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Single Particle Dynamics in 
Fixed Field Alternating 
Gradient Accelerators 
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Reprinted from SciENCE, October 26, 1956, Vol. 124, No. 3226, pages 781-787. 

Reprinted by permission from SCIENCE 

Fixed-Field Alternating

Gradient Accelerators 

Developments in the art of designing 
high-energy particle accelerators may be 
of interest' not only to nuclear physicists 
but also to those working in chemical and 
engineering fields, to biologists, and to 
workers engaged in medical research. 
For the physicist, the possibility of study
ing particle reactions at increasingly high 
energies may be the most exciting aspect 
of such developments, although a sub
stantial increase of intensity, at energies 
presently available, would make possible 
definitive experiments that are now diffi
cult to perform. For production of radi
ation effects on matter en gros, as in the 
production of cross-linkages in poly
mers or in various investigations of radi
ation damage, intensity may be the more 
important characteristic of an acceler
ator. In the present article ( 1), I attempt 
to outline a potential new development 
in the accelerator art which appears to 
offer not only the prospect of certain 
engineering advantages but also the 
promise of a substantial increase of in
tensity or of the energy available for the 
study of particle reactions. Analysis of 
the particle orbits to be expected in the 
proposed structures affords a number of 
important and challenging mathematical 
problems concerning which, it may be 
hoped, an improved analytic understand
ing will be built up to supplement results 
obtained by digital computation. 

The developments discussed here are 
the result of study by a group of mid
western physicists (2) who were stimu
lated by the broad class of new acceler
ators apparently made possible by the 
use of the a1ternating-gradient principle, 
which was ,]rst announced from the 
Brookhaven National Laboratory (3). 
Specifically, in contrast to the present 
Brookhaven efforts, the midwestern 
group has concentrated on a class of 

. cyclic accelerators employing magnetic 
fields that are constant in time. 

In any cyclic accelerator, such as the 
cyclotron, betatron, or synchrotron, a 
charged particle makes a great number 
of revolutions within the structure, gain
ing a relatively small amount of energy 
on each turn, and the provision of suit
able focusing forces is essential. It may 
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be of interest to note in this connection 
that, in a number of typical accelerators 
now in use, the distance covered by the 
particle during the acceleration process 
ranges from one-third of the distance 
across the United States to some 6 or 8 
times around the earth. Since particles 
with energies that are at least slightly 
different will be simultaneously present, 
a related property of an annular acceler
ator of importance in its effect on the 
cost of the structure is the ability to ac
commodate particles with various ener
gies within an annular region of limited 
radial extent. · 

If, as is customary, the particles are 
guided by a magnetic field as they follow 
their orbits around the accelerator, it is 
particularly convenient to achieve the 
requisite focusing by adjustment of the 
spatial variation of this field. In the case 
in which the fields show no variation 
with azimuth, a suitable index to char
acterize this spatial variation is 

r dB 
n=Bdr 

where r represents the distance from the 
central axis of the machine, and B repre
sents the strength of the (axial) field in 
the median plane. In the absence of an 
azimuthal variation, stability in both the 
radial and axial directions is obtained 
only if the condition 

-l<n<O 

is satisfied. The energy or momentum 
content of such a machine is expressed by 
the-quantity 

a=!:. dp = n + 1 
p dr 

where p denotes the particle momentum, 
and a is so small than an annular acceler
ator must then be operated in a pulsed 
manner to provide an increasing field 
adequate to hold particles of increasing 
energy within the machine. 

In a conventional continuous-wave 
cyclotron, with the index n constrained 
to lie between 0 and - 0.2 in order to 
avoid a coupling resonance between the 
radial and axial oscillations, the require
ment that the frequency of revolution 

1-1 

be independent of energy imposes a 
limitation on the attainable energy when 
the relativistic increase of mass becomes 
significant. 

Description 

A markedly greater energy content can 
be achieved in an annular accelerator if 
a rapid radial increase of the guide field 
is permitted by introduction of alternat
ing-gradient focusing to maintain orbit 
stability. The field may then be capable 
of accommodating simultaneously parti
cles of a wide range of energy, and the 
field strength could be independent' of 
time. Such a modification, although it 
introduces complications associated with 
the significantly nonlinear character of 
the differential equations governing the 
particle motion, evidently promises a · 
number of significant advantages. 

1 ) Direct-current magnet construction 
and excitation may be employed. 

2) The magnetic field need only be 
adjusted for operation at a single level 
of excitation, thus avoiding the difficul
ties associated with remanence, satura
tion, and eddy currents in a pulsed 
accelerator. 

3) There is greater freedom in the 
choice of injection energy, and the time 
schedule for the acceleration process is 
flexible. 

4) High intensity appears possible, 
owing to the permissible flexibility in 
planning the means of particle acceler
ation. Azimuthal variation of the field 
in a cyclotron, with the associated alter
nating-gradient focusing effects, can also 
be advantageous, because it allows higher 
energies to be ~ached than otherwise 
would be permitted by the relativistic in
crease of mass with energy. 

In subsequent paragraphs I discuss a 
number of specific types of structures in 
which fixed-field alternating-gradient 
focusing is present ( 4-6). The structures 
are of two general types, one employing 
radial sectors and the other a spiral 
sector pattern. The first-mentioned type 
is in some ways simpler and easier to con
stru_ct, while the second appears to per
mit a smaller accelerator for a given 
energy. In all the structures, particles 
with a wide range of ·energies can be 
simultaneously accommodated by virtue 
of a magnetic field whose average value 
around the machine varies with radius 
as rt, and focusing forces leading to sta
ble motion are obtained by a suitable 
spatial variation of the field. 

The author is at present on leave of absence 
from Iowa State College to work at the Univenity 
of Jllinois as a member of the Technical Group of 
the Midwestern Univenities Researc:h Association. 
Some of the material on which 1his article is based 
was discusaed at the International Conference on 
Ac:celeraton in Geneva, Switzerland, during the 
week of I 1 June and at a meeting of the Canadian 
Association of Physicists on 14 June 1956. 



Reversed-Field Design 

In the reversed-field type of fixed-field 
alternating-gradient ( FF AG) accelera
tor, the direction of the field is reversed 
from one sector to the next. The sector 
boundaries are usually supposed to be 
formed by geometric planes that extend 
radially from the axis of the accelerator .. 
The strength of the field in the reversed
field sectors, or the length of the reversed
field sectors, must, of course, be less than 
for the sectors of positive field in order 
that the particle orbits will ultimately be 
bent around through 360 degrees and 
permit a closed equilibrium orbit to be 
drawn (Fig. 1). 

The magnitude of the field in the re
versed-field accelerator varies at every 
azimuth as r", where r is the radius from 
the central axis of the machine. If k 
is positive, there is axial defocusing in 
the positive-field sectors and axial focus
ing in the reversed-field sectors. The 
alternating-gradient action is found to 
yield reasonable stability for small-am
plitude oscillations in both the radial and 
axial directions, provided that the com
bined circumference of the forward and 
reversed-field magnets is some 5 times 
that required by an azimuthally constant 
magnetic field of the same maximum 
field strength. The ratio of the combined 
Circumference to that required for a con
stant magnetic field is termed the cir
cumferFnce factor, C. 

Within the individual sectors, the fields 
would normally be such that the com• 
plete equilibrium orbit would be formed 
from a series of circular arcs with their 
centers displaced from the axis of the 
machine. Denoting the radius of curva
ture of the orbit by p, the local focusing 
index is n = k · pfr and, if the same mag-

POSITIVE FIELD 
SECTOR 
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Fig. l. Orbits m a reversed-field FFAG 
accelerator. 

Fig. 2. An operating electron model of a reversed-field FFAG accelerator. Eight sectors 
of positive field and eight narrower sectors of negative fieM are employed. The betatron 
core is seen linking the region occupied by the particle orbits. {f) Magnet sector with 
forward or positive field; ( r) magnet sector with reversed or negative field; (c) betatron 
core; (i) injector; (m) pump manifold. 

nitude of field strength prevails in the 
positive and negative sectors, p = r/C. 
In linear approximation the radial and 
axial oscillations in such structures can 
then be expressed reasonably accurately, 
when the number of sectors is large, by 
the equations 

d2x 
d(s/r)• ± kCx::: 0 

d2z. 
d(s/r)" :;:kCz=O 

where s denotes arc length along a refer
ence circle of radius r, the upper and 
lower signs refer, respectively, to the 
sectors of positive and negative field, and 
centrifugal effects have been neglected 
since we assume that kC :. 1. These 
equations may be solved by the aid of the 
matrix methods that are customarily 
employed in analysis of alternating-grad
ient focusing. If the phase change per 
sector for the radial oscillations and the 
corresponding phase change for the axial 
oscillations are permitted to assume 
widely different values, lying near the 
upper and lower limits of the stable 
range, a design with C as low as 5 may 
be feasible. A more accurate calculation 
must, of course, take account of the edge 
effects that arise at the sector boundaries 
and would involve an expansion about 
an equilibrium orbit which, accordingly, 
must be determined first. For a complete 
account of the motion, the effect of non
linear terms would also have to be in
cluded. 

Attention is directed to the important 
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scaling property of the orbits in this ac
ceh~Litor. Possible orbits of particles of 
diiTen:m energies, or momenta, are scaled 
replicas ·of each other. In consequence, 
the frequencies of the oscillations will be 
independent of energy, and ha~mful res
onances may be avoided at all energies 
by a consistent design. The momentum 
content is represented by p ex: r 0 + 1 , so 
that the momentum compaction factor a 
is given by 

a=k+l 

and can be either positive or negative in 
a reversed-field accelerator. 

A small working model of a reversed
field FF AG accelerator has been put into 
operation ( 7). This model, shown in Fig. 
2, employs eight sectors of positive field 
and eight shorter sectors of negative field. 
Electrons are accelerated, at present by 
betatron action, from 25 kev to 400 kev: 
Tuning controls have been provided for 
the model, so that various oscillation fre
quencies can be produced. These fre
quencies can be measured accurately by 
a radio-frequency knock-out technique 
( 8) and the effect of certain resonances 
on the beam noted. The model affords 
an opportunity to study operation with 
a high duty factor, as is possible in FFAG 
accelerators employing betatron acceler
ation. Radio-frequency acceleration 
methods will also be investigated. 

Possible parameters for a large-scale 
reversed-field FF AG accelerator for the 
production of 10 Br·v protons have been 
examined. Although such a machine 
,;·ould be expected to have many desir-



able characteristics, the large magnet 
mass and power requirements direct in
terest to other FF AG designs of smaller 
circumference factor. By virtue of its 
essential simplicity, however, the re
versed-field type may remain of interest 
for accelerators of low or intermediate 
energy, especially if a high duty factor 
can be efficiently realized with betatron 
acceleration. 

Spiral-Sector Design 

To avoid the considerable circumfer
ence required for a reversed-field FFAG 
accelerator, an alternative arrangement 
has been suggested by D. W. Kerst and 
others of the Midwestern Universities 
Research Association (MURA) group in 
which the alternating-gradicmt action i~ 
provided by a smaller but more rapid 
spatial variation of the field, the field 
being alternatively high and low along 
spiral curves which all particles must 
cross. Illustrative of the type of field pres
ent in the median plane of such a struc
ture, one may take 

Bz0 = < B > (rlro)k 

From this expression it is seen that N is 
the number of spiraling ridges passed 
over by a particle in going around the 
machine once. The coefficient f is the 
fractional flutter in the magnetic field 
owing to the ridges. Finally, if the radial 
width of the annulus is small in compar
ison with the outer radius, r., A ""' 2n:r.w 
is substantially the radial separation of 
the ridges. The exponent k is taken to be 
positive. 

In the spiral-sector design, as in the 
radial-sector case, the fields and the 
orbits satisfy the scaling condition. In 
passing from one energy to another, there 
is, however, a rotation of the geometri
cally similar orbits, which presents com
plications if one wishes to introduce 
straight-sections (field-free regions) 
whos.e boundaries extend radially from 
the central axis of the machine. 

The equilibrium orbit in the spiral
sector machine departs from a circle by 
an amount that affects significantly the 
character of the "small-amplitude oscil
lations. For analytic work (9) it is appro
priate to expand the equations of motion 
about the scalloped equilibrium orbit. In 
terms of cylindrical coordinates ( r, z, 11) 
we introduce the notation 

r- r] 
xs-·

r, 

z 
y=

r, 

. I 
Nil= N~ --ln(rJro) 

. w 

and choose r1 so that the dimensionless 
variable x will be small. The forced 
motion that produces the noncircular 
equilibrium orbit is found to be quite 
well represented by 

-- I . N(J 
X(- N2- ( k + 1) Sill 

and the linearized cq uations describing 
small-amplitude oscillations are repre
sented by Hill equations of sub:;tantially 
the following form: 

u" + (au + b u cos N(J + eu cos 2NII) u = 0 

y" + (a 11 + bu cos Nil+ e11 cos 2NO)y = 0 

where 

U =:X- Xf 

I (flw)• 
a., ::.! k + 1 - Y2 N' _ ( k + 1 ) 

b,.~l 
w 

eu""' Y2 (~N r 
• -- ' . (flw)" a,= k + Y2 N' _ (k + 1) 

bu::.! -1 
w 

e11 ~ - Y2 ( ~N )" 

Nonlinear terms in the equations of 
motion can also be obtained. 

The frequencies and other character
istics of the oscillations characterized bv 
the foregoing linear equations can be ob
tained by the use of tables prepared with 
the aid of the electronic digital computer 
of the Graduate College of the Univer
sity of Illinois (ILLIAC). Useful orien
tation is provided, however, by writing 
the frequencies that are given by a simple 
approximate solution (10), ignoring the 
relatively small effect of the terms involv
ing cos 2NII and taking N 2 ~ k + I : 

'V.c = [k + l]lio 

'VII= [ (~N )"- k] lio 

It is thus seen that the frequency of the 
free radial oscillations is substantially de
termined by the exponent k characteriz
ing the radial increase of average field 
strength, so that k + I must be positive, 
and that axial stability may be obtained 
if the term (f/wN) 2 is sufficiently large 
to dominate - k. The stability region ·for 
the small-amplitude oscillations repre
sented by the Hill equations cited has 
been mapped by aid of the ILLIAC 
tables and is depicted in Fig. 3. 

The nonlinearities associated with 
large-amplitude motion in the spiral
sector accelerator make the use of auto
~atic digital computation particularly 
helpful in trajectory studies. Results per
taining to motion with 1 degree of free
dom are appropriately and conveniently 

1-3 

represented by phase plots that depict 
the position and associated momentum 
of a particle as it progresses through suc
cessive "sectors" (periods of the struc
ture) from one homologous point to an
other (Fig. 4). For small-amplitude 
motion, the particle is represented by a 
point that moves around an elliptical 
curve in phase space, while, with larger 
amplitudes, curves departing from the 
elliptical shape may be followed. At 
still larger amplitudes, unstable fixed 
points-representing an unstable equilib
rium orbit-make their appearance. As
sociated with the unstable fixed points, 
one finds a separatrix, constituting an 
effective stability limit to the motion, 
which in the majority of cases the 
ILLIAC results depict as a sharp boun
dary and outside of which it is frequently 
possible to draw the initial portion of 
unstable phase curves. 

Because of the nonlinear character of 
the oscillations, it is not surprising (11, 
12") that the permissible amplitude of 
oscillation is much curtailed if a, the 
phase change per sector, .lies ncar 2n:/3 
or 2n:/4. It has, in fact, also been found 
(13) that the amplitude limit is reduced, 
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Fig: 3. First stability region (0 <a = 
2n:viN < n) for small-amplitude oscilla
tions in spiral-sector FF AG accelerators. 
The curves are calculated for the case 
k > 1 and are believed to be the most ac
curate for ordinates less than Y3. When the 
condition k ~ 1 is not satisfied, the diagram 
can best be used by entering at .the point 
(kiN", /lwN'Land proceeding up a curve 
of constant a11 until an abscissa of 
(k +I )IN' is reached. 



although not to zero, for a= 2n/5. For 
cases in which a:6 is near 2n/3, the limit 
of radial stability is characterized by the 
appearance of three unstable fixed points. 
In this case, an examination of the non
linear differential equation for the tra
jectory permits a rough estimate to be 
made of the limitin~ amplitude {14): 

A., es 2 (uiN'/f)! (a:eln)•- (2/3 )"I 

It may be noted that, since the oscilla
tion frequencies are essentially deter
mined by k and f/wN, this formula sug
gests that a desirable increase of stable 
amplitude might be expected iff and w 
were each increased by the same factor. 

Introduction of axial motion into a 
study of spiral-sector accelerators pro
duces complications for all but the small
est amplitude oscillations, since there is 
coupling between this motion and that 
occurring in the radial direction. Surveys 
can be made, however, to determine ~he 
initial conditions that appear to exhibit 
short-time stability. In typical cases the 
permissible amplitude for axial motion 
appears to be materially smaller, possibly 
by a factor of 5, that is allowable for the 
radial motion. When oscillations in 2 
degrees of freedom are treated, the char
acteristics of the axial motion and in
ferences concerning stability limits are 
materially affected by proximity to cer
tain coupling resonances, notably those 
for which a"'= 2a11, a..,+ 2o" = 2n, or 
2a., + 2a" = 2n. Near such resonances the 
amplitude of axial motion exhibits an 
exponential increase, over a considerable 
amplitude range, the rate of growth being 
the greater, the more the radial ampli-

tude exceeds a certain threshold value, 
and the closer one is to the resonance in 
question. Som.e quantitative success in 
accounting for the growth of axial ampli
tude can be obtained by treating the dif
ferential equation for the axial motion 
as linear and inserting a prescribed ex
pression for the radial oscillations into 
certain coupling terms that are linear in 
the axial coordinate. 

In an actual accelerator, the N indi
vidual sectors will not be exactly identi
cal, owing to the presence of unavoidable 
small differences in construction, excita
tion, or alignment. The basic period of 
the structure will thus be strictly N sec
tors, representing the machine as a whole, 
and additional resonances based on 
values of No may be of importance. 
Computational study of the effect of real
istic misalignments can be very informa
tive prior to the fixing of specifications 
of a proposed machine. By way of exam
ple, studies of a proposed five-sector 
model ( Vz = 1.41, Vy = 0.87) indicated 
that an axial displacement of one sector 
by 1/300 of the radius effected a reduc
tion of the stable radial and axial ampli
tudes by factors of about 2 and 3, respec
tively. 

Separated-Sector Modification 

In the spiral-sector accelerator dis
cussed in the foregoing paragraphs, an 
unnecessary and probably undesirable 
limitation was introduced by requiring 
that the field in the median plane have 
a precisely sinusoidal variation. The aper
ture that is magnetostatically possible is 
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Fig. 4. Phase plot representing radial motion, at Nil= 0 mod. 2n, in a spiral-sector FFAG 
accelerator. The machine parameters are those of a proposed mouei, for which k = 0.8, 
l/w = 23.0, f = l4, and N = 5. In this case 0':6 is close to 0.57ln; for small-amplitude motion. 
'tit# v•Jue o{ "• does not change greatly with increasing amplitude, and it is noteworthy 
that ultimately seven unstable fixed points make their appearance in this particular 
example. 
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SEPARATED 
SECTORS 

POLE FACE 
WINDINGS 

Fig. 5. Pole configuration illustrative of 
the separated-sector modification of a 
spiral-sector magnet. The currents carried 
by the pole-face windings are instrumental 
in achieving the rk dependence of the 
magnetic field. 

severely limited (15), especially if f dif
fers markedly from the value 7'4. In ad
dition, the angle tan-1 Nw of the ridges 
(measured with respect to a reference 
circle) may be inconveniently small in a 
large machine, and a convenient con
struction may be difficult to realize. At
tention is accordingly directed to struc
tures involving separated poles (Fig. 5), 
a design that affords improved accessi
bility to the vacuum chamber and beam, 
easy realization of a more generous mag
net gap, a considerably higher value for 
the root-mean-square field flutter, and a 
corresponding increase of . the spiral 
angle. In this design it would be impor
tant to retain the scaling feature of the 
field and to take note of the high-order 
Fourier components that some pole con
figurations may introduce into the field. 
Retention of the scaling requirement 
makes it possible to solve the magneto
static problem, which is defined by a 
specified pole contour, by relaxation 
methods on a two-dimensional grid which 
represents variables conveniently taken as 

; = _!_ [ln(l +x) -Nil] 
21t w 

VI+ (wN) 2 y 
11 = 2rrw 1 + x 

The result of such computations may 
then· be stored, again on a two-dimen
sional grid, for use in trajectory computa
tions (16). 

Plans are being completed for the con
struction, at the University of Illinois, of 
electron models that will provide experi
ence pertaining to spiral-sector and sepa
rated-sector FFAG accelerators. These 
models will be similar in size to the re
versed-field model mentioned in a pre
vious section and likewise will employ 
betatron acceleration in the initial tests·. 
Provisional designs of a large-scale ma
chine have been attempted. It has been 
estimated that a separated-sector FF AG 
magnet for the production of 15-Bev 
protons would weigh about 12,000 tons 
and consume some 5 megawatts of elec
tric power. This estimated magnet weight 



is intermediate between estimates that 
one would make for reversed-field and 
spiral-sector magnets, for which the esti
mated weights would be roughly 3 times 
greater or one-third as great, respectively. 
Although such a separated-sector struc
ture may be some 6 times as massive as 
a pulsed accelerator of the same design 
energy, it may be felt that this feature is 
compensated to a considerable degree by 
the many simplifications which a direct
current design affords and that, as will 
be emphasized in a subsequent section, 
the increased fre~dom in detailed accel
eration methods may permit a very sig
nificant increase of intensity. 

Cyclotrons 

It is attractive to consider the possible 
applicability of a spiral field variation to 
continuous-wave cyclotrons, as a general
ization of the early suggestions of Thomas 
( 5), in the interests of increasing the at
tainable energy. If, to permit continu
ous-wave operation, the frequency of 
revolution is to be independent of particle 
energy, the field index k ·that character
izes (differentially) the radial increase of 
the average field must satisfy the relation-
ship · 

k + 1 = (E!Eo)• 

where E and E 0 are, respectively, the 
total energy and the rest energy of the 
particle. In a cyclotron, therefore, k 
must increase with energy, the oscilla
tions will not satisfy the scaling ~equire
ment, and the possibility of encountering 
dangerous resonances during the acceler
ation process must be carefully consid
ered. If we regard the relationship 
v .. = [k + 1) 10 as sufficiently accurate for 
the present purpose, then v:~~ E':!! EjE0 , the 
first half-integral and integral machine 
resonances for the radial motion ( V:~~ = 
3/2 and v:~~ = 2) would be encountered at 
kinetic energies of Y2Eo and E., respec
tively ( 17), and the CJ:c = 2lt/3 inherent 
resonance at [N/3 -l)E0 . The design of 
FF AG cyclotrons is currently being pur
sued by a number of groups, and design 
modifications that hold the promise of 
ameliorating the foregoing difficulties 
are being explored. 

Acceleration Methods 

In small-size annular accelerators that 
employ the FFAG principle, the use of 
betatron acceleration is highly attractive 
from the standpoint of intensity. If 
charged particles are injected into the 
gap of the fixed-field magnet during a 
substantial portion of the time the cen
tral flux is rising, they may be accelerated 
and arri\'e at the target with full energy 
so long as the flux continues to rise (Fig. 
6). If the total change of flux within the 

core is twice that required to accelerate 
the beam from the low to the high mag- . 
netic-field region, the duty cycle would 
approach 25 percent. 

For larger machines, radio-frequency 
acceleration methods would appear to be 
more practicable. The lack of depend
ence on a fixed magnet excitation cycle 
may permit in the FF AG accelerators a 
more rapid recycling of the radio-fre
quency program and a desirable flexibil
ity in the design of this program. In 
analyzing the synchrotron motion, it is 
noteworthy that, in distinction to pulsed 
machines, the orbit radius and revolution 
frequency are a function only of the par
ticle energy rather than of energy and 
time. To study in detail the effects of 
radio-frequency handling systems, it is 
helpful to employ a Hamiltonian theory 
for the synchrotron oscillations, in order 
that general theorems such as 'that of 
Liouville may be brought to bear on the 
problem. With ro(E) denoting 2lt times 
the revolution frequency of the particle 
and E the energy, suitable canonical co
ordinates are the electric phase-angle </> 
with which the particle crosses the ac
celeration gap and the quantity w, re
lated to energy, defined as 

JE dE 
w = w(Ej 

For a single cavity of peak voltage V, fre
quency v/2lt, and operating at the hth 
harmonic of the nominal particle fre
quency, the equations characterizing the 
synchrotron motion can then be derived 
from the Hamiltonian expression 

li = V cos</>+ 2lt(vw- hE(w)] 

in which V and v are specified functions 
of time. 

To avoid the large frequency swing
perhaps as great as a factor of !!-which 
would be required to carry a proton from 
its initial to its final energy in a single 
modulation cycle, it is attractive to think 
of raising the particle energy in a series 
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Fig. 6. Operation cycle of a FF AG beta
tron with a high duty factor. 
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of steps, each involving a comparatively 
small amount of frequency modulation. 
Such an arrangement provides a sort of 
"bucket-lift" process whereby groups of 
particles are simultaneously and progres
sively accelerated by means of a single 
radio-frequency source whose frequency 
is successively a smaller multiple of the 
increasing revolution frequency of the 
particle. If one commences with an os
cillator frequency that is s · pM times the 
rotation frequency of the injected par
ticle and moduiates by a factor p/q, 
the particle frequency is raised by this 
factor and the particle may be further 
accelerated in the s · q · pM-1 harmonic 
during the next frequency-modulation 
cycle. The modulation cycle may thus be 
employed by the particle some M + I 
times, as it progresses to higher energies, 
before synchronism is lost. The modula
tion factor p/q could be 3/2, for ex
ample, and a factor 2/1 might be partic
ularly suitable. 

If one thinks of using a bucket-lift 
process to stack particles at some inter
mediate energy prior to a final accelera
tion of the accumulated group by a sec
ond radio-frequency system, conservation 
of area in ( <l>,w) phase space tells us 
that the particles in successive buckets 
cannot be superposed exactly. Physi
cally speaking, one group is slightly dis
turbed and displaced by the oscillator 
when it brings up a later group. This 
displacement has been studied computa
tionally and is not sufficient to preclude 
the practicality of stacking a number of 
groups in a region of synchrotron phase 
space sufficiently limited that a second 
radio-frequency system could then ac
commodate them all. 

For efficient stacking, it is of interest 
to ascertain the number of buckets that 
may be brought up empty at the end of 
the process. If q = I and p = 2, and if 
particles are injected only once per fre
quency-modulation cycle, the number of 
such empty buckets may readily be 
shown to be s, but these extra buckets 
can presumably be used with a conse
quent increase of intensity by more fre
quent injection. 

There are several variants of this 
bucket-lift arrangement, which may pre
sent advantages chiefly of convenience. 
With an unscheduled bucket lift, parti
cles not caught in a bucket at the onset 
of a particular frequency-modulation 
cycle will usually be displaced downward 
in energy by a passing bucket, but will 
be caught on occasional frequency-modu
lation cycles and in the end may be car
ried up in energy. The use of a com
pletely stochastic acceleration method 
has been discussed in a Soviet paper (18) 
and shown to lead to acceleration of 
some particles by a sort of random-walk 
process. 

It seems clear that the flexibility that 
fixed-field accelerators permit in regard 



to design of particle-handling methods 
offers many promising possibilities. Thesf 
possibilities are being further studied 
within the MURA group, chiefly by 
A. M. Sessler and K. R. Symon, both 
analytically and with the aid of digital 
computation. As a related endeavor, tht. 
characteristics of mechanically modu
lated radio-frequency cavities are being 
studied by Zaffarano and his associates 
at Iowa State College. The accumulation 
of intense beams within an accelerator 
or in adjacent storage rings (19), by a 
suitable stacking process may open the 
door to study of a new field of high
energy physics. 

Intersecting-Beam Accelerators 

With the possibility in sight of attain
ing beam intensities higher than have 
been possible heretofore, the opportunity 
arises (20) of studying high-energy par
ticle interactions by directing one beam 
against another (Fig. 7). The outstand
ing advantage of such a system would be 
the large increase of effective center-of
mass energy which could be reached in 
this way. If two beams, each of energy 
E 10 are directed against each other. the 
total energy is, of course, EcM = 2£1 • In 
contrast, a single beam of energy Et' 
(r.easurcd in units of the rest energy) 
directed against a stationary target makes 
available a center-of-mass energy that 
is approximately Ec,. = (2E/) ~ for 
E/ ~ I. Thus two 15-Bev proton beams, 
oppositely directed, are equivalent to a 
single beam of 500 Bev directed against 
a stationary target, and two 21.6-Bev ac
celerators would be equivalent to one 
machine of 1 Tev {101 2 ev). ' 

In estimating the practicality of inter
secting-beam accelerators, one must, of 
course, judge whether it is feasible to 
produce beam intensities that will result 
in a sufficiency large reaction rate. The 
interactions of interest must, moreover, 
be studied in the presence of background 
radiation produced by the individual 
beams and will bear a more favorable 
ratio to the background the greater the 
density of intersecting particles. In this 
regard, however, it may be noted that the 
background radiations will be confined 
to directions differing little from the 
beam direction, while the reactions of 
interest will be essentially isotropic in 
the laboratory system. The background 
and beam survival will be directly de
pendt>nt on the degree of vacuum that 
can be maintained in the system; hence, 
recent developments for the realization 
or high pumping speeds (21) and the 
measurement of high vacuums (22) will 
be of importance. The additional focus
ing or defocusing effects that arise from 
space-charge forces, possibly modified by 
the effect of any electrons that may be . 
captured by the beam, and the difficul-

Fig. 7. Schematic method of effecting the 
intersection of high-energy beams. In the 
case illustrated, the individual accelerators 
are considered to be of the separated-sec
tor type. 

ties of handling safely a concentrated 
beam that may possess an energy of 1 
megajoule will also require careful at
tention. 

The intensities that one may be able 
to build up will certainly depend on the 
efficiency of stacking and on the ingenu
ity employed in the injection process. Al
though these techniques may be devel
oped and improved as experience is 
gained with completed FF AG acceler
ators, an upper limit to the particle den
sity in a stacked beam is imposed by 
Liouville's theorem. In regard to this 
limitation, we may estimate the number 
of injected pulses that theoretically could 
be assembled, after acceleration, in a 
l'egion of reasonably small cross-sectional 
area. With respect to the energy spread 
associated with the motion in synchro
tron phase space, we may consider the 
fate of particles injected with an energy 
spread llE10 assuming for simplicity that 
synchrotron and betatron phase space are 
separately conserved. If the most efficient 
particle-handling system is used, the 
number of pulses that can be contained 
within a region llE2 in energy at the 
completion of the acceleration process 
is 

np = ( llE.! llE1) I ( ro./ oo,) 

for ll</> constant, since the area in phase 
space is ll</>2llEdoo2 = np/l</>1llE1/oo1 • 

The quantity ll£2 in turn may be ex-
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pressed conveniently in terms of the as
sociated radial spread of the beam 

/l£2 = (k + 1) (pfo"/E,) (llr.!rs) 

~ (k + 1 )Eo(llr.!ro) 

. ultrarelativistically. Thus, if k + 1 = 100, 
E2 = 15 x 109 ev, llr2 = 0.5 em, r2 :.: 10• 
em, w2/oo1 = 11, and llE1 = 4 x 108 ev, 
we find that !:l£2 = 7.5 x 107 ev and np = 
1700 particle pulses. 

Similarly, in regard to the phase space 
for betatron oscillations, if the injector 
is imagined to scan the aperture, the 
number of horizontal and vertical scans 
that theoretically could be accommo
dated can be written 

P• (llz.)" 
nu = p, r.~-;w;,/lz, 

where '¥.,, '¥11 denote the angular spread 
of the injected beam, ~"'' ~~~ relate the 
angular and linear displacements expe
rienced during the course of a betatron 
oscillation ( llr = r~,'¥"'), and the mo
mentum ratio p2 / p1 accounts for the 
adiabatic damping of the oscillations. Ac
cordingly, approximating ~"'·"by 2/v:~:.l/, 

_ (P•)• Vzvy(!:lr.) 2 (llz.} 1 

n.env- p, 4r.'"'' .z:'¥1//lrlllra 

If we now substitute p2 / p1 = 100, ""' = 10, 
vl/=5, r2 = 104 em, llr2 =llz2 =0.5 em, 
and '¥.,/lr1 = '¥11ll.z1 = 0.5 x lQ-8 radian 
em, we find that nzn11 = 1250. 

Thi$ large value for the theoretically 
admissible number of scans implies a 
very complex scanning procedure and 
suggests that an injector with a much 
larger beam spread and correspondingly 
higher current would be desirable (23). 

On the basis of the considerations of 
the preceding paragraphs, one would 
estimate that a !-milliampere injector 
would permit the accumulation of 

104 
· 2.n X 10' 

NP = 1.6 X 10-10 X 3 X 1010/ll X 1700 X 1250 

""3X101T 

particles within a tube of about 1 square. 
centimeter cross-sectional area. If we esti
mate that we actually may have 1/600 
as large a be.am as this, or 5 x 10" par
ticles circulating in each mac.hine, some 
107 interactions per second (proportional 
to NP2 ) may be expected to be produced 
in an interaction region that is 1 meter in 
length ·(20). With a vacuum of the order 
of 10-6 mm-Hg of nitrogen gas, the back
ground produced in this target volume 
may be expected to be larger by about 
one order of magnitude, but, as is pointed 
out previously, the background radiations 
will be confined primarily to the median 
plane. Interaction with the residual gas 
also has the effect of limiting the beam 
life, possibly to a time not much longer 



than 1000 seconds in the present ex
ample, so that groups of particles must 
be injected to replenish the beam at a 
rate not less than the reasonable value 
of one group per second. 

It is the hope of the MURA group 
that further theoretical and experimental 
work will lead to the design and con
struction of models that will permit test
ing means for efficient particle accelera
tion, the investigation of high-current 
beams, and the eventual realization of a 
research machine that will take full ad
vantage of the benefits to be derived from 
the FFAG principle. 
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I. Linearized orbit equations 

1. Geometry of the equilibrium orbits 

In order to develop a theory of orbit stability applicable 
to FFAG accelerators generally, it is convenient to charac
terize a particular accelerator by specifying its equilibrium 
orbits. We will therefore assume that a set of closed 
equilibrium orbits lying in the median plane is given. 
If instead, the magnetic field pattern is specified, the 
equilibrium orbits must be found by integrating the 
equations of motion. 

The geometrical properties of each orbit, and the 
rel\ltions between orbits, will be periodic in the azimuthal 
angle 0 with period 27t/N. Each orbit is to be specified by 
its equivalent radius R defined by 

S = 21tR, (1.1) 

where S is the length of the orbit. In general; R will be 
slightly larger than the mean radius < r >av· We define 
an azimuthal coordinate 0 by the equation 

s = 0R, (1.2) 

where s is the distance measured along the orbit from some 
reference point (say at azimuthal angle 0 0). We shall 
require that the orbit be perpendicular to the radius from 
the center of the machine at the reference point, and that 
the reference points lie along a continuous curve. The 
parameter 0 will be equal to the azimuthal angle 6 - 60 

plus a small periodic function with period 21t/N. 

Each orbit will now be specified by a periodic parameter 
ll-(0, R) defined by . 

~J.(0, R) = R/p(0, R) (1.3) 

where p is the radius of curvature. Specification of 
IJ.( 0, R), together with the requirement that the center 
of the orbit lie at the origin in the median plane, completely 
determines the orbit R, provided the reference point 
0 = 0 is specified. For our purposes, it will be sufficient 
to specify the angle ~ (R) between the radius from the 
origin and the reference curve 0 = 0 where it crosses the 
orbit R (figure 1). Choice of the parameter 1J.(0, R) is 
restricted by the requirement that it be periodic in 0 with, 
period 27t/N and mean value 

21t 

<ll>av =- IJ. d 0 =- - = l. 1 f 1 fds 
21t 21t p 

(1.4) 

The function [L(0, R) is also restricted by the requirement 
that at the point 0 = 0 the orbit R must be perpendicular 
to the radius from the origin. This requirement leads to 
a rather complicated analytical restriction on the function fL. 
It is sufficient if 0 = 0 is a point of symmetry of the 
orbit, i.e., 

1J. (- 0, R) = fJ. (0, R) (1.5) 

We will need also parameters 'l ( 0, R) and & ( 0, R) 
relating the perpendicular distance dx between two nearby 
orbits, and the increment d0 in 0 along an orthogonal 
trajectory to the orbits,. to the increment dR in the para
meter R (see figure 1) : 

dx=1)dR 

d 0 = &dR/R 

(1.6) 

(1.7) 

• Assisted by the National Science Foundation and the Office of Naval Research. 

Published in CERN Symposium on High Energy Accelerators and Pion Phy
sics, 1956, v. 1, pp. 279-289. Reproduced with permission by CERN. 

1-9 



280 Non-linear theory of betatron oscillations 

ORBIT PARAMETERS 

Fig.l. 

It can be shown that 1J, e: satisfy the differential equations 

C!e:foe = fL"IJ- 1, 

O"IJ/o0 =- fJ.E- f R OfJ./oR · d0, 

(1.8) 

(1.9) 

where the three constants of integration are to be chosen so 
that e: and 1J are periodic functions of 0 (i.e. so that the 
right hand members of equations (1.8) and (1.9) have zero 
mean values), and so that 

[e:/1J] e = o = tan ~. ( 1.10) 

If all equilibrium orbits are geometrically similar, 
the parameter fJ. depends only on 0 and not on R. In the 
interest of simplicity, we will usually restrict our attention 
to machines of this type. If in addition, ~ is independent 
of R, then by equations (1.8)-(1.10), the parameters 1J and 
e: will be independent of R. In this case, we will say that 
the quilibrium orbits scale; the equilibrium orbits scale if 
any set of neighboring orbits can be obtained by photo
graphic enlargement or reduction from a set of orbits in 
the neighborhood of any other orbit. 

Let us set 

fJ. = I + fg (N H), (1.11) 

where f is the flutter factor, and the flutter function g(N 0) 
has period 27t in N 0, zero mean, and is normalized so that 
its mean square value is 1/ 2 • For example, 

g(N0) =cos N0. (1.12) 

Then an approximate solution of equations (1.8)-(1.9) 
which is adequate to exhibit the principal features of FF AG 
orbits is 

·IJ ='=I- ftan ~/N · g1 (N0), 

e: _:_ tan ~. 

(1.13) 

(1.14) 

where for any function g(~). periodic in ~ with zero mean, 
we define 

( 1.15) 

where the constant of integration is to be chosen so that 
g 1(~) has zero mean. 

2. Betatron oscillations 

If a particle of momentum p moves in an equilibrium 
orbit R, then we have by t:quation (1.3) 

p c = e Hp = (e H R)/fJ., (2.1) 

where H is the magnitude of the magnetic field, so that 

H(R, 0) = pcfeR fJ. ( 0, R). (2.2) 

The magnetic field is thus given in terms of the coordinates 
R, e. 

If we differentiate equation (2.1) with respect to x, 
where x is measured perpendicular to the orbit, we have 

H opfox + p (oH/ox) = c/e · op/Cix. 

The field index is therefore 

n = - p/H · oH/ox 

= ap;ax - p · aJnp/ax. 

(2.3) 

(2.4) 

Making use of equations (1.3), (1.6) and ( 1.7), we find 

where k is a parameter which measures the momentum 
compaction : 

k = R(d In p)/dR- I. (2.6) 

Jn terms of the mean magnetic field H ~~ pc/eR, we can 
'write k also as a mean field index : 

k = R/H ·dH/dR, (2.7) 

The linearized equations for betatron oscillations about an 
equilibrium orbit are 

d2x/ds2 - (1 - n)/p2 • x = 0, 
d2z/ds2 - (n/p2) z = 0, 

(2.8) 
(2.9) 

where x and z are the deviations from the equilibrium orbit 
in the radial and vertical directions. These become by 
equations (1.2) and ( 1.3), 

1-10 

d 2x/d02 + fJ-2 (I-n) x = 0, 

d 2z/d02
- fJ-2 n z = 0. 

(2.10) 

(2.11) 
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The character of the betatron oscillations is therefore 
determined by the functions 11- 2 ( 0, R) and 

By making use of equations (1.8) and (1.9) we can rewrite 
equation (2.12) in the form 

(2.13) 

_ If the equilibrium orbits scale, then !J., 'Yl anq E are functions 
only of 0. Thus (L2 n will be a function of 0 only, and 
the betatron oscillations will also scale, provided k is 
constant. Accelerators with this property will be referred 
to as accelerators which scale. For accelerators which 
scale, we have 

P = Po (R/Ro) k+l (2.14) 

and 

H = H 0 (R/R 0)k tL(0). (2.15) 

3. Approximate solution for betatron oscillations 

In this section we develop some approximate formulas 
which give a useful general picture of the properties of 
FFAG accelerators. If the betatron wavelengths are long 
on comparison with the sector length (say at least four 
sectors), then the smooth approximation equations are 
applicable 1 - 2l. The "smooth" betatron oscillation equa
tions become in this case 

where, 

d2X/d 0 2 - Vx2 X = 0, 

d2Z/d02 - Vz2 Z = 0, 

Vx2 = <11-2(1-n)>av + <(11-2(1-n))i >av, 

Vz2 = <11-2n>av -+- <(11-"n) ~>av. 

(3.1) 

(3.2) 

(3.3j 

(3.4) 

The curly brackets () indicate that only the oscillatory 
part of the enclosed function is to be taken; i.e., the mean 
value is to be subtracted. 

The solutions of equations (3.1), (3.2) are 

X= A cos vx0 + Bsin Vx0, 

Z = C cos vz0 + Dsin Vz0. 

(3.5) 

(3.6) 

Superposed upon these smooth solutions is a ripple which 
has the periodicity of the sectors. It is clear that vx, vz are 
the numbers of radial and vertical betatron wavelengths 
a round the circumference of the accelerator. The approxi
mate formulas (3.3), (3.4) give vx, vz within about 10% pro
vided that vx, vz are both less than N/4. 

In order to avoid resonance buildup of betatron oscilla
tions, it is necessary to avoid integral and half-integral 
values for vz, vz and also to avoid integral values for 

vx + vz. This implies that vx, vz, must be the same for 
all orbits, or nearly so, and this is the principal limiting 
condition on FFAG designs. In accelerators which scale 
vx, vz are necessarily the same for all orbits; this is the 
advantage in designs which scale. 

The relation between betatron wavelengths and machine 
parameters depends upon which term in eq. (2.13) predom
inates in giving alternating gradient focusing. In a 
radial sector FFAG accelerator with ~ = 0, and with a 
large number of sectors (say N > 10) 'Yl is very nearly 
unity, and the second term in eq. (2.13) is small except 
near the edges of the magnets where it gives rise to edge 
focusing effects. The edge focusing comes from the term 
- 7)-1 • E op.jo 0 in eq. (2.12). This term has a non-zero mean 
value, part of which is included in the (L term in eq .(2-13); 
thus eq. (3. 7) and (3.8) below include most of the mean 
focusing effect due to edges in radial sector machines. 
We will call the first term in eq. (2.13) the "11- term" and the 
second, the "7) term". fn a spiral sector FFAG accelerator, 
the alternating gradient focusing comes predominantly 
from the 'Yl term. 

It may be noted that the 'Yl term includes the term 
(R/'1)) (o!J./CIR) which appears when the orbits do not scale. 
It is not hard to see that in a conventional AG synchrotron 
this is the dominant alternating gradient term. 

Let us first consider a radial sector FFAG accelerator 
with a large number of sectors, and let us neglect the 
'Yl term. If f/N ~ I, then 'Yl • I according to eq. (1.13), 
let us write 11- in the form given by eq. (1.11). Then eq. 
(3.3), (3.4) yield, if we substitute from eq. (2.13), with 
7)= I, 

(3.7) 

f2 (k- 1)2f2 
Vz2 = - k + - + < g1

2 > av, 
2 N 2 

(3.8) 

where we have neglected a small term involving g2 
- g2 in 

eq. (3.8). The betatron oscillation advances in phase 
by an angle 

a = 2rtv/N (3.9) 

per sector. For stability, a must be less than rt, and 
for the smooth approximation to be valid, a must be less 
than about rt/2. If we solve eq. (3. 7), (3.8) for k, fin terms 
of crx, crz, we obtain 

(3.10) 

(3.11) 

1-ll 
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where 

(l 12) 

The quantity b is negligible for sufficiently large N. 

By appropriate choice of ox, oz, k can be made either 
positive or negative, i.e., in a radial sector FF AG synchro
tron, with N large, the high energy orbits may be either 
on the outside or the inside of the donut. The b-term, 
which is important when N is small, is positive and there
fore favors machines with positive k, i.e., with a given N, 
/k/ can be larger and f smaller if k>O. For maximum 
momentum compaction, i.e., minimum radial aperture, k, 
and hence N, should be as large as practicable; If we 
define a circumference factor C as the ratio between mean 
and minimum radii of curvature of the equilibrium orbit, 
then 

C = ltJ.Imax = II + fg(N 8)lmax. (3.13) 

It is desirable to minimize C, since for a given maximum 
magnetic field, this yields the smallest accelerator design. 
It is clear from eq. (3.11), that for a given form of g, the 
minimum circumference factor is obtained by making 
oz as small, and ox as large as possible (or vice versa, if 
k is to be negative). 

Let us assume a rectangular field flutter, with unit 
mean square : 

g (~) = 

[
I- q ]! 
~ , - qrr < ~ < qrr, (I) 

- [ q ]
1, qrr < ~ < 2rr- qrr, (II) 

2 (I - q) 

(3.14) 

g (~ + 2rr) = g (~). (3.15) 

When ~ = N 8 lies in regions labeled I, we say that 8 
is in a positive half sector; regions labeled II we call 
negative half sectors. We need to calculate 

(3.16) 

If now 

(3.17) 

is fixed by eq. (3.11), then by eq. (3.13), the circumference 
factor is 

y'JK yJK 
C = 1 + -- or--- - I 

rrq ' 7t(l - q) ' (3.18) 

whichever is greater. The minimum value of C occurs 
when q is chosen so that the two values of the right member 
of eq. (3.18) are equal. We then have 

fL = 1 + fg(N8) = 

C, -q1t < N8 < qrr, (I) 

(3.19) 

- C, q1t < N8 < 2rr- q1t, (II) 

The radius of curvature, and consequently also the magnetic 
field, is constant in magnitude along the equilibrium orbit 
and opposite in sign in the two half sectors. The ratio of 
half sector lengths is 

q c + 1 
r=-=--

1-q C - I ' 
(3.20) 

and the circumference factor is 

c = r + t = [t -~]! 
r - 1 2 

(3.21) 

If we take oz = 7t/6, Ox = rr/2, b = 0, and use the approxi
mate formulas (3.10), (3.11 ), we obtain K = 3y'5, r = 
1.31, C = 7.5, f = 10.5, k = N"/36. It will be shown in 
the next section by a more accurate calculation that the 
minimum value of C where N is large is about 5. 

.In a spiral sector FFAG accelerator, ~ is near 90° and 
the 'Yl - term in eq. (2. t 3) is large. It is then possible to 
use a much smaller flutter factor, so that the oscillatory 
part of the fL- term is small. We will again assume that 
fL is given by eq. (2.11) and will use the approximation 
(1.1 3) for 'Yl· If we expand 1/'Yl in a power series in the 
second term of formula (1.13), we may calculate 

We will neglect the second and higher order terms, and will. 
neglect also the oscillatory part of f.t/'1). The 'Yl - term 
can be rewritten in the following way : 

The first term on the right is large and oscillatory with 
zero mean, and the second is smaller but has a positive 
mean value. We neglect the oscillatory part of the second 

'term, and substitute in eq. (3.3) and (3.4), using (2.13) to 
obtain 

Vx
2 = k + 1, (3.24) 

(3.25) 

Note that the 'Yl - term does not contribute in this approxi
mation to the radial focusing. If we take 'Yl as given by 
formula (1.13), we have 

<( t a1l)') ( gs ) - - - f 2 tan 2~ 
1J 88 av - (l- fN-1 tan 1;: g 1) 2 av 

[ I 2f
2 

tan 
2~< > J = fZ tan 2~ 2 + N2 g2 gt 2 

av + ... (3.26) 

1-12 
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We will neglect the second and higher order terms in square 
brackets and substitute in eq. (3.24), (3.25), to obtain 

(3.27) 

where we have also neglected f". Note that, to this order 
of approximation, formulas, (3.24) and (3.27) are independ
ent of the form of the flutter function g (N0); only the 
circumference factor [eq. (3.13)] depends on g(N 0). 
We can rewrite these formulas in terms of the phase 
shifts cr per sector : 

k + 1 = (N2 crx2)f4rr2, 

f 2 tan 2~ = N 2f4rr2 · ( crx2 - crz2) - 1. 

(3.28) 

(3.29) 

The reference curve 0 = 0, satisfies, in polar coordinates 
r, e, the equation 

lfr drfdO =cot~. (3.30) 

The radial separation between ridges (points of maximum 
magnetic field), in units of r is therefore 

A = Mfr = 2rrfN tan ~. (3.31) 

Thus for a given choice of crx, crz, imd N the ratio ffA is 
fixed. The maximum allowable gap between the poles 
of the magnet is proportional to A; if the field flutter is 
to be obtained by shaping the poles, without extra forward 
windings, it can be shown that for ffA fixed the maximum 
gap is about 1f4 A rand is obtained for f __:__ 1f4• Under these 
conditions, the field flutter will necessarily be very nearly 
sinusoidal, 

g (~)=cos~. (3.33) 

and hence the circumference factor will be 

c = 1 + f = 1.25. 

If we take, as above, O'z = rrf6, crx = rrf2, with f = 1f4 , 

we obtain k + 1 = N2f16, A= 5.95 N-2 [1-14.4N-2]-If2, 
tan~= 1.05 N [1-14.4N-2]-I/2. 

4. Linear stability /or radial sectors 

In order to get . more accurate relations between the 
parameters, we return to the betatron oscillation equations 
(2.10), (2.11). Making use ofeq. (2.12), (1.13) and (1.14), 
with ~ = 0, we rewrite eq. (2.10), (2.11) for the case of a 
rectangular field flutter of the form (3.19) : 

d2xfd 0 2 ± kCx = 0, 

d2zfd 0 2 =f kCz = 0, 

(4.1) 

(4.2) 

where the upper signs apply in positive half sectors, and 
the lower in negative half-sectors. The term e: OiJ./o 0 in 
eq. (2.12) gives rise to terms in eq. (2.10), (2.11) which repre
sent the focusing which occurs at the sector edges, which 
we will here neglect. These approximations are valid 
only when N ~ f, and we have accordingly also neglected 1 
in comparison with n. When N is small, edge effects 
and higher order terms in '1l must be taken into account. 
The oscillatory terms in "I) will give rise to effects resulting 
from the fact that neighboring equilibrium orbits are not 
everywhere equidistant. For small N, edge effects turn 
out to increase the vertical focusing and decrease the 
radial focusing, so that considerably smaller values of the 
flutter factor f may be used if k > 0, without losing vertical 
stability. 

Let N00 = -qrr, N0 1 = qrr, N0 2 = (2-q)rr. Then the 
solutions of eq. (4.1) within the positive and negative 
halfsectors separately yield the following matrix relations 
between x and x' = dx/d 0 at the points 0 0 , 01> 02 : 

(4.3) 

where 

(
cos \)!+ (K q-'/2 sin\)! .. ) (cosh \jl- (KC)-Yz sinh \jl-) 

M+ = -(KC)'h sin \)!+ cos \)!+ ' M- = (KC)Yz sinh\)!- cosh \ji- ' (4.4) 

2rrq 2rr( 1-q) 
\)!+ = N (KC)'Il, \)!- = ~ (KC)Yz (4.5) 

We thus obtain 
(4.6) 

with 

M = M- M+ = (cos\)!;- cosh \jl-- sin\)!+ sinh\)!-, (KC)-'/, (cos \)!+.sinh \ji-- sin\)!+ cosh tJi-)) (4.?) 
(KC) /,(cosh sinh tJi- + sinh cosh \jl-), cosh cosh tjJ_ + sin tJi+ sinh \jl-
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We can now calculate 

cos crx = t Trace (M) = cos tJi+ cosh tJi- (4.8) 

and in the same way, 

cos O"z = cos tJi-- cosh tJi+. (4.9) 

In terms of the local field index 

n = k/C, (4.10) 

within the magnets (we take n as positive here), and the 
ratio r of sector lengths [eq. (3.20)], we may rewrite 
tJi+ and tJi-: 

o= 2rr _r_ nY. ·'·- = 2rr _I_ ny,. 
·-h N r-t ,'j' N r-t (4.11) 

Formulas (4.5), (4.8), (4.9) and (4.11) have been written 
for k > 0. However they may also be used for k < 0, 
in which case it is convenient to regard C as negative. 

The smallest circumference factor is obtained by choosing 
crx as large as possible and crz as small as possible (or vice 
versa). If we choose crx = 3rr/4, crz = rr/6, we calculate 
from eq. (4.8), (4.9), tJi+ = 1.32, tJi- = 1.93. From eq. 
(4.11), (3.21) we have 

r = tJi+!tJi- = 1.46, c = 5.35 (4.12) 

The theoretical minimum value of C is 4.45 for crx = rr, 
crz = 0. Tn order to keep the amplitude of betatron oscil
lations within reasonable bounds, the above choices of 
crx, crz run about as close to the stability limits as it is 
safe to go. (For the choice crx = rr/2, crz = rr/6, these 
more exact formulas give r = 1.29, C = 7.9, which may 
he compared with the approximate values 1.31, 7.5 obtained 
in the preceding section.) 

5. Linear stahility for spiral sectors 

For spiral sector accelerators, the circumference factor 
is close to unity, and minimizing C is no longer a major 
consideration. The ridge separation A is, however, 
i·ather small, and if the gap between magnet poles is to be 
kept as large as possible, it appears that the field flutter 
in the median plane must be at least approximately sinusoi-

dal. We will therefore assume a field in the median plane 
of the form. 

Bzo = 8 0 (r/r0)k [I - f sin (1/w ·In (r/r0)- N!l)], (5.1) 

where r, 6 are polar coordinates in the median plane. The 
argument of the sine function is made logarithmic rather 
than linear in r in order to make the magnetic field (and 
hence the particle orbits) scale. The constant w is related 
to the spiral angle and·the ridge separation (eq. 3.31) by 

1/w = N tan~= 2rr/A. (5.2) 

The linearized equations for the betatron oscillations in 
the field (5.1) can be obtained from the general analysis 
of the first two sections, but it is perhaps more illuminating 
to derive them directly. 

.If one undertakes to write the linear terms in the differ
ential equations characterizing the departure of the particle 
from a reference circle of radius r1 = p/eBo(r0/r1)k one 
obtains substantially the following, where x """(r- r1)/r1 
andy ·"" z/r1 • . 

x" + [1 -1- k + f/w · cos N!l] x _:__ f sin NO (5.3) 

y"- [k -1- f/w · cos N!l] y == 0. (5.4) 

These equations suggest alternate gradient focusing of the 
type characterized by the Mathieu differential equation, 
but the presence of the forcing term on the right hand side 
of the equation for the x-motion indicates that a forced 
oscillation will be expected and will be given approximately 
by 

x = - f sin N!l. 
N 2 - (k -1- I) 

(5.5) 

Because of the presence of this forced motion one realizes 
that not only will the nonlinear terms in the differential 
equations be large but that a noticeable influence upon the 
betatron oscillation wavelength can result. 

It is appropriate, therefore, to perform an expansion 
about a more suitable reference curve by writing 

v = x- f sin Nfl 
N2 - (k -1- I) 

(5.6) 

In this way one obtains equations of which the most signifi
cant terms appear below : 

[ 
f2/w 2 f f2/w

2 J 
v"+ k+l-t 2 +-cosNO+ !N2 -(k-t-l)cos2NO v=O 

N - (k + I) w 
(5.7) 

[ 
f2/w2 f f2/w2 J y" - k- _L -1- -cos NO -1-! cos 2NO y ,~ 0 1 

N2 - (k + I) w · N 2 
- (k + 1) 

(5.8) 
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Fig. 2. 
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Each of these equations is of the form 

d2z/dr2 + [A + B cos 2 T+ C cos 4 T] z = 0. 

Tables of the characteristic exponent (o/rt) of the extended 
Mathieu equation (5.9) have been computed on the 
ILLIAC, using a variational method 3>. Values of A are 
tabulated for a range of values of o, B, C covering the signifi
cant portion of the first stability region. Results for the 
Mathieu equation (C = 0) are included. So far as we are 
aware there are at present no published tables of charac
teristic exponents for the Mathieu equation within the 
stability region. 

In fig. 2 we plot a stability diagram for a spiral sector 
FFAG accelerator with k p 1 computed from the above 
formulas and the tabulated solutions. If k p 1, the co
efficients A, B, C, depend only on k/N2 and f/w N2 • We 
accordingly plot curves of constant ox and Oz vs k/N' and 
f/WN 2 

• .If we take Oz=rt/6, ox=rt/2, with f= 1
/ 4 , 

we obtain k = .057N2, f/WN2 = .25, ).. = 6.3N-2, which 
may be compared with the approximate values k = 
.062 N 2, f/WN 2 = .265, ).. = 5.95 N-2 obtained in Section 3. 

II. Non-linear effects in FFAG orbits 

6. General description of non-linear effects 

The preceding analysis of betatron oscillations has been 
based on an expansion of the equations of motion in 
powers of the displacement from the equilibrium orbit, 
keeping only the linear terms. The small amplitude 
betatron oscillations in x and z are then found to satisfy 
linear differential equations wiJh coefficients periodic in the 
independent variable (-:), 

In a perfectly constructed accelerator, the only periodicity 
would be that associated with the N identical sectors 
around the machine, and the period of the coefficients 
would be Zrt/N. In an actual accelerator, there will be 
imperfections, so that the coefficients will be strictly 
periodic with the period 2n in 8, and approximately 
periodic with period 2n/N. Associated with the period 
2rt/N is the requirement that ox and oz must not be integral 
or half integral multip.les of 2rt; in practice it appears 
that o should be less than n since otherwise the tolerances 
on magnet construction and alignment become very severe. 
Associated with the period 2n is the requirement that 
vx and Vz must not be integral or half-integral if imper
fection resonances are to be avoided, and, in addition, if 
imperfections can couple the x - and z - motions, vx + 
vz must not be an integer. 

The study of the effects of non-linear terms in the 
equations of motion has not advanced nearly as far as the 
study of the linearized equations. Approximate analytic 
methods of treating non-linear equations with periodic 
coefficients have been developed by J. Moser 4 > and P. A. 
Sturrock5>. Their results can be summarized as follows. 
If the coefficients in the equations have period 2rt in 0, 
and if vx, Vz are the numbers of betatron oscillations in one 
period 2n, then imperfection resonances can occur when 

nx vx + nz Vz = any integer, for (6.1) 

nx, nz = 0, 1, 2, ..... . 

Let 
nx + nz = q; (6.2) 

Then if q = 1 or q = 2, the motion is unstable even in 
linear approximation (this is the rule stated in the preceding 
paragraph). If q = 3, then in general, the effects of quad
ratic terms in the differential equations are such as to 
make the motion unstable even at very small amplitudes. 
If q = 4, then the effects of cubic terms may be to render 
the motion unstable, depending on the form of the cubic 
(and linear) terms. If q > 4, then, in general, the motion 
is stable for sufficiently small amplitudes of betatron oscil
lation. In any case, if q ~ 4, and if the equations of motion 
are non-linear, then there will be in general a limiting ampli
tude of betatron oscillations beyond which the oscillations 
are unstable in the sense that they leave the donut. Numer
ical studies carried out on the ILLIAC at the University 
of Illinois seem to confirm these conclusions. 

If we apply the above criteria to the sector periodicity 
2n/N, then we must replace vx, Vz in eq. (6.1) by ox/2rr, 
crz/2rr, the number of betatron oscillations per sector. 
We then conclude that values of ox or oz near 2rr/3 are to 
be avoided as well as values such that ox + 2oz or oz + 
2 ox is nearly 2rr. We call these resonances with the period
icity of the structure itself "sector resonances". We 
have indeed found in numerical studies that the limiting 
amplitude for betatron oscillations in spiral sector machines 
become very small when o approaches 2n/3. 
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It should be pointed out that non-linear terms in the 
equations for the radial sector accelerator are not very 
large, being not greater in order of magnitude than non
linear terms which arise in some conventional alternating 
gradient accelerators which have been contemplated. 
However, the non-linear terms which arise when the sectors 
spiral are much larger and play a very important role in 
determining the character of the betatron oscillations. 
Numerical studies indicate that although the motion in 
spiral sector synchrotrons exhibits marked non-linear 
effects, the amplitude limits are large enough to accom
modate reasonable betatron oscillations provided a is not 
close to 2rr/3. (Say ax < .6rr). 

7. Characteristics of particle motion in spiral sector 
structures 

The digital computer studies have been carried out 
with the aid of the Electronic Digital Computer of the 
Graduate College of the University of IJlinois (ILLIAC). 
A large fraction of the computations pertained to structures 
for which the parameters feJI in the range suitable for. the 
spiral-sector model, which is under development at the 
University of Illinois, but the majority of the orbit charac
teristics revealed in this way appear to be common to 
large-scale spiral-sector machines, including cyclotrons 
of the type currently being studied by groups in other 
laboratories. 

The computational studies for spiral-sector machines 
have so far involved integration of differential equations 
describing the particle-trajectories, although attention 
is being directed towards the formulation of transformations 
(suitable for rapid computation of particle-motion through 
successive sectors) akin to those employed earlier as part 
of an analogous study of non-linear alternate-gradient 
structures similar in form to the Courant-Livingston
Snyder design. 

The differential equations have involved (i) a set of 
exact equations covering motion in the median plane and 
(ii) a set of approximate, but Hamiltonian, equations de
scribing both radial and exial motion in a magnetic field 
of the form necessarily associated with that prescribed 
in the median plane. The present programs have confined 
attention to fields with a sinusoidal dependence upon 
azimuth angle, but active programming has been begun 
on others free of this restriction. The utility of structures 
possessing poles which do not lead to pure sinusoidal 
fields is under study. The analytic work for a two-part 
computational program has been completed, involving (i) 
solution of the magne.tostatic problem in the space between 
such poles, employing only two position variables 

c; == ..!_ [ln (1 + x) _ Ne] and YJ == y't + (wN)2 y 
2rr W 2rtW 1 + x 

when use is made of the scaling property of the structure, 
and (ii) solving the differential equations for trajectories 
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in this field, which will, in effect, be stored in the computer 
memory. 

The results of computations pertaining to motion with 
one degree of freedom are appropriately and conveniently 
represented by means of phase plots, depicting on invariant 
curves the position and associated momentum of a particle 
as it progresses through successive " sectors" (periods of 
the structure) from one homologous point to another. 
Such studies provide information concerning the locati~n 
of "fixed-points", corresponding to an equilibrium orbit; 
the phase-change of the betatron oscillation per sector 
(a); the displacement associated with trajectory directions 
different from that of the equilibrium orbit; and the extent 
of the region within which stable motion is possible. The 
characteristics of small-amplitude motion found in this 
way agree weJI, for sinusoidal fields, with the predictions 
of the analytic theory. At large amplitudes, unstable 
fixed-points-representing unstable equilibrium orbits
make their appearance. These fixed-points are usually 
3 or 4 in number, corresponding to an unstable periodic 
solution 3 or 4 sectors in wavelength, although other cases 
have also been observed. 

Associated with the unstable fixed-points one finds a 
separatrix, constituting an effective stability limit, which 
in the majority of cases the ILLIAC results depict as a 
sharp boundary and outside of which it is frequently 
possible to draw the initial portions of what appear to be 
invariant curves for unstable motion. Fig. 3 shows a 
number of invariant curves, on a phase plot of this nature, 
for parameters not far from those which would be suitable 
for a model. In this case the phase change per sector is 
close to ax = .5711t for small-amplitude motion; ax does- not 
change greatly with increasing amplitude and it is note
worthy that ultimately 7 unstable fixed-points (ax= 
4rr/7 __:__ .5714rr make their appearance. In this example 
a rather large permissible amplitude of stable motion is 
found <Ill rl approximately 0.08 or 0.09 times the radius, 
at NB = 0, mod 2rr). The existence of this relatively 
large region of stability is connected with the fact that 

1 Appt01.. loc:atlofl of UMtobtl Fiitd 
Points 

-.1· 

Fig. 3. 
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ax0 differs materially from the value 2rr/3, for which a 
prominent non-linear sector-resonance makes its presence 
felt. 

When axial motion is also permitted, there is in ·general 
coupling between this motion and that occurring in the 
radial direction. For small-amplitude oscillations about 
the equilibrium orbit, however, the motion is virtually 
decoupled. Limits of axial stability can be readily exam
ined for special cases such as that in which the radial 
motion is introduced with initial conditions characteristic 
of the stable equilibrium orbit. For the structure with the 
parameters to which fig. 3 pertains, one finds in this way 
an axial amplitude limit of slightly over 0.014r-this limit 
applies to locations such that N6 = 0 (mod 2rr), near the 
center of an axially defocusing region, and has associated 
with it amplitude limits which become almost twice as 
large at intermediate points. 

/ 
-001- ·- .. 

Fig. 4. 

Similarly constructed phase plots for other values of 
machine parameters are shown in fig. 4 and the following 
figures. We are indebted toN. Vogt-Nilsen for supplying 
these plots from his studies of orbit stability. 

Coupled axial and radial motion is more difficult to 
study systematically. By examining the behavior of the 
axial motion for various amplitudes of radial oscillation, 
however, some progress has already been made in the 
examination of the importance of various resonances 
involving the two frequencies which characterize the small
amplitude motion. 

When the machine as-a-whole is considered, as it must 
because the presence of unavoidable misalignments makes 
the basic period strictly not one sector but one complete 
revolution, numerous additional resonances become 
possible. The effect of some of these has been examined 
with the JLLIAC, and further active investigation of this 
question is planned. 

0'.•.7911' 
K•l60 ).,•24!2 
". 40 t •.25 

Fig. 5. 

- X 

8. Application of Walkinshaw's equation to the 2ay = 

ax resonance 

A method of analysis which appears to account for 
the behavior of the axial motion, in the presence of appre
ciable radial oscillation, has been developed by Walkin
shaw6>. The differential equation characterizing the axial 
motion is trated as linear, but contains a coefficient which 
involves the radial motion. As is well-known, the forced 
radial motion enhances the A-G focusing which appears 
in the axial equation-now, however, the additional effect 
of the free radial betatron oscillations is also included in the 
axial equation. The super-position of the comparatively
long-wavelength radial oscillations on the forced motion 
in effect modulates the smooth-approximation coefficient 
in the axial equation, to yield a Mathieu equation with a 
coefficient having the period of the radial motion. Under 
"resonant" conditions, which will be seen to include the 
case of interest here, this equation may have unstable 
solutions and, in such cases, the characteristic exponent 
of the solution appears to compare reasonably in magnitude 
with the lapserate characterizing the exponential growth 
of the ILLIAC solutions of the "Feckless Five" equations. 

Fig. 6. 
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Walkinshaw's analysis pertains to differential equations 
which, in the MURA notation (f. ex., LJL(MURA)- 5), 
are taken to be of the form 

x" + (k + I) x = -fsin (x/w- NO), 

y" + [- k- (f/w) cos (x/w- NO) y = 0 

(8.1) 

(8.2) 

(cf. LJL MURA Notes 6-22 Oct. 1955, Sect. 6, for yfw 
~ 1). A solution for the radial motion, representing a free 
oscillation of amplitude A superposed on the forced motion, 
is taken of the form 

X = A cos (vxO + e:)- (f/!12) sinf!1d0, (8.3) 

where 

n~ N +A (vx/w) sin (vxO + e:) and Vx __:_ (k + J)Y. (8.4) 

This solution is substituted into the axial equation to 
yield, after some approximation (and a shift of the origin 
of 0 which we introduce for convenience), 

, + -k + -·(t 
[ 

f2 
y w2N2 

2A Vx )] + wN- COS vxO y = 0. 

(8.5) 

It is noted that, when A = 0, this equation reduces to that 
given by the smooth approximation-we accordingly 
write 

y -1- Vy2 -j- ---· COS Vx<i y = 0, , [ 2Af
2 

Vx J 
w"N" 

(8.6) 

to obtain an equation of the Mathieu type with a coefficient 
of period 2rr/vx in 0. By the transformation vxO = 2 t, 
we have the standard form 

[ 
8f2 A J d 2y/dt2 + (2 Vy/vx)2 + -- -COS 2 t Y = 0 

w 3N 3 Vx 
(8.7) 

with a coefficient of period rr in the independent variable t. 

·A solution of the Mathieu equation 

d 2y/dt2 + [a + b cos 2t] y = 0, (8.8) 

for b small but not zero, will exhibit instability when the 
coefficient a is equal or close to the square of an integer. 
In the present application stop-bands may thus be expected 
at operating points such that 2 vyfvx = m, the broad band 
of instability at 2 vy/vx = J (or z cry/crx = I) being of chief 
interest in connection with the work presented here. 
It appears, moreover, possible to employ the Mathieu 
equation to account semi-quantitatively for (i) the range 
of b, and hence of the amplitude of free radial oscillation, 
which may be permitted when the oscillation frequencies 
depart by a specified amount from the resonant condition, 

and (ii) the lapse rate found . to characterize the growth 
of the axial motion when the radial oscillations exceed 
this limit. 

The numerical application of the Mathieu equation to 
specific problems of stability or instability may be accom
plished by reference to ILLIAC solutions for the stability 
boundaries or for the characteristic exponent charac
terizing the solution. 

(i) A useful estimate of the expected restrictions on the 
radial motion may be obtained, however, by appeal to the 
fact that near a = 1, b = 0 the stability boundaries can 
be represented rather well by the condition 

lbl -'- 21 a - I I· (8.9) 

We find in this way the following estimate for the limiting 
amplitude : 

waNa (f 2vy . 1 ""' -- I 2vy - vx I or - - ~ I). = 2f2 Vx 

(8.10) 

It may be noted that this result, although expressed in 
terms of vx and vy, concerns an inherent sector resonance 
which arises when 2 cry/crx = J. This resonance is par
ticularly interesting in that it does not appear to fall under 
the general criteria outlined in Section 6. 

(ii) An estimate of the lapse rate characterizing unstable 
solutions near a = 1, b = 0 may, moreover, be made by 
taking 

when 
rr 

1.1. = 4 yb2 - 4(a- 1)2 nepers for tH = rr <lbl > 2la-tl) 

rr Vx 
= -- yb2 - 4(a- 1)2 nepers per sector 

4N 

rr/4 

N 

0.68V(4f2A)
2 

[ ]
2 

decades per N waNa - (2 vy)2- vx2 fvx2 sector(8.ll) 

A convenient alternative form for this last result is 

2rrP 
fJ. ·= wa N4 yA2 - A 1

2 nepers/sector 
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2.73 p --v N- A 1
2 decades/sector. 

wa N4 
(8.12) 
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Results obtained with the ILLIAC, for 5-sector machines 
with model-like parameters such that 0.5rr < ox0 < 0.6rr 
and 0.2rr < oy0 < 0.4rr, appear fairly close to these esti
mates. In all the lLLIAC runs the radial amplitudes 
were measured, however, near the center of a focusing 
region, at NO = 0 (Mod. 2rr), where the amplitudes of 
the non-sinusoidal A-G oscillations can exceed those 
corresponding to the smooth approximation representation 
of the motion. By way of example we present here the 
results for an accelerator for which 

k = 0.6436 1/w = 20.ll2 N = 5: 

In this case the oscillation frequencies are such that 

Ox0 = 0.5388rr } ( Vxo = 1.347 
or 

Oy0 = 0.2ll55rr ) vy0 "- 0. 714 

and the limiting amplitude for x appeared to be some 
0.0075 units to the left of the stable fixed point (NO = 0, 
mod. 2rr). For these machine parameters the equation 
for A 1 yields 

At (2~~)3 1.347 [(1.06)"- 1] 

== 0.0092, the observed limiting amplitude at 

NO = 0 (mod 2rr) thus being within 20% of this estimate. 
With respect to the lapse rate, we continue this example 

by consideration of the case A = 0.0225. Then VA2 - A 1
2 

= 0.02035, and one expects 

1-l = 0.171 (20.82)'' (0.02035) 
625 

= 0.050 decades/sector, 

in close agreement with the value 0.055 decades/sector 
found from the ILLIAC work. (For this case the coeffi
cients in the Mathieu equation are a = 1.12, b -C~ 0.604, 
for which an independent extrapolation of coarse tables 
extending to a < 1 suggests 1-l = 0.107 nepersjsector ·= 

0.046 decades/sector.) In fig. 7, we plot the amplitude 
of radial motion for which the vertical motion becomes 
unstable (represented by the lengths of the rods) at various 
points in the ox, Oz - plane. 

Growth of the axial motion, similar in appearance to 
that reported here, has also been observed in the neigh
borhood of the 2 ox + 2 oy = 2rr and ox + 2oy = 2rr 
resonances. It appears that these sum resonances may be 
connected with the presence of terms in the y-equation 
which involve u2y cos NO and uy sin NO, where u represents 
the radial oscillation about the scalloped equilibrium 
orbit. 
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I. General description 

Alternating gradient (AG) focusing 1 ) provides a high 
degree of stability for both the radial and vertical modes 
of betatron oscillations in circular particle accelerators. 
This stability makes possible the construction of many 
kinds of circular accelerators with magnetic guide fields 
which are constant in time, called fixed field alternating 
gradient (hereafter FFAG) accelerators. These machines 
contain stable equilibrium orbits for all particles from the 
injection energy to the output energy. These orbits may 
all be in an annular ring, as in a synchrotron or betraton; 
the magnetic field must then change rapidly with radius 
to provide orbits for the different energy particles. If 
the guide field gradient were made independent of azimuth, 
one of the modes of betatron oscillation would be clearly 
unstable. Application of alternating gradient focusing, 
however, can keep both modes of betatron oscillation 
stable even with the rapid radial change of magnetic 
field. It is interesting to note that circular particle 
accelerators can be classified into four groups according 
to the type of guide field they use : fixed field constant 
gradient (conventional cyclotrons, synchro-cyclotrons and 
microtrons), pulsed field constant gradient (weak focusing 
synchrotrons and betatrons), pulsed field alternating gra
dient (AG synchrotrons), and fixed field alternating gra
dient (FFAG synchrotrons, betatrons, and cyclotrons). 

