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Abstract: Accurate estimation of parameters is paramount in developing high-fidelity models
for complex dynamical systems. Model-based optimal experiment design (OED) approaches en-
able systematic design of experiments to generate input-output data sets with high information
content for parameter estimation. Standard OED approaches however face two challenges: (i)
experiment design under incomplete system information due to unknown true parameters, which
usually requires many iterations of OED; and (ii) incapability of systematically accounting for
the inherent uncertainties of complex systems, which can lead to diminished effectiveness of
the designed optimal excitation signal as well as violation of system constraints. This paper
presents a robust OED approach for nonlinear systems with arbitrarily-shaped time-invariant
probabilistic uncertainties. Polynomial chaos is used for efficient uncertainty propagation. The
distinct feature of the robust OED approach is the inclusion of chance constraints to ensure
constraint satisfaction in a stochastic setting. The presented approach is demonstrated by
optimal experimental design for the JAK-STAT5 signaling pathway, which regulates various
cellular processes in a biological cell.

1. INTRODUCTION

The prediction capability of first-principles models of com-
plex dynamical systems largely relies on the accuracy of
model parameters. Parameter estimation for complex sys-
tems is often a challenging task due to nonlinear nature
of system dynamics as well as system uncertainties and
disturbances that are ubiquitous in real-world applica-
tions. Hence, dynamic experiments that provide as much
information as possible about the system dynamics in the
face of system nonlinearities and uncertainties are crucial
for obtaining accurate estimates of model parameters. This
consideration has led to the development of model-based
optimal experiment design approaches (e.g., see [Pronzato,
2008] and the references therein) that facilitate systematic
design of the excitation inputs to maximize the informa-
tion content of dynamic experiments. Optimal experiment
design (OED) also enables seeking trade-offs between the
economic costs and information content of dynamic ex-
periments, which is particularly important when dynamic
experiments are economically expensive [Bombois et al.,
2006].

The primary challenge in model-based OED approaches
arises from the fact that the OED problem depends on the
unknown model parameters. Hence, the excitation inputs
are designed merely based on the current best estimate
of the parameters, which can be largely different from
the true parameter values. Designing experiments under
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incomplete system information (i.e., unknown true param-
eters) is likely to diminish the effectiveness of the optimal
excitation inputs and, therefore, lead to loss in information
content of the designed experiments [Asprey and Macchi-
etto, 2002]. Another difficulty in OED originates from the
inherent system uncertainties that can result in violations
of (state and/or output) constraints incorporated into the
OED problem.

One approach to deal with the inadequate system in-
formation and system uncertainties in OED is to adopt
sequential experiment design strategies that repeatedly
estimate the model parameters and redesign the experi-
ments till parameter estimates with admissible uncertainty
are obtained [Asprey and Macchietto, 2002]. Sequential
OED can however be economically infeasible for certain
applications due to high costs of experiments. Alterna-
tively, robust OED approaches allow for systematically
accounting for the effects of uncertainty on the designed
experiments by devising the excitation inputs based on a
prespecified parameter range around the nominal values.
Various robust OED formulations have been proposed in
terms of min-max optimization problems, in which un-
certainties are typically assumed to be deterministic and
bounded [Pronzato and Walter, 1985, Korkel et al., 2004,
Flaherty et al., 2006, Goodwin et al., 2007, Welsh and
Kong, 2011]. In min-max robust OED approaches, the
excitation inputs are designed with respect to worst-case
uncertainty realizations, and constraints are satisfied for
all admissible values of uncertainties. Such robust OED
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approaches discard the statistical properties of uncertain-
ties, and can be conservative if the worst-case uncertainty
realizations have a small probability of occurrence.

