

dynamics of the vehicle, the accelerometers and magnetometers are used to determine

the vehicles attitude relative to known inertial vectors—gravity and the magnetic field.

Almost as ubiquitous as the IMU is the GPS (global positioning system) receiver.

This sensor calculates the vehicle’s location in global coordinates by measuring the

range of the sensor to four or more satellites at known orbital locations and computing

the optimal fit of those ranges. GPS sensors can also provide other useful data, such as

the current time, vehicle heading and speed in inertial coordinates.

Another commonly used sensor is an angular encoder. This device measures the

angle of rotation around an axis. In the AGV it is used to calculate the speed of the

motors as well as the angle of the steering servo. In other areas of robotics they measure

joint or actuator angles.

The microcontroller itself has built in analog to digital converters (ADCs). Some

sensors communicate their output using analog signals. A typical application for analog

signals is battery voltage monitoring.

The last sensor we selected is a LiDAR sensor (light detection and ranging). LiDAR

is commonly used to detect local obstacles in the environment. It operates by measuring

the time of flight of a laser beam on a round trip path from the vehicle to an obstacle.

In addition to the sensors decribed above, there are several peripherals commonly

needed for autonomous vehicles. Electronic speed controllers (ESCs) are used to pro-

vide control signals to brushless DC motors (BLDCs). ESCs require a specific form of

PWM signals to command the motor velocity. Servo motors use the same PWM signal

but instead control the angle of a motor and are used for various types of actuators, such

as robot arms or steering systems. Finally, it is useful to have onboard data storage for
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vehicle parameter information. A common inexpensive (but low capacity) non-volatile

memory device is the EEPROM (electrically erasable programmable read-only mem-

ory), typically available in the Kbit range.

Many autonomous systems rely on remote manual control through serial radio re-

ceivers. Other forms of radio control are possible but most modern systems utilize serial

data streams. Other radios are used to communicate from the vehicle to ground control

systems. These radios typically use a serial protocol. Another form of communication

is supported through a serial to USB converter. This can be used as a debug port or to

transmit data to an external computer. Finally, the microprocessor is programmed us-

ing the Microchip PICkit 3/4 serial programmer. A summary of the basic sensors and

peripherals supported by the OSAVC and their respective hardware interfaces is found

in Table 3.1.

Every sensor has a physical connector and there are nearly as many connector types

as there are sensor types. After a review of the most common connectors we selected

the Molex Picoblade for the OSAVC. It is a good compromise between footprint and

mechanical reliability. It has 1mm pitch between conductors to minimize size and

uses through hole pins for connection to the PCB, making it more reliable than surface

mount equivalents, and easier to assemble.

3.4 Electrical

Because this research is primarily open source, the tools used for development need

to be open source as well; we used the KiCad electrical design automation suite3 for

the electrical and PCB layout design.

The first design decision before embarking on the electrical design was the choice

of microcontroller. we selected a microcontroller that satisfied the requirements listed

in the Chapter 2, the Microchip PIC32MX795 series microcontroller, a 32 bit MIPS-

based processor. This device includes a wide suite of hardware peripherals including

3https://www.kicad.org/
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Device Model Interface Note

IMU TDK ICM20948 SPI1

GPS u-blox NEO M8N UART2

Encoder AS 5047D SPI2 12 bit, up to four devices

Battery voltage N/A AN0 Scaled 1:8

GPIO N/A AN1-4/RB2-5 Analog or digital

LiDAR Garmin V3HP I2C2

ESC generic OC2-5 Bidirectional/unidirectional

Servo generic OC2-5 Shared with ESC

RC receiver FrSky serial UART5 SBUS protocol

Radio MRO UART4 915 MHz, ASCII

EEPROM Microchip 25LC256 I2C1 256 Kbit

USB FTDI 2232RL UART1 Serial-USB converter

Programmer Microchip PICkit3/4 ICSP In-circuit serial programmer

User I2C N/A I2C1 Connector provided

User CAN N/A CAN1 For external transceiver

Table 3.1: List of devices (sensors and peripherals) supported by the OSAVC.

22



numerous UARTs, SPI ports, I2C ports, IC blocks, OC blocks, and timers. It allows

for CAN bus integration with the inclusion of an external CAN transceiver. It operates

at a reasonably fast 80 MHz clock frequency, has 128 Kb SRAM and 512 Kb flash

memory, is a mature design, and is well supported by documentation and a functional

integrated development environment (IDE) called MPLabX. The PIC32MX795 was

offered in a development board (the aforementioned Max32) which we acquired to

begin developing the code base for the controller and for use as a reference design for

the OSAVC.

The basic requirements for the microcontroller operation are decoupling capaci-

tors on all the voltage input and reference pins, a reset connection to the MCLR pin,

connections to the programming interface, and the oscillator pins [32]. Although the

microcontroller may operate without an external oscillator for precise and stable timing

it is recommended to use a crystal oscillator. We selected an 8 MHz oscillator with 30

pF capacitors, and a 0 Ohm resistor to allow for attenuation of the oscillator signal if

required. To reset the microcontroller, we implemented a manual pushbutton switch,

as well as following the guidelines for the programmer reset function. This is shown

in Fig. 3.3. In addition to the basic requirements an FTDI serial to USB converter chip

is connected to the first UART port of the microcontroller to allow for communication

to an external device. This feature is primarily used for debugging purposes during

development, as well as communication to a single board computer (SBC) or ground

control station (GCS) during normal operation. This is detailed in the microprocessor

sheet of the schematics4.

The microcontroller requires a stable 3.3V power supply, provided by the Texas

Instruments LP38690DT-3.3 low dropout (LDO) voltage regulator. Many sensors and

peripherals require 5V operation, and the LP38690DTX-5.0 LDO regulator provides

this capability. Because the OSAVC may provide power to an external SBC as well as

some high current devices such as servo motors, a Microchip 29300-5.0 5V/3A LDO

regulator is used. Finally, the TI PTN78020W switching regulator accepts battery volt-

4see: https://github.com/uccross/open-source-autonomous-vehicle-controller
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Figure 3.3: Detail of the reset switch and ICSP programmer circuit. The reset switch
allows the user to manually reset the microcontroller to start the program execution.
The ICSP also resets the microcontroller after new code is loaded.

ages in the range of 7-36V and regulates down to 7V/6A, and feeds the two 5V LDO

regulators. The switching regular is used because it is very efficient—above 90%—and

allows for reducing high battery voltages without wasting energy in the form of heat.

The output of the LP38690DTX-5 in turn provides power to the 3.3V LDO. Alterna-

tively, the USB port can power the LP38690DTX-5 and LP38690DT-3.3, typically used

when developing and testing firmware. This is switched by a P-channel MOSFET tran-

sistor using a voltage divider and comparator circuit when USB power is present (and

no other voltage source) detailed in Fig. 3.4. It can also be found in the power section

of the schematics.

The peripherals supported by the OSAVC are listed in Table 3.1. LEDs indicating

communication were placed on signal lines for most sensors5 as well as to indicate

the operation of the various voltage sources. A jumper is provided to power the OC

modules with the 29300-5.0 and the SBC with up to 3A current at 5V when operated

with a battery. The GPIO pins have Schottky diodes to protect the microcontroller from

electrostatic discharge events. The detailed design is located in the I/O sheet of the

schematics.
5Some sensors, such as the ones connected through the SPI ports, operate at too high a frequency, or

for too short duration for LEDs to be useful.
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Figure 3.4: Detail of the USB power switch. When no battery voltage is present, the
transistor Q1 connects the 5V power net to the USB 5 V input.

3.5 PCB

The guiding principles for the PCB layout balanced phsyical size with manufac-

turability. Because the design is open source as opposed to a commercial product, we

cannot guarantee that an adopter will have access to a reflow oven for soldering com-

ponents to the PCB. Therefore the design has to support manual soldering while also

minimizing board area. Thus, we selected surface mount devices (SMD)—in order to

save board space—that were still possible to solder by hand. As a result, the smallest

discrete devices in the design come in the 0603 package, with a footprint of approxi-

mately 1.55 by 0.85 mm. For the microcontroller, we selected the TQFP-100 package,

which has leads on a 0.5 mm pitch and occupies a 14 mm by 14 mm footprint. we made

similar choices for the other components. To ease the assembly all the components are

located on the top side of the PCB.

For the PCB itself, we also balanced cost vs size by choosing a four layer board.

The PCB has two signal planes (the top and bottom layers), an internal ground plane,

and an internal 3.3V plane. This design provides some noise immunity by having these

mostly complete internal copper planes.
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we chose to mount the switching power supply (the TI PTN78020W) on the PCB

despite its large size (approximately 39 by 23 mm) in order to minimize the mechani-

cal complexity. The board could have been made much smaller by placing the power

supply separately, but we deemed the convenience of a single PCB worth the tradeoff.

The top signal plane and silkscreen of the PCB is shown in Fig. 3.5. For the follow-

ing discussion refer to the physical board of Fig. 3.6 where the silkscreen designations

are easier to see. For the component layout, we chose to have the battery connection

enter the PCB from a pair of mounting holes sized for 16 AWG wires on the lower left

hand side (J1). Mounted directly adjacent is the PTN78020W (U1). The three LDOs

are located along the top and right hand sides of the PTN78020W (U2, U3, U5), and a

USB-C power output (for SBC power) is located on the upper left hand corner of the

PCB (J23). Also on the left hand edge are the motor outputs and GPIO pins located

on a 19 by 3 row header(J4). On the top and bottom edges of the PCB are the sensor

and peripheral connectors (J6, J13-21). The microcontroller is located near the center

of the PCB (U6). The oscillator (Y1) is located adjacent to the microcontroller to keep

the signal traces short and of nearly equal path length. The EEPROM is located on the

lower right of the PCB (U9). On the upper right is the FTDI serial-USB converter (U7)

which connects to the outside world on the right hand edge of the PCB (J3). The reset

button (SW1) and the in-circuit serial programming (ICSP) port (J2) are also located on

the right hand edge of the PCB. Refer to the schematics for the location of the various

discrete components.

For most signals we selected 0.25 mm trace widths matching the lead width of the

microcontroller. For higher current carrying traces, such as those from the voltage reg-

ulators or battery, we chose traces of at least 1 mm in width—well above the minimum

width recommended by the KiCad calculator—in order to minimize resistive losses and

to keep the traces as cool as possible. Signal path crossings between the top signal and

bottom signal layers were kept as close to perpendicular as was possible to eliminate

coupling between signals.
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To keep the LDOs cool, we created large ground planes and sunk vias through the

PCB to transfer heat to the interior ground plane. These vias are the arrays of circles

seen in the three ground pads of the LDOs.

Finally, the PCB is mounted by the four 3 mm holes (H1-4) and connected to the

internal ground plane.

Figure 3.5: The top signal plane and silkscreen of the OSAVC PCB.

For manufacturing the PCB, we chose to produce prototypes using the OSHPark

manufacturer6. The front and back side of a bare PCB is shown in Fig 3.6

3.6 Assembly

We evaluated two different methods to solder the components onto the PCB. For

the first method, we hand placed the components and soldered the leads or pads indi-

vidually under 10× magnification. For the large ground planes of the LDOs we first

melted a thin layer of solder over the pad, placed the LDO, then soldered the leads,

then applied heat and solder to the edge of the ground planes. It was evident when the
6https://oshpark.com/
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Figure 3.6: The front and back of the manufactured PCB. Note the bottom image is
flipped left to right with respect to the top image.

solder on the ground plane melted as it was visible pulled under the LDO. More diffi-

cult was to solder the ground planes under the USB-B micro connector as there is no

exposed edge on which to apply heat. In this case we used a hot air rework station from

underneath the component to ensure a solid solder joint, but this method is not ideal. A

completed PCB assembly is shown in Fig. 3.7.
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Figure 3.7: The completed PCB assembly. This prototype is hand-soldered. It is easy
to see the that the solder has flowed underneath the three LDOs.

For the second assembly method, we purchased a stainless steel stencil and solder

paste. We first carefully aligned the stencil to the PCB, then used a stiff card to evenly

spread solder paste into the exposed openings of the stencil. After removing the sten-

cil, we placed the components onto the PCB, then used a toaster oven to attempt to

flow the solder under the components. This method produced a prototype with many

bad connnections and had to be extensively reworked before the PCB was operational.

Probably a better approach is to heat the PCB from underneath on a well controlled

heater and monitor the solder joints from above, but we have not tested this method.

3.7 Testing

There are several tests to perform prior to attempting to load code onto the OSAVC.

These tests ensure that the assembly was performed correctly.

The first test is to plug a USB-B cable from a computer to the matching receptacle

on the OSAVC. This should provide power to the board and the LED from the 3.3V

LDO should light up. This indicates that the USB power is succesfully delivered to

the regulator and therefore the USB connnector is connected. The next step is to verify
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With a multimeter that 5V is found on all 5V traces or leads. The LEDs on the FT232RL

should also light briefly as the IC negotiates a connection to the computer.