Two types of FFAG design appear the most practical. 
The radial sector type** achieves AG focusing by hav
ing the fields in the successive focusing and defocusing 
magnets vary in the same way with radius but with alter
nating signs (or in certain cases alternating magnitudes). 
Since the orbit in the reverse field magnet bends away 
from the center, the machine is considerably larger than a 
conventional AG machine 1

) of the same energy having 
an equal peak magnetic field. This serious disadvantage 
is largely overcome in the spiral sector type (suggested by 
D. W. Kerst), in which the magnetic field consists of a 
radially increasing azimuthally independent field on which 
is superimposed a radially increasing azimuthally periodic 
field. The peaks and troughs of the periodic field spiral 
outward at a small angle to the orbit. The radial separa-

tion between peaks is small compared to the radial aper
ture. The particle, crossing the field ripples at a small 
angle, experiences alternating gradient focusing. Since the 
fields need not be anywhere reversed, the size of this machine 
can be comparable to that of an equivalent conventional 
AG machine. 

. FFAG synchrotrons have a number of important 
advantages over conventional synchrotrons. A major 
one is beam intensity. Since the magnetic field is time 
independent in an FF AG synchrotron, the beam pulse 
rate is determined only by the repetition rate of the radio 
frequency modulation cycle. In a conventional synchro
tron, the beam pulse rate is limited by the time to complete 
the pulsed magnetic field cycle. It is reasonable to assume 
that RF cycle repetition rates can be made considerably 
higher than field recycling rates. In addition, one may 
consider accelerating several groups of particles simul
taneously, so that the interval between times when groups 
of particles are accepted from the injector may be made 
much less than the time required to accelerate one group 
to full energy. 

The radio-frequency acceleration may follow a more 
arbitrary frequency-versus-time program with FFAG 
synchrotrons since there is no magnetic field tracking 
requirement as in pulsed-field synchrotrons. This allows 
the use of a mechanical modulation system with high-Q 
cavities. With the high-Q realized in unloaded cavities, 
the required voltage gain per turn could be given the 
particles by one cavity driven at reasonable pover. Modu
lation could be accomplished by a moving diaphragm or 
similar device to tune the cavity capacity. With such a 
system, model tests indicate a frequency change of a 
factor of greater than 3:I is practical. Using 5 Mev 
injection, a frequency change of 10 : 1 is required to reach 
relativistic velocities. One might then use one cavity 
operating as a self-excited oscillator to accelerate par
ticles from injection to about 50 Mev. The voltage on 
that cavity would then be turned off as voltage on a second 
cavity is turned on, and acceleration continued with the 

* Assisted by the National Science Foundation and the Office of Naval Research. 
*'' Suggested by K. R. Symon. This structure was also suggested independently earlier (1953) by T. Ohkawa, University of 

Tokyo, Tokyo, Japan. (private communication.) 
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second cavity. The change-over could be triggered by 
frequency comparison between cavities. The relative 
phases of the cavities could be controlled by a loose coupl
ing between them. (With the University of Michigan 
electron synchrotron two cavity RF system, it was observed 
that is was possible to make the transition from one cavity 
to another without an observable beam loss.) A third 
cavity might be added and a second transition made if 
desired, since it is observed that most of the energy is 
given the particles after they have reached almost constant 
velocity, c, and this third cavity could be designed to pro
vide very high voltage over a small frequency range. 
Fine frequency adjustments would be made with reactance 
tube loading of the cavities. With this RF system it 
appears reasonable to accelerate protons to 20 Bev with 
a repetition rate of two or three per second. While the 
above system is suggested on the basis of experimental 
tests already in progress, it is realized that other RF 
systems might prove more practical. In alternating 
gradient synchrotrons, phase stability vanishes at a tran
SitiOn energy. It is possible in the radial sector FFAG 
designs to have k large and negative. In' this case there 
is no transition energy, and high energy orbits lie on the 
inner radius of the machine. Negative k designs appear 
o be not practical with spiral sectors. 

Another reason for high beam intensity is the large 
injection aperture possible in the FFAG designs. Whereas 
injection from a 50 Mev proton linear accelerator is 
planned for 25 Bev pulsed-field accelerators, a 5 Mev Van 
de Graaff electrostatic generator might be used to inject 
into FFAG synchrotrons for the following reasons. Eddy 
current effects on the magnetic fields are absent in FF AG 
synchrotrons and the effects of remanent magnetic fields 
can be reduced by properly distributed currents (or by 
a demagnetizing procedure at the end of an operating day), 
so that injection into weaker magnetic fields appears 
practical. By enlarging the injection aperture space 
charge and gas scattering effects may be reduced, allowing 
the lower injection energy. Conventional synchrotrons 
must inject into a region where the magnetic field will later 
be pulsed to its maximum value, so that an increase in 
injection aperture would require an increase in peak 
magnet power and stored energy. The use of electro
static generator injection with FFAG synchrotrons would 
have the advantages of higher pulse currents, greater sim
plicity, lower cost, and better beam energy and size reso
lution than are at present realized with proton linear 
accelerators. Although one-turn injection using a pulsed 
inflector with a pulsed current of milliamperes is the most 
obvious injection system, many-turn injection might be 
used to give greater beam currents if methods of circum
venting the space charge limit are found. 

Other advantages of the FFAG synchrotron are engineer
ing and maintenance ·simplifications. The direct current 
magnet power supply is simpler and cheaper than a pulsed 
supply to construct and to maintain. The magnets do 

not have to be laminated, and field trimming is all time 
independent. Disadvantages of the FF AG synchrotron 
are the large increase in circumference for the radial sector 
type (at least a factor of three) and the increase in complexity 
of the magnetic fields, particularly for the spiral sector 
machine. 

Fixed field betatrons have potentially a much higher 
intensity than conventional betatrons.* Beam can be 
injected for a considerable fraction of a cycle, if extra 
accelerating flux is available, rather than the few tenths 
of a microsecond presently possible. The only beam 
current limitation appears to be space charge at injection, 
and this may be decreased by such techniques as high 
voltage injection. An FFAG betatron has no problems 
of tracking a pulsed guide field with the accelerating flux, 
and has also other engineering simplifications mentioned 
in the synchrotron case. 

Application of the FFAG principle to a cyclotron 
allows the radial dependence of the magnetic field to be 
such as to keep the particle revolution rate constant, inde
pendent of energy even in the relativistic region. Present 
high energy cyclotrons must be frequency modulated to 
compensate for the relativistic increase of mass. A con
stant frequency cyclotron should increase the beam output 
about two orders of magnitude. A radial sector cyclo
tron, in which the field alternates between high and low 
values, was first suggested by Thomas 2). The spiral sec
tor design seems even more advantageous for application 
to the cyclotron. 

II. Types of FFAG design 

1. Radial sector type 

Circular particle accelerators with radial sectors can be 
built with the high energy orbits at the outer edge of the 
machine and the injection orbits at the inside edge, or vice 
versa. This discussion assumes the highest energy orbits 
are at the outside edge. (We will refer specifically to 
FF AG synchrotrons, but most of our comments will 
apply also to betatrons and cyclotrons.) In the radial 
sector design the magnet structure consists of N identical 
sectors, each composed of a focusing magnet and a defo
cusing magnet. The magnet which is focusing for radial 
oscillations is of course defocusing for vertical oscillations 
and vice versa. The azimuthal boundaries of the magnets 
are on radii from the machine center (hence the name). 
The magnetic field direction in one magnet of a sector is 
opposite to that of the other, while the radial dependence 
of the field is the same in both. The field in the median 
plane at any azimuth is 

H = Ho (~f (1.1) 

where r is the distance from the machine center to the equili
brium orbit and k is a constant for the machine. This 
field shape requires that orbits for different energy particles 
are similar, i.e. photographic images of each other. Ideally, 

*This has been pointed out independently by Miyamoto, Tokyo University, Tokyo, Japan, at a symposium on nuclear physics 
of the Physical Society of Japan in October, 1953. (private communication.) 
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the field along a closed equilibrium orbit is constant through 
each magnet, and the path is composed of arcs of circles. 
This situation is perturbed by the impossibility of a sharp 
field boundary. If we assume the ideal situation, a partic
ularly simple case occurs when the fields for a given energy 
orbit have the same magnitude in the positive and negative 
field magnets. 

It is evident that particles deviating from the equilibrium 
orbit experience AG focusing. The numbers of radial 
and vertical betatron oscillations around the machine, 
Vx and vz, are determined by k and the magnet lengths. 
Both Vx and vz are constant for all energies. 

It is desirable to make the negative field magnets as 
short as possible, to keep the radius of the machine small; 
the minimum length of the negative field magnet is of 
course determined by the necessity for preserving stability 
of the vertical betatron oscillations. Some vertical 
focusing and radial defocusing occur because the orbits 
are scalloped and do not cross the magnet edges at right 
angles. In machines in which the number of sectors is 
large and the effects of orbit scalloping small, the negative 
field magnet can be made no shorter than about 2/ 3 of 
the positive field magnet if we wish to preserve vertical 
stability. This means that, neglecting straight sections, 
the circumference of the machine is five times that necessary 
if there were no negative field magnets. The ratio (in 
this case, five) between the actual orbit circumference of a 
circle whose radius is the minimum radius of curvature 
at any point along the orbit, we call the circumference 
factor. The fixed magnetic field in an FFAG machine 
can be made considerably larger than the pulsed field of 
a conventional accelerator, so a machine of the radial 
sector type might actually be about three times the size 
of a pulsed field AG accelerator of the same energy. It 
is also desirable to make the radial extent of the magnets 
as small as possible, which requires a high field gradient. 
The allowable gradient is determined by the effect of magnet 
misalignments. Reasonable values indicate a minimum 
radial aperture of about 2% of the radius of the machine. 

2. Spiral sector type 

The spiral sector design of FFAG accelerator has the 
high energy orbits at the outside edge of the machine. It 
is not practical to have the high energy orbits on the inside 
and inject at the outside edge, because stability of the radial 
oscillations becomes virtually impossible to achieve. 

The guide field on the median plane, if there are no 
straight sections, is given by 

H = H 0 (r/r0)k (1 + f cos [N El - N tan~ 1 n (r/r0) J) 
(2.1) 

where r is again the distance from the center of the machine; 
k, the mean field index; El, the azimuthal angle, also 
measured from the center of the machine; f, the flutter 
factor (the fraction of field variation); N, the number of 
sectors (periods of the field variation) around the machine; 
and ~ is the spiral angle between the field maximum and 

the radius. The equilibrium orbits are all similar figures, 
whose linear dimensions are proportional to the radius, 
but their positions rotate with radius due to the spiraling 
periodic field. A particle going around the machine expe
riences a gradient first of one sign then the opposite as it 
crosses the periodic field peaks and troughs at a small 
angle, so. there is AG focusing of the betatron oscillations. 
The negative gradient is less than the positive gradient, 
due to the radial increase of field. This is somewhat 
compensated by the scalloping of the orbits, which causes 
the particle to experience a longer path in the negative 
gradient and a shorter path in the positive gradient than 
if it moved on a circle. The strength of betatron focusing 
depends on the rate of radial increase of the field, the 
spiral angle, and the number of sectors. The minimum 
size of radial aperture is limited primarily by the difficulty 
of achieving strong AG focusing with a periodic field 
while requiring a given vertical aperture. A flutter factor 
of about 1 I 4 gives the largest vertical gap for a fixed strength 
of focusing when iron magnet poles are used without 
distributed backwindings and forward windings. This 
small flutter factor means the machine has a circumference 
factor (in this case, I + f), close to unity, so the radius 
of an FFAG spiral sector synchrotron is about the same 
as that of an equivalent energy conventional synchrotron. 
By using a field variation in the median plane which is 
more rectangular than sinusoidal, some increase in ver
tical aperture and also' in the maximum stable amplitude 
of vertical oscillations is achieved at some sacrifice of 
circumference factor. The minimum radial aperture for 
reasonable parameters is about 3% of the radius. 

3. Other FFAG types 

Both the radial sector and spiral .sector designs discussed 
above have equilibrium orbits of constant shape scaled 
in proportion to the orbit radius. There are many modi
fications of these designs. Some differ only in that the 
fields are not the square wave type used in the radial sector 
design described or the sinusoidal shape used in the spiral 
sector design. There are other variations of these designs 
which preserve betatron oscillation stabilit):', hold Vx 

and vz constant, but do not retain the property of similar
ity of equilibrium orbits. The magnet edges of focusing 
and defocusing sectors can be made non-radial, and the 
fields in the positive and negative field magnets made 
different functions of radius (the negative field magnet can 
even be designed to have zero field). The magnet edges, 
radial or non-radial, can be tipped in the same direction, 
approaching the spiral sector design. Machines made 
with these modifications do not seem to show any strong 
advantages with perhaps the following exception. It is 
conceivable, using back windings, to transform from a spiral 
sector at the outside edge of the machine, with a small . 
circumference factor where it is needed, to a radial sector 
at the inside edge, with a large vertical aperture for injec
tion. Such a design would have the advantages of both 
types with, however, a considerable increase in magnet 
complexity. 
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Another modification is the spiral sector constant fre
quency cyclotron. In this machine, the frequency of 
revolution of the particles can be made independent of 

energy even at relativistic energies, but the orbits in this 
case do not scale, and the number of betatron oscillations, 
Vx and Vz cannot be kept constant. 
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I. INTRODUCTION 

The synchrotron frequency is given in the 
usual approximation ( 1) (valid for v, « 1) by 

_ f.""h"''""' _ [h KV cos~%~,] 1/J 
v,- -· f.......... 2 1t E, 

[1.1] 

where v, 4s the number of synchrotron oscilla· 
tions per revolution, V is the peak vQltage gain 
rer turn, Ill, is the stable phase, h the harmonic 
number, and 

E df 
K=-

f clE 
[1.2) 

Ordinarily, v, « 1, but if h is very large, as it 
conceivably could be in the 100-1000 GeV acce
lerators, v, can be of the ordel'\ 1 or even larger. 
We may then expect to encounter resonant beha· 
vior when 

m 
v.=-- [1.3] 

n, 

just as is the case with betatron oscillations, 
and for n. s 4 similar instabilities and nonlinear 
stability limits may occur. Since v, changes 
during acceleration, and eventually decreases to 
small values, a value such as v, > 1/• will necessi· 
tate crossing a quarter-integral resonance during 
acceleration, and higher values of v, will necessi· 
tate crossing more serious resonances. We may 
also expect coupling resonances with the radial 
betatron oscillations whenever 

n,v, ± n,v, = m (1.4] 

* Work supponed by the U. S. Atomic Eneri)' Commi~sion 

1-25 

In the present report we will consider only 
synchrotron resonances of type [ 1.3 ], and we 
will study only the stability limits introduced by 
these resonances when the acceleration panime
ters are held constant. 

A resonance of type [ 1.3] may be regarded as 
dl"iven by neighboring harmonics in the acce
leration signal. That is, if the synchronous revo
lution firequency is 

f.= fJh [I.!?] 

where f. is the frequency at the accelerating r. f. 
gap, then a particle at frequency 

f,_ = fJ(h- 1) [1.6) 

would also be synchronous. In the case of a 
single accelerating ,gap, when all travel·ing wave 
components into which we can resolve the accel
erating voltage have equal amplitudes, i•t is of 
interest to compare the energy extension of a 
bucket with the distance between adjacent bar· 
monies, which is· 

E f,_ -f, E 
AEh=- =--

f IKI hiKi 
[1.7] 

when h » 1. The maximum excursion from the 
synchronous. energy is (1) given roughly by 

AE .. = (1 - r) [ 
2 

V E ]
111

, r • sin IP, 
1thjKj 

[1.8] 

As a result, the usual bucket formulas certainly 
break down (buckets would overlap) when 

[;
2 V EJ 1

'

1 

(1-r) --
'!thiKI 

E 
>--

2h iKI 
[1.9] 
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ur, in view of Eq. [ 1.1 ], for v.;::. 1/4, for reasonable 
\alu~s of r. 

In rhe next section, we formulate the accelera· 
riun problem in terms of canonical variables sui· 
table fur applying Moser's (2) techniques to11 

!>tudy the bchaviot· at resonant values of v.. We 
then apply these in succeeding sect.ions. 

11. SYNCHROTRON ACCELERATION EQUATIONS 

The time derivative of the phase of the r.f. 
\'ullage when a particle crosses an accelerating 
gap is 

~ = 2 1t (f. - hf) = 2 1t h (f, - f) [2.1] 

where f is the particle revolution frequency,_ f, 
the frequency of the gap voltage, h Ire harmo
nic number, and f. the synchronous particle fre· 
quency. For the case of a single accelerating 
~Jp of negligible width at 9 = 0, where e is the 
;uimuthal coordinate of the accelerator, the rate 
at which the energy E of a particle increases 
i~ given by (1) 

E = 2 1t fll ·(9) V sin 2 1t f. t = 

1: - f V sin (nO - 2TC f. t) [2.2] . ---
where V is the peak gap voltage (which we take 
as independent of time). Letting 

~ = 2 1t f. t - hO [2.3] 

leads to a rate of energy gain given by 

00 

f V sin I (1 + ~) ~- 21t m f, t] f: = f V sin ~ + 1: 

m "'o 

[2.4] 

The first term, which corresponds to n = h, re
presents the component of the r.f. which re
\'Oh·es with the synchronous particle. The other 
terms are commonly dropped, but they are im
portant here as they may drive resonances when 
v. is not small. We will, however, assume that 
quantities such as f. vary so slowly that they 
may be taken as constant (during a few synchro
tron oscillation periods). Expanding f(E, t) 
about the synchronous energy E. (which corres
ponds to the frequency f,) gives 

f = f, + f1 (E- E,), af "l fe=--
clE E = E, 

[2.5] 

to first order. Note that the synchronous phase 
~. is given by 

E, = f, V sin ~. [2.6) 

(where cos <11. has the same sign as ar;aE). 

Dimensionless phase, energy, and time varia· 
bles may be introduced by (') 

h fe 
y = ---· (E-E,) 

f, 

't = 2 1t f, t 

so that Eqs. [2.], [2.4] become 

dq~ 
--=y, 
d .. 

:: = v; (- sin q1 + 2 tan ¢1, sin1 
:) [ 1 + 2 

[2.7) 

[2.8) 

[2.9] 

[2.10) 

}; cos m 't] 
m • I 

[2.11) 

where v. is given by Eq. [ 1.1] and where we have 
assumed h to be large (neglected m/h relative 
to 1). Equations [2.10], [2.11] may be derived 
from the Hamiltonian 

H b ~ y' + v! f 2 sin' ; - tan Ill, (ql - sin q~) J 

[1 + 2 .. f. cos m 't] [2.12] 

For N properly phased and evenly spaced gaps 
with identical peak voltages V /N, one would 
again arrive at Eq. [2. 11] except that only those 
values of m which afe divisible by N appear. A 
few evenly spaced gaps can thus eliminate the 
terms which drive low order resonances. Howe· 
ver, any error in position, voltage, or phase will 
give rise to smaii terms in cos m "t for which m is 
not divisible by N. If, for example, a single gap has 
errors liD, liV, licp in position, voltage, and phase, 
the errors will contribute to the sum the ·terms 

00 

2 1: E cos (m "t + !;), 
• • I 

li 111 + (m + h) li e 
8V/V 

[2.13) 

Note that our y is not the same as that used in Ref. I, 

1-26 



298 Session VI 

In the usual treatment in which the time-de
pendent terms in Eq. [2. 11] are neglected, it is 
clear if we linearize Eq. [ 2. II] that '~~• is the 
angular frequency of small phase oscillations. 
Since the time ~ is measured here in radians. of 
revolution of the synchronous particle, \I, will 
be •the frequency in phase oscillations per revo
lution. We will see later that the time-dependent 
terms have a negligible effect if v, « 1. In that 
case the usual treatment yields, for the nonlinear 
problem, a region of stable phase oscillations, a 
" bucket ", whose area in phase space, hi the 
present units, is 

Ar = 16 \I, a., (r)/(1-r')"' = 16v,a(r), 

a;, (r) 
a;(r) =----

(1- r')'" 
[2.14] 

where the r dependence, a, (r), is a numerical 
factor shown graphically in (I). y.le cQnsider 
first the linearized Eqs. [2.10], [2.11 ], with time
dependent terms neglected. Let us make a ca
nonical transformation (y, q:~)-+ (P, y) to canoni
cal polar coordinates, defined by 

Y = (2 V, p)11Z COS 'Yo [2.15] 

( 
2 p ·)'IZ cp = -;,- sin y. [2.16] 

The quadratic par.t of the Hamiltonian [2. 12] 
is then 

1 1 
H, = -y + -v! cp' = '~~•P [2.17] 

2 2 

The phase trajectories are circles of constant p. 

If the time-dependent terms are included, then 
the linearized equations [2. 10]. [2 . .Jl] lead to a 
Hill equation. The solution is of Floquet type 
with a linear oscillation frequency "~~· replacing 
from '~~·· We shall determine v. later. Instabilities 
appear when v. approaches an integral or half-in
tegral value. When the linearized motion is stable, 
it is again possible to find a canonical transforma
tion (now J?eriodic in ~) which transforms the 
quadratic part of the Hamiltonian to form [2. 17], 
with v, replacing v.. Thus in suitable variables, 
the linear motion is again reduced to a circle 
of constant P in phase space. Using further 
canonical transformations of types introduced by 
Birkhoff (-3 ), one could formally eliminate the y 
and ~ dependence from successively higher order 
terms of H, so that to any desired order one 
may formally . transform the phase curves into 
circles of oonstant P, obtaining 
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H = F (p), [2.18] 

d p cl H dy clH 
--= ---=0, --=--= v,(p) [2.19] 
d ~ c) 'Y. d ~ c} p 

where now p, y are new canonical variables 
related by a sequence of transfor.mations to the 
original P, y variables introduced in the linear 
problem. The transformations are such that the 
new variables differ from the original ones only by 
nonlinear terms, so that the difference between 
them is only important at large amplitudes. The 
frequency of phase oscillations, v. (P), is a func
tion of the amplitude P, or equivalently of the 
area A of the phase trajectory, since 

A 
P=--

2n 
[2.20] 

Although it would be possible to find the function 
F( p) and hence v.( p) by thus transforming Eq. 
[2. 12], we may obtain an approximate result in 
a simpler way by noticing that "~~• v., and 

. p-+o 
'~~• (p) 0 with vertical slope. Letting P-+ p, 

p ... p. 
label the separatrix, one obtains 

---Ill •113 

----- "• >113 

-·- 111 <v0 <111 
_ .. ___ .,. < .,, 

(lie,.• Of Stroltht Line• Are Eaotoerated) 

1 .n 1 ..._ I 
---c111 Tan-.: Dl 
3 8 -. • r 

0~---"----~---r.e·J• .5 1.0 Pa 

Fig. 1 · Graphical solution of Eq. (3. 6) near 1/3 Integral 
resonance. 
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A. 8 v,a (r) 
Pc = --.., [2.21] 

2~ ~ 

where A. is the bucket area, given in the usual 
approximation b~ Eq. [2. l~l.. !'- function wit_h 
thl' dl·sircd bchavror at the hmttmg values of P IS 

V, (p) = V0 ( 1 - : ) ' , 0 < X < ] 

which corresponds to the Hamiltonian 

1 [ ( p ')'+'] H = --v.p, 1- 1---
x + 1 p, 

[2.22] 

[2.23] 

The function [2. 22] has the correc·t limiting 
,-alucs at p = 0, p = p, for any exponent x in the 
range indicated, and hence may be expected to 
yidd topologically correct prediction about phase 
tr~jcciOrics. By expanding Eq. (2. 12), one may 
,huw that the value of dv,fdp i~ also correctJy 
n .. 1tchcd near p = 0 (when 't--dependent terms 
.. rc neglected) if we take 

X= a. (r)/~ [2.24] 

Scar the separatrix, it can be shown that v.-+ 0 
more slowly than formula [2. 22] no matter how 
~mall x is taken. However formula [2. 22] gives 
a reasonably good fit to the actual function v, (P) 
if the value [ 2. 24] is taken for x. 

When v./N is not small we may treat the linear
lied equations exactly, with discrete transfor
:n.ltions. It may be shown, for the case of N 
,J~·ntical accelerating gaps, that ·the transfor
mation matrix' giving the energy and phase of 
.1 particle at the ( n + 1 )'" accelerating gap cross
m~. in tenns of that at the n•• gap crossing is 

2~hK 

NE 
= 

V 2~hKV 
-(.~ell. 1 - cos ell, 

•t-:- E. 
I ••• IN N'E E--'-E, 

[2.25] 

from this, we conclude in the usual way (4), 
u'mg Eq. [I. 1 ], that there is a relationship 

21t v. 

v, 
(21t--)' 

N 
cos--= 1----

N 2 
[2.26] 

lx·twc.:cn the actual synchrotron oscillation fre
quency v. and the approximate freqt.~ency v,, valid 

1 h,· .1uthors are indebted to L. Smith for this approach 
to the problem. 

a. b. c. 

Fig. 2 • Phase trajectories In neighborhood of v. = 1/3 re
sonance. Arrows show direction of motion. a) For 
v. = 1/3; b) For v, < v. < 1/3; c) Phase trajectories for 
v. > 1/3. 

for v,« 1. Equation [2.26] is exhibited graphi· 
caJ.ly as the curve in Fig. 5. This equation pre
dicts a cuthoff frequency; for v, greater than N/1t 
which corresponds to v. = N/2), synchrotron mo
tion is unstable. 

It can further be shown that the amount of 
beam one may accelerate (in a fixed orbit syn
chrotron) becomes strongly limited before the 
v. = N/2 resonance is reached, approaching zero at 
the resonance. If we let EL denote the max.i
mum energy excursion (E- E.) that is acceptable 
writhin the radial aperture of the synchrotron, 
(where EL is small compared to the bucket 
height) then the usable phase space is confined 
to an ellipse for which the maximum excursion 
from the synchronous phase is 

!p .... = ('2Tt'hK EL 
/~. 

[2.27] 

'frhea area of this ellipse (in units of energy and 
phase) is 

21t2 v. 

v cos ell, 

} 

1t h K V cos c!J, 
1------E: 

2N'E 

[2.28] 

This formula, however, is modified by other reson
ances and nonl·inear effects. 

Ill. N'h·INTEGRAL RESONANCES 

The equations of motion, [2. 10] and [2.11 ], 
include terms of all orders in <p, if tan ell, ;II! 0, so 
one expects resonance effects whenever Eq. [ 1. 3] 
is satisfied. The m/n. resonances whith odd inte
gers n become very strongly driven an r- 1 
(tan ell, - ) and disappear for r = 0. For 
brevity we shall mainly examine one of the 
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In this and the following figures, horizontal divisions represents (toll> =) 60~ each, and vertical divisions are shown at intervals of (toy =) 0.2 v, each. 
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most important resonances, v = 1/s, and just indi
cate important results of the ·other ones! 

Assume that all terms in the equat.ion ·of mo
tion for synchrotron oscillations have been trans· 
formed away, so the Hamiltonian is a function 
only of p, except for the "• = 1/a driving term 
from Eq. [2. p]. This driving term 

(
dy) aH ... ". - = ev: tan <J), q~' cos 't = - ---
d-t V •II> ()tp 

[3.1) 

may be integrated, and added to Eq. [2. 23] to 
obtain the Hamiltonian H applicable to the re· 
sonance, namely 

"· p. [ p l+l H ::: -- 1 - (1 - -) + 
l+x p. 

v2 
+ --·tan <J), Ev.111 p'11 sin (3 y - -t) 

12 

[3.2J 

plus ignorable terms which do not drive the 
resonance. To eliminate the time dependence, 
we make a canonical transformation to a coor
dinate system rotating in the phase space. The 
generating function is 

so that the new variables become 

"t' 

Y=Y--, 
- 3 

dS 
p=-=P 
- dy 

p 
H=H-.::.. 

. 3 

[3.3} 

[3.4] 

Curves of constant H have singular points where 

au 
--=-- tan <J), Ev.' 11 p111 cos 3 y = 0, ...= - = 0 [3.5] 
ay 4 il£ 

so that 

Y={n+.!..)-.rt, n=O,l ... 5; 
-. \' 2 3 

v .. (1 - ~- } = ~ + (- 1)·•• ~ E tan <J), v~" e''' [3.6] 

This latter equation is solved graphically in Fig. 1. 
We consider first the case v. = 1/a, for which one 

solution of Eq. [ 3.6] is p = 0. In this case the 
curve ~ = 0 has six branches radiating from the 

' A more detailed discussion will be ilven In a forthro~ 
inr paper by the pre~ent authors. 
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ongm at angles I = n1t/3. The criterion as to 
whether Eq. [3. 6) has another solution is (if 
we put x :..:: 1/cx for algebraic convenience). 

[ 
r•a. en ]"• · 2 -./1t 

IEiv. < --
1- r• 3 

[3.7] 

in view of Fig. 1 and Eqs. [2.21 ]. Since it may 
be shown that IX tali <J), 5 r /2, the preViOUS ine
quality is certainly satisfied, so there arc always 
some stable loops for v. =. 1/s. These are shown 
in Fig. 2a. The present treatment is not valid for 
f > Pc. (Cf. Eq. [2. 26) which defines p ). 

For "· ¢ 
1/s there is stability near the origin. 

i.e., arbitrarily small closed orbits exist. It is 
evident from F.ig. 1 that if v. is small ennugh, 
Eq. [3.6] has no roots and the bucket is topoiogi
cally normal. However, for "· equal to some 
value "'• there is a double root, and for v, < v. < 'I• 
there are two roots, leading to the trajectories 
shown in Fig. 2b. We may show, after some ma
nipulation, that (again with x = 1/a.) 

I ( t• o. r ] ..• ,. 
"' =- 1 + -----

3 41t (I - r•> 
[3.8) 

(thus v,. is very close to 1/a) and that the inner 
separatrix encloses less than a fraction 0.04 r ~' 
of the normal bucket area. For v. > 1/a, there is 
one root in each branch of the equation (see 
Fig. 1 ). The phnse trajector.ics arc then as shown 
in Ftig. 2c, with the inner separatrix occurring 
at a value of p· given by v. (p) = 1/a or we now 
take x from Eq. [ 2.24] 

[3.9) 

For the case of an inherent resonance (i.e., E = 1) 
computations showed no stable orbits outside 
the beads (see Sec. IV) for "• > 1/a. Furthermore, 
the loops may be unstable (unless they occur at 
small values .of p), so that Eq. [3. 9] is a crude 
estimate of the shrinkage of bucket size due to 
the third integral resonance. For E « 1, however, 
a small structure of 3 pearls (in a .normal sized 
bucket) is all that is observed. 

The linearized equation for the analogou!> func
tion tl for the half-integral resonance, 

H = ( - !_ - !_ Ev. cos 2 r) p (3.10) 
- \ 2 2 - -

yields stopbands, areas where curves of constant 
H are not closed around the origin, since the 
coefficient of e can be zero if 
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1 1 
--<v.<- [3.11] 
2 +lEI 2 ~lEI 

If there is only one accelerating gap, E = 1 and 
the stopband extends from v, = 1/a * to v, = 1. 
This lower limit is close to the v, = l/1t cut-off 
predicted by Eq. [2. 26]. 

For the quarter-integral resonance, we can 
show, by similar manipulations, that no major 
instability occurs at or below v. = 114 but that 
four pearls are obtained when v. > 114. We solve 
the analogue of Eq. [3. 6] in this case, but use 
the more accurate value of x given by Eq. [2.24] 
~ince at v. = 114 both the resonant and central parts 
have the same ..e. dependence as e-0, making the 
coefficients important. The central forces domi
nate, as the inequality 

~ _ v. ( 1 _ _ e_)!fP > lEI e 
4 p, 24 

[3.12] 

holds at the resonance, yielding stability, or 
trajectories which are topologically normal (near 
p =0). 

IV. COMPUTATIONS: COMPARISON WITH 
THEORY 

Some of the preceding theoretical arguments 
han! bcl'n checked by computer calculations and 
ttw n·.,ults of these wiU be described. 

A' a simplyfying device in most of these cal
~-ulations, a com;tant energy loss dy /dt has been 
m'erted and adjusted so that an energy boost r V 
'' n.'quired to make a synchronous particle stay 
~' nchronous. Configurations of one and more 
than one accelerating gaps have been examined.' 

The Hamiltonian is time-varying, and the pre
JrCnce of errors in voltages or phases of r.f. 
pps makes the over-all period of H equal to the 
orbital frequency of the synchronous particle. 
Particle positions have been plotted for time incre
ml·nts equal to this period, i.e., essentially, the 
pu'ition (phase) and energy have been plotted 
on.:e per revolution (of the synchronous particle)_ 
Each different symbol corresponds to the " foot 
prints • of a given particle with different initial 
•onditions generally selected to represent a dif· 
krcnt value of p, 

Relc\'ant effects of the theory which have been 
namincd include the comparison of v. with v., 
\ius of stopbands, detailed shape of the phase
~pace diagrams, effect of error signals on stable 

• In lhis case. lhe most Important time-dependent term 
lcot 2 yl hi bcina treated explicitly, eo that one should 
1nc v, iriattad of "· In Eq. [l. 1]. 

phase area, and behavior in the neighborhood of 
particular resonances. The general shape of the 
trajectories and structure resemble closely the 
shape of the predicted energy contours (Cf. 
Fig. 2c wth Fig. 4d or 7d, for instance). 

A dramatic result is the enhancement of v. 
with respect to v., which leads to the stopband 
discussed in Sections II and Ill. Figure 5 shows 
a graph of v. versus v, obtained from the com
puter calculations and a comparison with values 
of v. calculated from relations [2. 26]. The agree
ment is excellent, for cases of either I or 5 ac
celerating gaps. For the 1/4 and '/• integral reso
nances, prominent beads are observed for values 
v. above the resonance in a single gap configura
tion (Fig. 3). Some trace of these persists in 
the five-gap case (for a 10% error signal, see 
Fig. 7b). 

One can see by comparing Fig. 3 with Fig. 4 
that while the quarter-integral case docs not 
affect stability near the center of the bucket, the 
113 integral resonance destroys even this, as was 
shown in Section III. 

For the case of many accelerating gaps, pre
dicted effects are verified in Figs. 6- 8, namely, 
stability is restored and the resonances are mi
nimized. The following examples, unless other
wise noted, are for the case of five evenly spa
ced accelerating gaps. For simplicity, the gap 
voJ.tages have been chosen equal for four of 
the gaps, and lOfo, 10"/o, or 25"/o different for the 
fifth gap. This provides a simple example of a 
type of inhomogeneity which is likely to occur 
in an actual accelerator. Such an error signal 
will weakly dr.ive the resonances experienced in 
a single gap machine. Then, instead of resem· ..... 

0 .. •I , 
~· 

... 

lA 

v. 
v. 

u 

• 
0 JO .10 .eo 

~- ./hKv 
Fig. 5 - Graph of v. versus v, and comparison of computu· 
tlon11l values with theoretical approximate values derived 
from Eq. (2. 26}. N represents the number of r.f. stations. 
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relative voltages 

a) "· = 0.10 (smal \1), r = 0.5 
b) "· = 0.201 r = o.8 (~. = t26.8°) 
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c) "· = 0.507, 1% voltage error, 
d) "· = 0.527, 1% voltage error, 

r = o.5 
r = o.s 
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c) v; = 0.34 10% voltage error 

d) "· = Q.34 · 20% voltage error 
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bling the wild patterns of Fig. 4 in which the 
phase plot had degenerated into islands, the 1/a 
integral resonance no longer causes a complete 
breakdown of the bucket, and graphs of Fig. 7 
merely show a string of (3) beads enclosing a • 
stable area. These three stable beads observed 
here are quite similar, for instance, to the five 
stable beads which are observed in F,ig. 3a with 
one accelerating gap. Computer runs with a sup· 
pressed voltage on one of four gaps (E ""0.0 to 
. 0.25, N. = 4) have shown that the 1/a integral re
sonance could cause a reduced region of sta· 
bility, even as an error signal. For lEI tEG 0.1, stable 
motion only occurred for values of e smaller than 
that at which v, (P) = •/a. The v. = 1/c resonance, 
however, had little effect when driven by an error 
signal of this magnitude. 

We have also investigated the reduced stop
band predicted in Eq. [3. 11] when the 1/r integral 
resonance is driven by an error signal (in this 
case 1 = 0.02). This is shown in Fig. 8, where first
order stability (stability at p = 0) is observed for 
"· = 0.487 (but with vertically elongated ellipses) 
and 0.527 but not for v. = 0.497 or 0.507. For the 
calculations shown in Figs. Sa-d, o V = lOOJo and 
E "' 0.02, and as expected, the stopband (for 
"hi~·h small oscillations about the origin are 
umtable) extends from v. = 0.49 to 0.51. 

One phenomenon which seems common to the 
·•• =. 'lr, 'Is, and 1/c resonances is that the effect of 
;tn instability near the outside of a nominal 
huckct appears much mor·c dramatic than the 
clTccts when the instability is ncar the center. 
Thm the major bucket perturbaLions are seen 
when v. is greater than '/•, 113, or 1/t at the center 
of the "bucket". An investigation of v,(p) versus 
~ ga\'e reasonably good agreement with predic
tions of Eqs. [2. 22] and [2. 24]. In particular, 
for r = 0.5, the prediction is x = 0.11, and the 
computations verified this slow rate of decline 
or frc:quency with oscillation amplitude. 

A search for the (outermost) separatrix as a 
.function of voltage errors on the.· accelerating 
gaps (calculated for the case of four accelerating 
gaps) has shown that large errors may reduce 
lhe stable area considerably .. 
, A \'aluc of K =- 0.03 has been used in most 
:_)( the computer calculations. These calculations 
'h:l\·e b:!en carried out on an IBM 704 computer, 
~mploying .eight decimal digits of accuracy, and 

the scatter in the experimental points is belie
ved to be due to this. Preliminary results with 
" double precision" computation (16 digit accu
racy) showed smooth curves for the trajectories, 
but otherwise little change in the structure. 

V. CONCLUSIONS 

We conclude from the above results that in 
accelerators with a single accelerating 'gap, or 
with unsymmetrically placed gaps, the resonance 
v. = 1/a must be avoided. The resonance v. = 1/s 
should probably also be avoided, although in 
certain cases it may be possible to accelerate 
through this resonance. In applying these con
siderations, it is important to remember . that 
the true synchrotron frequency 'J. can be consi
derably greater than the value 'J, given by the 
usual formula [ l. 1] when v, ~ 0.2. 

With symmetrically placed accelerating gaps, 
these resonances may be made relatively harm
less, provided the voltage and phase errors arc 
not too large. The resonant beads produced by 
r.f. errors are small and disappear at values of 
'J. at or sl·ightly below the resonance in each 
case. Since 'J. generally decreases during accel
eration, the beads will move in toward the syn
chronous point as the resonance is approached, 
·then shrink and disappear. Beads near the buc
ket boundary can result in instabilities which 
re-duce the stable bucket area. If however the 
r.f. phase tmjoctories at 'injection arc stable in 
the region occupied by the injected . particles, 
and if there are no resonant beads outside this 
region, then no difficulty due to imperfection 
resonances may be expected during acceleration. 
This conclusion may not hold, however, if the 
.injected particles covet only a small ellipse at 
the center of the bucket. In that case, as a 
resonance is crossed, the bounding ellipse is 
distorted, and its energy dimension may be con
siderably increased, as discussed at the end of 
Section II. Furthermore, the resonant beads, as 
they move into the bucket center, will bring 
with therp empty phase space which becomes 
mixed with the phase space occupied. by parti
cles; the phase area containing the accelerated 
particles. will therefore be increased after the 
resonau~e is crossed, by the area of the resonant 
beads. 
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DISCUSSION 

PENTZ: Y Oll have explained the effect described in 
terms of the picture of two buckets, corresponding to 
two harmonic members of the radio-frequency acc;;ele
ration differing by unity (h, h ± 1), which may overlap; 
Is it correct, then, that the effect will occur when the 
bucket height is large enough for such. overlap to occur? 
SYMON: Yes. 
PBNTZ: Could one then study the effect experimentally 
by usin~r two accelerating gaps separately programmed 
so as to locate two buckets at enerJY separations com- · 
parable to the buckets beilfhts? 

1-37 

SYMON: Yes, this would be approximatively equivalent 
situation to that which would exit in the case of acce
leration at high hannonic number. 

KoLOMENSKY: In your paper you have considered one
dimensional (longitudinal) motion. I' think that the 
two-dimensional character of motion (i.e, coupling with 
the radial betatron oscillation) would be taken into ac
count particularly In the case of large number of ac
celerating stations? 

SYMON: Yes, I a~rree. 
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It is P?ssible, by using alternating-gradient focusing, to design circular accelerators with magnetic oouide 
fields which are constant in time, ami which can accommodate stable orbits at all energies from injecti~n to 
output ene~gy. Such accelerators are in some respects simpler to construct and operate, and moreover, they 
show promise of greater ~UtJ?Ut currents than conventional synchrotrons and synchrocyclotrons. T11·o itn· 
portant types o~ magnetic held patte~ns are described, the radial-sector and spiral-sector patterns, the 
former_ bemg easier to understand and Simpler to construct, the latter resulting in a much smaller accelerator 
for a given energy. A theory of orbits in fixed-field alternating-gradient accelerators has been 11·orkcd out in 
linear approximation, which yields approximate general relationships het11·cen machine parameters as 11·ell 
as_m~re accurate for~ulas 11·hich can be used for design purposes. There arc promising applications,cif these 
pnnnples to the design of fixed-field synchrotrons, betatrons, and high-energy cyclotrons. 

INTRODUCTION 

ALTERNATING-GRADIENT (AG) focusing1 

provides a high degree of stability for both radial 
and vertical modes of betatron oscillations in circular 
particle accelerators. This stability makes possible the 
construction of many kinds of circular accelerators with 
magnetic guide fields which are constant in time, called 
fixed-field alternating-gradient (hereafter FFAG) ac
celerators. These machines contain stable equilibrium 
orbits for all particles from the injection energy to the 
output energy. These orbits may all be in an annular 
ring, as in a synchrotron or betatron; the magnetic 
field must then change rapidly with radius to provide 
orbits for the different energy particles. If the guide 
field gradient is made independent of azimuth, one of 
the modes of betatron oscillation is clearly unstable. 
Application of alternating-gradient focusing, however, 
can keep both modes of betatron oscillation stable even 
with the rapid radial change of magnetic field. Circular 
particle accelerators can be classified into four groups 
according to the type of guide field they use: fixed-field 
constant-gradient ( conven tiona! cyclotrons, synchro
cyclotrons, and microtrons), pulsed-field constant
gradient (weak-focusing synchrotrons and betatrons), 
pulsed-field alternating-gradient (AG synchrotrons), 
and fixed-field alternating-gradient (FFAG synchro
trons, betatrons, and cyclotrons). 

Two types of FFAG design appear the most practical. 
The radial-sector type2 achieves AG focusing by having 
the fields in the successive focusing and defocusing 

• Supported by National Science Foundation. 
f University of Wisconsin, Madison, Wi,consin. 
t University of Illinois, Champaign, Illinois. 
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magnets vary in the same way with radius but with 
alternating signs (or in certain cases alternating magni
tudes). Since the orbit in the reverse field magnet bends 
away from the center, the machine is considerably 
larger than a conventional AG machine1 of the same 
energy having an equal-peak magnetic field. This 
serious disadvantage is largely overcome in the spiral
sector type3 in which the magnetic field consists of a 
radially increasing azimuthally independent field on 
which is superimposed a radially increasing azimuthally 
periodic field. The ridges (maxima) and troughs 
(minima) of the periodic field spiral outward at a small 
angle to the orbit. The radial separation between ridges 
is small compared to the radial aperture. The particle, 
crossing the field ridges at a small angle, experiences 
alternating-gradient focusing. Since the fields need not 
be reversed anywhere, the circumference of this machine 
can be comparable to that of an equivalent conventional 
AG machine. 

FFAG synchrotrons have a number of important 
advantages over conventional synchrotrons. A major 
one is beam intensity. Since the magnetic field is time
independent in an FFAG synchrotron, the beam pulse 
rate is determined only by the repetition rate of the 
radio-frequency modulation cycle. In a conventional 
synchrotron, the beam pulse rate is limited by the time 
to complete the pulsed magnetic field cycle. It is 
reasonable to assume that frequency-modulation repe
tition rates can be made considerably higher than field 
recycling rates. Another reason for high beam intensity 
is the large injection aperture possible in the FFAG 
designs (larger for the radial sector than for the spiral 
sector). Other advantages of the FFAG synchrotron 
are engineering and maintenance simplifications. The 
direct-current magnet power supply is simpler and 
cheaper to construct and to maintain than a pulsed 
supply. The magnets do not have to be laminated, there 
are no eddy current problems, and remanent field and 
saturation difficulties are less serious than in pulsed-field 
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accelerators. All field trimming is time independent. 
The necessity for accurate tracking of the rf accelerating 
voltage with a pulsed magnetic field is eliminated, with 
a resulting greater freedom and ease in design of the rf 
system. Injection should be possible at a lower energy 
than is contemplated for a conventional synchrotron, 
because of the fewer low-field problems and the easier 
frequency-modulation program and the possibility of 
large apertures at the injection radius; the complexity 
of the injection system will then be decreased. Dis
advantages of the FFAG synchrotron are the large 
increase in circumference for the radial-sector type (at 
least a factor of three) and the increase in complexity 
of the magnetic fields, particularly for the spiral-sector 
machine. 

Fixed-field betatrons have potentially a much higher 
intensity than conventional betatrons.4 The beam can 
be injected for a considerable fraction of a cycle, if extra 
accelerating flux is available, rather than the few tenths 
of a microsecond presently possible. The only beam 
current limitation appears to be space charge at in
jection, and this may be decreased by such techni(jues 
as high-voltage injection. An FFAG betatron has no 
problems of tracking a pulsed guide field with the ac
celerating flux, and also has other engineering simpli
fications mentioned in the synchrotron case. 

Application of the FFAG principle to a cyclotron 
allows the radial dependence of the magnetic field to 
be such as to keep the particle revolution rate constant, 
independent of energy even in the relativistic region. 
Present high-energy cyclotrons must be frequency
modulated to compensate for the relativistic increase of 
mass. A constant-frequency cyclotron should increase 
the beam output by two orders of magnitude. A radial
sector cyclotron, in which the field alternates between 
high and low values, was first suggested by Thomas.ii 
The spiral-sector design seems even more advantageous 
ior application to the cyclotron. 

In Part I of this paper we discuss the radial- and 
spiral-sector types of FFAG accelerator in detail. In 
Part II the theory of particle trajectories in FF AG 
machines is developed. Part III contains a description 
of a 10-Bev radial-sector synchrotron, a 20-Bev spiral
sector synchrotron, and FFAG betatrons and 
cyclotrons. 

I. TYPES OF FFAG DESIGN 

I. Radial-Sector Type 

Circular particle accelerators with radial sectors can 
be built with the high-energy orbits at the outer edge 
of the machine and the injection orbits at the inside 
edge, or vice versa. This discussion assumes that the 

• Terwilliger, Jones, Kerst, and Symon, l'hys. Rev. 98, 1153(A) 
(1955). This had been pointed out independently by G. Miyamoto, 
Tokyo University, Tokyo, Japan, at a meeting of the Physical 
Society of Japan in April, 1952 (private communication). 

• L. If. Thomas, Phys. Rev. 54, 580, 588 (1938). 

highest energy orbits are at the outside edge. (We will 
refer specifically to FFAG synchrotrons, but most of 
our comments will apply also to betatrons and cyclo
trons.) In radial-sector design the magnet structure 
consists of N-identical sectors, each composed of a 
focusing magnet and a defocusing magnet. The magnet 
which is focusing for radial oscillations is of course 
defocusing for vertical oscillations and vice versa. The 
azimuthal boundaries of the magnets are on radii from 
the machine center (hence the name). The magnetic 
field direction in one magnet of a sector is opposite to 
that of the other, while the radial dependence of the 
fteld is the same in both. The field in the median plane 
at any azimuth is 

(1.1) 

where r is the distance from the machine center to the 
equilibrium orbit and k is a constant for the machine. 
Figure 1 shows this type of field pattern. This field shape 
requires that orbits for different energy particles be 
similar, i.e., photographic images of each other. Ideally, 
the field along a closed equilibrium orbit is constant 
through each magnet, and the path is composed of arcs 
of circles. This ideal orbit cannot be attained because 
of the impossibility of a sharp field boundary. However, 
if we assume the ideal situation, a particularly simple 
case occurs if the fields for a given energy orbit have the 
same magnitude in the positive- and negative-field 
magnets. Equilibrium orbits for this case are shown in 
Fig. 2. 

It is evident that particles deviating from the 
equilibrium orbit experience AG focusing. The numbers 
of radial and vertical betatron oscillations around the 
machine, Vx and vz, are determined by k and the magnet 
lengths. Both vx and vz are constant for all energies. 

It is desirable to make the negative-field magnets as 
short as possible, to keep the radius of the machine 
small; the minimum length of the negative-field magnet 
is of course determined by the necessity for preserving 
stability of the vertical betatron oscillations. Some 
vertical focusing and radial defocusing occur because 
the orbits are scalloped and do not cross the magnet. 
edges at right angles. In machines in which the number 
of sectors is large and the effects of orbit scalloping 
small, the negative-field magnet can be made no shorter 
than about i of the positive-field magnet if we wish to 
preserve vertical stability. This means that, neglecting 

CENTER OF- _____ _ 
MACHINE 

MAGN~ riG 
EQUIPOTENTIAL$ 

SECTION 
A-A 

FIG. 1. Vertical section through positive or negative 
radial-sector magnets. 
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straight sections, the circumference of the machine is 
five times that which would be necessary if there were 
no negative-field magnets. The ratio (in this case, five) 
between the actual orbit circumference and the circum
ference of a circle whose radius is the minimum radius 
of curvature, we call the circumference factor. The fixed 
magnetic field in an FFAG machine can be made con
siderably larger than the pulsed field of a conventional 
accelerator, so a machine of the radial-sector type might 
actually be about three times the size of a pulsed-field 
AG accelerator of the same energy. It is also desirable 
to make the radial extent of the magnets as small as_ 
possible, which requires a high field gradient. The 
allowable gradient is determined by the effect of magnet 
misalignments. Reasonable values indicate a minimum 
radial aperture of about 2% of the radius of the 
machine. 

2. Spiral-Sector Type 

The spiral-sector design of FFAG accelerator has the 
high-energy orbits at the outside edge of the machine. 
It is not practical to have the high-energy orbits on the 
inside and to inject at the outside edge, because stability 
of the radial oscillations becomes virtually impossible 
to achieve. 

The guide field on the median plane, if there are no 
straight sections, is given by 

II= Ho(r/ro)k{l + f cos[ NO-N tans ln(r/ro)]}, (2.1) 

where r is again the distance from the center of the 
machine; k, the mean field index; e, the azimuthal angle, 
also measured from the center of the machine; j, the 
flutter factor (the fraction of field variation); N, the 
number of sectors (periods of the field variation) around 
the machine; and s is the spiral angle between the locus 
of the field maximum and the radius. 

Figure 3 shows how the ridges and troughs of the 
periodic field spiral toward the outside of the machine 
and indicates the equilibrium orbits for this design. The 
equilibrium orbits arc all similar figures, whose linear 
dimensions are proportional to the radius, but their 
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FIG. 2. !'ian view of radial-sector magnets. 
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FIG. 3. Spiral-sector configuration. 