This paper considers the problem of robust OED for
nonlinear systems with time-invariant probabilistic uncer-
tainties. In the proposed approach, parametric and ini-
tial condition uncertainties are described by probability
distributions (instead of bounded sets), which can often
be readily obtained from a (previous) model identifica-
tion procedure [Ljung, 1999]. The probabilistic experiment
design framework circumvents the conservatism of worst-
case OED approaches, as the probability of occurrence
of different uncertainty realizations is directly accounted
for in design of experiments. More importantly, chance
constraints (aka probabilistic constraints) are incorporated
into the OED problem to seek a trade-off between the
information content of a designed experiment and allowing
for prespecified levels of (operational) risks during the
experiment. Chance constraints enable satisfaction of con-
straints with a desired probability level in the presence
of system uncertainties (e.g., see [Schwarm and Nikolaou,
1999, Calafiore and Campi, 2006, Oldewurtel et al., 2013,
Mesbah et al., 2014a] for the application of chance con-
straints in stochastic optimal control problems). Recently,
Telen et al. [2014] have also used chances constraints for
OED of nonlinear systems.

A nonlinear optimization problem with chance constraints
is presented for robust OED (Section 2). The objective
function of the OED problem is defined in terms of the
weighted sum of the expected value and variance of a scalar
metric of the Fisher information matrix (Section 2). Such
an OED objective function enables maximizing the infor-
mation content of the dynamic experiments, while mini-
mizing the variance of the information content with respect
to realizations of the probabilistic system uncertainties.
Efficient propagation of uncertainties through the nonlin-
ear system dynamics poses a challenge in evaluating the
objective function. The generalized polynomial chaos (PC)
framework [Wiener, 1938, Xiu and Karniadakis, 2002] is
used as a computationally efficient tool for probabilistic
uncertainty propagation (Section 3). The PC framework
replaces the implicit mappings between the uncertain
system variables/parameters and dynamic state variables
with a series of orthogonal polynomials, whose statistical
moments can be readily computed from the expansion
coefficients (e.g., see [Fisher and Bhattacharya, 2011, Fa-
giano and Khammash, 2012, Mesbah et al., 2014b, Paulson
et al., 2014], and references therein for applications of PC
expansions). The Cantelli-Chebyshev inequality [Marshall
and Olkin, 1979] is used to convert the chance constraints
into deterministic expressions and, therefore, obtain a
computationally tractable optimization problem (Section
4). The proposed robust OED approach is demonstrated
for the JAK-STAT5 signaling pathway [Berridge, 2012] in
a biological cell with probabilistic parametric uncertainties
(Section 5).

2. PROBLEM FORMULATION

Consider a continuous-time, uncertain nonlinear system

ẋ(t) = f(x(t),u(t),θ), x(0) = x0 (1a)

y(t) = h(x(t)) + ε(t), (1b)

where t ∈ [0, tf ] denotes the time; x ∈ Rnx , u ∈ Rnu , and
y ∈ Rny denote the system states, (excitation) inputs,
and outputs, respectively; θ ∈ Rnθ denotes the time-
invariant uncertain system parameters with known proba-
bility distribution functions (PDFs) {Pθi}

nθ
i=1; x0 denotes

the initial states that are considered to be uncertain with
known PDFs {Px0,i

}nxi=1; f : Rnx × Rnu × Rnθ → Rnx
and h : Rnx → Rny denote the nonlinear system and
(possibly nonlinear) model output functions, respectively,
which are typically represented by a set of differential alge-
braic equations; and ε ∈ Rny denotes zero-mean additive
measurement noise that has a known variance-covariance
matrix Σ ∈ Rny×ny . Define a probability space (Ω,F ,P)
on the basis of the sample space Ω, σ-algebra F , and the
probability measure P on Ω. The time-invariant probabilis-
tic uncertainties [x>0 θ

>]> ∈ Rnξ (with nξ ≤ nθ + nx) are
functions of standard random variables ξ := [ξ1, . . . , ξnξ ]

>

with known independent PDFs {Pξi}
nξ
i=0 over the common

support Ω. Note that ξi ∈ L2(Ω,F ,P), where L2(Ω,F ,P)
is the Hilbert space of all random variables with finite
variance E[ξ2

i ] <∞.