The next test is to unplug the USB power and provide a voltage between 7-36V to

the battery connector (XT60). If the LED on the 3.3V LDO lights up, that indicates

that all the regulators for the PCB are functional. Again, confirm with a multimeter the

voltage at the output of each regulator.

With the power sources and the FT232RL validated, the next test is to load the

Serial.X project using the MPLabX IDE and the serial programmer (ChipKit 3 or 4).

The IDE will indicate whether the microcontroller has been successfully identified and

the code loaded. If so, verify the 3.3V sine wave at both outputs of the oscillator.

Finally, the Serial.X project test harness is a simple loopback to an external computer.

Communicating over a terminal program over the correct COM port should echo the

input back to the user.

From this point on, each peripheral in use is validated with the appropriate driver

project loaded and the associated test harness specified in the pre-processor macro con-

figuration of the IDE7.

Evaluating every sensor and peripheral is a time consuming process. A good area

for future development is the design of an automated board testing station. Given the

future deployment possibilities, such a testing station would be useful for diagnosing

and troubleshooting errors or post-crash analysis.

7Using the pre-processor allows us to define a macro which builds the test harness when the sensor
module is compiled on its own, i.e., when not included in a larger project
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Chapter 4

Software Design

4.1 Introduction

Writing applications for microcontrollers is known as embedded programming as

opposed to general programming for larger scale systems. Embedded programming has

unique constraints and challenges. The main constraint is the limited memory available

for the program and data—typically on the order of hundreds of kilobytes for most mi-

crocontrollers. A main challenge is the hardware-specific nomenclature and configura-

tion of the peripherals. For example, to enable a UART on the OSAVC microcontroller

one first has to configure the peripheral by changing the register bits corresponding

to the memory-mapped IO that control its function1. Fig. 4.1 shows a snippet of the

initialization of UART1. Although the logic of the routine is clear, the register names

and values are cryptic. Determining the correct settings and hardware registers requires

careful study of the microcontroller datasheet.

Perhaps the main challenge of writing embedded firmware, however, is ensuring

that code is fast and repeatable. The need for speed results from the vehicle control

requirement. Most vehicles require control algorithms operating in the tens to hundreds

of Hz. Furthermore, the control period itself needs to be repeatable, that is the latency

1This is common to almost all microcontroller designs, however, there is no consistancy in naming
or control register configuration—thus each peripheral must have its hardware specified carefully
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and jitter of the control loop needs to be predictable and small. This arises from the

fact that while controller design on a microcontroller is necessarily digital, the vehicle

itself operates in the continuous domain. Variations in the period of the control loop

introduce extra noise in the form of timing jitter which can make the control less precise

in the best case or unstable in the worst case.

These constraints and challenges are a significant barrier to adoption of the OSAVC.

In particular, to ensure efficiency and low latency, all the peripheral drivers2 have to

be non-blocking, that is, they cannot allow the processor to stall while waiting for

data. This requires the drivers to use interrupts to communicate to the peripheral. To

minimize some of the difficulty for an adopter of the OSAVC, we have written drivers

for many common sensors and devices, developed control application code that can be

adapted to a specific vehicle implementation, and incorporated several useful utilities

common to most autonomous vehicles. This work is detailed in the next sections.

4.2 Peripheral Drivers

The peripheral drivers are located in libraries in the OSAVC repository. Each driver

consists of two files: a header file that specifies the module public methods and a source

file. Inside the source file the private variables and functions are declared static to limit

their scope to the module. In this manner the code base is modular and similar to object-

oriented programming. All interactions with the peripheral are handled through the use

of interrupts.

An interrupt is a process whereby the microcontroller receives a signal (known as

an interrupt request, or IRQ) from a hardware peripheral informing it that a peripheral

needs attention, for example, when a new piece of data is received. When the micro-

controller receives the IRQ it pauses execution of the main program and jumps to an

address in memory pointed to by the interrupt. At this memory location is a pointer to

the appropriate interrupt service routine (ISR). The ISR is a small piece of code which

2A driver is a piece of code that configures and operates a hardware device of the microcontroller,
e.g., a serial port.
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handles the particular hardware need and clears a flag in the peripheral register to let it

know it has been handled. Each interrupt has a priority (and subpriority if necessary)

to deal with the case when multiple interrupts occur simultaneously.

To make process this more concrete, the code in Fig. 4.1 is configured to interrupt

the processor when a character is received (U1RXIE) or transmitted (U1TXIE). When

a new byte is received from the UART it is stored in a register. The UART sets a flag in

a control register indicating what caused the interrupt. The microcontroller then pauses

code execution and jumps to the ISR. Inside the ISR, the character is read from the

register and stored in a buffer. The flag is cleared and the microcontroller restarts the

main code. A snippet from the UART1 ISR is shown in Fig. 4.2.

Many vehicle developers will never need to write a peripheral driver if they utilize

the existing sensors and devices listed in Table 3.1 from the previous chapter. However,

if they need a specific device the existing code base can be used as a template.
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U1MODEbits.BRGH = 0;

/* set baud rate */

U1BRG = ((Board_get_PB_clock() / BAUD_RATE) / 16) - 1;

/* configure the RX and TX pins */

U1STAbits.UTXEN = 1;

U1STAbits.URXEN = 1;

/* clear overflow */

if (U1STAbits.OERR == 1) {

U1STAbits.OERR = 0;

}

/* configure using software flow control, if set to 2 it would be CTS

/RTS */

U1MODEbits.UEN = 0;

/* configure UART interrupts */

/* interrupt when buffer is not empty */

U1STAbits.URXISEL = 0x0;

/* int when all characters are sent (TRMT == TRUE) */

U1STAbits.UTXISEL = 0x01;

/*clear interrupt flags */

IFS0bits.U1RXIF = 0;

IFS0bits.U1TXIF = 0;

/* set interrupt priority to 1 */

IPC6bits.U1IP = 1;

/* enable interrupt on RX & TX */

IEC0bits.U1RXIE = 1;

IEC0bits.U1TXIE = 1;

/* turn on UART */

U1MODEbits.ON = 1;

Figure 4.1: Code snippet for configuring a UART for the OSAVC. The cryptic register
names and settings are a challenge when writing embedded firmware. The sequence
of configurations are: set the baud rate, turn on the receiver and transmitter, clear the
buffers, set up the flow mode (hardware or software control), configure the interrupt,
clear interrupt flags, define the interrupt priority, enable the interrupts, and turn on the
UART.
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void __ISR(_UART_1_VECTOR, IPL1SOFT) IntUart1Handler(void) {

if (IFS0bits.U1RXIF) { //check for received data flag

if (is_buffer_full(rxp) == FALSE) {

if (reading_rx_buffer == FALSE) {

write_buffer(rxp, U1RXREG);

} else {

/*a collision occurred need to disable interrupts to

exit ISR*/

/*it will be re-enabled in get_char() */

rx_collision = TRUE;

IEC0bits.U1RXIE = 0;

}

}

IFS0bits.U1RXIF = 0; // clear the flag

...

Figure 4.2: Code snippet handling a character received from the UART1.
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4.3 Other Libraries

In addition to the peripheral drivers, there are a few other libraries that are useful for

autonomous vehicles. One is the MAVLink subrepository. MAVLink is an open source

lightweight binary communication protocol3 originally designed for micro aerial vehi-

cles to communicate with ground control stations but now used widely in autonomous

vehicle communication. A second library is a linear algebra library of many common

computations for vector, matrix, and quaternion operations. Another useful library is

an attitude estimation algorithm used to orient a vehicle in three dimensional space. We

present this algorithm in some detail later in Chapter 5. Finally, a general PID controller

library is also available.

4.4 Application Architecture

Finally we have written sample control applications using a state machine approach

to simplify the algorithms to the minimum complexity required. A typical architecture

for an application is shown in the state machine diagram in Fig. 4.3. In this example all

the initializations are performed first, then a simple while loop is entered. At the start of

the loop the current time is queried (one of the libraries in the repository is a hardware

timer) after which the state transition occurs to the next state. The Check Timers state

checks to see if a timer has expired. These are the synchronous events we define. For

example, we could configure a timer for 10 msec (100 Hz) to compute a new control

command. If the control period has elapsed the main loop calls the controller update

in the Service Timer state. Once the control update completes the state checks the next

timer. The Check Timers state is exited once all the timers have been evaluated. Using

this structure we can define as many timers as needed, all based on one hardware timer.

After the synchronous events have been evaluated, the next state is Check Periph-

eral Events. These events are represented by boolean values indicating, for example,

that a sensor has new data to be processed. These events are asynchronous, meaning

3https://mavlink.io/
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that they may occur at any time. If an event has occurred, the state transitions to the

Service Peripheral state—a function which services the event. For example, the radio

control module receives data over UART5. If a new command string from the radio

controller is available, the application calls a function which decodes and stores the

radio controller data. These data consist of the various switch and gimbal settings of

the controller. After decoding and storing the data, the state transitions back to Check

Peripheral Events, which continues until all events have been checked.

At any point in the main loop the microcontroller may be interrupted by the hard-

ware peripherals. This is seen as the arrow in the lower left of the figure labeled ‘IRQ’

and representing an interrupt request. When one is detected, the main loop execution is

paused and the ISR is performed. Once complete the main loop continues.

This architecture is used for both manual and autonomous control of a few different

vehicles presented in Chapters 7 and 8.

Figure 4.3: A simple pattern for a control application on the OSAVC.
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4.5 Developing Control Algorithms on the OSAVC

The architecture presented in the previous section allows for modular controller

update functions. A general controller update flowchart is shown in Fig. 4.4. Once the

control timer has expired, the update sequence is called from the Check Timer state.

The first action is to reset the timer. Next a function is called to estimate the current

state of the vehicle. A state vector consists of all the parameters that define the vehicle’s

dynamics (position, velocity, angular velocity, attitude, etc.). The state vector is sent

to the controller which uses it and the desired state to calculate the outputs (generally

motors or servos). These outputs are sent to the actuators and the execution flow returns

to the calling state.

This architecture demonstrates three great advantages of using the OSAVC. The

first is that both the state estimation function(s) and the controller itself consist of two

files: a header file and a source file. Thus testing a new algorithm is as simple as

replacing two files and recompiling the source code. The second is that it is easy to

evalute the performance of the new algorithms with respect to latency by making use of

the system hardware timer. We use this technique to evaluate benchmark results in the

next chapter. Finally, this architecture allows algorithms to be developed and tested in

Matlab before deploying to the vehicle using the automatic code generation capability

of the software. We used this capability to develop two of the benchmark algorithms in

the next chapter as a demonstration.

38



Figure 4.4: A sample update sequency for a vehicle controller.
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Chapter 5

Benchmark Description

5.1 Introduction

In this chapter we discuss a method for characterizing the performance of the OS-

AVC. The inspiration for this comes from the computer industry which often employs

benchmark tests designed to compare the performance of various systems using a com-

mon algorithm. Ideally, the benchmark study would compare the performance of the

OSAVC against a commercially-available autopilot, for example. However, the dif-

ficulty of implementing a novel algorithm onto such an autopilot is one of the main

motivations for developing the OSAVC in the first place, namely that it is challenging

to modify the source code of these existing devices. Instead, we designed a study that

compares four different hardware configurations: the OSAVC, the Digilent UC32 de-

velopment board, the Raspberry Pi Pico RP2040 microcontroller, and the Raspbery Pi

4b computer hosting a (non-real-time) standard Linux OS. More detail regarding these

processors is found in Chapter 6.1 where we present the results.

The benchmark uses an attitude estimation algorithm developed by Mahoney [22]

to evaluate the hardware systems. Attitude estimation is a method to determine the

orientation of a vehicle in three dimensional space and is used by most autonomous

systems in some form. Attitude estimation algorithms are known as attitude heading

reference systems, or AHRS. This particular algorithm uses two inertial sensors—a
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triaxial magnetometer and a triaxial accelerometer—as well as a triaxial gyroscope

sensor to provide the input to a complementary filter. This filter is discussed in detail in

a following section, however, fundamentally it measures the orientation of two inertial

vectors (gravity and the local magnetic field vector) along with the angular velocity in

the vehicle frame to determine the attitude of the vehicle in the inertial frame. This

approach is similar to the Kalman filter [14] which is optimal when the dynamics are

linear and the noise sources are normally distributed. The complementary filter has

been shown to match the performance of the Kalman filter when tuned properly [6],

moreover it is much less computationally expensive making it suitable for embedded

systems.

The parameters of interest in the benchmark are the mean and distribution1 of the

latency of the filter. Latency is an important parameter because it dictates the speed of

the update rate. For challenging applications, e.g., the stabilization of a quadcopter or

similar UAV, the update rate must be as fast as possible to provide the greatest margin

of stability. The distribution of the latency is also important because variation in the

latency can also affect the stability of the craft.