positions rotate with radius due to the spiraling periodic 
field. Figure 4 is a plot of the radial dependence of the 
median-plane magnetic field. A particle going around 
the machine experiences a gradient first of one sign then 
of the opposite sign as it crosses the periodic field ridges 
and troughs at a small angle, so there is AG focusing of 
the betatron oscillations. The negative gradient is less 
than the positive gradient, due to the radial increase of 
field. This is somewhat compensated by the scalloping 
of the orbits, which causes the particle to experience a 
longer path in the negative gradient and a shorter path 
in the positive gradient than if it moved on a circle. The 
strength of betatron focusing depends on the rate of 
radial increase of the field, the flutter factor and the 
~~~~. ' 

The minimum size of radial aperture is limited pri
marily by the difficulty of achieving strong AG focusing 
with a periodic field while requiring a given vertical 
aperture. If we restrict ourselves to a sinusoidal vari
ation of field, a flutter factor of f= t gives the largest 
vertical gap for a fixed strength of focusing when iron 
magnet poles are used without distributed back 
windings and forward windings. This small flutter 
factor means that the machine has a circumference 
factor (in this case, 1 +f), close to unity, so the radius 
of an FFAG spiral-sector synchrotron is about the same 
as that of an equivalent-energy conventional synchro
troiL The minimum radial aperture for reasonable 
parameters is about 3% of the radius . 

3. Other FFAG Types 

Both the radial-sector and spiral-sector designs 
discussed above have equilibrium orbits of constant 
shape scaled in proportion to the orbit radius. There are 
many modifications of these designs. Some differ only 
in that the fields arc not the square-wave type used in 
the radial-sector design described or the sinusoidal 
shape used in the spiral-sector design. Changes of this 
kind will not affect the constancy of shape of the 
equilibrium orbits and will modify other machine 
characteristics only slighlly. There arc other variations 
of these designs which preserve betatron oscillation 

"1-41 



t84o SYMON, KERST, JONES, LASLETT, AND TERWILLIGER 

r 

FIG. 4. Radial depend
ence of the axial magnetic 
field in the median plane. 

stability, hold vx and v, constant, but do not retain the 
property of similarity of equilibrium orbits. The magnet 
edges of focusing and defocusing sectors can be made 
nonradial, and the ftelds in the positive- and negative
field magnets made different functions of radius; (the 
negative-field magnet can even be designed to have zero 
field). The magnet edges, radial or n~nradial, can be 
tipped in the same direction, approaching the spiral-sec
tor design. Tt is conceivable, using back windings, to 
transform from a spiral sector at the outside edge of 
the machine, with a small circumference factor where 
it is needed, to radial sector at the inside edge, with a 
large vertical aperture for injection. Such a design 
would have the advantages of both types with, how
ever, a considerable increase in magnet complexity. 

Another modification is the spiral-sector constant
frequency cyclotron. In this machine, the frequency of 
revolution of the particles can be made independent of 
energy even at relativistic energies, but the orbits in 
this case do not scale, and the number of betatron 
oscillations, v, and v,, cannot easily be kept constant. 

II. ORBIT THEORY 

4. Geometry of the Equilibrium Orbits 

In order to develop a theory of orbit stability ap
plicable to FFAG accelerators generally, it is convenient 
to characterize a particular accelerator by specifying its 
equilibrium orbits. \Ve will therefore assume that a set 
of closed equilibrium orbits lying in the median plane 
is given. If instead, the magnetic field pattern is speci
fied, the equilibrium orbits must be found by integrating 
the equations of motion. 

The geometrical properties of each orbit, and the 
relations between orbits, will be periodic in the azi
muthal angle 8 with period 2-;r/:Y. Each orbit is to be 
specified by its equivalent radius R defined by 

(4.1) 

where S is the length of the orbit. In general, R will be 
slightly larger than the mean radius (r)Av· We define an 
azimuthal coordinate 8 by the equation 

s=8R, (4.2) 

where s is the distance measured along the orbit from 
some reference point (say at azimuthal angle 8o). We 
shall require that the orbit be perpendicular to the 

radius from the center of the machine at the reference 
point, and that the reference points lie along a con
tinuous curve. The parameter 8 will be equal to the 
azimuthal angle 8-8o plus a small periodic function 
with period 21r-jN. 

Each orbit will now be specified by a periodic 
parameter J..L(8,R) defined by 

J..L(8,R)=Rjp(8,R), (4.3) 

where p is the radius of curvature. Specification of 
J..L(8,R), together with the requirement that the center 
of the orbit lie at the origin in the median plane, com
pletely determines the orbit R, provided the reference 
point 8=0 is specified. For our purposes, it will be 
sufficient to specify the angle S(R) between the radius 
from the origin and the reference curve 8=0 where it 
crosses the orbit R (Fig. 5). Choice of the parameter 
J..L(8,R) is restricted by the requirement that it be 
periodic in (:-)with period 27r/N and mean value 

(4.4) 

The function J..L ( 8 ,R) is also restricted by the require
ment that at the point 8=0 the orbit R must be 
perpendicular to the radius from the origin. This re
quirement leads to a rather complicated analytical 
restriction on the function J..L. It is sufficient if 8=0 is a 
point of symmetry of the orbit, i.e., 

J..L(- G,R)=J..L(G,R). (4.5) 

If there are no points of symmetry, it is necessary to 
construct the orbit in order to locate properly the 
reference point 8=0. Fortunately, an error in properly 
locating the reference point will produce only a very 
small error (of order 1/N2

) in the equations for the 
betatron oscillations, provided the angle r is correctly 
specified. 

We will need also parameters 7J(8,R) and f'(8,R) 
relating the perpendicular distance dx between two 
nearby orbits, and the increment d8 in e along an 
orthogonal trajectory to the orbits, to the increment 
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dR in the parameter R (see Fig. 5) 

dx=.,.,dR, 

d8=EdR/R. 

(4.6) 

(4.7) 

It can be shown6 that .,.,, E satisfy the differential 
equations 

(4.8) 

(4.9) 

where the three constants of integration are to be chosen 
SO that E and 11 are periodic functions of e [i.e., SO that 
the right-hand members of Eqs. (4.8) and (4.9) have 
zero mean values], and so that 

(4.10) 

If all equilibrium orbits are geometrically similar, 
the parameter J.L depends only on E> and not on R. In the 
interest of simplicity, we w'ill usually restrict our 
attention to machines of this type. If in addition, r is 
independent of R, then by Eqs. (4.8)-(4.10), the 
parameters 71 and E will be independent of R. In this 
case, we will say that the equilibrium orbits scale; the 
equilibrium orbits scale if any set of neighboring orbits 
can be obtained by photographic enlargement or re
duction from a set of orbits in the neighborhood of any 
other orbit. 

The solution of Eqs. (4.8) and (4.9) may be obtained 
by successive approximations. Let us set 

J.L= 1+Jg(N8), (4.11) 

"·here g(NE>) has period 21r in 2\re, has mean value zero, 
and is normalized so that its mean square is t; f is the 
flutter factor. Since the right members of Eqs. (4.8) 
and (4.9) have period 21rjN (and zero mean), they 
contribute to 11 and E oscillatory terms of order 1/X. 
The integral in Eq. (4.9) is constant, if we assume that 
J.L is independent of R; it will in any case contribute 
only very small oscillatory terms unless }J. changes 
appreciably within a very small fractional increase in 
radius. The quantity tant is zero in radial-sector FFAG 
machines, but is of order N in spiral-sector FFAG 
machines. \Ve therefore write as a zero-order approxi
mation to 71 and E the constant values 

(4.12) 

.vhich satisfy the conditions imposed on E and 71· 

If F(~) is any periodic function of ~ with period 21r, 

6 K. R. Symon, J\fidwestern Universities Research Association 
report, MURA-KRS-R (unpublished) . .'\ more elegant derivation 
has been given hy B. Ilarnermesh and E. II.. Crosbie [Argomw 
At"celcrator Crou[); f'ror;rt·ss Rt~rort No. 7, July 13, 1955 (u-n 
1 HJ!Jiishcrl)]. 

it is convenient to introduce the notations 

1 h 

(F)Av=-- f F(~)d~, 
27T 0 

{F) =F(~)-(F)A,, 

F'=dF/dF,, 

F1= f {F}d~, 

(4 . .13) 

( 4.14) 

(-US) 

(4.16) 

( 4.17) 

where the integration constants in the last two equations 
are to be chosen so that F,. has mean value zero. All the 
functions defined by Eqs. (4.14)-(4.17) have period 271" 
and mean value zero. 

We now substitute Eqs. (4.11) and (4.12) in (4.8) 
and (4.9) and integrate again to get a first approxi-
mation 

ftang-
71"= 1---g~(Nt)), 

lf 

fg1(0) f 
f= tans--- sec2s+-gi(:Y8), 

,y :V 

(4.18) 

( 4. t 9) 

where the integration constants have been chosen as 
required. [Note that 

1 2• . 

(.tN;\,=- f. K1d.~~=O, (4.20) 
271" ~ 

and that if g(~) is even, then g1U) is odd, and g1(0)=0. 
In any case, g1 (O) is ordinarily small.] 

:\ second approximation may be obtained by sub
stituting 11. E from Eqs. (4.18) and (4.19) in the right 
members of Eqs. (4.8) and (4.9) and integrating again. 
Each successive iteration yields terms of order 1/X2 and 
_{2/.P times the preceding terms. 

5. Betatron Oscillations 

If a particle of momentum p moves in an equilibrium 
orbit R, then we have by Eq. (4.3) 

pc=eHp=eHR/J.L, (5.1) 

where H is the magnitude of the mag1'1etic field, so that 

H(E>,R)= (pcfeR)J.L(E>,R). (5.2) 

The magnetic field is thus given in terms of th.e co
ordinates R and 8. 

If we differentiate Eq. (5.1) with respect to :r, where 
x is measured perpendicular to the orbit, we have 

' clp cJII c iJp 
II- -+p -- ." - - (_~_.)) 

ilx iJ.r ,; il.r 
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The field index is therefore 

n= _(!:_)all. ll ax 
dp a lnp 

(5.4) 

=--,r---. 
ax a~: 

Making use of Eqs. (.L3), (4.6), and (4.7), we find 

(5.5) 

where k is a parameter which measures the momentum 
compaction: 

d. lnp 
k=R---1. 

dR 
(5.6) 

In terms of the mean magnetic fteld H = pc/ eR, we can 
write k also as a mean field index: 

_ ( R)d.Il k- - -. 
H dR 

(5.7) 

The linearized equations for betatron oscillations about 
an equilibrium orbit are7 

If the equilibrium orbits scale, then p., 17, and E are 
functions only of E>. Thus p.2n will be a function of E> 
only, and the betatron oscillations will also scale pro
vided k is constant. Accelerators with this'property will 
be referred to as accelerators which scale. For accele
rators which scale, we have 

and 
II= lJ o(R/ Ro)kp. (0). 

6. Approximate Solution for Betatron 
0 scilla tions 

(5.14) 

(5.15) 

In this section we develop some approximate formulas 
which give a useful general picture of the properties of 
FFAG accelerators. If the betatron wavelengths are 
long in comparison with the sector length (say at least 
four sectors), then the smooth approximation equa
tions developed in the appendix are applicable. The 
"smooth" betatron oscillation equations become in this 
case 

(6.1) 

d2Zjd02+v/Z=O, (6.2) 

where, by Eqs. (5.10), (5.11), and (A.13) of the 
appendix, 

Vx2 = (p.2 (1- n))Av+ ( {p.2 (1- 1t) h2)Av, 
d2x 1-n 
-+--x=O 
ds2 P2 . ' 

(5.8) v,= (p.2n)Av+({!i2
1Z}t2)Av· 

(6.3) 

(6.4) 

The solutions of Eqs. (6.1) and (6.2) are 
d2z n 
-+-z=O, 
ds2 Pz 

(5.9) X=A COSvxG+B sinvx0, 

Z=C cosv,G+D sinv,0. 

(6.5) 

(6.6) 

where x and z are the deviations from the equilibrium 
orbit in the radial and vertical directions. These become, 
by Eqs. (4.2) and (4.3), 

(5.10) 

(5.11) 

The character of the betatron oscillations is therefore 
determined by the functions p.2 (0,R) and 

(5.12) 

By making use of Eqs. (4.8) and (4.9) \\'e can rewrite 
Eq. (5.12) in the form 

(k+1)p. 1 d 217 
p.2(1-u.) =---

17 11 ae2 
(5.13) 

1 N. M. Blachman and E. 0. Courant, Rev. Sci. Instr. 20, S<J(, 
(1949), Eq. (15). 

To these smooth solutions must be added a ripple which 
can be computed from Eq. (A.7). It is clear that vx and 
v, are the numbers of radial and vertical betatron 
wavelengths around the circumference of the accele
rator. The approximate formulas (6.3) and (6.4) give 
vx and v, within about 10~,~ provided that Vx and v, are 
both less than N/4. · 

In order to avoid resonance buildup of betatron 
oscillations, it is necessary to avoid integral and half
integral values for vx and .vz, and also to avoid integral 
values for vx+v,. 8 This implies that Vx and v, must be 
the same for all orbits, or nearly so, and this is the 
principal limiting condition on FFAG designs. In 
accelerators \\'hich scale, v. and v, are necessarily the 
same for all orbits; this is the advantage in designs 
which scale. 

The relation betll'cen betatron wavelengths and 
machine parameters depends upon which term in Eq. 
(5.13) predominates in giving alternating-gradient 
focusing. In a radial-sector FFAG accelerator with 
,1=0 and with a large number of sectors (say iV> 10), 

' 1'. :\.Sturrock, .)'f,Jii<: •lllrl /Jyll<llllic F:leclron Of•lics (Cambridge 
IJni,·ersity l'rcss, Cunbridge, 1'!55), Chap. 7. 
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11 is very nearly unity, and the second term in Eq. (5.13) 
is small except near the edges of the magnets where it 
gives rise to edge focusing effects. The edge focusing 
comes from the term - (tj.,)(iJJ.L/o8) in Eq. (5.12). 
This term has a nonzero mean value, part of which is 
included in the J.L term in Eq. (5.13); thus Eqs. (6.7} 
and (6.8) below include most of the mean focusing 
effect due to edges in radial sector machines. We will 
call the first term in Eq. (5.13) the "1-L term" and the 
second, the "11 term." In a spiral-sector FFAG accele
rator, the alternating-gradient focusing comes pre
dominantly from the 'Y/ term. It may be noted that the 
'Y/ term includes the term (Rj.,) ( iJJ.L/OR) which appears 
when the orbits do not scale. It is not hard to see that 
in a conventional AG synchrotron' this is the dominant 
alternating-gradient term. 

Let us first consider a radial-sector FFAG accele
rator with a large number of sectors, and let us neglect 
the 11 term. If f /:Y «1, then 'Y/ = 1 according to the 
discussio,n in Sec. 4. Let us write J.L in the form given by 
Eq. (4.11). Then Eqs. (6.3) and (6.4) yield, if we 
substitute from Eq. (5.13), with 11= 1, 

(6.7) 

(6.8) 

where we have neglected a small term involving {g~} in 
Eq. (6.8). The betatron oscillation advances in phase 
by an angle 

(6.9) 

per sector. For stability/ fi should be less than 1r, and 
for the smooth approximation to be valid, fi must be 
less than about 1rj2. If we solve Eqs. (6.7) and (6.8) for 
k and fin terms of fix and fi,, we obtain 

where 

47r [fi}+a}-b]l 

j = [2(g,2)Av]! ! fi x2-fi/+b I ' 

471'2 p 4k f2 
b=-[1+---· (g,2)Av]· 

JV2 2 :V2 

(6.10) 

(6.11) 

(6.12) 

The quantity b is negligible for sufi1ciently large.\'. 
By appropriate choice of fix and fi,, k can be made 

either positive or negative; i.e., in a radial-sector FFAG 
synchrotron, with N large, the high-energy orbits may 
be either on the outside or the inside of the donut. The 
b-term, which is important when :\' is small, is positive 
and therefore favors machines with positive k, i.e., with 
a gi.ven .·\',!I:[ can !Jc larger and fsmallcr if 1:>0. For 
maximurn momentum compaction, i.e., minimum radial 
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FIG. 6. Rectangular field flutter. 

aperture, k, and hence :V, should be as large as prac
ticable. If we define a circumference factor C as the 
ratio between mean and minimum radii of curvature of 
the equilibrium orbit, then 

(6.13) 

It is desirable to minimize C, since for a given maximum 
magnetic field, this yields the smallest accelerator 
design. It is clear from Eq. (6.11), that for a given form 
of g, the minimum circumference factor is obtained by 
making fiz as small, and ax as large as possible (or vice 
versa, if k is to be negative). 

Let us assume a rectangular field flutter, with mean 
square value ! : 

(6.14) 

(II) 

(6.15) 

This function is plotted in Fig. 6. When ~=LY8 lies 
in regions labeled I, we say that 8 is in a positive half
sector; regions labeled II we call negative half-sectors. 
\\'e need to calculate 

If now 
(6.16) 

(6.17) 

is fixed by Eq. (6.11), then by Eq. (6.13), the circum
ference factor is 

VJK VJK 
C=l+--, or 1, 

1fq 7r(1-q) 
(6.18) 

whichever is greater. The minimum value of C occurs 
when q is chosen so that the two values of the right 
member of Eq. (6J8) are equal. We then have 

J.L=1+fg(.\'E->)=C, -q7r<N(0<q1f, (I) 
(6.19) 

The radius of curvature, and consequently also the 
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magnetic field, is constant in magnitude along the 
equilibrium orbit and opposite in sign in the two half
sectors. The ratio of half-sector lengths is 

l'=q/(1-q)= (C+l)/(C-1), (6.20) 

and the circumference factor is 

C= (r+l)/(l'-1)=[1+!FJI. ( 6.21) 

If we take (J,=1r/6, (J,=1f/2, b=O, and use the approxi
mate formulas (6.10) and (6.11), we obtain K=vf5, 
l'=l.31, C=i.S, f=10.5, and k=V/36. It will be 
shown in the next section by a more accurate calculation 
that the minimum value of C where .\' is large is about 
5. 

In a spiral-sector FFAG accelerator, f is nearly 90° 
and the 'fJ term in Eq. (5.13) is large. It is then possible 
to use a much smaller flutter factor, so that the oscil
latory part of the J.1. term is small. \Ve will again assume 
that J.L is given l>y Eq. (4.11) and will use the approxi
mation (4.18) for YJ. If we expand 1/YJ in a power series 
in the second term of formula (-1.18), we may calculate 

( 6.22) 

We will neglect the second and higher order terms, and 
will neglect also the oscillatory part of JJ./YJ. The 'fJ term 
can be rewritten in the following way: 

(6.23) 

The first term on the right is large and oscillatory with 
zero mean value, and the second is smaller but has a 
positive mean value. \Ve neglect the oscillatory part 
of the second term, and substitute in Eqs. (6.3) and 
(6.4), using (5.1.3) to obtain 

(6.24) 

(6.25) 

Note that the YJ term does not contribute in this approxi
mation to the radial focusing. If we take 'fJ as ·given by 
formula (4.18), we have 

(6.26) 

We will neglect the second and higher order terms iu 

square brackets and substitute in Eqs. (6.24) and (6.25), 
to obtain 

(6.27) 

where we have also neglected f. Note that, to this 
order of approximation, formulas (6.24) and (6.27) are 
independent of the form of the flutter function g(N8); 
only the circumference factor Eq. (6.13) depends on 
g(N8). We can rewrite these formulas in terms of the 
phase shifts (J per sector: 

,\'2(! z2 

k+1=--, 
47r2 

.V2 
P tan2f=-(u,2+u/)-l. 

47r2 

(6.28) 

(6.29) 

The reference curve f.)= 0, satisfies, in polar coordinates 
r and 0, the equation 

1 dr 
--=cotS. 
r d() 

(6.30) 

The radial separation between ridges (points of maxi
mum magnetic field), in units of r is therefore 

~ 

X=M/r=27r/(N tanf). (6.31) 

Thus for a given choice of u ., (Jz, and I'l' the ratio f /X is 
fixed. The maximum allowable gap between the poles 
of the magnet is proportional to X; if the field flutter is 
to be obtained by shaping the poles, without extra 
forward windings, it can be shown (Sec. 13) that for 
j/X fixed the maximum gap is about iXr and is obtained 
for {= t. Under these conditions, the field flutter may 
be very nearly sinusoidal, 

g(~) =cost (6.32) 

and then the circumference factor will be C = 1 + f 
= 1.25. 

If we take, as above, (J,=7r/6, (J,=7r/2, with J=i, 
we obtain k+ 1 = N 2/16, X= 5.95;Y-2[1-14.4iV-2]-!, 
and tanf= 1.05:Y[1-14.4N-2]-I. 

7. Linear Stability for Radial Sectors 

In order to get more accurate relations between the 
parameters, we return to the betatron oscillation 
equations (5.10) and (5.11).1\-faking use of Eqs. (5.12), 
(4.18), and (4.19), with f=O, we rewrite Eqs. (5.10) 
and (5.11) for the case of a rectangular field flutter of 
the form (6.19): 

(flX 

-±kCx=O 
d82 , 

fflz 
-=FkCz~O, 
.Jf-)"! 

(7 .1) 

(7.2) 
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where the upper signs apply in positive half-sectors, 
and the lower, in negative half-sectors. The term 
Eap./ae in Eq. (5.12) gives rise to terms in Eqs. (5.10) 
and (5.11) which represent the focusing that occurs at 
the sector edges, which we will neglect for the present. 
These approximations are valid only when N» j, and 
we have accordingly also neglected 1 in comparison 
with n. When N is small, edge effects and higher order 
terms in 71 must be taken into account. The oscillatory 
terms in 71 will give rise to effects resulting from the fact 
that neighboring equilibrium orbits are not everywhere 
equidistant. For small N, edge effects turn out to in
crease the vertical focusing and to decrease the radial 
focusing, so that considerably smaller values of the 
flutter factor f may be used if k>O, without losing 
vertical stability. 

Let N8o= -q1r, .V0t=q7f, NG2= (2-q)1r. Then the 
solutions of Eq. (7.1) within the positive and negative 
half sectors separately yield the following matrix 
relations between x and x' = dx/ d(j at the points 0 0, 

where 
· ( cos.j;+ (kC)-l sinif;;-)' 

M+= - (kC)I sin.j;+ cos.j;+ 

(
cosh.J;_ (kC)-1 sinh.J;_), 

M_= (kC)i sinh.J;_ cosh;Jt_ 

21f(1-q) 
---(kG) I. 

N 

We thus obtain 

( X2) (Xu) 
x/ =M xu' ' 

with 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(
cosl{;;- coshf_-sinl{;;- sinh.J;_, (kC)-I(cosl{;;- sinhl{;_-sinl{;;- coshf_))· 

M = M_M;-= (kC)i(cosl{;+ sinhf-+sinl{;+ wsh.j;_), cosl{;;- coshf-+sinl{;;- sinhf_ (
7
.
7
) 

vVe can now calculate8 

coso-.=~ trace(M)=cos.j;+ coshl{;_, (7.8) 

and in the same way, 

cosa-,=cosl{;_ coshl{;;-. (7.9) 

In terms of the local field index 

n=k/C, (7 .10) 

within the magnets (we take n as positive here), and 
the ratio r of sector lengths [Eq. (6.20)], we may 
rewrite 1{;;- and f-: 

1{1;-= (
2

7f) (~)n~, f-= (2~) (-
1 )nt. (7.11) 

:V r-1 :1 r-1 

Formulas (7.5), (7.8), (7.9), and (7.11) have been 
written for k>O. However, they may also be used for 
k <O, in which case it is convenient to regard C as 
negative. 

The smallest circumference factor is obtained by 
choosing a-. as large as possible and a-, as small as 
possible (or vice versa). If we choose a-.=371"/4, a-,=1r/6. 
we calculate from Eqs. (7.8) and (7.9) that 1{;;-= 1.32, 
f-= 1.93. From Eqs. (7.11) and (6.21), we have 

I'=f+N-= 1.46, C=5.35. (7.12) 

The theoretical minimum value of C is 4.45 for a-.= 1r, 

a-,= 0. In order to keep the amplitude of betatron oscil
lations within reasonable bounds, the former choices of 
a-. and a-, run about as close to the stability limits as it 

is safe to go. (For the choice a-.=7f/2, a-,=1r/6, these 
more exact formulas give I'= 1.29, C= 7.9, which may 
be compared with the approximate values 1.31, 7.5 
obtained in the preceding section.) 

A more general calculation, including straight 
sections between magnets, and taking edge effects into 
account, can be carried out in a similar way. We assume 
that along an equilibrium orbit the magnetic fields have 
equal and opposite constant values within the positive 
and negative half-sectors, and that the positive and 
negative half-sectors are separated by straight sections 
where the field is zero; (see Fig. 7). Let the fractions of 
orbit length within the positive and negative magnets 
be q1 and q2, respectively, and let the fraction of orbit 

MACHINE 
CENTER 

NEGATIVE 
MAGNET 

FIG. 7. Equilibrium orbit notation for radial sectors 
with straight sections. 
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length in each straight section be qo, so that 

2qo+qt+q2= 1. 

The angles {31 and {32 shown in Fig. 7 are 

f3t=27rCqdN, f12=2rrCq2/N. 

The number of sectors is 

so that the circumference factor is 

(7.13) 

(7 .14) 

(7.15) 

(7.16) 

The angles cf>t and c/>2 shown in Fig. 7 are the edge angles 
between the orbit and the normal to the magnet edges. 
It is convenient to define 

o=hCqo/N, 

1/tt=f3t(nt+l)~, 1/t2=f32(n2-1)1, 

(7 .17) 

(7.18) 

(7 .19) 

The indices n 1 and n2 are the local field indices at the 
centers of the positive and negative magnets: 

and 

n=k/(TIC), 

cos(rrCqz/N) ) 

(N/rr) sin(rr/JV) ' 

( 
sin(rrCqtfi\')) 

T/2=1-2ql 1----
Cql sin(rr/N) 

( 
cos(rrCqt/N) ·) 

-2qo 1-- . 
(N /rr) sin(rr/}V) 

(7.20) 

(7 .21) 

(7 .22) 

We do not neglect 1 relative ton here. \Ve do, however, 
neglect variation ofT/ within the magnets. The result is 

cosux= [1 + 2o(tancf>t +tancf>2)+ 2o2 tancf>t tan1>2J cosl/tt cosh1f2 
+ [ (nt + 1)-l(tancf>I +tan1>2+o tan2cf>t+ 2o tanc/>1 tan1>2+o2 tan2cf> 1 tancf>2)- (n1 + l)l(o+o2 tancf> 2)] simh cosh,/-2 
+ [ (n2-1)-l(tancf>t+tancf>2+o tan21>2+ 2o tanc/>1 tan1>2+o2 tan2cf> 2 tancf>1)+ (n2-1) l(o+o2 tancf> 1) J cosft sinhf2 
+K- (nt+ 1) l(n2-l)lo2- (nt + l)l(n2-1)-1(1 +o tancf>2) 2+ (n 1 + 1)-l(n2-1) }(1 +o tancf> 1) 2 

+ (nt+ 1)-l(n2-1)-l(tancf>t+ tan1>2+o tancf>t tan4>2)2] sinf 1 sinhf2, (7 .23) 

cosu. = [1- 2o( tancf>t+tancf>2)+ 2o2 tanc/>1 tancf>2J cosf4 coshf3 

+[n2-!(- tan4>1- tan1>2+o tan2cf>2+ 2o tanc/>1 tan4>2-o2 tan2cf> 2 tancf> 1)- n2l(o-o2 tancf> 1) J sinf4 coshf3 

+[n~-1( -tancf>t-tancf>2+o tan2cf>t+2o tancf>t tan4>2-o2 tan2cf>t tancf> 2)+n1l(o-o2 tanq)2)] cosf4 sinhfa 
+K -n21nti02-n21nt-l(l-ll tancf>t)2+n2-lntl(l-o tancJ>2)2 

+n2-lnt-l(- tancf>t- tancJ>2+o tancf>t tancf>~) 2] sinf4 sinhf3• (7 .24) 

8. Linear Stability for Spiral Sectors 

For spiral-sector accelerators, the circumference 
factor is close to unity, and minimizing Cis no longer a 
major consideration. The ridge separation "A is, how
ever, rather small, and if the gap between magnet poles 
is to be kept as large as possible, it appears that the 
field flutter in the median plane must be at least 
approximately sinusoidal. We will therefore assume a 
field in the median plane of the form (2.1). 

El=Ho(r/r0 )k(l+ fsin[!\'8- (1/w) ln(r/ro)]}, (8.1) 

where we have set 

(8.2) 

The form of Eq. (8.1) is chosen so as to guarantee that 
the accelerator scales. 

The linearized equations for the betatron oscillations 
in the field (8.1) can be obtained from the general 
analysis of the first two sections, but it is perhaps more 
illuminating to derive them directly. If one undertakes 
to write the linear terms in the differential equations 
characterizing the departure of the particle from a 

reference circle of radius 

r1 =cp/[eH,(ro/r1)k], (8.3) 

one obtains substantially the following: 

r"+[1+k+(f/w) cos:YO](r-rt)='= jr1 sin1YO, (8.4) 

z"- [k+ (f /w) cos.YO]z='= 0. (8.5) 

These equations suggest alternating-gradient focusing 
of the type characterized by the Mathieu differential 
equation, but the presence of the forcing term on the 
right hand side of the equation for the radial motion 
indicates that a forced oscillation will be expected and 
will be given approximately by 

r-rt= ____ I__,l sin.ro. (8.C>) 
V-(k+l) 

Because of the presence oi this forced motion, one 
realizes. that not only will the nonlinear terms in the 
differential equations be large, but that a noticeable 
influence upon the betatron oscillation wavelength can 
result. 
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It is appropriate, therefore, to perform an expansion 
about a more suitable reference curve by writing 

(8.7) 

In this way one obtains linearized equations, of which 
the most significant terms appear below: 

J2/w2 J +1 cos2NO z = 0. 
1VL (k+1) 

(8.9) 

These equations have the form of an extended l\tiathieu 
equation 

d2tt/dr2+(A+B cos2r+C cos4r)tt=O. (8.10) 

The neglected terms in the coefficients A and C in Eq. 
(8.10) as given by Eqs. (8.8) and (8.9) are of order 
k2w2 times the main terms, so that for f = t, the error 
in these coefficients is less than 2% over most of the 
region of stability (Fig. 8). The neglected terms in the 
coefficients B are of order t(J/lf2w)2 and HJ/N2-<V)2 

in Eqs. (8.8) and (8.9), respectively, so that the errors 
will be less than 2% and 8%, respectively, over most 
of the region of stability. The coefficient of the third 
harmonic term (which has been omitted) is of order 
t(J/:Y2w)2 and HJ/N2w)2, respectively, times the 
coefficient B; since the third harmonic contributes to 
O" an amount proportional to t the square of the co
efficient, its contribution is completely negligible. 

Tables of the characteristic exponent (O"/rr) of the 
extended lVIathieu equation (8.10) have been computed 
on the ILLIAC, using a variational method.9 Values of 
A are tabulated for a range of values of O", B, and C, 
covering the significant portion of the first stability 
region. Results for the Iviathieu equation C=O are 
included. So far as we are aware, there are at present 
no published tables of characteristic exponents for the 
Mathieu equation within the stability region. 

In Fig. 8 we plot a stability diagram for a spiral
sector FFAG accelerator with k>>l computed from the 
above formulas and tabulated solutions of Eq. (8.20). 
If k»l, the coetl1cients A, 13, and C depend only on 

9 Laslett, Snyder, and Hutchinson, "Tables for the deter
mination of stability boundaries and characteristics exponents for 
a Hill's equation characterizing the 1\Iark V FF:\G synchrotron." 
Midwestern Universities Research :\ssnciation Notes, April 20, 
!9SS (unpublished). 
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FIRST STABILITY REGION FOR 
SMALL-AMPLITUDE OSCILLATORS 
IN MARK V FFAG ACCELERATOR 

k »I 

(CALCULATED- LESS ACCURATE 
FOR ORDINATES ABOVE lf3) 
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k;N2 

FIG. 8. Dependence of u, and u, within the stable region on 
spiral-sector parameters for N» l. 

kj1V2 and J/N2w. We accordingly plot curves of constant 
O"x and O"z vs k/!\"2 and J/A"2w. If we take 0",=7f/6 and 
O"x= 1rj2, with f =i, we obtain k=0.057 N2

, f/JV 2w=0.25, 
and A.=6.3JV-2, which may be compared with the 
approximate values k=0.062N2, J/N2.-tV=0.265, and 
A.=5.9SN-2 obtained at the end of Sec. 6. 

9. Nonlinear Effects 

The preceding analysis of betatron oscillations has 
been based on an expansion of the equations of motion 
in powers of the displacement from the equilibrium 
orbit, keeping only the linear terms. The small-ampli
tude betatron oscillations in x and z are then found to 
satisfy linear differential equations with coeflicients 
periodic in the independent variable e. 

In a perfectly constructed accelerator, the only 
periodicity would be that associated with theN-identical 
sectors around the machine, and the period of the co
efficients would be 27f/:Y. In an actual accelerator, there 
will he imperfections, so that the coefficients will be 
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strictly periodic with the period 27r in e, and approxi
mately periodic with period 27r/N. Associated with the 
period 21r/N is the requirement that u"' and u. must not 
be integral or half-integral multiples of 21r; in practice 
it appears that u should be less than 1r, since otherwise 
the tolerances on magnet construction and alignment 
become very severe. Associated with the period 21r is 
the requirement that v"' and v. must not be integral or 
half-integral if imperfection resonances are to be 
avoided, and, in addition, if imperfections can couple 
the X and Z motions, Vor:+Vz rrlUSt not be an integer. 

The study of the effects of nonlinear terms in the 
equations of motion has not advanced nearly as far as 
the study of the linearized equations. Approximate 
analytic methods of treating nonlinear equations with 
periodic coefficients have been developed by J\foser, 10 

Sturrock,8 and Hagedorn.ll Their results can be sum
marized as follows: If the coefficients in the equations 
have period 21r in (-), and vr, v, are the numbers of 
betatron oscillations in one period 21r, then resonances 
can occur when 

Let 

nxvx+nzv.=any integer, for 

1h,nz=0,1,2· · ·. (9.1) 

(9.2) 

Then if q= 1 or q=2, the motion is unstable even in 
linear approximation. (This is the rule stated in the 
preceding paragraph.) If q= 3, then in general, the 
effects of quadratic tenns in the differential equations 
are such as to make the motion unstable even at very 
small amplitudes. If q=4, then the effects of cubic 
terms may be to render the motion unstable, depending 
on the form of the cubic (and linear) terms. If q>4, 
then, in general, the motion is stable for sufficiently 
small amplitudes of betatron oscillation. In any case, 
if q;?! 4, and if the equations of motion are nonlinear, 
then there will be in general a limiting amplitude of 
betatron oscillations beyond which the oscillations are 
unstable at least in the sense that they leave the donut. 

Numerical studies carried out on the ILLIAC at the 
University of Illinois seem to confirm these conclusions. 
It was also reported by the Brookhaven group12 that 
experiments with the electron-analog alternating
gradient accelerator have confirmed these conclusions. 

If we apply the above criteria to the sector periodicity 
21r/:V, then we must replace Vx and l'z in Eq. (9.1) by 
ux/27T and u,/27T, the number of betatron oscillations 
per sector. We then conclude for example that values of 
uxor u, near 27T/3 are to be avoided, as well as values 
such that ux+2u, or u,+20", is nearly 27T. \Ve call these 

10 J. I\1oser, Nachr. Akad. Wiss. Gottingen, Math.-physik. Kl. 
Ila, No. 6, 87 (1955). We are indebted to Dr. Moser for a very 
helpful discussion of his results. 

11 R. Hagedorn, CERN Report, CERN-PS/RH 9, November, 
1955 (unpublished). 

12 Courant, Kassner, Raka, Smith, and Spiro, Phys. Rev. 100, 
t269(A) (1955). 

resonances with the periodicity of the structure itself 
"sector resonances." We have indeed found in numerical 
studies that the limiting amplitudes for betatron oscil
lations in spiral sector machines become very small when 
u approaches h/3. 

If we apply the above criteria to the once-around 
period 21r, then we lind that the values of Vx and v. 
excluded by the above rules are as shown in Fig. 9. We 
plot v"' horizontally and v, vertically. The lines labeled 
q= 1, 2, 3, and 4 represent the values excluded by the 
above rules. The lines q = 1 are integral resonances. The 
lines q = 2 are half-integral resonances (vertical and 
horizontal) and sum resonances (diagonal). The lines 
q=3, 4 are third and fourth integral resonances. It is 
not yet altogether clear how serious the third and fourth 
integral resonances are, since they arise only from non
linear imperfections in the machine. Experiments with 
the electron analog at Brookhaven12 seem to indicate 
that these resonances must be excited by deliberately 
inserted nonlinear imperfections in order to be detected. 
This is not true of course of the O" = 21r /3 resonances 
discussed in the preceding paragraph, which are reso
nances with the inherent periodicity of the structure. 
It would at present seem wise to avoid all the excluded 
lines on Fig. 9 if this can be done. 

It should be pointed out that nonlinear terms in the 
equations for the radial sector accelerator are not very 
large, being not greater in order of magnitude than 
nonlinear terms which arise in some conventional 
alternating-gradient accelerators which have been 
contemplated. However, the nonlinear terms which 
arise when the sectors spiral are much larger and play 
a: very important role in determining the character of 

"z 

M,-1 L---~--~-L~~~--~~~--~L-~ 
M,-1 M, M,+l 

v,-
1 NTEGRAL RESONANCES q • I 

HALF-INTEGRAL RESONANCES q: 2 

THIRD-INTEGRAL RESONANCES q= 3 

--- FOURTH-INTEGRAL RESONANCES q= 4 

Ftr.. 9. Linear and nonlinear resonances in an .\{; 
accelerator. ;\/, and Jlf, arc integers. 
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the betatron oscillations. Numerical studies indicate 
that although the motion in spiral-sector synchrotrons 
exhibits marked nonlinear effects, the amplitude limits 
are large enough to accommodate reasonable betatron 
oscillations provided u is not close to 27r/3 (say uz 
<0.6-lr). 

10. Momentum Content and Phase Stability 

The momentum p(R) is determined by integrating 
Eq. (5.6): 

r 
R k+l ] 

P= Po exp i --dR . 
Ro R 

(10.1) 

If k is independent of R, this reduces to the simple 
relation (5.14). Thus momentum and energy are deter
mined as functions of the orbit size R. Since R is es
sentially a mean radius of the orbit, the radial aperture 
required for any given initial and final momentum can 
be determined from Eq. (10.1). It is clear that for a 
given momentum content, the radial aperture decreases 
with increasing k. If k»1, then the radial aperture is 
much less than R, and we have approximately, for 
constant k, 

R,-Ro_,_ ( 1 ) (p~-Po) ---- -- In -- . 
Ro k+1 Po 

(10.2) 

The angular velocity of a particle in an orbit R is 

d0 (3c pc~ 
w=-=-=-

dt R ER' 
(10.3) 

where E is the total energy, including rest energy. By 
squaring Eq. (10.3) and differentiating, we obtain 

E dw 

(R/E)(dE/dR) 

We now differentiate the equation 

E= p2c~+Eo2 , 

and use Eq. (5.6) to obtain 

1~ dw 

(10.4) 

(10.5) 

(10.6) 

We may integrate this equation if k is constant to obtain 

~= F. 1( E2-E,12 )ktJzck-t)J, 

u.·, r: £~2-J~"z 
(10.7) 

where w1 is the angular frequency of revolution at any 
particular energy E 1• A graph of w/w1 is shown in Fig. 
10, where we is the angular frequency at the transition 
energy, and we have taken k=99. If we defme the 
transition energy 

(i0.8) 

.2 

0o~~---4~~--~8 __ _L __ ~,2~_L--~16~-L--~20~ 
E-E. 
E:"" 

FIG. 10. Frequency of revolution as a function of energy. 

then for E<Et, dw/dE is positive, while for E>E1, 

dw/dE is negative. If particles are accelerated by radio
frequency voltages applied to one or more accelerating 
gaps, then the theory of phase stability in FF AG 
accelerators is similar to that for conventional cyclo
trons and synchrotronsY When dw/ dE is positive, 
particles may execute stable synchrotron oscillations 
about a phase on the rising side of the voltage wave at 
the accelerating gap. When dw/dE is negative, the 
stable phase is on the falling side of the voltage wave. 
At E= Et, there is no phase stability. In order to 
accelerate particles beyond the transition energy, it is 
necessary to shift the relative phase at which the par
ticle arrives at the ac~elerating gap from the rising to 
the falling side of the voltage wave. 

In a cyclotron, the frequency of revolution, w/2, 
must be the same for all energies, and Eq. (10.6) then 
furnishes a relation between k and E: 

(10.9) 

In a cyclotron, k must increase with energy, and the 
betatron oscillations therefore do not scale even when 
the equilibrium orbits scale. 

III. APPLICATIONS 

11. FFAG Proton Synchrotrons 

As an illustration of the application of the FFAG 
principles to high-energy accelerator design, possible 
parameters are given below for a radial-sector and a 
spiral-sector synchrotron. Many of the considerations 
governing choices of parameters are common to these 
synchrotrons, and to pulsed-field alternating-gradient 
synchrotrons/ e.g., resonances, alignment tolerances, 
and gas scattering. It is anticipated that injection and 
acceleration might be accomplished somewhat differ
ently than in pulsed-field synchrotrons of comparable 
energy. 

Whereas injectioi1 from a 50-?IJev proton linear ac
celerator is planned for 25-Bev pulsed-field accelerators, 
a 5-Mev Van de Graaf electrostatic generator might be 

13 D. Bohm and L. Foldy, Phys. Rev. 70, 249 (1946); D. M. 
Dennison and T. H. Berlin, Phys. Rev. 69, 542 (1946); R. Q. 
Twiss and N. H. Frank, Rev. Sci. Instr. 20, 1 (1949). 
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used to inject into FFAG synchrotrons for the reasons 
mentioned in the introduction. Electrostatic-generator 
injection with FFAG synchrotrons would have the 
advantages of higher pulse currents, greater simplicity, 
lower cost, and better beam energy and size resolution 
than are at present realized with proton linear ac
celerators. Although one-tum injection using a pulsed 
inflector with a pulsed current of milliamperes is the 
most obvious injection system, many-turn injection 
may be used to give greater beam currents by scanning 
the aperture with the injected beam up to the space 
charge limit. 

While the possibility of low-energy injection was 
evident when FFAG accelerators were conceived, it was 
also realized that it is usually uneconomical to use iron 
at a low flux density and that large momentum content 
in an FF AG accelerator requires much pole face area 
working at a very low flux density. This suggested the 
use of FFAG accelerators in succession with high flux 
density in the iron and with regenerative beam ex
tractors used backward to inject particles from one 
accelerator into the next at high energy. Such re
generative peeler systems for extraction have been used 
for some time on betatrons and recently on cyclotrons; 
time reversal of the orbits would allow the system to 
be used for injection provided the injected beam can be 
caused to move away from the magnetic perturbation 
at the same time the excited oscillation in the beam is 
damped. This would require very careful adjustment. 
The feasibility of this sytem is being given extensive 
theoretical study by Teng/4 and by others at the 
Argonne National Laboratory. Teng emphasizes that 
the use of high-energy injection largely avoids the fre
quency modulation problem and the problems of con
trolling the shape of low magnetic fields needed for 
low-energy injection. However, the radio-frequency 
modulation problem has many interesting possibilities 
of solution not available to pulsed-field accelerators. 

The arbitrary frequency-versus-time program of 
FF AG synchrotrons allows the use of a mechanical 
modulation system with high-Q cavities. With the 
high Q realized in unloaded cavities, the required 
voltage gain per turn could be given the particles by 
one cavity driven at reasonable power. 1\fodulation 
could be accomplished by moving a diaphragm to tune 
the cavity capacity. With such a system, model tests 
indicate a frequency change of a factor of 3: 1 is prac
tical. Using 5-J\'Iev injection, a frequency change of 
10:1 is required to reach relativistic velocities. One 
might then use one cavity operating as a self-excited 
oscillator to accelerate particles from injection to about 
50 Mev. The voltage on that cavity would then be 
turned off as voltage on a second cavity is turned on, 
and acceleration continued with the second cavity. The 
change-over could he triggered by frequency comparison 
between cavities. The relative phases of the cavities 

14 L. C. Teng, Phys. Rev. lOO, 1247 (1955). 

could be controlled by a loose coupling between them. 
(With the University of Michigan electron synchrotron 
two-cavity rf system, it was observed that it was 
possible to make the transition from one cavity to 
another without an observable beam loss.) A third 
cavity might be added and a second transition made if 
desired, since it is observed that most of the energy is 
given the particles after they have reached almost 
constant velocity, c (see Fig. 10), and this third cavity 
could be designed to provide very high voltage over a 
small frequency range. Fine frequency adjustments 
would be made with reactance-tube loading of the 
cavities. With this rf system, it appears reasonable to 
accelerate protons to 20 Bev with a repetition rate of 
several per second. 

While the above system is suggested on the basis of 
experimental tests already in progress, it is realized 
that other rf systems might prove more practical. Some 
of these are : 

1. Many ferrite-loaded, low-voltage, low-Q cavities 
operated as tuned, driven amplifiers. Tuning would be 
accomplished by biasing the ferrites with currents. This 
is the system planned for the CERN and Brookhaven 
pulsed AG synchrotrons. 

2. The use of drift tubes or operation of one or more 
entire magnet units as a drift tube on a high harmonic 
of the particle rotational frequency. In this case tuning 
over a wide frequency range appears difficult. 

3. Several rf schemes have been proposed in which 
many groups of particles of different energies are present 
in the donut simultaneously. If any of these schemes 
proves practicable, large increases in duty factor and 
hence in beam output will become possible. 

In alternating-gradient synchrotrons, phase stability 
vanishes at a transition energy, Et, given by Eq. (10.8). 
It is possible in the radial-sector FFAG designs to have 
k large and negative. In this case there is no transition 
energy, and high-energy orbits lie on the inner radius 
of the machine. Negative-k designs appear to be not 
practical with spiral sectors. Figure 11 illustrates 

RADIO· 
FREQUENCY 

E, 
ENERGY 

FFAG(k<O) 

FIG. II. Ibdio-frequency program for pulsed-field AG 
and FFAG synchrotrons. 
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qualitatively the radio-frequency versus energy program 
in a pulsed-field AG accelerator, and in comparable 
FFAG accelerators with positive and negative k. 

12. A 10-Bev FFAG Proton Synchrotron with 
Radial Sectors 

The following design for a high-energy proton syn
chrotron is intended to illustrate the features of the 
radial-sector FF AG synchrotron. This design type is at 
present the most completely understood of the FFAG 
accelerators thus far suggested, although spiral sectors 
certainly offer the possibility of more economical design. 
From the expressions (7.23 and (7.24), values of crx and 
crz may be found for a given choice of JV, n, {31, f3z, and o. 
In Table I, typical values of the parameters are given 
for a 64-sector radial-sector accelerator. For this 
example we choose 10 Bev as the maximum proton 
energy and 20 000 gauss as the magnetic field for the 
equilibrium orbit of that energy. The limit on the 
strength of the focusing, radially ·and vertically, is 
set by the tolerances which must be placed on pa
rameters of the machine such as n to avoid resonances. 
Since, if crx is kept constant, Vx is roughly proportional 
to the square root of n, weaker focusing relaxes these 
tolerances. In cases where the simple expressions (7.8), 
(7 .9) hold, the tolerance on n for ~~~=! is, by differ
entiating, 

dn 2-lr sinu 
----------. (12.1) 

n N(.f/1 sin.f/1 cosh!fz-if/z cos.f/1 sinh!fz) 

For the above design figures, the tolerance on n is about 
one percent. A closer tolerance might be held on n in 
the fixed-field case than in the pulsed-field case since 
all field adjustments are time-independent. 

Misalignment of magnets in alternating-gradient 
accelerators has been shown to give rise to large 
deviations of equilibrium orbits. 15 In radial-sector 
accelerators, the equilibrium orbit deviation for a given 
nns sector misalignment may be shown15 to be worse, 
by approximately the ratio of circumference factors, 
than in a conventional AG accelerator of the same 
number of magnet units and comparable Vx and vz. Here 
the simplifying assumptions are made that misalign
ments occur for magnet units as a whole, and that they 

TABLE I. Illustrative values of the parameters for a radial 
sector accelerator. 

N= 64 
n,=n"= 36 

C= 5.35 
k= 192.5 

{3, = 15.00° 
(3,= 9.37° 

&= 0.05° 
q,, =q,, = 5. 74 ° 

'"=122.1° 
u,= 22.0° 
v,= 21.7 
v, = 3.91 

15 E. D. Courant and H. S. Snyder, Internal Brookhaven 
National Laboratory Report, June 1, 1953 (unpublished); G. 
Ltiders, CERN reports CERN-l'S/GL 4, GL6, GL7, GL8, and 
GL9 (unpublished); E. Crosbie, Argonne Accelerator Group, 
Progress l{cport No. 5, February 24, 1955 (unpublished). 

TABLE II. Physical dimensions of a radial sector accelerator. 
Subscript 0 refers to maximum energy, subscript i refers to 
injection. 

Eo= 10 Bev 
ro=97.3 m 

Bo=20000 gauss 
po= 18.2 m 
Zo=3.0 em 

ro-r;=2.3 m 
E,=12Bev 
Z;=2,5 em 
&;= ±0.001 radian 
p=5X10-6 mm Hg 

E;=5 Mev 
r;=95.0 m 

B;=200 gauss 
p;= 17.8 m 
Z;=15.0 em 

proton kinetic energy 
synchrotron radius 
magnet guide field 
radius of curvature 
vertical semiaperture 

radial aperture 
transition energy 
vertical semiheight of injected beam 
angular spread of injected beam 
pressure in the vacuum chamber 

are random and independent. For the accelerator in this 
example, an rms misalignment of the 128 magnets of 
0.02 em would be expected to result in' a maximum 
deviation of the equilibrium orbit of ±2.0 em. 

The effects of space charge and gas scattering have 
been treated by Blachman and Courant16 and othersP 
In this example, an injected beam from a typical Van 
de Graaf electrostatic accelerator would fill ±10 em of 
aperture after gas scattering. Adiabatic damping of 

· betatron oscillations as the momentum increases by a 
factor of 100 during acceleration would then reduce 
these oscillations to ± 1.0 em. At a reasonable rate of 
acceleration (7 5 kilovolts per turn), 3X 1011 protons per 
pulse could be accepted. 

The values of physical quantities consistent with the 
parameters of Table I and the above considerations are 
given in Table II. 

Figure 12 illustrates in cross section a possible 
method of constructing the magnets. Much of the large 
change in field would be accomplished by back-winding 
coils on the pole sufaces. Table III illustrates the 
magnet parameters for the accelerator described above 
in Tables I and II. 

With the rf system described above, the repetition 
rate is limited only by the rf voltage which can be 
applied and by the rate of mechanical frequency 
modulation attainable. Using this rf system with the 
accelerator of this illustration, one to three pulses per 
second of 3X lOll ten-Bev protons appear attainable. 

13. 20-Bev FFAG Proton Synchrotron 
with Spiral Sectors· 

As an example of an accelerator made with a ring 
magnet producing loci of maximum field which cross the 
path of the particle at a small angle, we take a field of 
the form (8.1). The motion for this case is treated in 
Part II. Equations (6.24), (6.27), and (6.31) show that 
in the smooth approximation 

(13.1) 

(13.2) 
16 N. M. Blachman and E. D. Courant, Phys. Rev. 74, 140 

(1948); 75, 315 (1949). 
17 J. Seiden, Compt. rend. 237, 1075 (1953); D. W. Kerst, Phys. 

l~ev. 60, 47 (1941); J. l'. Blewett, Phys. Rev. 69, 87 (1946). 
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FIG. 12. Cross section of radial-sector magnet and coils. 

where w=A/27r and X is the radial separation between 
adjacent ridges in units of the radius. 

Parameters for a 20-Bev ring magnet will be derived 
using this smooth-approximation result and the con
dition u=21rv/1Y <1r, the stability limit for a Hill 
equation. Later the alteration of these parameters 
resulting from exact solution of the linearized differ
ential equation by the use of the Illiac digital computer 
will be shown. 

We can choose from many types of injectors-linear 
accelerators of 50 Mev, cyclotrons, or, for much lower 
energy, Van de Graaf electrostatic accelerators. For the 
purpose of this example, suppose we choose an extreme 
case in which the ring magnet is able to hold orbits of 
5-Mev injected protons at its inside rim and orbits of 
20-Bev protons at its outside rim. We can choose 
k=82.5, ro=SOOO em, where r0 is the mean radius of 
the high-energy orbit using 14 000 gauss for the average 
field strength at the orbit. This gives r,=4688 em as the 
mean radius of the 5-Mev orbit. A radial extent of the 
magnet gap of approximately d=r0-r,=312 em is 
needed. The ratio of the average field at the high
energy orbit to the average field at the low-energy orbit 
is f1 o!fi; = 203. 

Since k=82.5, v,=9.15 radial betatron oscillations 
around the machine according to the smooth approxi
mation. To remain within the stability limit for the 
linearized differential equation with varying coefficients 
we must have 2v<N. Choose :\'=31 sectors or ridges 
crossed in one passage around the machine. This gives 
u .. =0.67r. We can then choose 0',=0.2687r, so that 
v, = 4.15. This choice of ""' and v, a voids the forbidden 
lines on Fig. 9. The working point chosen is then in 
one of the two largest squares available in (v .. ,v,) space. 
The ridge characteristics can ·now be found by the 
second smooth approximation Eq. (13.2) which gives 
J/w=218 with the above values of-" and k. 

Thus if we take f = L then X= 0.00506 in units of the 

TABLE III. Magnet parameters characterizing a radial 
sector accelerator. 

Total weight of iron 
Total weight of copper 
Required current 
Required magnet excitation f'Ower 

9650 tons 
670 tons 
112 000 ampere turns 
5.5 megawatts 

radius, so that the radial separation of the ridges at the 
outside edge is 25.3 em. This result is only approximate. 

The accurate solution to the linearized equations can 
be summarized in the form shown in Fig. 8 which 
exhibits the "necktie" for the case of a magnetic field 
of our prescribed form in the median plane. According 
to this diagram, take u.,=0.6157r and u,=0.257r; then 
J/wN2 =0.303 and k/N2 =0.075. If we choose N=33 
sectors, we have: v .. =10.15, v,=4.15. Both values are 
now in the middle of a different large square allowed by 
the integral, half-integral, and third integral rules. (To 
be in the center of the largest allowed squares, the 
working point vx, v, should be 0.15 units above integers 
for both dimensions or 0.15 units below integers for both 
dimensions.) If we again take f = 't,, then w= 1/1320, so 
Xro = 23.8 em radial ridge separation. 

At this point, consideration must be given to the 
possible magnitude of f which can be achieved. The 
shapes of magnetic potential surfaces which will produce 
a flutter J='t. with k= 150 are shown in Fig. 13. The 

12 
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FIG. 13. Spiral-sector equipotentials fork= 150 and /=0.25. 
Ordinates and abscissas are in the same units. 

curves are loci of constant magnetic potential for 
several different values of the potential. These curves 
were determined by digital computation. They show 
deep crevices developing in the surfaces or poles when 
the ridge is about 0.13X away from the median plane. 
Apparently when the gap between ridges exceeds t of 
the radial separation of the ridges, the crevices in the 
surfaces occur. These crevices mean that a pole of 
opposite polarity is needed in the crevices to produce 
the required flutter when the gap is large. If we do not 
want pole faces with these reverse poles embedded in 
them, then the gap between ridges must not exceed one 
fourth of the radial separation of the ridges. The same 
result has been obtained analytically. 

Figure 14 shows the calculated shape of the equi
potential surfaces for f = 't,. The dependence of gap is 
shown in Fig. 15 where G is the maximum gap at ridge 
tops without forward windings. If we require that the 
v's be constant, J/w must be constant. Thus we plot 
Gf/w vs fin Fig. 1. We see that the flutter f which 
gives the maximum possible gap at the ridges, under 
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conditions of constant alternating-gradient focusing, 
that is, constant J/w, is j=t, and the maximum gap is 
G=0.275 in units of the ridge separation. The curves 
show that flutter factors from 0.14 to 0.36, without 
crevices in the poles, require that the gap be only to% 
less than the maximum possible gap. These analytical 
results are similar to those from digital computation as 
already mentioned. 

For the example we are considering, we had >.r0 

= 21!"W1"o= 23.8 em radial separation between ridges at 
ro. This means that if we choose G=0.275Aro, then 
G=6.15 em at the injection radius and 6.6 em at the 
high-energy radius. 

To make the magnetic field 203 times larger at the 
high-energy radius than at the injection radius, this gap 
would have to be reduced by a factor of 203 unless 
currents are distributed on the pole face. By placing 
such windings between iron ridges, the gap can be kept 
full size at all radii. Thus, by proper winding, G(r) 
could always be about 0.275 times the ridge separation, 

! ' 
1.6 0 -1.6 0 1.6 

x,w 

FIG. 14. Magnetic potentials, V=Z/W+ f sin(X /W) sin[H(Z/ 
W)], for k=O and !=0.25. Poles corresponding to V=l.l have 
the widest gap without crevices in the pole surface. 

which is practically constant. However, it is not most 
desirable to have the gap essentially constant at all 
radii because the amplitude of betatron oscillations 
decreases as p-! while the particle is being accelerated. 
Thus if the momentum increases by a factor of ""203, 
then the space required for betatron oscillations de
creases by a factor of (200)! or "-'14. Consequently it 
would be best to have the gap at the injection radius 
about 10 times larger than the gap at high energy and 
it would be desirable to fill this large aperture with beam 
at the injection time. Actually the gap at successive 
energies should be big enough to accommodate not only 
the decreasing betatron oscillations but also the 
misalignment distortion of the equilibrium orbit. If we 
maintain a gap as large as possible without the addition 
of opposite poles between ridges, that is if we keep 
G=0.275Ar, then the aperture available actually in
creases slightly during acceleration due to the slight 
increase in r. To reverse this gap variation without 
decreasing the gap below about 6.2 em would require 

1.2 . 

.5 

GAP' 1t,; .4 

.3 

.2 

FIG. 15. Maximum gap, G, times (f/'A), for fixed tune as a func
tion of f. The criterion of no crevice in the pole face is used. The 
field variation in the orbital plane is sinusoidal. 

introduction of reverse poles between ridges where it is 
most easily done, that is at the low-f1eld rim. In practice 
this can be accomplished by running currents in two 
directions between a few of the low-field ridges. Then 
the iron surfaces may be separated farther to give an 
increased vertical aperture. It seems reasonable that the 
gap at the injection radius could be doubled this way. 

A configuration of the ridges and coils which produces 
the correct field shape is shown in Fig. 16 which shows 
iron contours as magnetic equipotentials. The location 
of current-carrying copper between the ridges is shown. 
This current terminates some magnetic potential 
surfaces, allowing the iron to be brought down to the 
same gap magnitude at successive ridges. Since the 
magnetic field decreases by the same factor between all 
adjacent ridges, the amount of back-wound current in 
the slot decreases by the same factor between slots. 
Thus the slot at the high-field ridge carries the largest 
number of back-wound ampere turns. The figure shows 
how the gap at the injection radius might be doubled 
by using forward and backward currents in the slot. 
Such a magn.et requires about 1.8 megawatts of power. 

With this method of providing the field shaping, it 
would be necessary to carry current over the ridges of 
iron as they spiral outwardly. A way to do this is to have 
the gap between ridge tops close a little as they spiral 
outward to produce the field increasing as rk, and then 
to have the wires carrying current come back to the 

~"' ... FORWARD WINDING 
! ,../"'-.. /,-BACK WINDING 

58CM / ~-----~ BACKWARD 
; ' YOi<E .· ----- 1\ FORWARD 

. ~:::'i'!':,.\os~- ___!, ~ 

"'":§:f:~;_,;0'?:~~ 
-· ·--~// 

FiG. 16. Spiral-sector magnetic structure. The insertion of 
back-wound current carrying conductors allows the gar between 
the poles to be a!Jout the same for all ridges. · 
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SMALL SLANT ALONG RIDGE 
DECREASES FIELD SECTION 

A-A 

FrG. 17. Method of bringing conductors back across ridges 
at straight sections. 

beginning radius at the start of the next sector around 
the magnet. Straight sections between sectors provide 
the opportunity to bring the conductors back to the 
same radius. Since the field changes by about 35% from 
ridge to ridge, the gap would have to change by about 
35o/0 between the crests of ridges from one end of a 
sector to the other. A less d'rastic change in gap along 
ridges results if the sectors, which are about 32 feet long, 
are subdivided say 3 times to form approximately 10-
foot lengths with straight sections between. Then the 
gap needs to vary only about 12% along a ridge top and 
the wires between ridges can come back to the same 
radius every 11 feet around the circumference. This is 
shown in Fig. 17. 

This brings up the problem of straight sections where 
the magnet is separated and where the field is approxi
mately zero. If such cuts in the magnet are made along 
approximately radial lines, the machine and the orbits 
do not scale. Consequently u varies periodically as. the 
radius of the orbit grows. This problem is one of the 
most important being studied by the MURA technical 
group and there are indications that the distribution 
of the straight sections, such as subdivision of sectors 
into several parts as just mentioned, minimizes the 
variation of u to a tolerable value with a useful length 
of straight section. 

There is another example of a method to attain the 
desired field shape which simplifies some of the problems 
and which has been studied in the form of magnetic 
models by the MURA technical group. Such a structure 
is shown in Fig. 18. The average radial dependence of 
field (rk) is produced by back-windings on iron poles 
similar to those used in a radial-sector magnet. The 
magnetic equipotential surfaces so formed are distorted 
or kinked by some other means such as the presence of 
iron rods having the same shape as the desired magnetic 
equipotentials on the side toward the orbits. These rods 
assume their magnetic potential from their positions in 
the gap. Since the rods spiral from one radius to another, 
they must be segmented with a few nonmagnetic 
spacers such as brass washers to prevent magnetic 
flux from"traveling along the rod. Such ridges and the 
proper fields were achieved in the models made by 

F. L. Peterson and T. B. Elfe of the MURA technical 
group. 

An interesting observation which they made shows 
that there is the possibility of relaxing the requirements 
for a small gap in a spiral sector magnet. They were able 
to increase f greatly above the design figure oft without 
closing the gap and without using reverse poles or deep 
crevices between ridges. It was done merely by deviating 
slightly from a simple sinusoidal field variation. A 
value of f'"'-'0.38 was reached without a great harmonic 
distortion of the field in the median plane. Further 
studies of this possibility will be needed to show how 
much the alternating-gradient term in v. is increased 
by the attainable field shapes. Any increase would allow 
opening the gap more. 

An important question must be answered before it is 
knO\\'n how large a gap is useful. As pointed out in Sec. 
9, the motion of a particle in a magnetic field which 
causes nonlinear restoring forces generally has a limit 
to the amplitude for stable motion or an amplitude 
limit beyond which the particle starts to oscillate about 
a second closed equilibrium orbit in or outside the 
accelerator. If oscillation about this second orbit takes 
the particle out of the aperture, the particle is lost. In 
the radial direction this limit can be as large as 0.1 to 
0.3 of a ridge separation and in the axial direction it is 
smaller. The example given does not have an especially 
large limit because ux is near 2Tr/3. The increase of such 
stability limits by suppression of some of the nonlinear 
forces would make it worthwhile to open the gap 
farther than 0.27 5 of the ridge separation because more 
vertical space useful for betatron oscillations would 
become available. For some vertical stability limits 
observed with the digital computer, there would be no 
value in opening the gap wider because the stability 
limit is within the gap available. The sources of the 
nonlinear effects arc being studied with the purpose of 
designing a spiral-sector system to make larger gaps 
useful. In general, if the angle s is made smaller so the 
oscillations do not cause a large variation in sector 
length, the stability limit increases. 
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The most promising method of decreasing t and 
hence decreasing the nonlinearities so that the stability 
limit is increased is to use magnets which produce a 
large flutter, f. Two very promising cases of this type 
follow: 

One case has rectangular ridges of iron with the gap 
between ridges t as big as the gap at the valleys. (See 
Fig. 19.) Taking account of the fringing flux, we can 
produce an j=V1(t..H)rms/fi=0.71 in the favorable 
case of A=2 and D=9, where A and Dare in units of 
half-gaps. If we want J/w= 330, as in the previous 
example, then w=0.00215. This case gives a good size 
for the injection aperture: 

G=[4mv/(A+D)]X4688 cm=ll.l em. 

The circumference factor is less than (A+D)/(A+tD) 
= 2.3 which could be tolerated at the injection radius. 
If we do not require that the equilibrium orbits scale, 
then the ridge proportions can change and the circum
ference factor can be improved at the high-energy 

FrG. 19. Rectangular spiral ridges. The distributed 
back-winding is circumferential. 

radius. For example, a gradual transition could be made 
to A=9, D=S, and G=7 em, with the same J/w in
cluding fringing effects. The circumference factor, 
including fringing effects, is then 1.38. 

A structure which has many desirable features is a 
separated spiral-sector magnet. By winding each spiral 
ridge separately with a forward coil and with distributed 
back-windings on the pole face (in the manner shown in 
Fig. 12 for radial sector magnets), the ridges can be 
spaced widely enough to bring the field down to ap
proximately zero between ridges; this increases f 
greatly. If the field shape is that shown in Fig. 20, 
which gives a circumference factor of 2, the flutter f is 
1.28 and the gap can be about 30 em. The angle between 
the sector edge and the orbit is large enough to allow a 
large-amplitude betatron oscillation before the stability 
limit is reached-possibly as much a's 90-cm amplitude. 
Sector dimensions are shown in Fig. 21. 

The gap at the high-field r;v\ius can he made mtwh 
less than 30 em in order to conserve po11·cr, but it is 
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FIG. 20. Circumferential distribution of axial field for separated 
spiral sectors, at 10 000-cm radius with 30-cm gap. 

highly desirable to keep this large gap at the low-energy 
radius for injection purposes. 

\Vhile this structure requires a large circumference 
(not all occupied by iron), it has many conveniences 
compared to magnets already described. The fabrication 
has simplifying features. The vacuum tube is more 
easily constructed. Access to the beam for targets is 
better. The sectors can be separated more where longer 
straight sections arc desired and scaling is still possible. 
The nonlinear stability limit should be comfortably 
large, permitting a large useful injection apertuye. 

14. FFAG Betatrons 

The large momentum spread which can be held by 
FFAG magnets allows a great increase in the acceptance 
time of injected particles if betatron acceleration is 
used. 4 The injected particles may be accepted into 
stable orbits in the de magnet gap at the low-energy 
radius all the time that the central magnetic flux is 
rising; as the particles gain energy, they spiral toward 
the high-field radius. After each particle orbit has 
linked a certain change of flux, l..¢, corresponding to an 
increase in momentum to its finn.! value, it reaches the 
target (or ejector) radius. Charged particles continue 
to arrive at the target as long as the Jlux continues to 
rise beyond l..¢. If l..¢ is less than the maximum core 
flux, <Po, useful injection and ejection may occur as much 
as 25% of the time by cycling the core flux between 
+<Po and -¢o. When sinusoidal core excitation is used, 
the duty factor D (the fraction of time for useful 
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injection) is given as follows (see Fig. 22): 

D=~ cos-1[.6.¢ -1]. 
27r . cf>o · 

(14.1) 

In order to miss an injector structure, a certain mini
mum· rate of acceleration (rate of rise of flux) at in
jection is required; this will reduce the duty factor in 
practice. 

Since the particle equilibrium orbit is not circular 
and since its radius changes with acceleration, the 
relationship between !:J.cf> and the momentum increase 
differs from that for conventional betatrons. 

The voltage gain per revolution is, in Gaussian units, 

V= (1/c)(dcf>/dt), (14.2) 

where cp is the flux in the betatron core. The rate of 
increase in energy is therefore 

dE ( ew )de/> 
--;;-; = 21l"C df' 

(14.J) 

where w/271" is the frequency of revolution [Eq. (10.3)]. 
\Ve have, therefore, 

dE ( c ) Rdp=-= - de/>, 
W 21l"C 

(14.4) 

and the required accelerating flux change is determined 
by 

"·here 

21l"cR 
cf>2-cf>l=--(p2- PI), 

e 

If k is constant, we have, by Eq. (5.14), 

H=R2(k+1 )!....="-(PI/P2)<k+2)/(k+l) 

k+2 1- (PI/h) 

-'-(k+1) - -- R2, 
k+2 

( 14.5) 

( 14.6) 

(14.7) 

With FFAG guide fields in the 20- to 300-l\Iev 
energy range, the duty factor could be increased by 
more than a factor of 104 over that in existing betatrons 
and synchrotrons. The beam current increase would 
probably be less because of space-charge effects at 
injection. 

In pulsed-field betatrons, large amounts of energy are 
stored in the pulsed-guide field magnet gap, and 
equipment capable of handling the large circulating 
currents and voltages must be used. Tn FFAC betatrons, 
only the accelerating core is pulsed, and it would lw a 
closed iron circuit which would require much less 

energy storage, and therefore a much smaller condenser 
bank and less ac power equipment. 

Either the radial-sector or the spiral-sector type of 
FFAG magnet could be used for electron betatron 
acceleration up to a few hundred 1\fev, and the design 
would be subject to the same considerations as dis
cussed above for synchrotrons. Since the core flux 
change for a given particle momentum increase is 
proportional to the particle period of revolution, the 
smaller circumference of the spiral sector type is 
doubly important for betatrons. In focusing magnets 
designed for the betatron energy range, an ;v of 10 to 
30 appears more suitable than the higher N values 
suggested for multi-Bev synchrotrons. 

The output beam of electrons from an FFAG beta
tron would be nearly monoenergetic and spread over a 
long time corresponding to the duty factor. Present 
betatrons and synchrotrons achieve a lengthened output 
beam pulse at the expense of energy homogeneity, 
since the electrons are in a sinusoidally varying field at 
essentially constant radius. This and the prospect of 
beam currents approaching time-average values of 
milliamperes makes ·this an attractive accelerator for 
electrons from a few J\Iev to several hundred J\1ev. 

15. FFAG Cyclotrons 

To make semirelativistic particles revolve in a 
cyclotron at constant frequency and in orbits that are 
approximately circles, it is necessary to have the 
average magnetic field increase with radius. In order to 
avoid the resultant axial defocusing, alternating
gradient focusing may be employed. There are a number 
of possible magnetic field configurations for such a 
fixed-field alternating-gradient cyclotron. The first such 
cyclotron was proposed by Thomas. 5 The Thomas 
cyclotron is essentially a radial-sector FFAG machine 
having three or more sectors with a roughly sinusoidal 
field flutter. Thomas showed that such a machine has 
stable orbits for energies up to a limit depending upon 
the number of sectors. A considerable amount of 
experimental and theoretical work on the Thomas 
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cyclotron has been carried out at the University of 
California, culminating in the successful construction 
and operation of two electron models which accelerate 
electrons up to half the speed of light.18 We will here 
discuss briefly the general features of FFAG cyclotrons 
with particular reference to spiral-sector configurations. 

In Sec. 10, we have obtained a relation (10.9) 
between the total energy E and the mean field index 
k for a cyclotron, in which the frequency of revolution 
is independent of energy. We have also the approximate 
expressions developed in Sec. 7 relating k to the betatron 
oscillation frequencies. For spiral sectors, the simple 
approximate relation (6.24) holds: 

(15.1) 

According to Eq. (10.9), v., is given directly in terms of 
the energy by the relation 

(15.2) 

It is clear that the orbits in such a cyclotron start at 
the center at E=Eo with v.,= 1 (as in a conventional 
cyclotron), and that as E increases, successive integral 
and half-integral radial resonances are encountered at 
energies which are approximately integral and half
integral multiples of E0• If we regard the first integral 
resonance as the limiting energy, then the maximum 
kinetic energy is about one rest energy (actually some
what less, according to more accurate calculations19). If 
sufficiently high dee voltage is applied, and if magnetic 
field errors are sufficiently small, it may be possible to 
drive the particle energy through resonances fast 
enough to avoid buildup of oscillations. In any case, 
for stability, v., must be less than !N, so that E can 
never be greater than about tl'l E0• The predicted 
existence (Sec. 9) of a strong third integral resonance at 
u,=2rr/3, (v.,=N/3), may set an even lower limit on 
E for a given number of sectors N. 

In a radial-sector configuration in which the number 
of sectors is small (!V <8), the alternating-gradient 
focusing also comes primarily from the 7J term in Eq. 
(5.13), and consequently the relations (15.1) and (15.2) 
are still roughly correct and the preceding considerations 
are still qualitatively correct. In particular, this is true 
of a Thomas cyclotron. 

In a cyclotron in which the 'ij term in Eq. (5.13) 
predominates, we see from Eqs. (6:24) and (6.25) that 
the focusing depends on k and on the quantity 

F=2<(~~:_)
2

) +~F 
1) ae A, 

(15.3) 

18 D. L. Judd, Phys. Rev. 100, 1804(A) (1955); Pyle, Kelly, 
Richardson, and Thornton, Phys. Rev. 100, 1804(A) (1955); 
Heusinkveld, Jakobson, Ruby, Smith, and Wright, Phys. Rev. 
100, 1804(A) (1955). We are indebted to Dr. Judd for a discussion 
of the work done at Berkeley, which is described in University of 
California Radiation Laboratory Reports No. 2344 and No. 2435 
(unpublished). 

19 D. S . .Falk and T. A. Welton, Bull. Am. Phys. Soc. Scr. II, 
1, 60 (1956). 
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FIG. 23. Working point diagram for a spiral-sector cyclotron. 
F is the AG focusing parameter. 

The focusing parameter F is determined, according to 
Eqs. (6.24) and (6.25), by the relation 

(15.4) 

In Sec. 6, we have noted that with spiral sectors, the 
optimum flutter factor f is about t, for maximum 
vertical aperture without extra forward pole-face 
windings. With this value of j, the focusing parameter 
F may be written, with the help of Eq. (6.26), 

F= [ 6 (tan2t+t). (15.5) 

In Fig. 23, we plot circles of constant F vs v., and v,. 
Vertical lines of constant k (hence constant E) are 
marked in the figure. We show also lines representing 
integral and half integral resonances (v.,, v.= integer or 
half-integer) and sum resonances (v.,+v.=integer). As 
the energy increases from Eo to E, the working point 
(v.,,v.) will trace out a curve connecting the line k=O 
with the line K = (E/ Eo)!-1. The form of this working 
point curve will depend on the way F varies with radius. 
In a practical magnet, F will almost necessarily be zero 
at the center so that the curve will start near (v.,= 1, 
v,=O). Difficulties may be expected in accelerating 
particles beyond a point where the working point crosses 
any of the resonance lines, particularly integral reso
nances, or resonances involving the vertical motion 
(since the vertical aperture is not large). It is clear from 
Fig. 23 that the working point necessarily crosses a 
half-integral radial resonance near E= Eo+!Eo, and a 
sum resonance and an integral radial resonance before 
reaching E= 2Eo. . 

In order to get a picture of an FFAG cyclotron, we 
note that the frequency of revolution of an ion in a 
cyclotron is 

w/2rr = {3c/2rr R = c/2rr'A, (15.6) 

where 2rr'A is the wavelength of the radio-frequency 
voltage required to drive the dees (we assume first
harmonic operation). We have therefore the following 
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FIELD TROUGH 

FIG. 24. Plan view of ridges in a 6-sector spiral-sector cyclotron. 

relation between energy and radius: 

E/ Eo= 'A/ ('f...L R2)1. 

The momentum p(R) is 

p= meR/ ('A2 - R2)l, 

the mean magnetic field is 

_ pc mc2/e 
H=-=---

eR ('A2- R2) I' 

and the mean field index [Eq. (10.9)] is 

k= R2j ('Az- Rz). 

(15. 7) 

(15.8) 

(15.9) 

(15.10) 

The relations (15.6)-(15.10) are exact. In order to 
determine the shape of the spiral ridges, we must solve 
the equations for betatron oscillations. We can get a 
rough idea of the ridge pattern from the approximate 
relations (15.1), (15.4), and (15.5). If we combine these 
formulas with (15.10), we obtain 

16R2 

tan2.\=--+v/-~. 
,_z_Rz 

(15.11) 

Let us now assume for example that the working point 

FrG. 25. Total energy and magnetic field as a function of radius 
in a constant-frequency cyclotron. (Eo is the rest mass and 2,..:<- is 
the oscillator wavelength.) 

in Fig. 23 moves along the horizontal v.= 1/Yl, so that 

4R 
(15.12) 

If we neglect the scalloping of the equilibrium orbit, 
we may replace R by the radius r, and substitute in 
Eq. (6.30) to obtain the equation for a spiral ridge in 
polar coordinates: 

(15.13) 

If we assume a sinusoidal field flutter, the function p. is 

p.= l+t cos[.N(8-8o)], 

and the magnetic field is given by 

('Az-Rz)J 

(15.14) 

X{l+f cos[N8:_4_V sin-1(r/'A)]}. (15.15) 

The number of sectors N is, to this approximation, still 
arbitrary. If the output energy is to be E=2Eo, (about 
1-Bev kinetic energy for protons), then vx=2 at the 
output radius, and N must be at least 4, for linear 
stability of the betatron oscillations. In order to avoid 
the third integral nonlinear resonance at a.= 27r/3, we 
should probably take N = 6. In Fig. 24, we plot the 
ridges and troughs given by Eq. (15.13) for a cyclotron 
with six spiral sectors and an output energy E= 2Eo. 
In Fig. 25, we plot E and H !IS R for such a cyclotron. 
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APPENDIX A. THE SMOOTH APPROXIMATION 

Let the alternating-gradient equation of motion m 
one dimension be written in the form 

(A.1) 

where the force f(x,O) is periodic in 0 with period 21rjN. 
We will assume that N»v, that is; that the betatron 
wavelength is long compared with the sector length. It 
is then reasonable to seek an approximate solution of 
the form 

x=X+HX,B), (A.2) 

where the "smooth" oscillation X (0) satisfies an 
equation of the form 

([l X I d02 = F (X)) (A.3) 

independent of the sector periodicity, and the "ripple" 
t(X,O) is periodic in 8 with period 21rjN and with zero 
mean, for fixed X. We will assume that the ripple ~ 
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and the derivatives dX/d8, lflX/dfP are small in a sense 
to be made more precise presently. 

We substitute Eq. (A.2) in (A.l) to obtain 

X"+~ee+2~xeX'+~xxX'2+hX"= f(X+~, 0), (A.4) 

where primes deonote derivatives with respect to 0. We 
now average over 0, keeping X, X', X" fixed, remember
ing that (~)Av=O, to obtain an equation corresponding 
to (A.3): 

(A.S) 

We subtract Eq. (A.S) from (A.4): 

~ee= {f(X+~, 0)}..:.2~xeX'-&xX'2-&X". (A.6) 

We use the notation introduced in the definition (4.14). 
It is easy to see that the last two terms are of order. 
(u /27r )2 relative to the first term, and are therefore 
negligible if N»v. The second term is only of order 
o/1r relative to the first, but its effect on. the smooth 
equation (A.5) can be shown to cancel out to first order. 
\Ve therefore neglect the last three terms in Eq. (A.6) 
and replace {f(X+~,O)} by {f(X,O)},i.e., we assume 
that Ufx}«{f}. We can then integrate Eq. (A.6) to 
obtain, as a first approximation to the ripple, 

then Eq. (A.9) can be written as a linear equation 

(A.11) 

and the approximate solution (A.2) then can be written 
in the Floquet form 

(A.12) 

where 

(A.13) 

The above results can be immediately generalized to 
the two-dimensional case 

lflx/dfP= f(x,z,O), 

lflz/dfP= g(x,z,O). 

We assume a solution of the form 

x=X+~. 

z=Z+t. 

We have the approximate equations 

~= h(X,Z,O),. 

t= g2(X,Z,O), 

(A.14) 

(A.15) 

(A.16) 

(A.7) where X, Z satisfy 

in the notation introduced in definitions (4.16) and 
(4.17). If we substitute the ripple (A.7) in Eq. (A.S), 
we obtain, to first order in ~. the smooth approximation 

(A.S) 

(Essentially the same result has been obtained by 
Sigurgiersson.20) To the solution of Eq. (A.8) is to be 
added the ripple (A.7) to obtain an approximate 
solution to Eq. (A.l). The second term on the right 
in Eq. (A.S) can be integrated by parts and rewritten 
in the form 

d2X/d02= (f)A,- <fdxl)Av· (A.9) 

If the force in Eq. (A.l) is linear in x, 

f(x,O) = g(O)x, (A.lO) 

20 T. Sigurgiersson, CERN report, CERN-T/TS-1, December, 
952; CERN-T/TS-3, May, 1953 (unpublished). 

lflX/d02= (j)A,+(fzlx)Av+{gzlz)Av, 

lflZ/dfJ2= {g)Av+ (fzgx)A,+ {gzgz)A,, 

where averages are over 8 with X, Z fixed. 

(A.17) 

In practice, we have found that Eq. (A.13) gives 
values of v or u( = 27rv/N) which are accurate to within 
about to% of [(g12)A,]t, provided that [{gl2)AY]i$N/4. 
A few nonlinear cases have been studied, and solutions 
of Eqs. (A.S) and (A.17) have yielded results in fair 
agreement with more accurate calculations except near 
stability boundaries. Stability boundaries where the 
betatron wavelength becomes infinite are fairly ac
curately predicted by Eqs. (A.S) and (A.l7) but the 
(more interesting) stability boundaries due to sector 
resonances when the betatron wavelength becomes a 
small integral number of sectors are not predicted at 
all by the smooth equations. 
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FIXED field alternating gradient particle focusing1 

by a ring of sectors provides the possibility of 
accelerating large currents of particles in direct current 
magnets by the application of the alternating gradient 
principle. There are two characteristically different 
types of FFAG magnets-radial sector and spiral 
sector. A successful radial sector model was constructed 
by the group of MURA Universities in 1956.2 The radial 
sector type requires some magnets to have a reversed 
magnetic field to reverse the gradient with a conse
quently large circumference. This letter describes a 
successfully operating spiral sector accelerator (see 
Fig. 1) in which the magnetic field is unidirectional and 
the alternation of the gradient is achieved by the edge 
focusing of the spiral sectors.1 This spiral type can have 
a smaller circumference because the field is uni
directional. 

Nonlinear focusing forces are prominent in FFAG 
accelerators, because the average magnetic field varies 
as rk where r is the radius and k is a constant and because 
the orbit crosses magnet edges at an angle other than 
1rj 2. The latter fact causes very strong quadratic 
forces in the spiral sector type. For this reason the new 
modeL was thoroughly tested before construction by 
digital computers, the ILLIAC at Illinois and the 
IBM 704 at MURA. Magnetic fields resulting from 
iron and current configurations were determined by the 
computers by solving the magnetic potential problem. 
This problem is reducible to a two-dimensional problem 
because the structures were chosen to scale propor
tionally with the radius. The fields were stored on a 
mesh and the orbits of particles passing through these 
fields were computed. Radial and axial betatron 
oscillation frequencies and phase space stability limits 
due to nonlinear forces were determined. A working 
point was chosen sufficiently far from the difference 
resonance, 2v,= vr, to avoid axial oscillation growth 
(v, =number of axial betatron oscillations per revolu
tion, vr=radial oscillations per revolution). The chosen 

FIG. 1. 

point was v,= 1.13 and vr= 1.40. Structural tolerances 
were obtained by calculating the effects of displaced 
sectors and sectors with erroneous k in the digital 
computer runs. Errors of one millimeter in sector 
positions had minor effects on the computed stability 
limits. The magnet with 6 sectors and an injection 
radius at 30.5 em and a final radius of 55 em was 
constructed well within these tolerances. k was trimmed 
by adding small coils to supply the magnetomotive 
force lost by the finite iron permeability and not 
taken into account in the computer tests. The radial 
component of magnetic field in the orbital plane was 
detected by an iron strip second harmonic generating 
magnetometer. This component was brought below the 
value equivalent to a one millimeter axial displacement 
of a sector (about 0.1 gauss) by adjusting coil positions 
and by slight corrections on reluctance differences 
between top and bottom poles. 

An injector of the type used in betatrons directs its 
focus into a infl.ector which turns the beam into the 
equilibrium orbit. Electrons injected at 30 kev are 
accelerated to "'120 kev by action of a betatron 
induction core. The values of v, and Pr measured by a 
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radio-frequency knock-out probe are 1.05 and 1.41, 
respectively. Coils for tuning radial frequency by 
changing k and for tuning axial frequency by changing 
the flutter of the field are available for examining other 
working points. Without these tuning coils energized 
the backwinding on the magnet pole face produces 
measured values of 0. 7 for k and 1.02 for the flutter, 
defined as J=Y'l(t:.B)rm./B, averages being taken 
around a circle. This measured flutter is less than the 
design flutter and causes the lower value of "•· The angle 
between the normal to the magnet edge and the radius 
of the machine is 43°. The gap at the low-energy radius 
was chosen to be 8 em and the structure, including the 
gap, scales up with the radius. This conservative choice 
of parameters provides structural simplicity without 

eliminating the nonlinearity difficulties which must be 
faced in a spiral sector accelerator. Preliminary 
estimates indicate that injection for four microseconds 
gives 10' electrons accelerated to the target. 

• This work was supported by the U. S. Atomic Energy Com
mission, The National Science Foundation, and The Office of 
Naval Research. 

t University of Illinois, Urbana, Illinois. · 
t The Ohio State University, Columbus, Ohio. 
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Iowa. 
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1 Cole, Haxby, Jones, Pruett, and Terwilliger, Rev. Sci. Instr. 

28, 403 (1957). 

1-64 



Reprinted from Proceedings of the Intern. Conf. 
on High-Energy Accelerators and Instrumentation-
CERN 1959 
Reproduced with permission by CERN. 

EXPERIENCE WITH A SPIRAL SECTOR FFAG ELECTRON ACCELERATOR 

R. 0. Haxby <*>, L. J. Laslett <**>, F. E., Mills, F. L. Peterson, E. M. Rowe and W. A. Wallenmeyer 

Midwestern Universities Research Association, Madison, Wis.(***) 

(presented by K. R. Symon) 

I. INTRODUCTION 

In fixed-field alternating gradient (FF AG) accel
erators 1

'
4 >, particles with a large range of momenta 

can be accommodated simultaneously within an 
annular magnet of limited radial extent, thus provid
ing a desirable flexibility in the methods of accelerating 
the partcles and affording the promise of high beam 
intensities. The spiral· sector type is an attractive 
form of FFAG accelerator, since a smaller circum
ference factor may be employed than is feasible with 
the radial sector design and a significant economy 
thus can be obtained in the construction. A six-sector 
spiral ridge FF AG accelerator has been constructed 
and successfully operated to accelerate electrons 
from 35 to 180 keY kinetic energy 5

• 
6 >. Acceleration 

was by betatron action, supplemented by radio
frequency acceleration when desired. The design 
was based on magnetostatic and orbit computa
tions<****>, and the subsequent performance was 
found to be in good accord with these computations. 
The model permitted not only the acquisition of 
design experience· and the demonstration of predicted 
stability regions, but also afforded the opportunity 
of studying coupling and multi-particle effects not 
investigated in detail theoretically. 

The number of sectors (N) was selected as 6, 
in the interests of a conservative design, and the 
remaining basic parameters characterizing the model 

then were selected on the basis of digital computa
tions pertaining to the magnetostatic problem and 
to the orbit dynamics in the resultant magnetic 
field. The inner radius of the accelerator was deter
mined by the need to accommodate the betatron 
core and for convenience of access to ancillary 
components, while the strength of the magnetic 
field at that. radius was dictated by the selection 
of 35 keY as a convenient injection energy. The 
maximum energy attainable by the model(~ 180 keY) 
was sufficiently greater than the transition energy 
(155 keY) so that experience was obtained in the 
use of radio-frequency programs suitable for travers
ing this possibly critical region. 

II. DESIGN 

A separated-sector magnet design was adopted 
in the interests of simplicity and to achieve conveniently 
a field with a large azimuthal variation such as would 
be expected to affect favorably the non-linear stability 
limits 4 >. Guard rings, effectively at zero magnetostatic 