This paper considers the problem of robust OED for pa-
rameter estimation. 1 The information content of experi-
ments can be quantified in terms of some scalar metric of
the Fisher information (FI) matrix F (tf ) defined by [Bard,
1974]

F (tf ) =

∫ tf

0

(
∂h

∂x

∂x(t)

∂θ

)>
Σ−1

(
∂h

∂x

∂x(t)

∂θ

)
dt, (2)

where sensitivities ∂x(t)
∂θ are obtained through integrating

d

dt

∂x

∂θ
(t) =

∂f

∂x

∂x

∂θ
(t) +

∂f

∂θ
,

∂x

∂θ
(0) =

∂x0

∂θ
.

The FI matrix describes the amount of information that
system outputs y provide on the unknown parameters
θ. The FI matrix accounts for the effects of measure-
ment noise ε(t) and sensitivities of the system states to

variations in the model parameters (i.e., ∂x(t)
∂θ ). Under

the assumption of unbiased parameter estimates and un-
correlated measurement noise, the inverse of the Fisher
information matrix F (tf ) provides an approximation of
the Cramér-Rao lower bound [Bard, 1974], which is closely
related to the lower bound of variance-covariance matrix
of the estimated parameters.

The E-optimality criterion [Pronzato, 2008] is used as a
scalar metric of the FI matrix to formulate the OED
problem. 2 The E-optimality criterion aims to maximize
the minimum eigenvalue of the Fisher information matrix,
i.e.,

Φ(F (tf )) := max
[
λmin

(
F (tf )

)]
.

Hence, E-optimal designs in effect minimize the length of
the largest uncertainty axis of the joint confidence region
of parameters that corresponds to the largest parameter
errors.

The primary challenge in performing OED results from the
fact that the optimality criterion depends on the current

1 The problem of robust OED for model discrimination without
chance constraints is addressed in [Streif et al., 2014].
2 The proposed robust OED approach can be straightforwardly
adapted for other optimality criteria such as A- and D-optimal
designs.
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estimates of the to-be-estimated parameters (required to
evaluate the FI matrix (2)). The uncertainty in initial
estimates of the to-be-estimated parameters can render the
OED in practice largely ineffective, as the excitation inputs
are designed on the basis of an inadequate description of
the system dynamics. In addition, plant-model mismatch
due to initial condition and parametric uncertainties is
likely to further diminish the effectiveness of the designed
excitation inputs.

This paper proposes the following robust OED formulation
for the nonlinear system (1) to systematically incorporate
the knowledge of time-invariant probabilistic uncertainties
into the OED problem.

Problem 1 (Robust optimal experiment design
with chance constraints): The optimal excitation in-
puts u∗ to system (1) (over the horizon [0, tf ]) that max-
imize the information content of a dynamic experiment,
while being robust to the probabilistic uncertainties in
[x>0 θ

>]>, are defined by

u∗ := arg min
u

E[Φ(F (tf ))] + wVar[Φ(F (tf ))]

subject to :

ẋ(t) = f(x(t),u(t),θ), ∀t ∈ [0, tf ]

d

dt

∂x

∂θ
(t) =

∂f

∂x

∂x

∂θ
(t) +

∂f

∂θ
, ∀t ∈ [0, tf ]

d

dt
F (t) =

(
∂h

∂x

∂x(t)

∂θ

)>
Σ−1

(
∂h

∂x

∂x(t)

∂θ

)
, ∀t ∈ [0, tf ]