We implemented four different variations of this filter to provide deeper understand-

ing of the performance of these hardware systems. Two implementations use quater-

nions to represent the attitude in the estimation, one with single precision floating point

numbers, and one with double precision. The other two implementations use direc-

tion cosine matrices (DCMs) to represent the attitude in the algorithm, again one using

single precision floats and one using double precision. These are discussed in greater

detail in Section 5.6.
1If latency were a random variable we would be concerned with the variance, however, the latency

of a non-real-time system is not normally distributed. Instead we will examine the distribution of the
latency values.
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5.2 Complementary Filter

A complementary filter is a feedback filter designed to combine two or more dy-

namic inputs to provide the best estimate of a given parameter. The two different inputs

have different dynamics, in particular, they are accurate in different frequency domains.

A typical application is one where two sensors estimate the same quantity, but one

sensor is accurate in the low frequency domain but has high frequency noise and the

second sensor has good high frequency dynamics but is inaccurate at low frequencies.

A general block diagram for the complementary filter is shown in Fig. 5.1 below and

a derivation can be found in Appendix A. Note that this diagram is specifical to the

case where Yu represents a time derivative of the variable we wish to estimate. If it

were a direct measurement of the variable it would enter the block diagram after the

integration term. Referring to the figure, X̂ is the estimate of the parameter X . Yx is a

measurement of X with good low frequency response and Yu is a measurement of Ẋ ,

the rate of change of X with good high frequency response. C(s) is the transfer func-

tion of the filter and determines the frequency crossover point between the two signals.

Following the signal path from left to right, the difference between Yx and X̂ , form

the error signal, e(s), which is multipled by C(s) and added to Yv. The summand is

integrated to determine X̂ , which is fed back to the input.

Figure 5.1: The complementary filter block diagram.
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5.3 Attitude Estimation

In the AHRS application, we consider an IMU attached to the body frame of a vehi-

cle. The magnetometers and accelerometers of the IMU both have good low frequency

accuracy but suffer from high frequency noise. Gyroscopes, on the other hand, have ex-

cellent high frequency accuracy but suffer from a slowly varying bias. In simple terms

the attitude estimation filter compares the current estimate of the attitude relative to a

known inertial vector, e.g., gravity, acting on the sensor. The difference between the es-

timate and the known value creates an error vector, which can be expressed as an error

rate by the transfer function C(s). This vector is added to the gyroscopic measurement

of the vehicle angular velocity. The resulting vector is the total error rate which is inte-

grated into a rotation applied to the prior attitude estimate to determine the new attitude

estimate.

The filter used for the benchmark algorithm is adapted from [22]. It computes two

different error terms (one using gravity as a reference vector, and one using the local

magnetic field) that are weighted according to their frequency responses and added

together to form a composite error term before including the vehicle angular velocity

and integrated numerically. For purposes of the benchmark, we chose to use the same

weighting of the magnetic and inertial to be the same value, kp = 2.5, and we chose the

integral term KI = .05 as these terms provided good tracking and noise performance.

Note, however, that these terms can be tuned for desired performance using frequency

domain analysis of the filter transfer function. The block diagram of the filter is shown

in Fig. 5.2. It is similar to the one of Fig. 5.1 but differs in implementation. Although

this block diagram demonstrates the DCM implementation of the filter, the quaternion

implementation follows the same logic. Note that this figure only shows a single inertial

vector forming the error term but it should be clear from the discussion above that two

or more inertial vectors can be added to improve the filter estimate. Referring to the

figure, Ωy is the vector of the measured gyroscope rates. These rates are put into the

cross product operator (Ω)×. This is the (skew symmetric) matrix form of the cross

product, i.e., (Ω)×v = Ω × v, and represents the measured vehicle angular velocity.
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Ry is an inertial vector measurement expressed as a DCM, that is, a the inertial quantity

expressed as a rotation in matrix form. The block operation R̂TRy is the matrix method

to form an error term. This is evident if we realize that if R̂ is equal to Ry then the

block yields the I3 identity, which represents zero rotation. The output of this block

is rotation error, R̃. This error is mapped by the skew-symmetric matrix projection

operator Pa(R̃) into an error rate in the same form as (Ω)×, that is, it can be considered

an error rate once scaled appropriately. This scaling is performed by the gain block

k. The output of the gain block and the (Ω)× block are summed together to provide

the total error dynamics A. The multiplication of the previous attitude estimate and A

yields the estimate error rate, R̂A =
˙̂
R, integration of which yields the new attitude

estimate.

Figure 5.2: The attitude estimation filter block diagram expressed for the DCM imple-
mentation, adapted from [22].

5.4 DCM Implementation

The DCM attitude estimation filter is implemented with explicit gyroscope bias

correction estimated in parallel with attitude and uses multiple inertial vector measure-

ments (rather than the rotation matrices, Ry). This is called explicit attitude estimation

and is described by the following equations. Each reference inertial vector, v0i is given

in the inertial frame and is rotated into the body frame using the prior attitude estimate

as given in Eq. 5.1. The cross product of the estimated and the scaled measurements of
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the inertial vectors, vi, are summed together as described by Eq. 5.2 to provide the iner-

tial error rate, ωmes. Separately, the bias rate estimate of the gyroscopes is determined

from Eq. 5.3. Finally, the bias-corrected gyroscope measurements are combined with

the inertial error rate and multiplied by the prior attitude estimate as given in Eq. 5.5.

This quantity is integrated to provide the new attitude estimate using the matrix expo-

nential acting on A∆t as shown in Eq. 5.6, where ∆t is the integration time. for clarity,

we introduce the notation R̂+ and R̂− as the new attitude estimate and prior attitude

estimate respectively. The integration is carried out using the Euler-Rodrigues method

as formulated in [31], given in Eq. 5.7. Finally, the new bias estimate b̂+ is obtained

through forward Euler integration as shown in Eq. 5.8. Again for clarity we represent

b̂+ and b̂− to represent the new and prior bias estimates, respectively.

v̂i = R̂Tv0i (5.1)

ωmes :=
n∑

i=1

kivi × v̂i, ki > 0 (5.2)

˙̂
b = −kIωmes (5.3)

A = (Ωy − b̂)× + kP (ωmes)× (5.4)
˙̂
R = R̂A, R̂(0) = R̂0 (5.5)

R̂+ = R̂− exp(∥A∥∆t(A)×) (5.6)

= R̂−
(
I+

(sin ∥A∥∆t)(A)×
∥A∥

+
(1− cos ∥A∥∆t)(A)2×

∥A∥2

)
(5.7)

b̂+ = b̂− +
˙̂
b∆t (5.8)

The use of the trignometric functions in the integration and the redundancy of nine

terms to represent attitude introduces significant computational burden. Thus we con-

sider another method to implement the algorithm in the next section using quaternions

and quaternion integration.
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5.5 Quaternion Implementation

The quaternion implementation of the attitude estimation filter follows the same

steps as the DCM form. The differences lie in the rotation, calculation of the total

error derivative, and integration steps. The rotation of the inertial vectors, v0i, into the

body frame uses quaternion rotations as given in Eq. 5.9. Note the p() operator which

converts a vector quantity to a pure quaternion2 and the vex() operator which converts

a pure quaternion to a vector. The attitude error rate, ˙̂q is computed in Eq. 5.12 and

is the quaternion analog to the DCM error rate ˙̂
R shown in Eq. 5.5. Using the q̂+ and

q̂− notation to mean the new and prior attitude estimates, the quaternion integration is

shown in Eq. 5.13.

v̂i = vex(q ⊗ p(v0i)⊗ q∗) (5.9)

ωmes :=
n∑

i=1

kivi × v̂i, ki > 0 (5.10)

˙̂
b = −kIωmes (5.11)

˙̂q =
1

2
q̂ ⊗ p(Ωy − b̂+ kPωmes) (5.12)

q̂+ = q̂− + ˙̂q∆t (5.13)

b̂+ = b̂− +
˙̂
b∆t (5.14)

5.6 Implemented Filters

The motivation to evalute two attitude estimation methods with two floating point

precision values is to find the most efficient (with respect to latency) algorithm that

doesn’t compromise accuracy of the result. Trigonometric functions (used to perform

the matrix explonential integration in the DCM version of the filter) in embedded sys-

tems are expensive despite heavily optimized libraries. Floating point operations are
2A pure quaternion is one where the scalar value is zero and can represent an angular velocity. This

is the analogous to the matrix projection operator Pa() in matrix algebra.
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similarly expensive particularly when operating on double precision values which re-

quire 64 bits per number. Since most embedded processors use 32 bit registers, double

precision floating point operations approximately double the latency of a given opera-

tion.

Code efficiency impacts latency as well. One objective of this study is to determine

how automatic code generation compares to hand-written code. It is convenient to de-

velop new algorithms in software suited for that purpose, such as Matlab, and then to

use automatic code generation to translate the algorithm into C, rather than transcribe

the algorithm manually. The advantage to this technique is that it is fast and doesn’t in-

troduce bugs into the resulting code. The disadvantage is that the code is not optimized

for speed. Handwritten code can minimize the number of floating point operations, for

example, by precomputing factors used more than once in a given computation. How-

ever, the code must be debugged and tested rigorously, which increases development

time.

Four different versions of the AHRS filters were implemented. The first version

(version ‘SQM’) uses single precision floating point numbers and a hand-coded quaternion-

based representation of attitude. Version ‘DQM’ is the same as ‘SQM’, except using

double precision floating point numbers. Version ‘DQA’ is the same as ‘DQM’ except

the code is translated from Matlab using automatic code generation. Finally, version

‘DDA’ is the Matlab-coded double-precision DCM implementation. the four verions

were chosen to highlight how the numerical precision requirements, the representation

method, and how automatic code generation affect the latency of the algorithm. The

versions are summarized in Table 5.1
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Version Numerical Precision Implementation Method Code Creation

SQM Single Quaternion Manual

DQM Double Quaternion Manual

DQA Double Quaternion Automatic

DDA Double DCM Automatic

Table 5.1: The four versions of AHRS filters evaluated in this work. Manual code
creation means the algorithms were directly coded, automatic refers to the Matlab code
generation of C functions.
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Chapter 6

Benchmark Results

6.1 Systems Under Evaluation

In this chapter we present the performance of four systems against the benchmark

developed in the prior chapter. The systems are the Digilent UC32, the OSAVC, the

Raspberry Pi Pico and the Raspberry Pi 4b SBC.

The properties of the PIC32 microcontroller used in the OSAVC were discussed

previously, however, we reiterate some of the salient features of it here. It has a single

core MIPS microcontroller operating at 80 MHz. It has 128 Kb of SRAM and 512 Kb

of flash memory. Unlike many microcontrollers it has an extensive list of dedicated

hardware peripherals.

The Digilent UC32 is a development board for the Microchip PIC32MX340 micro-

controller. It has similar specs to the PIC32MX795, but with fewer dedicated hardware

peripherals.

The processor of the Raspberry Pi Pico is the RP2040 microcontroller (designed

by the Raspberry Pi Foundation). It contains dual ARM Cortex M0+ processors op-

erating at 120 MHz (capable of up to 132 MHz), with 264 Kb SRAM and 2 MB of

flash memory. It has a limited number of dedicated hardware peripherals1, however, it

does contain eight distinct hardware ‘slices’ of programmable IO that can mimic many

1This is the main reason this microcontroller is inadequate for a general purpose autopilot.
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different peripherals. Although the RP2040 can support an RTOS, it is tested here with

a light HAL in the form of the software development kit (SDK). The SDK allows for

flexible assignments of the IO pins, lightweight abstractions for the supported proto-

cols, and an optimized math library stored in the ROM that allows for fast floating

point operation.

The last system evaluated in this study is the Raspberry Pi 4b SBC running a Linux

OS (Debian Buster). Its processsor is the Broadcom BCM2711, quad core Cortex-A72

(ARM v8) 64-bit system on chip (SoC). It operates at 1.5 GHz and has 4 GB RAM. It

has 40 general purpose IO pins and supports many common digital protocols.

All experiments used the same sensor for input, the BNO055 IMU communicating

via the I2C interface. This sensor contains two inertial sensors—a triaxial magnetome-

ter and a triaxial accelerometer—as well as a triaxial gyroscope sensor and can operate

at 100 Hz repetition rate, although the magnetometer is only updated at 20 Hz.

The sensor was placed on a small prototype board and powered by the system under

evaluation. The OSAVC, UC32, and the Pi connected to the sensor with wires, the

RP2040 was small enough to be mounted on the prototype board itself. This is shown

in Fig. 6.1.

6.2 Procedure

Attitude estimation fundamentally measures a dynamic state of a sensor, that is,

the orientation and rotation of the sensor in the inertial frame. Ideally, each benchmark

evaluation would involve the sensor undergoing an identical sequence of rotations while

running the estimation filter. One method to accomplish this is to mount three sensors

on a platform and direct the signals to the hardware systems under evaluation. This

is cumbersome, however, and requires more components than were available. Instead

we repeated a sequence of rotations in a total time of approximately 30 seconds of the

sensor for each evaluation. The sequence of rotations is a ±90◦ rotation in the yaw axis,
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Figure 6.1: The Bosch BNO055 IMU mounted on a prototype board along with the
Raspberry Pi Pico.

a ±90◦ rotation in the roll axis, and a ±90◦ rotation in the pitch axis. A sample rotation

sequence is shown in Fig. 6.2.