potential, further enhanced the field variation and, 
secondarily, provided some additional shielding from 
external magnetic fields present in the laboratory. 
The character of the magnetic field which would 
result from specific magnet structures of this type 
(Fig. 1) was determined computationally by a relaxation 

(*) On leave of absence from Purdue University, Lafayette, Indiana. 
(**) Iowa State University, Ames, Iowa. 

(***) Supported by the United States Atomic Energy Commission. 
(****> The computations were primarily made by aid of the electronic digital computer of the Graduate College of the University 

of Illinois (ILLIAC), corroborated and supplemented by later computations made with the IBM-704 computer in the MURA 
Laboratory at Madison. The invaluable contributions to this work by J. N. Snyder and A.M. Sessler are gratefully acknow
ledged, as is also the cooperation of J. P. Nash, R. E. Meagher, and others at the University of Illinois, who facilitated initiation 
of this work. 
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Fig. 1 Cross section of magnet pole. $ = dn [.!._In.!....- NO) 
[(1/w)'+N'Jli' z w ro 

and 'I) = 
2 

-. Where r, 0, z are cylindrical co-
n r 

ordinates, and w is the spatial period radially divided by 2..•r:r. 
The pole profile in the .;, 'YJ -plane represents a section taken at 
constant radius, but with unequal scale factors in the azimuthal 
and axial directions. The outline represents more truly a cross 
section perpendicular to the spiral save that the general increase 
of all linear dimensions with radius is not depicted. Azimuthal 
distances at constant radius are given by 2nr(N times the 
increment of$ and axial distances by 2nr[(l(w)' + N 2] 1 i 2 times 
the increment of'/)· For the present model 1/w = 6.25 and these 
distances become 1.0472 rLl$ and 0.7252 rLl'l), respectively. 

procedure, wherein it was possible to employ a 
two-dimensional mesh?) by taking advantage of the 
scaling feature of the field. The resultant magneto
static potential, suitably scaled, was then stored 
in the computer memory for use in orbit computations. 

Three operating points considered in the design 
of the model are indicated on Fig. 2, where the 
abscissa and ordinate (a x• ay) of each point respectively 
denote the phase change per sector of the radial 
and axial betatron oscillations. Studies of orbit 
dynamics for point A of Fig. 2 indicated strong 
coupling of radial to axial motion, a behaviour 
attributed to the proximity to the ax = 2a.v resonance. 
The coupling was found to be less pronounced for 
point B, but the radial stability limit was found 
to be rather small (~ r/25) and the value of aY was 
also undesirably low. The operation point chosen 

~~ 
8• 

~ G 
"' 

.., 

11: 217 a; IT 
2 3 

Fig. 2 Location of operating points for which detailed com
putations were made. For these three points the phase changes 
per sector of the betatron oscillations, a, were as follows: 
A (0.597 n, 0.225 n), B (0.595 n, 0.129 n), C (0.466 n, 0.375 n). 

for the model was, accordingly, that denoted by 
point C on Fig. 2 (ax= 0.466n, ay = 0.375n), 
situated a considerable distance above the ax = 2a.l' 
resonance. Here the stability region was found 
to be at least as large as for point A and the axial 
oscillation frequency was more acceptable; coupling 

. effects, moreover, were no longer apparent and the 
sensitivity to misalignments (such as sector displace
ments) appeared to be much less pronounced. In 
practice, the model was provided with tuning coils 
to permit an experimental investigation of perf.:>rmance 
for operation under other conditions, in order that 
the effect of various resonance Jines in the neighbour
hood of point C could be determined. 

TABLE I 
Parameters of the spiral sector model 

Parameter Svmho/ Value 

Number of sectors N 6 
Mean field index k 

k = (r/(B)av)CO(B)av/cr) 
design value 0.7 
adjustable within the range 0.2 to 1.16 

Spatial period, radially(2;rr It' 0.16 
Spiral angle with radius :; 46° 

cot Z: =Nor 
Field flutter f~tr 

f~tr == [2((B --- <B)av)')av/(B)'a-'] 11' 

design value 1.087 
adjustable within the range 0.57 to 1.60 

Betatron oscillations per revolution 
)1 = Nrr(2n 
radial, design value l'x 1.398 
axial, design value Vy 1.125 

Vacuum chamber dim~r.sions. interior: 
inner radius ,.1 27 em 
outer radius 1'2 55 em 
h~ight h 3.8 Clll 

Injection radius r; 31 em 
Detector radius, useful, maximum rr 52 em 
Injection energy. nominal Ei 35 keY 
Final Energy E.r 

at k = 0.7 124 keY 
at k = 1.16 180 keY · 

Transition energy Er 155 keY 
Revolution frequency, maximum fr 62.45 Mc/s 
Radial stability limit/r. computed Ax :'-: 0.11 

(near the center of a radially-focusing region and when the 
radial momentum has the value corresponding to the stable 
fixed point. The radial motion at the limit of stability actually 
covers a range 1.lr/r =' ::!: 0.18 at this aZimuth.) 

The basic parameters of the model are given in 
Table I and a general view of the assembled accel
erator is shown in Fig. 3. The brass vacuum chamber 
was constructed as two hollow semi-circular annuli, 
insulated from each other. so that the accelerating 
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Fig. 3 View of the assembled spiral sector accelerator. 
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voltages could be applied. A movable scintillation 
detector and a current probe were provided for 
detection and analysis of the accelerated beam. An 
additional probe carried an offset molybdenum wire 
which, by rotation ab::>ut the probe axis, served 
to measure the vertical location of the equilibrium 
orbit, to indicate the amplitude of the axial oscilla
tions, and to limit these amplitudes when desired. 
Various electrodes were also provided to permit 
the application of auxiliary perturbing fields required 
for some of the performance tests. 

Ill. PERFORMANCE 

A. Intensity survey 

Following assembly of the model, and after careful 
measurement and correction of the magnetic field, 
a betatron-accelerated beam was immediately obtained. 
Tests were then made to determine the betatron 
oscillation frequencies and the variation of beam 
intensity over the accessible portion of the vx, vY 

stability region. The oscillation frequencies were 
determined in this work by the method 8 • 

9
> of resonant 

radio-frequency enhancement of the betatron oscilla
tions. The value of vY was found to vary significantly 
with amplitude (axial or radial amplitude) and an 
estimated 1 to 2 per cent inaccuracy arose from this 
effect in the intensity survey. The betatron oscilla
tion frequencies observed in the model, without 
current in the tuning coils, were close to the values 
resulting from the digital computations (see above) . 
and a small current in the flutter-tuning coils sufficient 
to raise ferr from 1.03 to its design value of 1.087 raised 
vY from 1.026 to the predicted value of 1.12. The 
resonance diagram which resulted from the intensity 
survey, with low emission from the injector, is shown 
in Fig. 4. A sizable region of maximum intensity 
is seen to occur centered ab::>ut the design point 
and the importance of several resonances which 
cross the accessible region is also apparent. 

B. Stability limits 

In measuring the radial stability limits in a fixed
field accelerator, one may examine the range of 
energies throughout which particles can be captured 
at the injection radius. On the supposition that the 
minimum-energy particles are injected into an equi
librium orbit which just misses the injector and that 

~. 
~ ~ u 

2.0 ~-------+---------; 

WORKING POINT (NO TUNING) 

+ D£SIGN£0 
X MEASURED 

Fig. 4 Beam intensity as determined by the resonance survey 
of the spiral sector model, using low emission from the injector. 
+ denotes the design values for the oscillation frequencies and 
is seen to be surrounded by a sizable region of high intens ity. 
The strong influence of several resonances is also evident, the 
occasional slight departure of the resonance lines from the 
positions of minimum intensity being believed chiefly ascribable 
to the imp recise scaling of the field when substantial tuning 
currents are applied . 

the maximum-energy particles oscillate abaut an 
equilibrium orbit which is situated a distance away 
from the injector equal to the stability limit, a 
measurement of this energy difference-or, equi
valently, of the variation in the time taken for accelera
tion-permits the stability limit to be calculated. 

The calculation to convert the variation of the requir
ed acceleration time to the radial range of stable motion 
at the injection radius requires use of the known 
rate of acceleration (betatron voltage) and correc
tion for the adiabatic damping which occurs in the 
course of acceleration ( oc B-'12). With either method 
it must be recognized that the spatial stability limits 
will vary with azimuth, due to the alternating-gradient 
nature of the magnetic focusing. 
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Fig. 3 Phase plot of solutions to Eq. (6), with the same values 
for the coefficients as were used in Fig. 2 but pertaining to solu
tions at s = n/2 (mod 3n). 

o~·~----~O~.OT0~5 ____ ~0~.0riO~~A~--~0~.01:5 

i\_/\,~o.OII36 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

CURVE FOR 
STABLE 
FIXED 
. .,-POINT 

CURVE FOR 
'-. UNSTABLE 

.......... FIXED POINT 

Fig. 4 Coordinates of the stable and unstable fixed points 
situated on the coordinate axis, for solutions of Eq. (6) with 
v,f N = 0.3, B = 1.15, s = 0 (mod 3n) vs A. These two fixed 
points are seen to approach one another as the strength of the 
perturbation is increased, becoming coincident when A assumes 
the critical value }., = 0.01136. 

The detailed characteristics of phase plots which are 
obtained for any particular value of A depend, of 
course, on the particular value of s (mod 3n)-or 
of () (mod 6n/ N)-to which they apply, but the 
topological features are independent of s (compare 
Figs. 2 and 3, which apply respectively to s = 0 and 
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Fig. 5 Phase plot, for s = 0 (mod 3n), of solutions to Eq. (6) 
with v,f N = 0.3 and B = 1.15 when A has the critical value 
Ac = 0.01136. The point designated F.P. represents the con
fluent fixed point. 

to s = n/2 (mod 3n). Firstly, it is found that, as 
desired, the application of the perturbation (A. > 0) 
does open up the phase curves which originally 
intersected at one of the unstable fixed points and, 
secondly, that this fixed point and the stable fixed 
point approach one another as the strength of the 
perturbation is increased (Fig. 4), to result in the 
complete disappearance of the stable region at a 
critical strength of the perturbation, },c = 0.01136 
(Fig. 5). 

It may be noted in passing that, for small A, the 
locations of these two fixed points which lie on the 
Pv = 0 axts when s = 0 (mod 3n) may be estimated 
by 15) 

A 
v (A) ~ --------, 1 

- 4f9-(2v,/N)2 
(lla) 

(llb) 

where v2 , 0 denotes the coordinate value of the 
unstable fixed point when A = 0. A parabolic fit, 
tangent to the lines (lla, b) at A = 0, may be written 

). = v· [v-vz,o] · [4/9-(2v,/N)2 ], (12) 
Vz,o 

for which the maximum value of A, 

(13a) 

is attained at 
(13b) 
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With vJN = 0.3 and - v2 , 0 co= 0.523S, Eqs. ( 13a, b) 
suggest 

).c = O.Qll 06 

vc = -0.2619' 

(14a) 

(14b) 

which may be compared with the computational 
results 

},c = O.OL136 

vc = -0.2650. 

(l4a') 

(14b') 

Finally, we note that suitably injected particles 
-e.g. with their initial phase points lying in the 
region A of Fig. 2- will move so that their phase 
points pass completely around the stable region which 
is formed as the perturbation is being removed. 
We may expect, therefore, that particles captured in 
this way will fill the stable region with a phase density 
equal to the maximum theoretically attainable. 

Y. INJECTION WITH A SECULARLY-DECREASING 
PERTURBATION 

We imagine the injector situated physically at radii 
less than those of the stable region into which it is 
desired to inject-say with v ::; - 0.55 at s = 0 
(Fig. I)-to avoid any interference by the injector 
with the captured beam. With an assumed particular 
value for the rate of decrease of the perturbation, one 
then seeks to find, by digital computations, the regions 
of phase space within which particles may start, at 
various initial values of ),, to become captured within 
the final stable region. The possible difficulties which 
conceivably could be discovered in such a search 
would be: 

(i) an appreciable fraction of the region of interest 
might be found not to pass through regions to the 
left of v =- 0.55; 

(ii) the location of the region with respect to mo
mentum, Pv. might vary strongly with the initial 
value of ), ; 

(iii) the region in phase space might be found to be 
seriously fila men ted; and 

(iv) the coupling between radial and axial motion 
may be found to play a more dominant role than is 
usually the case with stable motion, with a consequent 
complexity of the four-dimentional phase space and 
of its projections onto the radial and axial sub-spaces. 

A. Characteristics when only radial oscillations are 

present. 

For an initial computational investigation it is 
convenient to confine one's attention to motion in 
the median plane (axial oscillations absent). One may 
then commence by finding the range of momenta, 
Pv, which, at v = -0.55 and for various representative 
initial values of .A, lead to capture into the stability 
region. From such values other suitable initial condi
tions could be found by integration backwards in s, 
to obtain a transformed set of points situated at 
smaller radii, although with a three-sector accelerator 
(or with injectors located at every third sector around 
a larger accelerator) such a reverse transformation 
should only be carried through a three-sector interval 
in order to avoid the inclusion of points which would 
encounter physical interference by the injector struc
ture. The region between these two lines in the radial 
phase plane-i.e. between the line at v = -0.55 and 
its transform through Lis = 3n:-can then be explored 
to find the boundaries of the regions suitable for 
injection. 

Such a computational survey of the radial phase 
plane has been made for the case d).jds = - 0.002j3n = 

= -2.122 X 10- 4
, which corresponds toalineardecrease 

of the perturbation at a rate such that the strength 
of the perturbation would decrease from its critical 
value, Ac, to zero in the time taken. by the particle to 
traverse 17 sectors of the unperturbed machine. The 
results of this survey are summarized below. 

For the initial value v = --0.55, the range of 
"momenta", Pv, within which particles are captured 
for various initial values of A., are as shown in Fig. 6. 
It is noted that the useful values of). extend consider-

f 
-o.1 r-

L 

t 
-0.2;-

'·-0.02 

Fig_. 6 Range of initial momenta, Pv0 , vs. the initial value, i.0 , 

of A,_ fo~ capture_ of particles into the stable area of Fig. 1 when 
the 1n1t1al coordinate is v0 = -0.55. The results were obtained 
computationally for solutions of Eq. (6) with the perturbation 

decreased to. zero at the rate d}. = __ 0.002 . 
ds 3:r 
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Fig. 7 Range of initia'l conditions for capture of particles into 
the stable area of Fig. 1 when the initial strength of the perturba-

d). .0.002 
tion is A0 = 0.0165 and ds = -~ · The boundary ab trans-

forms, after three sectors (Lls = 3n), to v = - 0.55. 

ably beyond the critical value, Ac, since A will decrease 
during the time the phase points of the particles 
progress through the region wherein the stable area 
is being established. As mentioned above, each such 
range of values was then projected backward in s to 
give a second locus of values, applicable three sectors 
earlier (and for a value of A greater by 0.002). The 
intermediate region of the phase plane, between 
v = -0.55 and its transform, was then surveyed to 
obtain results of which those portrayed in Fig. 7 
are typical. For the particular case studied, filamen
tation of the " phase fluid " was almost entirely 
absent throughout the entire phase area which was 
mapped out in this way, although in a few cases the 
computations appeared to show definite evidence of 
an incipient filamentation developing along the lower 
edge of the region (Fig. 8). 

The areas of radial phase space which thus should 
be covered by the injector were obtained from ·curves 
.of the. type shown in Fig. 7. These areas, A(),), 
have been plotted, vs. the initial value of}., in Fig. 9 
and lead to the integrated result 

J A().)d}. = 0.00046. (15) 
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If the injector is capable of delivering n particles per 
unit area of radial phase space per unit time, the total 
number of particles which thus could be successfully 
injected by this means would be 

n = I nA().)dt 

= _n_ IA(A)d}, 
jd).jdtl 

= ~~ jd).~dsl I A(A)dA 

n 6n 
= - --0.00046 

wN 0.002 

n 
= 4.3-, 

wN 
(l6) 

where w = d()jdt denotes the angular velocity of the 
particles in the accelerator. This result may be 
compared with the maximum theoretically obtainable 

- 1.5 

Fig . . a Detailed portion of diagram, similar to Fig. 7, for 
capture of particles with Aa = 0.0195. 'Particles with initial 
values represented by circles are captured and those depicted by 
the crossses are not. The boundary ab transforms after three 
sectors to v = - 0.55. The points denoted by c and d represent 
·initial values which were found to lead to stable motion and thus 
provide evidence of incipient filamentation. 
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\ 

Fig. 9 Area of phase space from which particles may be suc
cessfully injected into the stable area of Fig. 1, as a function of 

d). 0.002 
A0 , for -d = --

3
-· . The ordinates were obtained from 

s n . 
diagrams of the type illustrated in Fig. 7, in which one boundary 
represented the locus of points which transform after three 
sectors to v = - 0.55. From the date shown here, the result 
JA (A) die= 0.00046 was obtained. 

by direct injection, during a three-sector interval, into 
the stable area without violation of Liouville's theorem, 
namely 

n = ~ (~). [Area of stable phase plot] 

n (6n:) = ~ N (0.223) 

n 
=4.2-. 

wN 
(17) 

It is evident, from comparison of the results (16) and 
(17), that excellent efficiency of injection into radial 
phase space has been obtained from the region mapped 
in this example, although with injection through more 
than three sectors, or with more complicated diffe
rential equations, a more pronounced filamentation 
of phase space might well develop to present practical 
difficulties. The transfer of radial phase space from 
outside the stable region to the interior appears to 
be quite orderly in the case which we examined and 
so encourages a continuation of the investigation of 

this injection (or extraction) method. The exact 
azimuth at which the injector might best be situated 
might be adjusted, in practice, to achieve a convenient 
match to the properties of the injector; it probably 
would be convenient to select a location where the 
usable values of Pv vary the least during the interval 
that the secularly-changing perturbation is being 
employed and for which the phase diagrams might 
be similar to that shown in Fig. 10. 

v
-""-1."-5 -.---.--.--.-""-l.;e.-0 --.--.--~ • .:..9F--.----.--· 

-----------·----~--------·---·-------- _J.Q.I 
Fig. 10 Transformation of the shaded area depicted in Fig. 7 
from s = 0 to s = 3nf32, so that this region becomes more 
centrally located with respect to Pv = 0 (compare Figs. 2 and 3, 
for which the corresponding values of s differ by n/2). The 
segment a'b' of the boundary represents the transformation of 
the portion denoted as ab on Fig. 7. In either case the shaded 
region has an area estimated as 0.042 vpv-units. 

B. The effect of axial motion. 

As in other accelerator investigations, the inclusion 
of the additional, axial degree-of-freedom in the 
present study introduces considerable complication 
and requires a rather extended amount of compu
tation if a comprehensive picture is to be obtained. 
The importance of including the axial motion in such 
studies is clear, however, as has been emphasized by 
Terwilliger in connection with a computational 
investigation 16

• 
17

> of a method which proved to 
afford a promising means of beam extraction from a 
spiral sector accelerator. Basically, this latter work 
was concerned with the use of a pulsed localized field 
bump which served to perturb the entire beam into a 
region of strong d.c. magnetic field, whence it would 
be bent down the spiral and out of the accelerator. 
Terwilliger's investigation 16

> of combined radial and 
axial motion indicated considerable phase distortion 
(and, effectively, loss of pha~e density) in the unper
turbed accelerator if one employed amplitudes com
parable with stability limits. Specifically, with a 
beam for which the oscillation amplitudes were origin
ally ab::>ut one-half as great as the stability limits, so 
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that the coupling was not pronounced, and for which 
the amplitudes each were further damped by a factor 
of about 7 during the acceleration process, use of the 
pulsed field was then found to permit orderly extrac

tion with high efficiency. The results which we are 
able to cite at the present time in regard to the inclu
sion of axial motion in the problem reported here are ' 
certainly not sufficiently complete to afford a compre
hensive picture-as we shall see, however, the preli
minary results which have already been obtained do 
indicate that, as expected, the axial motion exerts a 
marked effect on the performance and may detract 
materially from the utility of the method if efficient 
injection into the entire stability region of the accelerator 
is required. 

A search for the y-stability limit for solutions to 
Eqs. (7a, b) in the absence of the perturbation indicated 
that this limit lay between 0.72 and 0.85 if the ampli
tude of the radial motion was initially zero (i.e. 
corresponding to the origin of the radial phase plot 
shown in Fig. 1). For larger amplitudes the per
missible initial axial amplitudes were somewhat 
reduced, as shown in Table III. 

TABLE Ill 

Computational estimates of limiting axial amplitudes, with various 
initial radial amplitudes, for solutions to Eqs. (7a, b) with A = 0 

Pv0 =Py0 = 0 

I 

Yo 

Vo 

I 
Stable Unstable 

0 0.72 0.85 
-- 0.1 0.61 0.72 
- 0.25 0.52 0.61 

To illustrate the influence of axial motion on the 
proposed injection method, we have made preliminary 
computations for the case in which the initial strength 
of the perturbations is ).0 = 0.0165 (and d).jds = 
-0.002/3n) and for which Fig. 7 applies in the absence 
of axial motion. The y-stability li_mits for Eqs. 
(7a, b) were then sought for v0 = -0.55 and for 
v0 = -0.85, in each case assigning to the initial 
radial momentum, Pvo, a value near the center of the 
previously permissible range of values. The results 
of this search, summarized in Table IV, indicate 
that the axial stability limits for these representative 

cases were materially smaller than those shown m 
Table Ill. 

TABLE IV 

Computational estimates of limiting axial amplitudes, with 
representative initial conditions for the radial motion, for 
solutions to Eqs. (7a, b) with Ao = 0.0165 and d A fds = -0.002f3:rr. 

Pvo = 0 

Yo 

vo Pvo 

I 
Stable Unstable 

- 0.55 -0.13625 0.31 0.37 
-0.85 -0.22 0.19 0.21 

Guided by the results shown in Table IV, the range 
of permissible values of Pvo' leading to stable motion, 
was then examinaed at v0 = -0.55 and at v0 = -0.85 
for several initial axial amplitudes. The results of 
this survey are summarized in Table V. 

TABLE V 
Computational estimates of range of permissible radial momenta, 
with representative initial radial and axial coordinates, for 
solutions to Eqs. (7a, b) with Ao = 0.0165 and dAfds = -0.002f3:rr. 

Pyo = 0 

Pvo 

Yo Vo 

Unstable I I I Unstable Stable Stable 

0 -0.55 - 0.0775 - 0.0800 - 0.1925 - 0.1950 
0.19 -0.09 -0.10 -0.19 -0.20 
0.22 -0.09 -0.10 -0.19 -0.20 
0.26 -0.10 - 0.11 - 0.19 -0.20 
0.31 -0.12 -0.13 -0.19 -0.20 
0.37 -0.14 -0.15 -0.20 -0.21 
0.44 -0.18 -0.19 -0.21 -0.22 
0.52 -0.22 -0.23 -0.24 -0.25 

------
0 - 0.85 -0.190 -0.195 - 0.245 - 0.250 
0.19 -0.21 -0.22 -0.25 -- 0.26 
0.22 --- 0.22 -. 0.23 0.26 - 0.27 
0.26 ·-·· 0.23 .. 0.24 - 0.27 ..... 0.28 
0.31 - 0.25 -- 0.26 0.28 -- 0.29 

It is clear that axial amplitudes much smaller than 
those which appear in Table III result in a material 
reduction of the useful range of Pva· The larger 
values of y 0 listed in Table V are seen, moreover, to 
be associated with values of Pvo differing from those 
suitable for y 0 = 0, and injection with values of y0 as 
large as those listed near the end of each section of 
Table V may be of rather limited utility. 
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VI. CONCLUSION 

The particular injection method discussed in this 
paper was found to permit efficient transfer of radial 
phase space between regions exterior and interior to 
the accelerator, although complications might be 
expected ro arise if the physical limitation imposed 
at the time the beam returns to the injector azimuth 
were deferred for longer than the three sectors con
sidered here. The results of the method appear to 
show a close resemblance to those which previously '6 > 

have indicated the potential utility of a similar pertur
bation for the efficient extraction of a beam from a 
three-sector fixed-field accelerator. 

The preliminary studies of the influence of substan
tial axial oscillation amplitudes on the particle behav
ior indicated that this influence was pronounced 
and so might detract materially from the practicality 
of the method unless additional considerations, such 
as the limitation of axial amplitudes by the vacuum 

chamber or the damping of oscillation amplitudes 
prior to use of the method for ejection, served to 
limit the axial amplitudes to values considerably less 
than are dynamically stable in the absence of the 
perturbation. 

It is hoped that the method and results reported 
here will prove suggestive of other possible methods of 
utilizing a secularly-changing perturbation in conjunc
tion with the non-linear dynamical properties of the 
orbits, including methods in which the perturbation 
may have a greater period than that employed here 
and so would interact with a machine resonance rather 
than with an inherent sector resonance. 

It is a pleasure to acknowledge the assistance of 
Mr. Seymour J. Wolfson, a MURA summer visitor 
from Wayne State University, in some of the algebraic 
and numerical calculations connected with the analytic 
phases of this investigation, and to thank Mr. Igor 
Sviatoslavsky for assistance with some of the graphical 
work. 
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Resonant Beam Extraction from an A. G. Synchrotron* 
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and Midwestern Uni!'ersities Research Association, Madison, Wisconsin 

(Rece: :d July 22, 1960) 

The resonant extraction-method previously proposed for the normally constant gradient synchrotron has been 
exten?cd to alternate gradient accelerators. It is found that perturbation field gradients which contain circular 
functiOns of arguments 2v,, .2v.+ 1, 2v, + 2 are particularly effective in causing the radial betatron oscillations to 
g~ow e~onentially at a partiCular azimuthal position. The analytical procedure for predicting which perturbations 
give optimum results, and digital computer calculations verifying these predictions, are presented. 

I. INTRODUCTION 

THE use o~ the half-integral resonance,' l':z:= !, to 
effect rapid beam knockout, or extraction, from a 

normally•constant gradient synchrotron (or betatron) has 
been previously published2•3 and successfully applied to 
the Iowa State University synchrotron and to the Allis
Chalmers betatrons. More recently a convenient analytic 
description has been reported.4 The use of the analytical 
approach to guide a broader investigation of resonant 
extraction seems timely in view of the great enhancement 
of utility and versatility which a successful method would 
provide for alternate gradient accelerators now nearing 
completion, or, which have been completed.s.s In the 
following sections an investigation of a resonant ~ethod 
for alternate gradient synchrotrons is made. 

It may be recalled that the method used with the 
constant gradient synchrotron2- 4 employed an azimuthally 
dependent perturbation of the field gradient (n bump) to 
drive the operating point into the Px=! unstable zone 
(stopband), which opened up with a width proportional 
to the perturbation strength and within which the solution 
for the exponentially increasing betatron oscillations 
attained its maximum value at one particular azimuth in 
the accelerator regardless of the initial conditions of the 
particular particle under investigation. This implies that, 
in principle, the beam can be extracted on successive 
revolutions with no spread in the angle tangent to the 
equilibrium orbit, thus making the radial phase space of the 
extracted beam zero. In the application to the alternate 
gradient case, all these features are retained except that 
the use of a half-integral, as distinct from an integral, 
resonance does not seem essential and the selection of the 

• Contribution No. 916. Work was performed in the Ames 
Laboratory of the U. S. Atomic Energy Commission. 

t Now in London with the Office of Naval Research 
~ v, is the number of radial betatron. oscillations per ~ircumference. 

C. L. Hammer and A. J. Bureau, Rev. Sci. Instr. 26, 594 (1955). 
3 C. L. Hammer and A. J .. Bureau, Rev. Sci. Instr. 26,. 598 (1955). 
4 C. L. Hammer and L. J. Laslett, "Electron beam control in a con

ventional synchrotron,'~ 2nd Intern. Conf. Peaceful Uses Atomic 
Energy Geneva 30, 151 (1958). . · . 

'For exarriple the Cornell 1-Bev electron synchrotron or the 
synchrotron planned by the Cambridge Design Study Group 
M. Stanley Livingston, Director. ' 

~ V. V. Vladimirski et al., Proceedings of the CERN Symposium on 
Htgh Energy Accelerators and Pion Physics (UN Geneva 1956) 
Vol. 1, p. 133. ' ' ' 

particular resonance to .be employed may be based on 
secondary considerations· peculiar to the particular ac
celerator to which the method might be applied. However, 
with the integral resonance, half the particles are driven 
toward the outer radius at a particular azimuth while the 
other half are driven toward the inner radius, so that at 
most SO% of the particles can be extracted at one port. 
In contrast, with the half-integral resonance, the particles 
go alternately to large and small radii on successive 
revolutions, so that in principle all the particles can be 
extracted at one port. As in the case with the constant 
gradient accelerators, the use of the n bump seems 
desirable, since the perturbing windings then have very 
little coupling from the main magnetic field of the ac
celerator. Basically, then, one visualizes driving the 
accelerator to a nearby half-integral or integral resonance 
and this stopband is then opened by a suitable perturbation 
(see Fig. 1). The unstable oscillations grow exponentially, 
predominantly at one particular azimuth in the accelerator. 

Attention is directed to achieving radial instability, 
it being presumed that axial stability can be maintained. 
Throughout the paper the equations of motion are taken 
as linear, and typically may be regarded as of the Hill 
form. In the numerical examples the unperturbed 
accelerator is considered to consist of N identical A-G 
sectors (full sectors) with N = 48 and Px= 7.5 or, alterna
tively, with .Y = 12 and Px= 2.5. This illustrative material 
will not include the complications of straight sections, 
superperiods, or auxiliary lenses, it being felt that nothing 
significant is lost in the exposition by omitting such 
elaborations. 

ll. THEORY 

A. Basic Equations. 

The equation characterizing the radial betatron oscilla
tions may be taken to be of the form 

o2x+[p+mF(8)+XJ(8)]x=O, 

a=d/dO, 
' 

where the alternate gradient fl.utter is given by 

F(8)=+1 for -7r/21\7 <(8,mod27r/N)<7r/2N, 

F(8)=-1 for 7r/2N<(8,mod27r/N)<37r/2N, 

(1) 

Reprinted by permission of the American Institute of Physics. 
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and where the perturbation of strength X has the form 

(2) 

The magnitude of the unperturbed field gradient is there
fore given by m, and the constant p represents the usually 
small "centrifugal focusing" term. It is seen that 8=0 
corresponds to the center of a radially focusing semisector. 
The solutions to Eq. (1) have the Floquet form 7 

(3) 

where JJ. is real for operation inside an unstable zone and 
where <1>1 and <1>2 are periodic functions determined by the 
structure mF(B) and the perturbation "Xj(B). It is clear 
from Eq. (3) that for suitable values of JJ., the ascending 
exponential soon dominates the solution, so that the 
betatron oscillations have the periodicity given by <1>1 
regardless of the initial conditions. Therefore, the problem 
reduces to that of determining j(B) so that <1>1 has the 
periodicity and spatial dependence desired for beam 
extraction from a particular accelerator and so that JJ. has 
a value which permits the ascending exponential to 
dominate. 

It is convenient to solve Eq. (1) by usc of perturbation 
theory, 8 with the complete set of functions, x •. ,,9 as the 
basis vectors where 

az k+[P+ F(B)] k- _ k k Xv,T m, Xv,T - a,,T xi',T 0 (4) 

The functions x •. / are the eigenfunctions of Eq. (4) 
which are associated with the eigenvalues a,,/. Choosing 
the value of m, so that10 a,.}=O, ensures that x • .} is 
also the eigenfunction of Eq. (1) in the absence of the 
perturbation with the eigenvalue m= m,. As a con
sequence of Eq. (4), 

(5) 

reference 11. Excellent approximations12 for x •. ,k and a,j 
are given by 

x • ./= -D,{ cos[rB+kii/2]+B, cos[(N -r)B-h/2] 

+C cos[(.V+r)B+k7r/2]}, (6) 

7 E. T. Whittaker and G. N. Watson, Jlodern Analysis (Cambridge 
l'niversity Press, Cambridge, 1927), Sec. 19.4. 

8 See, ior example, Leonard I. Schiff, Quantum.\! ecllanics (:\IcGraw
Hill Book Company, Inc., New York, 1955), ed. 2, Chap. VII. 

9 The latin superscript refers to the parity of the eigenfunction and 
takes the value (1) for odd and (2) for even. The subscript v refers 
to the fact that a,j is chosen to give a particular value m, and the 
subscript r refers to the fundamental frequency of oscillation in the 
eigenfunction x •. ,k. 

10 It is assumed that m, is such that a,,,oJ=a,,,t2 >. This assumption 
is valid as long as (v,/:V) <!,which is the case for all accelerators. 
In general, as long as r/:V -;r.!, a,. ,oJ =a.. ,<2 J. 

11 The notation indicated by Eq. (5) will be used throughout. 
Xote that the subscript v has been suppressed (see reference 9). 
Further, (k,r/g(l)):l,u)=fx,,,kg(l))x, .• 'dO. The integration interval 
is assumed over a iull period of x •. / .1 which these functions form a 
complete orthonormal set. The interval 0 to 411" is sufficient for all 
cases to be discussed. 

12L. Jackson Laslett, ".\pproximation of eigenvalues, and eiger
functions, by variational methods," :\[CR.\ Notes (february 1, 1955). 
See also L. Jackson Laslett and C. L. Hammer, :\ICR.\ Report 445 
(February 2, 1959). 

FIG. 1. Stability 
diagram. 

OPERATING 
POINT 

mu m-

where D, is a normalization constant and 

B,= 2m,1T-1[(N -r)2- p-a,,,Cll]-1, 

C= 2m,1r-1[(N +r)2-p-a,,,C0jt, 
(7) 

r2= a,,,Cll+p+ (2m,1T-1)2{[(N _ r)2- p-a,,.Cl>jt 

+[CV+r)Lp-a,,,co]-t},. (8) 

for (r/:V)<t. The quantity m, may be obtained from 
Eq. (8) by setting r= v and a,,.k=O. More approximate 
equations form, and a,,,k are given by 

a,,,k= [r2-v2][1+4(v/.V)2]-t, 

2(2m,1T-1)2= 112(N2_ 112)2(N2+ 112)-1. 

(9) 

- (10) 

The centrifugal term p has been neglected. The quantities 
m, JJ., and <1>1 can be expanded in powers of the perturbation 
strength X according to 

m=amCll+ (1-a)mC2l, 

mk=m,+"Xm1k+"X2m2k+ · · · [k= (1),(2)], 

JJ.=XJJ.1+X2JJ.2+· · ·, 

<l>1 = Lk bkXv,vk+"X Lk [ckXv,vk+ L:.,.,(a,j)-ld,,/x,,l] 

+"A2 Lk [ekxv,.k+ L•e<• (a,j)-1j,,.kx,./J+ · · ·, 

where mC1l and mC2>, mC2l>mo>, correspond to the values 
of mat the edges of the stopband (see Fig. 1). Substituting 
for these quantities in Eq. (1) and applying the orthogo
nality condition given by Eq. (5) and the normalization 
condition, 

(11) 

one obtains,t3 

reference 14, 

ml=-Ll L:.,., (k,v: m/F+J[l,u)2(a,,. 1)-
1 

X(k,v;F:k,v)-1, (13) 

J.i.1 = (mt (Z)_m1 OJ) (2(2,vl a! 1,v ))-! 

X(1,v! F! 1,v)[a(1-a)J!, (14) 

13Jt is assumed here that (1,v !f(O)! 2,v) =0 so that nondegenerate 
perturbation theory applies . .\lso, the algebra is simplified if one 
recognizes that (l,vlo!2,u)=-(2,u!oil,v) and <1,v!F(o):1,v) 
= (2,v [ F(O)! 2,v}, v-;r. (nN /2),n being any integer. 

H This equation identifies m(2l with the even eigenfunctions which 
may not .be consistant with the assumption m'2l>m<". If an in
consistancy results, however, it can be removed by redefining k = (1) 
as even and k = (2) as odd. 
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JJ.z= {[16a(1-a)J-'(2,v 1 a l1,v)-1} { (2a-1)JJ.12 

+ (2a-1)[am2°>+ (1-a)mz 12>](1,v [F [1,v) 

-2/J.J Lz Lk La,.. ( -1) 1bz(a.j)-1d •. /(t,v i a i k,u) 

- Ll Lk La,ov ( -1) 1bz(a,,/)-1d,j 

X (l,v I [am1 °>+ (1-a)mJ <2>]F+JI k,u)}, (15) 

b1 = (a)!, (16) 

b2 = (1-a)l, (17) 

c1=- (1-a)!JiV, (18) 

c2= (a)lTV, (19) 

W = {[4a(1-a)]-![(m1 <2>-m1 Ol)(1,v IF l1,v)]-1} 

X {JJ.I2+[am2°>+ (1-a)mz 12>](1,v IF! 1,v) 

+2JJ.I Ll Lk La# bz(a • ./)-1d.,/(l,v i a I k,u) 

+ Ll Lk La,ov bz(a,,/)-- 1d,,/ 

X (l,v I [am1 O>+ (1-a)mi <2>]F +Jl k,u), (20) 

d • ./= 2fJ.1 Lz bz(k,u I a lt,v) 

+ Lz bz{[aml 0 >+ (1-a)mi 12>](k,u: F ll,1•) 

+(k,ulfil,v)}, (u~v). (21) 

The formulas for mzk, JJ. 2, W, and d,,/ simplify greatly if 
the additional restrictions 

(k,viF:t,u)=(k,vla[l,u)=O (v~u), (22) 

are imposed. This does not limit the problem at hand 
since the values of a for which Eq. (22) is not true give 
rise to values of a,j sufficiently large that the omitted 
terms are negligible. Thus, 

m1=- Ll La# (k,v IJi l,u)2 (a,,a 1)-l(k,v iF I k,v)-1
, (23) 

fJ.2{ (mz 12 ) -mz 1J)) (2(2,v! a! 1,v ))-! 

X (l,v IF [1,v)[a(1-a)]l+ (2a-1) (JJ.N4) 

X[a(1-a)J-l(2,v[al1,v)-1}, (24) 

W = Lk La,ov (a,,ak)-1(1,v [j J k,u )(k,u IJ j2,v) 

and 

X (1,v iF i 1,v)-1(mi 12>-ml IJ))-1+ (m1 12 >-m1 Ill) 

X[a(1-a)]l(1,viFi 1,v)8-1(2,v[aj 1,v)-2, (25) 

d,,,k= Ll bz(k,r if[/,v), (r~v) (26) 

In summary, letting>-.= 1, one obtains 

fJ.= (m 12'-m OJ) (2(2,v i a i l,v) )-1(1,v l F [l,v )[a(1-a)]! 

+ (2a-1)(m<2>-mOl)216-1(2,v i a! l,v)-3 

X[a(1-a)]l(1,v[F [1,v)2, (27) 

through second order and 

cl>1 = (a)![x •.• 0 >+ Wx •.• 12J+ Lk La,ov (a,,l)-1 

X (l,v ifi k,u)x •. /]+ (1-a)i[x.,/2l- Wx •.• <JJ 

+ Lk La,ov (a,,ak)-1(2,vlf I k,u )x •. /], (28) 

through first order. Except for the second term in Eq. 
(25), the square-bracketed terms of Eq. (28) are the 
eigenfunctions associated with the m<1> and the m<2J 
boundaries, respectively. 

One sees from Eq. (28) and Eqs. (6) and (7) that the 
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dominant term in cl>1 is a circular function of frequency v. 

Thus if v is integral, those particles whose displacements 
x initially are such that A in Eq. (3) is positive will reach 
their maximum displacement always towards the outer 
radius of the accelerator (positive x) while those particles 
with A less than zero will always reach their maxima 
toward the inner radius. In contrast, if v is a half-odd 
integer, the particles reach their maxima alternately 
toward the inner and outer radius. 

B. Form of the Perturbation 

The perturbation j(e) is intended both to open the 
stopband as economically as possible and to introduce 
harmonics into the betatron oscillations such that the 
orbits reach a maximum displacement at a particular 
azimuth in the accelerator. As one sees from Eqs. (12), 
(23), (27), and (28), to accomplish these purposes, one 
need only consider the matrix elements (k,vj!l,r). To 
obtain the frequencies that must be contained in j(e) it 
is sufficient to approximate x •. / by the circular functions 
of frequency r, which are the first terms of Eqs. (6) and 
(7). In fact, this approximation is, in general, good to 
order (v/.V), so that it is also adequate for most calcula
tional purposes. Thus, the matrix element becomes the 
simple integral over the product of three circular functions, 
giving 

(k,vif!l,r) 

and 

= 2-l~·+• cos[o.+.- (k+l) (7r/2) J+ 2-l~l•-•1 
Xcos[ol•-•1- (k-l) (7r/2)(v- r) I v- r i - 1], 

v~ r, (29) 

(k,v If! k,v)= 2-1 ~2. cos(o2,-k7r)+2-1~o cosoo. (30) 

From Eq. (12) it is seen that the opening of the stopband 
will occur to first order if (1,vlfi1,v)~(2,vJi2,v). 
Inspection of Eq. (30) shows that only the ~2 • cos(2ve+o2.) 
term in the perturbation will accomplish this purpose. 
While it is possible to find an j(e) to open the stopband in 
second order using the condition 

Ll (l,v !Jil,u)2~Ll (2,v 1Jil,u)2
, 

given by Eq. (23) (recall ak,a<l)=ak,a<2>), it would seem 
from the standpoint of minimizing the magnitude of the 
perturbation required that this case need not be considered. 
However, for a particular accelerator, if it is not convenient 
to use a perturbation which cohtains a 2v harmonic, it 
may be necessary to examine the second-order effects 
further.16 

To choose the perturbation so that the maximum 
displacement occurs at a particular azimuth it is necessary 
to separate the analysis into two parts, obtaining first 
the harmonics required in the perturbation and second 
the choice _of the phase shifts oa. If the maximum is to 

16 The opening of a stopband to second order in the perturbation 
is considered in some detail by the authors in Ml'RA Report 445 
(February 2, 1959). 
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be enhanced at some 00 it would be desirable for the 
perturbation to add to the unperturbed solution a function 
(see Fig. 2) 

g(O) =go cosv(O-Oo), 
(2nv-1)(n/2v):::; (0-0o), mod21r, 

:::; (2nv+1)(1r/2v), 
=0, (2nv+1)(1r/2v):::; (0-0o), mod21r, 

:::; [ (2n+ 2)v-1](1r/2v ), (31) 

where n is an even integer and " is the fundamental 
frequency of the unperturbed solution. The Fourier 
analysis of g(O) gives coefficients 

g,=2gov1r- 1 (v~-r2)-1 cos(1rr/2v); r=1, 2, 3, · · ·. (32) 

The dominant terms in the series can be ascertained from 
the ratio 

(g,j g,) = 4?r-1 112(v2- r2)-1 cos(1rr/2v ), 

2'_0; r::=;3v. 
(33) 

Since <1>1 already contains the dominant term of the 
Fourier expansion as its fundamental, it is apparent from 
Eq. (33) that the additional terms to be added should 
contain harmonics close to v. Furthermore, since (g,jg,) 
becomes more slowly varying for large v, more terms 
will be needed for large " than for small "· On this basis, 
and from Eqs. (28) and (29), one concludes that the 
perturbation should include either harmonics 1, 2, or 3, 
etc., or harmonics (2v±1), (211±2), etc. However, one 
observes that the coefficients g, have the same sign for 
r:::;J11, whereas the coefficients of x._.k in <1>1 alternate in 
sign [see Eqs. (9) and (29)] depending upon whether r 
is greater or less than 11. Therefore, having frequencies 
1, 2 etc., or (211-1), (211-2), etc., in the perturbation is 

.._desirable since they introduce harmonics 11± 1, 11±2, etc., 
or (11-1, 311-1), (11-2, 3v-2), etc., into the solution. 
In the latter case, however, this distinction is academic 
since the fact that av,3v-pk>>a.,,_/ makes the (311-p) 
terms negligible. 

The azimuthal position of the maximum displacement 
can be obtained approximately by examining the maxi
mum of <1>1 alone, ignoring the exponential factor expJ.LO, 
and using the approximate formulas given by Eq. (6). 
Thus, letting 

K sin <Po= (a)l-JV (1-a)i, 

K COS<fo= (1-a)l+ lV(a)i, (34) 

tan.po= [a/ (1-a)]i+ (2a-1a)}Jl, 
one obtains 

<l>t"-'COSII(O- <;o/11) 
+ B, cos[ (.V- 11) (0- <Pol 11)+ (.V <Po/ v)] 
+C. cos[ (.V +v) (0- <Pol v)+ (X <Po/v)] 
+ (2a,,,+/0)- 1 ~2•+P{ cos[ (11+p) (0- <Po/ 11 )+y PJ 
+B•+P cos[(.V- v-p) (0- <Po/ v) -')' P+ (X c;o/ 11)] 
+C.+P co~[ (.V + 11+p) (0- tpo/11) . 

+'YP+(.Y <Po/v)]}, (35) 

~ I~ I I \ . "'""/ I \ 

FIG. 2. Form of the function g(8). 

where ')'p=02•+P+(P<Po/v)+2<Po, p= ±1, ±2, etc., for a 
typical perturbation term ~2•+P cos[(2v+p)O+o2•+PJ. For 
convenience the higher-order terms 

- W (1-a)! Lk Lu;o<• (a,,/)-1(1,v \J\ k,cr)xv,uk 
and 

W(a)i Lk Lu"' (a,,l)-1(2,v IJI k,cr)x •. l 
were added to Eq. (28) to derive the above result. 16 The 
maximum will occur at the azimuth Oo= (<Po/11) with the 
dominant terms reinforcing the fundamental if one chooses 

~2•+p=PIPI-1 Ib+pl, (36) 

(N<Po/v)=21rl; l=1, 2,3, · · ·, (37) 

02v+p=- (2<Po+P<Po/v) 
= -211"N-1l(2v+p). (38) 

The condition expressed by Eq. (37) places the maxi
mum in the center of a radially focusing sector. Since 
maximum growth for the betatron oscillations occurs for 
a=0.5 [see Eq. (27)] one obtains the auxiliary condition 
<Po= (n+t)1r, n= 1, 2, 3, · · ·, from Eq. (34). Imposing 
this condition gives 

l= (8v)-1(4n+1).V. (39) 

Because this equation cannot be satisfied for arbitrary 
N and v,. it would be desirable to include it in the design 
specifications of the accelerator. However, since [a(1-a)]i 
varies so slowly in the neighborhood of a= 0.5, growth is 
achieved for quite modest values of a. Thus Eq. (39) can 
be relaxed sufficiently to include any N and "· From 
Eqs. (12) and (30) one sees that the assumption m<2J >m<O 
is justified if one chooses 

(40) 

C. Summary 

In the previous sections it has been determined that a 
field gradient perturbation of the type 

-I ~2. [ cos2vO+ LP p !P !-1
1 ~2•+P I cos[(2v+p)O+o2•+PJ, 

p= ±1, ±2, etc., (41) 
16 The normalization factor D, does not appear in Eq. (35) since 

the use of the simpler functions in the matrix elements requires the 
same constant for each of the eigenfunctions. The more sophisticated 
treatment, however, gives the same results. 
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TABLE I. Coefficients of coS<J(O- rp0/v) in the function <I>, 
for the perturbation given in Eq. (41). 

u 

v 
N-v 
N+v 

tp 
N-v+p 
N+v+p 
3v+p 
N-3v+p 
N+3v+p 

Coefficient 

will open the stopband associated with the radial frequency 
v to first order and that the maximum displacement of 
the betatron oscillations will occur in the center of only 
one of the radial focusing sectors if the . phase shifts 
o2•+P are chosen in accordance with Eqs. (37) and (38) 
and if ! b+P I is chosen approximately in accordance with 
the Fourier coefficients given in Eq. (33). The exact 
number of terms required in the perturbation depends 
upon the magnitude of v. In the following section two 
examples are given; one involving v= 7.5, N =48 in which 
four perturbation terms are required, and the other 
involving v= 2.5, N = 12, in which only two are necessary. 

Simplified, approximate formulas for the matrix de
merits, in addition to those given in Eqs. (29) and (30), 
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FIG. 3. Digital results for N=48, v=7.5. (a) No eerturbation; 
(b) f(O)=-cos150+5.2 cos160+10.17 cos[170+(>T/2)J; (c) f(O) 
= -cos150+5.2 cosl60+ 10.17 cos[170+(>T/2)]+21.65 cos200. 
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which are necessary to estimate the growth rate fJ. and the 
function cf>1 are 

(1,vl F l1,v )= (2v2/m.), 

(2,vlal1,v)=v. 
(42) 

Using these values one obtains for the perturbation 
suggested in Eq. (41), 

p.= (2v)-1~2.[a(1-a)Jl[1+(8v2)-1 (2a-1)~2.], (43) 

and the coefficients for the harmonics in cf>1 shown~ in 
Table I. 

III. DIGITAL COMPUTATIONS 

To verify that the perturbation suggested in Eq. (41) 
gives the desired results, digital computations for the 
solutions of Eq. (1) were made using the Iowa State 
University "Cyclone" and the MURA IBM 704 com
puters. To simplify both the digital and analytic 
calculations, the small "centrifugal focusing" term P is 
ignored and the function F(fJ) replaced by the first term 
in its Fourier analysis, ( 4/7r) cos.YfJ. This latter approxi
mation has been shown15 to make essentially no change 
in the functions cf>1 or x •. l and all the equations given in 
the previous section remain valid. 

The particular example chosen is for an accelerator 
consisting of 48 full sectors operating near the v= 7.5 
resonance and being perturbed by an j(fJ) as given by 
Eq. (41) for the two values p= 1, 2. Thus the equations 
of interest are 

a2x+[ ( 4/7r )m.cos48fJ- cos15fJ+5.20 cos168 

+10.17 cos(17fJ+7r/2)]x=O, (44) 

where the phase shifts ha~e been chosen in accordance 
with Eqs. (37), (38), and (39) with n= 11, l=36, and 

T 

7.5 
8.5 
9.5 

22.5 
23.5 

a2x7 . 5,,k+(4/7r)m7.6 cos48fJX7.6,/= -au./X7.5./· (45) 

TABLE II. Eigenfunctions and eigenvalues for the equation 
a•x •. /+ (4/>T)m, cosNOx,,q*= -a.,q*x •. /. 

Eigenvalues a,,, k Predicted by Eq. (10) and 
T Digital Eq. (8) or Eq. (9) 

7.5 0 0 0 
8.5 14.34 14.34 14.58 
9.5 30.37 30.37 30.97 

22.5 310.49 322 409 
23.5 317.82 330 452 

mu 384.74 385.48 

Coefficients of circular functions in xu.,* 
D, B, c, 

Digital Predicted Digital Predicted Digital Predicted 

1.394 1.394 0.1500 0.1496 0.07972 0.07967 
1.392 1.393 0.1593 0.1588 0.07727 0.07723 
1.390 1.391 0.1697 0.1691 0.07496 0.07490 
1.1314 1.1318 0.7467 0.7477 0.05321 0.05280 
1.0464 1.0461 0.9061 0.9082 0.05190 0.05131 
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TABLE III. Coefficients of coS<T(8- 'Po/v) in the function <1>1. 

(T Digital Predicted 

7.5 1 1 
40.5 0.148 0.150 
55.5 0.0787 0.0797 
8.5 (0.181 )(1.34) 0.181 

39.5 (0.0282) (1.34) 0.0289 
56.5 (0.0138) (1.34) 0.0140 
9.5 0.155 0.167 

38.5 0.0256 0.0278 
57.5 0.0115 0.0123 

A comparison between the digital and the analytic 
calculations is shown in Tables II, III, and IV. In the 
analytic calculations, the simplified expressions using 
Eqs. (29), (30), and (42) are used throughout. In general 
it is seen that the agreement is quite good. The dis
agreement shown in Table III by the multiplication 
factor 1.34 arises primarily from a relatively large con
tribution to the function X7 .6,8. 6k in <l>r from the second
order terms which were ignored. These same terms 
which enter in the third order in the valuf of J.L, account 
for the disagreement shown in Table IV. The value of a 
cannot be predicted as well as the other quantities since 
the additional assumption is made that the factor expJ.L8 
does not affect the position of the maximum. The differ
ence in a shown in Table IV corresponds to a shift in the 
maximum of only 1.67°. Thus, the analytical approach, 
as represented by the simplified formulas, serves as an 
excellent guide to the digital calculations which must be 
done to extract a beam from a particular accelerator. 

Graphs of the digital solution to Eq. (44) are shown 
in Fig. 3(b). For comparison purposes, the solution in the 
absence of the perturbation is given in Fig. 3(a). The 
maxima at the sectors 0 and 96 and the minimum at' 
sector 48 have been enhanced as predicted by the theory. 
The more complete interference shown in Fig. 3(c) is 
accomplished through the additional perturbation term 
21.65 cos208, which is chosen specifically to reduce the 
maxima near sector 48 [see Fig. 3 (b)]. The substantial 
increase in the amplitude of the betatron oscillations 
shown in Fig. 3 for each revolution plus the constructive 
interference at the appropriate azimuth attests to the 
usefulness of the resonance method of extraction. In 
addition all the perturbation terms used in the example 
are less than 6% of the normal A.G. flutter. 

Fewer perturbations are necessary if the resonance used 

TABLE IV. Eigenvalues mk, growth rate p., and the position a 
· within the stopband. 

Digital Predicted 

111 ol 378.21 378.39 
m\2) 381.7~ 38l.i8 

!J. 0.0 0.031 
C< 071 o.s-
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FIG. 4. Digital results comparing the effectiveness of a cos(0/2) 
term in the solution. (a) N = 12, v = 2.5, f(8) =- .25 cos58+ 2.5 cos28; 
(b) N =48. v= 7.5, f(8) = -cos158+9.24 cos88. 

is a small integer or half-integer. To demonstrate this one 
considers an accelerator with 12 full sectors operating 
near the v = 2.5 resonance. In this case the differential 
equation is 

iPx+[(4/7r)(31.42) cos128-0.25 cos58+2.5 cos28]x=O. 

The cos28 term in the perturbation introduces a cos(0/2) 
term in the solution. The results are shown in Fig. 4(a). 
For comparison purposes, the solution for the 48 sector 
accelerator with v= 7.5 for the perturbation ( -cos158 
+9.24 cos88) is shown in Fig. 4(b). In this case it is the 
cos88 term that introduces the cos(0/2) dependence of 
the solution. One sees immediately that whereas the 
solution for the v= 2.5 resonance is quite satisfactory, the 
solution for the v= 7.5 resonance shows very little prefer
ence for one sector over the others. 
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A six-sector spiral ridge FFAG accelerator has been constructed 
and successfully operated to accelerate electrons from 35 to 180 kev 
kinetic energy. Acceleration was by betatron action, supplemented 
by radio-frequency acceleration when desired. The design was based 
on magnetostatic and orbit computations performed with the Illiac 
digital computer, and the subsequent performance was found to be 
in good accord with these computations. Tuning coils permitted varia
tion of the basic parameters about the design values suggested by the 
computations, so that an experimental investigation could be made 
concerning the importance of nearby resonances. The theoretical 
basis of the computational work and .the specific results obtained are 
first described, followed by a resume of the constructional features 
and magnetostatic measurements. Tests with the operating model 
are then reported, comprising a resonance survey, injection studies, 
perturbation studies, and the usc of radio-frequency acceleration. 
The frequencies of radial and axial betatron oscillation at the nominal 
operating point were, respectiv~ly, v,= 1.40 and "•= 1.12, and the 

I. INTRODUCTION 

I N fixed field alternating gradient (FFAG) acceleratorsi.2 

particles with a large range of momenta can be simul
taneously accommodated within an annular magnet of 
limited radial extent, thus permitting a desirable flexi
bility in the methods of acce!Crating the particles and 

*This work was supported by the U. S. Atomic Energy Commis
sion, the National Science Foundation, and the Office of Naval 
Research. • 

t Present address: General Atomic Division of General Dynamics 
Corporation, San Diego, California. 

t The Ohio State University, Columbus, Ohio. 
§On leave from Purdue University, Lafayette, Indiana. 
II Iowa State University, Ames Iowa. 
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1 K. R. Symon, D. \V. Kerst, L. \\'. Jones, L. J. Laslctt, and 

K. ]\(. Temilliger, Ph)·s. Rev. 103, 11\37 (1956). 
2 L. Jackson Laslctt, Science 124, 781 (1956), 
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resonance survey indicated this operating point to be centrally located 
within a region of relatively large intensity which was bounded by the 
resonances vv= 1.0, vx= 1.5, and (less markedly) 2vv-vx= 1. Injection 
from a deflector structure with a thin septum permitted efficient in
jection to be achieved either by concomitant rapid acceleration of the 
injected electrons or, alternatively, by use of a time dependent radial 
electric field applied as a perturbation. Experiments with a pro
tracted injection pulse permitted the observation of phenomena 
attributable to space charge efTects. A suitable frequency-modulation 
schedule permitted successful acceleration of a substantial fraction 
of stacked electrons through the transition energy. Appendices de
scribe a moaulator, "·ith negative feedback stabilization, to permit 
protracted injection, a magnetometer, used in the magnetic field 
measurements, and the essentials of Parzen's theory of perturba
tions, which \Yas found to account satisfactorily for the results of the 
perturbation experiments. 

a!Tording the promise of high beam intensities. The nature 
and general theory of FFAG accelerators have been de
scribed previously1•2 and the operation of a radial sector 
electron model reported.3 The spiral sector type is an 
attractive alternative form of a FFAG accelerator, since 
smaller circumference factors may be utilized than appear 
feasible with the radial sector type and a significant 
economy may thus be achieved in the magnet design. 
Nonlinear features of the orbit dynamics, on the other 
hand, would be expected to be materially more prominent 
than for a comparable radial sector accelerator. The 

present article describes the design, constructim1, and 
operation of a model FFAG electron accelerator employing 

3 F. T. Cole, R. 0. HaxJ,y, L. \V. Jones, C. H. Pruett, and K. M. 
Tcmilliger, l{ev. Sci. lnstr. 28, 403 (1957). 
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spiral sectors/ which was constructed to provide an em
pirical test of theoretical predictions, to contribute further 
evidence of orbit stability over intervals longer than could 
be examined computationally or under conditions in which 
multiparticle effects .are important, and to permit the 
acquisition of experience with various acceleration methods 
possible in accelerators of this type. 

As in other FFAG designs the magnet was such as to 
provide a field whose average value varies with radius as 
rk, and use of logarithmically spiraled poles permitted 
possible orbits of particles with different energies, or mo
menta, to be geometrically similar. A separated sector 
design, 2 employing separate spiral magnets, was used in 
the interests of simplifying construction. More signifi
cantly, a field with a large azimuthal variation was thereby 
obtained, in an aperture not excessively limited, and larger 
stability limits could be expected. The flutter, or azimuthal 
variation of the field, was further enhanced by the use of 
guard edges or "ears," of zero magnetostatic potential at 
the edges of the spiral sectors. 5 Initially the model was 
operated with betatron acceleration, although in later work 
fairly extensive tests of radio-frequency acceleration 
methods were undertaken. 

The design of- the spiral sector model was based, as dis-· 
cussed in Sec. II, on computations performed with the 
electronic digital computer of the Graduate College of the 
University of Illinois (Illiac), corroborated and supple
mented later by some computations with an IBM-704 
computer m the l\1 URA Laboratory at Madison, 
Wisconsin. Constructional work was begun in the Physics 
Research Laboratory of the University of Illinois and 
completed in Madison, where magnetic field tests were 
made, the model put into operation, and a beam im
mediately obtained. 

With the number of sectors (JV) selected as six, in the 
interests of a conservative design which would permit 
avoiding an excessive number of resonances, the remaining 

• Preliminary accounts of this model have been given in the follow
ing references: (a) D. \V. Kerst et al., Rev. Sci. Instr. 28,970 (1957); 
(b) L. J. Laslett, A. 1\f. Sessler, and J. N. Snyder, Bull. Am. Phys. 
Soc. II 2, 337 (1957); (c) H. J. Hausman et al., Bull. Am. Phys. Soc. 
II 2, 337 (1957); (d) R. 0. Haxby eta!., Bull. Am. Phys. Soc. II 2, 337 
(195i); (e) D. W. Kerst and F. E. Mills, Bull. Am. Phys. Soc. II2, 
337 (1957); (f) R. Stump, B. Waldman, and \V. A. \Yallenmeyer, 
Bull. Am. Phys. Soc. II 2, 337 (1957); (g) F. L. Peterson and W. A. 
Wallenmcyer, Bull. Am. Phys. Soc. ll 3, 168 (1958); (h) F. E. MiHs 
and D. S. Roiseland, Bull. Am. Phys. Soc. II 3, 168 (1958); (i) 
F. L. Peterson, Bull. Am. Phys. Soc. II 3, 331 (1958); and (j) R. 0. 
Haxby et al., "Experience with a spiral sector FFAG electron accel
erator," Proceedings of the CERN Conference on High Energy Accel
erators and l11strumentation (European Organization for Nuclear 
Research, Geneva, 1959), p. 75. 

5 In addition to ciTccting a more rapid decrease of the magnetic 
field at the edges of each sector, the cars provide additional shielding 
from the magnetic field of the earth, which is not entirely negligible 
in comparison to the rather lo\\" field strengths employed in the elec
tron model. The influence of the earth's field \\"as further reduced by 
use of large compensation coils surrounding the accelerator, similar 
to Helmholtz pairs, and \\"ith a hexagonal shape employed for the pair 
intended to neutralize the vertical component. 
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FIG. 1. Over-all view of the spiral sector model. 

basic parameters characterizing the model were selected 
by digital computations pertaining to the magnetostatic 
problem and to the orbit dynamics in the resultant mag
netic held. The computational work included study of the 
effect of misalignments and the values finally recommended 
for the basic parameters were taken as central design 
values about which adjustments could later be made to 
determine empirically the effect of possible . harmful 
resonances. 

The inner radius of the accelerator was determined by 
the need to accommodate the betatron core and for con
venience of access to various ancillary components, while 
the associated injection energy (~35 kev) was dictated by 
the specifications of the injector, which was originally 
planned to be of the type used in the University of Illinois 
80-l\Iev betatron. 6 From the field strength thus found to 
be appropriate at the inner radius, and from the value of 
the field index k suggested by the digital computations, 
the maximum radius obtainable with readily available 
forgings of Armco iron thus determined the maximum 
energy which could be attained in the model (~180 kev). 
With the dimensions selected in this way the model per
mitted study of beam behavior in the neighborhood of the 
transition energy (155 kev), which was reached by par
ticles moving in orbits situated an adequate distance 
within the outer wall of the vacuum chamber. 

Figure l presents a general view of the accelerator. In 

the following sections we review the theoretical and com
putational design studies, summarize the constructional 
features and test program, and report the results of experi
ments made with the operating model to determine the 
effects of resonances and the characteristics of various 

acceleration methods. 

6 D. W. Kerst et al., Rev. Sci. Instr. 21, 462 (1950), especially 
Fig. 12. 
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II. THEORY 

The general theory of fixed field accelerators, as well as 
that specific to the spiral sector design, has been discussed 
extensively elsewhere. 1 

•
2 Many of the approximate analytic 

techniques which have been developed7 were of great value 
in the preliminary theoretical design studies. This work, 
however, is not essentially unique, whereas the methods 
used to design this model are distinct from those used to 
design any other particle accelerator in that, to the best of 
our knowledge, thisis the ftrst time that a digital computer 
was used to determine completely the essential parameters 
of an accelerator by computation of the performance which 
would result from various choices of magnet design. · 

There were two digital computer programs which were 
essential to the design of the model. The first program 
started "·ith any chosen magnet contour (provided only 
that the pole "scales"1 •2) and calculated the magnetostatic 
potential at all points in the region between the poles. The 
second program constituted a dynamics program, as differ
entiated from the aforementioned potential program, and 
served to calculate the trajectory of a monoenergetic 
particle in the fields resulting from the solution to the 
potential problem. In effect, by use of these programs, it 
"·as possible by digital computation to construct a large 
number of poles and study in detail the resulting magnetic 
fields or, more generally, to construct a large number of 
accelerators and study the consequent particle dynamics. 
It cannot be overemphasized that this is an essentially 
exact procedure, save for possible long range dynamical 
instabilities which would not be exhibited in digital com
puter runs corresponding to particle trajectories carried 
through a few hundred revolutions or for possible many 
particle effects such as the limitations due to space charge. 
Thus, provided the accelerator was assembled according 
to the specifications and tolerances obtained from the 
computer, there could be no real doubt that the accelerator 
would operate successfully. 

The remainder of this section is devoted to a description 
of the digital computer programs mentioned and to the 
various calculations which were performed in order to 
determine a suitable set of design parameters. 

A. The Potential Problem 

Fixed field accelerators must be designed so that the 
betatron oscillation frequencies are substantially inde
pendent of radius. This may be accomplished most directly 
by hm·ing the orbits and the fields themselves simply 
scaled replicas, possibly rotated, of the orbits and fields at 

7 The linear orbit equations may be approximated by aid of the 
"smooth approximation" (see reference 1, p. 1842) or by use of tabu
lated. solutions to a Hill's equation (see reference I, footnote 9). 
Results fqr the nonlinear orbit equations may be approximated ·by 
techni.ques developed independently by a number of m>rkers [see, 
for example, L. J. Laslett and A.M. Sessler, ;\·lid"·cstern Universities 
Research .-\ssociation Rept. MURA-263 (1957, unpublished)]. 
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any other radius. In the case that such scaling is main
tained, it is clear that the fields throughout the entire gap 
can be characterized by the fields on a two-dimensional 
surface (for example on a cylinder). Limiting our attention 
then to scaling fields, we can reduce a three-dimensional 
potential problem to a two-dimensional problem-namely, 
to a problem which is quite tractable with present high 
speed digital computers. 

The median plane field [Hr(r,¢,0)=H¢(r,¢,0)=0] in a 
spiral sector, scaling accelerator can be written 

where r is the radial coordinate, 4> is the azimuthal angle, 
and F is a periodic function (period 2 1r) of average value 
unity. The constant Ho denotes the average magnetic field 
at the reference radius ro. The parameter k represents the 
field index, the number of sectors is N, and the spiral ridge 
makes an angle \ = cot-1 (lVw) with a radius vector. 

From Eq. (1) the magnetic scalar potential V may be 
written as 

(
r)k+I (1 r z) 

V= - G -In-- Net>,- , 
ro w ro r 

(2) 

where G is a periodic function (of period 21r) with respect 
to its first argument, r is the radial coordinate in a cylindri
cal coordinate system, and z is the vertical coordinate. If 
we define a new function by the equation 

fl(l;,.,.,)= V/Hor0(r/r0)k+I, (3) 

where 

1 [ 1 r ] !;=---In--N¢ (4a) 
271' w ro 

[ (1/w)2+ :VZ]! z 
.,.,= (4b) 

271' r 

!!(!;,.,.,) is periodic with the period unity with respect to l; 
and it becomes evident that the fields can be expressed in 
terms of the two variables l; and .,.,. 

In terms of the function Q(l;,.,.,), Laplace's equation in 
three dimensions reduces to the following partial differ
ential equation with two independent variables: 

azn r 471'21'/2 la2Q 471'(1/w) azn 
-+ 1+ ------1'1 ae (1/w) 2+N2 .a.,.,2 (1/w)2+N2 a~;a.,., 

47r(k+ 1)/w an 411'2 (2k+ 1) an 
+ . 

(1/w)2+:V2 a~; (l/w) 2+N2 a.,., 
471'2 (k+1)2 

+ Q=O, (5) 
(1/w)2+N2 
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in which n is an odd function of.,.,, vanishing at .,.,=0, and 
is periodic in ~ with the period unity. The potential prob
lem was accordingly solved with the Illiac digital computer 
through application of a relaxation method to Eq. (5), the 
input data being the parameters k, 1/w, N, and the values 
of Q on a boundary curve. 8 For a typical problem, the com
putation time required to obtain Q with su1licient accuracy 
for studies of particle dynan1ics was of the order of 1 or 
2 hr. 

B. The Dynamics Program 

The solution of the potential problem, !1 (or strictly nj.,.,), 
was stored in the fast memory of the Illiac computer as 
!-words so that a mesh of up to 2000 points was available. 
The fields which enter into the differential orbit equations 
were computed from these stored values by differentiation
interpolations as needed during the course of the integra
tion of the dynamical equations. The field components 
are given by 

(6a) 

H
0( r )k[ (n) 1 a (!1) a (n)J 

H,=- ---;:- ro k ; + 27r'1o a~ ; - 11a.,., ; (6b) 

(6c) 

and the dynamical equations, employing these field com
ponents, are 

dx/d¢= (1+x)p,(1-p,2-p/)-l 

dy/d¢= (l+x)Pv(1- p/-p/)-! 

1 
dp,jd¢= (1- p,L py2)-l+-(1 +x) 

Ilo 

(7a) 

(7b) 

(7c) 

(7d) 

in terms of the dependent variables y=z/ro and 
x= (r- ro)/ro.9 

8 A more complete description of this computational method is 
given by L. J. Laslett, i\Iid11·estern Universities Research Association 
Rept. l\-!URA-99 (1956, unpublished). The nature of a more elaborate 
program, subsequently prepared for an IBM-70-t. computer, is sum
marized by L. J. Laslett, Midwestern Universities Research Associa
tion Rept. l\IURA-221 (1957, unpublished). The technical difficulties 
of constructing an efficient relaxation program ,,-hich would fit the 
capacities of the Illiac were by no means trivial, but are not discussed 
here. 

9 Actually the program worked with the variables Sand T, rather 
than x and)', where S=ln(l+x) and T=y/(l+x). This procedure 
avoided the use of a logarithm routine in the computational program 
and thus provided memory capacity for a more clctailcd representation 
of the field. For details concerning this feature, the interpolation and 
differentiation algorisms (which arc constructed to provide field com-
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In order to study the effects of misalignments and field 
imperfections for the purpose of obtaining tolerances for 
construction of the model, the dynamics program was 
arranged so that certain simple algebraic transformations 
could be inserted periodically. Such transformations, which 
are called "bumps," were of the following types: 

(1) Axially-displaced secto; bump. At the .entrance to 
some chosen sector the following transformation was in
troduced to relate the initial values (xi, etc.) of the orbit 
variables to the values (xh etc.) which result from appli
cation of the transformation 

Y1=yi-D.y 

Pv1= Pyi· 
(8) 

The program then proceeded with the integration until the 
end of the sector, at which point the transformation 

(9) 

used introduced. This same bump was then used repeti
tively on each revolution. 

(2) Radially-displaced sector bump. The transformation 
used to simulate a radially displaced sector was identical 
to that used for a vertical displacement, except that the 
displacement was made in the x coordinate rather than in y. 

(3) Rotated sector bump. At the entrance to a chosen 
sector the transformation 

Xf=Xi- (1rjN)(MJ) 

Px1= Pxi+M 

Y1=Yi 

Put= Pyi 
(10) 

\vas made. The transformation was then followed, at the 
end of the sector, by 

Y1=Yi 

pyf= pyi· 
(11) 

As with the other bumps, this series of transformations was 
repeated on each revolution of the particle. 

C. Computational Results 

Figure 2 depicts the operating region of interest, in 
terms of the quantities ax/7r=2v,ji{ and ay/7r=2vy/N, 
where v, and vy denote the number of radial or axial beta
tron oscillations per revolution. The important intrinsic 
resonances have been indicated on Fig. 2, as well as im
perfection resonances through third order. On the basis of 
linear theory, and guided by the theory of imperfections 
for the linear problem,1.3· 7 three possible operating points 

ponents which were continuous from one cell of the mesh to another), 
and for other details of the computational method see L. J. Laslett, 
.Midwestern Uni\'ersitics Research Association Rept. MURA-99 
(1956, unpublished).;\ description of a similar program subsequently 
written for an JB!\!-70-J. computer is given by L. J. Laslett, Mid
western Universities Research .-\ssociation Rept. .\{ U RA-222 (1957, 
unpublished). . · · 
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Vxjrc-

. FIG. 2. Resonance diagram for N = 6. Three possible operating 
points, for which detailed computations were made, are indicated by 
the letters A, B, and C. 

were selected for detailed study. For each of these operat
ing points, indicated on Fig. 2 by the letters A, B, and C, 
a realistic pole profile and gap were selected and suitable 
values of the parameters k and 1/w determined compu
tationally to give the desired frequencies for small ampli
tude betatron oscillations. In Table I we list the parameters 
which correspond to the three operating points and in 
Fig. 3 we show a cross section, in the ~' 'II plane, of the pole 
shape used for point C. It may be noted that a pole profile, 
depicted in this way in the ~' 'II plane, represents a section 
taken at constant r, but with unequal scale factors in the 
azimuthal and axial directions. The outline represents 
more truly a cross section perpendicular to the spiral, save 
that the general increase of all linear dimensions with 
radius is not depicted. 

The results of a computational study of orbit dynamics 
for the three operating points are summarized in Table II, 
wherein we include some refined estimates of radial sta
bility limits determined with the MURA IBl\f-704 in 
Madison. To ensure that the computations would not 
ignore the possibility of strong coupling between radial 
and axial motion at certain operating points, the Illiac 
searches for radial stability limits were made with a small 
initial axial displacement (yo= 10-5) in cases which other
wise would have been entirely free of axial motion, and 
likewise, the subsequent IBl\1-704 studies of radial motion 

'l t.. 
I I 

I I 

J;WA ~ 
t l. 4-+2 II 8 ___ -J II 2+-L_...J 
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FIG. 3. Cross section of magnet pole, in the 1;, 11 plane, for operating 

point C. The pole contour is periodi~ in the ':ariable 1;, with I?eriod 1. 
Azimuthal distances at constant radtus are gtven by 2m-IN tunes the 
increment of 1; and axial distances by 27Tr[(I/1<'P+N']-! times the 
increment of 11 • For the present structure 1/w=6.25 and these dis
tances become 1.0472 r ll.l; and 0.7252 r ll.17, respectively. 
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included searches made with an initial axial displacement 
which was about 12% of the corresponding axial stability 
limit. Despite the relatively short duration of the indi
vidual computer runs for the estimation of stability limits, 
the introduction of this modest amount of initial axial · 
motion led to substantially reduced, but it is believed more 
realistic, radial limits for operation at points A and B. For 
point C, however, the radial stability limits were found to 
be substantially independent of the presence of such axial 
motion. Although the data of Table II may be subject to 
some sampling errors, a significant trend seems unmis
takable which served as a helpful guide in selection of a 
suitable operating point for the model. 

The radial stability limits for point A appeared unde
sirably low when even small amounts of axial motion were 
present. This result, attributed to proximity to the vx= 2vy 
resonance, motivated the investigation of point B, situated 
somewhat further from this coupling resonance. As is seen 
from Table II, the stability limits, although significantly 
greater than for point A, were still rather small and, in 
view of the low value of vy associated with point B, the 
usable volume of phase space was again rega~ded as un
desirably small. 

Attention was therefore finally directed to point C, lying 
a considerable distance above the vx= 2vy resonance. Here 
the stability region was found to be materially greater 
than for points A and B, and the axial oscillation frequency 
was also comparatively large. J\IIost important, moreover, 
coupling effects were no longer apparent and the sensitivity 
to misalignments did not appear to be pronounced. 

On the basis of the !Iliac computations included in 
Table II, which incidentally were obtained with a total of 
approximately 200 hr of computer time, 10 it accordingly 
was decided to proceed with the construction of the model 
at operating point C. It was, of course, planned to be able 
to tune the model, but the central design parameters were 
taken as those associated with point C. It is encouraging 
to note that the subsequent performance of the model, 

TABLE I. Parameters for the three operating points 
studied computationally. 

Parameter Point A Point B Point C 

k 1.62 1.65 0.70 
1/w 6.65 6.00 6.25 
N 6 6 6 
f,rr" 1.083 1.085 1.087 
Ux 0.597 1T 0.595 1T 0.466 1T 

Uy 0.225 1T 0.129 1T 0.375 1T 

Vx 1.791 1.785 1.398 
Vy 0.675 0.387 1.125 

• f,u denotes the effective flutter, defined as f,rt = [2 ((li2) -(li)2}/(Il)']l 
=[2((/{ -(ll))')/(ll)']~. 

10 This estimate docs not include code checking, various simplified 
prol,Jerns which were studied to test the programs, or checks o~ in
ternal consistencv used to confirm that the results were substanllally 
independent of ,;1csh size. Some tests of the efTcct of mesh size arc 
described in reference 11. 
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TABLE II. Summary of the dynamics studies for the three operating points A, B, and c.• 

Point A Point B Point C 
Length of Radial Axial Radial Axial Radial Axial 

Perturbation individual run ampl.b am pl. ampl.b am pl. ampl.b am pl. 

Unperturbed 
30 sectors 0.088• 0.117• 0.106• 

0.028d 0.052<1 0.106d 
80 sectors 0.029 0.033 0.036 
Max amp!., stable• 0.073 0.072 0.075 

Threshold 
90 sectors, growth 0.032 0.049 0.092 

no growth 0.027 0.031 0.074 

Axially displaced sector 
6y=0.00351 90 sectors 0.019d 0.029 0.036<1 0.033 0.09<)c· d 0.040 

(Llz~1 mm) 
t>y=0.00i02 0.019d 0.028 0.030" 0.035 o.on•.d 0.033 

(Llz~2 mm) 

Radially displaced sector 
0.026d 6x=0.00351 90 sectors 0.025 0.037d 0.032 0.100•·d 0.036 

(t>r~l mm) 
Llx=0.00702 0.023d 0.020 0.034" 0.029 0.097•.d 0.036 

(6r~2 mm) 

Rotated sector 
Llll = 0.0015 90 sectors, unstable 0.032d 0.032 0.060d 0.034 0.126•.d 0.039 

stable 0.023d 0.029 0.042d 0.030 O.lOO•.d 0.034 
t.0=0.0060 unstable 0.036<1 0.027 0.065d 0.030 0.104•-d 0.044 

stable 0.023d 0.025 0.046d 0.028 0.078•·d 0.039 

a The numbers in the body of the table give the magnitudes of the limiting amplitude's, for the free betatron oscillations, in units of the radius. Save where other
wise indicated. the amplitudes refer to the center of a radial!~· focusing region. The threshold for y gro\vth denotes the amplitude of radial oscillation above which 
coupling results in a marked (exponential) increase in the amplitude of initially small axial oscillations. Approximate magnitudes of the various sector displacements 
are given in millimeters for a nominal radius of 30 em. 

b Amplitude to left of stable fixed point when Px has the Yalue corresponding to the fixed point. 
c With no axial amplitude present. 
d \Vith a small amount of axial amplitude introduced initially. 
e Amplitude at center of axially focusing region. 

reported in Sec. V, indicated that point C fell within a 
region of maximum beam intensity. 

Following initiation of construction oi the model, 
further digital computation was performed on the l\IURA 
IB:i\I-704 at Madison. This work proved to be completely 
consistent with all the results as described, but, because 
the pressure to obtain a satisfactory design point was no 
longer present, the opportunity presented itself to obtain 
a more complete description of the accelerator represented 
by point C.U Some of these supplementary results are de

scribed as follows: 

(1) Median-plane field. A Fourier analysis was obtained 
for the magnetic field in the median plane, 11·ith the results 

given in Table III. 
(2) Large amplitude radial oscillations. :\ phase plot for 

large amplitude radial oscillations is illustrated in Fig. 4 

for the model free of imperfections. 
(3) Small amplitude radial oscillations. The ;;mall ampli

tude betatron oscillations occur about an equilibrium orbit 
for which the major terms in its Fourier representation 

u A more complete description of this work is gi,·en hy L. J. Laslctt, 
Mid\\·estern Universities Research Association Rept. .\1 UR:\-213 
(1957, unpublished). 

were found to be 

x/''-0.0211-0.0290 sinLY0-0.0071 cosNO 

.-0.0011 cos21\70 (12) 

-0.0001 sin3N0-0.0002 cos3N8. 

The elements of the matrix (~ ~) which serves to carry 

the vector (x- Xf, Px- Pxt), characterizing a small ampli
tude betatron oscillation, through one sector also were 
computed. These elements, as a function of the starting 
point within the sector, are plotted in Fig. 5. The parame
ter {3, defined as B/sinu, has been introduced by Courant 
and Snyder12 for convenience in treating the response of an 

T AllLF: III. The prominent Fourier components of the normalized 
magnetic field for operating poiht C. 

m 

0 
1 
2 
3 
4 
!err 

j,. (the coeff. of sin2:>rm~) gm(the coeff. of cos2:>rm0 

1.0688 
-0.0258 

0.0742. 
-0.0087 

1.084 

I (normalized) 
-0.1312 
-0.0875 
-0.0357 
-0.0122 

12 E. D. Courant and H. S. $nydcr, Ann. Phys. 3, 1 (1958). 
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FrG. 4. Phase plot of limiting amplitude stable radial motion, 
obtained from computer results pertaining to NO=O (mod. 2,-). The 
stable fixed point is designated by F. P. and the four unstable fixed 
points by x. 

orbit to scattering and other disturbances. For the present 
structure flx varies between about 0.43 and 1.29, as can be 
seen from Fig. 6, and the value at the reference point used 
in the earlier work (NO=O, mod. 21r) is about l.U. 

:::01- u "-·--..,;·---·_·---·-···_··_·_····~~--~ 
7 It ¥ 21< 

Ne-

FIG. 5. ~latrix clements characterizing propagation of small 
amplitude radial oscillations through one sector of the model, as a 
function of the starting point within the sector. 
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Frc. 6. The parameter (J, for propagation of small amplitude 

radial oscillations through one sector of the model. 

(4) Small amplitude axial oscillations. Corresponding 
results for axial motion in the model are plotted in Figs. i 
and 8. The values of flu at NO=O and N0=1r (mod. 21r) are, 
respectively, 0.62 and 1.40. 

Motivated by the unexpected comparative behavior of 
three Illiac runs, 22 runs, each of 400 sectors duration, 
were made with the IB21'1-i04. None of these runs gave 
evidence of instability and many gave reasonably definite 
Pu vs y phase plots, of which some were characterized by 
a rotation number close to 27r/5. The initial conditions for 
the axial motion were varied over a considerable range 
within the stability limits quoted in Table II, while the 
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FIG. 7. :\latrix clements characterizing propagation of small ampli

tude axial oscillations through one sector of the model, as a function 
of the starting point within the sector. 
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initial values for the radial motion were the coordinates of 
the fixed point which characterizes the equilibrium orbit. 11 

A careful study13 was made of the effect of k assuming 
in one sector the value 0.8, while in the remaining sectors 
it retained its design value 0. 7. It was found that there 
were no notable effects attributable to the decrease of 
periodicity of the structure, but only a partial decrease of 
the radial phase space available for stable oscillations 
which was similar to the larger decrease found when k was 
increased in all sectors. 

III. CONSTRUCTION 

A. Magnets 

As mentioned previously, it was the intention that the 
accelerator design should scale and accordingly that all 
annular rings of the magnet should be similar, with the 

IB,------,-------.------.-------. 

0.4 r-------t------1-------

Ne-----

FrG. 8. The parameter (3, for propagation of small amplitude 
axial oscillations through one sector of the model. 

dimensions increasing in direct proportion to the radius. 
In addition the edges, and other equivalent points of each 
magnet sector, should progress radially outward along a 
logarithmic spiral which makes an angle s= cot-1 (Nw) 
=46° with a radius vector. With such a design, computa
tions made for one radius in the accelerator should be im
mediately applicable to other radii. 

It was appropriate, therefore, to cut the magnet poles 
from a surface having the correct conical angle to satisfy 
the scaling requirements of the machine. The sectors were 
made from forgings of Armco iron, 1! in. thick, from which 
annular rings of 25 em inner radius and 61 em outer radius 
were flame-cut. These annular rings were then placed upon 
a template, pressed into the desired conical shape, and 
subsequently annealed. 

The individual magnet pole pieces \\·ere cut from the 

taL. J. Laslett, Midwestern Universities Research Association 
Rept. :MURA-257 (I<JS7, unpublished). 
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FIG. 9. Schematic drawing of one magnet sector. 

conical rings, mounted on a turntable, and machined to 
the final conical surface. Grooves were machined in the 
pole surfaces, near the sector edges, to carry the magnetiz
ing windings and tuning coils. The rim of iron remaining 
beyond the coils could thus be regarded as remaining at 
zero magnetostatic potential, thereby increasing the 
effective flutter of the resultant magnetic field by effecting 
a more abrupt falloff and serving to provide additional 
shielding against external magnetic fields. The back leg 
and pole faces of each magnet sector were finally assembled 
on a jig and pinned by dowels in the final position. Figure 9 
illustrates an assembled sector, prior to winding. 

Since the magnet gap increases in direct proportion to 
the radius and the magnetic field as r0 ·7 , the magnetostatic 
potential ofthe pole face must vary as ru. It was therefore 
necessary to use distributed pole-face windings. These were 
so designed that a single layer of wire gave the requisite 
field dependence if infinite per1neability were assumed for 
the iron. Current densities in the wires were kept below 
2000 amp/in.\ thus obviating the need for water cooling. 
The coil configuration is shown in Fig. 10. 

FiG. 10. E~ploded view, showing one of the main mag--.ct coils 
abo,·c a magnet pole. The yoke, magnet pole, pole-face "·i ~eli ''(! 0 , and 
flutter-luning coils arc, rcsnP.cl;vcly, denoted l,y a, b, c, and d. 
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The main pole-face windings were formed of No.16 
Formex-insulated wire and employed 110 turns on each 
pole, of which 86 were distributed across the pole face, on 
circular arcs concentric with the accelerator. The wires 
crossing the pole were secured with polystyrene cc:ncnt 
into grooves machined i:1 a Lucile form k in. thick. The 
return copper bundles were then rigidly foLncd to f:t into 
the edge slots and were carefully mounted on the r:1agnet 
faces, using fi~h paper and varnished CiJ.mbric for insulation. 

To provide a desirable flexibility in the operation of the 
model, both k-tuning coils and flutter-tuning coils were 
provided for adjusting the operating point of the accel
erator. From an expansion of the desired magnetic held 
through terms of first order in Ilk, 

II (k+ Ilk)""' II 0 (r/r0) k+ H0 (r/r0)k In (r/r0)Llk, (13) 

one is led to a distribution of a single layer of supplc:ncntal 
pole-face windings adequate to produce a suitable change 
in k with no more than a s:nall nonscaling error. These dis
tributed windings were fabricated in the same way as the 
main field coils. They were wound with 97 turns of No. 22 
Formcx-insulated wire, following a schedule similar to that 
for the main coils, and the return copper bundles were also 
buried in the edge slots. The flutter-tuning coils were 
wound on thin Lucite strips which then were secured to 
the guard edges of each pole so that the edges could be 
adjusted to magnctostatic potentials different from zero. 
During the installation of all the coils, the resistances were 
continually monitored and great care taken to avoid short 
circuits or grounds. 

The main coils were all connected in series, so that they 
carried the same current (""'3.4 amp). The k~tuning coils 
had their own series circuit with an adjustable current 
supply and the flutter-tuning coils were similarly in series 
with a separate control. Power for these currents was pro
vided by a stabilized Nobatron power supply. A current 
of ± 1 amp in the k-tuning coils produced a change in k of 
±40%, and ± 1 amp in the flutter-tuning coils effected a 
±30% change of the effective flutter. It should be noted, 
however, that if both types of tuning coils are simulta
neously employed, a significant departure from the desired 
scaling property of the magnetic field will result. 

B. Vacuum Chamber and Detectors 

(1) The Vacuum Chamber 

The vacuum chamber was designed to permit utilization 
of as much of the magnet gap as possible, this consideration 
being of particular importance at the injection radius where 
the largest oscillation amplitudes occur, and to afford a 
flexibility which would permit modifications of the ex
perimental arrangements to be made readily. It 11·as neces
sary to provide at least one insulated gap acros~ 11·hich ac
celerating voltages could be placed when required, and 

several access ports for the insertion of probes and detectors 