Pr[bixi(t) ≥ xmax
i ] ≤ βi, ∀i ∈ I, ∀t ∈ [0, tf ]

u(t) ∈ U, ∀t ∈ [0, tf ]
F (0) = 0
∂x

∂θ
(0) =

∂x0

∂θ
xi(0) ∼ Px0,i , i = 1, . . . , nx

θi ∼ Pθi , i = 1, . . . , nθ,
(3)

where E[·] and Var[·] denote the expected value and
variance of a stochastic variable; w denotes a scalar weight;
Pr denotes probability; the scalar values bi ∈ R and
xmax
i ∈ R define the state constraints; βi ∈ (0, 1) ⊂ R

denotes an upper bound for the probability that each state
constraint can be violated due to system uncertainties;
I ⊆ {1, . . . , nx} denotes a subset of states for which
the chance constraints are defined; and U denotes the
convex compact set of input constraints. Note that the
initial conditions {xi(0)}nxi=1 and parameters {θi}nθi=1 have
probability distributions Px0,i and Pθi , respectively.

The robust OED problem (3) can effectively account for
the uncertainty in the initial parameter estimates and the
inherent system uncertainties. This is due to (i) defining
the objective function in terms of the statistical moments
of the metric Φ(F (tf )) that are evaluated with respect to
the probabilistic system uncertainties 3 , and (ii) including
chance constraints to seek trade-offs between maximizing
the information content of experiments and constraint
satisfaction (typically associated with operational risks)
in a stochastic setting. The variance term in the objective

3 This is in contrast to classical OED approaches, which evaluate a
metric of the FI matrix merely at a given realization of uncertainties.

function of (3) allows for minimizing variations in the
information content of the experiments due to probabilistic
uncertainties.

The key challenges in solving Problem 1 are to efficiently
propagate the probabilistic uncertainties through the non-
linear system dynamics (1) and to obtain a computa-
tionally tractable surrogate for the chance constraints in
(3). To this end, polynomial chaos is introduced, which
provides a computationally efficient means to evaluate
statistical moments of a stochastic variable.

3. POLYNOMIAL CHAOS FOR UNCERTAINTY
PROPAGATION

This work uses the generalized polynomial chaos frame-
work [Wiener, 1938, Xiu and Karniadakis, 2002] to ef-
ficiently propagate the time-invariant probabilistic un-
certainties [x>0 θ>]> through the nonlinear system (1).
In the PC framework, a second-order stochastic variable
ψ(ξ) ∈ L2(Ω,F ,P) is defined in terms of an expansion of
orthogonal polynomial basis functions

ψ(ξ) =

∞∑
k=0

akΦk(ξ), (4)

where ak denotes the expansion coefficients; and Φk de-
notes polynomial basis functions of maximum degree m
with respect to the random variables ξ. The basis functions
belong to the Askey scheme of polynomials, which entails
a set of orthogonal basis functions in the Hilbert space
defined on the support of the random variables [Xiu and
Karniadakis, 2002]. Hence, 〈Φi(ξ),Φj(ξ)〉 = 〈Φ2

i (ξ)〉δij ,
where 〈h(ξ), g(ξ)〉 =

∫
Ω
h(ξ)g(ξ)Pξdξ denotes the inner

product induced by Pξ, and δij denotes the Kronecker
delta function. The basis functions Φk are chosen in ac-
cordance with the PDFs of the uncertain variables ξ. The
truncated form of (4) used in practice takes the the form

ψ̂(ξ) :=

L∑
k=0

akΦk(ξ) = a>Φ(ξ) (5)

with L + 1 =
(nξ+m)!
nξ!m! being the total number of terms

in the expansion; a := [a0, . . . , aL]>; and Φ(ξ) :=
[Φ0(ξ), . . . ,ΦL(ξ)]>. Owing to the orthogonality property
of the polynomial basis functions, the statistical moments

of ψ̂ can be computed merely based on the expansion
coefficients a in a computationally efficient manner (e.g.,
see [Fisher and Bhattacharya, 2011]).