Inside the algorithm the duration of every iteration of the algorithm was timed with

the internal hardware timers available in the three systems. The algorithm updated

every 20 msec, or at 50 Hz. The resulting update duration and the attitude estimate

were transmitted to a computer that stored the data.

6.3 Results and Discussion

The data for all systems are summarized in Table 6.1 and plots are provided for

more insight into how each system operates with respect to the others.

Despite having similar specifications for the OSAVC microcontroller, the UC32

development board performed the worst of all the sytems tested. Fig. 6.3 shows the dis-

tribution of the latency for three AHRS algorithms (version ‘DQM’ was implemented

after these tests were performed). From this figure, we can see that the filter version

SQM (refer to Table 5.1 for the description of each version) performed the best with a
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Figure 6.2: The rotation sequence used for all benchmark tests. The sensor is first
rotated in the positive and negative direction in the yaw axis, then in the roll axis, and
finally in the pitch axis. All tests were 30 seconds long.
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Figure 6.3: AHRS algorithm latency distributions for the UC32 development board.
This development board performed worse than the other systems evaluated.

mean latency of about 1.37 msec. Version DQA performs significantly worse at 2.70

msec. Finally version DDA has the longest latency of all at 3.12 msec.

The OSAVC performed significantly better than the UC32. Fig. 6.4 shows the la-

tency distributions for four versions of the AHRS algorithm. Not surprisingly, the ver-

sion SQM performs the best with a mean latency of 256 µ sec, follwed by version DQM

at 357 µsec, DQA at 446 µsec, and DDA at 508 µsec.

The Raspberry Pi Pico performed marginally better than the OSAVC for versions

SQM (200 vs 250 µsec) and DQM (approximately 330 vs 357 µsec), but similarly or

worse for DQA and DDA. Plots for the four AHRS filter version are shown in Fig. 6.5.

Interestingly, the histograms, shown in Fig. 6.6, indicate a bimodal distribution of val-

ues around two distinct means rather than the apparently normal distributions for the

UC32 and OSAVC. One possible explanation is that the optimized math libraries resi-

dent in the boot ROM of the Pico have different latencies depending on the conditions

of the algorithm, for example when the angles are small between rotations.
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Figure 6.4: AHRS algorithm latency distributions for the OSAVC.

The results for the Raspberry Pi are shown in Fig. 6.7. These distributions are

clearly distinct from the other systems. First, the latencies are significantly shorter (2-

10 µsec vs 230-550 µsec) but the distributions are clearly not normal. Recall that the

difference between these two versions is just numerical precision, suggesting that the

Pi OS automatically computes at full precision, regardless of the data type. What isn’t

clear in the distributions is the full width of the distributions. While the arithmetic mean

of the version SQM, for example, is 1.8 µsec, the difference between the maximum

value and minimum value is 50.0 µsec.

Another striking difference between the Pi performance versus the other systems

is that the latency depends upon the method of data collection. Early on during the

benchmarking experiments we observed that if the data was streamed from the Pi over

a serial port, the latency was nearly double the value for data stored directly to a file on

the Pi. This is displayed clearly in Fig. 6.8. This effect may be due to the OS running
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Figure 6.5: AHRS algorithm latency distributions for the Raspberry Pi Pico develop-
ment board.

other tasks while computing the estimate, in this case operating the serial port—even

though the data is streamed after the filter completes an update.

6.4 Conclusions

Several conclusions can be drawn from this benchmark study. For the microcon-

troller systems (that is, excluding for the moment the Raspberry Pi) the order of the four

AHRS algorithms from lowest latency to highest was consistent: SQM,DQM,DQA,DDA.

Comparing SQM vs DQM, we can see that single precision calculations are faster than

double precision ones, all else being equal. This is unsurprising for 32 bit microcon-

trollers. We would expect that the double precision calculations would take twice as

long as single precision ones. Because the bulk of the latency is driven by floating

point operations we should expect an increase the total latency by as much as a factor
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Figure 6.6: AHRS algorithm latency histograms for the Raspberry Pi Pico development
board. Note the bimodal distributions, possibly due to optimized math libraries.

of two. The results bear this out with an increase of 95% for the UC32, 43% for the

OSAVC, and 65% for the Pico.

Another observation is that automatic code generation introduces significant latency

increases. Comparing version DQM and DQA on the OSAVC we see an increase of

78 µsec (21%) when using the Matlab-generated functions. The comparison is even

more striking on the Pico, which exhibits an increase of 130 µsec (39%) on average.

These differences are significant, however, but not so large as to discourage the use

of automatic code generation. This points to a feasible path for developing algorithms

on the computer using Matlab and compiling them for the microcontroller without the

introduction of bugs and with a manageable increase in latency. This is important

because it demonstrates a means for vehicle developers to implement real-time control

or estimation algorithms without needing to be specialists in embedded firmware.

Finally, when comparing quaternions to DCMs, we see that DCMs require longer

computation times, ranging from roughly 5% (Pico) to 15% (UC32 and OSAVC). This
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Figure 6.7: AHRS algorithm latency distributions for the Raspberry Pi SBC. The dis-
tributions are not normal but are much faster than the microcontroller-based systems.

is due to the larger number of floating point operations due to the redundant information

carried in the DCM as well as the more expensive method to integrate the result at each

time step. This last is a subtle point. DCMs require the use of the matrix exponential

for integration to ensure numerical accuracy of the result, that is, to ensure that the

resulting attitude from the DCM algorithm is orthonormal. For quaternion integration,

it is possible to integrate using Euler integration and then re-normalize the result if

necessary.

There are a few conclusions we can draw regarding the microcontroller systems

themselves. Clearly, the Digilent UC32 development board performs much worse than

either the OSAVC or the Pico. This is mysterious given the similar microcontroller

specifications and architecture of the UC32 to the OSAVC.

The OSAVC performed slightly worse than the Pico when evaluating the hand-

coded algorithms. In all likelihood this is due to the faster clock speed of the Pico—120

MHz vs 80 MHz. Interestingly, that result is reversed upon comparing the automatic
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Figure 6.8: The latency of AHRS filter version DQM on the Raspberry Pi using two
different methods of data collection: stored directly to a file or streamed over the serial
port. The latencies appear to depend on which method is used. This behavior is likely
the effect of the OS interacting with the filter operation.
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System AHRS Version Mean ± σ (µsec) Max-Min

UC32 SQM 1383 ± 32 1002

UC32 DQA 2704 ± 41 1529

UC32 DDA 3122 ± 26 417

OSAVC SQM 256 ± 0.9 23

OSAVC DQM 367 ± 1.9 62

OSAVC DQA 445 ± 2.7 71

OSAVC DDA 508 ± 3.1 45

Pico SQM 200 ± 5 25

Pico DQM 337 ± 9 38

Pico DQA 467 ± 13 59

Pico DDA 490 ± 16 90

Pi SQM 1.8 ± 1.6 50

Pi DQM 1.6 ± 1.1 29

Pi DQA 2.4 ± 2.3 51

Pi DDA 3.1 ± 2.2 50

Table 6.1: The mean ± standard deviation and maximum difference of latency for the
systems under test and each AHRS algorithm.

code generation in which case the OSAVC outperformed the Pico. It isn’t clear why

this is the case but may be due to an increase in latency due to the use of the SDK as

opposed to bare-metal programming. When evaluating the variation in latency, how-

ever, the OSAVC performed better than the Pico for all AHRS versions. The OSAVC

had less than 0.6% standard deviation over mean for all AHRS variants. The Pico on

the other hand, performed four to five times worse than this for all variants. This ap-

pears to be due to the bimodal distribution of latency for the Pico, possibly as a result

of its optimized math libraries. Although 2.5% latency variation is small, it translates

into additional noise in the attitude estimate due to inaccuracy in the integration time

constant inside the algorithm.
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If we consider that most vehicles will have an update period on the order of millisec-

onds to tens of milliseconds, both the Pico and the OSAVC conceivably can perform the

attitude estimation without consuming the bulk of the time budget allocated to real-time

control. This is an encouraging result.

The last system to discuss is the Raspberry Pi. Its behavior is different than the

microcontroller systems. The benchmark experiments demonstrate that floating point

precision doesn’t affect the latency of the algorithms at least within the bounds of the

experiments. This is likely due to the fact that the Raspberry Pi is running a 64 bit

OS, so all calculations are computed using 64 bit registers regardless of the specified

precision (up to 64 bits, of course).

Although the Raspberry Pi is much faster than any of the microcontroller systems—

as one would expect due to the difference in clock speed and register width—its latency

is not normally distributed. This demonstrates the issue of using a system without a

real-time OS. During these studies, the Raspberry Pi was not running other processes

besides the OS in the background. If, for example, the Raspberry Pi was performing

a background task that was delayed, this would affect the calculation of the attitude

in a detrimental way. This is in contrast to the OSAVC, with its deterministic code

execution. Put another way, while the Pi has much more computational power and

speed than any of the microcontrollers, the OS can’t guarantee a fixed latency, whereas

bare-metal programming does if designed appropriately because there is no OS.

In summary, the OSAVC performed nearly well in terms of latency as the fastest

microcontroller studied, the Raspberry Pi Pico, but had smaller latency variation. The

UC32 had the worst latency of the all the systems. The Raspberry Pi performed the

best by far in terms of latency but the latency distribution when considered relative to

the mean was the worst—understandably, as it is not a real-time processor.
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Chapter 7

OSAVC Testbed: AGV

In this chapter we discuss the development of a test vehicle used to validate the

performance of the OSAVC. we chose to develop an AGV because it can support a

wide range of sensors and actuators with only minor impact on vehicle performance.

Similarly, it has enough payload capacity to add an SBC and TPU. Finally, a ground

vehicle is easier to test without fear of damaging the vehicle or endangering others,

when the inevitable mishap occurs.

The other main research objective for the AGV is to evaluate a hybrid LiDAR-vision

mapping sensor. This sensor uses a camera and a convolutional neural network (CNN)

model that has been trained to recognize specific landmarks in the environment. Once

a landmark is detected, a LiDAR sensor is swept across the camera field of view (FOV)

to identify the relative location of the landmark to the vehicle. This sensor can be used

for SLAM operations (e.g., for use in GPS denied environments) or for autonomous

guidance (e.g., to navigate a closed circuit course using the landmarks to delineate the

track boundaries). Although this research isn’t complete, much of the development is

presented here. The steps necessary to complete the research are in Chapter 9.
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7.1 Distributed Control Architecture

In [15], we proposed a distributed control architecture for resource constrained au-

tonomous vehicles. In particular, we focused on vehicles constrained by payload capac-

ity, energy storage or both. These constraints place unique requirements on a vehicle.

The architecture is demonstrated in Fig. 7.1 and consists of an SBC for guidance and

asynchronous tasks, an edge TPU1 to perform machine learning computations, and the

OSAVC for real-time control.

Figure 7.1: The distributed control system we proposed in [15] consisting of the OS-
AVC (the real-time controller) responsible for navigation, state estimation and control,
a single board computer for guidance and other higher order computations as well as
hosting an OS, and an edge TPU for machine learning computation.

7.1.1 Single Board Computers

A recent article benchmarked the performance of commercially available SBCs

[23]. The results are summarized in Table 7.1. These SBCs have different target mar-

kets. The Raspberry Pi 4b for example, is targeted to the educational market, whereas

Nvidia models use a GPU to target ML mobile applications. Most SBCs reported in

the study have an ARM core for their processor, the notable exception being the Odroid

H2+ with an x86 core. The Nvidia TX2 has an ARM core in addition to a 256-core
1Edge processing refers to a distributed computing paradigm where processors are located closer to

the source of the data.
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GPU to enable ML applications. The results from the study were particular to a spe-

cific set of video operations and therefore the conclusions are not broadly applicable to

general use. Of more interest is the wide range of power consumption (15 to 60 W),

weight (45 to 185 g), and cost ($49 to $479).

SBC Model Clock

Speed

(GHz)

CPU

Cores

CPU RAM

(GB)

Storage

Media

Cost

($)

Power

(W)

Weight

(g)

Odroid XU4 2 8 ARM

32-bit

2 eMMC

or mi-

croSD

49 20(5V,

4A)

60

Odroid H2+ 2.5 4 x86

64-bit

32 eMMC,

mi-

croSD

or

SATA

119 60(15V,

4A)

185

Raspberry Pi 4B 1.5 4 ARM

64-bit

8 Micro-

SD

75 15(5V,

3A)

45

Nvidia TX2 2 4 ARM

64-bit

8 eMMC 479 57(19V,

3A)

85

Table 7.1: A comparison of SBCs from a video processing benchmarking study [23].
Note the Nvidia TX2 also has a 256-core GPU in addition to its 4-core CPU.