were considered desirable. For adequate beam lifetime, 
ulti nate pressures in the neighborhood of 10-6 mm Hg 
were considered appropriate and an operating pressure of 
2X 10-6 mm Hg was typical for most of the tests described 
in the following sections. 

The cha'1~bcr, Fig. 11, was constructed as two hollow 
se:11icircular annuli, scaled together by means of a k-in. 
flat rubber gasket compressed by insulated bolts. The 
rubber gasket was located behind a metal shoulder, which 
served to shield the insulating gasket from the beam and 
assisted in assembly of the chamber. The inner and outer 
chamber walls were for;ned by brass rings, ! in. thick, to 
which the top and bottom plates of !-in. brass were brazed 
to form a chamber with an interior height of 1! in. The top 
and bottom exterior surfaces were chamfered, on the inner 
portion, to fit closely between the magnet poles. 

The chamber was pumped continuously through two of 
eight 4-in. holes in the bottom plate, selection of the par
ticular holes to be used being determined by the desired 
azimuthal location of the chamber with respect to the 
magnet sectors. Two Consolidated Electrodynamics type 
l\ICF-300 oil diffusion pumps, trapped by baffles which 
were Freon-cooled to - 40°C, evacuated the chamber 
through 4-in. gate valves. The forcvacuum was provided 
by a Welch type 1397 rotary pump which, by a suitable 
system of ball-valves and usc of ballast tanks, also served 
as a roughing pump. Pressures in the high vacuum system 

fiG. 11. Exploded view of vacuum chamber. The current probe, 
scintillation detector, two vertical-scanning probes, plates for r-f 
excitation of betatron oscillations, and the ionization gauge are shown 
schematically at a, b, c, d, and e. 
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FIG. 12. Betatron core and 
excitation windings. 
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were measured with Consolidated Electrodynamics VG-lA 
ionization gauges and forepressures by thermocouple 
gauges. Gauges of the latter type also served to actuate 
protective vacuum interlocks. 

(2) Detectors 

For direct detection and analysis of the accelerated 
electron beam a scintillation detector was constructed for 
insertion into the vacuum chamber. The scintillator proper 
consisted of a 1-in. diam cylinder of Sintilon plastic, 
attached to the end of a brass tube which passed through 
an 0-ring sliding seal at the vacuum chamber wall. The 
scintillator was covered on its front surface by an evapo
rated aluminum layer which was lighttight and yet suffi
ciently thin to permit electrons to strike the plastic. Elec
trical pulses were then obtained from an RCA type 6342 
photomultiplier situated at the end of the brass tube and 
were either viewed directly on an oscilloscope or integrated 
to give a signal indicative of the total beam striking the 
scintillator. 

In moving the scintillator radially within the vacuum 
chamber, it necessarily crosses the spirals of the magnet 
structure and in consequence presents a variable aspect to 
the scalloped particle orbits. To avoid variations in the 
geometricalacceptance it was therefore.necessary to make 
the front of the scintillator chisel-shaped. 

A second detector consisted of a current probe, con
structed to provide an absolute measurement of beam 
intensity. This probe was in the form of a Mo flag t in. 
high, i in. wide, and 0.010 in. thick. Tests indicated that 
secondary emission caused no detectable error in measure
ments made with this probe. An additional type of probe 
carried an offset 0.040-in. l\Io wire which, through rotation 
of the probe, served to measure the vertical location of the 
equilibrium orbit, to indicate the amplitudes of vertical 
oscillations, and to limit these amplitudes when desirable. 

For accurate measurement of the betatron oscillation 
frequencies and of the revolution frequency in tests of the 
operating model, it was planned to use destructive radio
frequency excitation of the betatron motion.3 •

14 For this 
purpose a pair of plates was introduced near the upper and 

"C. L. Hammer, R. W. Pidd, and K. M. Terwilliger, Rev. Sci. 
Instr. 26, 555 (1955). 
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lower surfaces of the vacuum chamber. These electrodes 
consisted of 0.010-in. Mo, ! in. wide, 2 in. long, separated 
vertically by 1 in. They were electrically insulated, both 
from each other and from the chamber wall, and, by excit
ing them either in opposition or together, suitable vertical 
or radial electric fields could be placed in resonance with 
the corresponding betatron oscillations. An additional 
elcctroc\e of / 6 -in. Cu, 6 in. long and g in. high, was also 
provided to permit application of a radial electric field 
ncar the injection radius. 

C. Accelerating System 

Betatron acceleration alone was used when the model 
was first put into operation, and later supplemented the 
radio-frequency fields employed in the series of experiments 
described in Sec. VIII. The dimensions and windings of 
the betatron core, which was constructed of 0.014-in. 
transformer laminations, are illustrated in Fig. 12. The 
four butt joints were surrounded, as shown, by separate 
windings connected in parallel with the main distributed 
"·indings and the resultant flux-forcing served to reduce 
the leakage flux. Measurements made at the center of the 
betatron-core window, before insertion of the vacuum 
chamber, indicated a leakage flux-density of approximately 
1 gauss and a residual field of about 1/7 gauss from the 
core-the !-in. brass plates of the vacuum chamber would 
be expected, of course, to effect a further reduction of 
stray time-varying fields. 

At the time the core was designed the final basic parame
ters of the model had not been selected and it was believed 
desirable to provide an induction field of as much as 50 
vjturn with continuous operation from a 500-cps alter
nator. In practice, however, it proved convenient to 
operate the core from a pulsed power supply, for which the 
circuits and resultant waveforms are illustrated by Fig. 13. 
By use of this circuit electrons could be accelerated in two 
stages, first being carried to an intermediate radius and 
then, after a short interval, further accelerated to the final 

TO 
BETATRON 

CORE 

c-!l·TRON ACCEL. 
II TIME 

CORE _}\!____ . ./\_ -
FLUX- ~-· - ---v-
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FIG. 13. Circuit and ''"aveforms for pulsed excitation 
Qf betatron core. 
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Frc;;. 14. Block diagram of rf system. 

energy. During this interval experiments on radio-fre
quency acceleration could be performed. 

The radio-frequency system is illustrated by the block 
diagram of Fig. 14. Since the required frequency change 
was small for the radio-frequency experiments with the 
model, a 6CL6 reactance tube was used to modulate the 
6C4 oscillator. A 6CL6 gated buffer drove the 829-B final 
stage, which was then coupled to one of the insulated gaps 
of the vacuum chamber. Since at 60 Me the gap presents 
a reactance of very low Q, it was feasible to connect it to 
a tuning coil to provide a broadband resonant circuit. The 
frequency-modulation function generator used to control 
the reactance tube was sufficiently versatile to control, 
independently, the initial radio-frequency program as well 
as the program m the neighborhood of the transition1 

energy. 

D. Injector 

Although it was possible to employ as an mJector a 
simple gun of the type customarily used for injection into 
betatrons, 6 it was considered preferable in the model tests 
to use an injection system with a very narrow septum so 
that one could inject into a region as small' as several . 
millimeters. To avoid voltage limitations within the in
jector assembly it proved convenient to employ an aux
iliary deflector which permitted a septum as thin as 0.005 
in. to direct the beam emerging from the injector. 

The injector assembly is shown in Fig. 15. The electron · 
optics of the gun itself were determined by a rubber dam 
method, leading to a design in which the focus was several 
millimeters in front of the gun save for space-charge effects 
which would displace this focus toward the deflector sys
tem. The deflector was constructed to bend the electrons 
through 15°, so that they would emerge through a slit 
0.080 in. wide and effectively 0.365 in. high. The electric 
fields of the deflector were shielded by a box, of which the 
0.005-in. septum formed the grounded wall, in order to 
preclude disturbance of the electron orbits within the 
accelerator. This deflector system provided a small amount 
of radial focusing and substantially no Yertical focusing. 
When changing injectors, the mounting and alignment 
provisions permitted a pretested assembly to be inserted 
and a beam obtained within 20 min. 
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Tests of the injector in a separate vacuum system indi
cated an emittance of 0.2 mm · rad horizontally (± 1 mm, 
±0.05 rad) and 2 mm·rad vertically (±5 mm, ±0.1 rad). 
The emergent intensity, amounting to about ! the total 
emission from the tungsten filament, was typically 25 to 
50 rna at operating conditions which would ensure a fila
ment life of at least 600 hr. The radial admittance11 of the 
accelerator at the point where the injector was located, as 
determined by the digital computations for the design 
point C, was expected to be 18 mm · rad (Fig. 4) and the 
axial admittance (as limited by the vacuum chamber) 
about 2.6 mm · rad, so that multi turn injection radially 
warranted consideration. The injector was normally located 
at the center of a vertically focusing sector, where the 
envelope of vertical oscillation is greatest. 

Two distinct pulse circuits were constructed for the in
jector, to permit operation with short or protracted pulses, 
as desired. In the short pulse circuit an artificial delay line 
was discharged, by a 5C22 hydrogen thyratron, through 
the primary winding of a 7.5: 1 iron-cored oil-insulated 
pulse transformer. The secondary of the transformer was 
connected to the injector and used a bifilar winding to 
provide power for the filament transformer. Resonant 
charging of the delay line was provided through a choke 
and high vacuum rectifier circuit. An inverse diode served 
to clip overshoot and to prevent continuous conduction 
by the thyratron. The output impedance of this pulse 
supply was sufficiently low that variation of the load 
through its entire range caused no measurable voltage 
change. Pulses up to 40 kv in height and 4 p.sec duration 
were available from this circuit, with a flat top which was 

FIG. 15. Injector assembly, with deflector. The .cathode shield 
injec_tor housing, deflector electrode, grounded septum, ;pherical 
bcanng surface, and a typical equilibrium orbit arc, respectively, 
shown at A, B, C, D, E, F, and G. 
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achieved by careful adjustment of matching resistors 
provided at the primary of the pulse transformer and by 
adjustment of the lengths of the individual delay-line 
sections. 

The detailed constructioi1 of the modulator designed to 
produce long pulses is described in Appendix I. It could 
provide pulses up to 45 kv in height and 1 msec duration, 
with a rise time of 8 JJ.Sec. By negative feedback the output 
was stabilized to 0.1 %. 

IV. MEASUREMENT AND CORRECTION 
OF THE MAGNETIC FIELD 

To ensure that the model would operate in the manner 
suggested by the computational work, and to make it 
effective for quantitative performance studies, it was 
necessary to measure the magnetic field carefully through
out the entire aperture of the machine. The numerical 
value and constancy of the field index k, the nature of the 
azimuthal variation of the magnetic field, and the charac
ter of the median plane were examined. Adjustments were 
then made so that magnetic fields could be obtained which 
were substantially the same as those used in the orbit 
computations. The measurements were made difficult by 
the low value of the magnetic field, the maximum value 
being 60 gauss, and by the complication of the spiral 
geometry. In following an initial investigation, it was 
found that the original magnet surfaces differed 2 or 3 mm 
from a conical shape and would have required corrective 
pole-face windings over the entire pole surface. Accord
ingly, the poles were carefully remachined before making 
the final set of measurements and adjustments. 

For most of the magnetic measurements small flip coils 
about 1 em in length and diameter were used. To -measure 
k three coils were used in an arrangement similar to that 
previously described.3 The coils were mounted on an arm 
which was rotatable about the center of the accelerator 
and could be changed in radius. The radial and azimuthal 
positions were determined by suitable scales (to an accu
racy of a few tenths of a millimeter in radius and a few 
tenths of a degree in azimuth). The end two coils were 
equally spaced from the center coil and were located along 
an axis, intersecting the axis of the center coil, which made 
an angle of 46° with the radius so as to be tangent to the 
central spiral locus of the magnet-sector (Fig. 16). The 
three coils could be flipped simultaneously, through 180°, 
about this axis. 

The arrangement just described was only satisfactory 
for measuring k along the central spiral of each magnet 
(shown as a broken line in Fig. 16), since a large error 
results in regions where the field varies rapidly at right 
angles to the rotation axis and the error is greatly en
hanced if the magnetic axes of the coils do not intersect 
this line accurately. Despite this limitation, ho,,·ever, the 
results obtained with the aforementioned method were 
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FrG. 16. Diagram of the null-reading flip coil arrangement used to 
determine the field-gradient index of the magnets. 

found to be adequate when taken in conjunction with 
measurements of the average value of k by means to be 
described later. 

Preliminary measurements indicated a value of k which 
was low and varied with radius. With the remachined poles 
the addition of a suitable number of back-leg turns in series 
with the main magnet windings made it possible to hold 
k constant within S% at low and intermediate radii-i.e., 
out to about 48 em. In order to keep k constant at large 
radii, it was found necessary to distribute the main forward 
windings and the extra back-leg turns very carefully across 
the inside surface of the back legs. It will be noted from 
Fig. 9 that, for these larger radii, the region in which a good 
field is desired is as close to the back legs as to the pole-face 
windings. 

Measurements of the magnetic field dependence on 
azimuth were first made using a single flip coil (the center 
coil of the three-coil arrangement), connected directly to 
a General Electric fluxmeter. Some of the later measure
ments were taken with a peaker-strip magnetometer 
(Appendix II), which was constructed and kindly made 
available to us by Dr. Joseph I3allam of 1\'Iichigan State 
University. These measurements were analyzed in the 
form of a Fourier series, using the IBM-i04 computer. 
The program calculated both the Fourier components of 
the field and also the "effective flutter," feH=[2((H2

) 

- (H)2)/ (H)2]!. From the average values of the field at 
different radii, the average value of k could be computed. 
From the components of the Fourier analysis it was pos
sible to determine which magnets had too large or too 
small a field. It was found that the effective flutter was 
slightly lower than desired, even "·hen the vertical com
ponent of the earth's magnetic f~eld was removed by means 
of a large hexagonal Helmholtz coil pair placed around 
the accelerator, but fmal adjustments of course could be 
made by use of the flutter-tuning coils described in Sec. 
IliA. In addition to the hexagonal coil pair just mentioned, 
a second set of coils ,,·as installed to remove the horizontal 
component of the earth's Ji<:ld. 
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In order to measure the horizontal component of field 
in the geometric median plane of the model, a piece of 
plate glass was carefully leveled and adjusted so that its 
top surface was parallel to and below the geometric median 
plane of the magnets. A peaker-strip magnetometer 
(Appendix II), sensitive to small fields, was connected to 
a zero-center meter and set on this glass plate so that its 
axis was at the height of the median plane. By moving the 
magnetometer about on this surface it was found that there 
were fairly large and random horizontal fields of magni
tudes up to more than 1 gauss. Since the radial component 
of the horizontal field was felt to be the more harmful, 
attempts were made to reduce this as much as possible. To 
this end the magnets were raised or lowered, and tipped, 
and it was also necessary to wind turns properly positioned 
about the poles of the magnets, forward on one pole and 
backward on the other. In some cases it also was necessary 
to provide "plaster" coils on the inside of the back legs of 
the magnets. With these various adjustments it was pos
sible to reduce the horizontal field to a maximum of about 
10 milligauss at all radii less than about 52 em. Beyond 
this radius, the many back-leg windings seemed to make 
the attempt excessively difficult. 

When the flutter coils were added to the edges of the 
magnets, it was found necessary to adjust their feeder
windings carefully along the slots to reduce their effect on 
the horizontal field. Careful adjustments were made until 
the horizontal field was no more than 20 milligauss when 
the coils were excited sufficiently to change the effective 
flutter by ±40%. 

V. RESONANCE SURVEY AND STABILITY LIMITS 

A. Method Employed in Resonance Survey 

A detailed measurement ·of the variation in beam m
tensity over a large part of the l'x, "v stability region of the 
model was made 41 •15 ·16 in order to study the effects of 
various resonances on the operation of the accelerator. The 
field index was varied within the range 0.20 to 1.16 by the 
k-tuning coils (Sec. IliA) and the flutter from 0.57 to 1.60 
by the flutter-tuning coils. The measurements were chiefly 
made at a radius of 37 em, which was as close to the in
jection radius as it was possible to operate and still clearly 
differentiate the accelerated beam from newly injected 
electrons. The beam intensity was obtained from the inte
grated signal of the plastic scintillation detector (Sec. 
IIIB2). During the intensity survey the injector filament 
current was kept low and constant; likewise the betatron 
core voltage, the gas pressure, and the injection timing 
were held fixed. 

To correlate the measurements of beam intensity versus 
15 R. Stump and B. \Vaklman, l\Iidll'cslern Universities Research 

Association Rept. MUR.'\-361 (1'.157, unpublished). . 
16 W. A. Wallen meyer, l\lidll'cslern Universities Research AssoCia

tion Rept. l\IURA-407 (1'.158, unpublished). 
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TABLE IV. Determination of •z and •u from resonant radio frequencies 
at the central operating point (tuning coils de-energized). 

Measured Character 
frequency of /o Assignment 

(Me) resonance (Me) f,rffo, Av (fd/fo) Result 

50.53 y, strong 49.25 1.025 .. •• = 1.025 
47.96 y, strong 0.974 2-v11 1.026 
27.48 y, medium 49.24 0.558 3 -<··+•.) J'z+vJ/=2.442 
21.76 y, strong 0.442 (vz +vv) -2 2.442 
29.74 y, medium 49.40 0.604 1-(vz -vv) liz; -I'll =0.396 
19.66 y, strong 0.399 I'J;-IIJI 0.399 
49.27 49.27 1.000 I 
70.23 x, very strong 49.43 1.426 .. Vz = 1.426 
28.63 x, very strong 49.43 0.581 2 -PJ; 1.419 
20.80 x, very strong 0.422 JIJ;-1 1.422 
41.13 x, strong 49.26 0.835 2vx-2 2v. =2.835 
57.38 x, medium 1.163 4-2v:a: 2.837 
46.40 x, medium 0.941 3 -2v 11 2vv =2.059 

Average 49.3 Vz = 1.420 
•• = 1.026 

tuning currents with the betatron-oscillation frequencies, 
the method3·14 of radio-frequency resonant enhancement 
of the betatron oscillations was employed. Enhancement 
of the axial oscillations was detected by loss of beam due to 
interception by the vertical-scanning probe (Sec. IIIB2) 
or by the walls of the vacuum chamber, while enhancement 
of the radial oscillations was identified by a shift in the 
time of arrival of the beam at the detector. The frequencies 
at which such resonances are observed are related to the 
betatron-oscillation frequencies by a relation of the form3 

(14) 

where f 0 is the revolution frequency of the particles and 
p, q, and m are integers. The radio-frequency oscillator 
used for these measurements covered a range from 12 to 
74 l\Ic, while the frequency of revolution at the 37 em 
radius varied from 42 to 58 Me as the tuning was changed 
within the range of interest. A typical set of frequency 
measurements, assignments, and results is given in 
Table IV. In order to make the correct assignments and 
thus determine the oscillation frequencies, approximate 
values for these frequencies of course should be known by 
other means. 

B. Results 

The intensity survey as a function of the tuning currents 
was taken in a series of runs where one of the tuning 
currents was kept constant (generally that for the k-tuning 
coils) and the other was varied over most of its range in 
order to determine most of the maxima and minima of 
intensity. A typical plot obtained by this procedure is 
shown in Fig. 17. This plot shows the relative beam in
tensity measured by the scintillation detector as a function 
of the current in the flutter-tuning coils for the case where 
there was no current in the k-tuning coils. The experi
mentally measured flutter at three points is also indicated 
on the abscissa. Values of the axial and radial betatron 
oscillation frequencies are indicated above the curve, as 
are also the locations of certain significant resonances. By 
measuring the betatron-oscillation frequencies as a func-
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tion of the tuning currents, interpolation graphs were 
prepared which permitted the results of the intensity 
survey to be replotted in terms of these frequencies. The 
resonance diagram which resulted is shown in Fig. 18, in 
which the increasing width of the resonances at points 
further from the center of the diagram is chiefly attributed 
to the increasing nonscaling of the field as the tuning 
currents are increased (Sec. IliA). An indication of the 
degree to which the untuned fields satisfy the scaling con
dition is provided by Fig. 19, in which the measured fre
quencies are shown as a function of radius. 

C. Discussion 

Interpretation of .the results just reported is subject to 
some uncertainty due to incomplete control of the beta
tron-oscillation amplitudes. In the intensity survey the 
injector and deflector potentials were adjusted for each 
point so as to obtain maximum intensity and the ampli
tudes of the radial oscillations necessarily increased or de
creased with the injection energy. The amplitudes of the 
axial oscillations, moreover, were limited during the in
tensity measurements only by the upper and lower walls 
of the vacuum chamber. In the measurements of the beta
tron-oscillation frequencies by the radio-frequency reso
nance method, however, no quantitative attempt was 
made to return to the injection conditions previously used 
except that adjustments were again made to attain maxi
mum intensity. Also the axial amplitudes were here de
liberately limited, by the vertical-scanning probe, in the 
interests of observing a sharp radio-frequency resonance 
with the axial oscillations. The observed frequencies of the 
betatron oscillations as a function of oscillation amplitude 
are shown in Fig. 20 for the central operating point of the 
model. It is seen that although the variation of v, with 
amplitude is small, the variation of v11 is considerable and 
presents some uncertainty in the values determined for v 11 

in the intensity survey (Fig. 18). It should also be men
tioned that the radio-frequency resonance method is diffi
cult when operation is near one of the intensity minima of 
Fig. 18 and that reliance must be placed, in such cases, on 
interpolation from results obtained in regions of good beam 
intensity. This fact, the amplitude dependence of the 
oscillation frequencies, and the nonscaling character of the 
magnetic field when substantial tuning currents are applied 
may account for the observation that the positions of the 
resonance lines drawn on Fig. 18 do not coincide exactly 
with the observed positions of r;:i.1imum intensity. 

It may be noted that the betatron-oscillation frequencies 
observed in the model (Table IV), without current in the 
tuning coils, were close to the values resulting from the 
digital computations4b.ll (Table I) and that a small current 

in the flutter-tuning coils su1licient to raise !err to its design 
value of 1.087 raised v11 from 1.026 to the predicted value 
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FrG. 17. Beam intensity as a function of the flutter-tuning current, 
with no current _in the k-tuning coils. The values of v, and "•• as 
measured by radw-frequency excitation of the betatron oscillations, 
are indicated above the curve. Points where certain resonances were 
crossed are also indicated. 

of 1.12 (d. Fig. 17). A sizable region of maximum intensity 
was found to occur centered about the design point in 
Fig. 18. The resonance diagram indicates the importance 
of several resonances in the region accessible by the tuning 
controls. Although the computer studies summarized in 
Table I suggested that the coupling resonance v,= 2v11 

could affect the intensity markedly in the neighborhood 
of operating point A, the specific influence of this resonance 
on beam intensity, when no misalignments were de
liberately introduced, was less· clearly marked in the results 
of the intensity survey illustrated by Fig. 18. An additional 
investigation, reported in Sec. VE, was therefore directed 
toward the examination of effects associated with operation 
near the accessible portion of this resonance line. 

D. Stability Limits 

Experimental measurements were made of the axial and 
radial stability limits at the design point of the model. At 
a given working point there is a range of energies at which 
electrons will be accepted into stable orbits in the accel
erator. If one assumes that the minimum energy particles 
are injected onto an equilibrium orbit which just misses 
the injector and that the maximum energy particles oscil
late about an equilibrium orbit which is situated a distance 
from the injector corresponding to the radial stability limit, 
it is possible to obtain a measurement of the radial stability 
limit.. 

In one method it is convcniei1t to apply a long pulse 
(Appendix I) to the injector, modified to give a waveform 
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having a linearly falling portion and with the maximum 
injector voltage set above the high voltage limit for in
jection of a beam into the accelerator. By suddenly drop
ping the deflector potential to zero at a time which is ad
justable with respect to the waveform applied to the 
injector, the time interval over which injection occur~ may 
be measured. From the rate of decrease of the injector 
voltage the acceptable energy range for injection may then 
be computed and hence the corresponding radial displace
ments of the injected particles from their respective equi
librium orbits. In a second method a long rectangular 
pulse which drops rapidly to zero (Appendix I) is applied 
to the injector, so that injection occurs over a quite short 
interval of time, and the time interval over which the ac
celerated beam is received at the target is measured. In 
this case electrons injected with a higher energy, and 
undergoing larger betatron oscillations, will arrive at the 
target earlier than, electrons injected onto an equilibrium 
orbit which just misses the injector. From the known 
properties of the accelerator, in particular the value of the 
betatron accelerating voltage, the radial stability limit may 
again be evaluated. The adiabatic damping of the radial 
betatron oscillations must be taken into account, of course, 
in this calculation. 

Axial stability limits are conveniently obtained by use 
of the vertical-scanning probe (Sec. IIIB2). For all these 
measurements, where the injector, detector, and vertical
scanning probe were at different azimuthal and radial 
locations, some adjustments had to be made to the meas
ured values so as to have the radial and axial limits refer 
to the same value of ~· These adjustments could be made 
with the aid of the curves of {3 vs NO (Sec. IIC; Figs. 6 
and 8) for small amplitude oscillations, taking the beta
tron oscillation amplitude as proportional to (31, 12 or by use 
of similar computer information pertaining to larger am
plitude oscillations. 
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FIG. 19. Measured values of the revolution frequency and the beta
tron oscillation frequencies as a function of radius, without tuning 
currents. If the scaling condition were satisf1cd exactly, the as(illation 
frequencies vx and v, II"Ould be independent of radiu;. 
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FIG. 20. Measured variation of betatron oscillation frequencies 
with amplitude, ,,-ithout tuning currents. 

A measurement of the radial stability limit by the second 
of the methods described led to a value at the azimuth of 
the injector given by ± (0.058±0.006)r, or ± 1. 75 em, for 
the design point. This result corresponds to a limit of ap
proximately ±0.08r at the azimuth to which Table II 
applies (cf. Fig. 6) and is in reasonable agreement with the 
value of approximately ±0.09r found computationally. 
The measured value for the axial stability limit similarly 
was ± (0.045±0.006)r. This result is somewhat smaller 
than the maximum amplitude which would be permitted 
by the internal dimension of the vacuum chamber, as 
would necessarily be the case if the magnetic median plane 
were not quite centrally located within the vacuum 
chamber, while the computational result given in Table II 
suggests a dynamical limit at the injector somewhat 
greater than the available aperture. 

E. The Resonance ""' = 2vy 

The design point for the model was deliberately chosen 
(Sec. II) to be far from the difference resonance vx= 2vy. 

As noted in Fig. 18, ho\\·ever, it was possible with the 
tuning controls to reach operating points in the vicinity 
of this resonance line, although the accessible portion was 
of somewhat limited extent and fell in a region where other 
important resonances were also present. It is apparent 
from Fig. 18 that the beam intensities in the neighborhood 
of the vx= 2vy resonance are generally low, although no 
pronounced decrease of beam intensity is unambiguously 
attributable to this particular resonance. For this reason, 

and because oft he general interest in the vx= 2v .• resonance, 
additional inforniation was sought experimentally for cp
eration near this resonance, with vx ""1.46, ancl the inter-
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FIG. 21. Semilogarithmic plot illustrating growth of the amplitude 
of axial oscillations for operation near the vx= 2vv resonance, as ob
tained by digital computation with vx = 1.25 and "• =0.62. The 
number appended to each individual curve denotes the initial radial 
displacement for that run. Y, denotes the semi-aperture of the vacuum 
chamber at the injection radius. 

pretation was guided by the results of digital computations 
made specifically for the point vx= 1.25, vy=0.62. 

From the computations it appeared that the radial 
motion, if present alone, would have very generous sta
bility limits but, as is typical of performance on a coupling 
resonance, 17 ·18 a very small amount of radial oscillation 
\vould be accompanied by a marked growth of the axial 
oscillations. This growth of axial oscillation-amplitude is 
shown in the semilogarithmic plot of Fig. 21, wherein it is 
evident that a radial amplitude in excess of about 0.0221·, 
or about 0.7 em measured at the injector, \rill carry the 
axial motion to amplitudes in excess of O.fl6 ,. (1.9 em) and 
result in interception of the beam by the chamber wall. If 
the wall \\·ere not present, however, this physical limitation 
would not occur and stable motion with axial amplitudes 
up to about 0.1 r might then be considered possible. 

Experimental measurement of the radial stability limit 
at the operating point assumed in the computations, using 
the methods described in Sec. VD, led to an efiective limit 
of 0.51 em and, as was the case for the design point, axial 
amplitudes in excess of 1.3 em were found. In a more de
tailed set of measurements, made with vx'"'·"1A6, results 
were obtained to suggest that the effective radial limit was 
indeed decreased if the axial amplitudes were restricted, 

17 L. J. Laslctt and K. R. Symon, Proceedings o( /lie Cf,'RN Sym
(>osiltJII 011 !fig/, 1-:>tcrgy Accelerators and !'ion l'hvsics (European 
Or"a"izati''" ior :'\uclear Research, Geneva, 19.'i(>), ,-<>I. 1, p. 279. 

is L. facks•.>n Laslett and A. M. Sessler, .\lickestcrn l;ni,·ersitics 
Research Association Rept. l\fUR:\-263 (1957, unpui,Jishcd). 
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the effect becoming more pronounced when operating 
close to the resonance line (Fig. 22). In summary, it is felt 
that the empirical measurements, when recognition is 
given to possible small departures of the magnetic median 
plane from the mid-plane of the vacuum chamber, are con
sistent with the computational results and that the growth 
of axial amplitude associated with operation near the 
vx= 2vy coupling resonance can effect a pronounced loss of 
intensity. 

VI. INJECTION METHODS 

A. General Considerations 

It is impossible to trap particles in a static field, since 
particles injected externally ultimately will re-emerge and 
those injected from a source in the field eventually will 
return to strike the source. The imposition of secularly 
changing fields, the presence of gas-scattering, or the use 
of time-varying fields arising frorri the particles themselves 
therefore is essential for injection. It frequently may be 
convenient, however, to analyze such injection methods 
by a study of the equilibrium orbit and the oscillations 
about it for a static field, followed by corrections for the 
secular changes which are necessarily present. With this 
procedure one can determine, for example, the time re
quired before a particle injected with particular initial 
conditions from a source in the static field will return to 
strike the injector. Attention can then be directed to 
effecting a modification of the equilibrium orbit, or a 
damping of the betatron oscillations, suff.cient to move the 
orbits away from the deflector structure. 

For efficient injection it is also necessary, of course, that 
the injected particles be sufficiently limited in their initial 
positions and directions that they can be contained within 
the stable region of phase space for particles in the accel
erator. If the e:-nittance of the injector is substantially 
smaller than the corresponding admittance of the accel
erator, however, it may then be profitable to inject many 
turns successively. \Vhen many particles arc present, their 
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mutual interactions may .cause a shift of the betatron
'Oscillation frequencies by such an amount that the effect 
of one or more resonances (possibly due to imperfections) 
is materially enhanced and thereby particles are lost from 
the beam. The limit to beam density which results from 
such space-charge effects wil'l impose a less serious Iimit on 
the total current which it is possible to contain within the 
accelerator if the area utilized by the beam cm1 be in
-creased. An increase of the intensity of the injected beam 
at .the expense of increased energy spread may be a-chimeri
-cal gain, however, if beams ultimately are to be stacked by 
a repetitive acceleration system .. Similarly, .arranging a 
rapid energy change, in an effort to move the equilibrium 
·orbit away from the injector and to suppress space-charge 
eff.ects by increasing the beam area, may aug;nent the 
amplitude of the betatron oscillations appreciably and 
somewhat reduce the effectiveness of this injection method. 

B. Methods Employed with Short-Pulse Injection 

In the spiral sector model one'method of injection under
took to accelerate the 'Clectrons rapidly, but under condi
tions such that the amplitudes of the radial betatron 
oscillations remained smaller than the radial width of the 
beam ·due to ·energy spread. Under these circumstances, it 
is to be .expected that the total number of particles suc
cessfully injected will be proportional to the radial width 
of the beam and that this, in tum, will be proportional to 
the energy gain per turn. With an .acceleration voltage of 
150 v /tur.n, successful injection for a 4cJ.LSec interval was 
accomplished and led to .individual beam pulses containing 
in excess of 1010 ·electrons. The electron de1:sity in this case 
was estimated as 3X 106 cm-3, which n:ay be compared 
with the calculated limit19 of 107 cm~3 at which space
charge effects would induce beam loss from the vy= 1 
resonance. 

A second method which was successfully applied to the 
model did not .require .acceleration .of the electrons but 
employed an azimuthally localized time~dependent radial 
electric field. This .electric field, by pr-oducing a -forced 
·osciHation, resulted in .a perturbation of the -equiJ.ibri:um 
orbit (Fig. 23). The injection .conditions were chosen so 
that, with the perturbation present, the betatron os·ci'lla
fions of the accelerated electrons were of sma'll :amplitude. 
By presuming -that the strength of the perturbation is de
creased to zero adiabatically, the orbits ·o.f these .electrons 
wil1 follow the changing equilibrium orbit with little 
change.of oscillation amplitude, thus, in effect., being pulled 
away .from the injector structure. Electrons injected some
what -later also can be accepted, with some\\;hat :]arger 

" 9 L.Jackson ·Laslctt, M.idwestcrn Universities :Rescar_clu\ssociation 
Rept. MURA-14 (1954, unpublished). Our present estimate is one
:half t:he va·lue which would •follow from the .formulas of this reference, 
since in -.place ·of .a toroidal -beam we here •Consider a ·heam \\-'hi(;.h ::is 
significantly more·cx.tcnded radia~lly •than :in the axial ·dirccfion. 
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FIG. 23. Perturbation ·of .the equilibrium orbit .by an .azimuthally 
localized radial electric field, illustrated for vx= 1.40 with the un
perturbed equilibrium orbit drawn as a straight line and ignoring the 
scalloping which arises from the alternating gradient structure. 
Insert: ·Cross-sectional shape of electrode, intended .to :produce a 
region of .substantial1_1· ·constant field. 

amplitudes of oscillation, and they .too would be removed 
from the region of the injector as the perturbation \\'as 
turned off. Des;Jite the objective that the perturbation be 
removed adiabatically, it is i1ecessary, of course, that the 
radial motion .of the .equilibrium orbit in the neighborhood 
.of the injector be sa~i:ciently rapid to predude inter:ception 
of fhe beam by so:11e portion of the injector structure. If 
the vertical adrnittance of the accelerator wer.e considera
bly larger than the vertical e:nittance of the injector, the 
injection structure could be displaced from the median 
plane, the perturbation could be turned off more slowly, 
and an i;nproved utilization of phase space in this way 
might be possible. In the spiral sector model, however, 
the vertical emittance was not such as to permit such use 
of the vertical' motion to assist in injection. 

The perturbation was applied by a radial electric field., 
from an electrode inserted into the vacuum chamber. The 
electrode was shaped, as shown ·on Fig. 23, to produce a 
fidd 'Of fairly ·constant strength throughout a r·egion o'f 
several ·centimeters radial extent, and modulation pro~ 
vidcd by discha-rge of a capacitor with .a thyratron. When 
injection with large amplitude betatron .oscillations was 
attempt:ed, the electric fie'ld apparently ·effected a 'coupling 
between radial .and axial motion which resulted i1" beam 
loss; the system otherwise appeared :to ;work wen, however, 
permitting multitu-ru ;inject'ion to 'be .achieved and.leading 
to .bea;m densities .of .approximately OllCcsixth th.e space
charge limit. 

C. Long..:Pulse Injection 

One of the desirable possibilifies1 •2 .for use ·o'f fixed-field 
acce.Jer.ators "is that in wJrich a :large 'betatron core might 
be •emr:iloycd .in ·conjunct~ion with a fixed-field ma:gnct 
structn·r.e in such a ·way that p<Lrtidcs may :be injected and 
accelerated lo fhc target ·or ex·tract.or \\"'itJJ .a .duty cyck 
approaching 30 or -40%. ;Usc of .the long-pulse -modulator 
(Appendix 1) ·permitted the injection of high intensity 
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Fro. 24. Oscillograms to iHustrate phenomena observed with long
pulse injection: (a) betatron voltage; (b) injector voltage; (c) beam 
current to target when the injector is operated at low emission· and 
(d) beam current at high emission,. showing effects attributable to 
space-charge and positive-ion neutralization. 

beams into the spiral sector model for times as long as the 
500-cps flux-wave in the betatron core could accelerate 
them and enabled a study to be made of ionization phe
nomena which would be unnoticeable with a short-pulse 
injection system. 

The accelerating voltage was provided by the positive 
half of the 500-cps sinusoidal excitation of the betatron 

core and usually amounted to about 20 v/turn. Electrons 
could be accelerated thereby from the injection energy 
(30 kev) to the target, situated at a 45 em r~dius (80 kev), 
in approximately 80 JlSec. The equilibrium orbits of indi
vidual electrons thus moved outward at a rate of roughly 
2X 105 em/sec during the course of acceleration .. Inj.ection 
could he maintained for periods as long as several milli
seconds, but usually occupied only 400 11sec at the peak of 
the accelerating-voltage wave, during which time the ac

celerating voltage was comparatively constant. Injection 
conditions otherwise were as d<;scribed in Sec. IIID. 

-space-charge forces limit the density of electrons at in-

jection to about 107 cm-3 (Sec. VIB).20 The injector can 
supply more electrons than are required to reach this 
density and in consequence we would expect that the fre
quencies of betatron oscillations would decrease signifi
cantly as a result of space charge, possibly to be limited 
by the nearest lower resonance. In the course of time 
during the injection pulse, ions formed by interaction of the 
beam with the residual gas in the vacuum chamber should 
collect in the beam and begin to neutralize the space
charge forces due to the electrons themselves. The initial 
value of the potential well which acts to trap these ions is 
of the order of several electron volts and this process may 
be aided to some extent by the configuration of the applied 
magnetic field. The ions would not, in general, gain enough 
energy to escape the potential well of the beam and one 
accordingly visualizes a sheet of charge, originally some 2 
em thick, whose density is limited initially by the space
charge forces at injection and within which ions are being 
formed and trapped to neutralize these forces. It may be 
supposed, finally, that the accumulated ion density will 
serve to increase the frequencies of the electron betatron 
oscillations, possibly until the stability limitations imposed 
by the nearest resonance of higher frequency begin to affect 
the beam. 

When the injector is operated at low emission currents 
with a good vacuum in the chamber, one observes a current 
at the target such as that shown in Fig. 24(c). This current 
is quite uniform with respect to time and only becomes 
more intense when the betatron voltage is increased. The 
current is proportional to the emission from the injector 
and no effects of space charge or of ionization are observed. 
As the emission from the injector is increased, however, 
several more complicated phenomena are seen to occur. In 
this case the output current presents a time dependence 
shown in Fig. 24(d), of which the essential features are 
sketched in Fig. 25. The time dependence is extremely re
producible from pulse to pulse, as is illustrated by the 
several hundred pulses contributing to the oscillogram of 
Fig. 24(d). 

The initial current I o (Fig. 25) is found tel be directfy 
proportional to emission when this latter current is small 
and to reach a constant value at high emission currents. 
At high currents, I 0 is directly proportional to the betatron 

20 The change of the oscillation frequency v.=Nu./27r may be esti
mated readily for the simplified case of a beam of uniform density in 
a constant gradient field (cf. reference 19, in which a toroidal beam is 
considered). With the particle density denoted by n, fo~ the electrons 
of velocity {3c, and by n; for the singly charged stationary positive 
ions, one obtains 

o(vJ) = -41Tr0R02,tJ2(1-f3')1[n,(l-{32)-n,], 

in which r~ denotes the classical electron radius and R0 represents the 
radius of the accelerator. It is seen that the space-charge e!Tect of the 
electron density is to decrease the oscillation frequency, by an amount 
,,-hich depends on 1-{32 because of the partial cancellation of electro
static defocusing hy magnetic focusing ciTects, but that the accumu
lation of positive ions can reduce this decrease and ultimately lead 
to a net increase of the oscillation f rcqucncy. 
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voltage-i.e., upon the rate of progression of the equi
librium orbits away from the injector-and is independent 
of gas pressure, save for single-scattering losses estimable 
by other means. The electron density corresponding to I o, 

when calculated from dr/dt and the other known parame
ters of the accelerator, is approximately 2X 106 cm-3, so 
that this limiting value of the output current evidently 
may be related to the space-charge limit mentioned in 
Sec. VIB. 

Following attainment of the current value Io, but de
pending on the particular operating point chosen, the out
put current may or may not undergo a further rise to reach 
a plateau value, Imax (Fig. 25). At a time T1 the output 
current drops to zero and is restored only after an interval 
Td. At the time T2 the current again drops to zero and from 
then on the phenomenon r~produces itself in the manner 
indicated. It is found that T1 is inversely proportional to 
the product of vacuum-chamber pressure. and emission 
current, while the interval Td is generally slightly less than 
the time required to accelerate electrons from the injector 
to the target and appears to be relatively independent 
of emission current. Evidently at time T1 the sheet of 
charge extending from the injector to the target becomes 
unstable and is lost. Specifically it was found that when the 
operating point lay just below an axial resonance a probe 
situated above or below the beam would receive a large 
amount of charge at the time T1, whereas when operating 
just below a radial resonance a probe inserted ne.ar the 
inner or outer radii would receive a burst of charge at T1. 
The instability usually appeared to begin at the injection 
radius and proceed outward to the target radius, taking 
approximately 5 JJ.Sec to do so. 

Since the slope di/dt (Fig. 25) and I max are each propor
tional to emission current and T1 varies inversely with 
pressure and emission, the phenomena appear attributable 
to ionization of the gas in the vacuum chamber. The 
initial space-charge limited current Io can increase as ions 
arc formed and collected in the beam until the current 
I max is reached, which may represent the maximum current 
available from the injector. As additional ions arc col
lected, the oscillation frequencies increase to approach a 
resonant value, whereupon, at T 1 , the beam is lost. Follow
ing this, after a sufEcicnt number of ions have migrated to 
the chamber walls, injected electrons may once again build 
up a new sheet of charge, commencing at the injection 
radius, and the phenomena then repeat themselves as long 
as the emission and accelerating voltage are both present. 
Radio-frequency measurements of the betatron oscillation 
frcquencics,3· 14 made at various times during the accelera
tion process, confirmed that with high emission currents 
the initial <)scillation frequencies are lo11·cred, as expected, 
and that at later times the frequencies incrca,;cd to values 
which were above those obtained \1·ith lo11· emis,;ion and 

FIG. 25. Sketch depicting the 
essential features of the beam 
current observed at high emis
sion, as obtained from the os
cillogram of Fig. 24(d). 

T-

which approached a half-integral resonance (e.g., v:r:= 1.5). 
Once the operating point enters a stop-band and some 
electrons become quickly lost, the ions remaining behind 
may be expected to drive the operating point further into 
the stop-band and the beam must necessarily be lost very 
rapidly. 

Although the foregoing explanation in terms of beam 
neutralization by ionization of residual gas appears to 
account for the phenomena described, additional phe
nomena involving the collective motion of particles un
doubtedly occur. Thus, for example, a strong rf electro
magnetic field was found to arise from the beam, with 
frequencies which usually were half-integral multiples of 
the electron revolution frequency at the injector radius. 
The strength, frequency spectrum, and duration of this 
electromagnetic field depended quite markedly on the 
operating point of the accelerator. Since the intensity 
usually was particularly strong just prior to the time at 
which the beam was lost, the radiation may, at least in 
part, have been due to coherent motion of the charges as 
the operating point entered a stop-band. In one instance, 
moreover, it appeared that the current which arrived at 
the target was bunched at the revolution frequency of the 
electrons. 

VII. PERTURBATION STUDIES 

A. General Description 

It was of interest to obtain experimental information 
concerning the effects of misalignments on the operation 
of the model to permit a comparison with computational 
and analytic results and to provide information concerning 
constructional tolerances for an accelerator of the spiral 
type. Four types of perturbations were specifically studied 
in turn: (1) The magnetic field in one of the six sectors was 
reduced 7% by reducing the currents in the main field 
coils which produced the excitation for that sector; (2) the 
fteld index, k, in a sector was raised from 0. 7 to 0.8 by ad
justment of the current in the k-tuning coils for that sector; 
(3) a sector was raised by 1 mm with respect to the re
maining ftve sectors; and ( 4) a sector was rotated approxi
mately 2° about a pin on its inner radius. For each such 
perturbation, measurements were made of, (1) the re
sultant radial and axial displacements of the equilibrium 
orbit, (2) changes in the frequencies of radial and axial 
betatron oscillations, and (3) changes in the radial and 

axial stability limits. 
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B. Results of Perturbations at the Design Point 

The radial displacement of the equilibrium orbit which 
resulted from lowering the field by 7% in one of the sectors 
is shown by the points in Fig. 26(a). The solid line of 
Fig. 26(a) represents the displacement predicted by digital 
computation with the IBM-704, using the measured values 
of the magnetic field at a given radius together with the 
design values for k and w, while the dotted line represents 
the result predicted by Parzen21 from an analytic treatment 
of this problem where the indicated shape is obtained from 
the addition of a cosO first harmonic term and a negative 
cos20 second harmonic term. As expected, no significant 
vertical movement of the equilibrium orbit arose from this 
type of perturbation. As a result of this perturbation, the 
frequencies and amplitudes of the betatron oscillations 
were changed by the amounts listed in Table V. 

A perturbation in which the field index k is raised from 
0. 7 to 0.8 in a sector has the effect of leaving the field un
changed at a radius of 25 em but strengthens the field by 
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. Fro. 26. Effect of perturbations on the equilibrium orbit: (a) radial 
c~tspl~cement of the equilibrium orbit as a result of a i% field reduc
tiOn m one magnet sector; (b) radial displacement of the equilibrium 
orbit as a res~lt of raising the fi<;ld index k from O.i to 0.8 in one sector, 
the effect bemg regarded as chtefly attributable to the 3.5% increase 
o~ field at the detection radius of the perturbed sector; (c) axial 
dtsplacement of the equilibrium orbit as a result of raising one magnet 
sector 1 mm; and (d) radial displacement of the equilibrium orbit as 
a result of r~tating one sector ~pproximately 1° about its front pin, 
the effect bemg regarded as clnefly the result of the accompanying 
2 to 2.5% increase of field at an·y given radius \rithin the perturbed 
s_ector. The solid lines represent computational results, the dashed 
hnes are base? on the perturbation theory summarized in .-\ppendix 
I~I, and the ctrcles connected by a dotted line in (d) are the observed 
dtsplacements. Circles barred on top and bottom represent experi
mental results (a) and (b). 

21 The results of an anah·tic treatment hv G. l'arzcn of the effect 
of pc;~turhations in a spiral ridge accelerat;H are ifiYen in .-\ppendix 
IlL ~h~ authors are _very gratelplto Dr. Parzcn lor his courtesy in 
permttttng thts matenal to be tncludcd in the nr.,sent naper. 

increasing amounts at larger radii within the perturbed 
sector (cf. Sec. IliA). The effect of such a perturbation en 
the equilibrium orbit appears21 to be essentially due to the 
associated increase of the field strength at the radius of 
interest. The shift of the radial position of the equilibrium 
orbit as obtained experimentally at a radius of 37 em is 
indicated by the points plotted in Fig. 26(b) together with 
computational and analytic results obtained by considering 
only the increased field strength within the perturbed 
sector. Again, as expected, no vertical movement of the 
equilibrium orbit was found to occur. The change in the 
field strength at 37 em as a result of the change in k is 
about half that which was produced by the preceding field 
perturbation and in the opposite sense. Changes in the 
frequencies of the betatron oscillations and the stability 
limits which were observed to occur from the perturbation 
of k and the resulting field perturbation are summarized 
in Table V. Also included are the results of computations13 

made with the IBM-704 prior to operation of the model. 
As noted previously (Sec. IIC), the main effect of this 
perturbation appears to be a partial decrease of the phase 
space available for stable oscillations similar to the larger 
decrease found when k was increased in all sectors. 

The vertical movement of a sector by 1 mm resulted in 
an equilibrium orbit displaced from the median plane by 
amounts shown in Fig. 26(c), and produced no detectable 
change in the radial position. The effects on the betatron 
oscillation frequencies and on the limiting stable ampli
tudes are summarized in Table V, together with computer 
results obtained by means of t)le Illiac prior to construction 
of the model. 

Clockwise rotation of a sector, through 2° about a verti
cal axis at its inner radius, will necessarily increase some
what the field strength at a given radius-in the present 

TABLE V. Effect of perturbations on the oscillation frequencies 
and stability limits at the design point. 

Perturbation Item Theorya Computer Experiment 

Unperturbed Vz 1.32 1.40 1.41 
Vy 1.15 1.12 Ll2 

Ax 0.097:!:~:~~ 0.058±0.006 

A, o.os8 :!:Z:::Z~ 0.045 ±0.006 

Field decreased t).p.t 0±0.001 +0.006±0.003 
7% in one sector -'lvv -0.002 ±0.0005 -0.006 ±0.005 

Ll.Ax/Ax -0.18 ±0.05 -0.25 ±0.08 
-<lA,/A, -0.31 ±0.05 -0.22 ±0.08 

Field index k D.vz +0.01 ±0.001 +0.011 ±0.003" 
changed from D..v11 -0.01 ±0.001 -0.015 ±0.005b 
0.7 to 0.8 in Ll.Ar/A. -0.20 ±0.08" 
one sector -<lA,/A, -0.23 ±O.OSb 

Axially dis- Ll.vz +<l.!lOI ±0.004 
placed sector -<lv, +0.002 ±0.006 
(raised I mm) ~A.r/Az -0.20 ±0.10 

e L\.llv/A, -0.08 ±0.10 

Rotated sector .1.v..c +<l.!J04 ±0.006 
(approx. 2°) 611Jf +0.003 ±0.007 

Ll.l1x/Ax 0.0±0.15 
!lA,JAy 0.0±0.15 

a Theoretical re:mlts from .:\ppendix Ill. 
b Tile experi111ental \·alUL·~ fur the perturbation in k also include the c-ffcct 

of the fidd heing increased by about J!'X; at the detection radius in the per-
turbed sector. · 
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case by about 2!%. The change in the equilibrium orbit 
which results from this perturbation is shown in Fig. 26(d) 
and is believed to arise primarily from the increase of field 
strength associated with rotation of the sector. The changes 
produced in the betatron oscillation frequencies and the 
stability limits appear to be small. 

C. Results Near the ""' = 2vu Resonance 

To supplement the results just reported it was considered 
of interest to obtain information concerning the effect of 
perturbations applied to the model when operating in the 
neighborhood of the difference resonance vx= 2vu. Un
fortunately, as noted in Sec. V, the accessible portion of 
this resonance line was of somewhat limited extent and 
fell in a region where other important resonances were also 
present. The computer results obtained for the operating 
points A and B considered in Sec. IIC indicated that the 
radial stability limits were very greatly reduced in the 
neighborhood of the vx= 2vu resonance when even small 
amounts of axial motion were introduced, and misalign
ments of course were found to effect a further reduction 
of these stability limits. In practice, the pronounced ex
change of amplitude between radial and axial oscillations 
which occurs when operating near a coupling resonance 
presents a complication in making it difficult to distinguish 
experimentally motions in these two degrees of freedom. 

Two types of perturbations were studied at a point near 
the vx= 2vu resonance: (1) The magnetic field was lowered 
by S% in .a sector, and (2) a sector was raised 1 mm. The 
same measurements were made as at the design point. The 
radial displacement of the equilibrium orbit which resulted 
from lowering the magnetic field by S% was about the 
same as at the design point with the exception that the 
negative cos20 part had less of an effect here, as expected.21 

The changes in the betatron oscillation frequencies and the 
stability limits were less than the indeterminancies of the 
measurements. The vertical displacement of a sector 
caused a small vertical displacement of the equilibrium 
orbit and no detectable radial displacement. The observed 
changes in the betatron frequencies and stability limits 
were again very small. Computer studies made speciftca!!y 
for vx= 1.25, vy=0.62 appeared to confirm the result that 
little further reduction of the radial stability limit would 
occur at this operating point with an axial sector displace
ment of 1 mm. 

VIII. STUDIES OF RADIO-FREQUENCY ACCELERATION 

A. General Discussion 

The objective of the radio-frequency acceleration ex
periments reported here for the spiral ridge model was to 

detern~ine empirically the frequency-modulation programs 
which could :most successfully be applied to accelerate par-
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FIG. 27. Electron energy, E, and revolution frequency f vs radius. 
E, andj, denote, respectively, the transition energy and the associated 
revolution frequency. 

tides through the transition energy. The magnet excitation 
and the injector voltage were adjusted so that the transi
tion radius was 49 em. This allowed electrons to be accel
erated through the transition to at least a 52 em radius 
before edge effects in the magnets reduced the beam. Figure 
27 shows the energy and revolution frequency as a function 
of radius under these operating conditions. The energy was 
calculated on the basis of field measurements and the 
known value k, while the frequency was measured by 
radio-frequency excitation of betatron oscillations (Sees. 
IIIB and V)3 ·14 and by the more accurate method which we 

now describe. The first of two successive betatron accelera
tion pulses (Sec. IIIC) was adjusted so that practically all 
the electrons were taken out to the target. The remaining 
electrons could be assumed to .have extremely small beta
tron oscillations and could be observed striking the target 
at the start of the second betatron pulse. In the interval 
between these betatron pulses radio-frequency power was 
applied to the vacuum chamber at a constant frequency 
close to the revolution frequency and tuned to bring these 
electrons with small oscillation amplitudes onto the target, 
possibly by exciting synchrotron oscillations. In this way 
the frequency could be determined quite accurately as a 
function of radius. 

The transition energy for fixed-field alternating-gradient 
accelerators is given by1 

E,=Eo(k+l)i (15) 
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FIG. 28. The parameter oq, to which the bucket area is proportional, 
versus the parameter 'rJ of the Symon-Sessler theory (reference 22). 

and the transition radius, in centimeters, by 

(16) 

where Eo= electron rest energy m Mev, E,= transition 
energy (including rest energy) in Mev, k=mean field 
index, and Ho is the average field in gauss at ro em. 

In discussing radio-frequency accelera tiori methods, 
reference is made to the electrical phase angle <P at which 
a particle crosses the acceleration gap; the peak value V 
of the voltage applied to the gap; the phase angle </J, for 
an equilibrium particle; and the gap voltage V. appearing 
across the gap at the time of transit of the equilibrium par
ticle. It is convenient to introduce the quantity r, defined 
by 

r=sin<jJ,= v.;v, (17) 
and to note that 

V,=dj/dt/J dj/dE, (18) 

where f denotes the revolution frequency of a particle in 
the given magnetic field (Fig. 27). 

The Symon-Sessler theory22 of radio-frequency accel
eration in fixed-field alternating-gradient accelerators 
further employs the variable W, shown to be canonically
conjugate to </J, defined by 

E 

W= f dE/J(E). 
JE, (19) 

The stable area in W, <P phase space, within which stable 
synchrotron oscillations may occur, is termed a "bucket." 
For a given machine and a constant radio-frequency volt
age, the bucket area is proportional to a quantity a1, which 
is given by the Symon-Sessler theory2~ in terms of a, 
parameter 71· The latter quantity is proportional to 1-J!ft 

..., K. R. Sn110n and .\. i\f. Sessler, ProceediltRS of !ftc C!:R:\' Sym
posium on iligh !~ncrgy Acce/cra/ors aitd Pion I'!tysics (European 
Organization for Nuclear Research, Geneva, 1'156), Ynl. I, p. 44. 

and a 1 approaches zero as the revolution frequency J ap
proaches the transition frequency j,, in the manner illus
trated by Fig. 28. 

Typical buckets above and below the transition energy 
are shown in Fig. 29. As a bucket approaches the transition 
energy, the stable area approaches zero and, in passing to 
operation above the transition energy, particles may be 
expected to be deposited in a band lying just above the 
transition energy in the W, <P plane. If, however, the fre
quency is modulated nonadiabatically to a value slightly 
greater than the transition frequency and then decreased, 
it is possible to pick up some particles from this region and 
accelerate them further. This procedure requires a care
fully scheduled program of frequency modulation so that, 
in effect, the correct phase slip required to continue accel
eration above the transition energy is introduced. 

B. Experimental 

In the experimental work </J, was normally between 11° 
and 55° when operating below the transition energy, with 
r correspondingly between 0.2 and 0.8; in going through 
the transition energy, r has little meaning as defined by 
Eq. (17); and, finally, in the operation above the transition 
energy, <jJ, typically approached the value 150°. The fre
quency-modulation program in the neighborhood of the 
transition energy was then adjusted empirically to obtain 
effectively the optimum phase slip and thereby achieve the 
most efficient transfer of electrons to states of stable syn
chrotron motion above the transition energy. 

The effectiveness of the various frequency-modulation 
programs was determined by a method which paralleled 
that used in similar studies23 with the radial sector modeJ.3 
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FlG. 29, Regions of W, q, phase space, showing typical phasc-st:tble 
areas, or "buckets," (a) above and (h) below the transition energy. 
The shaded areas represent the buckets and the curves indicate pos
sible particle trajectories in IV,</> space . 

"'K. M. Terwilliger,. L. W. Jones, and. C. H. l'ruetl, Rev. Sci. lnstr. 
28, 91;7 (1957 ). 
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Figure 30 illustrates this method schematically. With 
curve A no radio-frequency acceleration is provided, so 
that electrons are accelerated by an initial betat~on pulse 
to an energy of about 118 kev and to a radius of 45.5 c11, 
to remain at that radius for about 1230 J..LSCC before being 
further accelerated by a second betatron pulse which 
carries the:n to the scintillation detector at a radius of 52 
em. In the case depicted by curve B the radio-frequency 
voltage is used to carry the electrons, which have been 
stacked at the intermediate radius of 45.5 em, up to the 
transition energy and the voltage is then turned off. In this 
case the electrons are once again brought to the detector 
by the further acceleration provided by the second beta
tron pulse, but arrive 150 J..LSec earlier than with curve A. 
Finally, with curve C, the radio-frequency voltage is 
applied in accordance with a frequency-modulation sched
ule intended to provide acceleration through the transition 
energy and electrons successfully accelerated in this way 
will appear at the detector at a time preceding onset of the 
second betatron pulse. 

Typical results of the method just described are illus
trated by the oscilloscope traces drawn in Fig. 31. The 
upper trace of each pair shows the beam received at the 
detector and the lower trace represents the rf voltage. ·In 
actuality the first betatron pulse had dropped to zero by 
the time the sweep started, but the second betatron pulse 
appeared on the trace and the radio-frequency voltage, 
when present, was also displayed. In the first pair of traces 

I 
I 
l 
I 

rso i 
~ Et -------~------j~--
:.::14 I I 
(';· 
0: 
w 
z 
w 

u 
t= 
w 
z 
i: 

100 

I I 
I 

START OF 2nd 
BETATRON 

c B A 

<f) 

·52 2 
0 
.0:: 
a: 

50 
------ Rt 

45 

0o~--~6L70---IJI2-0---16~20--19LO~OL-2~1-20~ 

TIME jJ sec~ 

FIG. 30. Particle energy and orbit radius versus time for 
three acceleration programs. 

FIG. 31. Oscillograms of (a) the beam received at the detector, ({3) 
the betatron voltage, and h·) the envelope of the rf voltage in experi
ments designed to investigate acceleration through the transition 
energy. The first pair of traces (a) correspond to curve A of Fig. 30, 
for which no rf acceleration is employed. Traces (b) correspond to 
curve B, with rf acceleration up to the transition energy. In (c), cor
responding to curve C, some of the stacked beam is seen to have been 
successfully accelerated through the transition energy. In this figure 
one horizontal division corresponds to 200 J.LSec and, on the lower 
member of each pair, one vertical division represents 5 v. 

in Fig. 31 no radio-frequency voltage was used and the 
single beam pulse shown represents the electrons accel
erated entirely by betatron action. In the second pair the 
radio-frequency voltage served to carry about 60% of the 
stacked electrons to the neighborhood of the transition 
energy (L'i5 kev) and these electrons gave rise to the earlier 
of the two pulses shown. finally, the third set of traces 
illustrates the case in which some electrons were success
fully accelerated through the transition energy to arrive at 
the detector prior to the onset of the second betatron 
pulse, while others were dropped at the transition energy 
and the remainder were not captured by the radio-fre
quency system at all. In the quantitative interpretation 

of results such as those illustrated by Fig. 31 it must be 
recognized that the true efficiency (SO%) is somewhat less 
than that indicated directly by the data (70%), since the 
pressure in the vacuum chamber was of the order of 3 X w-s 
mm Hg at the time the· experiments were performed and 

the consequent half-life of the beam due to gas scattering 

was approximately 400 J.i.Sec. 
The adjustmt::nt of the frequency-modulation schedule 

to obtain eflicient traversal of the transition energy is, of 
course, critical. ·This is illustrated by Fig. 32, in which 
three frequency scht::dules are shown, of whicl1 the second 
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FIG. 32. Frequency of rf oscillator versus time for three acceleration 
programs leading to different efficiencies for traversal of the transition 
energy. The eff1ciencies for curves A, B, and C were measured as 10, 
50, and 10%, respectively. 

(denoted B) gave an efficiency approximately five times 
as great as with either of the other two. 
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APPENDIX I. DESIGN OF THE LONG-PULSE 
MODULATOR 

For the studies of stability limits and space-charge 
effects described in Sees. V and VI, it was necessary to 
inject electrons into the accelerator for relatively long 
periods of time. The long injection time and the required 
constancy of i1ijection energy demanded by the specifica
tions for the modulator (Table VI) precluded the use of 
conventional delay line and pulse transformer techniques 
for driving the injector. Fortunately, a power tetrode 
capable of withstanding 50-kv plate potentials became 
available at the time these experiments were being con-· 
sidered, so that the use of a plate-loaded amplifier for 
driving the injector appeared to be an attractive possi
bility. The problem then became one of constructing from 
available components an amplifier with adequate fre
quency response and output capability. This appendix de
scribes briefly the design and performance of such an 
amplifier. 

The values of pulse amplitude, current, and duration 
listed in Table \"I represent, of course, maximum values 
and arc much greater than necessary for the present pur
pose. It was felt, however, that the amplifier should be 
designed to make full use of the output stage. The char
acteristics of the output tube (Eimac type X556) are given 
in Table VII. 

A simplified circuit diagram of the amplifier output 
stage is shown in Fig. 33, wherein C. denotes the parasitic 
capacitance of the output circuit, including the injector, 
and RL represents the resistive load presented by the in
jector. Because the output of the amplifier is to be a 
moderately fast pulse at high potential, the choice of the 
coupling capacitor is severely limited with respect to its ca
pacitance. The largest commercially available capacitance 

TABLE VI. Specifications for the long-pulse modulator. 

Pulse 
amplitude 

-45 kv 

Pulse 
current 

250 ma 

Pulse 
length 

I0-·1 sec 

Rise 
time 

J0-5 sec 

Flatness 

0.25% 
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in the 50-kv range with reasonable physical size and elec
trical properties seems, in fact, to be about 0.1 p.f. With the 
output tube specified, the design of the amplifier then 
must start with the coupling capacitor since it alone will 
determine the flatness of the output pulse under the as
sumption that all other time constants ahead of the output 
stage may be made long compared to 10-3 sec. 

The injector operates in the emission-limited region and 
consequently the expression 

Ll v = (h/Cc)Llt (20) 

is exact. In taking Cc to be 0.1 p.f, h to be 250 rna, and M 
to be to-a sec, Ll V is found to be 2.5 X 103 v and a 20-kv 
output pulse of 1 rnsec duration thus would be expected to 
drop by 12.5% as a result of the capacitative coupling. An 
amplitude of 20 kv was chosen for this calculation because 
it corresponds to the minimum pulse amplitude that will 
be required of the amplifier and therefore gives the maxi
mum percentage drop for a given output current. More
over, even if it were possible to increase the size of Cc 
without limit to obtain the required flatness of the output 
pulse, there will be variations in the output level due to 
shifts in the 50-kv power supply, which is not regulated. 
These latter variations might be as large as ±5% and 
would appear in the output because the dynamic plate 
impedance of the X556 tetrode is fairly low. It was con
sidered essential, therefore, to incorporate a feedback loop 
to stabilize the gain of the amplifier and to decrease the 
drop of the output pulse to the required 0.25%. 

Before calculating the value of the loop gain /3A o neces
sary for the required degree of stability, the rest of the 
amplifier must be considered. The output stage requires a 
driving signal of at least 500 v peak from a low-impedance 
source in order that it can conduct heavily during the rise 
of the pulse. The heavy conduction is necessary to dis
charge the parasitic capacitance C., which was estimated 
to be as high as 150 J.I.J.I.f. In order for this discharge to 
occur in approximately 5 J.!.Sec for a 45-kv pulse, a current 
at least as large as that given by 

I p=C.(Ll V / Llt) = 1.2 amp (21) 

must pass through the tube. This requires that the output 
tube be driven into the region of grid conduction. A 

TABLE VII. Characteristics of Eimac type X556• power tetrode. 

De plate voltage 
Pulse cathode current 
Average control grid dissipation 
Average screen grid dissipation 
Average plate dissipation 
Transconductance (estimated)" 
Grid bias for 10-J.La anode current< 

• Now Eimac type V 158. 
b Screen potential =I kv, anode current =1 amp. 
c Anode potential =50 kv, :;crccn JIOtential = 1 kv. 

50 kv max 
6 amp max 
5 w max 
25 w max 
250 w max 
6000 !-'mho 
-450 ,. 
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FIG. 33. Schematic circuit 
of the output stage for the 
long-pulse amplifier. 

cathode follower using a high powered tube such as a 3E29 
dual beam power tube would be expected to prove satis
factory as a driver. It furthermore seems reasonable to 
expect that a two-stage amplifier ahead of the cathode 
follower then could supply the necessary 500- to 600-v 
signal. 

If the arbitrary assumption is made that the gains of 
the first two amplifier stages and of the output stage may 
change in the course of time by ± 10% due to aging of 
components, power supply variations, etc., then the loop 
gain will vary by ± 33%. The cathode follower is not in
included in this estimate since it is a degenerative device. 
The necessary value of loop gain f3Ao would then follow 
from the relation24 

1 1( 1 1 ) -·- ---- :::;o.oo25, 
f3Ao 2 0.67 1.33 

(22a) 

whence 
/3Ao,.....,150. (22b) 

It can be seen that this value of f3A o is considerably greater 
than that necessary to reduce the 12.5% drop of the output 
pulse to the required 0.25%. It now remains only to pick 
a reasonable closed-loop gain in order to calculate the re
quired over-all gain of the amplifier. Taking the closed-loop 
gain to be 103, the necessary over-all gain is then Ao= 103 

X 1.5X 102= l.SX 105• This value may seem excessive for 
three stages until it is recalled that the transconductance 
of the output stage is 6000 J.l.mho. For a plate-load resist
ance of 50 kQ this gives a gain of 300 for this stage alone 
and the preceding two stages should be able to provide a 
gain of 500 quite easily. 

The seemingly arbitrary choice in the previous para
graph for the plate-load resistor in the output stage was 
actually motivated by consideration of the power dissipa
tion in the output tube. It was expected that the duty 
cycle for the amplifier might be as high as 0.03. If 5 kv is 
assumed as the plate voltage during the pulse and 250 w 
as the maximum permissible plate dissipation, the pulse 
plate current should be less than 1. 7 amp. Since there is a 
significant contribution to plate dissipation during the 
rise of current at the beginning of the pulse when heavy 

24 Duncan MacRae, Jr., in Vacuum Tube Amplifiers, editeu by 
G. E. Valley, Jr., :rn<l H. Waltmann (lVICGraw-Hill Book Company, 
Inc., New York, 1 1J~8), Massachusetts Institute of Technology Radi-
ation· Laboratory Series, vol. 18, Chap. 9, p. 366, Eq. (45). · 
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conduction at high plate potential takes place, it seemed 
advisable to reduce the plate current to 1.25 amp and a 
value of 50 kQ accordingly was selected for the plate 
resistor. 

Figure 34 shows the circuit of the complete amplifier. 
The design of all stages is conventional and will not be dis
cussed in any great detail. Feedback from the output is 
obtained from a capacitive voltage divider with a ratio of 
1000: 1. The first stage is a standard noninverting ampli5er 
with a gain of approximately 30. The second grid is used 
as a feedback terminal. The second stage is biased un
symmetrically to obtain a large positive pulse of short rise 
time. The cathode follower is of low impedance since it 
must supply the grid current of the final stage as well as 
drive a rather high parasitic capacitance. Small resistors 
were included in the plate, grid, and cathode circuits of 
of the cathode follower to serve as parasitic suppressors. 
The direct coupling used in the last two stages serves two 
purposes: First, it reduces the number, of low frequency 
phase-shifting networks in: the loop and, second, it provides 
a convenient method of adjusting the bias on the final 
ampliEer stage. The small capacitors in the cathode circuits 
of the first and second stages and the RC series circuit to 
ground from the plate of the first stage are networks re
quired for stabilization of the feedback amplii:ers. 

The measured perfonrance of the ampliiier was rather 
close to the original specifications (Table \"I). The closed
loop gain was 995 and the rise time was 8 p.sec. A 4-psec 
rise ti:ne could be obtained, in fact, at the' expense of a 
single 5% overshoot. The flatness of the output pulse was 
measured with a differential amplifier and osciHoscope. 
For a 1-msec 30-kv pulse applied to a 120-kn load the 
voltage drop was less than 0.1%-

In summary, the modulator design reported here ap
peared to represent a straight forward method of generating 
long pulses of moderate rise time with a good constancy of 

GUN CURRENT 

FIG. 34. -Amplifier circuit for the 
long-pulse modulator. 

amplitude at high voltage. There seem to be no complica
tions arising from the high voltages that cannot be circum
vented by the usual techniques. Faster rise and decay 
times undoubtedly may be obtained at the expense of 
pulse length as tubes with higher maximum plate current 
became available. Again, however, feedback could be used 
to reduce the value of coupling capacitance necessary for 
good reproduction of the fiat top of the pulse and this 
would appear to be of some advantage since the cost of 
increasing loop gain is much less than that of increasing 
the size of the coupling capacitor. Since the modulator is 
a linear amplifier, the output pulse is an accurate reproduc
tion of the input pulse subject to the limitations of fre
quency response. In some of the stability-limit measure
ments described in the text (Sees. VD, E) the input pulse, 
which ordinarily was a square pulse of variable amplitude 
derived from a multivibrator circuit, was shaped so as to 
exhibit a region with a substantially linear and moderately 
slow decrease of potential. 

APPENDIX II. THE MAGNETOMETERS 

The two magnetometers used in measuring the mag
netic field and locating the median plane were basically of 
the sarr.e type. The operation .of these instruments is based 
on the fact that if one excites a transformer wound on a 
ferromagnetic core with a sinusoidally varying current, 
the magnetic feld within the core and hence the secondary 
voltage may oe represented by a series which involves only 
the fundamental and odd-order har;:>1onics, provided the 
hysteresis loop of the core is sym:-,1etrical about the origin. 
If this symmetry is destroyed by the presence of a de mag
netic field which displaces the hysteresis loop along the 
If axis, ,even harn10nics will appear in the output. The 

:uoplitude of the even harmonic content of the output is, 
to a first approximal ion, proportional to the superimposed 
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de field. In principle, then, the magnitude of the super
imposed field may be obtained from the amplitude of 
the second harmonic component. There are, however, 
other considerations that enter in the practical application 
of this method. For example, the shape and symmetry of 
the hysteresis loop are very dependent on the mechanical 
and magnetic history of the core. Also, since the mag
netometers used with the spiral sector model were required 
to give good spatial resolution in an inhomogeneous field, 
the active volume of the core had to be extremely small. 
This latter requirement led to considerable difficulty with 
heat dissipation in the primary winding, because it was 
necessary that the core be driven into saturation in both 
directions to avoid its taking a permanent "set." 

As is understandable, the aforementioned problems 
could not all be overcome convenieritly in any one instru
ment. Accordingly, two magnetometers were constructed
one for fairly large fields (1 to 300 gauss) and one for very 
small fields ( = 10-2 gauss). The magnetometer for "large" 
fields incorporated a feedback circuit that energized a 
quadrupole coil mounted coaxially with the core to ensure 
that the core was never operated in a field of more than a 
few tenths of a gauss and thus reduce the driving power 
in the primary winding. This instrument was essentially 
a copy of the device described by Voelker and Leavitt25 ·26 

and was used in mapping the vertical component of the 
magnetic field in the region of the geometric median plane. 
This magnetometer was entirely adequate for the use de
scribed, but suffered from two significant drawbacks which 
made it unsuitable for finding the magnetic median plane. 
The first such defect arose because the bias coil produced 
a small but not negligible external magnetic field at dis
tances from the coil of as much as 3 em (or half a gap 
width at the injection radius) and it was initially feared 
that in the magnet measurements (Sec. IV) the low field 
ends of the magnets would be highly sensitive to external 
fields. Secondly, since the bias current \\·as supplied by 
series vacuum tubes, the magnetometer could be used only 
in fields of one polarity, for otherwise the core might 
become saturated and thus take on a "set" which would 
give an appreciable error when measuring small fields. The 
situation just described could readily occur when making 
measurements in the fringing-field region with large 
currents in the flutter-tuning coils. 

The "sensitive" magnetometer for measurement of weak 
fields is shown schematically in Fig. 35. The oscillator
amplifier circuit operated at 3500 cps and incorporated 
current feedback to stabilize the driving field. The reject 
filter was included to keep the fundamental component of 
the signal from overloading the tuned amplifier and thus 
generating a spurious second-harmonic component. The 

25 F. Voelker and M. A. Leavitt, University of California Radia
tion Laboratory Rept. UCRL-30114 (Bcrkele\· California 1955 
unpublished). · ' ' ' 

•• F. Voelker, Electronics 31 (No. 11 ), 1S2 (l\Iarch 14, 1958). 
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FrG. 35. Schematic diagram illustrating the principle 
of the magnetometers. 

pickup transformer consisted of two 20-turn windings of 
No. 40 B&S gauge Formvar-insulated wire wound directly 
on a 1X 10-mm strip of Mo permalloy, 0.5 mil thick. This 
magnetometer was insensitive to transverse magnetic 
fields as great as 200 gauss, while showing good sensitivity 
for longitudinal fields of 10-2 gauss. Because of the small 
driving field, considerable care had to be exercised to keep 
the pickup transformer out of longitudinal fields in excess 
of 10 gauss. In practice, the magnetometer was not used 
to determine the magnitude of the horizontal field in the 
region of the median plane, but rather to implement ad
justments directed toward reduction of the radial com
ponent of magnetic field in this plane. 

APPENDIX III. PERTURBATION THEORY 

In this appendix theoretical results for the linear orbit 
properties and for effects of field perturbations will be 
presented. No derivations of the results will be given here. 

We will first give some results for the linear orbit prop
erties of a scaling FFAG accelerator. Somewhat more 
general and accurate results, and their derivations are 
available in .:\'IURA reportsY 

\Ve will write the magnetic field in the median plane as 

H.=- {Ho(r)+2Ht(r) cos[Nli-,Bt(r)] 

+2H2(r) cos[2Nll-,82(r)J+ · · · }, (23a) 
where 

H n(r) =- Bo(r/ro)khn, 

,Bn(r) = (n/w) ln(r/ro)+an. 

(23b) 

(23c) 

The average radius of the equilibrium orbit R and the 
momentum p are related by 

p=eRHer/c, 

where Hc1 the effective magnetic field is given by 

He~= Bo(R/r0)kjb, 

2 
b=--------------------

ho+[ho2+8ht2(k+3/2)/N2]t 

(24a) 

(24b) 

(24c) 

21 G. l'arzcn, l\'lidwcstcrn Universities Research Association Repts. 
l\1 U lU-454, 45 I, 397 ( 1959, 1958, unpublished). 
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TABLE VIII. A comparison of the theoretical and computer results 
for the tune and beat factors of the spiral sector model. 

Computer Theory 

Vx 1.40 1.32 
Pv 1.12 1.15 
Bx 1.73 1.66 
B" 1.51 1.41 

The equilibrium orbit is g1ven by r(O)=R[1+x(O)], 
where 

x(O) = (2bhi/N2) cos[ NO- (1/w) ln(R/ro) -a1]. (25) 

The radial tune vx is given by 

The vertical tune vu is given by 

vu2 = 2b~(hi2+h22+ · · ·)- bhok 

+2b2h1
2 (2/w2+ 1/4)/iV2

• (27) 

The beat factor Bx which gives the ratio of the largest 
amplitude of betatron oscillation to the smallest amplitude 
as one goes around the machine is related to f3x by 

(28) 
Bx is given by 

The beat factor for the vertical betatron oscillations B 11 is 
given by 

A comparison of the results given by the theory with 
results found by numerical integration of the equations is 
given in Table VIII for the tune and beat factors of the 
spiral sector model. 

We will now give some theoretical results for the effects 
of field perturbations. No derivations of the results will be 
given here. 

We assume that the magnetic field in the median plane 
for the unperturbed machine is written as 

H.=- Gn(r) exp(inO). (31) 
n~O.±N ,±2N ... 

The harmonics Gn(r) may also be written as 

Gn(r)=H,.(r) exp[ -i,B,.(r)], (32) 

where H n and (3,. are real. The effect of the perturbation 
on the median plane field is to change the field components 
by the amount t:.H., t:.Hr, D.H8. We will first treat the case 
where only t::..H.¢-0. This is a particularly important case 
as all deliberate perturbations like straight sect ions fall 
into this case. 

We assume that the field perturbation t:.H. is written as 

00 

t:.H,=- L t:.Gn(r) exp(inO), (33) 

This field perturbation will affect the equilibrium orbit and 
the tune vx, vy. For the sake of simplicity, the results will 
not be presented in the most general or accurate form that 
has been obtained, but the results will be given for the par
ticular case of the spiral sector model and for perturbations 
that were introduced into this model. The following results 
should be accurate within about 20%. 

The following assumptions will also be made. It will be 
assumed that the field gradient is large, which for the spiral 
sector machine means that 1/w»l. It will be assumed that 
the perturbing field does not shift the tune appreciably, 
that the unperturbed tune is not too close to the stop bands 
introduced by the perturbation, and that neither vx nor 
v11 are close to !N. 

We find the change in the equilibrium orbit. The effect 
of the perturbation on the equilibrium orbit can be broken . 
down into two parts. There is the effect due to the har
monics of t:.H. for n=O, ±N, ±2N· ··,and there is the 
effect due to the harmonics for which n¢-0, ±N, ±2N· · ·. 
These two effects are calculated separately and the effect 
of the harmonics for n=O, ±N, ±2N is treated first. 

Let us consider an orbit of the unperturbed field which 
corresponds to the momentum p and the average radius R. 
p and R are related by 

p=eRH.c/c, 

where H.c,. the effective field, is given by 

(35a) 

where flo, H N are evaluated at r=R and the prime indicates 
differentiation with respect to r. 

The equilibrium orbit corresponding to the particle 
momentum pis shifted by the amount Rt:.x, where R is the 
average radius of the equilibrium orbit of the unperturbed 
field. 

We write t:.x(O) in Fourier series form as 

(36) 

The t:.x,. for n=O, ±?{, ±2N· ··are given by 

t:.x,. = (t:.x,.) 1 + (t:.x,.)z, (37a) 
where 

(t:.xo)I = _ _!_[eR Mlo+2(eR)
2 £ -~ 

Vx2 pc pc n>O n2 

X (RIIn'Ml,.+RMl,.'H,.+3ll,.Ml,.)], (37b) 