The probabilistic collocation method (see discussion and
references in [Nagy and Braatz, 2007]) is used to determine
the coefficients a in (5). The collocation method requires
the residuals

R(a, ξ) = ψ̂(ξ)− ψ(ξ)
be orthogonal to each basis function Φk∫

Ω

R(a, ξ)Φk(ξ)dPξ = 0, k = 0, . . . , L. (6)

Provided that the basis functions are non-zero terms, the
coefficients a can be estimated by computing the residuals
R(a, ξ) at nc samples (i.e., collocation points) of random
variables ξ with non-zero probability Pξ [Tatang et al.,
1997]. Alternatively, the expansion coefficients a in (5) can
be determined using the Galerkin-projection method (see
[Ghanem and Spanos, 1991]).
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4. DETERMINISTIC SURROGATE FOR CHANCE
CONSTRAINTS

To solve the robust OED Problem 1, the chance con-
straints in (3) should be replaced with deterministic ex-
pressions. The Cantelli-Chebyshev inequality is used to ob-
tain a computationally tractable optimization problem. 4

Theorem 1 (Cantelli-Chebyshev inequality [Mar-
shall and Olkin, 1979]): Let ψ be a stochastic variable
with a finite second-order moment. Then,

Pr
[
ψ −E[ψ] ≥ α

]
≤ Var[ψ]

Var[ψ] + α2
, ∀α ∈ R+

0 . (7)

�

Consider the chance constraints

Pr[bixi(t) ≥ xmax
i ] ≤ βi, ∀i ∈ I (8)

in (3), which are independently defined in terms of state
variables xi(t). Define δxi ≥ 0 such that

biE[xi(t)] + δxi ≤ xmax
i . (9)

The chance constraints (8) then satisfy

Pr[bixi(t) ≥ xmax
i ] ≤ Pr[bixi(t) ≥ biE[xi(t)] + δxi].

Since the states {xi(t)}i=nxi=1 are stochastic variables due
to the probabilistic time-invariant uncertainties in (1), the
Cantelli-Chebyshev inequality in Theorem 1 implies that

Pr
[
bixi(t) ≥ biE[xi(t)] + δxi

]
≤ b2iVar[xi(t)]

b2iVar[xi(t)] + δx2
i

,

where the fulfillment of chance constraints (8) requires

b2iVar[xi(t)]

b2iVar[xi(t)] + δx2
i

≤ βi. (10)

Hence, replacing (10) in (9) for δxi and rearranging the
resulting inequality will lead to a deterministic surrogate
for each individual chance constraint in (8)

biE[xi(t)] ≤ xmax
i −

√
b2iVar[xi(t)]

√
1− βi
βi

. (11)

In this work, the stochastic state variables {xi(t)}i=nxi=1
and their moments are approximated using polynomial
chaos expansions (see (5)). Thus, xi(t) is replaced with
x̂i(t) in the deterministic constraint (11) and the first-
and the second-order moments of x̂i(t) can be readily
computed from the expansion coefficients (e.g., see [Fisher
and Bhattacharya, 2011]).

5. ROBUST OPTIMAL EXPERIMENT DESIGN FOR
THE JAK-STAT5 CELL-SIGNALING PATHWAY

The dynamics of complex biological systems such as
metabolic and cell-signaling pathways in living cells are
often described by nonlinear differential equations, which
typically have several kinetic parameters. The fidelity of
these dynamic models is largely dependent on the qual-
ity of the estimated parameters. This work considers the
problem of OED in the presence probabilistic uncertain-
ties for the JAK-STAT5 cell-signaling pathway, which is
a fast-track signal transduction pathway for transferring
4 The Cantelli-Chebyshev inequality has also been used for convert-
ing chance constraints in the context of stochastic predictive control
[Farina et al., 2013].

information from cell-surface receptor into the nucleus.
Deregulation of the STAT5 signaling pathway is shown
to be connected to human cancer [Berridge, 2012].