We selected the Raspberry Pi 4b for the architecture because of its powerful CPU—

a 1.5 GHz quad-core ARM processor, its large community of users, its Linux OS (and

the associated open source software ecosystem), and its affordability. A vehicle adopter

is given some latitude with this choice, however. The library we use to communicate

between the OSAVC (MAVLink) is compatible with most Linux distributions, so other

SBCs with a compatible Linux distribution will likely work with some modification,

however, many of the SBC applications we developed use Raspberry Pi specific hard-

ware and configurations. These will need to be ported or modified to work on a different

SBC.
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7.1.2 Tensor Processing Units

Edge TPUs for ML applications have recently become widely available to the con-

sumer market. There are two notable models: the Intel Neural Compute Stick 2 (NCS2)

[25] and the Coral USB Accelerator [8]. Both connect to a host computer using a USB

interface, cost less than $100, and are small (65 × 30 × 8mm for the Coral USB Ac-

celerator and similar in size to the NCS2). These attributes allow them to be used with

compatible SBCs. Again, our choice of the Raspberry Pi 4b does not constrain a new

vehicle developer to this SBC as the Coral communicates over USB and the object

detection models are compatible with many different Linux distributions. The main

difference between the two TPUs is the software interface—the Coral unit is manufac-

tured for Google and has native support for their Tensor Flow Lite ML applications,

whereas the NCS2 uses a translation software to convert ML models to a compatible

form.

For the proposed architecture we chose the Coral because of its native support of

TensorFlow Lite image classification and object detection models.

What follows is a discussion of some of the interesting capabilities enabled by this

architecture. The first is using the TPU to help identify landmarks in the environment

and the CPU to provide guidance based on that information. The second is onboard

optimal sensor calibration. A third capability that we have developed is presented in

the next chapter when discussing optimal guidance strategies.

7.1.3 Visual Object Detection

The AGV uses a camera to identify markers that determine the boundaries of a

closed circuit. The course markers are cones of different colors to differentiate between

the left boundary and the right boundary of the circuit. Through a research project

funded by the Google Summer of Code, we developed and trained several machine

learning models to identify the cones, including the MobileNet V2 [39] model, the
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YOLOv52 model [36], and the EfficientDet model [40]. After successfully running

these on standard computers, we ported them to the AGV. We first implemented them

on the SBC where we were able to get object detection at about 1 frame per second.

Fig. 7.2 shows the results of the YOLOv5 model running on the SBC. This model was

accurate in identifying cones at a useful inference rate even in shadow. As seen in

the figure the model returns the bounding box coordinates and confidence level of the

object detection inference. We have been able to compile and test the Efficient Det

model on the TPU, offloading the object detection entirely from the CPU and achieving

frame rates in excess of 10 frames per second.

Figure 7.2: Cone detection using the YOLOv5 object detection mode. The images are
taken from the AGV. The model returns the bounding box coordinates and confidence
level of the detection. The inference frame rate is displayed at the upper left corner
of the image. This model was run on the SBC—we have successfully deployed the
EfficientDet model to the TPU with significantly faster inference times.

7.1.4 IMU Calibration

A key requirement for autonomous navigation is sensor calibration, in particular the

calibration of magnetometer and accelerometer scaling, offset, and alignment variables.

2There is some ambiguity whether this is a new model at all or just a revision of the YOLOv4 model
because the model is unpublished.
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There are numerous algorithms for inertial sensor calibration most relying on fitting a

set of data taken while rotating the sensor around all three axes to an ellipsoid and

determining the calibration parameters through a least squares fit [18]. Because inertial

sensors like magnetometers and accelerometers experience a constant force regardless

of orientation when at rest, a set of data sampled slowly—to minimize accelerations—

and uniformly during rotations around all three axes should describe a sphere centered

at the origin. Rather than perform a direct fit to an ellipsoid, instead we demonstrate

in Fig. 7.3 a simulated calibration using a method that iteratively fits the data to a unit

sphere [10]. This algorithm is written in python and runs easily on the AGV SBC and

computes the calibration parameters without assuming ellipsoidal constraints to the

data. We have employed this algorithm successfully on real data taken on the vehicle

while rotating it through a random series of orientations. We used the distributed control

architecture to sample and store the data, as well as calculate the calibration parameters.

Implementing this algorithm as part of vehicle calibration suite is a rich area of future

research on the platform.

Figure 7.3: IMU sensor calibration simulation. The red dots indicate randomly ori-
ented, mis-calibrated data from an inertial sensor. The blue dots are the calibrated data
after performing an iterative fit to a unit sphere.
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7.2 Hardware

The platform used as a development testbed is the DFRobot Asurada GPX. This

model has been replaced with a substantially similar one, the DFRobot ROB0170 NXP

Cup Race Car Chassis [37]. Sold as a kit, it consists of a small (approximately 34

cm long) aluminum chassis that allows for extensive modification due to numerous

mounting points. It is driven by dual BLDC rear motors rated for 12 V operation at

930 Kv. A 30 A ESC with BLHeli firmware in bi-directional mode conrols each motor.

This means that the motor can be operated both forward and in reverse. A 13:50 gear

reduction is applied to increase the torque at the wheels. It uses an Ackerman steering

mechanism controlled by a servo motor. It has a wheelbase of approximately 174 mm,

and four 65 mm diameter hollow (non-inflated) rubber wheels. It is powered by up to a

three cell lithium polymer or equivalent 12V (nominal) battery. The battery and ESCs

are located on the lower chassis plane in front of the motors. Fig. 7.4 shows the lower

chassis with the steering assembly and the motors installed.

Figure 7.4: View of the GPX Asurada lower chassis. It has independent rear wheel
drive with two BLDC motors. The Ackerman steering assembly, driven by a servo
motor, is mounted in the front of the chassis.

We designed mounts to house Hall-effect rotary encoders to measure the rear wheel

rotation angle and angular velocity and incorporated them into this platform. These

sensors sense the angle of magnets mounted on the end of the driveshafts. The steering
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rotation is measured by an additional encoder with the magnet mounted concentric to

the servo output gear. We also fabricated a small platform to house the OSAVC and

a Raspberry Pi4b SBC and one for the sensors and radio control receiver over that.

A third platform mounts over the steering servo for a object-detection and mapping

module discussed later. An image of the fully assembled vehicle is shown in Fig 7.5.

Figure 7.5: AGV (‘Sparky’)—is a test platform for the OSAVC. Sparky is equipped
with a LiDAR and camera sensor (not mounted) used for landmark detection at the front
of the vehicle. It has a Coral TPU to perform object identification (silver component
mounted on upper chassis plate) connected via USB to the SBC.

The vehicle is equipped with a GPS sensor, IMU, four rotary encoders, and a Li-

DAR (refer to Table 3.1 for a complete description of these sensors). The vehicle has

four outputs controlling the two ESCs for the drive motors, the steering servo, and a

servo to control the pointing direction of the LiDAR. The motors are powered from the

battery directly; the servo motors are powered by the onboard 5V LDO. The vehicle

is also equipped with a serial radio for telemetry communication to a remote ground

station, and a radio control receiver for manual control.

The OSAVC is the real-time controller of the overall system, but it is part of a

larger distributed control system architecture discussed in more detail in the subsequent
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section. The OSAVC communicates over the USB port to a Raspberry Pi4b SBC using

the MAVLink protocol. The SBC connects to the Raspberry Pi V2 camera, used to

record video and detect obstacles or landmarks. It also connects to the Coral TPU for

ML inferencing. The complete block diagram of the AGV system is shown in Fig. 7.6.

Figure 7.6: AGV hardware block diagram. The PIC32 microcontroller is the heart of
the OSAVC and provides all hardware interfaces and peripherals. To avoid complicat-
ing the diagram we simply state that it is connected to every element of the OSAVC.

7.3 Vehicle Model

In this section we present the models for the longitudinal and lateral dynamics sep-

arately in order to separate the steering control and the motor (velocity) control into

distinct controllers. The yaw (steering) rate depends on the rear wheel speed, so first

we control the motor velocity to the desired value, and then determine steering rate

from the vehicle speed and the lateral kinematic model.
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7.3.1 Longitudinal Model

The complete longitudinal model contains all the forces acting in the x axis of the

vehicle. These are represented in Fig. 7.7, where:

• m is vehicle mass

• θ is the inclination of the vehicle

• g is gravity

• Faero is the force due to aerodynamic drag

• Rf is the front tire rolling resistance

• Rr is the rear tire rolling resistance

• Fxf is the force of the front tire in x direction

• Fxr is the force of the rear tire in x direction

Figure 7.7: Force body diagram in the longitudinal direction of a vehicle.

The equation of motion in the longitudinal direction is:

mẍ = Fx,r + Fx,f −Rr −Rf − Faero −mg sin(θ) (7.1)
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Aerodynamic drag is due to the effect of the wind and velocity acting on the vehicle.

In general it is expressed as:

Faero =
1

2
ρCdAf (vx + vwind)

2 (7.2)

where ρ is the density of air, Cd is the drag coefficient, Af is the cross-sectional area of

the vehicle, vx+vwind is the effective wind speed in the x direction. The drag coeficient

can be modeled using computational fluid dynamics or measured empirically.

Rolling resistance describes the resistance to motion of the wheel. It opposes the

direction of movement and is due to the deformation of the tire. The tire deforms due

to the normal force caused by the weight of the vehicle and the torque at the wheel.

As the tire rotates the vehicle compresses the tire. Some of this energy is returned as

the wheel continues to rotate, however, some is lost depending on the inelasticity of the

material in the form of heat. Rolling resistance is typically modeled as proportional to

the normal force of the vehicle or,

Rr +Rf = f(Fz,r + Fz,f ) (7.3)

where f is the rolling resistance coefficient, Fz,r and Fz,f are the rear and front normal

forces on the respective wheels. The normal forces are due to several factors including

the mass of the vehicle, the center of gravity of the vehicle, the grade of the road, the

moment of inertia due to wind resistance, and the moment of inertia due to accelera-

tion/deceleration.

The Fx,r and Fx,f terms are friction forces of the tires acting on the ground. These

are the forces that cause the vehicle to move. These forces are complex and in general

are determined experimentally to depend on the slip ratio of the tire, the normal force

of the tire, and the friction coefficient of the interface between the tire and the road. The

slip ratio σx is defined to be the longitudinal velocity of the axle minus the calculated

rotational velocity equivalent reffω, where reff is the effective radius of the tire and ω
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is its angular velocity:

σx =
reffω − vx

vx
during braking (7.4)

σx =
reffω − vx

reffω
during acceleration (7.5)

(7.6)

The slip ratio is a nonlinear function of the tire and road surface and depends on the

material used in the tire, the road surface itself, and the construction of the tire. For

automobiles tires one empirical model used to describe the nonlinear behavior is the

“Pacejka Magic” model [29]. If the slip ratio is small (σx < 0.1), and the normal forces

are constant (i.e., during small accelerations), the friction forces can be modeled as a

linear function of the slip ratio:

Ff = Cfσx (7.7)

Fr = Crσx (7.8)

for the front and rear tires respectively. Cf and Cr are known as the stiffness coefficients

of the tires.

For a complete treatment of the longitudinal dynamics refer to [35]. This treatment

is, of course, oriented towards the dynamics of a full sized automobile that can travel

at speeds in excess of 100 kph. The question of interest is whether these equations

scale to the AGV. It is apparent that for the real automobile the aerodynamic drag—a

function of the apparent wind speed squared—is the dominant term in the forces on the

vehicle. The tire models are also empirically based on automobile tires and unlikely to

translate with any fidelity to the wheels of the AGV. Finally, an automobile may use a

combustion engine and gearbox so a drivetrain model is of little relevance to the AGV

which uses BLDC motors and fixed ratio gearing.

These issues are addressed in the literature [20] for a much smaller scale vehicle, a

1:43 scale race car. They model the longitudinal dynamics forces using a friction model

of a brushed DC motor and the rolling resistance and aerodynamic drag:

Fx = (Cm1 + Cm2vx)d− Cr − Cdv
2
x, (7.9)
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The authors don’t define the meaning of Cm1 or Cm2 or d—these are evidently the

parameters of the DC motor model—however, Cr is the rolling resistance coefficient

and Cd is the coefficient of drag. This work also provides models for the lateral forces

on the tires taken from an earlier tire modeling paper [2] that is substantially similar to

[29] with similar authorship. Finding these coefficients requires an empirical study of

the torque required to maintain a constant speed over a range of vx achievable by the

AGV and a reduction of the data using a least-squares regression. Note that similar to

the AGV, the vehicles in [20] are rear wheel drive with no braking other than engine

braking so the forces on the front wheel Ff,x are ignored. Thus, Eq. 7.9 is equivalent to

Eq. 7.1 when the vehicle is on flat ground (θ = 0).