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for n= ±N, ±2N · · · . 

XL' AX,.A:Ls-m} (37d) 

In Eqs. (37), 
N 

signifies a sum over s=O, ±LV, ±2N· ··and 

:L' 

signifies a sum over m but omitting m=O, ±.\·, ±2.Y· · ·. 
The Axm for mr!'O, ±.Y, ±2.V are given in the following. 

We may note that the (Ax,) 1 are due to the harmonics 
AGn for which n=O, ±.Y· ··and the (Ax,J" are due to the 
harmonics for which nr!'O, ±.Y· · · . The G, and AGn are 
to be evaluated at r = R. 

For nr!'O, ±N · · · we find 

.v g. 
AXn =a,- L a,_., 

where 
sr<os(-s+2n) 

1 reR eR s 
an=--- -t::,.G,+- L x.(RLlG,._/+2AG,_.) 

n2
- ll:r? pc pc s;>!O 

g.=- eR(RG.'+~.), 
pc 2 

1 eR 
x,=---G •. 

s2 pc 

.v eR g_. J 
- L -!::,.G,.+.--- ' 

s;>!U pc s(s+2n) 

(38a) 

(38b) 

(38c) 

. (38d) 

Equation (38a) is not valid for n= 1,\', and we find for 
the case n= !LV, 

eR [ cos(-ys+a,) 
AXn=~t::,.G, exp[i(-yx+a,)] -----

pc n"- vx"- I gs [ 

(38e) 

where /'N is the phase of the complex number g,v. 
The second term in Eq. (3Sa) i;; usually of the onkr of 

10% of the first term and m:ty lH: negkctecl unless the first 
term is absent. 

A somewhat simplified but useful expression for the 
oscillatory part of the equilibrium orbit is given by 

eR 1 
Llx(O)=A L ---AGn exp(inO), 

" pc n2-vx2 
(39a) 

(39b) 

'vVc will now treat the general case where we have not 
only a !::,.[[z but.also a Allr and Aile perturbations. Usually 
such perturbations arc accidental and the exact form of the 
perturbation is not known. Also, the r and z motions arc 
now coupled. Instead of having a[l r tune and a z tune, 
one now has two normal modes whose tunes we may still 
label as vx and vy since one mode is predominantly r motion 
and the other is predominantly z motion. 

The equilibrium orbit corresponding to the particle 
momentum is shifted by the amount RAx and RAy. The 
radial shift is given by Eqs. (37) to (39). The vertical shift 
is given by 

eR 1 
Ay=-B- L --AGr,n exp(inO), 

pc n n2 - vy2 

eR 
]x=-[RGN'+!GNI, 

pc 

and we represent the perturbation Ali r as 

(40a) 

(40b) 

(40c) 

The foregoing result forAy holds if the perturbation does 
not change the tune very much in the same manner as 
was assumed in the case of a pure Ali z perturbation. 

\V c will now apply the foregoing theoretical results to 
the various field perturbations that were introduced into 
the spiral sector model. 

Sector Bump 

A hump that \\"as applied to the radial sector model \vas 
to decrease the field in one sector by i%. To apply the 
results given above we must first calculate the AGn due to 
the perturbation. The !J.G,. arc given by 

1 f~" 
AGn=- dO exp( -inO)Mfz(r,O). 

2rr o 
(41) 

For the spiral sector model we may write the unper
turbed field as 

!!,=- /3 0 (r/r 1)kh(O,r), (42a) 

h(O,r) = :L.J1., exp{[i11:\"[0- (1/w.\") ln(r/r 1)]}, (42b 
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and the perturbation may be written as 

!:J.H z=- Bo(r/ri)k!:J.h(O,r), (43) 

where !:J.h is different from zero in only one sector and 
reduces the field by 7% in that sector. An approximate 
result for !:J.Gn, valid for n<<N, is 

(
r)k [ in r](Mz)av 

!:J.Gn=Bo - exp --In---, 
r1 wN r1 N 

(44) 

(t:J.h).v being the average value of Mz over the sector where 
it is not zero. 

One may also note that for this unperturbed machine 

(45) 

Using these results for t:J.Gn one now computes the shift 
in the orbit and tune. 

The change in the equilibrium orbit shown in Fig. 26 
may be easily understood. Since the tune vx= 1.40, the 
orbit shift is primarily due to the first and second har
monics of the perturbing field. The theoretical curve in 
Fig. 26 only takes into account the first and second har
monics, and including the higher harmonics would have 
improved the agreement with experiment. Equation (39) 
was used to calculate the equilibrium orbit. 

~k Bump 

In this bump, k was changed in one sector from k=O. 7 
to k = 0.8. The value of the magnetic field was unchanged 
at r= 25 em and the measurements were made at r= 37 em. 

We can write the unperturbed field as 

where r1 = 25 em, and the perturbed field as 

Ff z=- Bo(r/ri)k' h(O,r), 

(46) 

(47) 

where k'=k+t:J.k and !:J.k=0.1 in one sector, !:J.k=O in the 
other five sectors. 

The field perturbation !:J.Hz=Flz-Hz is then given by 

(48) 

where we have expanded in powers of !:J.k keeping just the 
lowest term. 

This perturbation !:J.H z has the same form as the per-
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turbation for the 7% sector bump where t:J.h(O,r) is given by 

!:J.h(O,r) = !:J.k ln(r jr1)h(O,r). (49) 

This !:J.k bump then shifts the equilibrium orbit in the 
same way as a sector bump where the field is changed by 
the fraction !:J.k ln(R/ri) where R is the radial distance to 
the point of measurement. 

Vertical Displacement Bump 

In this bump a magnet was raised 1 mm. Raising a 
magnet introduces a radial component !:J.ll,, in the mag
netic field in the median plane. !:J.H, is given by 

aHzl t:J.H,=--- !:J.z, 
ar z~O 

(50) 

in the sector where the magnet is raised, and !:J.z is the dis
tance the magnet is raised. 

If we write the unperturbed field as 

Hz= -Bo(r/ri)kh(O,r), (S1a) 

h/O,r) = 1 +J cos[ NO- (1/w) In (r/ri) ], (51b) 
then 

t:J.z ( r ) k { f ( 1 r ) !:J.Hr=-Bo - -sin NO--ln-
r r1 w w r1 

+k[1+fcos(No-~I<)]}· (52) 

We find !:J.Gr.n from 

1 fh 
!:J.Gr.n=-- exp( -inO)!:J.H,. 

21T 0 

(53) 

An approximate result for !:J.Gr.n is 

t:J.z (')k(k n1rj'ahl ) !:J.Gr.n= --Bo - -h.v-i--
r r1 JV 2N2 ar av 

(
-tn r) 

exp --In- , 
wN r1 

(54a) 

(54b) 

l

ah! - ::::::::.'fif/w. 
ar ,y 

(54c) 
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Theory of a High Dispersion Double Focusing Beta-Ray Spectrometer* 

H. DAl'IELt AND L. j..";.CKSO]';' LASLETT 

Tnslitulc for Atomic Research and Department of Physics, 1 owa Slate [ · ;zi;:ersity, Ames, Iowa 
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r\ "flat" high dispersion double focusing beta-ray spectrometer is proposed and results of computations are 
presented. The high dispersion is achieved by making the electrons o1·bit around the field axis more than once. 
The source and detector are displaced radially, in opposite directions, from the stationary circular orbit. A suitable 
baftle is mounted bct"·ecn the source and detector to shield the detector against unll'antcd electrons. The electron
optical properties arc almost the same as for the 1r\'l spectrometer except that the dispersion is increased. Numerical 

·results are presented for two instruments ll'ith focusing angles of 565.88° and 909.02°, ll'ith respective dispersions 
of 21.5 and 50Ji, to be compared 1\'ith a di;;pcr;;ion of 4 for the 1r\'1 spectrometer. 

I. INTRODUCTION 

I N a beta-ray spectrometer with moderate dispersion, 
high resolution requires a very narrow source which, 

*Contribution Xo. gs_:;. This work was performed in the _.\nH.:s 
Laboratory of tlw U. S. c\tomic l::nerg\· Commission. 

t Present address: Max Planck Institute for :\uckar l'lwsics, 
1-Ieidclberg, Germany. The maj(Jr portion of the present \\'(Jrl,: \\'aS 
performed while the author ll':t<; on leave from the ~lax l'lanck 
!~1stitute. 

furthermore, must be quite \\'ell adjusted. If one uses a 
high dispersion, hmi'C~vcr, both disadvantages arc greatly 
reduced. 

The need fur a high dispersion has already been pointed 
out and suitable magnetic fields have been described.'·" ln 
reference I a d<JtJiJic focusing spectrometer was proposed, 

1 G. E. l.ec-\\'hitin", Can. f. l'lws. 35, 570 (!957). 
'11. lhniel, l{n· Sci. lnstr. 31, ·2l9 (l%0). 
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+0.3 

FIG. I. Electron bundle in the case l = 3. Three orbits all in the 
symmetry plane are shown: !r = +0.04 and !r= -0.04 (solid lines) 
and !,=0 (dashed line). The shaded area represents the cross section 
of the electron bundle for I\, I ~ 0.04. The electrons start at p = -0.2. 

while in reference 2 a spectrometer with a curved exit slit 
was proposed. In both cases the angle 81 between source and 
detector must be larger than 21r in order to obtain the de
sired high dispersion. If 81 is larger than 21r, some electrons 
of undesired momenta will reach the detector if there are 
no special arrangements to stop these electrons. Lee
Whiting1 estimates this background. If, however, the 
source is displaced from the stationary circular orbit, it is 
possible to shield the detector completely against these 
unwanted electrons.2 In t.his case the detector is shifted by 
about the same amount in the opposite direction. Figures 1 
and 2 show two examples of such an arrangement. 

It is the purpose of the present paper to give more de
tailed information about a high dispersion do.uble focusing 
spectrometer with a displaced source. In Sec. II some re
sults of a second-order perturbation calculation are sum
marized. Because of the magnitude of. the requisite source 
shift, ho\vever, which is not small, these results are not 
sufficiently accurate to draw definite conclusions. Section 
III gives the results of electronic computer calculations. 

II. SECOND-ORDER TREATMENT 

The notation of reference 2 will be used in the following 
analysis. Assume for the moment that there is no source 
shift, so po= 0. Then the formula:> of reference 2 lead to the 
following expressions for the image coordinates P1, ~~ as 
functions of the source coordinates po, ~o, the emission 
angles r r, s ,, and the field coetlicients a, {3: 

FIG. 2. Electron bundle in the case l = 5. Three orbits all in the 
· symmetry plane are shmm: !r= +0.02 and !r= -0.02 (solid lines) 

and !,=0 {dashed line). The shaded area represents the cross section 
of the electron bundle for I !r I ~ 0.02. The electrons start at p = -0.2. 

3+7a+4/3 l+Sa+4/3 
P1= -po -----f,2- Sz2 

3(1+a)2 (l+a)(l+Sa) 

2a+/3 a(l+Sa)+2/3(1+3a) 
-- --po2+ ~o2, 

3 l+a (l+a)(l+Sa) 
(1) 

2 (1 +4/3+Sa) 4{3 
-----S" rS z---po~o. 
(l+a)(l+Sa) l+Sa 

(2) 

Equation (2) holds for the only practically important case 

l= ( -a)!j (1 +a)!= odd integer, (3) 

in which l denotes the number of axial oscillations per 
radial oscillation. As in the 1r\r1 case3 there are two main 
types of design, in which the aperture aberration is inde
pendent of (,2 or, alternatively, of 5",2• In the former case 
one has 

{3=-(3+ia)/4, (4) 
and in the latter, 

(3=- (l+So:)/4. (5) 

TABLE I. Numerical results of the .second-order theory. 

l po fJ "Y Bt Pl D a,;o b, 

I 0 -0.500 0.375 255.56° 0 4.0 -0 .. 133 -0.500 
3 0 -0.900 0.875 ... 569.21 ° 0 20.0 -0.333 -0.500 
5 0 -0.962 0.952 917.82° 0 52.0 -O . .l.l.l -0.500 

3 K. Sieghahn, Bet.a- and Gamma-Ra.y Spcc/.roswpy, edited by K 
Sieghahn (lnterscience Publishers, lnc., 0/ew York, 1955), Chap. ll' 
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FrG. 3. Electron orbits ncar the 
exit slit in the case l = 3. All orbits 
shown arc in the symmetry plane. 

The remaining aperture aberrations are then 

and 

2 
t.p~=-·-r/ 

l+Sa 

1 2 
t.pr =a~Dr r2 = -- --r r2

, 

31+a 

(6) 

(7) 

respectively. Similarly, the aberration connected with the 
source height is 

(8) 

Finally, the dispersion D is given by 

D=2/(1+a). (9) 

High dispersion requires that a be close to -1. The 
coefficient of r r2 in Eq. (7) is therefore mu.ch larger than 
the coefficient of t.2 in Eq. (6). For a given maximum 
bundle diameter, however, the aberrations given by Eqs. 
(6) apd (7) are nearly equal. This has been discussed in 

FrG. 4. Electron orbits near the 
exit slit in the case l = 5. All orbits 
shown arc in the symmetry plane. 

s 

I 
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greater detail by Lee-Whiting. 1 For a spectrometer employ
ing a source shift, the high transmission requirement favors 
strongly the type characterized by Eq. (5). Therefore, only 
this type will be treated in the remainder of this paper. 
Note that po does not appear in Eqs. (6) through (9). 
Finally it should be noted that, according to Eq. (3) of 
reference 2, there is no first- or second-order shift in fh in 
the case po~O. Numerical results of the second-order 
theory are. given in Table I. 

III. COMPUTER CALCULATIONS 

Because of the large source shift necessary to combine 
high dispersion and medium transmission in an arrange
ment like that of Figs. 1 or 2, it was decided to perform 
computer calculations which, automatically, included 
higher-order terms not taken into account in the analysis 
of Sec. II. The second-order theory of Sec. II served as a 
guide in this work. 

The general procedure for the numerical calculations was 
to determine the electron orbits as a function of the angle 
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TABLE II. Field coefficients and results of the computer calculations. 

3 
5 

Po 

-0.2 
-0.2 

"' 
-0.898 
-0.961 

0.875 
0.952 

-0.895 
-0.961 

0.880 
0.953 

0. This was done with an electronic computer and the re
sults of these computations were then evaluated by hand. 
The orbits were determined w.ith the l\IURA IBM-704 
computer by use of the Ill-Tempered Five Program.4 The 
step length was chosen to be 4 °. Linear interpolation was 
used between two steps when evaluating the data. In order 
to obtain a point on the exit slit two orbits were used, both 
with s.=O: s.= +s/1> and s.= -s-.0 >, where s-.0 > denotes 
a selected value for the magnitude of the angle s •. Other 
orbits were chosen to determine the aberrations connected 
with axial aperture, source height, electron momentum, 
and combinations of these quantities with each other and 
with the radial aperture. Before starling computations 
pertaining to the present problem, the procedure was 
checked for the 1rv'2 spectrometer, which exhibits almost 
perfect focusing in s. and for which there is an elaborate 
theory available 5 for comparison. 

Computations were performed for l= 3 and l= 5, Eq. (3), 
with the source shift held constant at po= -0.2. Table II 
contains the values selected for the field coefficients, a, {3, 

-y, and o. These values were previously determined by 
exploratory computations so as to give, approximately, 
first-order double focusing and small axial-aperture aberra
tion. The higher-order field coefficients were taken to be 
zero. Figures 3 and 4 show some orbits near the exit slit in 
the cases l= 3 and l= 5, respectively. The intersections of 
two orbits with s r= +s .o> and s .=-s r0 > describe a curve 
for different s ro> values which is almost a straight line 
but is not perpendicular to the circle p=const, for Sr(l) not 
too large. The angle between this focal line and the circle 
p=const is found to be 76° in the case for which l=3 and 
5.5° in the case l= 5. Obviously it is most advantageous to 
make the exit slit follow this focal line and this has been 
assumed, in the following, when calculating the resolution. 

4 Elizabeth Z. Chapman, Midwestern Universities Research Asso
ciation Rept. MURA-457, Ill-Tempered Fi<'e Program 220 (1959, 
unpublished). The authors are indebted to Mrs. Chapman for her 
work in constructing this versatile program, which was well adapted 
for performing the computations reported here. 

• G. E. Lee-Whiting and E. A. Taylor, Can. J. Phys. 35, 1 (1957). 
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565.88° 
909.02° 

Po 

0.2063 
0.2077 

D 

21.5 
50.6 

-0.350 -0.612 
-0.308 -0.580 

The computational results have been analyzed in terms 
of a2, b~, and D of Eqs. (7) through (9) and are summarized 
in Table II. There is almost perfect double focusing and, as 
expected for a spectrometer with {3 given by Eq. (5), m~ly 
a negligible i;} dependence of Pt· At large values off:",, of 
course, higher-order terms contribute, but for l= 3 and 
1;,=0.305 one still has D.pJ/D= -5.4X10-0, and for 1=5 
and s-.=0.253 one has D.pt/D= -1.05X10-•. 

When comparing the proposed high dispersion spec
trometer with the 7rYllypc, it is seen that ti1ey have almosr 
the same electron-optical properties except for the dis
persion. This means that, for a given transmission, resolu
tion, and apparatus size, one may use a source which is 
wider and higher by about a factor of D/4 than the source 
in the 1rv'2 spectrometer. To the same extent the source 
positioning is less critical. Table III gives rough estimates 

3 
5 

TABLE III. Typical data for a spectrometer with 
a 20 em mean radius r0 . 

Total source Total source 
w height width '1 

0.4% Scm 2 mm ~0.12% 
0.15% 4cm 1 mm ~0.025% 

of the expected efficiency at the listed values of solid angle 
and source dimensions. The quantity w is the fractional 
solid angle selected by the entrance slit and 17 is the total 
width of the resolution curve at half-maximum. The radius 
ro of the stationary circular orbit has been taken to be 
20 em, which implies an instrument of only moderate size. 

IV. ACKNOWLEDGMENTS 

It is a pleasure to thank .:\I. Storm and the st.atT of the 
.:\IURA Computer Section for kindly performing the com
putations. The authors are indebted to B. ::\fcOaniel and 
C. Engler for their help in evaluating the data. 



Reprinted from THE REVIEW OF SciENTIFIC INSTRUMENTS, Vol. 32, No. 11, 1235-1252, November, 1961 
Printed in U. S. A. 

Coupling Resonances in Spiral Sector Accelerators* 
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Theoretical and computational results are presented to illustrate the behavior of single particle motion in spiral 
sector FF AG accelerators of small flutter factor when operated in the neighborhood of vertical-radial coupling 
resonances. The theoretical analysis proceeds from the approximation in which the radial motion is determined 
without consideration of the vertical motion, and this solution is then inserted into the linearized equation for the 
vertical motion. The resulting generalized Hill equation is analyzed by a variational technique which yields both 
the bands of instability of the vertical motion and the exponential rate of growth within these zones. This mathe
matical analysis is confirmed by a computational study of the Hill equation used in the theoretical analysis. 
Extensive computational results are presented of the actual particle motion near coupling resonances for a choice 
of parameters characteristic of both full-scale accelerators and models. Attention is concentrated on defining the 
regions of instability and determining the rate of vertical growth, both of which are seen to be in semiquantitative 
agTeement with the theoretical analysis. 

I. INTRODUCTION 

T HIS paper is concerned with certain phenomena 
pertaining to particle motion with two degrees of 

freedom in a spiral sector accelerator. Briefly, the behavior 
to which we direct our attention is an exponential growth 
of the amplitude of axial oscillations, from very small 
initial amplitudes, when the structure is such that the 
oscillation frequencies lie in the neighborhood of certain 
"coupling resonances." This "y growth" appears to be 
the more rapid the greater the amplitude of the radial 
motion, above a certain threshold, and more pronounced 
when the operating point is near the resonance in question. 
For certain of the resonances, the exponential growth 
may be found ultimately to terminate, at relatively large 
y amplitudes, if the amplitude of the radial oscillation is 
not too great. Despite the possible termination, or "tum
over," of the exponential growth in certain cases,1 it is 
suggested that it deserves serious recognition by the accel
erator designer due to the possibility that this growth may 
lead to ultimate instability through the mechanism of other 
inherent or imperfection resonances. 

The studies of this paper have been confined to FF AG 
accelerators with spiral sectors,2 •3 which is an attractive 
form of a FFAG accelerator, since smaller circumference 
factors may be utilized than appear feasible with the 
alternative radial sector design. Considerable effort has 

*This work was supported by the National Science Founda
tion, the Office of Naval Research, and the U. S. Atomic Energy 
Commission. 

t Department of Physics and Institute for Atomic Research, Iowa 
State University, Ames, Iowa. Present address: Division of Research, 
U.S. Atomic Energy Commission, Washington 25, D. C. 

t The Ohio State University, Columbus, Ohio. Present address: 
Lawrence Radiation Laboratory, University of California, Berkeley 4, 
California. 

1 Theoretical analysis of a single nonlinear resonance has sug
gested that, ultimately, turn over may be expected for the case of a 
difference resonance [cf. references 12 and 13, and R. Hagedorn, Pro
ceedings of the CERN Symposium on High Energy Accelerators and 
Pion Physics, Geneva, 1956 (CERN, Geneva, 1956), Vol. 1, p. 293]. 

2 K. R. Symon, D. W. Kerst, L. W. Jones, L. J. Laslett, and K. M. 
Terwilliger, Phys. Rev. 103, 1837 (1956). 

3 L. Jackson Laslett, Science 1241 781 (1956), 

been expended by the MURA Group in successfully con
structing and operating a spiral sector electron model,4 

while spiral sector cyclotrons are now in operation or 
under construction in a large number of laboratories. Thus, 
the results of this study may be of direct interest to a 
number of groups, but more importantly, the authors 
would like to emphasize that both the computational and 
theoretical approaches should have wide applicability to 
the study of many particle-handling devices. 

The contents of this paper have appeared during the last 
five years in a number of unpublished MURA Reports 5-

9
; 

but only here, for the first time, will be found a compre
hensive description of the phenomena. 

A. Theoretical Analysis 

In the theoretical work, attention is directed to appro
priate coupling terms in the differential equation fo; the 
vertical amplitude y which are linear in the depe·.1dent 
variable y but involve the radial coordinate u, measured 
with respect to the stable equilibrium orbit.2 Suitable 
solutions of an approximate differential equation for u, 
obtained on the supposition that y=O, are introduced 
into the coupling terms of they equation to obtain a linear 
differential equation for y with coefficients involving both 
the period of the structure and that of the radial oscilla
tions. This introduction in a non-Hamiltonian ·way of 
what is taken in effect to be a prescribed u motion was 

4 D. W. Kerst, E. A. Day, H. J. Hausri:tan, R. 0. Haxby, L. J. 
Laslett, F. E. Mills, T. Ohkawa, F. L. Peterson, E. M. Rowe, A.M. 
Sessler, J. N. Snyder, and W. A. Wallenmeyer, Rev. Sci. Instr. 31, 
1076 (1960). 

5 L. Jackson Laslett and A. M. Sessler, Midwestern Universities 
Research Association Report MURA-263 (1957, unpublished). 

6 L. Jackson Laslett, Midwestern Universities Research Associa
tion Report MURA-320 (1957, unpublished). 

7 Roger E. Mills, Midwestern Universities Research Association 
Report MURA-319 (1957, unpublished). 

sA. M. Sessler, Midwestern Universities Research Association 
Report MURA-596 (1961, unpublished). 

9 C. A. Lassettre, Midwestern Universities Research Association 
Report MURA-595 (1961, unpublished). 

Reprinted by permission of the American Institute of Physics. 
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originally suggested by W. Walkinshaw10 and appears to be 
entirely defensible when the y amplitudes are as small as 
those obtaining in the greater part of the present work. 
Since coupling terms are actually also present in the differ
ential equation for u, it must be acknowledged that the 
development of a large amplitude y oscillation will "react 
back" on the u motion, but this is generally a small effect 
unless the y motion has grown to exceedingly large ampli
tudes, and is ignored in the remainder of this paper so 
that the results strictly are only applicable to y growth 
in its initial stages where the amplitude is small. 

Subsequently, considerable attention has been given to 
these problems by Parzen11 employing perturbation 
methods similar to those applied in solid-state physics, and 
by Symon and co-workers/2 using the mathematical 
methods developed by Moser.13 These techniques are 
capable of reproducing the results of this paper as well as 
predicting aspects of the phenomenon of "turnover," but 
the mathematical methods are more involved than those 
employed in this paper. 

The differential equations used in the theoretical analysis 
are taken from the analysis of Cole14 which is appropriate 
to a FFAG accelerator with a pure sinusoidal variation of 
the median plane field. Only the coefficients which are 
dominant for small values of the flutter fare retained. The 
radial displacement (in units of a convenient reference 
radius) is written 

(1.1) 

where x1 represents the forced motion resulting in the 
(periodic) equilibrium orbit. The free radial oscillation 
satisfies the following approximate differential equation: 

where 

b,= f/w, (1.4) 

and the notation is that of reference 2. The y equation 
governing the axial motion is taken to be 

10 W. Walkinshaw, "A spiral ridged bevatron," A.E.R:E. Report, 
Harwell (1956, unpublished). 

11 G. Parzen, Midwestern Universities Research Association Report 
MURA-217 (1957, unpublished); G. Parzen, Midwestern Universities 
Research Association Report MURA-250 (1957, unpublished). 

12 H. Meier and K. R. Symon, Proceedings of the CERN Sym
pooium on High-Energy Accelerators, Gene1Ja, 1959 (CERN, Geneva, 
1959), p. 253. 

13 J. Moser, Nachr. Akad. Wiss. Gottingen, Math.-physik. Kl. Ila, 
No. 6, 87 (1955); J. Moser, Commun. Pure and Appl. Math. 8, 409 
(1955). 

14 F. T. Cole, Midwestern Universities Research Association Report 
MURA-95 (1955, unpublished). The change in sign of b1 corrects an 
inadvertent error in this report. · 

f f 
y"+[au+bu cosNO]y=- sinN8uy--cosN8u2y 

w2 2w3 

where 

and 
bu=- fjw. 

f 
--sinNO u3y, (1.5) 

6w4 

(1. 7) 

These equations restrict the theoretical analysis to a special 
class of FFAG accelerators, namely those which employ a 
sinusoidally varying median plane field with a small flutter 
factor (typically f:"~0.25). The methods used are more 
general, of course, but all specific results will only be 
applicable to this case. 

By changing variables, we may simplify the above 
equations; namely, let 

r=!NO, p=u/w, 1/l=y/w, X= f/wN2, (1.8) 

in which case Eqs. (1.2) and (1.5) become 

d2pjdr2+4[(a,/N2)+X cos2r ]p 

= - 2X sin2r p2+tX cos2r p3 (1.9) 
and 

dzy;jdr2+4[(av/N2)-X cos2r ]1/t 
=4X sin2r pljt-2X cos2r p21/t-iX sin2r p31/;. (1.10) 

Since the small amplitude "tune" <rxo and uuo [betatron fre
quency phase change per sector2 ( u= 21rv/ N, where vis the 
number of betatron wavelengths about the circumference)] 
may be used to eliminate a,/N2 and au/N2, it can be seen 
that all results are simply a function of the linear tune 
<rxo, uuo and the parameter A which may be thought of as a 
measure of the nonlinearities whose presence creates the 
coupling resonance. In particular, the y motion can be 
characterized by uxo, uyo, A, and the amplitude of the 
x motion, A, expressed in units of 1/w. 

The theoretical analysis is carried out in Sec. III, where 
five distinct resonances are treated. Before that, we must 
develop approximate solutions to the nonlinear radial 
equation and a method of determining the regions of in
stability of the linear Hill equation which determines the 
y motion. These mathematical preliminaries are carried 
out in Sec. II. Although the methods are standard, this 
particular mathematical procedure may be of interest in 
that it should be useful in the analysis of the behavior of a 
variety of particle-handling devices. 

B. Computational Studies 

The results of the theoretical analysis are summarized 
in Sec. III F, and the subsequent sections of the paper are 
devoted to computational studies designed to test these 
predictions. This work falls into two classes, first a com-
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putational study of the simplified equations15 used in the 
theoretical analysis [essentially Eqs. (1.9) and (1.10)], 
and secondly a computational study of the exact equations 
of motion of a particle in a spiral sector accelerator.16-21 

The computational study of the equations used in the 
theoretical analysis is given in Sec. IV, while Sec. V is 
devoted to the computational study of the equations 
governing a particle in an actual accelerator .. These equa
tions-involving as they do many more effects than are in
cluded in the simplified equations-lead to a poorer agree
ment with the theoretical analysis. The agreement is 
nevertheless sufficiently good to allow the use of the 
theoretical formulas as a guide in the l'lesign and analysis 
of accelerator behavior. 

Analysis of the results was aided by computing, once per 
sector, the quantity Kv, which is the square root of a 
quadratic form which remains invariant for linear un
coupled motion. This quantity was taken to be 

(1.11) 

where, in terms of the matrix 

which carries a particle through successive sectors from 
one homologous point to the next, 

-C A-D B2 

~=-. -B, TJ=-.-B, r=-. 
sm2a- sm2a- sin2a-

(1.12) 

The coefficients~. TJ, r, as well as the oscillation frequencies, 
were determined by preliminary short small-amplitude 
runs. Physically, for linear uncoupled motion, KY repre
sents the maximum value which y can attain at those 
homologous points for which th~ invariant Ku applies and 
so represents the amplitude of the motion at such points. 

II. MATHEMATICAL PRELIMINARIES 

In this section, certain mathematical properties of Eqs. 
(1.2) and (1.5) will be established. The results of this 
analysis are summarized in Sec. II E, and the reader who is 
willing to assume these results may skip to that section and 
then continue with the theoretical analysis of Sec. Ill. 

Many of these results may be obtained by an alternative 
15 J. N. Snyder, Midwestern Universities Research Association 

Report MURA-237 (1957, unpublished). 
16 L. Jackson Laslett, Midwestern Universities Research Associa

tion Report MURA-75 (1955, unpublished). 
n L. D. Fosdick, Midwestern Universities Research Association 

Report MURA-226 (1957., unpublished). 
18 L. D. Fosdick, Midwestern Universities Research Association 

Report MURA-241 (1957, unpublished). 
"L. Jackson Laslett and J. N. Snyder, Midwestern Universities 

Research Association Report MURA-222 (1957, unpublished). 
20 J. N. Snyder, Midwestern Universities Research Association 

Report MURA-231 (1957, unpublished). 
21 E. Z. Chapman, Midwestern Universities Research Association 

Report MURA-457 (1959, unpublished). 

"smooth approximation" method which is described in 
reference 5, but not included in this paper. 

A. Estimation of Stability Boundaries 
for a Mathieu Equation 

To orient our analysis of Sec. II C, we outline here a 
variational method for determining the first few stability 
boundaries of the Mathieu equation 

y"+[a+b cosNO]y=O. (2.1) 

At stability boundaries, the differential equation admits a 
periodic solution such that, formally, 

f
41r/N 

o ![y'2- (a+b cosNO)y2]d0=0. 
0 

(2.2) 

(1) At the first stability boundary, corresponding22 to 
·ceo and for which a=O when b=O, a suitable trial func~ 
tion is 

y=Ao+AI cosNO. (2.3) 

Insertion of this trial function into the integral and setting 
the partial derivatives of the result (taken with respect 
to A o, A 1) equal to zero leads to simultaneous linear homo
geneous algebraic equations, which for a nontrivial solution 
require 

For b small, one then obtains 

a-:::: -b2/(2N'2), 

Ar/Ao-::::bjN2, 

(2.4) 

(2.5) 

which are, of course, the initial terms of well-known series 
expan~ions .22 

(2) At the second stability boundary, near a= N 2/-! and 
corresponding to cer, we take 

y=B1 cosN0/2+B2 cos3N0/2 (2.6) 

as the trial function. One then obtains in a similar manner 

a-::::N2/4-b/2, 

B2/ Br-::::bj (4N2). 

(2.7) 

(3) At the third stability boundary, again near a=N2/4 
but corresponding to se1, we take 

y=Cr sinN0/2+C2 sin3N0/2. (2.8) 

In this case, one obtains 

a-::::N2/4+b/2, 

C2/Cr""' b/( 4N2). 
(2.9) 

(4) At the fourth stability boundary, near a=N2 and 
corresponding to se2, a suitable trial function may be 

22 Notation of E. T. Whittaker and G. N. Watson, Modern Analysis 
(Cambridge University Press, New York, 1927), Sec. 19.3. These 
authors use 16q in place of our coefficient b and take N = 2. 
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taken of the form 

y=D1 sinNB+D2 sin2N8. 

One obtains in this case 

a~N2-b2/(12N2), 

Dz/ D1 ~ b/ (6N2). 

(2.10) 

(2.11) 

(5) At the other stability boundary near a= N 2, one may 
employ the trial function 

to obtain 
y=Eo+EI cosNO+Ez cos2NO 

a~ N 2+5b2/ (12N2), 

Eo/EI~ -bj(2a)~ -bj(2N2), 

E 2/ EI~b/[2( 4NLa)]=b/ (6JY2). 

(2.12) 

(2.13) 

It is of interest to note, from the results of this and the 
preceding subsection, that the stability boundaries are not 
symmetrically located about a=N2• 

Series expansions for all these various stability bound
aries are, as has been noted, given in published texts.22 ·23 

(6) A case involving a special Hill equation may also be 
considered here because of certain similarities to ( 4) and 
(5) above. The equation 

y"+[a+{j coswO+'Y cos2w8]y=O, (2.14) 

with {j and 'Y considered small, will exhibit a narrow zone 
of instability for a near w2. When {j = 0, the equation is of 
the form considered in subsections (2) and (3) (with 2w 
corresponding to N) and the width of the unstable region 
will be proportional to 'Y; when 'Y = 0, the resonance in 
question is that considered in subsections ( 4) and (5) 
(with w=N) and the width will be proportional to (j2. 

The corresponding result for the general case (fj and 'Y 
both different from zero) may be obtained for circum
stances in which (j2 and 'Y are of the same order of magni
tude. The variational statement 

is used, with the trial functions 

y=D1 sinw8+D2 sin2w8, 

y=Eo+EI cosw8+E2 cos2w8. 
(2.16) 

One then finds that instability will occur when a-w2 lies 
between 

-(j2/(12w2)+'Y/2 and 5(j2/(12w2)-'Y/2. (2.17) 

B. Approximate Solution of a Math~eu Equation 

We are again concerned with the Mathieu equation 

y" +[a+b cosNO]y= 0, (2.18) 
23 N. W. McLachlan, Theory and Application of M a.thieu Functions 

(Clarendon Press, Oxford, England, 1947), Sees. 4.90-4.91. 

seeking an approximate representation of the Floquet 
solutions and an estimate of the characteristic oscillation 
frequency. A simplification results if one imagines that the 
characteristic period of the solution and the period of the 
coefficient cosNO are commensurate in some (possibly 
large) interval and that the Floquet solution is accordingly 
periodic in this interval. 

By the foregoing ruse we then again write 

o J t[y'L (a+b cosN8)2]yd8=0, (2.19) 

with the integral. now covering a sufficient number of 
periods of the cosine coefficient that the periodicity of the 
solution in this interval may be exploited. Seeking a solu
tion whose variation with 8 is roughly that of cosv8 or sinv8, 
effective trial functions are 

(2.20) 

or 
y=A 2 sinv8+B2 sin(N-v)O+Cz sin(N+v)O. (2.21) 

We proceed to a solution of the problem by use of these 
trial functions under the supposition that v is small in com
parison toN, results containing this limitation being suit
able for the present purposes.24 

The first of the trial functions, when adjusted to make 
the integral stationary, leads to the simultaneous equations 

(vLa)A 1 - (bj2)B1 - (b/2)CI =0 
- (bj2)AI+[(N -v)2-a]BI =0 (2.22) 
-(b/2)AI -t{(N+v)2-a]CI=O. 

Approximate solution of these equations gives 

and 

B1 ~ (b/2N2)[1 + (2v/ N) ]A 1, 

C1~ (b/2N2)[1- (2v/ N)]A1, (2.23) 

(2.24) 

this last relation being in agreement with the "smooth 
approximation" result.2 

The second trial function, involving sine terms, leads 
similarly to 

(vLa)A 2 + (b/2)B2 - (b/2)Cz =0, 
(b/2)A 2 +[(N-v)2-a]B2 =0, (2.25) 

- (b/2)A 2 +[(N+v)La]C2=0, 

with approximate solutions identical in form to those for 
the cosine series, save for a change in sign for Bz. Thus, 
although the procedure employed is formally similar to 
that which can be used to find stability boundaries (d. Sec. 

24 This problem has been extensively studied, and the reader is 
referred to the following references for more accurate solutions. L. 
Jackson Laslett and A. M. Sessler, Midwestern Universities Research 
Association Report MURA-252 (1957, unpublished); R. E. Mills, 
Midwestern Universities Research Association Report MURA-340 
(1957, unpublished); G. Parzen, Midwestern Universities Research 
Association Report MURA-397 (1958,unpublished). 
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II A), the relations connecting v, a, and bare identical for 
the two cases considered here and we may write the 
general approximate solution as an arbitrary linear com
bination of the two solutions 

A 1[cosvO+ (b/ N2) cosNO cosv0+2bv/ N 3 sinNO sinvO] (2.26) 

and 

A2[sinvO+ (b/ N 2) cosNO sinvO- 2bv/ N3 sinNO cosvO] ;(2.27) 

VIZ: 

y=Au[sin(vO+E)+(b/N2) sin(vO+E) cosNO 

- (2bv/N3) cos(vO+E) sinNO], (2.28) 
with 

(2.29) 

A detailed comparison of the approximate solution with a 
small-amplitude numerical solution of the exact (axial) 
equation of motion may be found in reference 5, where it is 
seen that for v/N :::::0.1 the approximate solution is accurate 
to a few percent. 

C. Stability Limits for a Hill Equation 

We are concerned here with the differential equation 

y"+[a+b cosNO+(e/2) cos(N-v,)O 

±(e/2) cos(N+vx)O+d cosvxO]y=O, (2.30) 

where we presume that p==N / vx may be regarded as a 
rational number and the coefficients e and d are regarded 
as small. For the work to follow, the differential equation 
is replaced by the variational statement 

±(e/2) cos(p+1)vxO+d cosvxO]y2}d0=0. (2.31) 

We then proceed to determine, in turn, stability bound
aries near 

v,=2vyo, vx+2vyo=N, and 2v,+2vyo=N. 

(la) The location of the first stability limit of interest 
here is determined by aid of the trial function 

y=B1 cosvx0/2+B2 cos3vx0/2 

+R1 cos(2p-3)vx0/2+Pl cos(2p-l)vx0/2 

+ P2 cos(2p+ l)vx0/2+R2 cos(2p+3)vx0/2, (2.32) 

although, as will be seen, inclusion of the terms with 
coefficients B2, R1, and R2 is unnecessary for the accuracy 
desired here. Insertion of this trial solution into the 
integral and formation of the appropriate derivatives leads 
to a complicated set of simultaneous equations. (See 
reference 5 for details.) Neglecting terms of second and 
higher order in e and d, and terms of order d/(2p2vx2) and 
d/2N2 compared to unity, these equations may be solved 

to yield 

(2.33) 

and 

(2.34) 

as the dominant coefficients supplementingB1 inEq. (2.32). 
Furthermore, one obtains, if the upper sign is used, 

(2.35) 

If the lower sign is used, one obtains instead 

(2.36) 

Since, by the results of Sec. II B, vy0
2==a+b2/ (2N2) 

represents the square of the frequency of they oscillations 
for the case e=d=O, we may conveniently write 

(v,/2)2
- vy0

2::::: be/ (2N2)+d/2, 

for the upper sign, and 

(vx/2)2- vyo2::::: vxbei (2N3)+d/2, 

for the lower sign. 

(2.37) 

(2.38) 

(lb) A second stability limit to the differential equation 
is similarly obtained in the same neighborhood by use of 
the trial function 

y=C1 sinvx0/2+ · · · +Q1 sin(2p-l)vx0/2 

+Q2 sin(2p+ l)vx0/2+ · · ·. (2.39) 

In this case, one finds 

with the relation 

VyoL (vx/2)2::::: be/ (2N2)+d/2, 

for the upper sign, and 

vyo2 - (vx/2)2::::: vxbe/ (2N3)+d/2 

for the lower sign. 

(2.40) 

(2.41) 

(2.42) 

The associated stability limits derived in subsections 
(la) and (lb) for Eq. (2.30) may thus be summarized as 
follows: 

I v,L (2vy0) 2 1 :::::2/ be/N2+d /, 

when the upper sign is taken, and 

I llxL (2vyo) 2/ ""'2/ vxbe/ N 3+d / 

when the lower sign applies. 
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(2a) An additional zone of instability occurs near 
v,+2vyo=N. We write for convenience N=qvo and 
v.,= (q-l)vo, where vo=N -v.,. The equations 

y"+[a+b cosqvoO+(c/2) cosvoO 

± (c/2) cos(2q-l)voO+d cos(q-l)voO]y=O (2.45) 
or 

o J !{y'2-[a+b cosqvoO+(c/2) cosvoO 

± (c/2) cos(2q-l)voO+d cos(q-l)v00]y2}d0=0 (2.46) 

are then solved approximately by the trial function 

y=E1 cosvo0/2+T1 cos(2q-l)v00/2 

+T2 cos(2q+l)vo0/2. (2.47) 

The following conditions are found to apply [for either 
sign of the coefficient -of cos(2q-l)vo0]: 

T1""" [ (b+d)/ (2q2vo2) ]E1, 

and, again noting vy0
2=a+b2/(2N2), 

(vo/2)2-vyo2""" c/4+bd/(2N2). 

(2.48) 

(2.49) 

(2b) A similar result, with a reversal in sign of the 
entire right-hand side of the equation, can be obtained for 
the companion stability boundary if sine functions are 
used in place of cosine functions in the trial solution. We 
accordingly write 

or 
(2.50) 

(2.51) 

D. Estimate of the Characteristic Exponent in 
the Unstable Region of a Hill Equation 

An approximate expression may be derived for the 
characteristic exponent ·f.L, which characterizes the lapse
rate of an exponentially-growing solution in the unstable 
region of a Hill equation. For this purpose, we follow a 
procedure analogous to that described by McLachlan.23 

We denote the even and odd characteristic solutions at 
the associated stability boundaries by c(O) and s(O), re
spectively. The solutions near the vertex of the zone of in
stability may then be written approximately as 

y= e±J<8[Cc(O)±Ss(O)] (2.52) 

in place of representing the Floquet factor within the 
bracket by expansion in a complete orthogonal set of 
functions. Substitution of this solution into the differential 
equation 

y"+ f(a,O)y=Q (2.53) 
yields 

Cc" (O)±Ss" (0)±2JL[Cc' (O)±Ss' (0)] 

+[f.£2+ f(a,O)][Cc(O)±Ss(O)]=O. (2.54) 

The eigensolutions satisfy 

c"+ f(al,O)c=O, s"+ f(a2,0)s=O, (2.55) 

and a1 and a2 are eigenvalues corresponding to the stability 
boundaries of the problem. Thus, 

±2JL[Cc' (O)±Ss' (0) J+C[f.L2+a-a1]c(O) 

±S[f.L2+a- a2]s(O) = 0. (2.56) 

The coefficients of the even and odd functions in this 
approximate identity may be related by multiplying 
through by c(O) and by s(O) in turn and integrating, making 
use of the orthogonality of the (periodic) eigenfunctions 
which correspond to the two distinct eigenvalues a1 and a2. 
In this way, one obtains 

C[f.L2+a-a!](c2)+2JLS(cs')=O 

2JLC(sc')+S[f.L2+a- a2](s2) = 0, 
(2.57) 

where ( ) denotes that the average value is taken. An ap
proximate solution of the resulting determinantal equa
tion yields 

. (2.58) 

If the parameter "a" lies midway between the two eigen
values a1 and a2, the lapse rate will thereby be maximized, 

J.Lmax2 ~ 
(c

2
)(s

3
) [a2- a1]2 

(sc')(cs') 4 
(2.59) 

for a= (a1+a2)j2. 
The foregoing expressions for JL2 may readily be applied 

to estimate the lapse Tates associated with the resonances 
which form the subject of this report, employing the 
estimates for their respective stability boundaries derived 
in Sec. II C. For the eigenfunctions c(O) and s(O), it is 
convenient merely to take the cosine and sine functions 
which constitute the dominant terms of the trial functions 
employed in estimating the stability boundaries. 

E. Summary of Mathematical Results 

We have established, in Sec. II, the following results, 
which are organized according to the section in which they 
have been established. 

A. Estimation of Stability Boundaries 
for a Mathieu Equation 

(1) For the Mathieu equation 

y"+[a+b cosNO]y=O, 

regions of instability are 
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a<-b2/(2N2), from Eq. (2.5); 

N 2/4-b/2<a<N2/4+b/2, 

from Eqs. (2.7) and (2.9); (2.60) 

N 2-b2/ (12N2) <a<N2+5b2/ (12N2), 

from Eqs. (2.11) and (2.13). 

(2) For the Hill equation 

y"+[a+/3 coswB+'Y cos2w8]y=O, (2.14) 

a region of instability exists for a between 

B. Approximate Solution of a Mathieu Equation 

For the Mathieu equation 

y"+[a+b cosNB]y=O, 

we take the solution to be, when v/N is small, 

y=Au[sin(vO+E)+(b/N2) sin(vO+E) cosNO 

(2.18) 

- (2bv/ N 3) cos(vB+E) sinNO], (2.28) 
with 

C. Stability Limits for a Hill Equation 

Stability limits for the equation 

y" +[a+b cosNB+ (c/2) cos(N- v:r)B 

(2.24) 

±(c/2) cos(N+vx)B+d cosvxB]y=O (2.30) 

are found associated with zones of instability as follows: 

(2.43) 

when the upper sign is taken; 

(2.44) 

when the lower sign is taken. 

(2.51) 

for either sign of the term which involves cos(N+vx)e. 
(3) If vx is replaced by 2vx in this last result, the equation 

y"+[a+b cosNB+(c/2) cos(N-2vx)O 

±(c/2) cos(N+2vx)8+d cos2vx8]y=O (2.61) 

has a zone of instability defined by 

(2.62) 

D. Estimate of the Characteristic Exponent 
in the Unstable Region ofa Hill Equation 

Summary: The lapse rate, p. nepers/rad, characterizing 
unstable solutions of the differential equation 

y"+ f(a,B)y=O (2.53) 

is given in terms of the eigenvalues a1, a2 and eigenfunc
tions c(B), s(B) associated with the boundaries of the un
stable region 

(2.58) 

(2.59) 

III. THEORETICAL ANALYSIS 

In this section we shall use the results of the previous 
section to analyze the behavior in the region of various 
coupling resonances. The various cases are treated in turn, 
and the results summarized in Sec. III F. 

A. The a,=2ay Resonance 

For the analysis of axial motion as affected by the rela
tively strong coupling resonance which prevails when u x 

lies in the neighborhood of 2uyo, it is sufficient to charac
terize the radial motion by a linear equation in u and to 
represent the coupling by inclusion of the term of the form 
uy in the axial equation. The equations considered then are 

u"+[ax+(f/w) cosNB]u=O, (3.1a) 

y"+[au- (f/w) cosN8- (f/w2)(sinN8)u]y=O. (3.1b) 

The solution to the u equation is then given by the results 
of Sec. II B as 

u=A[sinvxB+~ sinvxfl cosN8 
wN2 

fvx J -2- cosv:rB sinNB , 
wN3 

(3.2) 

where we have dropped the phase shift for convenience. 
Substitution of this expression for u into the y equation 
and neglect of terms in 2N8 then leads to 

[ 
AJ 

y" + ay- (J/w) cosN8--_- sinvxB sinNB 
wz 

(3.3) 

This equation is of the form of that considered in the 
first part of Sec. II C1 with the lower sign, viz., 

y" +[a+b cosNB+c sinv, sinNO+d cosvxB]y=O, (3.4) 

for which the stability boundaries are given by 

/ v}- (2vyo) 2 / = 2/ (v,bc/ N 3)+d /. (3.5) 

With the identification 

b=- f/w, c=-Af/w2, d=Afv,jwW3, (3.6) 
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the stability boundaries accordingly are given by 

[ Vx2 - (2vyo)2
[ =4(f2vx/w3N 3) [A [ (3.7) 

and the "threshold" amplitude for radial motion, above 
which y growth may occur, correspondingly by 

An estimate for the lapse-rate characterizing expo
nential growth in the unstable region is likewise obtainable 
directly from Eq. (2.58), Sec. II D 

(a- a1) (a2- a)(c2)(s2) 

J.L2= 0 

4(sc')(cs') 
(3.9) 

Since the differences of "a" are identical to differences vyo2 

and, for the present purpose, the functions c and s may 
be taken as proportional to the cosine and sine of viJ/2, 

J.L = { [vyo2 - (vyo) n[(vyo)22 -vyo2]/ l'x2 } t 

(3.10) 

( 
f ) 2(A2

- Athr2)! 
= 2.73 -- decades/sector. 

wN2 w 

In particular the maximum lapse-rate, for a given ampli
tude A, is given by 

( 
J 2 A 

/-Lmax = 2. 7 3 --) - decades/ sector. 
wiV2 w 

(3.11) 

B. The ux+2uv=27C Resonance 

An analytic treatment of small-amplitude axial motion 
in the case that <T x+ 2v v lies in the neighborhood of 27T may 
be based on the same differential equation as employed 
for discussion of the <Tx=2<Ty resonance, namely 

l
- AJ 

y" + au- (J/w) cosl\T(J-- sinvxB sin1YO 
w2 

Af2vx ] +-- cosvxB y= 0. 
UJ3JV3 

(3.12) 

In the present application it will be seen that the term in-

volving cosvzB in this last equation is of relatively small 
effect and hence that it would have been sufficient to make 
the substitution u=A sinvxB in the original y equation. 

We now refer to the results of Sec. II C, and in particular 
to Eq. (2.30) with stability limits as given by Eq. (2.51). 
We identify b=- f/w, c= -Aj/w2 [taking the lower sign 
in Eq. (2.30)], and d=Af2vx/w3N 3• Note that the term in 
2bd/N2 is negligible compared to c in Eq. (2.51), so that 
we find 

[ (N-vz)L(2vyo)2[ ""[c[ (3.13) 

= (f/w2
) [A I, 

with the threshold amplitude then being explicitly 

[A [ thr= (w2
/ J) [ (N -vx)L (2vuo)2 [ 

An estimate of the lapse-rate for y growth in the unstable 
region is again given by Eq. (2.58) with c and s now 
represented by circular functions of argument (N- vx)/2. 
Accordingly 

J.L={ (4~2A+[vyo2_(N~vzYJ) 

x( 4~2A-[vyo2- ( N~vxY]) I (N-vx)2
} 

f 1 (A 2
- Athi)! 

= 0.682- decades/ sector. (3.15) 
wN2 1-vx/N W 

The maximum J.L, for a given amplitude A, is 

J 1 A 
J.Lmnx=0.682- -decades/sector. (3.16) 

w1V2 1-vx/N w 

It is noted that for a sum resonance, such as the one con
sidered here, vx and "v cannot both be arbitrarily small in 
comparison to.JV. 

C. The ux = uy Resonance 

A narrow zone of instability would be expected to arise 
from ·a <Txo= <TYo resonance, in analogy to the second zone of 
instability for Mathieu's equation. Since, however, the 
resonance is second order in its dependence on the u ampli
tude A ,25 a consistent analysis of the problem requires con
sideration of (i) possible contributions from the u2y term 
in the y equation and (ii) supplementary terms, propor
tional to A 2, which will enter in uy when a solution to the 
nonlinear u equation is attempted. These features com
plicate the analytic work considerably, so we here under
take an· approximate treatment, taking J/wN2 and vx2/ iV2 

25 To emphasize the second-order nature of this resonance, it pre
ferably should be designated 2u~ = 2uy0• 
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to be small and employing for convenience 'at one point 
the "smooth-approximation" method.2 [Curiously, reten
tion of the u2y term appears to affect noticeably the inter
mediate steps of the analysis but not, in the present 
approximation, the final result.] An analysis which does 
not employ the "smooth approximation" has been made 
and shown to lead to the same results as the treatment 
given here. 

The equations with which we commence are, from Eqs. 
(1.2) and (1.5), 

u"+[a"+ f/w cosNO]u= -Hf/w2) sinNO u2, (3.17) 

y"+[au- f/w cosNO]y= (f/w2) sinNO uy 

- (f/2w3) cosNO u2y. (3.18) 

The solution of the u equation is now taken to be of the 
form previously taken from Sec. II B for use in analyzing 
the ux0= 2uuo resonance (Sec. III A), but supplemented by 
additional terms, proportional to A 2, obtained therefrom 
by a perturbation procedure, 

u= [A sinvxO+__!__ sinvxO cosNO 
wN2 

fvx ] 
-2-- cosvxO sinNO 

wN3 

JA2 [ 
+-- sinNO-cos2vx0 sinNO 

4w2Nz 

Vx J +~ sin2vx0 cosNO . 

For the purpose at hand we also take, then, 

(3.19) 

(3.20) 

In forming the coupling terms, we drop terms involving the 
sine or cosine of 2NO to obtain 

f f[ fvxA 
- sinNO U"'"- A sinvxO sinNO--- cosvxO 
w2 w2 wN3 

(3.21) 

and 

! 1 !A
2

[ ] --· - cosNO u2 ~ -- -·- sin2vx0 cosNO+-- sin2vx0 
2w3 2 w3 wN2 

1 jA
2

[ f f ] = --- sin2vx0 cosNO+----- cos2vx0 . (3:22) 
· 2 w3 2wN2 2wN2 

The differential equation for y now becomes expressible in 

the form 

j2A2 f ( A )] --- cos2vxO-- cos NO-- sinvxO y=O, 
8w4N 2 w w -

(3.23) 

with the "smooth-approximation equivalent"2 

or, recalling that vi is negligible compared to N 2, 

(3.25) 

The stability boundaries near v..,= vyo for this last 
equation may now be obtained by appeal to the results of 
Sec. II A 6 in which the Eq. (2.14) was considered. 

We set 

w=vx /3=2j2vxA/w3N3 
(3.26) 

a= vyo2+ (f2A 2/8w4N2) -y=- f2A 2/8w4N2 

and obtain from Eq. (2.17) 

wLf32/ (12w2)+-y/2 ~a~ w2+5f32/ (12w2) --y/2 

_ _2_ j2A2 ~ Vyoz_Vx2~ -~ j2A2 -~(-j-)2(A)2 
16 w4N2 16 w4N2 4 wN2 w 

the terms which arise from /32 being neglected since they 
involve an additional factor [f/ (wN2)]2. 

This approximate result for estimating the stability 
boundaries associated with the u ..,~uuo resonance suggests 
a relatively narrow zone of instability whose width is pro
portional to the square of the radial amplitude and which 
will be found exclusively for values of uyo below u .,. More
over, there thus appear to be two ''threshold" amplitudes 
(for specified vx, vyo), an upper limit . 

wN2 (vx2- vyo2)! 
IA21=4w---

f N 

=2ww;T (:Y-(U:o)T (3.28) 
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and the more pertinent lower limit 

wN2 (P,?- Pyo2)i 
I A1l = (4/v'J)w----

1 N 

wN
2[(u )2 (uy0)2]! = (2/v'J)wf . : - .. -;. . . (3.29) 

The lapse-rate which characterizes exponential growth 
in the unstable region may be estimated from the result 
of Sec. II D, noting that the functions c and s are now 
primarily represented by cosine and sine functions of vJ), 

and is conveniently expressed in terms of the threshold 
amplitude A 1, 

'=0.1477(-j-)2 N [(ALA?)(3AILA2)J! 

wN2 Vx ·w2 

decades/sector. (3.30) 

The maximum lapse-rate, for a given amplitude A, is then 
estimated to be 

( 
f )2 N(A)2 J.lmax=0.085 -- · - -. decades/sector. 

·wN2 Px .w 
(3.31) 

D. The 2ax+2ay=2?C Resonance 

In an analysis of the resonance to be expected when 
2u x+ 2uvo is close to 211", the obvious term to invoke in the 
y equation is the u2y term. It is necessary, however, also to 
consider the double-frequency (2Px) terms which can enter 
the term in uy by virtue of supplementary terms in u 
obtainable by a perturbation solution of the nonlinear u 
equation. It will appear that the direct contribution from 
the u2y term nonetheless definitely dominates. 

The solution of the .u equation is taken to be that em
ployed previously in Sec. III C, namely Eq. (3.19). In 
forming -HJ/w) (cosNO)u2

, the term of major importance 
in exciting the resonance of present interest is i(JA 2/w) 
cos2PJJ cosNO, although the .following terms might all be 
kept in mind: 

f JA2 JA2 
-- cosNO u2= -- cosNO+- cos2Px0 cosNO 

2w 4w3 4w3 

fA 2 fA 2 

---+--COS2PJJ+ · · ·. (3.32) 
4w4N2 4w4N2 

Likewise, the following terms might be noted to.arise from 

(f /w2)(sinNO)u: 

f fA 2 fA 2 

- sinNO u=----- cos2PJ). 
w2 _.8w4 N2 8w4N2 

(3.33) 

With the foregoing expressions for the U-'dependent 
terms, the differential equation for axial motion becomes 

y" +[a+b cosNO+c cos2vJJ cosNO 

+d cos2PJJ]y=O, {3.34) 
where 

· f (A) 2 

a=ay+terms of order-- - · , 
w2N~ w 

b= - ~ ·I 1 +terms of order(:) 

2

], 

c=-4~(:f, 
and 

f (A) 2 

d is of order-- - . . 
w2N 2 w 

This equation is of the form considered in Sec. II C [see 
Eqs. (2:61) and (2.62)], for w~ich the stability boundaries 

are represented by 

1 

2
bdl 

I (N -2Px)L (2Pvo)21 = c+ N
2 

• (3.35) 

In this last relation, Pvo2 refers to the square of the y fre
quency when the coefficients c and d vanish; it differs, 
however, only by terms of order (f2/w2N2)(A/w)2 from the 
square of the y frequency for A =0. The factor 2bd/ N 2, 

moreover, is less than c by a .factor of order [j/(wN2)]2. 
Regarding f/(wN2) as small in comparison to unity, we 
are .thus led to the result which would have been obtained 
if only the term HfA 2/w) cos2.PJJ cosNO intheu2 term had 
been retained, 

f (A) 2 

I(N-2Px)2-(2vvo)21 ,_ -. , 
4w w 

(3.36) 

this result involving A squared, as was also the case .for the 
2ux=2uvo resonance treated in Sec. IIIC. 

The threshold amplitude is correspondingly 

[
w ]~ 

lA lthr=2ui -. I {N-2Px)2- (2Pvo)21 • 
" f ' 

An estimate of the lapse-rate for the axial amplitude in 
the unstable region is given by Eq. (2.58) with c .and s 
represented by circular functions of argument (N -2vx)/2. 
Accordingly, 
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The maximum J.L, for a given amplitude A, is then 

J 1 (A)2 J.Lmax=0.17-- . - · decades/sector, 
wN21-2v,jN w 

(3.39) 

with a quadratic dependence on A. 

E. The 3u,+2uy = 2?t Resonance 

Examination of this fifth-order resonance is complicated 
by the need for an appropriate solution of the nonlinear 
radial equation. The resonance will be driven by terms in 
they equation of frequencies 3v,, 3v,±N, 3v,±2N, · · ·, 
and we keep only the dominant first three terms. 

Solving the u equation [Eq. (1.2)] by perturbation 
theory and, dropping terms of order (v,/N) 2 and [f/ (wN2

)]
2 

compared to unity, we obtain 

u=A[sinvJJ+__::C__ sinvj} cosNO- 2(-....::C__)v"' cosvJ]sinNo] 
wN2 wN2 N 

jA2 [ 4v, l 
+-- sinN8-sinN8 cos2vJJ+-· cosN8 sin2vJJ 

4w2N2 N 

jAa [ 6v, J +---. sin3vJJ cosN8-- cos3v,8 sin2V8 , 
48w3N2 N 

(3.40) 

where certain secular terms have been dropped, and corre
spondingly, v, is the frequency associated with amplitude 
A rather than zero amplitude. (See reference 8 for a de
tailed derivation.) If tills solution is inserted into the y 
equation [Eq. (1.5)] and terms of frequency 3v, and 
3v,±N are retained, we obtain 

[ 
f fA 3 (7v,) 

y" + a~;-- cosNe+-- . - cos3vj} 
· w w5N 3 16 

jA 3 sin3v, sinN8] 
------y=O, 

24w4 
(3.41) 

which, upon comparison with Eqs. (2.30) and (2.51), yields 

fAa 
I (N-3v,)2- (2vyo)2

1 =-. 
24w4 

The threshold is consequently given by 

(3.42) 

_ (3wN
2
)tl ( 3u,)2 (uy0)2Jt 

Athr-2W -- 1-- - - , 
f 27r . 7r 

(3.43) 

while use of Sec. II D yields for the laps~.-rate 
'• 

J.L=0.0284 (__::C__) 1 [(A) 6 

_ (Athr)
6]! 

wN2 1-3v,/N w w 

decades/ sector, (3.44) 

and a maximum lapse-rate for a given amplitude A of 

( 
f ) 1 A 

3 

J.Lmax=0.0284 -- (-) 
, wN2 1-3v,/N w 

decades/sector. (3.45) 

A similar analysis could be made for the 3u,-2uu=27r 
difference resonance, but operating points in the neighbor
hood of this resonance line are considered to be of lesser 
interest for the design of FFAG accelerators and no 
computational results have been sought for such points. 

F .. Summary of the Theoretical Results 

We have established in Sec. III the following results, 
which are organized according to the section in which 
they have been established. 

A. The o:,= 2uv Resonance 

1 (wN2)2 Nl (O" )2 ( uy0)21. 
lA lthr=16 -

1
- llx : - 2--; ' (3.8) 

( 
f )2 (A2-Athr2)i 

J.L=2.73 - decades/sector, (3.10) 
wN2 w 

( 
f )

2 
A J.Lmax=2.73 -- -decades/sector. 

wN2 . w 
(3.11) 

B. The u ,+ 2u v = 21r Resonance 

(3.14) 

f 1 (A2-Athr2)t 
J.L=0.682---------

wN2!-v,/N w 

decades/sector, (3.15) 

f 1 A 
J.Lmax=0.682- -decades/sector. (3.16) 

wN2 1-v,/N w 

C. The u,=uv Resonance 

(wN2) [(()" "')2 (uy0)2Jt IA2I=2w - - - - , 
f 7r 7r 

(3.28) 
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_ 2 (wN
2)[(Ux)2 

(uy0 )2]~ IAII----w - - - - ' 
v'J f 7r 7r 

(3.29) 

( 

j ) 2 N [(ALAl)(3A 1LA2)]! 
J.L=0.1477 - ----------

wN2 Vx w2 

decades/ sector, (3.30) 

f )2 N(A )2 J.Lmax=0.085(-- - - decades/sector. 
. wN2 Vx w 

(3.31) 

D. The 2ux+2u11 =27r Resonance 

1 Althr=2w(w;)!j(1-:Y-C:o)T· (3.37) 

f 1 (A4-Athr4)~ 
J.L=0.17--------

wN21-2vx/N w2 

decades/ sector, (3.38) 

1 1 (A) 2 

J.Lmax = 0.17-- - decades/ sector. 
wN21-2vx/N. w 

(3.39) 

. E. The 3ux+2uy=27r Resonance 

_ (3wN2)ll ( 3ux)
2 (uy0

)

21l Athr-2W -- 1--:-- - - 1 (3.43) 
f 27r 7r 

J.L=0.0284(_!_) 1 [(A )6 

_ (Athr)
6Jt 

wN2 1~3vx/N w w 

decades/sector, (3.44) 

J.Lmax=0.0284(_!_) 
1 

(A)
3 

wN2 1-3vx/N w 

decades/sector. (3.45) 

IV. COMPUTATIONAL STUDIES OF THE 
SIMPLIFIED EQUATIONS 

In this section we shall describe certain computational 
studies which were made of the simplified equations used 

The ox = 2 (y Resonance 

- Fcorn Computer Output 
---- E,limated From Computer Output 
---Theoretical Rasonance Boundaries 

2.C 
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I 
I 
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0.5 
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-'----
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~ f '\, 

\ 1/ 
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.4 5 .50 .55 .45 .50 .55 

}'II;, 

FIG. 1. Resonance 
boundaries in the region 
of <Tx = 2uy, both theo
retically predicted and 
according to computa
tions employing the sim
plified equations used in 
the theoretical analysis. 

in the theoretical analysis. A more detailed description of 
this work can be found in reference 7, and the authors are 
indebted to Mr. Roger Mills for permission to use his 
results in this section. It will be seen that the agreement 
between the theoretical results and the computations is 
reasonably good; and the reader who is willing to accept 
these results may turn to the computational studies of the 
equations governing particle motion in an actual accel
erator, as are described in Sec. V. 

The various resonances studied in Sec. III will be treated 
in turn, with the exception of the high-order resonance 
3ux+2uy=,27r which was not subject to the study of this 
section. 

A. The ax= 2av Resonance 

1. Equations 

The theoretical treatment of this resonance (Sec. III A) 
employs the linear equation for the vertical motion 

y"+[a+b cosNO+c sinvxO sinNO+d cosvxO]y=O (4.1) 

with the resonance boundaries given (Sec. II C) by 

vy0
2
= (~Y-:~: -~, 

(4.2) 

and a maximum lapse-rate obtained as in Sec. III A to be 

7r I be d I J.Lmax=- -+- nepers/sector. 
N N 3 Vx 

(4.3) 

The mathematical study was undertaken by identi
fying the parameters of Eq. (4.1) as 

a= a," b=- f/w, c= -Axf/w2, d=AxvxP/(w3N3
), (4.4) 

and then choosing vx= 1, w= 1/20, j= 1/4, and N =5 or 8, 
as would be characteristic of a model-size accelerator. The 
value of a was chosen so as to vary vyo through the reso" 
nance, while the amplitude Ax in effect was adjusted by 
the independent variable c. 

2. Results 

Figure 1 shows the portions of the-stability diagrams for 
this resonance, and the ·theoretical boundaries. It can be 
seen that the resonance as described by the computer tends 
to "bend" toward lower values of vyo as c increases. How
ever, when c$1, the agreement is fairly good. 

Because of the "bending," it would be expected that 
lapse-rate comparisons between theory and the output at 
the same vyo would be rather poor. Perhaps though, it is 
possible to compare tlie maximum theoretical and ob
served lapse-rates at a given value of c, and thus at least 
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TABLE I. Comparison between computational results employing 
simplified equations and theoretical predictions for the maxim~m 
lapse-rate, in the neighborhood of the ux = 2uu resonance, as a function 
of the coupling parameter c. 

P.max (nepers/sector) 
Theoret Obs 

0 0 0 
N=5 0.5 0.0251 0.0283 

1.0 0.0503 0.0540 

0 0 0 

N=8 1.00 0.0077 0.0079 
1.43 0.0110 0.0125 
1.83 0.0140 0.0153 

get an upper limit on the lapse-rate. This comparison is 
shown in Table I, where it can be seen that the agreement 
is fairly good even when the "bending" has become 
pronounced. 

B. The a,+2av=2?t Resonance and the 
2a,+2av = 2?t Resonance 

1. Equations 

The theoretical treatment of these resonances employs 
the linear equation [Eq. (4.1)] with resonance boundaries 
for the first resonance giveri (Sec. II C 3) by 

(2vuo) 2= (N- v,)L (c+2ba/ N 2), 

(2vuo) 2= (N- v,)2+ (c+2bd/ N 2). 

(4.5) 

The maximum lapse-rate may be found as in Sec. III B, 
and is 

1r I c+2bd/ N 2
1 

J.l.mnx = nepers/sector. ( 4.6) 
2N(N-v,) 

The second resonance yields the same results except for 
the substitution of 2v, for v, and hence does not require a 
separate mathematical check. 

The numerical study proceeded as in the previous sec
tion, with the variable c taken as the independent variable 
and the coefficients evaluated in terms of the same accel
erator parameters. 

2. Results 

Figure 2 gives a comparison of the predicted and ob
served resonances, which is seen to be quite good. The 
maximum lapse-rates are compared in Table II. 

C. The a,=av Resonance 

1. Equations 

The mathematical methods employed in the study of this 
resonance (Sec. III C) may be checked by starting with 
the equation 

y"+[av-d+b cosNO+c cosv,,+d cos2v,, 

+e sinv,, sinNO+g sin2v,, cosNO]y=O, (4.7) 

c 

The fx+2(y=2Tf Resonance 
--Curves From Computer Output 
---Theoretical Resonance Boundaries 

N•S N•B 

~ I 
1 
I 
7 

J 

3.45 3.50 3.$ 

FIG. 2. Resonance boundaries in the region of u,+2u.=211', both 
theoretically predicted and according to. computat!ons employing the 
simplified equations used in the theoretical analys1s. 

with the following conditions on the coefficients: 

b= -e2/(2g), 

(c/ v,) 2« I d I, 
[e'/(2gN3)]«1dl. 

It can be seen that, by making the identifications 

b=- J/w, c= f2v,A/(w3N 3), d=- j2A2/(8wW2), 

e=- fA/w2, g= jA 2/(2ui), 

(4.8) 

(4.9) 

and employing the fact that A/w«l, Eq. (4. 7) is identical 
with Eq. (3.23); the latter formed the basis for the analysis 
of the (]',;=(]'y resonance. That the inequalities of Eq. (4.8) 
are satisfied by the substitution of Eq. (4.9) may be 
easily seen to only require [J/(wN2)]2 <1. 

Analysis now proceeds by "smooth approximation", as 
was employed following Eq. (3.23), Sec. III C, to yield 

y"+[(ay-d+~. ) 
8g2N2 

+ ( c~:~- )cosv,,+d cos2v .cO Jy= 0. ( 4.10) 

TABLE II. Comparison between computational results employing 
simplified equations and theoretical predicti~ns for the maximum 
lapse-rate, in the neighborhood of the ux+2uu=211' resonance, as a 
function of the coupling parameter c. 

P.max (nepers/sector) 
c Theoret Obs 

0 0 0 
N=5 0.5 0.0393 0.0566 

1 0.0785 0.0976 

0 0 0 
N=8 0.5 0.0140 0.0148 

1 0.0281 0.0292 
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. TA~LE III. C?mparison between computational r:esults employing 
. simplified equatwns and theoretical preductions for the maximum 
lapse-rate, in the neighborhood of the u. =u. resonance as a function 
of the coupling parameter c. ' 

N=5 

N=8 

c 

0 
0.3 
0.5 
1 
2 

OJ j 
0.5 
1 
2 

JJ.max (nepers/sector) 
Theoret Obs 

0 
0.000141 
0.000392 
0.00157 
0.00628 

0 
0.000096 
0.00038 
0.00153 

0 
0.000138 
0.000512 
0.00165 
0.0130 

0 
0.00006 
0.00040 
0.00169 

Employing the relation vyo2 ~ay+b2/2Jif2 =ay+e4/8g2N2, 

and the results of Sec. II A 6 [Eq. (2.17)], we obtain 
[after use of Eq. (4.8)] for instability the condition 

{

v.2+!d 
vyo2 lies between and (4.11) 

v.2+!d. 

This may be seen to agree with Eq. (3.27) after use of 
Eq. (4.9). 

The maximum lapse rate is given by 

7r[d[ 
f.Lmax=-- nepers/sector. 

2v.N 
( 4.12) 

2. Results 

The numerical studies employed Eq. ( 4. 7) with the 
identifications of Eq. (4.9) and the choice of parameters 
used in Sec. IV A. It can be seen that the inequalities are 
in fact satisfied, and the results are exhibited in Table III 
and Fig. 3. 

V. COMPUTATIONAL STUDIES OF THE ACTUAL 
ACCELERATOR EQUATIONS 

In this section we will describe some of the computa
tional studies made of motion in spiral sector FFAG accel-

The lfx :If y Resonance 
-From Computer Output 
---Theoretical Resonance Boundaries 

N•S N•8 

o.sl----+----11 

ob----::1:----,J. 
.98 .99 1.00 .995 1.00 

~ 

FIG. 3. Resonance boundc 
aries in the region of u x = u "' 
both theoretically predicted 
and according to computa
tions employing the sim
plified equations used in the 
theoretical analysis. 

FrG. 4. Schematic graph 
illustrating y growth near 
u.=2u •. The parameters 
for this operating point are 
k=0.668, 1/w= 19.6, f i, 
and N = 5, resulting in u./1r 
=0.5400 and o'v/7r=0.2365. 
High frequency, small- am

'plitude components of Kv 
have been smoothed out. 

erators operated in the region of coupling resonances. A 
more detailed description of this work may be found in 
references 5, 6, and 9, and the authors are indebted to 
Mr. C. A. Lassettre for permission to use his results in this 
section. The various· resonances studied will be treated in 
order, with most of the results exhibited in graphical and 
tabular form. 

In all of these st,udies, "runs" were made in which the 
computer was used to integrate the coupled equations of 
motion subject to the initial conditions uo' =Yo'= 0, while 
uo was varied, and y 0 taken to be very small. The small 
amplitude tunes were usually determined by auxiliary 
runs which were also used to determine the coefficients in 
the "y invariant" Ky (recall the discussion in Sec. I). The 
resulting KY was plotted as a function of the number of 
sectors traversed, and a typical set of such runs is indi
cated in Fig. 4. In this figure we have smoothed KY so as 
to remove small amplitude and wavelength fluctuations of 
the order of a few sectors. From these graphs, the ampli
tude of radial motion for which y growth is initiated may be 
determined,26 as well as the lapse-rate of the motion in the 

TABLE IV. Computational parameters used in the studies· of the 
u. = 2uv resonance, .and the resulting tunes·. For this study N = 40 
and J=t, with a sinusoidal median plane field. 

Point 1/w k u./1f Uy/1f 

1 896.0 26.52 0.2693 0.1106 
2 901.3 26.32 0.2675 0.1170 
3 906.6 26.12 0.2667 0.1232 
4 910.2 25.99 0.2662 0.1271 
5 913.7 25.85 02664 01309 
6 917 3 25.72 0.2654 0.1347 
7 920.8 25.59 0.2650 0.1382 
8 924.4 25.45 0,2644 0.1420 
9 927.9 25.32 0.2643 0.1454 

26 This may usually be done most accurately by determining the 
lapse-rate for various u amplitudes, and then plotting the lapse-rate 
against the radial amplitude and extrapolating to zero rate of growth. 
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.6 The fx=21fy Resonance 
\ -Theoretical Curve 

s gb 
---Estimated- /I 

\ / 
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FIG. 5. A comparison between theoretica] and computational studies 
in the neighborhood of u.=2uy. The graph shows the amplitude of 
radial motion at which y growth starts, as a functiOn of "tune." 

region of growth. Finally, plots are made of radial ampli
tude .for initiation of y growth as a function of "tune." 

It will be realized that the computational study of a 
resonance, especially as a function of machine parameters, 
is an extremely lengthy (and consequently expensive) 
process. Studies were limited to two ranges of parameters.: 
models (typically with k=0.7, 1/w=20, j=i, N=S), and 
full-scale accelerators (typically with k=26, 1/w=900, 
f = t, N =40). The comparison between theory .and experi
ment is a sensitive function of flutter-being good only for 
small j (the modifications of the basic equations are severe 
for f not small compared to unity), but is only slightly im
proved as N is increased. This is presumably because the 
nonscaling terms (which are ignored in the analysis, and 
decrease in importance as N increases) are not the major 
source of error. 

A. The 11x=2"u Resonance 

The threshold amplitudes found in a computational 
study of the (J'x=2uv resonance in large accelerators, are 

TABLE V. A comparison between theoretical and computational 
results for the lapse-rate in the.neighborhood of the ux = 2uy resonance. 
The points refer to Table IV. 

Ux-2u11 .Uobs )ltheoret 

uoX104 (decades/sector) 
7r 

0.0335 -10 0.0552 0.0438 
Point 2 - 8 0.0634 0.0268 

- 6 0.0167 .0:0132 

0.0120 -10 0:0544 ·0.0493 
8 0:0427 0.0390 

Point 4 - 6 0.0304 0.0286 
- 4 0:0195 0!0176 

-0:0040 -10 0.0499 ;0.0511 
8 0.0386 0.0408 

Point 6 - 6 0.0287 0:0304 
- 4 0.0188 0.0198 

-'0.0196 -10 0:0464 ·0;0490 
8 0.0358 0.0375 

Point 8 6 .0.0231 0.0250 
- 4 0.0095 0.0085 

TABLE VI. Computational parameters used in the studies of the 
.u.+2u.=2tr resonance, and the resulting "tunes." For this study 
N=40 and/=!. with a sinusoidal median plane field. 

Point 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1/w 

2395 
2390 
2385 
2380 
2375 
2370 
2365 
2360 
2355 
2350 

k 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 

0.3066 
0.3064 
0.3041 
0.3043 
0.3014 
0.3017 
0.3018 
0.3021 
0.3025 
0.3031 

0.8681 
0.8627 
0.8575 
0.8523 
0.8474 
0.8426 
0.8379 
0.8333 
0.8288 
0.8245 

depicted in F~g. 5, where the semiquantitative agreement 
between the theoretical predictions and the computational 
results may be seen. The results for model size accelerators 
are ·similar. 5 

The parameters used in the computation are listed in 
Table IV. The comparison between computed and theo
retical lapse-rates for full-size accelerators is presented in 
Table V. 

B. The 11x+211u=2?t Resonance 

Figure 6 summarizes the computational studies in large 
size accelerators. The parameters are listed in Table VI. 

Comparison between computational and theoretical re
sults for the lapse-rate are presented in TableVII. Similar 
results have been obtained for model size accelerators, 6 but 
are not included here. 

C. The 11x=11y Resonance 

The parameters of the computational studies are listed 
in Table VIII, while the computational results are de
picted on Fig. 7. In Table IX we have compared the com
putational results with theory, for a few characteristic 
points. 

With regard to the lapse-rate, we consider point 4 with 
u= -0.000306. The lapse-rate calculated from the theo-. 

6 

2 

The <f"x+2 <fy =211 ·.Resonance 

-Theoretical Cur.ve 
--.Estimated Computational Results 

10 

' 'o~ 
o Computational Threshold 

' 'os 
' 'o. 

]'-. 6 

Fro~ 6. A companson ·between theoretical and computational 
studies in the neighborhood of u,+2uv=2tr. The graph shows the 
amplitude .of radial motion at which y growth starts, as a function 
of ·"tune." 
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The lfx -ll"y Resonance 
0.1 -Theoretical Curve 

I Computational Results-Gr 0 a 
O.l 0 o Computational Results-No G 6 I 1 

---Estimated Canputalional Tt-reshold$ 

0.0 I Notch = 0.005 

-0.030 -0.020 -ODIO 0 

¥(-~ 

FIG. 7. Altitude chart of lapse-rate in the neighborhood of ux=<ru 
for <r""0.3h. In this study,/=!, N=50, the median plane field is 
sinusoidal, 1/w=2500, and k is given in Table VIII. In this graph the 
horizontal axis was shifted slightly to make the J.<o = 0 vertex of the 
unstable zone coincide with an abscissa of zero. This was necessary in 
view of small systematic errors in the computational determination 
of the "tune." One notch is 0.005 decades/sector. 

retical estimate using the observed value of A 1, is 0.0157 6 

decades/sector and the observed lapse-rate for this case 
is 0.0125 decades/sector. 

We were surprised that an early computational search 
for the 2CT x= 20" y resonance with parameters characteristic 
of models (N = 5) failed to reveal its presence. It may be 
that the search was misdirected because, as we now find, 
the zone of instability is associated with values of O"y con

siderably less than u x; when the machine size becomes small, 
however, our basic equations are a less accurate description 
of the motion and the characteristics of a narrow resonance 
may depart significantly from the description in this report. 

D. The 2u x + 2au = 2?t Resonance 

In Table X are listed the parameters used in the compu
tational study of this resonance, while Fig. 8 displays the 
results. 

In Table XI we compare lapse-rates for two character
istic points. 

It can be seen that for the higher order resonances the 
agreement between theory and computational results is 
decidedly poorer than for the lower order resonances. Pre
sumably, this is due to the interaction between the lower 
order resonances and the one under study-an effect 
ignored in the theoretical analysis. 

E. The 3u"'+2av =2?t Resonance 

Computational studies6 of this resonance, for an accel
erator with J~l, indicated that the width of resonance 
varied with amplitude as expected theoretically, but with 
a numerical coefficient differing by a factor of ten from the 

TABLE VII. A comparison between theoretical and computational 
results for the lapse-rate in the neighborhood of the ux+2uu = 2 ... 
resonance. The points refer to Table VI. 

)lobe }Ltheoret 

uoX105 (decades/ sector) 

-10.0 0.0959 0.0694 
9.0 0.0853 0.0619 
8.0 0.0760 0.0544 
7.0 0.0638 0.0467 

2.0318 6.0 0.0532 0.0389 
5.0 0.0437 0.0307 

Point 2 - 4.0 0.0300 0.0218 
- 3.0 0.0149 0.0107 

-10.0 0.0929 0.0709 
9.0 0.0822 0.0638 
8.0 0.0739 0.0566 
7.0 0.0635 0.0494 

2.0089 6.0 0.0550 0.0422 
5.0 0.0453 0.0350 

Point 4 4.0 0.0347 0.0278 
3.0 0.0243 0.0204 
2.0 0.0147 0.0127 

-10.0 0.0912 0.0706 
9.0 0.0818 0.0635 
8.0 0.0727 0.0565 
7.0 0.0625 0.0494 
6.0 0.0538 0.0423 

1.9962 5.0 0.0444 0.0352 
4.0 0.0336 0.0280 

Point 5 3.0 0.0248 0.0209 
2.0 0.0163 0.0136 
1.0 0.0070 0.0060 

-10.0 0.0862 0.0691 
9.0 0.0766 0.0620 
8.0 0.0682 0.0548 
7.0 0.0580 0.0476 

1.9776 6.0 0.0502 0.0403 
5.0 0.0408 0.0329 

Point 7 4.0 0.0292 0.0253 
3.0 0.0201 0.0172 
2.0 0.0086 0.0071 

theoretical expectation. On the assumption that for a 
smaller flutter the agreement would be improved, extensive 
computations were undertaken for an accelerator with 
J=t. The increased agreement with theory more than 
justified this expectation, altho,ugh the agreement when 
f =! is still not as good as for the lower order resonances. 

Parameters are listed in Table XII, and the results 
presented in Fig. 9. 

In Table XIII are presented the results for the lapse-rate, 
as well as a comparison with the theoretical predictions. 
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TABLE VIII. For the study of the <Tz =uu resonance N = 40, f = l, 
1/w=2500, and k was chosen as indicated in the table. The resulting 
"tunes"· are also tabulated. 

Point k uxo/1r uyo/11" 

1 81.7 0.3854 0.3564 
2 80.4 0.3826 0.3577 
3 79.1 0.3798 0.362. 
4 77.8 0.376, 0.3661 
5 76.5 0.3741 0.369, 
6 75.85 0.3727 0.371o 
7 75.2 0.371a 0.372. 
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TABLE IX. For three of the points of Table VIII, a comparison is 
given between the theoretical and computed threshold amplitudes 
for y growth. 

Point 

3 
4 
5 

uyo uxo 

-0.0169 
-0.0108 
-0.0047 

0.00028 
0.00023 
0.00018 

VI. DISCUSSION 

I A 11 theoret 

0.00021 
0.00017 
0.00011 

In addition to the resonances reported here, for which 
positive evidence of y growth was obtained, operating 
points near 2uxo""3uyo and others near 3uxo+uyo""27r were 
also studied. These latter resonances (for which the 
coefficient of uyo is odd) showed no evidence of y growth, 
in agreement with theoretical·expectations. 

• TABLE X. Computational parameters used in the studies of the 
2u.+2uu=21!" resonance, and the resulting "tunes." For this study 
N=40, and/=!, with a sinusoidal median plane field. 

Point 1/w k <Tx/11" <Ty/11". 

1 2241 27.03 0.2982 0.7552 
2 2233 26.72 0.2945 0.7516 
3 2225 26.40 0.2915 0.7471 
4 2217 26.09 0.2877 0.7431 
5 2207 25.70 0.2890 0.7382 
6 2196 25.31 0.2858 0.7328 
7 2188 25.00 0.2809 0.7290 
8 2180 24.69 0.2780 0.7252 
9 2172 24.38 0.2752 0.7215 

10 2157 23.81 0.2685 0.7146 
11 2142 23.23 0.2611 0.7079 

For the resonances treated in the present report, the 
computational results and the theoretical estimates are in 
fair agreement-generally within a factor of two. This 
agreement may be considered satisfactory at this stage in 

4 

A-10 

The 2 o'x .. 2oy=2TT Resonance 

-Theoretical Curve 
---Estimated Computational Results 
x Computational Results-Growth 
o Computational Results-

0 
10 

No Growth 

0~----~~~-e~----~~__J 1.93 1.98 21J 2.()3 21J8 
. 24"Xfi24"y 

FIG. 8. A comparison between theoretical and computational studies 
in the neighborhood of 2ux+2u.=21!". The graph shows the amplitude 
of radial motion at which y growth starts, as a function of "tune". 

The 3<1"x+2<f"y=2Tf Resonance 

4 

-Theoretical Curve 

---Estimated -
Computational Results 

o~~~~~~~~~~~~-~ 
1.988 1.994 2.0 2.006 2012 

~ 
FIG. 9. A comparison between theoretical and computational studies 

in the neighborhood of 3ux+2uy = 21!". The graph shows the amplitude 
of radial motion at which y growth starts, as a function of "tune". 

view of (i) the data inaccuracies associated with deter
mining the small-amplitude oscillation frequencies and 
extrapolated thresholds, (ii) the approximations inherent 

TABLE XL A comparison between theoretical and computational 
results for the lapse-rate in the neighborhood of the 2u.+2uu=211" 
resonance. The points refer to Table X. 

.Uobs J.ttheoret 

Point uoX 104 (decades/sector) 

8 -2.0 0.0537 0.0149 
-1.8 0.0415 0.0120 
-1.6 0.0302 0.0093 
-1.4 0.0206 0.0068 
-1.2 0.0134 0.0046 
-1.0 0.0074 0.0023 

9 -2.0 0.0555 0.0147 
-1.8 0.0439 0.0118 
-1.6 0.0334 0.0091 
-1.4 0.0241 0.0067 
-1.2 0.0170 0.0045 

in the analytic work. We would like to infer, therefore, 
that the equations presented in this report afford a 
semiquantitative account of the resonances considered, 

TABLE XII. Computational parameters used in the studies of the 
3ux+2uu= 211" resonance, and the resulting "tunes." For this study 
N=40 and/=!, with a sinusoidal median plane field. 

Point 1/w k <Tx/11" Uy/11" 

1 1695 69.2 0.4463 0.3387 
2 1692 69.0 0.4447 0.3378 
3 1688 68.7 0.4436 0.3369 
4 1686 68.5 0.4438 0.3366 
5 1684 68.3 0.4431 0.3363 
6 1682 68.2 0.4425 0.3356 
7 1678 67.9 0.4416 0.3347 
8 1671 67.3 0.4414 0.3334 
9 1664 66.7 0.4404 0.3320 
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TABLE XIII. A comparison between theoretical and computational 
results for the lapse-rate in the neighborhood of the 3ux+2u.=2?r 
resonance. The points refer to Table XII. 

,U.oba ·,Utheoret 

Point uoX 104 (decades/ sector) 

-5.0 0.0659 0.0333 
-4.5 0.0474 0.0234 
-4.0 0.0294 0.0150 
-3.5 0.0136 0.0072 

3 -4.0 0.0312 0.0164 
-3.8 0.0261 0.0138 
-3.6 0.0197 0.0114 
-3.4 0.0158 0.0091 
-3.2 0.0120 0.0070 

6 -3.5 0.0195 0.0108 
-3.3 0.0159 0.0089 
-3.1 0.0128 0:0072 

8 -4.5 0.0462 0.0219 
-4.0 0.0302 0.0142 
-3.5 0.0151 0.0073 

when the median plane field has a sinusoidal variation 
characterized by a modest flutter factor (f=l, or smaller). 

As was pointed out in the Introduction, the viewpoint 
taken in the analysis has been that a prescribed u oscillation 
is assumed for the radial motion and is introduced into a 
linear differential equation for y which is taken to charac
terize the axial oscillations. If large axial amplitudes are 
built up, the radial motion will certainly be affected, how- . 
ever, and the amplitude of radial oscillations has then been 
seen to decrease noticeably in certain cases. 

It is of interest to extend this investigation, possibly 
with a more refined theoretical approach, to cases in which 
the flutter factor f is large (so that additional terms, which 
here could be considered negligible, become important) 
and to cases in which a significant harmonic content is 
present in the magnetic field {as for separated-sector 
structures). Theoretical.efforts in this direction by Parzen11 

have had considerable success. 
Interpretation of the "leveling off" which the y growth 

may exhibit (cf. Fig. 4) is beyond the scope of this work, 
but considerable progress in this direction has been made 
by Symon and co-workers12 using· the methods of Moser.13 

The danger that y growth arising from a difference reso
nance (which might be innocuous in itself, as is predicted 

by the theory) would aggravate the effects of other reso
nances is a subject needing further study. A brief report of 
such a study of the ux= 2u 11 resonance, correlated with ob
servational experience acquired with a FF AG model has 
been reported elsewhere.4 

Computations directed to a study of "turnover",l2 

suggest questions concerning the ultimate stability of 
particles whose axial motion is subject to growth and 
exhibits turnover. The repeated rise and fall of y amplitude 
in such cases appears to conceal an ultimate instability 
which is observable only if undesirably protracted runs 
are made. 

The phenomena discussed here of course have their 
analogues in "machine resonances," which may be en
gendered when misalignments are present. It would be 
desirable ultimately also to obtain a semiquantitative 
understanding of the corresponding effects produced by 
such imperfections, both in regard to their ability to excite 
machine resonances and with respect to their effect on the 
true stability or instability of orbits strongly affected by 
some inherent sector resonance. It may be noted that one 
can expect to encounter certain imperfection resonances 
whose analogous sector resonances are absent by virtue of 
median-plane symmetry, since in the presence of mis
alignments symmetry about the "median-plane" need no 
longer obtain. 
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5.3.1. Introduction 

High-energy particles are used for research in nuclear and elementary
particle physics, for tracer production, and for industrial and biomedical 
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applications of high-energy radiation. The desired high energies are impart
ed to such particles by means of particle accelerators, of which the chief 
types are (1) the linear accelerator, (2) the betatron, (3) the microtron, 
(4) the cyclotron, (5) the synchrocyclotron, and (6) the synchrotron. A 
connected discussion of several types of high-energy accelerators has b~en 
given by Livingood (1961) and Bruck (1966), and principles and techniques 
applicable to the design of synchrotrons and linear accelerators have been 
presented in detail by Livingston and Blewett (1962). Green and Courant 
(1959) have extensively reviewed specific proton synchrotrons, and Judd 
(1958) has given a broad discussion of several significant new concepts in 
accelerator design. 

The principles of alternating-gradient focusing, frequently ter,med 
.. strong focusing," can be applied advantageously to the design of accelera
tors of each of the aforementioned types, and only through the use of these 
principles has it proven practicable to design synchrotrons for the produc
tion of particles with energies of tens of GeV.1 In this chapter we treat 
chiefly the application of strong focusing to high-energy synchrotrons, but 
many of the principles find a parallel application to other types of particle 
accelerators . 

A. NATURE AND LIMITATIONS OF CONVENTIONAL SYNCHROTRONS 

The synchrotron, in its most elementary form, employs a magnetic field 
throughout an annularly shaped region in order to guide and to focus the 
particles as they gain energy within the vacuum chamber of this accelerator. 
Energy is added to the particles by radio-frequency (rf) fields, applied to 
one or more drift-tube structures or developed within resonant cavities. 
The strength of the magnetic field is caused to rise during the acceleration, 
either by application of a pulsed wave form or by resonant excitation of the 
magnet circuit, so as to maintain a constant equilibrium-orbit radius for 
particles of increasing energy and momentum. The frequency of the rf 
fields increases concurrently in direct proportion to the angular velocity 
of the accelerated particles. Stability of energy oscillations about the energy 

1 1 GeV = to• eV. The highest energy weak-focusing proton synchrotrons in existence 
are the 10-GeV "synchrophasotron" at the Joint Institute for Nuclear Research, Dubna, 
U.S.S.R., and the 12.5-GeV "Zero-Gradient Synchrotron" at the Argonne National 
Laboratory, Lemont, Illinois. The latter accelerator actually is designed so that a uni
form field is produced within the eight sectors that constitute the guide magnet ("zero 
gradient"), and supplemental focusing is introduced by "edge focusing" that results from 
the provision of slanting edges at the ends of each of these octant blocks. 
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that is appropriate to t[~e frequency of the acceleral;ng system at any in
stant results from the principle of phase stability discovered independently 
by Veksler (1944a, b, 1945) and McMillan (1945). An accurately program
med relationship between the rf frequency and the instantaneous strength. 
of the magnetic guide field can be obviated by the use of a "phase lock" 
system that enables the accelerated groups of particles to control the rf 
system (Green and Courant, 1959, pp. 289-293). 

A synchrotron is of the "constant-gradient" type if the focusing character 
of the field is the same at all azimuthal positions around the accelerator. 
The radial variation of the magnetic field normal to the median plane, at 
points in the neighborhood of a circular equilibrium orbit of radius R, is 

·conveniently characterized in such a case by the "field index" 

R dB 
n =- B dR (1) 

and the frequencies of small-amplitude radial and axial oscillations about the 
equilibrium orbit then are given in units of the orbital frequency by (Kerst 
and Serber, 1941) 

Qr = fr/fo = (1 - n)112 

Q, = fvl!o = (n)1
'
2 

(2a) 

(2b) 

respectively. It is seen that the requirement of stability with respect to mo
tion in both transverse dimensions requires that 0 < n < 1 and, hence, 
that Qr and Q,, be less than unity. An angular spread, ± b8, of a beam 
injected onto the equilibrium orbit, or an angular deflection resulting from 
a field error or similar misalignment, thus can lead to sinusoidal oscillations 
of an amplitude as great as 

A= (R/Q) ofJ (3) 

More explicitly, an aperture of linear half width A could accommodate a 
beam whose emittance in position-angle phase space for one transverse 
degree of freedom is limited to an elliptical region of area 

Y =nor OfJ = nQA2 /R (4) 

It is informative to consider the implications of Eq. (4) with respect to 
single-turn injection of a group of particles into a constant-gradient syn
chrotron. Thus, for example, if one planned to inject a beam that occupied, 
in the phase space of one transverse dimension, an area of (2 X l0-5 );:-r 
radian· meter into an accelerator of 100-m radius and for which Q is approx-
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imately 0.6112, the semiaperture allowance required to accommodate the 
free oscillations of this group of particles would be2 

A= (Yj:rr:)t'~Rli2Q-112 

= (2 X 10-5 )11 2(100) 11 2 (0.6)-1'~ 

= 0.05 meter 

In contrast, in a similar accelerator that employs the principles of alternat
ing-gradient focusing (to be described in Section 5.3.3), a Q value some eight 
times greater can be practically realized. Despite the presence of a flutter 
factor in the free-oscillation amplitudes that arises from the kinematical 
orbit characteristics in an alternating-gradient structure and that typically 
may be approximately 1.5, the necessary aperture to be provided to accom
modate these oscillations of the injected beam will be reduced to 40-50% 
of the vabe previously found. 

A second important characteristic of an accelerator, which also affects 
directly the aperture required, the magnet dimensions, and hence the cost 
of construction and operation, is its ability to accommodate simultaneously 
particles of appreciably different momenta. 'Momentum variations not 