The STAT5 cell-signaling mechanism entails phosphory-
lation of the STAT5 molecules, which is governed by the
EPO receptor on the cell membrane. The activated STAT5
molecules undergo a dimerization, so that STAT5 dimers
can enter the cell nucleus to trigger the transcription of
target genes. The STAT5 molecules are then dephosphory-
lated through separation of dimers, and the single STAT5
molecules re-enter the cytoplasm [Peifer and Timmer,
2007]. Assuming that no concentration gradient occurs in
the cell due to fast transport mechanisms from the cell
membrane to nucleus, the STAT5 cell-signaling dynamics
can be described by [Peifer and Timmer, 2007]

ẋ1 = −k1x1u(t) + k2x3(t− τ)
ẋ2 = −k3x

2
2 + k1x1u(t)

ẋ3 = −k2x3 + k3x
2
2

ẋ4 = −k2x3(t− τ) + k2x3.

(12)

In (12), x1, x2, x3, and x4 denote the concentration of
the unphosphorylated STAT5, activated STAT5, STAT5
dimer, and STAT5 molecules in the nucleus (mole frac-
tions); u denotes the EPO receptor activity (mole frac-
tion); k1 ∼ β(2, 5, 1.90, 2.34), k2 ∼ β(2, 5, 0.094, 0.124),
and k3 = 1.0 denote rate constants (min−1), with β being
the four-parameter beta distribution; and τ = 8 denotes
the delay parameter (min). The total amount of activated
STAT5 and the total amount of STAT5 in the cytoplasm
are defined by

y1 = s1(x2 + x3)

y2 = s2(x1 + x2 + x3),

respectively, where s1 = 0.33 and s2 = 0.26 denote scaling
constants. The model outputs y1 and y2 are assumed to be
subject to zero-mean Gaussian noise with a 10% variance.
The delay element in (12) is approximated by using a delay
chain approach [Peifer and Timmer, 2007].

The STAT5 cell-signaling mechanism described by (12)
comprises a nonlinear system with probabilistic time-
invariant parametric uncertainties. To generate input-
output data for estimating the kinetic parameters k1 and
k2 with known PDFs, the robust OED problem (3) is
used to design the EPO receptor activity profile (i.e., the
excitation input). The polynomial chaos framework with
the 4th-order Jacobi polynomial basis functions is used
to propagate the beta PDFs of k1 and k2 through the
nonlinear system (12) (see Section 3). To ensure that the
total amount of STAT5 in the cytoplasm (y2) remains
above a desired threshold during the dynamic experiments
in the presence of probabilistic uncertainties, the following
chance constraint

Pr[y2(t) ≤ 0.038] ≤ 0.05 (13)

is incorporated into the robust OED problem. The pro-
cedure in Section 4 is used to obtain a deterministic

Table 1. Average and maximum relative esti-
mation errors of the model parameters with

respect to the true parameter values

Average Relative Error (%) Maximum Relative Error (%)

k1 k2 k1 k2
OED 0.02 0.0019 0.07 0.01
Robust OED 0.006 0.0017 0.03 0.009

IFAC ADCHEM 2015
June 7-10, 2015, Whistler, British Columbia, Canada

Copyright © 2015 IFAC 103



(a) Parameter k1

(b) Parameter k2

Fig. 1. Relative estimation errors of the model parameters
with respect to the true parameter values. The param-
eter estimates are obtained by exciting the stochastic
JAK-STAT5 cell-signaling pathway 1000 times with
the excitation inputs designed by the robust and
standard OED approaches, and using the generated
input-output data sets for parameter estimation.

surrogate (see (11)) for the above chance constraint. In
the optimization problem, the excitation input (i.e., u(t))
is parameterized in a piecewise-constant manner with five
equidistant intervals over the time horizon [0, tf ], where
tf = 40 min. The robust OED problem is solved using the
MATLAB optimization subroutine fmincon.