We present this material as important background to modeling the full vehicle dy-

namics. It is beyond the scope of this dissertation to find the parameters of such a

model. In fact, it is not necessary to find a full dynamic model to achieve high per-

formance with the AGV. In the development of the speed controller below we treat the

longitudinal dynamics as a BLDC motor, however, a minimum to achieve high perfor-

mance with the AGV is to develop a model of the tire-road friction coefficient in order

to ensure the AGV remains in the small slip regime. This presents an interesting area

for future research.

7.3.2 Lateral Model

The so-called bicycle model is commonly used to represent the lateral kinematics of

an automobile, shown in Fig 7.8. It simplifies the geometry of a real car by considering

only half of a vehicle with front wheel steering. Referring to the figure, the wheelbase

is divided around the center of rotation, Lf and Lr. The steering angle is denoted δf .

The side slip angles, αf and αr represent the direction of travel for the front and rear

tires, respectively. Note that for slow speeds (≤ 5 m/sec) it is safe to assume that the

side slip angles are small and the velocity is in the same direction as the wheels [34].

The vehicle rotates around its center of mass with an angular velocity, ω. The normal
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forces on the tires are denoted as Ff and Fr. The position of the vehicle is referred to

the center of the front tire in Cartesian coordinates of the inertial frame.

y

x

U
V

δf

αf

αr

ω

Fγr

Fγf

Lr

Lf

Figure 7.8: The bicycle model for defining the AGV kinematics.

For the AGV, therefore, the position of the car is referenced to the center of the front

axle. The steering angle δ is the average of the left and right wheel angles. Note that for

an Ackerman steering mechanism [34] these angles in general are not the same. The

steering mechanism is designed such that both wheels rotate around a common center,

thus enabling slip-free steering. Fig. 7.9 describes the geometry of this mechanism.

For the purposes of this dissertation, we ignore the full lateral dynamics of the vehi-

cle. For basic autonomy we can operate the vehicle in the slow speed regime where the

vehicle conforms to the kinematic constraints. For higher performance, at a minimum

we would need to determine the tire model coefficients defined in [29] as done in [20],

on their work on 1:43 scale model cars.
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Figure 7.9: Ackerman steering geometry. The steering mechanism is designed such
that all the wheels orbit around a common origin. The steering angles δl and δf are not
equal. R is a function of δ = 1/2(δl + δr).

7.4 Odometry Model

The AGV uses the SQM variant of the complementary filter presented in Chapter 5

for attitude estimation. Recall that this is the single-precision, hand-coded, quaternion

implementation. However, we also need an odometry model to estimate the position of

the AGV over time. Odometry uses the kinematic model along with the measured speed

of the rear wheels to compute the vehicle pose (i.e., the position and orientation3).

Referring to Fig. 7.8 and Fig. 7.9 we compute the radius of the turn, R, the angular

velocity, ω, and the center of rotation (xc, yc) from the steering angle, δ = 1/2(δl + δr),

3Actually we already know the orientation from the AHRS filter—the z component of attitude—but
we also can estimate it from the kinematic model.
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the heading angle,Ψ, and the wheelbase, L:

R =
L

sin δ
(7.10)

ω = v/R (7.11)

xc = x−R sinΨ (7.12)

yc = y +R cosΨ. (7.13)

(7.14)

Given a small time differential, dt, we calculate the new vehicle state from the old state

given that the vehicle orbits around the same center by ωdt radians:

xc = xk+1 −R sin(Ψk + ωdt) (7.15)

=⇒ xk+1 = xc +R sin(Ψk + ωdt) (7.16)

= xk −R sinΨk +R sin(Ψk + ωdt) (7.17)

yk+1 = yk +R cosΨ−R cos(Ψk − ωdt) (7.18)

Ψk+1 = Ψk + ωdt, (7.19)

where (xk+1, yk+1,Ψk+1) is the new state, and (xk, yk,Ψk) is the old state.

Odometry is used to estimate the vehicle position in the absence of an absolute

measurement, such as a GPS. On its own, however, it quickly accumulates errors to due

to sensor noise and wheel slippage so its absolute positioning is poor. Combined with

a GPS, however, it still serves a useful purpose—namely, it can interpolate between

position updates. This enables less frequent GPS updates, reducing the bandwidth load

on the processor and overall power use. An inexpensive GPS is typically limited to 10

Hz update rates and most come with a default rate of 1 Hz. For vehicles traveling at

velocities significantly greater than 1 m/s, for example, this can lead to significant posi-

tion uncertainty and poor control. For example, a vehicle moving at 10 m/s will travel

one meter between update rates. A vehicle that needs to follow a strict trajectory—for

example a race car—will likely require tighter control to meet its mission requirements.
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Odometry combined with GPS allows for high bandwidth control and low uncertainty

in absolute position4.

Note that we have other means to estimate ω, namely from the bias-corrected gyro

readings of the IMU returned by the AHRS algorithm. This redundant information

leads to an intriguing possibility. We may be able to form a better estimate of ω by

combining the two measurements in a complementary filter. This would enable higher

precision odometry and potentially extend the time between GPS updates further. This

is currently out of scope for this research but should be considered for the future.

7.5 Speed Control

In this section we present a simple speed controller for the AGV. This controller

has two components, the first is the lower level controller that converts a pulse-width

modulated signal into the angular velocity of the motor (ω [rad/sec]). This in turn

is converted to vehicle motion by vx = reffω, where reff is the effective radius of

the tire. In the case of the AGV this controller is a physical component, the ESC

discussed earlier. The second controller is a higher level controller that determines

the acceleration necessary to control the vehicle to a desired velocity and produces the

input to the ESC in the form of a PWM duty cycle. The block diagram of the system

with controller is given in Fig. 7.10.

Figure 7.10: Block diagram of the velocity controller and plant system.

One approach to modeling the vehicle plant is to consider it as an extension of the

motors, that is, a motor connected to the wheels of the vehicle which are subject to

4Also, it can be put into a complementary filter form.
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rolling resistance and aerodynamic forces. We assume a transfer function for a DC

motor in the Laplace domain that relates the angular velocity Ωr(s) to its voltage input

V (s):

G(s) =
Ωr(s)

V (s)
=

b

s+ a
. (7.20)

The motors provide no means for measuring ωr, but we can measure wheel velocity

with the encoders mounted on the drive shafts. We can try to model the motor wheel

system using the same transfer function. Using the autoregression with external input

(ARX) procedure (detailed in Appendix B) we estimated the a and b parameters both

motors of the AGV. For this experiment, the AGV wheels are allowed to rotate freely,

that is, the vehicle is suspended above the ground surface. The results are shown in

Fig. 7.11. We plot the one step lookahead error to quantify the error in one update in-

terval, which in this experiment is 0.01 sec. The error plot has a zero mean suggesting

a good fit to the data but there are noticeable spikes. These spikes correspond to the

motor switching between acceleration and deceleration and may be due to the backlash

in the gears between the motor shaft and wheel axle. Fig. 7.12 shows a step test per-

formed on both motors and the modeled values from the ARX system identification.

Although the motors behave similarly, the noise on the encoders is substantial. This is

likely due to a small misalignment of magnet on the axle to the sensor, compounded

by taking the differential between subsequent angle measurements to compute velocity.

We observed that the magnitude of the error changed as the alignment of the magnets

to the sensor changed, however, this design doesn’t allow us to adjust both magnets in-

dependently. Therefore, we attempted to equalize the error between the two sensors. In

practice, therefore, a low pass infinite impulse response (IIR) filter is needed to smooth

the ripple, thus introducing more latency to the system. One area of future work is

to design a sensor mount for the encoders that allows for adjustments to minimize the

alignment error of each sensor independently.

The low pass IIR filter is a simple recursive filter which weights the difference

between the current measurement and the previous value, xk − yk−1 by a factor, α, and

adds it to the previous value as shown in Eq. 7.22. Smaller values of α shift the cutoff
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frequency of the filter towards lower frequencies.

yk = yk−1 + α(xk − yk−1), or (7.21)

yk = (1− α)yk−1 + αxk (7.22)

One important finding from this modeling is that the motor-wheel system has a rise

time on the order of 10 msec. This is at least as fast as the loop time needed to command

the AGV, so the ESC is more than adequate for the low level control. Not evident in

the plots, however, is the lag time between when the command was issued and when

motion is first detected at the wheel. This lag is significant, on the order of 25 msec,

however, the ‘zero-order hold,’ (ZOH) or digital delay, is 20 msec for this experiment

and comprises most of the delay. A simple modification to the OC module to reduce

the timer period can reduce the ZOH as most ESCs can be driven at 200 Hz or faster,

depending on the specfication of the ESC. These delays and the need for a low pass

filter on the velocity signal introduces latency to the system, degrading its performance

somewhat. The other (perhaps obvious) finding is that with one real pole at (s = −a)

the system is stable for a > 0.

This ARX procedure may be repeated with the vehicle on flat ground in order to

develop a simplified model for speed control. Note that we are essentially designing

cruise control for the vehicle in order to achieve basic autonomy. In the low speed

regime where v2x is small we assume the aerodynamic forces are neglible and model the

plant using Eq. 7.20.

A common approach for a speed controller is a proportional-integral, or PI, con-

troller. The proportional term dominates the dynamic response of the controller while

the integral term ensures zero steady state error. The continuous form of the PI con-

troller is

ve = vx − vref , (7.23)

u = v̇x = −kpve − ki

∫ t

0

vedt, (7.24)

where u is the acceleration command sent to the velocity controller, vx is the forward

velocity, vref is the desired velocity, kp is the proportional gain constant, and ki is the
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Figure 7.11: The ARX system identification procedure for the left motor of the AGV.
The upper plot shows the one step look ahead angle measurement and the predicted
value. The lower plot shows the error between the two. The spikes occur when the
acceleration changes sign, probably due to backlash in the transfer gears.

integral gain constant. The transfer function of the controller is

C(s) = kp +
ki
s

(7.25)

and the closed loop transfer function is given by

C(s)G(s)

1 + C(s)G(s)
=

bkps+ ki
s2 + (a+ bkp)s+ ki

. (7.26)
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Figure 7.12: The modeled versus actual velocities of the AGV motors during a step test.
Also plotted is the filtered velocity. Note the significant encoder noise on the velocity.
This is likely due to misalignment of the magnets to the sensors.

7.6 Heading Control

In this section we discuss the heading control, that is, given a rear wheel speed

and a reference orientation, the control of the steering angle to orient the car in the

desired direction. The approach implemented below is adapted from the literature for

attitude control of a quadcopter using the quaternion error product [13]. This approach

is attractive because the AHRS filter provides the attitude of the AGV in quaternion

form in the inertial reference frame qv. Given a desired reference angle Ψref we can

compute the reference quaternion as:

qref = [cos(Ψref/2), 0, 0, sin(Ψref/2)]
T . (7.27)

The error quaterion is defined as the quaternion product between qref and q∗v , where q∗v

is the quaternion tranpose of qv.

qerr = qref ⊗ q∗v . (7.28)

81



If we assume flat ground (qerr(2) = qerr(3) = 0) then the heading control uh is given

by:

uh = sign (qerr(1))kpqerr(4) (7.29)

where sign(qerr(1)) indicates which direction to turn when crossing over Ψref = ±0 or

Ψref = ±π, and kp is a proportional gain term.

Using Eq. 7.29 with kp = 1 and applying the odometry model from the previous

section, we can simulate the vehicle motion starting from Ψ0 and driving towards a

specific Ψref . Fig. 7.13 shows the vehicle trajectories for Ψref uniformly spaced around

the compass. The resulting trajectories demonstrate that the algorithm works to orient

the vehicle to a specified angle. Moreover, the algorithm is computationally inexpensive

requiring two trigonmetric calculations (to compute qref , three float multiplies, and one

float addition.

Figure 7.13: Simulation of AGV motion for angles uniformly spaced around the z axis.
The vehicle is initially located at the origin, oriented in the +x direction, then uses a
proportional control command based on the quaternion error product and a constant
velocity to navigate.
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7.7 Waypoint Traversal

An autonomous mission ordinarily directs a vehicle to specific locations, rather than

simply orient it in a fixed direction. This is known as pursuit guidance [19]. To do this,

we must first compute the orientation of the waypoint with respect to the vehicle, then

convert it into the reference direction. In other words, given a waypoint at coordinates

(xwp, ywp) and the vehicle at (xv, yv), we compute the orientation (Ψref ) of the waypoint

relative to the vehicle as

Ψref = atan2((ywp − yv), (xwp − xv)) (7.30)

and then construct the reference quaternion of Eq. 7.27. We then compute the error

quaternion and compute the steering command from Eq. 7.29. Fig. 7.14 demonstrates

this process using randomly generated waypoints. As in Fig. 7.13, the vehicle is initially

oriented along the +x axis and located at the origin. As the vehicle reaches a waypoint

within a specified radius, a new waypoint is generated. This process continues for five

waypoints, at which time the simulation ends.