only occur because of the "synchrotron" oscillations in energy and phase 
that arise from the action of the rf fields, but also because such variations 
are present in the initially injected particles. The radial shift due to a pre
scribed fractional momentum deviation, bpjp0 in a constant-gradient syn
chrotron is given directly by 

R bp 
or = 1--=-~ Po 

R bp 

QT Po 

(5a) 

{5b) 

and, since I - n or Q/ cannot be large in such an accelerator, the aperture 
needed to accommodate a given energy spread may be undesirably great. 
Thus, for op/p = 2 x I0-3 , R =-100m, and Q/ = 0.4, we obtain the 
quite large radial excursion 

br = 0.5 meter 

For an alternating-gradient synchrotron Eq. (Sb) represents a good ap
proximation to the mean deviation of the closed orbit, although again a 

2 Such an eJl1ittance might contain a substantial portion of the beam from a well 
designed and well aligned 50-MeV proton linear accelerator (AGS Staff, 1961). 
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flutter factor of 1.3 or greater will be present. Use of alternating-gradient 
focusing accordingly would afford a means for reducing the radial excur
sions due to momentum errors to about 2% of the value found for this ex
ample of a constant-gradient accelerator, and this property of the alternat
ing-gradient technique may be regarded as its outstanding advantage in 
this application. 

5.3.2. Use of Alternating-Gradient Focusing 

The initial imp·:!tus to the present extensive use of alternating-gradient 
principles in the design of particle accelerators now operating or being 
planned arose from results of a. study reported by Courant et a!. (1952), 
of the Brookhaven National Laboratory, although application of similar 
principles had previously been proposed independently in a patent issued 
to Christofilos (1950). A constructive proposal to employ azimuthally 
varying fields in the' design of cw (unmodulated) cyclotrons was made, 
however, as early as 1938 by Thomas (1938) and the analysis of Thomas 
was extended shortly thereafter by Schiff (1938), but the application of this 
work was not reported until the latter part of the 1.950's (Pyle eta!., 1955; 
Kelly et a!., 1956; Heyn and Khoe, 1958). The "racetrack synchrotron" 
(Crane, 1946a, b), in which field-free "straight sections" were introduced, 
of course in principle involved a departure from the use of focusing that 
was strictly constant all along the particle orbit. Although ~his modification 
resulted in the occurrence of some additional potentially dangerous resonant 
relationships between the values of Q, and Qv (Blackman and Courant, 
1949), the initial racetrack synchrotron remained a weak-focusing accel
erator in that Q, and Qv were both less than unity. Concepts closely akin 
to those later employed in alternating~gradient theory also appeared in 
the work of Le Couteur (1951) in analyzing orbit dynamics in the regener
ative deflector proposed by Tuck and Teng (1951) for the resonant extrac
tion of particle beams from a circular accelerator such as the synchrotron. 

5.3.3. Principles of Alternating-Gradient Focusing 

As was shown by Courant et a/. (1952), the limitations of a constant
gradient type of focusing can be removed if the field index is caused to vary 
with azimuthal position in a suitable manner so as to alternate between large 
positive and negative values. The ability of a periodic sequence of focusing 
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and defocusing magnetic lenses to produce a net focusing action may be 
visualized by considering the optical analogue of a series of lenses (Fig. 1 ). 
It is evident that a given trajectory will on the whole be a greater dist~nce 
from the optic axis in the regions occupied by positive lenses, and hence 
may experience a net focusing under the action of the lens sequence. 

F D F D F D F D F D F D F 

FIG. 1. Optical analogue of alternating-gradient focusing, showing a ray traversing a 
periodic sequence of focusing (F) and defocusing (D) lenses. 

It remain:; to be discussed, however, what values of Q, and Qv in practice 
can be .attained in this way, and what improvements in orbit characteristics 
can thereby be achieved. In the simplest application to a circu!ar accelera
tor, the strong alternating lens action is provided by the spatial variation 
of the magnetic field that also serves to guide the particles on a circular 
orbit. A sequence of alternating-gradient lenses can be usefully introduced, 
however, to provide focusing action in a linear accelerator (or for beam 
transport generally), without introducing any bending in the trajectory of 
a particle moving along the axis of the system, and such separate magnetic 
lenses also have played an important role for the adjustment of orbit char~ 
acteristics in cyclic accelerators and in the design of so-called "separated
function" accelerators or storage rings. Examples of such separated-func
tion devices have been described by Amman et al. (1964) and by Ferger 
et al. (1964). Analogously, one can obtain alternating-gradient focusing 
action by means of suitably shaped electric fields, as was done in the "elec
tron analogue" (Brookhaven Staff, 1955), constructed at the Brookhaven 
National Laboratory in preparation for work on a large proton synchro
tron, and as has been proposed (Paul and Steinwedel, 1953; Taubert, 
1957) for mass-spectrometry applications. 

A. EQUATIONS OF MOTION 

In analyzing orbit characteristics in a circular accelerator it is convenient 
to develop the equations for the trajectories by expansion about a closed 
equilibrium orbit, of circumference C0 and local curvature 1/ eo, for a refer
ence particle of momentum p 0 • Distance along this curve will be denoted by 
s, and R0 = C0 /2n represents the effective radius of this equilibrium orbit. 
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For simplicity in the discussion we shall assume that the equilibrium orbit 
is planar, and employ n(s) = - (g0 / B0 ) (dBfdr) to characterize the focusing 
that is provided by the spatial variation of the magnetic field [cf. Eq. (1)]. 
For particle momenta and field strengths that are constant or only slowly 
varying with time, the linear differential equations for the radial and verti
cal (axial) transverse displacements (x andy, respectively) for a particle of 
momentum p = Po + op then are3 

d ( dx) 1 - n(s) bp 
ds Pods + Q0

2(s) PoX= eo(s) (6a) 

d ( dy) n(s) 0 ds Pods + !?o2(s) PoY = (6b) 

As Adams (1953) has pointed out, however, it should be noted that the fo
cusing coefficient which a strictly linear field presents to particles with a 
momentum different from Po will not be identical to that for an equilibrium 
particle (an effect that for relatively small variations of momentum may be 
represented by nerr cc lfp for l n '~ I)-this effect, not represented by 
the linearized equations (6a) and (6b ), in practice may be compensated 
by the inclusion of sextupole lenses in the sequence of magnetic elements 
that constitute the accelerator.4 

It follows from Eqs. (6a) and (6b) that the free transverse oscillations 

3 In static magnetic fields (in which the energy and mechanical momentum of an in
dividual particle remain constant), the spatial differential equations for the trajectories 
may be obtained conveniently from the principle of least action, 

15 f (p + eA) • ds = 0 , 

where A denotes the vector potential from which the magnetic field is derived. The pos
sibility of linear coupling between the two transverse degrees of freedom normally 
would arise in practice only through the agency of misalignments or similar imperfec
tions; such effects are not included in the equations presented in this subsection, but 
are extensively treated, for example, in Sect. 4<: of an excellent monograph by CQurant 
and Snyder (1958) on ihe theory of altemating·gradient synchrotrons. 

• It will be noted that, in the case of a circular accelerator with no azimuthal variation 
of n, solution of Eqs. (6a) and (6b) will lead to simple-harmonic transverse oscillations of 

frequencies~/. and Vn/o in agreement with the expressions cited previously for 
Q, and Q. in such a case [Eqs. (2a, b)], and the equilibrium-orbit radius will change by 
ox = [!?0 /(1 - n)](/ipjp0) for off-momentum particles [as stated in Eq. (Sa)). Equations 
(6a) and (6b) also indicate that the transverse free-oscillation amplitudes of a particle 
whose momentum is caused to change in a magnetic field of gradually increa,;ing strength 
will vary as (!?0 /p0)'12 ; that is, the amplitudes will experience an adiabatic damping in
versely proportional to the square root of the magnetic field strength. 
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of particles in an alternating-gradient synchrotron will be characterized by 
an equation of the form 

or equivalently by 

and 

d ( dx) ds Pods + PoKzCs)x = 0 

dpx = _ PoKx(s)x 
ds 

dx 
Px =Pods' 

(7) 

(Sa) 

(Sb) 

and by analogous equations for motion in the axial degree of freedom. 
The first-order equations (Sa) and (Sb) are derivable from a Hamiltonian 
function 

H( •)- l 2 1 V()2 x,px, s - 2-Px + -2 PD-'~x s X 
Po 

(9) 

with Px and x constituting canonically conjugate variables that will be sub
ject to Liouville's the?rem (Judd, 195S, p. 193 ff.; Courant and Snyder, 
195S, p. 45 ff.).S 

Aside from possible slow secular variations, the focusing coefficient Kx 
(and the corresponding coefficient K11) will be strictly a periodic function 
of s with a basic period equal to the circumference C0 • In practice a strong
focusing synchrotron will be designed so that ideally-in the absence of 
constructional errors, misalignments, and similar perturbations-the period 
of Kx and K11 will be a substantial submultiple N of C0 • Also in its simplest 
form [for example, as presented by Courant et a!. (1952)], n vs s will be 
described by a rectangular graph, of period C0/ N, in which the positive 
and negative values may be of equal magnitude and cover equal intervals 
of s. Small regions devoid of focusing may occur periodically as field-free 
intervals between the magnet" blocks, and additional lenses likl!wise may 
be introduced for correction or control at intervals of the magnet structure.6 

The functions Kx(s) and K11(s) then will have asimilar piecewise constant 
form, and, for In I~ 1, Kx(s) ~ - K11(s). 

5 The result of Liouville's theorem applied to the x, Px phase space for the uncoupled 
radial motion is related to the constancy of Po times the Wronskian of solutions to Eq. (7). 

6 The edge focusing that is produced by· magnet blocks whose end faces are oblique to 
the equilibrium orbit would, in effect, be represented by such lenses. 
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B. Gf.NERAL CHARACTERIS1ICS OF THE SOLUTION 

Although the analysis of orbit characteristics is particularly direct, and· 
most closely applicable to actual accelerators, for the case in which Kz(s) 
and Ky(s) are piecewise constant, some general results may be obtained 
without restriction to this particular functional form. We consider for this 
purpose the equation 

d2x 
tfs2 + K,(s)x = 0 (10) 

that describes the free oscillations when we ignore the possible slow varia
tion of p 0 in Eq. (7). Equation (10) has the form of Hill's equation, for which 
by Floquet's the·Jrem (Whittaker and Watson, 1927, pp. 412--413),7 a com
plete solution is 

x = c1 exp(Jls) <l>(s) + c2 exp(- ps) IJ'(s) (11) 

where f!>(s) and IJ'(s) are periodic in s with the period L = C0/ N of. K.,(s). 
There thus exists a fundamental set of solutions, v1(s) and v2(s), such that 

v1(s + L) = }.1v1(s) (12a) 

and 

v2(s + L) = A2v2(s) (12b) 

where /.1 = exp(JlL) and i.2 = exp(- ltL). The characteristic factors, A1 

and A2 , constitute a reciprocal pair-in addition, with Kx(s) real, they ei
ther will be both real or will be a complex conjugate pair of absolute value 
unity. 

The propagation of a particle trajectory through the accelerator structure 
can be conveniently expressed in terms of the fundamental set of solutions, 

' 
7 In the special case that pis zero or has an imaginary value such that exp (.uC0/N) = ± 1, 

one solution to Eq. (10) will be truly periodic and a second solution may be represented 
by a periodic function plus s times this first solution. We use the symbol I' here to denote 
the characteristic exponent, as indicated in Eq. (11), and we shall employ a to represent 
- ipL = - ipC0 /N; in much of the published work on alternating-gradient accelerators, 
however, both p. and a are used to denote this latter quantity. In the interest of brevity, 
we omit in these paragraphs the use of subscripts z or v that strictly should be appended 
to J!, a, and similar quantities [such as the matrix M and the functions a, {3, y introduced 
subsequently in Eqs. (24a-c)] in order to distinguish between the properties of the free 
oscillations in the two transverse degrees of freedom. 
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v1(s), v2(s). In matrix notation8 with primes denoting dfds, 

X , W 

(

. v2' (s0 )V1 (s) ~ v/ (s0)v2(s) 

[ x' L = vz'(s0)v1'(s)-_v/(s0h'(s) 

i'l (s0)v~(s) ;~/2 (S0) ~1 ~s) ) . 

V1 (s0)v2 (s)- v2(s0) 11 (s) 
w 

[ ~' 1~13) 

in which W denotes the (constant) Wronskian 

W = v1v2' - v2v1 ' (14) 

and the determinant of the matrix will be seen to be unity. For an adva:hce 
through one period of the structure 

(

\v1v2' - ).2v2v1' 
1\ w 

x \ = v1'v2' 
( x' 1 ,,>e,m (A, - 4l-w 

2 1 W X 
(). -). )~) 

A2v1 v2' - ~1 v2v1' ( x' t (15) 

with v1 , v2 , and their derivatives evaluated at s0 • It is noted that the trace 
of the matrix appearing in Eq. (15) is the invariant }.1 + }.2 and its absolute 
value will be less than 2 if and only if the characteristic factors are complex. 
In addition, denoting the matrix in Eq. (15) by M, it follows that9 

dM1~ = M 1 2(s0)Kx{s0 ) + M2,1Cso) 
ds0 ' 

dM1,2 = M2 2(s0) - M1,1(so) 
dso · 

dMu = [M2 2(s0 ) - M 1 ,1(s0 )]Kx(so) 
ds0 ' 

dM2,2 = _ [M1 •2(s0)Kx(s0) + M2,1(so)] 
ds0 

(16a) 

(16b) 

(l6c) 

(16d) 

8 Since, for a given solution, the values cf x and x' at successive values of s are related 
by a sequence of linear algebraic transformations, it will be seen that matrix algebra 
will be applicable. 

9 Equations (16a-d) may be established directly, using Eq. (10) and the periodicity 
of K,;(s), by dev-eioping the first-order relation 

( 
1 r5s) ( M1 1(s0) 

- KzCso)!;s 1 M2,1(S0) 

M 1, 2(so)) 
M,,.CSo) 

= ( M 1, 1(s0) + t5M1, 1 

M,,,(s0) + t5M2, 1 

M, 2(s0) + r5lvf, 2 ) ( 1 t5s ) 
M,:2(s0) + t5M,:, -- Kz(S0 )t)s 1 
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It in turn follows from Eqs. (I 0) and ( 16 a-d) that the quadratic form 

[2 = M1,zx'2 + (Ml,t - M2,2)xx' - M2,1xz (17) . 
remains invariant throughout the motion of any given particle. 

1. Phase-Amplitude Variables 

The relations expressed by Eqs. (13) and (15) can be expressed conve
niently in terms of solutions to Eq. (10) expressed in a "phase-amplitude" 
form that was introduced by Courant and Snyder (1958) and that has been 
widely employed in the analysis of alternating-gradient accelerators. Since 
we shall be concerned with the representation of stable solutions to Eq. (10), 
we shall employ the quantity 

a=- i,uC0/N 

=- i,aL 

in preference to ,a. By defining 

and 

IV = (;_ V1 V2 )
112 

. l w 

i 1'2 
liJ = 2-ln-;; 

one finds that the expressions 

( 
2 )1/2 

w exp(± i7p) = Tw V1 

(~)1/2 1 W V2 

(18) 

(19a) 

(l9b) 

(20a) 

(20b) 

provide a form in which the fundamental set of solutions may be expressed. 
The amplitude function, w(s), is a periodic function of s with the period 

L of Kx(s), and the phase function, 1p(s), will increase by a in this interval. 
It follows that w21p' is a constant with the normalization of w so chosen 
that 

W2lf'' = l ' (2la) 

and w satisfies the differential equation 

w" + Kx(s)w - __!_ =' 0 w3 (21 b) 
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By noting from Eq. (21 a) that 1p' must be periodic, it is also seen that one 
may write 

s 
lp = ay + x(s) 

where x(s) is periodic (period /.). 

The matrix M of Eq. (15) now may be written as 

M = [ cos a + ~ sin a 
- ysma 

fJ sin a ] 
cos a - a sin a ' 

in which a, J~, and y are periodic functions of s0 given by 

a=- ww' 

1 
fJ=w2=7 

1 + az = __ l __ + w'2 
y = -{J- wz 

{22) 

(23) 

(24a) 

(24b) 

(24c) 

and the invariant quantity cos a is one half the trace of M. The relations 
(16 a-d) imply. that 

a'= Kx · fJ- y 

{J' =- 2a 

and 

y' = 2/(. • CL 

Similarly, the invariant quadratic form of Eq. (17) becomes 

/
2 = [{Jx'2 + 2 axx' + yx2

} sin a 

The;form ofM given in Eq. (23) is convenient in that 

Mm ~ [ cos ina ~ a sin rna 
- ysmma 

fJ sin rna ] 
cos rna - a sin rna 

(25a) 

(25b) 

(25c) 

{26) 

(27) 

and affords a useful representation of the matrix that serves to propagate 
particle trajectories from s0 through m periods of the accelerator structure. 
The general matrix that appears in Eq. (13) may also be expressed in terms 
of w and w', determined at the points s and s0 , and the difference 7p(s) 
- 7p(s0) between the phase function at these two points. 

It is evident from Eqs. (17) or (26) that x and x' for any given particle 
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trajectory will describe an ellipse if plotted for homologous points of the 
accelerator, since the coefficients a, (3, and y assume identical values at 
points separated by <>.n i~tegral number of periods. The area of this ellipse 
in x, x' space (I jp0 times the area of the corresponding ellipse in x, Px phase 
space), or of such an ellipse at any point along the trajectory, is ;r/2/sin a. At 
any givens the maximum value of x for a point on this ellipse is ((3/sin a)112 I, 
with f3 evaluated at s, and x would not exceed (f3 max/sin a)112 I at any point 
along the orbit. The aperture allowance that must be provided to accom
modate the free oscillations of a particle beam of specified emittance thus 
will be directly related to the maximum value of (J(s) for the transverse 
degree of freedom under consideration. [Note, from Eq. (25b), that (J(s) 
has its maximum and minimum values at points for which a(s) = 0.] 

2. Angle-Action Variables 

The s-dependence of the focusing coefficient, K2 (s), in Eq. (10) may be 
formally eliminated by a canonical transformation to "angle-action varia
bles" (cp, J) through use of the generating function (Goldstein, 1950) 

F(x, J; s) = [ sin-1 
(
2
;3J)r:2 ,- X] J + 2~ (2fJJ- x2

)11
2

- 2~ x2
• (28) 

The new variables are, in terms of x and x',10 

J = ~ [f3x' 2 + 2axx' + yx2
] 

rp = tan-1 ( ax : (Jx' ) - X , 

with the new Hamiltonian function 

- a 
H(rp, J;s) = yl. 

Then 

an , - ···--

rp - aJ 
a a 
- so m = - s + const L' -r L 

and 

,, _ an 
-- &rp = 0, so J is constant. 

(29a) 

(29b) 

(29c) 

• (30a) 

(30b) 

The angle variable 1[, thus is a linear function of s, increasing by a when s 

10 It is seen that J is I !(2 sin a) times the invariant / 2 of Eq. (26). 
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. increases by L = C0/N and by Nrr = 2;rQx for a complete circuit of the ac
celerator. 

An alternative transformatio.n for eliminating the s-dependence in the 
differential equation for one of the transverse degrees of freedom employs 
a "scaling" of both the dependent and independent variables (cf. c~urant 
and Snyder, 1958, p. 18), 

so that Eq. (10) becomes 

I X 
r; = V1 

fs ds 
lp = f3 

1 [ d2r; ] 
(33!2 dlp2 + r; = 0 

(31a) 

(31 b) 

(32) 

The solutions YJ thus will be simple-harmonic in the variable 1p, with the 
argument of the circular functions increasing by a in a single period and by 
Na = 2nQx in an entire revolution. Transformations related to those just 
presented can be of value iri extending the analysis of alternating-gradient 
systems to situations in which nonlinear restoring forces are present. 

C. SOLUTIONS FOR PIECEWISE-CONSTANT FOCUSING FACTOR 

In the application of alternating-gradient principles to the design of high
energy synchrotrons, the most practical and most common form for the func
tion n(s)is such that this quantity alternates, in equal intervals of s, between 
large positive and negative values of equal magnitude, provided we ignore 
the presence of shorter field-free sections n(s) = 0 between the individual 
magnet blocks. The coefficients K2 (s) and Ky(s) then each have the form of 
a iectangula· w.tve, apr! will alternate between values of equal magnitude 
if we neglect the diften:nce between 1 - n(s) and - n(s). The stability re
gions for solutions to suc.h an equation were derived in an early paper by 
van uer Pol and Strutt (1928) and in the previously cited work of Courant 
et a!. (1952). 

Since the particle trajectories are describable by simple circufar or hyper
bolic functions within the individual regions of constant n(s), individual ma
trices are readily formed to represem the traversal of any portion of such a. 
region, and the matrix M that characterizes traversal of a full period may 
be obtained by matrix multiplication. One thus finds, with s measured from 
the center of an interval wherein there is positive focusing for the degree of 
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freedom under consideration, elements of M such that 

(33a) 
I n [1.' 2 : n [11 2 

cos a = cosh n --cos ;r '------. 
N N 

. I n I u 2 • i n [112S 
smh :-c -N sm2--eo a = ------. ----

sm a 
- - < s mod- < ---Co ( Co) Co 

4N- N - 4N 

sin n---sinh 2l n [112 ---
I n [112 ( n s ) 

N . N eo Co < ( d 5__) < 3Co 
4N _s mo N - 4N sin a 
' (33b) 

/3=~ ! n 1112 

1 n 11 2 . 1 n 1112 • 1 n 1112 . 1 n 11125 
cosh n -- s1n n --N + smh n --cos 2 ---. 

N N -~ 
sin a 

! n ; 1!2 . In [112 • I n [112 ( n s ) 
cos n '---.:- smh n --+ sm ;r --cosh 21 n [112 - - -eo N N N N eo 

= Tf1Ti72 sin a 
(33c) 

The condition for the stability of particle orbits in the assumed periodic 
structure is given from Eq. (33a) by the condition [.cos a I < 1,11 and 
Eq. (33a) permits computation of the oscillation frequencies (Qx = Naf2rr) 
or of the lapse rate (p = iNa/C0 ) for orbits in a specific accelerator struc
ture. A graph of a vs l n [1 '2/N, as given by Eq. (33a), is shown in Fig. 2 
for the first (and by far the most useful) zone of stability. This zone corre
sponds to 0 <a <;rand occurs for In I < 0.3562 N 2

• The value a= n/2 
occurs for 1 n !fN2 = 1/4.12 For small values of a, an expansion of Eq. 
(33a) leads to the approximate relation 

.!!.__ • __!!_ l!:_l_ [ 1 4n
1 ( n )2 

n V3 N.2 + 315 - N2 + · · · ] (34) 

11 A more detailed analysis, covering the case of unequal values of In I in the focusing 
and defocusing regions and including the presence of straight sections, has been outlined 
by Livingood (1961, Sect. 12.3). 

12 It is of interest to note that if K~(s) had been replaced by (4n/n) cos Nsf'Ju, which 
represents the fir~! term in a Fourier development of our assumed piecewise-constant 
function, the first stability region for the resultant Mathieu equation would occur for 
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FIG. 2. Plot of the phase advance per period, in units of :n, and of the maximum value 
of {3, in units of 2:r.']0 /Na, vs In liN' for the first stability zone of an alternating-gradient 
synchrotron <In I ~ 1). 

The average value of (/3/eo)-1 will be equal to Naf2n, the number of 
oscillations per circumference [see Eq. (3lb)], but f3 will vary significantly 
ass advances through one period. The maximum value of /3, expressed in 
units of (2nfNa)e0 , is depicted on Fig. 2. It is evident that /3max will become 
nearly 50% greater than (2nfNa)e0 for a= n/4, and very much greater 
values of (Naf2n) (/3max/e0) occur in regions of the diagram that are closer 
to the upper boundary of the first stability region. The variation of P with s, 
as given by Eq. (33c), and the corresponding variations of a and 1p, are 
illustrated in Fig. 3 for a case in which a= 49° (n In [112/N = 1.,2). 

In I < 0.3566 N 2 , 17 = :r/2 would result for In I near 0.251 N', and af:n would be approx
imately 1.8006 ! n I IN' for small values of a. These values have been obtained from 
numerical tables relating to the Mathieu function (Belford eta!., 1957; National Bureau 
of Standards, 1951). The use of a Mathieu equation to represent, to a good degree of 
approximation, the transverse oscillations of particles in an alternating-gradient synchro
tron has been noted by Meixner and Schafke (1954, pp. 338-343). 
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We mentioned earlier (Section 5.3.1. A) the advantage of a synchrotron 
dcsi.c:n that permits an aperture of m,)Jest dimensions to accommodate the 
momentum variations of the particles that are to be accelerated. Not only 
will such momentum variations be present initially as a result of an energy 

D 

s 

FIG. 3. Plot of the functions a(s), f3Js), and 1p\s) within one period of an alternating
. gradient synchrotron for which :r! n11' N~ = 1.2 (a = 49°), commencing at the center 
of a focusing region. The symbols f, D, and f at the top of the diagr.am denote the 
portions of the plot that correspond to half of a focusing interval, a defocusing interval, 
and half of the foilowing focusing interval. 

spread in the injected beam, but the "phase oscillations" of individual parti
cles under the action of the radio-frequency acceleration system also will 
necessarily be accompanied by corresponding oscillations of the particle 
momentum. In order to examine the character and magnitude of the in
fluence that momentum variations will have on the closed orbit, we refer 
to the inhomogeneous equation for the radial motion [cf. Eq. (6a), with 
Kx(s) written for (l - n)/e0

2 and p0 treated as substantially constant] 

d
., 
-x 

ds2 + K;,(s)x = _!_ op 
eo p; (35) 

The periodic solution to Eq. (35) of course can be expressed generally 
through use of the solutions to the corresponding homogeneous equation,13 

but the piecewise-constant character of Kx(s) for an alternating-gradient 
accelerator makes it straightforward to find the periodic solution to Eq. 

13 The expression 

6p I J' {Jl
12

(s) {3
112

(-r) [ a] X(s) =- --. -
1
- · -----cos 1p(s)- 1p(-r)-- d-r 

Po 2 Sill 1112 s-C,/N l!u • 2 

may be verified to bt: a periodic solution of Eq. (35). 
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(35) by joining simple solutions for the focusing and defocusing regions. 
For In I~> I, one obtains (cf. Livingood, 1961, pp. 208-213) 

. I I 11.'2 J. . n n ' 
1 11 ~ s 

l 
Sinh 

2
N cos 1 n I 0 0 ___!__ = - . 2 -O + l _J!_ 

eo ! n I l nlnl 112 
• nlnlli2 

• nlnlvz ::rlnlll~ Po cosh--- Sin --- sinh-- cos---
2N 2N 2N 2N 

_ Co < ( d _s_) < ~ 4N _s mo N - 4N 

l n I n 1

112 

( n s ) J sin cosh I n 1112 ·- - -

= _l_ 2 - . 2N I N eo - l ~ 
I n I n I n 1112 

• n I n 1112 
• n In 1

112 n In 1
112 Po 

cosh 2N sin 2N - Sinh 2N cos 2N 

_s_ < ( d-C0 ) < 3C0 

4N - 5 mo N - 4N ' 

(35a) 

where s is measured from the center of a focusing region. The maximum 
value of X is given by 

l . n In 1

1

'

2 J X/eo l sinh 2N 
-- ·=- 2 +1 
CJp/Po Lax In I nlnl 112 

• nlnl 112 
• nlnl 112 :rlnl 112 

~osh 2N Sin 2N - sinh 2N cos 2N 

(35b) 
and the average value by (see Note I, Section 5.3.6) 

1 <X>av/eo 4 N 
T = op/Po = 7i I n 1

312 :r I n 1112 n I n 1
112 

coth _ _ - cot ---=-=-= 
(35c) 

The reciprocals of the quantities given by Eqs. (35b) and (35c) are plot
ted, in units of Qx2, in Fig. 4 for values of a lying in the first stability zone 
(0 <a< n). It is seen that <X)av/eo does not exceed (1/Q/)((Jpjp0 ) by more 
than about 20% for values of a less than n/2, but that Xnmx will become 
about 30% greater than <X)av when a is close to 77:/2. The fact that X/eo 
is roughly of the magnitude of (1/Q/) ((Jpjp0 ) directly indicates, however, 
the ability of an alternating-gradient structure, by virtue of its higher Qx , 
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FIG. 4. Graphs illustrating the relation between closed-orbit amplitude and momentum 
error, as a function of aj:r., for an alternating-gradient synchrotron. 

to contain particles with a markedly greater momentum spread than could 
be accommodated by a constant-gradient structure of the same radial 

aperture . 
In the realistic design of an alternating-gradient accelerator, certain fea

tures may be introduced that will cause the linear differential equations of 
motion to assume a more complicated detailed form than has been treated 
in the examples presented above, but much of the general analysis will still 
apply. The introduction of special straight sections at a small number of 
locations around the accelerator will reduce the basic periodicity of the mag
net structure, and the presence of misalignments or other errors results in a 
structure with a fundamental period that is strictly equal to the circumfer
ence of the machine. If we disregard these latter effects (to which we give 
further attention in a subsequent subsection, E), then the presence of gaps 
between magnet blocks, the introduction of correcting lenses or correction 
windings, and the possible edge focusing from end faces on the magnet 
blocks that are oblique to the equi!it.rium orbit ai! constitute features to 
which the methods just described are readily adaptable. 

D. EFFECT OF COUPLI:-:G 

In addition to the effects mentioned, there may also be linear periodic 
terms that couple the two transverse degrees of freedom, x and y. The dif
ferential equations will still be Hamiltonian in this case, however, with the 
linear equations derivable from a quadratic form. If forcing terms are ab
sent, so that the differential equations are hnmogencoEs, the coupled eqt~a-
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tions [analogous to Eq. (10)] for motion in a Ma;mell field are of the form 

d2
x [ l dH) dv ds2 - Kz(s)x - G(s) + 2 ds y - H(s) (is = 0 (36a) 

d2y . , [ I dH ] _ , , dx 
ds2 - Ky(s)y - G(s) - 2 ds x ,. H(s) ds = 0 . (36b) 

where H(s) is e'p0 times whatever longitudinal magnetic field may be pre
sent along the orbit and the factors containing G(s) represent efp0 times 
the coefficients of a "skew quadrupole field" (oriented at an angle of 45° 
to the quadrupole component of the normal focusing field of the magnets). 
Canonically conjugate momenta, \Vhich include the appropriate transverse 
components of a vector potential, could be taken to be 

[ 
dx 1 ) Px = Po ~ - -- H(s)y 
ds 2 

(36c) 

[ 
dy 1 ] 

P11 =Po ds + 2 H(s)x (36d) 

As in the case of_ uncoupled motion, any solution to Eqs. (36a, b) is 
expressible as a linear homogeneous algebraic function of the initial condi
tions--a relation that may be represented by a matrix that transforms a 
four-component vector (for example, with components x, Px , y, and Pu) 
from s0 to s. The matrix for a transformation from s0 to s0 + C0 /N, in partic
ular, would be composed of two-by-two matrices [similar to the one shown 
in Eq. (23)] situated on the principal diagonal in the uncoupled case, and 
the stability of the coupled motion would be determined by the nature of 
the characteristic values (}.1 , · · · }.4 ) of the four-by-four matrix when the 
coupling effects are included. A quadratic invariant form, analogous to 
the quantity / 2 defined by Eq. (17), is 

1/ = M1,zP//Po2 + (M1.1 - Mz,2)xpx/Po - lvfz,1-'2 

+ (MI,4 + M3,2)PxPuiPo2 + (M3,1 - M2,4).\PufPo 

+ (A11,3- M4,2)YPxiP- (M4,1 + Mz,3)xy 

+ M3,4P/fPo2 + (M3,3 - M4,4)YPviPo - M4,3Y2 

For any two solutions, designated by subscripts i and i, 

(37) 

ui,j == -'iPx; - YiPu; - XjPx; - }}Pv; = constant (independent of s), (38) 

as may be shown directly from the differential equations. If the solutions 
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are taken, in particular, to be characteristic solutions (associated respec
tively with characteristic factors /. 1 and }.j), then for any i there will be a j 
such that Uu -::j::. 0 [since a particular solution, representable as a linear 
combination of the characteristic solutions, certainly could be chosen with 
initial conditions such that this quantity does not vanish]. The invariance 
of Uu, if applied for values of s one period apart, then requires that 
).Ji = I for such a pair of characteristic solutions. Thus not only are the 
four characteristic factors such that their product is unity, but they may be 
grouped into reciprocal pairs. In addition, of·course, complex values will 
occur in complex conjugate pairs. 

For uncoupled motion that is stable in both degrees of freedom, the four 
characteristic values will occur in complex conjugate pairs and all will lie 
on the unit circle in the complex plane (Fig. 5 a). If the introduction of 
a small (infinitesimal) amount of coupling were to have the effect of shift
ing these values, subject to the conditions just mentioned, off the unit 
circle (Fig. 5c)-so that the coupled motion would be unstable-it therefore 
would be necessary that the characteristic values for the uncoupled x and y 

equations be (infinitesimally) close (Fig. 5b). Thus a coupling instability 
will occur in such cases only if 

cos ax • cos a11 ; (39a) 

that is, only if 

az ::::'::: a11 is close to an integer 
2:-r 

{39b) 

In the absence of coupling, the invariant fc is a simple linear combination 
of two invariant· quadratic expressions of the form indicated by Eqs. (26): 

I/ = [/Jzp/ 1Po2 + 2etxXPxiPo + l'xX2] sin (Jx 

+ [/311Pv21Po2 + 2et11YPviPo + YvY2] sin a11 

(o) (b) (c) 

• >.* 
I 

.__!_ 
AI 

(40) 

FIG. 5. Location, with respect to the unit circle in the complex plane, of the characteristic 
factors for coupled motion: (a) For stable motion when the coupling is absent; (b) for 
stable motion near a coupling resonance; (c) for unstable coupled motion. 
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and, for stable motion in each of the individual degrees of freedom, each 
of the square brackets will be positive definite. Under such circumstances 
/c2 will then constitute a quadratic form of definite sign if sin ax and sin a1, 

are each positive or are each negative, whereas it will be a difference of 
two positive definite forms if these factors have opposite signs. Although 
the detailed structure of fc2 will be slightly modified when a small amount 
of coupling is present, it will be expected to remain a quadratic form of 
definite sign near a difference resonance (where sin ax ~ sin a11 ) and the 
particle motion would then remain stable.14 Near a sum resonance (where 
sin ax ~ - sin a11 ), on the other hand, it would be possible for the solutions 
to grow without limit. The magnitudes ofthe individual quadratic forms may 
be taken as indicative of the amplitudes of x and y motion (proportional 
to areas in x, Px andy, p 11 space) if the coupling is weak, and operation near 
a difference resonance can lead to a pronounced interchange of amplitude 
between the x and y oscillations. 

E. SELECTION OF PARAMETERS AND MAGNET CONFIGURATION 

The selection of suitable parameters for an alternating-gradient synch
rotron involves consideration of many factors. Great importance normally 
is attached to achieving a design in which the aperture required to accom" 
modate the beam will be small, since slight increases in the vertical dimf!n
sion of the magnet gap can greatly increase the cost of a large machine. 
The necessary aperture dimensions will be determined not only by the param
eters of the magnet structure itself, and by the stability of its foundations, 
but also by the characteristics of ancillary equipment that forms a part of 
the entire accelerator facility. Thus, in particular, the energy and emittance 
of the injector can have an important effect on the choice of other parame
ters, and the specifications of the injector therefore should be included as 
variables in a careful cost optimization. 

Since the magnet ring in practice is built from a large number of in
dividual blocks, gaps (typically of the order of 1 m in length) may con
veniently be provided between these blocks to accommodate correcting 
lenses and other items of ancillary equipment. If focusing and, defocusing 
magnets are combined in a single block, with gaps situated at points of 
mirror symmetry between focusing and defocusing regions, the basic con
figuration is denoted FOFDOD. [Such a configuration was selected for the 
CERN proton synchrotron in Geneva, in which 1.6-m gaps are normally 

u A complete derivation of this result has been presented by Courant and Snyder 
(1958, p. 27 If.), and references are cited to earlier perturbation treatments of the problem. 
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employed, and the provision of 10 special 3-m gaps at 10-block intervals 
results in a structure comprising 10 superperiods.] An alternative arrange
ment, denoted FODO, situates the gaps between magnets of opposite 
type. The latter arrangement in principle has the advan_tage of producing 
a greater phase advance for a given field gradient, since the lens actions 
of adjacent F and D regions in the FOFDOD configuration partially an
nul one another because of their proximity. The FOFDOD arrangement 
has the advantage, however, of permitting quadrupole lenses to be situated 
at mid-F and mid-D points, thereby providing a means for independent 
control of Qx and Qy, and this same arrangement has also been found to 
make more feasible the realization of long straight sections of the type 
proposed by Collins (Section 5.3.3, F). It is definitely desirable to provide 
some straight sections of a length considerably greater than that normally 
introduced betwee-n the magnet blocks, in order to accommodate radio-
frequency acceleration stations and to facilitate injection and extraction 
of the beam. I 

The detailed determination of a suitable field index requires, of course, 
that the design and spacing of the magnet blocks be explicitly considered . 
Because of fringing, the "gradient length" of an individual magnet in typical 
cases may be about 4 em greater than the physical length of. the block it
self, and the "bending length" may exceed the physical length by as much 
as 12 em; a corresponding adjustment of n (for example, an increase of 1 
or 2 per cent) accordingly will be required in the magnet design because 
of these effects. The integrated field also may be found to have a nonlinear 
variation with radius, and such a characteristic will contribute to the var
iation of Q with momentum at any stage of the acceleration cycle. To cor
rect and control such variations it is prudent to supplement the quadrupole 
corrections (that can be provided by pole-face windings and individual 
quadrupole lenses) with sextupole and octupole fields. Skew quadrupoles 
(quadrupole lenses whose axes are rotated by 45° from the orientation of 
the units used for adjusting Qx and Qy) are desirable to eliminate coupling 
between radial and axial oscillations that may result from stray fields, and 
auxiliary steering magnets may also provide useful corrections and assist 
in injection or extraction of the beam. 

1. Influence of Misalignments 

In recent years the possibility of attaining beam currents of substantial 
size (for example, 0.1-1 A) within a high-energy accelerator has come to 
have some bearing on the choice of aperture dimensions (or of injection 
energy), since the space-charge forces that act on such a beam arise in part 
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from image charges and currents whose effect is reduced if the aperture 
dimensions are increased (Laslett, 1963). A major, if not dominant, faCtor 
in determining the parameters that affect the aperture, however, normally 
proves to be the accuracy with which the magnet blocks can be positioned 
and their alignment maintained. Quantitative analysis of the effects that posi~ 
tional errors will have on the particle orbits is somewhat specific to the sur.:. 
vey and support system that is planned, since possible correlations between 
the errors of individual magnet blocks will be of importance. Eor consider
ing the general application of present technology to the construction of 
accelerators for higher energy, however, one may regard a or In I/N2 as 
fixed and suppose that closed-orbit deviations approximately proportional 

to VN times the root-mean-square alignment error could be expected. 
Important contributions to the closed-orbit error could also arise from 
perturbations of the magnetic field due to remanence, eddy currents, and 
stray fields from magnetized supports or equipment in the neighborhood 
of the accelerator. These. latter effects can be kept from dominating, how
ever, if the injection energy is sufficiently high that the accelerator is not re
quired to operate with flux densities below a few hundred gauss at the orbit. 
If the quality of the injected beam, as specified by the emittance of the injec
tor, is also assumed to be given, the corresponding linear aperture dimen
sions would be proportional to (R/Q) 112, or to (R/N)112 for a constant value 
of a. Achievement of an optimum balance between this factor and the aper
ture to be provided for closed-orbit displacements thus would appear to 
require values of N, and hence of Q, to be so selected for accelerators of 
similar configuration that they would be proportional to the square root 
of the orbit radius, that is to the square root of the final energy of the syn
chrotron. 

As a rough approximation, we might suppose that a semiaperture allow

ance of 7VN e typically would be required to accommodate, with a factor 
of safety, a variety of alignment errors having a root-mean-square value e 
(see Note II, Section 5.3.6). With e not exceeding 10-4 m, this allowance 

then becomes ± 0.7 x w-aVii m. Also, with single-turn injection of a 
high-energy beam occupying an area of 10-s n radian · meter in phase 
space, with Q ~ N/8 (corresponding to a= n/4), and with a flutter factor 
flmax<l/fl)av ~ 1.5, the additional aperture required to accommodate the 
beam oscillations would be 

± [(flmax<I/fl)av) (Yjn) (2nja) (R/N)]l12 

8>< 
= ± [1.5 X to-s X R/N]112 = ± 0.0035 (R/N)112 
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Unuer these circumstances, then. one would expect that an optimum value 

of N would lie in the neighborhood of N = 5\fR: for R in meters. Corre
spondingly, for a~ :-r 4, n \ = 0.1346 N 2 ~ 3.4 R and (l/B0 ) (dBfdx) 
~ 3.4 m-1. 

It is interesting to note that proton synchwtrons now operating at ener
gies near 30 GeV and accelerators that are being planned for the attainment 
of energies in the 200-1000 GeV range all employ values of (l/B0 ) (dBjdx) 
close to 3 or 4 m- 1• Such values of the relative field gradient permit the 
realization of an efficient magnet design. The 30-GeV accelerators were 
intended, however, to accept beams injected from a 50-MeV linear accelera
tor of markedly greater emittance (AGS Staff, 1961) than that assumed in 
the present discussion, and a correspondingly greater allowance also was 
provided in these pioneering machines to accommodate mechanical mis
alignments. Accordingly, the apertures proposed for new multihundred GeV 
accelerators in fact are not increased by the fourth root of the radius ratio 
(as would follow from the analysis indicated here) but actually have di
mensions slightly smaller than in the present machines. In principle it thus 
appears desirable, as Sands (1961) and his colleagues have emphasized, to 
inject into the larger synchrotrons at energies in the multi-GeV range and 
to consider the use of one or more "booster synchrotrons" in cascade for 
this purpose. 

2. Computational Aids 

Detailed orbit characteristics of specific accelerator designs frequently 
are obtained most conveniently by means of digital computation, either by 
direct integration of the differential equations or (more efficiently, when the 
linear character of the equations permits) through the appropriate multipli
cation of matrices that characterize simple'portions of the focusing system. 
The simplest computations of this type would employ 2 X 2 matrices that 
act on the vector (x, poefxfds) or on (y, p0dyfds), and this technique could 
be directly extended to the use' of 4 x 4 matrices to describe motion with 
linear coupling. 

In the study of uncoupled motion in one degree of freedom it at times 
has proven convenient, however, to employ 3 x 3 matrices in order to in
vestigate the orbit characteristics for particles with different values of the 
momentum; and such matrices alternatively can be applied to determine the 
closed-orbit response to a sequence of magnet misalignments. For the first 
of these applications, such 3 x 3 matri~es would be designed to act on a 
vector whose third component is Jp or, more commonly, 6pfp0 • From ref-
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erence io the inhomogeneous Eq. (6a), it may be seen that a matrix of the 
type indicated in Eq. (13) then becomes extended to the 3 x 3 form 

In II/2 
cos--'- ..Js 

eo 
I n 11/2 • I n 11/2 

---sm --Lls 
eo eo 

0 

eo . I n i1/2 

In 1112 sm ~ Lls 

1 n 1112 
cos--~ .Js 

eo 
0 

-0 1 - cos - 1 
- Lis e ( ln' 112 

· )-

In I e(' 
1 . I n ll/2 

In 1112 sm --,;;-Lis 

(41a) 

for a focusing segment of an alternating-gradient structure with I n I ~ 1, 
and to 

• In 1
112 

cosh-- Js 
eo 

I n 1112 • I n 1
112 

-- smh--L1s 
eo eo 

0 

eo . In 1
112 

-
1 11,2 

smh--Lls n eo 
In 11/2 

cosh--Js 
eo' 
0 

_2!!_ (cosh I n P'
2 

Lls - 1) 
In I eo 

1 . I n 1112 
-
1 11,2 smh -- Lls 
. 11 eo 

(41b) 

for a defocusing segment. By constructing from such matrices the 3 x 3 
matrix (M) for a period of the structure, the values of X and X' for the pe
riodic solution (relative to the orbit of the "equilibrium particle" with mo
mentum p0 ) are obtained as 

and 

X 
M1,a + M1~! ?Jp 
2(1 -cos a) Po 

X' = M 2 ,3 + M~! 6p 
2{1 - cos a) Po 

for the end points of this interval, where 

and 

MI,~ = M1,2M2,3 - M1,3M2.2 

Mi,~ = M1,3 M2,1 - M 1,1M2,3 

cos a = i{M1,1 + M2,2) 

(42a) 

(42b) 

(42c) 

(42d) 

(42e) 

Alternatively, the misalignment of any particular magnet block (or of 
other components of the structure) may be represented in a similar way 
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through the use of a matrix whose 1,3 element represents the amount by 
which the end of this magnet is displaced with respect to the adjacent 
end of the following magnet, the 2,3 element is the slope of the magnet 
block with respect to the slope of the following component, and the 3,3 
element equals unity. Such a matrix, operating on a vector (x, x', 1 ), 

introduces the proper discontinuities to describe the trajectory relative to 
the centerline of the perturbed structure, evaluated at points immediately 
following the discontinuity. The closed-orbit deviations again will be 
given in terms of the matrix constructed for a complete period (that now 
will constitute a complete revolution) by expressions that correspond to 
Eqs. ( 42a, b). 

A modification to the 3 x 3 matrix employed to represent the radial mo
tion of a particle with a momentum p0 + op has been recently suggested by 
Courant (1964), with the object of generating directly the additional length 
(ill) of the paths that such particles describe. In this proposed method the 
matrix would operate on a four-element vector that has components x, 
p0(dxfds), L11, and op-or, more simply, the components x, dxjds, .dl, and 
opjp0 • In the latter case, the first-order relation 

I
Lls X 

L1! = - ds 
o eu 

ILls [ 1 /Jp ( In 1112 ) Xo I nl1/2 -- 1- cos--s +-cos --s 
0 I n I Po r!o eo eo 

l 1 • I n 1
112 

] + 
1
-n l 112 x0 Sllle;;-.s ds, 

-- cosh--s- 1 +-cosh --s J
L18 [ 1 op ( I n 1112 ') Xo I n 11/2 

0 I n I Po eo eo eo 

1 I . I n 11/2 ] + I n 1112 x0 slllh e;;- s ds 

Xo . I n 11!2 
' eo I ( I n 1112 

) I n l112 Sill e;;- Js -r-~ x 0 I - cos -----e;;- Js 

1 op ( eo . I n 11/2 , ) 
+ ~ Po .Js - I n 11/2 Sill~ .Js ' 

Xo · I n \ 112 
. eo , ( I n I 112 

• ) I n 1112 smh --e;-- Js + ~ x 0 cosh ~ .Js - 1 

I Dp ( eo . I n 1
112 

) + -
1 

-

1

- -:--
1112

smh -- .1s- L1s 
n Po 1 n . (!0 

(43a) 

(43b) 

(43c) 
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for focusing and defocusing regions, gives directly the elements of an addi
tional row (with the diagonal element equal to unity and the new column 
elements zero) that may be inserted into the 3 X 3 matrix to form a 4 x 4 
matrix capable of transforming .J/. By multiplication of such matrices to 
obtain a matrix (M) characteristic of a period of the structure, one then may 
derive the closed-orbit characteristics from the equations represented by 

(
X) (X) X

1 x' 
(M) 0 = J/ 

opfpo opfpo 

(44) 

and, in particular, evaluate the momentum compaction factor directly by 

NJIJCo 
~ opfpo 

(45) 

3. Machine Resonances 

The detailed selection of parameters for an alternating-gradient synchro
tron will be determined not only with the object of achieving a desirable value 
of a and suitable properties of such functions as fJ(s) that characterize the 
unperturbed structure, but also so as to avoid harmful effects from so-called 
"machine resonances." We have already seen that in a strictly periodic 
structure we must avoid values of ax and ay that are multiples of ::r, as well 
as sum resonances for which ax + av is a multiple of 2n. In an accelerator 
with misalignments, the true period of the structure becomes a complete 
circumference, and analogous restrictions therefore apply to Nax and to. 
Na11 • Linear resonances thus occur in general.for integral and half-integral 
values of Qx and Q 11 ,·and for values such that Qx + Qy is an integer. Mis
alignments and field errors that act to produce an inhomogeneous term in 
the orbit equations, but do not materially influence Kx or Ky; lead specif
ically to large excursions of the closed orbit in the neighborhood of an in
tegral resonance and thus, in effect, contribute to the widths of the integral 
stop bands. These stop bands, in practice, are normally found to be more 
prominent than those that develop at half-integral values of Q. Because of 
these machine resonances, values selected for Qx and for Q 11 normally are 
close to an integer plus or minus one quarter, and quadrupole lenses are 
commonly provided to permit adjustment and control of these quantities 
throughout the operating cycle of the acceleratorY 

15 The position of the beam within the accelerator aperture can be determined by means 
of electrostatic or magnetic pick-up devices called "difference el.ectrodes." The provision 
of several such pick-up units, for each transverse degree of freedom, per oscillation wave- · 
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F. INTRODUCTION OF Lo~G, STRAIGHT SECTJo;--;s 

The introduction of straight sections or other special features at equally. 
spaced but infrequent intervals will increase the fundamental period of a 
perfectly constructed magnet ring from C0/ N to C0/ N', where N' denotes 
the total number of "super periods'' of which the structure is comprised. 
Accordingly, unless the modifications to the basic structure are introduced 
in a well-matched way, one may expect prominent resonances ro develop 
when Qxl N' or Qy/ N' is an integer or half integer [and, if coupling is present, 
when (Qx + Qy)l N' is an integer]. Such resonances therefore should be 
avoided in the selection of parameters. 

A relatively simple method of introducing a long, straight section in a 
matched way (when Dp ~~ 0) has been suggested by Collins (1961) and af
fords a means of obtaining an unobstructed region whose length is approxi
mately a free-oscillation wavelength divided by 2n. Similar concepts have 
been discussed by Holt and Newns (1961), of the Liverpool-Manchester
Glasgow Electron Accelerator Project ("NINA," at Daresbury, Cheshire). 
The arrangement of Collins employs a field-free region of length L 1 , a fo
cusing quadrupole lens of focal length F, a (longer) field-free region of 
length L 2 , a defocusing quadrupole of focal length- F, and a final field-free 
region of length L1 (Fig. 6). This sequence of elements is inserted into the 
regular magnet lattice between defocusing and focusing magnet units so 
that, by suitable adjustment of the parameters, the orbit characteristics may 
be matched simultaneously for both transverse degrees of freedom. 

D 
QF QD 

F 

D I I D 
~L,~ L

2 
.t--L,-j 

FIG. 6. Sequence of elements in a Collins straight section. QF and QD denote, respec
tively, focusing and defocusing quadrupole lenses. The elements D and F represent de
focusing and focusing magr.et elements in the preceding and following normal portions 
of the accelerator. 

length is desirable. in order to permit a thorough diagnosis to be made of an imperfectly 
aligned beam and to guide the corrective measures that may be taken. The frequencies 
of the free oscillations similarly may be measured through the use of radial or vertical 
radio-frequency "knock-out'' fields by a technique that first was described in· connection 
with operation of the race-track synchrotron at the University of Michigan (Hammer et 
a/., 1955). 
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If we neglect the geometrical length of the quadrupole lenses, the transfer 
matrix for such a Collins straight section is 

(MT)collins = (
1 - L2/F- L 1L2/F2 

- L2/P 
2Lt + L 2 - L 1

2L2/P) 
1 + L 2/F- L 1L 2/P 

By choosing 

and 

F = L2:J 
y 

2L1a2 

L2 = 1 + Lt2Y2 

the matrix (46) may be expressed in the form 

(M ) . - (cos 0 - I a I sin 0 
T Collms- - y sinO 

f3 sin 0 ) 
cos 0 + I a I sin 0 

where 

n - -1 1 - Lt2Y2 - . -I 2 LtY 
') - cos 1 L 2 2 - Sill 1 + L 2 2 + 1Y · rY 

(46) 

(47a) 

(47b) 

(48a) 

(48b) 

The straight section is seen then to be ,matched to the impedance ellipse of 
the magnet structure and introduces a phase advance of 8 in the free oscilla
tions. The maximum value of L 2 is obtained by choosing 

L 1 = 1/y (49a) 

so that 

f3 
L2 = a2Lt = a2fy = 1 + lfa2 (49b) 

and 

0 = n/2 (49c) 

Since f3 will be approximately 27f(!0 /Na at the boundary between focusing 
and defocusing regions and I a I typically is close to 2 at such points, L 2 will 
be about equal to l/2n times an oscillation wavelength and the shorter 
field-free regions (L1) each will be approximately one quarter of L 2 • 

It. should be noted, however, that within the Collins section, in the neigh
borhood of the focusing quadrupole, f3 will attain a value that is close to 
twice the value that it has at the endpoints of this structure. It thus will 
become materially greater than flmax within the normal magnet structure, 
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and a sufficiently large aperture must be provided within the straight section 
to accommodate this increase. This type of straight section also leads to 
radial excursions of the closed orbit for particles whose momentum differs 
from p0 that are 1.7-2 times as great as would occur in a simple alternating
gradient magnet. 

The use of such straight sections (or of others of greater complexity that 
can be designed to suppress the mismatch for off-momentum particles and 
to provide longer field-free regions than can be realized with the Collins 
design) is attractive in affording room for radio-frequency acceleration 
structures, for work with internal targets, and for injection or extraction 
of the particle beam. Rapid beam extraction has been accomplished, with 
high efficiency, by means of rapidly pulsed kicker magnets that deflect a 
desired portion of the beam into bending magnets situated further "down
stream" (Bertolotto et al., 1964). For slow extraction, particularly desirable 
for counter experiments with an external beam, the beam may be caused 
to experience a radial resonance. As various portions of the beam become 
subjected to this resonant condition, or as the oscillations of particles with 
small initial amplitudes become large, the trajectories "lock in" to a mode 
that is characterized by a definite phase angle with respect to the perturba
tion, and the radial displacement increases sufficiently during successive 
revolutions that the beam can enter the channel of a septum magnet (Ham
mer and Bureau, 1955; Hammer and Laslett, 1958, 1961; Hereward, 1964). 

5.3.4. Basic Parameters of Existing High-Energy Alternating-Gradient 
Accelerators 

Basic design parameters of several alternating-gradient synchrotrons 
designed for the production of protons or electrons with energies in the 
multi-GeV range are listed in Table I. Intensities are not cited for these 
accelerators, since this important parameter of an accelerator is sensitive 
to many details of the design and frequently increases markedly as operat
ing experience is acquired. Linear acce~erators are most frequently employ
ed, in place of electrostatic generators, as injectors for the higher-energy 
alternating-gradient synchrotrons, but the 1.2-GeV alternating-gra"dient 
electron synchrotron at the University of Lund, Sweden (where R ~ 5.3 rn, 
(!0 = 3.65 m, N = 8, and I n I ~ 11) successfully employs a microtron 
with a hot-cathode source for the injection of a well-defined 6-MeV beam 
into this accelerator (Wernholm, 1964). Figure 7 shows a portion of the 
magnet ring and supporting concrete beam, together with a section of a 
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magnet block, for the 6-GeV alternating-gradient electron synchrotron in 
Hamburg, Germany, for which the dedication ceremonies took place in 
November, 1964. 

FIG. 7. (a) A portion of the magnet ring and supporting beam of the 6-GeV Deutsches 
Elektronen-Synchrotron (DESY) that was completed in Hamburg, Germany, in 1964 .. 
(b) Cross section of a magnet block for the DESY accelerator. [Courtesy of Professor 
Willibald K. Jentschke, Director, Deutsches-Eiektronen-Synchrotron and II Institut fUr 
Experimentalphysik, Hamburg.] 

As is apparent from the data given in Table I, the high-energy alternat
ing-gradient accelerators are of such a size as to warrant very careful at
tention to optimization of design and to critical engineering details. Provi
sions for efficient use of the facility must be carefully planned, and the 
accelerator should be adaptable ta future unforeseen experimental needs. 

The magnet power required for the individual accelerators listed in Table I 
is in the range of 1-100 Mw. This excitation power can be supplied in 
pulsed form, by use of ignitrons or solid-state devices, from motor-generator 
sets with fly-wheel energy storage. Continuous excitation to produce a 
current whose wave form is that of a biased sinusoid has proven feasible, 
by use of a resonant condenser and ring-choke arrangement, for magnets 
with a power consumption of 1-2 Mw·. [Initial plans for the application 
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TABLE I 

MAJOR DESIGN PARAMETERS OF ALTERNATING-GRADIENT SYNCHROTRONS FOR ENERGIES OF SEVERAL GeV OR ABOVE 

Proton synchrotrons 

Maximum energy (kinetic) 
Injection energy 
Radius, C0/2n 
Radius of curvature 
N 
k = (1/B0)(dB/dx) 
Q 

CERN, Geneva, 
Switzerland 

28 
50 

100.00 
70.08 
50 
4.1 
6.25 

Magnet weight, with coils (approx.) 3,500 
Vacuum chamber 

width 14 
height 7 

Electron synchrotrons CEA, Cambridge, 
Massachusetts, USA 

Maximum energy (kinetic) 6 
Injection energy 28' 
Radius, C0/2n 36.0 
Radius of curvature 26.4 
N 24 
k = (I I B0)(dB/dx) 3.4 
Q 6.4 
Magnet weight, with coils (approx.) 310 
Vacuum chamber 

width 13.4 
height 3.9 

a Plan to replace by 500-MeV injector. 
• Employs a neutral pole. a 12 superperiods. 

Brookhaven, 
New York 

33 
50" 

12ll.44 
85.37 
60 
4.2 
8.75 
4,000 

15 
7 

DESY, Hamburg, 
Germany 

6 
40 
50.42 
31.70 
24 
2.2 
6.25 

650 

F: I4.4; D: 9.2 
F: 4.5; D: 8.0 

• Useful width. ' J-!::;pe to obtain 40-50 MeV injector. 

I.T.E.P., 
Moscow, USSR 

7.3 
3.8 

39.98 
31 
56b 
14.8• 
12.75 
2,700 

II 
8 

Physical Tnst., Yerevan, 
Armenia, USSR 

6 
50 
34.49 
25.25 
24 

4.55 
5.38 

425 

12.0 
4.2 

Serpukov, 
USSR 

60-70 
100 
236.13 
194. l2 
48<1 

2.3 
9.7 

20,700 

17• 
11.5 

NINA, Daresbury, 
England 

4.0-5.5 
40 
35.0937 
20.7697 
20 

2.22, 2.28 
5.25 

380 

F: 13• D: 9• 
-7 

GcV 
M.:V 
m 
m 

m-1 
-

tonnes 

em 
em 

GeV 
MeV 
m 
m 

m-1 

tonnes 

em 
em 

b I4 superperiods, containing seven C-magnet& and one 
quadrupole in a FODO sequence designed to eliminate 
the transition energy by raising it to 18.3 GeV (kinetic). 
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feed points would be desirable in the design of larger accelerators of this 
type. 

The main magnet units of alternating-gradient accelerators require par
ticularly careful design and close manufacturing control if good perfor-· 
mance is to be realized with the relatively small apertures that result from 
cost optimization. The contour of the magnetic poles is basically hyperbolic 
in the central region, with modifications at each side of the gap, in order to 
achieve in the median plane the desired linear variation of magnetic field 
with radius. The use of H magnets (yokes· on each side of the aperture) or 
the introduction of neutral poles can be attractive as a means for obtaining 
a magnet design that is inherently more efficient, but a C-type magnet is 
usually preferred in order to facilitate access to the central-field region. 

To reduce distortions arising from eddy currents and from remanence, 
the magnet blocks are frequently c:onstructed from laminations of thin 
( ,.._, 1 mm) silicon steel, cut with precision dies. These laminations can 
advantageously be shuffled before stacking to insure that steel sheets from 
the various heats, rollings, and annealing processes in their manufacture 
are distributed among the magnet units. The effect of residual variations 

~ between the individual magnet blocks can be reduced, moreover, by ar-
~oo~ 

~ ranging these units in a sequence that introduces these variations with a 
high periodicity. 

Deterioration of the field shape as a result of saturation can be forestalled 
by a favorable design of the core and yoke of the magnet, by the introduction 
of suitably located holes in the top and bottom yokes near the cqrners of 
the coils (as developed by M. H. Foss for the H magnets of the 12.5-GeV 
zero-gradient accelerator and reported by the Argonne National Laboratory 
Staff, 1964), and by use of crenelated poles (Bruck, eta/., 1956; Princeton 
University Staff, 1959). The use of superconducting materials to achieve 
field strengths markedly in excess of those attainable with iron or steel, 
with corresponding reductions of dimensions and. magnet power, would 
appear to present especially grave difficulties in a pulsed accelerator, and 
a substantial reduction of size would result in appreciable inconvenience in 
the use of the magnet as an accelerator component. [The possibility of using 
superconducting surfaces to shape a magnetic field (del Castillo, 1963, 
1965) may be mentioned, however, for its possible application to the fixed
field alternating-gradient type of accelerator (Section 5.3.5).] Distortions 
of the field due to eddy currents, including currents induced in the excitation 
coils and in a metal vacuum chamber (for example, in a chamber with 2-mm 
walls, formed from material with a specific resistivity of 100 fJD-cm) must 
be reduced to an acceptable level at the time of injection. Such low-field 
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distortions. the effect of remanence, space-charge phenomena, and the de
sirability of introducing a high quality (low admittance) beam all favor high
energy injection into the synchrotron ring. Further details concerning the 
design and construction of alternating-gradient proton synchrotrons are 
included in the comprehensive review of Green and Courant (1959). 

5.3.5. Fixed-Field Alternating-Gradient Accelerators 

An interesting, and useful, application of alternating-gradient focusing 
ntethods occurs in the fixed-field alternating-gradient (FFAG) type of accel
erator, wherein the magnetic fields that guide and focus the accelerated 
particles are constant \vith respect to time but have an azimuthal variation 
that gives rise to alternating-gradient focusing (Symon eta/., 1956; Laslett, 
1956).16 An important form of FF AG accelerator is similar to the more con
ventional type of synchrotron, in that a magnetic field is provided only with
in an annular region. The similar use of azimuthally varying fields in the 
design of cyclotrons intended to produce continuous beams affords, how
ever, a means of meeting the otherwise conflicting requirements of axial sta
bility and isochronism for relativistic particles. Related applications may 
also be found in the development of separated-sector microtrons and in 
betatron design. 

In the annular form of an FF AG accelerator,. the strength of the mag
netic field increases rapidly (ex: rk) with radius. The azimuthal variations of 
this field overcompensate the axial defocusing that otherwise would result, 
and produce a strong-focusing action in this transverse degree of freedom. 
Particles with a wide range of momentum can be accommodated simulta
neQusly in s'uch a field, so that there is an opportunity for great flexibility 
in the acceleration techniques and other particle-handling procedures in an 
accelerator of this type. The design thus offers the technical convenience of 
requiring a magnetic field that is constant with respect to time, it may per
mit the designer to realize more rapid cycling rates for the acceleration (with 
a correspon:ling increase of the average beam intensity), and it presents the 
opportunity to build up ("stack") intense beams that can be stored within 
the accelerator. Various types of FFAG design have been proposed, and 
their theoretical and technological problems extensively analyzed, by mem
bers of the Midwestern Universities Research Association. 

16 Similar design concepts, in at least one form, had been presented earlier by T. Oh
kawa at a meeting of the Physical Society of Japan (1953) and also were considered by 

L. J. Haworth and H. Snyder of the Brookhaven National Laboratory. 
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A. RADIAL-SECTOR DESIG:\", WITH REvu:sED FIELDS 

A simple form of FFAG accelerator is the reversed-field typ.::, in which 
the direction of the magnetic field is caused to reverse from one magnet. 
sector to the next. The sector boundaries are formed by geometrical planes 
that extend radially from the axis of the accelerator, and the length of the 
reversed-field sectors (or the strength of the reversed field) then normally 
would be chosen to be less than for the sectors of positive field in order that 
a closed orbit may be formed without requiring an excessively great circum
ference. Because of the strong radial increase of field strength and the al
ternating sense of the curvature of the equilibrium orbit, there will be a 
marked alternation in the sign and magnitude of the local focusing index 
I n I = keol R. This alternation of the focusing action within the individual 
magnet sectors, with some contribution from the edge focusing that results 
from the equilibrium orbit crossing the sector boundaries obliquely, 'can 
result in a net strong-focusing effect on the beam. Model accelerators of 
this type have been built (Cole et a!., 1957 ), and have operated in the man
ner expected from prior analysis, but the design is such that the circumfer
ence may be some 5 times that required for a constant-field device and the 
magnet consequently must be undesirably massive. 

B. SPIRALLY RIDGED DESIG:\" 

To avoid the large circumference required for a reversed-field FF AG ac
celerator, it is advantageous to provide a field variation such that the field is 
alternately high and low along spiral curves that the particles will cross. 
Specifically, the field is taken as proportional to Rk times a periodic 
function of (lfw) In (R/R1)-NfJ, where 0 denotes the azimuthal angle. 
With the period of this function taken as 2;r, N denotes the number of pe
riods (or full sectors) per circumference and the periodic function is con
stant along curves that make an angle tan-1(1/Nw) with the radius. A field 
variation of this form retains the important scaling property that is also 
satisfied in the reversed-field design; that is, possible orbits of particles of 
different momenta are scaled replicas of each other, with suci1 geometrically 
similar orbits shifted azin1uthally with respect to one another in the spirally 
ridged designY Because of this property, the essential characteristics of 
the transverse oscillations of particles with different energies will be identi-

17 It will be observed that the relative azimuthal displacement of geometrically similar 
orbits for particles of different momenta in a scaling field presents complications if it 
is desired to introduce fie\d-free straight section; whose boundaries extend radially from 
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cal, and harmful resor:ances may be avoided at all energies by a suitable 
choice of parameters. 

The characteristics of the transverse oscillations of particles in a spirally 
ridged accelerator lend themselves to analytic examination most readily 
if the periodic variation is expressible by a simple sine function and if the 
amplitude of this variation is not large. We then consider the particle mo
tion in a median-plane field of the form 

By= - B1(R/R1)k { 1 + fsin [ ln(~Ro) -NO]} (50) 

with f small in comparison to unity (for example f< 1/4); quantitative 
examination of orbits in fields that fail to meet these simplifyingconditions 
may be obtained conveniently by digital computations, but will generally 
exhibit qualitative characteristics similar to those that can be derived from 

use of Eq. (50). 

1. Analysis of Equations of Motion 

The closed equilibrium orbit in the spiral-sector field of Eq. (50) departs 
from a circle by an amount that affects significantly the character of the 
oscillations about this orbit. For a particle of magnetic rigidity p 0/e, the 
equilibrium orbit may be approximately expressed by 

where 

Req = R0 [ 1 - N 2 _ {k + I) sin NO] 

Ro = Rl . (~)ll<k+ll 
eB1R1 

(5la) 

(51 b) 

It is immediately apparent that, in conformity with Eq. (51 b), the momen

tum-compaction factor in the assumed scaling field is 

~=k+I; (5lc) 

for investigation of the transverse oscillations it is appropriate to expand 
the equations of motion about the solution given by Eq. (5la). 

If. we initially retain only terms that are linear in the departure from the 

the central axis of the accelerator-see, for example, Cole and Morton (1959, pp. 31-37). 
The spiral angle facilitates, however, the extraction of a beam that is circulating in the 
direction of the spiral. 
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equilibrium orbit and neglect terms of order (ffwN)2, the equations of mo
tion are of the form 

where 

and 

d 2u 
dF)2 + (ax + bx COS NO)u = 0 

d
., -v 

d(P -i- (ay + by cos NO)v = 0 

u = 
R- Req 

~ 
y 

v = Ro 

l (ffw)2 
ax~ k + 1 - 2 N2- (k + 1) 

a -y= 

1 (ffw)2 
- k + 2 N2 _ (k +I) 

b - f X=-
w 

bu~ _1_ 
w 

(52a) 

(52b) 

(53a) 

(53b) 

(54a) 

(54b) 

(54c) 

(54d) 

The frequencies of small-amplitude transverse oscillations may be obtained 
for the Mathieu equatipns (52a, b) by numerical integration (Belford 
et a/., 1957) or estimated by approximate formulas (Symon et a!., 1956, 
Appendix A; Laslctt and Sessler, 1961, Eq. (2.24)) that are valid when 
ffwN 2 is small. The approximate formulas lead to 

Q 
2 bx2 

x ~ax+ 2N2 

~k+I (55a) 

( f )
2

- k Qt/ ~ wN (55b) 

for k/N2 and ffwN 2 small in comparison to unity. The boundaries of the 
first stability zone for solutions to Eqs. (52a, b) may be similarly approxi
mated by the stability condition (Laslett and Sessler, 1961, Sect. Ila) 

b2 
- 2N2 < a < N

2 

_ I b I 
4 2 

(56) 
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or, more accurately, by well-known series expansions (Whittaker and Wat" 
son, 1927, Section 19.3, Ex. 2; Mclachlan, 1947, Sections 4.90-4.91) for 
the first characteristic values of the Mathieu equation. 

Equations (55a, b) are of good accuracy throughout the present range· of 
interest for the parameters if 2Q/N::::;: l/3, and for values of 2Q/N as great 
as 2/3 if I b I < N2/4. More accurate values for the boundaries and oscilla
tion frequencies for the first region of stable solutions to Eqs. (52a, b) are 
listed in Table II (from Belford et a!., 1957; National Bureau of Standards, 
1951) and are illustrated by Fig. 8. A stability diagram for the two degrees 
of freedom represented by Eqs. (52a) and (52b) is shown in Fig. 9. 

2.0 ..... ,.......~t""T~,.......--.-~~---.~~--..--~~-..--. 

t 
4ibl 
7 

1.0 

0 4o _ 

r:J2 
0.5 1.0 

Fig. 8. Diagram. showing the relation between the coefficients of Eqs. (52a) or (52b) 
for various values of the oscillation frequency. Curves are given for increments of 0.1 
in the quantity 2Q/l•i = a/n. 

2. Physical Origin of Axial Focusing 

It is informative to examine the physical origin of the several terms that 
contribute to the result expressed by Eq. (55b). The results of such an anal
ysis (Laslett, 1961) suggest an interpretation that is summarif:ed below 
for terms that arise in the coefficient of r in Eq. (52 b). This coefficient may 
be written 

K= eR0
2 

[- (V/V) x B] · e11 , 

Po Y 

with p 0 = e I B0 R0 I and with the guide field (By) negative for positively 
charged particles. Also we may assume k <:{ N 2• 
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TABLE II 

STABILITY BOUNDARIES AND VALUES OF 2Q/N FOR SOLUTIONS TO EQS. (52a) OR (52b) 

4b 
0 ±0.2 ± 0.4 ±0.6 ± 0.8 ± 1.0 ± 1.2 ± 1.4 ± 1.6 ± 1.8 ± 2.0 N2. 

-----
4a 
N" for Q = 0: 0 -0.004995 -0.019913 -0.044566 -0.078649 -0.121766 -0.173445 -0.233169 -0.300393 -0.374564 -0.455139 

---- ---------------------------- ···--- -- ----~----------. 

411 
Values of 2Q/N 

N" 

0.4 --- - --- ·---- ---- - ··-. - ----- ---- 0.2'!529.1 
0.3 - -- -- - - --- -- - 0.022t!S6 0.3.11H22 0.51JX20 

---0.2 - - --- - --- 0. 2047:19 0.372t!l7 0.5235il6 0.700020 
0.15 - ..... --- 0.166996 0.326529 0.461670 0.(1()(,4')1 0.1>0'!.154 

--0.12 - - - - -- 0.044613 0.252886 0.382727 0.509724 0.655910 0.907994 
--0.09 - - - -- - 0.189606 0.317003 0.432744 0.555508 0.706820 
- 0.06 - - - - 0.142084 0.264'.145 0.370'.104 0.4786H9 0.599'JH5 0.7614!!5 
--0.03 - - - 0.123432 0.229781 0.323667 0.418648 0.521836 0.644024 0. 824726 

0 0 "0.070850 0.142551 0.216059 0.292566 0.373744 0.462249 0.563066 O.p88564 0.915909 
0.03 0.173205 0.187553 
0.06 0.244949 0.255622 
0.09 0.300000 0.309063 
0.12 0.346410 0.354556 
0.15 0. 387298 0.394858 
0.2 0.447214 0.454188 
0.3 0.547723 0.554252 
0.4 0. 6:12456 0.639073 
0.5 0.707107 0.714238 

4a N 
f\12 for Q = 2: I. 000000 0. 898766 
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(/J) J2 cos2NO = (J2/2) (1 + cos 2NO) due to - V,B0 _:._ (V,/R8 ) 

[8(- Bv)f80] y. 

The several terms listed above contribute to the value of Q/ as follows: 

(1, a) - k, the normal value of Q/ in a constant-gradient accel
erator; 

(1, /3) (l/2)(fZfwW2
), by an approximation of the alternating-gradient 

focusing that arises from radial fields attributable to the spiral ridges; 

(2, a) (1/2) (f2fw2N2), from the constant component of force that 
arises from the additional radial fields experienced by particles that cross 
the spiral ridges on a noncircular equilibrium orbit; and 

(2, {3) f 2/2, from the constant component of force that arises from 
azimuthal components of magnetic field, in a configuration such that Bv 
varies with 8, that act on the radial component of velocity for particles 

. whose equilibrium orbit is noncircular. 

Disregarding the term f2/2, that quantitatively is of little importance in a 
spirally ridged accelerator, the terms listed are seen to combine to give the 
result expressed by Eq. (55b). It is noteworthy, however, that only one of 
the terms (namely, 1, /3) truly arises from an alternating-gradient focusing 
action. The last two of the terms listed (2, a, /3) have their physical origin 
in the noncircularity of the equilibrium orbit, and their effect thus corre
sponds to that noted by Thomas (1938) in his paper that suggested the appli
cation of radial ridges to a cyclotron field. 

C. APPLICATION TO THE CYCLOTRON, MICROTRON, AND BETATR0::-.1 

1. Cyclotron with Azimuthally Varying Field 

It is evident that the use of azimi1thally varying fields, with or without 
spiral ridges, affords a means of maintaining isochronism and stability for 
particles accelerated in a cyclotron.18 An azimuthal variation of the field 
will iead to a significant scalloping of the particle orbits, but, to the extent 
that the revolution time of a particle is not greatly affected by the noncir
cularity of the orbits, one may readily derive the radial variation of magnetic 
field that is required to insure isochronism. In this case, f3 == Vfc must be 
proportional to radius and the average field strength will be proportional 

18 Th<: conflicting character of the requiremef!ts for isochronism and stability in a con
ventional cyclotron was noted by Bethe and Rose (1937) and by Rose (1938). Cf also 
the experimental work reported by Wilson (1938). 
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to y = (1 - fJ2)-li2. A simple differentiation then shows that the value of k 
at any radius is19 

R dB 
k=--

B dR 

= y2- 1 (57) 

The radial oscillations are characterized by a value of Q,/ that is close to 
· k + l, so it then follows that 

Qx ~ Y (58) 

in an isochronous cyclotron. The scaling condition that was introduced for 
annular fixed-field accelerators in which isochronism was not required 
cannot be maintained if Eq. (57) is to be satisfied, but Eq. (58) indicates the 
possibility of achieving a design in which Qx remains bounded by the inti
gral values 1 and 2 as the kinetic energy of the particles increases from zero 
to a value in the neighborhood of M 0c2

• A precise analysis of particle dy
namics in fields that are suitable fot isochronous cyclotrons is too detailed 
for presentation here; an early analysis was given by Dunn et a!. (1956), 
a comprehensive review of cyclotron technology has been presented by 
Cohen (1959), and an excellent resume of both the theory and design 
principles for sector-focused cyclotrons has been given by Richardson 
(1965). 

With k > 0, some form of azimuthal variation of field strength is required 
to provide axial focusing. As has been noted eatlier, one obtains 

Qy = [(f2/2) - k]ll2 (59) 

with "Thomas focusing," and more modest values off will suffice if spiral 
focusing is introduced. 20 The Thomas design (Thomas, 1938; Schiff, 1938; 
J~dd, 1955) received an initial experimental test in two electron models 
(Pyle eta/., 1955; Kelly eta/., 1956), and both radially and spirally ridged 
cyclotrons have since come into successful operation for the acceleration of 

19 Alternatively, one may note that the momentum compact'on is given directly by 
·c; = k + 1 and the condition of isochronism (tiT= 0) requires ~ = ;v' (refer to Note I), 
so that Eq. (57) then follows immediately. 

20 An ingenious radial-ridge design was adopted for a three-sector cyclotron built 
at the Karlsruhe Nuclear Research Center (Lcopo\dshafen, Germany) to provide a 
continuous beam of 50-MeV deuterons. The large value off required in this case was 
realized by locating three radio-frequency electrodes in the regions where the magnet 
gap is large and driving them together at the third harmonic~of the orbital frequency 
(Steimel and Lerbs, 1959; Steimel, 1963). 
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semirelativistic beams of positively charged ions. 21 An electron model of 
an eight-sector "/If c2 cyclotron" (Livingstofl and Martin, 1964) has suc
cessfully demonstrated the ability to obtain a beam whose kinetic energy is 
close to the rest energy of the particles and then to extract this beam effi
ciently through the excitation of the "8/4 essential resonance" that occurs 

for Qx = 2. Theoretical and experimental work also has been directed 
(Haddock eta/., 1964) to the design of a negative-ion cyclotron from which 

proton beams of variable energy up to 625 MeV could be efficiently extract
ed magnetically follO\ving charge stripping of the negative ions in their 
passage through thin carbon foils. 

The selection of parameters for sector-focused cyclotrons and detailed 
determination of their engineering design have come to constitute an im
portant field of specialization in accelerator technology (Howard, 1959; 
Siegbahn and Howard, 1962; Howard and Vogt-Nilsen, 1963). Twenty 
six isochronous cyclotrons have been ·listed by Howard and Vogt-Nilsen 
(1963) as in operation or under construction in the spring of 1963. With 
suitable designs, energy variation may be achieved over a wide range, 
a change to a new type of particle can be accomplished rapidly, and beams 
of good emittance may be extracted efficiently. In determining the desired 
variation of magnetic field strength with radius it may be desirable to forego 
precise isochronism and to give special attention to the central region where 
the size of the gap prevents reliance on flutter focusing. Thus, in the three
sector "88-inch" cyclotron at the Lawrence Radiation Laboratory in Ber
keley (California), for which the pole diameter is 224 em and the minimum 

internal magnet gap is 19 em, the flutter focusing becomes effective only 
for radii greater than about 19 em and electric focusing is effective only 
within a 7.6 em radius (Watson, 1962). The use of trimming coils in various 
configurations is helpful to control and to correct the spatial variation of 
the magnetic field. "Ion pullers" and "beam clippers" can assist in obtain
ing from the internal ion source a beam whose initial conditions are suitably 
defined for subsequent extraction from the cyclotron (Willax and Garren, 
1962). An alternative method of injection introduces the beam through a 

21 An extensive series of papers on the theory and design of cyclotrons with azimuthally 
varying fields will be found in the Proceedings of the International Conference on High 
Energy Accelerators, Dubna, USSR, 1963 (Atomizdat, Moscow, USSR, 1964) and in 
earlier publications cited therein. For collections of papers specifically concerned with 
detailed problems in the design, construction, and use of cyclotrons with azimuthally 
varying fields, see the proceedings of the 1959, 1962, and 1963 international conferences 
on sector-focused cyclotrons (edited respectively by Howard, Siegbahn and Howard, and 
Howard and Vogt-Nilsen). 
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bole on the axis of the magnet pole, as has been done on the 3-sector radial
ridge cyclotron at the University of Birmingham (Cox et a/., 1962). 

The acceleration of negative ior,s requires good vacuum conditions ~nd 
the use of somewhat lower field strengths than otherwise would normally 
be selected, in order to avoid premature dissociation of a substantial frac
tion of the ions [see resume by Judd (I 962)]. The acceleration of polarized 
protons and deuterons-injected as atomic beams and ionized at the cen

ter of the accelerator-has proven feasible in constant-field cyclotrons, 
provided that refrigerated surfaces maintain the vapor pressure of water 

at a sufficiently low value to avoid excessive background from non polarized 
protons (cf. Dick eta!., 1963; Thirion, 1963; and references cited therein). 
There is a corresponding interest in the possibility of accelerating such 
polarized particles in cyclotrons (or other circular accelerators) with azi
muthally varying fields (C0x eta/., 1962; Luccio eta/., 1962), and this in
terest has motivated an examination of· the possibly significant enhancement 
of depolarization through the agency of unavoidable energy-dependen~ 
resonances (that can occur between the precession frequency and the fre
quency of some oscillatory component of the field felt by the particle). Sev
eral analyses have been made of this potential depolarizing mechanism (cf. 
Khoe and Teng, 1963, and earlier work cited therein) and suggest that a 
reasonable rate of acceleration in a sector-focused cyclotron will preserve 
the greater part of the initial polarization. 

Table III lists a few of the published characteristics of the "88-inch" 

TABLE III 

APPROXIMATE SPECIFICATIONS OF THE LRL AND OAK RIDGE ISOCHRONOUS CYCLOTRONS 

Characteristic 

Maximum particle energies 

Pole diameter 
Minimum gap 
Average field at 'max 
Sectors 
Maximum spiral angle 
Magnet weight 
Magnet power 
R-f electrodes 
kV /turn (max.) 

LRL, 
Berkeley 

l 
59 p 
65 d 

130a 
224 

19 
17 
3 

55 
260 

1000 
One, 180° dee 

140 

Oak Ridge, 
Tennessee 

~75p 

~40d MeV 
-8oa 

193 em 
19 em 
17 kG 

3 
30 deg 

190 tonne 
2000 kw 

One, 180" dee 
200 kV 
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and 76-inch (ORIC) isochronous cyclotrons that have been operating 
respectively since 1961 and !962 at the Lawrence Radiation Laboratory in 
Berkeley (Kelly, 1962: Grunder and Selph, 1963) and at the- Oak Ridge 
National Laboratory (Tennessee). Each of these cyclotrons permits the 
final particle energy to be nried and can accelerate various ionic species. 
The LRL radio-frequency system covers the range from 16.5 MHz to one·· 
third this value, thus permitting a transfer to third-harmonic operation 
without leaving a gap in the energy range of the accelerator. Similarly the 
ORIC system is continuously tunable from 22.1 to 7.3 MHz. The first of 
these cyclotrons was designed primarily as a deuteron accelerator. The 
usable radius of the ORIC is about 80% as great as that available in the 
88-inch cyclotron, and the limiting energies for deuterons and alpha par
ticles for this reason are correspondingly smaller. The limiting oscillator 
frequency of 16.5 MHz similarly restricts proton energies (at an extraction 
radius of 100 em) to 59 MeV in the LRL machine. 

2. Microtron 
cjclo 

The microtron (Veksler, 1945) or "electron syndm*ron" normally em-
ploys a spatially constant de magnetic field, 2~ and achieves vertical focusing 
only through the provision of a region of slightly increased· magnetic field 
in the immediate region of the radio-frequency cavity (Redhead et a/., 
1950; Aitken eta!., 1961) or by virtue of the focusing action of the rf fields 

'within this cavity (Bell, 1953; Reich, 1960). A modification that promises 
to afford a flexibility in the design that could be advantageous in several 
respects is that in which separated sectors, or sectors of unequal field 
strength, are employed to guide the particles on the orbits to be described 
between successive transits of the rf cavity. In such a separated-sector design 
there then may be the opportunity to introduce a desirable amount of edge 
focusing at the sector boundaries, and the incorporation of spiral bound
aries may deserve consideration. Although the dynamics of particles in a 
microtron are strictly not describable by differential equations with simple 
periodic coefficients, some of the analytical methods employed for the anal
ysis of alternating-gradient accelerators will be applicable. The utility of 
microtrons employing separated sectms (Moroz, 1956, 1957, 1958) h;::.s been 
discussed in a general article by Rober~s (1958), and an electron accelerator 
of this type has been successfully operated (Brannen et a!., 1960; Brannen 
and Froelich, 1961; Froelich, 1962) at the University of Western Ontario 
(London, Ontario, Canada). 

22 For a general discus;ion of the microtron (and of other particle accelerators), see 
for example, Kollath (1955),- or Kolomensky and Lebedev (1966). 
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3. FF AG Betatron 

An annular FF AG field, with a value of k sufficiently great that particles 
with a large range of momentum may be simultaneously held by this field, 
affords a means of providing a beam with a very high duty factor by lise 
of betatron acceleration. The accelerating electric fields would be generated 
in such a case by the change of flux in a large separate magnetic core. If the 
excitation of the core is such that the total flux change is approximately 
twice that required to accelerate particles to the full energy that the guide 
field can accommodate, particles injected during the first quarter cycle of 
increasing flux will be accelerated to full energy and produce an intense beam 
with a duty factor approaching 25% (Fig. 10). Betatron acceleration has· 

ct>t 

A 

1------------------
eo 
<J 

Injection at 
low energy 

Attainment of 
fu!l energy 

c 

,_ 

FIG. 10. Time dependence of magnetic flux for betatron acceleration of particles in 
a FFAG field, indicating the possibility of achieving a high du~y factor . .dcl> denotes the 
change of flux that is required to acceleratt: a given particle from its initial to its final 
energy. Particles injected during the interval AB (for example, at 1) will attain full energy 
during the time interval BC (for example, a'. 2) as a result of acceleration produced by 
the action of .dcl>. 

been tested in electron models as one means of accelerating particles in 
FF AG machines (Cole et al., 1957) and design studies have indicated the 
possibility of realizing high performance electron accelerators based on 
these methods. 
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D. NoNLINEAR RESONANCES 

Nonlinear terms in the equations that govern the motion of particles in 
a circular accelerator may influence the orbits significantly in some situations, 
particularly through the mechanism of nonlinear resonances that can im
pair the stability of the motion. Such nonlinear effects deserve particular 
attention in analysis of FF AG accelerators, since the character of the fields 
in this type of accelerator is inherently such that appreciable nonlinear terms 
necessarily will be present. 

In the spirally ridged FF AG design considered earlier, consideration of 
nonlinear phenomena requires that Eqs. (52 a,b) be supplemented by the 
inclusion of additional terms (Cole, 1956): 