Monte Carlo simulations are performed to evaluate the
performance of the proposed robust OED approach in
dealing with the probabilistic system uncertainties. The
designed excitation input is applied to the STAT5 cell-
signaling mechanism (12) in 1000 runs with different re-
alizations of parametric uncertainties sampled from the
known PDFs of k1 and k2. The generated input-output
data is subsequently used for obtaining estimates for the
parameters k1 and k2 using the weighted least-squares
estimation method [Bard, 1974]. The same procedure is
also performed for an excitation input designed based on
a standard OED approach, against which the performance
of the robust OED approach is compared. The standard
OED approach does not take into account the statisti-
cal distributions of the unknown model parameters, and
merely assumes some initial estimates for the parameters.
Identical realizations of probabilistic uncertainties are used
to compare the two OED approaches.

Figure 1 shows the relative parameter estimation errors
computed with respect to the true parameter values in
each Monte Carlo run. The robust OED approach results
in smaller estimation errors for the parameter k1 (see
Figure 1a). Table 1 indicates that the average estimation
error (computed over the 1000 Monte Carlo runs) for k1 in

the case of the standard OED approach is almost 3 times
larger than that in the case of the robust OED approach.
More accurate parameter estimates are also obtained for
k2 (see Figure 1b and Table 1), as the maximum estimation
error for k2 is lower when the system is excited with the
input designed by the robust OED approach. Note that the
OED problem (3) enables seeking systematic trade-offs be-
tween maximizing the information content of the dynamic
experiments (through minimizing the expected value of
some scalar metric of the FI matrix) and minimizing the
variance of the chosen scalar metric of the FI matrix in
the presence of probabilistic system uncertainties. In the
presented simulation study, the weight function w in (3) is
selected to be small in order to generate an input-output
data set with high information content, which in turn
will lead to more accurate parameter estimates (i.e., small
estimation errors in Figure 1).

To demonstrate the ability of the robust OED approach
in fulfilling the system constraints in a probabilistic sense
(see (13)), the histograms of y2 at time 40 min are shown
in Figure 2. The histograms are obtained based on 1000
simulations of the stochastic JAK-STAT5 cell-signaling
pathway when the receptor activity u(t) is excited with the
excitation input designed by the robust and standard OED
approaches. The histograms of y2 are shown for time 40
min only, as the total amount of STAT5 in the cytoplasm
is closest to its minimum admissible threshold value of
0.038 at tf = 40 min. Figure 2 shows that the constraint

(a) Standard optimal experiment design

(b) Robust optimal experiment design

Fig. 2. Histograms of y2 (the total amount of STAT5
in the cytoplasm) at time 40 min. The red line
represents the minimum admissible threshold (i.e.,
output constraint) for the total amount of STAT5
in the cytoplasm. The robust OED approach ensures
constraint satisfaction in nearly 98 % of signaling
pathway excitations in the presence of probabilistic
uncertainties, whereas the standard OED approach
leads to approximately 46 % constraint satisfaction.
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on y2 is satisfied in nearly 98% of the Monte Carlo runs,
which is greater than the lower bound (i.e., 95%) of the
constraint satisfaction probability in (13). On the other
hand, the excitation input designed using the standard
OED approach (without the chance constraint) results
in merely 46% constraint satisfaction in the presence of
probabilistic uncertainties of the system (12). In general,
the ability to guarantee state (output) constraint satisfac-
tion in a stochastic setting is paramount in many OED
applications to ensure safe, reliable, and high-performance
system operation during dynamic experiments.

6. CONCLUSIONS

This paper presents a robust approach for optimal ex-
periment design for nonlinear systems with arbitrarily-
shaped probabilistic time-invariant uncertainties. Polyno-
mial chaos is used for efficient uncertainty propagation,
and chance constraints are incorporated into the input de-
sign problem to ensure constraint satisfaction in a stochas-
tic setting. The simulation results for a cell-signaling path-
way demonstrate the capability of the proposed approach
in dealing with probabilistic system uncertainties and ful-
filling system constraints in a probabilistic sense.
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