There is an alternative approach to heading control also using quaternion algebra

and fixed waypoints. In this approach, we compute a vector Vi pointing towards the

waypoint from the vehicle, rotate the vector into the body frame using quaternion ro-

tation, then compute the angle Ψwp to the waypoint in the body frame. The heading

control is calculated with a proportional gain kp multiplied with this angle with oppo-

site sign. In summary,

Vi = (xwp − xv, ywp − yv, 0)
T (7.31)

qwp,b = qv ⊗ p(Vi)⊗ q∗v (7.32)

Vb = vex(qwp,b) = (xwp,b, ywp,b, 0)
T (7.33)

Ψwp = atan2(ywp,b, xwp,b) (7.34)

uwp = −kpΨwp. (7.35)
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Both algorithms work equally well in simulation, the only difference lies in the

computation time, which may favor the first approach slightly due to computing the

quaternion error product rather than a quaternion rotation.

Figure 7.14: Simulation of AGV motion through a series of randomly generated way-
points. The vehicle is initially at the origin, oriented in the +x direction. Each waypoint
is represented by an open circle.

7.8 Experimental Validation

In this section we present experimental results to validate some of the theoretical

treatments of the previous sections. We have already shown the system identification

of the motor models, and discussed the need for filtering the wheel angular velocity

measurements. For the following plots, we implemented a low pass IIR filter with an α

parameter of .03, which smoothed the periodic ripple in the measuremets at the cost of

about 200 msec delay. We then developed the inner controller for the vehicle velocity

at the rear wheels. Fig. 7.15 shows results for the PI controller. The controller uses

a proportional gain (kp) of 80 for both plots, but an integral gain of ki = 20 in the

first plot, and a gain of ki = 80 for the second plot. The kp parameter was chosen

to be responsive enough with minimal wheel slippage when performing a step test.
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We increased integral gain iteratively to achieve zero steady state error quickly, in this

case only 2-3 seconds versus about 8 for the initial controller. All of the experimental

data was recorded using the SBC on the vehicle—demonstrating the usefulness of the

distributed architecture.

Figure 7.15: Velocity control of the AGV using the PI controller. The left hand image
has kp = 80 and ki = 20. This tuning results in a relatively slow time to reach steady
state, about 8 seconds. Therefore, we increased the integral gain iteratively to achieve
the results in the right hand plot. The final parameters are kp = 80 and ki = 80.

Once the inner control loop was working, we implemented the heading controller

and waypoint guidance algorithm. Rather than rely purely on the odometry model to

determine the heading of the vehicle, the algorithm corrects the estimated heading using

the attitude estimate from the AHRS filter after each odometry computation. Thus,

the vehicle can orient itself even indoors enabling autonomous missions. The heading

controller is a pure proportional controller, essentially always pointing the wheels in the

direction of the next waypoint. This is an implementation of pursuit guidance [19], with

multiple fixed waypoints. A simulated mission using five waypoints and a real mission

with the same waypoints is shown in Fig. 7.16. The waypoints are the black diamonds

in the plots. Initially, the vehicle is oriented south, that is, in the −y direction. Both

the simulation and the data demonstrate that the vehicle is able to orient itself properly

and head for each waypoint in turn. When the vehicle is within a certain distance of
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the current waypoint, in this case set to 1 meter, the algorithm loads the next waypoint.

The mission ends when there are no more waypoints.
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Figure 7.16: Simulation of an AGV mission and experimental validation. The ini-
tial orientation is in the −y direction (south). The comparison suggests that the vehi-
cle kinematic parameters may need refining but is nevertheless reasonable. The data
plot was taken from an indoor mission using odometry and attitude estimation for
navigation.

Fig. 7.17 is the same experimental mission, but in this case the vehicle is oriented

in different directions at the start. This figure demonstrates the robust nature of the

attitude estimation to orient the vehicle.

We performed one additional indoor experiment to evaluate the quality of the odom-

etry measurements. For this experiment the vehicle performed a simple two waypoint

mission, after which we manually drove it back to the start position. The total mission

length was approximately 8 meters and repeated 10 times. we define the mission error

to be the difference between the expected distance from the final waypoint (0.5 meter)

and the actual distance at the end of the mission. The mean rms error and standard

deviation after the missions was 0.48±0.13 meters. If the odometry errors were nor-

mally distributed then we could expect the variance to be proportional to the length of

the mission. Of course, the errors are not normally distributed due to the non-linearity
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of the odometry model, however, the variance nevertheless increases with longer mis-

sions. This highlights the importance of having an absolute reference to position, e.g.,

the GPS sensor. For missions in the absence of GPS information, the vehicle must

map its location relative to the local landmarks using a localization algorithm such as

SLAM.
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Figure 7.17: Autonomous missions with the AGV in different initial orientations. Each
mission uses the same waypoints, shown as black diamonds. These missions used
odometry and attitude estimation for navigation.

7.9 Conclusions

The AGV proved to be an ideal test bed to showcase the capability of the OSAVC

and the overall control system architecture. It is also an excellent starting point for

future research into many different areas, such as optimal time trajectory tracking, GPS-

denied navigation, autonomous mapping and many other possibilities.
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Chapter 8

Use Cases

In this chapter we detail three additional use cases that utilize the OSAVC architec-

ture, an ASV, a quadcopter UAV, and a fixed-wing UAV.

8.1 Autonomous Surface Vessel

The ASV is shown in Fig. 8.1. It is designed to autonomously map a marine envi-

ronment, shown here mapping the depth of a freshwater pond. The research goal of the

ASV is to determine an optimal (in terms of energy expenditure) trajectory for mapping

an unknown environment. The aim is to improve upon a traditional mapping technique

known as ordinary kriging [44], which is an optimal method for estimating a field from

a few discrete measurements using a form of Gaussian process regression. The main

issue with this method is that its complexity grows as O(n3), where n is the number of

observations and therefore is unsuitable for resource-constrained vehicles relying on an

SBC for mapping and guidance computation. In addition to the field estimation prob-

lem, the other research goal is to determine an optimal path through the environment

based upon the uncertainty of the field estimation.
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Figure 8.1: The ASV mapping the depth of a freshwater pond in Santa Cruz, California.

8.1.1 Hardware

The ASV is a catamaran vessel with twin BLDC motors and rudders for propulsion

and steering. Each motor is controlled independently with an ESC by an OC module.

The rudders are connected to a single servo that is controlled by an additional OC

module. The boat uses the Max32 development board and the OSAVC I/O rev 1.2

daughter board instead of the integrated OSAVC board.

The ASV employs three of the sensors for navigation: GPS, IMU, and a rotary

encoder. These all use the sensor drivers from the OSAVC code repository. The encoder

is used to measure the servo angle of the rudders, the GPS provides absolute position

and velocity, and the IMU provides attitude. The boat uses an AHRS algorithm similar

to the one used to benchmark the OSAVC but implemented by the developer of the boat

and placed in the OSAVC repository as a contributor.

Like the AGV, the ASV uses the Raspberry Pi4b SBC for its guidance computer

and communicates via USB using the MAVLink communication protocol.

In addition to the common hardware and firmware, the developer of the ASV (Pavlo

Vlastos) also implemented some custom additions. The main one to mention here is a
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Figure 8.2: ASV hardware block diagram.

EMO hardware switch that disables the motors in case of emergency. Additionally, the

he uses a sensor not in the repository—a sonic depth gauge used to map the ocean or

lake floor. This sensor connects to the SBC directly. The block diagram of the ASV is

in Fig. 8.2.

8.1.2 Results

To make the ordinary kriging method more computationally tractable, we intro-

duced a method known as partitioned ordinary kriging [41]. Fig. 8.3 shows the theoret-

ical results of this method against the true field and two other estimates. This method

reduces the overall complexity of a field by subdividing it into smaller partitions and

only updating the field estimate within the partition. We deployed it to the SBC to

demonstrate feasible use in the field [43]. Vlastos introduced an optimal search method

using the variance of the field estimate and implemented it on the ASV in his PhD

disssertation [42]. More information regarding the ASV and these algorithms can be

found there as well.
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Figure 8.3: The method of partitioned ordinary kriging (POK) against the true field, the
field estimate from the ordinary kriging (OK) method, and an iterative ordinary kriging
method(IIOK). We demonstrated that POK had equivalent accuracy but improved the
computational load significantly.

8.2 Quadcopter UAV

The next vehicle using the OSAVC architecture is a quadcopter. This vehicle is

designed to localize itself in environments where GPS is either unavailable or intermit-

tent. The research goal is to demonstrate a method to identify features in the landscape

using the TPU and a monocular camera from a pretrained model. The vehicle has a

map where these landmarks are geo-referenced to GPS. The source of the map can be

taken from existing imagery or mapped and geo-referenced prior to the mission. The

vehicle locates itself in the environment by comparing its current pose relative to two

or more landmarks that it identfies in flight. Fig. 8.4 is an image of the vehicle during

its hardware development.

91



Figure 8.4: Quadcopter UAV hardware. The OSAVC is mounted underneath the SBC.
Not visible is the GPS and IMU sensor.

8.2.1 Hardware

The quadcopter consists of a commercially available kit that includes the frame,

power distribution board, ESCs, motors, and propellers. The motors are 930 Kv rated

BLDCs and powered by a 12 V LiPo high discharge battery. Adapted to the frame is

a custom module containing the OSAVC, the sensors, the radio control receiver, the

serial radio, and the SBC.

The vehicle is equipped with IMU and GPS sensors. The next step in the develop-

ment will incorporate a barometer for altitude measurements, a monocular camera for

landmark detection, a LiDAR for range measurements to the landmark, and a TPU to

run the landmark detection model.

With the exception of the barometer, all the sensors and devices listed above use the

drivers from the OSAVC repository. The hardware block diagram is shown in Fig. 8.5.

8.2.2 Status

The quadcopter is under development. The current effort is to develop the flight

control algorithms onto the OSAVC. The controller code and the AHRS algorithm have

been adapted for use from the AGV examples. It currently has all the navigation sen-
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Figure 8.5: Quadcopter UAV hardware block diagram.

sors and the AHRS attitude estimation algortithm functioning. We plan to follow the

approach in Fresk, et al. [13], using cascaded proportional controllers based on the

quaternion error product, as it matches with the AHRS quaternion output. This ap-

proach looks promising in simulation but doesn’t have experimental validation. One

intermediate research goal is to provide this validation.

8.3 Fixed-Wing UAV

The last platform that we plan to equip with the OSAVC architecture is a fixed-

wing UAV. This UAV is Young Wang’s master’s project from the Autonomous Systems

Laboratory. The goal of the UAV is to provide an inexpensive, easy to fabricate UAV.

A second team of engineering students are adapting the OSAVC to create a research

platform for students to evaluate flight control algorithms.
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8.3.1 Hardware

The UAV is designed entirely out of foamcore so that it can be fabricated on a

laser cutter and glued together in a matter of hours. The airframe is equipped with a

front-mounted BLDC motor and propeller powered by a three cell LiPo battery and

controlled by a 25 A ESC. It has ailerons, a rudder, and elevators for control surfaces.

They are all controlled by small servomotors. It is currrently equipped with only a GPS

sensor, commercial flight controller (with a built-in IMU), and an RC receiver.

In this configuration it is not possible to develop new flight control algorithms for

two reasons. The first is that without access to the IMU data, attitude estimation—a

mandatory component for the experimental flight controller—is impossible. The sec-

ond is that it is not possible (at least easily!) to import novel flight control algorithms

into the commercial flight controller. Indeed, this is the main purpose of the OSAVC.

These areas will be addressed in the next phase of development where the vehicle will

be equipped with the OSAVC, IMU, and serial radio. It optionally may include an

airspeed sensor. Unlike the other vehicles under development, this vehicle does not

currently plan to use the full distributed control architecture. The hardware block dia-

gram of the UAV in the final state is in Fig. 8.6.

Figure 8.6: Fixed wing UAV hardware block diagram.
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8.3.2 Status

The plane is fully designed and tested. In the academic 2022-2023 year a team of

undergraduate researchers plan to implement the OSAVC architecture onto the plane for

their senior engineering project. It will use an existing flight control model developed

at the ASL, but the model gains will be developed in simulation by student researchers

and flight tested on the aircraft. One stretch goal is to adapt the OSAVC firmware to

an inexpensive commercial flight controller for this project as a way to reduce the cost

of the aircraft. Fig. 8.7 shows the plane as well as a section of the model where the

OSAVC is housed.

Figure 8.7: The left image shows the fixed-wing UAV. The right image is a model
demonstrating where the OSAVC (green rectangle) mounts in the fuselage relative to
the motor, battery (blue), and rudder and elevator servomotors.

As of this writing the team has already demonstrated the OSAVC in a hardware-in-

the-loop configuration where a custom simulator is communicating to the OSAVC via

MAVLink packets over serial, the autopilot control algorithm is running on the OSAVC

and controlling the UAV actuators, and the OSAVC is sending actuator commands back

to the simulator.
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Chapter 9

Future Work

Perhaps the main value of the research done for this project is that it enables future

research, because it is designed to be a starting point for a new autonomous vehicle. In

this chapter we present several of the projects that are currently envisioned or already

underway. Some of these have been presented in Chapter 8, others have been suggested

along the way.

9.1 Quadcopter Flight Controller

One of the projects underway is the quadcopter flight controller detailed in Sec-

tion 8.2. Rather than repeat that here, we suggest a development path for how to im-

plement the controller and the distributed architecture discussed in Section 7.1. The

status of the project at the time of writing is that the hardware is in place and includes:

the quadcopter vehicle, the OSAVC, sensors, SBC, camera, and TPU. The manual con-

trol interface via the radio controller is complete including the mixing of the channels

(quadcopters mix pitch, roll, and yaw controls to the motors depending on the orienta-

tion of the frame). The attitude estimation algorithm is in place. Attitude stabilization

controller development is in progress.

The path towards vehicle autonomy is:

• Complete the stabilization algorithm (proportional inner loop control).
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• Implement propotional motion control (outer loop control).

• Implement altitude control.

• Implement autonomous takeoff.

• Implement waypoint guidance as detailed in Section 7.7.

9.2 Fixed-wing Flight Controller

Another project currently underway is a flight controller for a fixed-wing plane,

discussed in Section 8.3. This project is a test vehicle that engineering students will use

to test controllers they have developed in a class on fixed-wing UAVs. The plane itself

has been developed and includes a commercial flight controller. The steps to complete

this project are:

• Acquire and implement any sensors that are needed (e.g., barometer for altitude

measurement and optionally an airspeed sensor).

• Create the prototype control loop presented in Section 4.5.

• Implement the control algorithm used in the course with assistance of the course

instructor.

• Optionally, recreate the firmware of the OSAVC to use an inexpensive, commer-

cially available flight controller.

9.3 Hybrid Vision-LiDAR Mapping Sensor

Another project underway is to integrate the visual obstacle identification model

and LiDAR data into a mapping sensor. Although we have developed the hardware and

submodules for the sensor and integrated them onto the AGV, the final algorithm hasn’t

been developed and is presented here as future work. The specific implementation on
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the AGV uses a pre-trained model on the Efficient-Det framework to identify three

types of colored cones and provides the bounding box coordinates for each detection.

These coordinates indicate a landmark within the field of view of the camera. The cor-

responding LiDAR data are used to confirm the existence of the obstacle and to provide

a measurement of both the range and bearing of the landmark. These measurements

can used to generate a map of the landmarks or put into a SLAM framework to localize

the vehicle (e.g., in the case of a GPS-denied environment). This will appear in a future

publication.

9.4 System Identification of a Ground Vehicle

Yet another project underway is to use GPS data to identify AGV parameters that

inform its kinematic and dynamic model. The main goal of this project is to use the

GPS data to refine and calibrate parameters of the vehicle that are difficult to measure

directly, in particular, the effective tire radius, the relationship between the measured

servo angle and the vehicle angular velocity, and the static coefficient of friction be-

tween the tires and a given road surface. The effective tire radius is used to determine

the vehicle speed accurately in the odometry model. The GPS provides an indepen-

dent estimate of the vehicle velocity. The ratio of GPS velocity and rear wheel angular

velocity is the effective tire radius. By itself this parameter calibrates the odometry

model for velocity. Once determined, it helps identify the transfer function between the

steering servo angle and the vehicle angular velocity (as well as turning radius) using

least-squares regression and GPS position data. We can use the calibrated odometry

models to determine the lateral and longitudinal dynamics of the tires. Independent po-

sition and velocity measurements compared against the odometry estimates provide a

convenient mechanism to determine wheel slip. Finally, slip detections keeps the AGV

in the non-slip regime and is used to identify the road-tire interface parameters in-situ,

that is, during mission operation. This work will be published the 2023 ION/PLANS

conference proceedings.
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9.5 Autonomous Race Car

A rich area of research using the AGV platform and combining Sections 9.3 and

9.4 is to develop an autonomous race car. In this project the mapping sensor is used

to determine the inner and outer race track boundaries and the road-tire interface pa-

rameters determine the friction limits of the tires. The goal of the research would be to

provide optimal guidance through a given course once its boundaries are autonomously

mapped and the road-tire friction parameters determined.

9.6 Autonomous Vehicle Course

Yet another possible use of the OSAVC is as part of a high school or university

course on autonomous vehicles. In this idea, a class is structured around developing

an autonomous vehicle of some type using the OSAVC and distributed architecture

presented earlier along with a suitable vehicle platform.

9.7 Final Thoughts

The ideas presented in this chapter are a small subset of possibilities enabled by

this research. We hope that by detailing the ones in progress others can think of new

areas to pursue. In fact, this project has already helped several student researchers

through collaboration with CROSS and the Google Summer of Code. We believe it can

continue to provide this opportunity going forward because of its open source bonafides

and established relationships in the open source world.
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Chapter 10

Conclusions

Unlike many academic research projects, this work has often been collaborative

with students from ASL as well as interns from the Google Summer of Code program.

It is our belief that individuals working together will always exceed the accomplish-

ments of those same individuals working separately. This is one of the main reasons

we chose to make this project open source–to promote collaborative development. It

was exceedingly gratifying, therefore, to see so much interest in the project from all

over the world as well as here at home. Perhaps the greatest potential contribution

of this research is to provide a control platform to enable future autonomous vehicle

research and a community to collaborate with.

Our hope is that by developing the OSAVC and integrating it into a distributed

control framework, vehicle developers can take advantage of the power of embedded

programming. We also hope that by following the example code they will be able

modify it for their own purposes, tremendously shortening the learning curve.

Embedded programming in C can be a daunting prospect to the programmer unfa-

miliar with the process. Paradoxically, good embedded programming practices make

understanding and troubleshooting real-time systems easier. This is because every as-

pect of the program is dictated by the programmer—there are no hidden mechanisms

behind the scenes. Therefore, while hardware abstraction (RTOS or HAL) does al-

low for relatively easy coding of complex tasks, it hides important aspects of what is
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happening at the hardware level. While this may not matter for many applications,

for real-time control it is critical to understand the operations of the microcontroller

and the hardware peripherals to ensure predictable latency and efficient code. Also,

understanding the low-level hardware allows for easier troubleshooting of faulty code.

A summary of the contributions of this research are:

• An open source design of a real-time autopilot that is vehicle agnostic, that is,

easily adaptable to many different types of craft. It fits within a modular system

architecture of our design suitable for resource-constrained autonomous systems

along with open source libraries for many common functions.

• An open source repository including hardware design files, microcontroller ini-

tialization code, sensor and actuator libraries for common sensors and outputs,

attitude estimation and other navigation algorithms, and vehicle control algo-

rithms.

• A benchmark algorithm to evaluate real-time hardware performance and an eval-

uation of the performance of four different processors (three microcontrollers and

one SBC) using the benchmark.

• A ground vehicle platform suitable for demonstration of the controller capabil-

ities presented in detail here. Three additional use cases using the real-time

controller within the distributed architecture that are either completed or under

development.

• A custom object detection algorithm trained to identify landmarks in the environ-

ment and deployed to a TPU.

• A sensor module consisting of a camera, a lightweight LiDAR, and a panning

servo designed to be used in conjunction with the object detection algorithm for

mapping landmarks.
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Appendix A

Complementary Filter

Figure A.1: Block diagram for the complementary filter.

The block diagram for a complementary filter is shown in Fig. A.1. In the figure Yx

represents one measurement of x, Yu represents an independent measurement of ẋ (the

time derivative of x) and the filtered estimate is x̂. We consider Yu to be accurate in the

high frequency domain, and Yx to be accurate in the low frequency domain. C(s) is the

complementary filter itself. Using block diagram algebra, we see that:

{(Yx − x̂)C(s) + Yu}1/s = x̂ (A.1)
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solving for x̂ yields:

x̂ =
Yx(s)C(s) + Yu(s)

s+ C(s)
(A.2)

= Yx(s)
C(s)

s+ C(s)
+ Yu(s)

1

s+ C(s)
(A.3)

=
C(s)

s+ C(s)
Yx(s) +

s

s+ C(s)

Yu(s)

s
(A.4)

We define

T (s) =
C(s)

s+ C(s)
and (A.5)

S(s) =
s

s+ C(s)
(A.6)

where S(s) is called the sensitivity and T (s) is called the complementary sensitivity

because T (s) + S(s) = 1 at all frequencies, s. Thus the complementary filter provides

a weighted estimate as a function of frequency of x given two different measurement

inputs. The dynamics of the filter C(s) determine the crossover frequency between the

two measurements. Typically, Yx is accurate at low frequencies but noisy, whereas Yu is

accurate at higher frequencies but has some measurable inaccuracy at low frequencies,

usually in the form of a slowly varying bias near DC.

Typically C(s) = kp, a proportional gain, or if there is a constant bias, then C(s) =

kp+ki/s for integral control action to remove the bias. Using the Final Value Theorem

we can show that integral action will remove a constant bias from the filter estimate

completely.
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Appendix B

Auto Regression with External Inputs

Autoregression with external inputs or ARX is a system identification model for a

time-invariant system. The example below demonstrates how to find the motor param-

eters from a sequence of data taken with random white noise input. A common transfer

function model for a DC motor relating the input voltage u to the motor velocity ω

takes the following form in the Laplace domain:

Gωu(s) =
b

s+ a
(B.1)

The transfer function that relates the input voltage to the motor angle y, therefore takes

the form

Gyu(s) =
b

s(s+ a)
(B.2)

The discrete form is found using the zero-order hold approximation by solving the

following:

G(z)yu =
z − 1

z
Z

{
b

s2(s+ a)

}
(B.3)

to find the Z transform of the expression in braces first calculate partial fraction expan-

sion of the terms, then take the Z transform of each terms. Partial fraction expansion

yields:

b
1

s2(s+ a)
= b

[
c

s
+

d

s2
+

e

(s+ a)

]
(B.4)
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With following values for c, d, e:

c = − 1

a2
, d =

1

a
, e =

1

a2
(B.5)

Determining the Z transform of each term results in the following expression (where T

is the sample time):

G(z)yu =
z − 1

z

[
−b

a2
z

z − 1
+

b

a

Tz

(z − 1)2
+

b

a2
z

(z − e−aT

]
(B.6)

This simplifies to the following:

G(z)yu =
−b

a2
+

b

a

T

(z − 1)
+

b

a2
z − 1

(z − e−aT )
(B.7)

=
b

a2
(aT + e−aT − 1)z − aTe−aT − e−aT + 1

(z − 1)(z − e−aT )
(B.8)

To determine the motor parameters we need to develop the difference equation of an

autoregressive model with external inputs (ARX). The general form is:

Y (z) =
B(z)

A(z)
u(z) +

1

A(z)
e(z) (B.9)

The first step is to determine the difference equation of the discrete transfer function

developed in B.8.

Y (z)

U(z)
= G(z)yu =

b

a2
(aT + e−aT − 1)z − aTe−aT − e−aT + 1

(z − 1)(z − e−aT )
(B.10)

=⇒ Y (z)(z2 − (1 + e−aT )z + e−aT ) (B.11)

= U(z)
b

a2
[
(aT + e−aT − 1)z − aTe−aT − e−aT + 1

]
(B.12)

=⇒ y(k) = (1 + e−aT )y(k − 1)− e−aTy(k − 2)+ (B.13)

b

a2
[
(aT + e−aT − 1)u(k − 1) + (1− e−aT − aTe−aT )u(k − 2)

]
(B.14)

This has the general form for a second order system of:

y(k) = −a1y(k − 1)− a2y(k − 2) + b1u(k − 1) + b2u(k − 2) (B.15)
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Now the data is placed into matrix form where each row represents the difference equa-

tion for a given time k.

Y = SΘ̄ where: (B.16)

Θ̄ =


a1

a2

b1

b2

 (B.17)

where one row of the matrix equation takes the form:

y(k) =
[
−y(k − 1) −y(k − 2) u(k − 1) u(k − 2)

]
Θ̄ (B.18)

Equating the parameters from the system transfer function we find:

a1 = (1 + e−aT ) (B.19)

a2 = e−aT (B.20)

b1 =
b

a2
(aT + e−aT − 1) (B.21)

b2 =
b

a2
(1− e−aT − aTe−aT ) (B.22)

To find the best estimate of the polynomial coefficients a least squares approximation

to the data is found:

Θ̂ = (STS)−1STY (B.23)

The last step is to extract the a and b parameters from the polynomial coefficients. The

parameter a can be calculated from a2 and b can be determined from b1

a = − log(a2)/T (B.24)

b = b1a
2/(aT + e−aT − 1) (B.25)

These values of a and b are the best estimate of the continuous parameters of the motor

given the model in B.1.
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