~~~ + (ax+ hx cos NO)u + 2~2 (sin NO) (u2 
- v2

) 

- 6~3 (cos NO) (u3 - 3uv2) = 0 (60a) 

~v f . f . 
do2 + (a11 + b11 cos NO)v- -

2 
(sm NO) uv + -

2 3 
(cos MJ) zh = 0 (60b) 

w w 

~. It will be noted that Eqs. (60a, b) are derivable from a Hamiltonian and 
that only terms linear in v have been included. A simple scaling of these 
equations will show that, if u and v are expressed in units of w, the properties 
of the solutions are expressible in terms of the phase advance per sector 
(ax and a11) of solutions to the uncoupled linearized equations and a param
eter A. = ffwN 2 that measures the strength of the nonlinearities (Laslett 
and Sessler, 1961). 

Inspection of Eq. (60a), with v set equal to zero, suggests that the quad
ratic term can lead to a resonant action when Qx is near N/3 (ax near 
2n/3). Solutions to the linearized equation will contain terms of frequency 
Qx, N =F Qx, ... ; u2 sin NO will have a strong component of frequency 
N - 2Qx ; and this term can represent a resonant driving function if 
Qx;:; N/3. By virtue of such action by low-order nonlinear resonances, 
phase diagrams that depict the radial oscillations (when constructe<;! for 
successive homologous points in the stwcture) become markedly distorted 
from simple elliptical curves, and a separatrix then can occur to represent 
a limiting amplitude beyond which the oscillations effectively are unstable. 
At the amplitude corresponding to the boundary of stable motion, there 
will be a periodic solution (for example, with a fundamental frequency rep
resented by N0/3 for the Qx = N/3 resonance) that is represented on the 
phase diagram by unstable fixed points (Fig. 11 ). 
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FIG. ll. Phase curves depicting the radial motion in a spirally ridged FFAG accelerator. 
The curves were constructed from points computed for the parameters N = 40, k = 128, 
f = 0.25, l fw = 2112, and the corresponding small-amplitude oscillation frequency is 
such that a., = 0.647::-r. For larger amplitudes the frequency departs from this value, and 
at the limiting amplitude for stable motion a" attains the value 2n/3 that is characteristic 
of the unstable equilibrium orbit associated with this nonlinear resonance. The stable 
equilibrium orbit is represented by the point at the center of the diagram, and the unstable 
orbit by the three "unstable fixed points" depicted by solid dots on the figure. 

I. Limiting Amplitude When Qx is Close to N /3 

The limiting amplitude for a simple nonlinear resonance may be conve
niently estimated through use of an approximate solution of a suitable form 
for which the coefficients are adjusted to achieve a harmonic balance of the 
terms in the differential equation. Thus a useful estimate of the radial stabil
ity limit that results from the quadratic term in E,q. (60a) may be obtained 
very simply by replacing the coefficient of u by Qz2 and employing a trial 
solution of the form u = A sin NfJ/3. One thus obtains (Laslett and Sessler, 
1956) the approximate result 

A ~ sw2 [ 2 _ '!'!.__)2] 
- f Qr \ 3 (6la) 

~ • 2 (___t_.)-1 I (.!2.)2 - (2)21 
II' wN- · n 3 

(6lb) 

indicating the pronounced limitation of stable amplitude that is imposed by 
the quadratic term of Eq. (60a) when Qx is close. to N/3. 
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Systematic approaches to the analysis of nonlinear equations with peri
odic coef1i.cients have been given by Moser (1955a, b, 1956) and by Stur
rock {1955, 1958a, b). Since it has been seen possible by a suitable transfor
mation [Eqs. (31 a, b)] to remove the alternating-gradient character of the 
coefficient of u, it will suffice for present purposes to illustrate a procedure 
similar to that of Moser. by its application (for the Qx ~ N/3 resonance) 
to the equation 

d 2r; . ( 2Q )2 1 . . 
d1p2 ' 7 r; + 2 (sin 2tp)r;2 = 0 (62) 

that is derivable from the Hamiltonian 

1 . . 1 ( 2Q ) 2 
. 1 . H == - p2 -+- - -- r;2 + - (sm 21p )r;a 

2 ' 2 N 6 
(63) 

It will be the purpose to transform the variables (r;, P) in such a way that 
the 1p dependence is removed from the cubic term in H; the resultant Ha
miltonian, through terms of this order (and including tp-independentterms 
of the next higher order), may then be taken as an approximate constant of 

Z the motion from which invariant phase curves can be constructed and fixed 
~ points determined. This technique in principle can be extended (Moser, 

1955a) to displace the 1/-dependence to terms of increasingly high order in 
the dependent variable. 

We shall employ a series of canonical transformations (Goldstein, 1950), 
defined by generating functions G0 , G~o and G2, to transform the conjugate 
variables and their associated Hamiltonian functions successively from 
( 7], P) to (y0 , 10), (y1• 11), and (y2, 12): 

l. Go('Y), Yo)= (Q/N) 7j2 cot Yo 

P = 8G0 j8r7 = (2Q/N)Yj cot i'o 

10 = - 8G0/8''/ = (QJN)7j 2 csc2y0 

H0 = (2QJN)10 + 
4
1
8 
(N/Q)3i21~;2 

X [3 cos (y0 - 2tp) - 3 cos (y0 + 2tp) 

+cos (~Yo+ 21p) -cos (3y0 - 27p)]. 

2 ( 1 ( "/Q)3 .213/2 [ 3 sin(y0 - 27p) 
. G1 Yo,J1) = 11Yo- 96 1• 1 1 _ QJN 

3 
sin(i'o + 27p) _ sin(3y0 + 2tp)] 

+ 1 + Q/N 1 + 3Q/N 

(64a) 

(64b) 

(64c) 

(64d) 

(65a) 
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1
0 

= 8Gda;·
0 

== 1
1 

+ _!_ (N/Q)312 1 3i2 [ cos(yo- 27p) 
32 1 1 - Q/N 

+ cos(yo + 2tp) _ cos(3y0 + 27p) ) 
1 + Q/N . 1 + 3QJN 

(65b) 

y
1 

= 8G
1
/81

1 
= Yo+_!_ (NJQ)3121112 [3 sin(yo - 27p) 

64 1 
. 1 - Q/N 

+ 
3 

sin(yo + 2tp) _ sin(3y0 + 2tp) ] 
1 + QJN 1 + 3QJN 

(65c) 

1 
H1 = (2Q/N)11 -

48 
(N/Q)312 1~i2cos(3y1 - 27p) 

l (NJQ)31 2 [ 6QJN 1 ·] 
+ 2048 . 1 1 - Q2/N2 - 1 + 3QJN 

(65d) 

in which only terms independent of 1p and of y1 have been retained in the 
coefficient of 112

• 

3. G2CY1 ,12) = 12 · (Y1 - ~ 1fJ) 

11 = ac2;ayl = 12 

2 
Y2 = 8G2!812 = Y1- J 11' 

·H2 = -- (~- 2Q ) 12- _!_ (N/Q)3121~12 cos 3y 
3 N 48 2 

(66a) 

(66b) 

(66c) 

+ 2~48 (N/Q)3122 [ 1 ~Q~~N2 - 1 + ~Q/Nl (66d) 

again with tp-dependent terms omitted from the coefficient of 122• 

The detailed algebraic steps required in the transformations (64a) et 
seq. have not been shown, but the effect of these transformations is apparent. 
The first transformation results in a Hamiltonian that would be a constant 
of the motion if no nonlinear terms had been present in Eq. (62)-that is, 
if only quadratic terms had been present in the Hamiltonian shown in Eq. 
(63). The second transformation was so chosen as to remove from the Ha
miltonian all tp-dependent terms in the coefficient of 1i12 save that associat
ed with the resonance Q/N,....., 1/3. The third transformation removes this 
remaining tp-dependence from the cubic (1~12 ) term. 

Without pursuing the analysis further, the Hamiltonian shown in Eq. 
(66d) may be taken as an approximate constant of the motion and the in-
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verse transformations employed to obtain equations for the "invariant phase 
curves" of a P, 7]-diagram. Other charact~ristics of the motion, such as the 
variation of the oscillation frequency with amplitude, may similarly be 
determined (Laslett, 1959). 

Of particular interest in defining the limits of stability are the three un
stable fixed points, for which the Hamiltonian is stationary. From Eq. 
(66d), this condition is satisfied when 

Y2 = - nf3, -;rj3, or n (67a) 

]~12 = 64 X ( + _ ~ ) ( ~ r2 
{67b) 

where 

X 
{l + 4g)ll2 - I 

2g 
• 1 - g+2g2 - 5g3+14 g4 - ••• {67c) 

and 

g ( 1 Q ) [ 6Q/ N l ] 
= 

2 3- N 1 - (Q/N)2 - 1 + 3Q/N {67d) 

The inverse transformation to the original variables (P, 7J ), although tedious, 
is straightforward. For a phase diagram pertaining to rp =' 0 (mod n) one 
obtains 

7) = ± 32 Vf (__!_ - iL) ( iL) X 
3 N ,N 

x {1 - [ 2 _ 1 ] ( 1 Q) } . I - (Q/N)2 I + 3Q/N 3- N x (68a) 

p = 64 ( ~ - ~) ( ~ rx 
X {1 + [ 10 1 ] ( 1 Q) } I - (Q/N)2 + 1·+ 3Q/N 3- N X (68b) 

and 

7]=0 . {69a) 

p = - 128 ( +- ~) ( ~ rx 
x {1 - [ 2 _ I ] ( l Q) } l - (Q/N)2 l + 3Q/N 3- N X (69b) 

for the coordinates of the three unstable fixed points. From Eq. (68a) 
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it is seen that, for operation close to the resonance, the displacement of 
the unstable equilibrium orbit at 1p = 0 (mod n) attains the magnitude 

32 I Q 1 I Displ~~=o = V3 N - 3 (70a) 

since Q/N ~ I/3 and x ~ l [Eq. (67c)]; for 1p = =f n/4 (mod n), however, 
a similar analysis leads to the amplitude 

Ampll = 64 I Q 1 I 
~-n/4 3 N -3 (70b) 

in agreement with the approximate result suggested for this case by Eq. 
(61a) of the text. 

2. Analysis of Coupling Resonances 

Analytic methods analogous to that just presented for the Qx = N/3 
resonance can be applied to other essential resonances in one degree of 
freedom, to the effect of forcing terms that can result in effects attributable 
to a machine resonance (perturbation of period C0), and to coupling reso
nances. 23 The effects of coupling, due to a sum or difference resonance, have 
been examined computationally and analyzed by a technique similar to 
that of Moser (1955a) by Meier and Symon (1959). In this latter work the 
coupling term in the Hamiltonian was taken to be proportional to uv2 • i1(N8) 
where i1(N8) is a periodic delta function of period 2njN, since the computa
tional work could then employ a sequence of simple linear and nonlinear 
algebraic transformations that made it feasible to perform individual com
putational runs extending through as many as 106 sectors. · 

Of particular interest is the character of orbits that are influenced by 
sum or difference resonances. Because of such coupling resonances, an ini
tially small amplitude of axial oscillation may experience a pronounced 
growth, provided the amplitude of the radial oscillations is above a certain 
threshold value. This threshold will be low, and the rate of growth correspond
ingly large, if the oscillation frequencies are close to values th~t satisfy a 
resonance relation [gxQx + gyQy = g or gN (for machine resonances or 
"essential resonances, respectively), where gx, gv, and g are integers (of 
small absolute value) and with gy even if there exists a symmetry plane that 
excludes odd powers of y from the Hamiltonian.] Although the axial growth 

• 
23 The effect of a perturbation whose wavelength is equal to three periods of the magnet 

structure has been reported by Laslett and Symon (1959). 
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attributable to a single difference resonance in principle may be bounded, 
it could lead to orbit excursions that are undesirable in practice and may in 
fact result in loss of particles through an enhanced action of other reso
nances (Meier and Symon, 1959). 

Estimates of the threshold for axial growth, and of the initial growth 
rate to be expected if this threshold is exceeded, may be obtained conve
niently by regarding the axial motion as governed by a linear differential 
equation in which the coefficients have been modified by the substitution of 
a prescribed radial oscillation in the coupling terms. This introduction of a 
specified radial motion in a non-Hamiltonian manner was suggested by 
Walkinshaw (1956); the technique has been applied (Laslett and Sessler, 
1961) with considerable success to the analysis of several coupling resonances 
that are expected to be significant in a spirally ridged FFAG accelerator, 
and appears to be entirely justifiable for the rather small axial amplitudes 
that this type of accelerator normally can accept. 

To apply this technique to the prominent Qx == 2Q11 resonance in par
ticular, one retains in Eq. (60b) the coupling term that is proportional to 
uv, and substitutes for u an approximate solution to the linear equation for 
the radial motion [Eq. (52a)]: 

u ' A [sin QxO + 11~2 sin Q,/J cos NO - 2 ~'!;a cos QxO sin NO] (71) 

The resulting differential equation for v then becomes 

:;~ + [ali·+ b11 cos NO + c11 sin Q/J sin NO + d11 cos QxO]v = 0 (72) 

where a11 and b11 are given by Eqs. (54b) and (54d), respectively, 

c11 = - Af/w2
, (73a) 

and 

d11 = Af2Qx/w3N 3 (73b) 

Equation (72) may be regarded as a Hill equation if we :;uppose (artifi
cially) that NfQx is rational, and it will have unstable soluLons in regions 
whose boundaries can be found conveniently by a variational method 
(Laslett and Sessler, 1961 )2-1: 

24 Insertion of a trial function 

v:::::: Bt cos Q/J/2 + P1 cos (N- Q.,/2)0 + P. cos (N + Qxf2)1J 
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I Qx2 
- (2Q11)21 · 2 i b11C11Qx/N3 + d11 I 

= 4f2 Qx I A I 
~~.a Na 

(74a) 

(14b) 

The threshold amplitude for radial motion, above which growth of the 
axial amplitude will occur, thus becomes 

waNa 
I A lthr = 4f2Qx I Qx 2 

- (2Q11)
2 I (75a) 

or 
-I AJthr = 1~ ( !N2 r2 (;; rll (; r- ( 2:~~ Yl (75b) 

Similarly, the growth rate when this threshold is exceeded may be estimated 
(Laslett and Sessler, 1961) as 

( 
f )2 (A2 _ A 2)112 

J111 = 2n wN2 w thr nepers/s~ctor, (76a) 

with a maximum value 

( f )2 I A I (,U11) max= 2n wN2 w nepers/sector (76b) 

E. APPLICATION OF FFAG PRINCIPLES To ANNULAR AccELERATORs 

Electron models of annular FF AG accelerators have been ·constructed 
(Cole eta!., 1957; Kerst eta!., 1960; MURA Staff, 1959, 196lb; Curtis eta/., 
1964), and have been operated both with betatron and synchrotron accel
eration. Larger accelerators of this type are of interest because of their-flex
ible duty factor, and because of the resultant potentiality of providing in
tense beams and the ability of building up very strong circulating currents 
within the accelerator. High intensities, if not precluded by unanticipated 
instabilities arising from collective effects, would be advantageous in experi
mental investigation of fundamental processes of low cross section that are 

into 

d f t{(dvfdiJ)' - [av + bv cos NIJ + Cv sin QXIJ sin NIJ + d!l cos Q.,8]v2
} dv = 0 

leads to 
P1,2/B1 ;;;;;: !<bv ± C11/2)(1 ± Q.,/N)/N 2 

and to a stability boundary that has been cited in the text. The second boundary. to the 
zone of instability is similarly given by use of sine functions in the trial expression for v. 
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significant in the study of elementary-particle physics, for the production 
of high quality secondary beams, and to permit the use of colliding beams 
to achieve center-of-mass energies greatly in excess of those that result 
when a beam strikes a stationary target. 25 

The Midwestern Universities Research Association staff has completed 
designs for spirally ridged FF AG proton accelerators with maximum ener
gies of 10 GeV (cf MURA Staff, 196la) and 12.5 GeV, and recently prepared 
a similar analysis for a 500-MeV machine of this type that could serve as a 
high-intensity injector in a cascade-synchrotron facility (Snowdon, 1964). 
Table IV presents the major design parameters of these proposed facilities. 

TABLE IV 

MAJOR DESIGN PARAMETERS 
FOR HIGH-INENSITY FFAG PROTON ACCELERATORS (AFTER M.U.R.A.) 

Maximum energy (kinetic) 0.500 10.0 12.5 GeV 
Injection energy 20 200 200 MeV 
Radius (Co/2n) 6. 858 a 72.0b 88.6 c m 
N 16 d 48 d 48 d 

k = <eJB) (dB/de) 8.2 85 85 
1/w 75 536 548 
Q, 3.211 9.78 9.78 
Qy 2.256 6.29 6.29 

Aperture 
radial • 1.346 2.75 3.42 m 
axial' 5.08 19 15.2 em at inject. 

2.54 g 10 A 7.6icm 
Magnet weight (total) 410 15000 22000 ton (metric) 
Magnet-excitation power 3.4 31.5 47.2 Mw 

a For 0.5-GeV equilibrium orbit. I Within chamber 
b For 10.0-GeV equilibrium orbit. g At R = 6.934 m 
• For 12.5-GeV equilibrium orbit. "At R = 72.1 m 
d Number of superperiods is lN i At R = 88.75 m 
• Region of good field 

25 At highly relativistic energies, the reaction energy that is available in the center-of
mass system when a particle of rest energy M 0c2 and total energy £ 1 strikes a similar sta
tionary particle is £em ;':;' [2£1(Moc2

)] 112, whereas two colliding beams of particles with 
energy E make available an energy of 2£. This latter energy thus is equivalent to that 
obtained by a beam of energy £ 1 =2E2/M0c2 directed against a stationary target. A 
"two-way" design (MURA Staff, 1959, 1961b; Curtis et al., 1964) for a FFAG accelerator 
represents one means by which colliding beams of sufficient intensity might be achieved, 
but recent .interest in the construction of a facility for colliding proton beams has been 
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The magnet design employs radial blocks, to which are bolted spirally 
oriented poles that are provided with individual excitation coils. A non
energized "zero pole" is located between each pair of spiraL poles in order 
to increase the effectiYe flutter (,...., I) that can be produced in the magnetic· 
field. Induced radioactivity and radiation damage can present problems in 
the maintenance of high-energy accelerators of this type, or of any other 
that is designed to achieve high intensity. Efficient beam-handling tech
niques, especially for extr&ction of the high-energy beam, and the selection 
of suitable construction materials therefore should be regarded as highly 
important features of the design. 

5.3.6. Notes 

Note I 

The quantity $ is commonly termed the "momentum compaction factor" 
in the literature and i:; frequently denoted by a or 1/a. Since the time for a 
particle to complete one revolution around the accelerator is given in terms 
of its speed and its average orbit radius by 

T = 27r(Qo + (X)av)/V, 

bT/T = (X)av/eo- bV/V0 = [1/$- (E/m0c2
)-

2](op/p0). 

The quantity 1/$ - (E/m0c2)-2, accordingly, will enter as a factor in deter
mining the frequency of phase oscillations. If$ > I, as is the case for al
ternating-gradient synchrotrons of the type considered here,. there will be a 

"transition energy," ET = W m0c2, above which· the equilibrium phase 
angles possible for stable phase oscillations are no longer less than n/2 
but become greater than n/2. An expansion of Eq. (35c) leads to 

$ • (:r2/12) (n/N)2[1 + (nl/2520) (n/N2
)

2 + · · ·] 
so that, through use of Eq. (34), we obtain 

$ • Qx2[1 + (.n-4/40) (n/N2)2J-l = Qx2[I + 3ax2f40]-I 

for small ax. It is noted that replacement of Eq. (35) by the nonalteinating
gradient equation d2xfds2 + (Q//(!0

2)x = {1/eo) (bpfp0 ), for which the 

directed toward the use of separated-function alternating"gradient "storage rings," 
into which particles cot~ld be injected from an accelerator such as the CERN 28-GeV 
proton synchrotron (Hereward et al., 1961; Johnsen et al., 1964; Schnell, 1964; Fischer, 
1964; Ferger et al., 1964). 
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same transverse-oscillation frequency would apply, would lead directly to 

~ = Qx2• ~will tend toward zero as the (Jx eeoc 0 stability boundary is approach

ed, but it appears infeasible to attain negative momentum compaction 

within the first zone of stability for the free radial oscillations (0 < ax < rr) 
in a. conventional alternating-gradient accelerator. By use of reversed fields 

in a fraction of the magnets, however, a noncircular equilibrium orbit will 

result for particles with the nominal momentum p 0 , and it has been found 

possible to achieve in this way a very large momentum compaction factor 
(and so obtain a very high transition energy, that may be placed above the 

maximum energy of the accelerator). Reversed fields were proposed for 

this purpose by Vladimirskij and Tarasov, and the method has been used 

with the 7-GeV "synchrophasotron" at the Institute for Theoretical and 

Experimental Physics in Moscow-for parameters and dis::;ussion of the 

design of this accelerator see Vladimirskij (1959). 

Note II 

As an example of one source of closed-orbit deviation for which provision 
would be made in selecting the radial aperture of the accelerator, we con

sider a surveying system based on M monuments that nominally are equally 
spaced within the magnet enclosure. The assumed surveying procedure will 
involve (l) measurement of the inter-monument separations (S) and(2) 

measurement of the perpendiculars (hi) dropped from monuments Mi to 

the straight lines connecting monuments Mi-l and M;+l . When M is large, 
the radial position of the monuments is determined primarily through these 

latter measurements. A least-squares analysis of the appropriate difference 
equations leads to a radial error in the position of the jth monument, ex

pressed relative to the mean radius, that is given in terms of errors ohi in 
the individual quantities h; by (Laslett and Smith, 1966) 

ori = 6~ i [M2 
:__ I - 6M I j - i I + 6 I j - i j2]0hi 

1=1 

The magnet structure will be assumed -,~o be such that there is an inte~ral 
number, m = N/M, of periods between aajacent monuments and each mon
ument will be assumed to be at a point of symmetry where a = 0 and 

{3 = {3 ona.x. If each magnet block is then positioned with respect to the two 
nearest monuments, the deviations of the closed orbit (from the center line 
of the magnet blocks) at the monument locations are 

{3 sin2 nQf M JL [ tan ;rQ ] ·( lk - jl) 
xk = 2 - . ~ l - ---- iJ1c i cos I - 2 -- ;rQ <5ri 

S stn nQ H tan rrQfM · M 
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where ok,f is unity for j = k and zero otherwise; similar deviations arise at 
the centers of the other focusing regions, that are situated between two 

monuments. 

If the independent surveying measurements have a common standard 

deviation, Eh , the standard deviation of any particular x1c that results from 
these uncorrelated errors ohi is 

{ JI [ .\L ( ax~c ) (fJ(or;)))2}v2 
(x~c)rms = E~ ~~~ fJ(ori) fJ(ohi) Eh 

The value of this sum may be readily approximated when Q is close (but 

not equal) to an integer H (so that I Q - H I ~ M), since the effect of 

this single harmonic then will dominate in the orbit response. The Fourier 

amplitudes of the monument displacement that results from a single sur

veying error and of the closed-orbit response to the movement of a single 
monument are, for this harmonic, 

and 

1 
2 
nH 

A 1 = Mcsc M 

4 {3 
A2= MS 

(for H ~M) 

sin 
2nQ 
M 

2nQ 2nH 
cos-- - cos-'-

M M 

2 {3 sin2 nH/M 
~ns IQ-HI 

respectively. Then 

(x)rms ~ (M/2)312(AIA2)Eh 

= _!_ (M/2)112 .f!__ 1 E 
7C s IQ-HJ h 

- I (M/2)a;2 {3 l 
- n2 . R .I Q - HI Eh 

nH 
sin2~ 

The more tedious evaluation of the exact sum has been carried through 
by Smith (1964 ), with the result 

( ) - I (M/2)n {3 
X rms - - -R I · Q I Eh n sm n 
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Although the closed-orbit deviation at any particular observation point 
may be expected to have a probability distribution that is Gaussian, and 
will be strongly correlated with the deviations at other observation points, 
the probability distribution for : x lmax in each member of an ensemble of 
accelerators should be considered in selecting the amount of aperture that 
is to be provided to accommodate the orbit distortions that result from er
rors such as have been considered here. To insure that the aperture will ac
commodate these deviations all around the accelerator with a high degree 

of probability (> 98%), a semiaperture allowance of 2V2(x)rm> has been 
proposed (Courant and Snyder, 1958) and independent Monte-Carlo com
putations suggest the advisability of increasing this estimate by an additional 
20% (Keil, 1965; Laslett, 1965). One thus obtains a desirable semiaperture 
allowance of 

1.2 M312!!.. . 
1 Q I Eh ±-;:r R ! sm:rr 

± g M312 fJ(l/fJ)av 
n Q I sin nQ 1 Eh 

Vii fJ(I /fJ)av 
ma12 I sin :rrQ 1 Eh • 

2.4 
'~ :r: 

(J 

If m = 2, a = n /4, fJ <I I fJ>av = 1.57, and sin :rrQ = l /"V 2, this last result 

suggests a contribution of 2.4VN Eh to the required semiaperture. Since this 
analysis illustrates the effect of only one source of closed-orbit deviation, 
and other constructional errors may lead to somewhat greater effects, the 

value 7VNEh adopted in the text may be considered reasonably represen
tative of the semiaperture allowance that should be made to accommodate 
all such errors. 
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1. Introduction: 

As a sequel to the January 9 meeting of the Mid-West Technical 
Group, Dr. Kerst suggested that it would be desirable to record 
equations which have been used in discussion of space-charge 
effects and to exhibit some of the grave consequences suggested 
by use of these equations. The present report is in compliance 
with this suggestion, but is written with the following reservations 

.in mind. 
(i) Concentration of attention on space-charge effects, which 

will be most prominent at low energy, should not cause one to 
overlook other phenomena,l,2 not readily analyzed, which may play 
important roles at injection. 

(ii) Analysis of space-charge effects on the basis of an 
assumed form for the charge distribution may be seriously in 
error if the particles of the group considered can execute oscilla
tions which result in a distribution differing from that assumed.j 

It is suggested, however, that application of the present 
formulas to a group of particles moving non-coherently will provide 
an approximate indication of dangerous values for design para
meters. 

2 •. Statement of Formulas: 

A. Effective Change of "n", Rudimentary Derivation--

For a beam of constant charge density? throughout a 
cross-sectional area of constant radius ~ , the total charge 2 

A 

- 21l2 .12 R f . 0 I (1) 

where R0 represents the orbit radius. 
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2 

The net defocusing electric and magnetic force experienced, as 
a result of the space-charge, by a particle within the beam at a 
distance y from the axis, is 

F s. c. - ~(( - f'o 

- ~ (1- {12) 
2E0 

_ qe~l-,82 )Y, 
41£' E0..4~R0 

Yf 
in "rationalized" (MKS) units. 

The focusing and defocusing forces produced by the magnetic field 
of the accelerator are 

Fz = n 
evBaY - n 

ETP2Y 
- 2 or Ro , 

Ro 
2 

~ Fr = ( 1-n) , 
Ro 

with ET representing the total energy of the particle. 

The force indicated in equation (2) is thus equivalent to a 
reduction of n in the equation of axial motion, and an increase 
in n in the radial equation, by 

2 _ qeR0 l-~-

41l'2t 4 2 ~ ; 
o I"' T 

I c5nl 

4'{2 ~ A2 2 E 3 _ o u B T -,- =--z 
e R0 E0 

q • 16nl 

(2) 

(3a) 

(3b) 

(4) 

= (Eg/e )volts 
60ohms 

(a) 
I on I., 

( 5) 

(a) 

[-(-4_1r_x_l_0 ___ 7 __ ~ H_/_M_c_M_/s_e_c~2 ] farad/M -
l 

( 120 '~~') ohms eM/sec 
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If this analysis is accepted, it can be seen that the result of 
the space-charge is equivalent to effecting a translation of the 
operating point at right angles to the diagonal of the "necktie" 
diagram. 

For comparison with similar results stated elsewhere, it is 
also of interest to write the associated "current" 

i = q c;ac/circumference) 

3 

. 3 

= (Eo/e)volts (_!_)2 
8 3 (ET) ·16nl amperes. (6) 

60ohms Ro ,~ Eo 

B. Comparison with Previous Results --

Equation 15) is consistent with a non-relativistic result 
given by Kerst4 for a conventional betatron, if we identify l&nl 
with the limiting tolerance (1-n) for radial stability. Again 
in application to a conventional synchrotron, Judd5 considers 
unequal radial and axial focusing and derives the aperture 
requirements for a beam of elli~tical cross-section. His results 
also agree with our equagion (5) in the case n = 1-n = 1/2 = 16n\ 
Similarly, J. P. Blewett has also considered an elliptical beam 
in a conventional betatron with n = 3/4 and Ro = 0.833 Meter. 
Finally, Bardenf originated the equation (5) in the form cited 
here and has suggested considering its application to an alternate
gradient accelerator in terms of the permissible variation of n. 

C. Estimate of a Tolerable l~nl --

In application of equation (5) to an alternate-gradient acceler
ator, Barden7 originally suggested that one require 

2 
l&nl < 0.006 Ns , (7) 

where Ns represents the number of magnet sectors. This suggested 
limitation was possibly motivated by the observation that the 
overall width of the necktie diagram, projected ont~ the n1 or n2 axis, corresponds approximately to \&nl = 0.03 Ns . Thus a 
variation of about the amount suggested by Barden would carry the 
operation point from the diagonal almost half-way towards the 
edge of the stable region. 

In view, however, of the present concern about integral and 
half-integral resonances (as well as sum resonances), it appears 
more prudent to allow variations or n only within one of the 
small diamonds situated along the diagonal of the necktie diagram. 
Since the characteristic solutions for the particle trajectories 
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1nvolve a factor exp(+ik) for traversal of a sector pair, the 
separation of integra! resonances corresponds to 

= 27l' 
Ns/2 , 

or (Sa) 

' 

, ( ) I - 21C sin k 
o cos k - I 

Ns 2 
(8b) 

similarly, movement from the center of a small dia~~~d, bounded 
by integral and half-integral resonances, half way\ 1 towards 
the edge corresponds to 

lbkl - X/4 
1 

Ns/2 
or 

~~(cos k)l = ('il'/4) sink 
Ns/2 

With the 
in sectors of 

index n altarnating 
equal length, 

between nl 

(9a) 

(9b) 

and n2 = -m -

~nll/2 2~ml/2 
cos k : cos -~-''-=--- cosh --=.'1..,..,..-

Ns 
nl - m 2Trnll/2 

sin 
2 l/2 1/2 n 1 m Ns 

2mnl/2 .. sinh ___; __ (10) 
Ns 

For variations such that 
the diagonal, 

&n = -6m, and in the neighborhood of 
I 

b(cos k) = { 1~ 
n Ns 

cosh 

(ll) 

A conservative limit to the acceptable l~nl thus appears to be 

l~nl~ -------------------~(n_1_1_2~/2~)~s_i_n_k ____________ ___ 
1/2 1/2 2Knl/2 ~nl/2 

cos~n sinh2«n + sin N cosh N + N~ • 
Ns Ns s s 1t'nl/2 

~---------------------~~-~~ (nl/2j2) sin k 
(12) 

sin~2rr~n~l_/_2 sinh2rrnl/2 
Ns Ns 

(bJTo afford some latitude for other possible variations of the acceler
ator characteristics, as would arise for example from remanence. 
It may also be noted that, as J. B. Adamsl~ has pointed out, pa~~ 
witth momentum different fr9m the equilib~i~m momentum are presented 
wi h a different n value \16 n1 ~no · &. fl/PoJ. 
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Accordingly, near the center of the necktie where n112/Ns ~ 0.25, 
sin k ~ 1 and 

5 

16nl~ cosh ~;21~2{W;~) sinh */2 = 0.0919 n
112 = 0.0230 Ns; (13a) 

similarly at an operation point for which n112/Ns ~ 0.1778, sin k 
~ 0.671 and 

l~nl~ (n1/ 2/2) 0.671 = 0.078 n1/ 2 = 0.0138 Ns· 
4.314 

The above criteria suggest, as a typical tolerance in an 
accelerator with n in the range of 400 to 500, 

I ~nl ~ 1.8. 

(13b) 

Livingston9 appears to have considered a similar approach to 
the problem of estimating space-charge limitations. 

3. Numerical Results: 

In application of equation (5) to estimate the beam which can 
be held in an alternate-gradient synchrotron at the time of injection, 
two alternative view-points may be considered. If one considers 
that the injected beam spirals inward,lO,ll due to the rising 
magnetic field, equation (5) may be considered as giving the 
maximum charge per turn and a might be taken as one-half of the ( 
pitch required for the spiral to clear the inflector comfortably; c) 
in this case the acceptable injection current is the limiting charge 
per turn divided by the period of revolution and the total charge 
is the charge per turn times the number of turns accepted. If, on 
the other hand, the details of the injection process are ignored, 
equation (5) might be regarded as giving the total possible charge, 
with ~ representing the useful semi-aperture of the accelerator, 
and the acceptable injection current would be this charge divided 
by the estimated duration of the useful injection interval. In 
either case, the expected useful beam from the accelerator will be 
no more than about one-half of that successfully injected, due to 
(for example) incomplete capture into the synchrotron phase. 

In estimating the manner in which the acceptable injection 
currents will depend on injection energy, one must take account 
(In the non-relativistic case) of the energy dependence of the 
period of revolution. The bunching action of a R.F. linear 
accelerator has been sug~e~tedl2 as aggravating the space-charge 
effects, but it appearsi ,13 that a slight inherent energy 
inhomogeneity suffices to smooth out the charge distribution 
within a distance less than one circumference. 

(c)Supposedly this pitch would be at least twice the beam radius 
plus the radial thickness of the deflecting electrode. 
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A numerical exaT~le of space-charge limitations has been 
given by J. B~ Adams in connection with a proposed CERN 
accelerator design. Adams states his con~lusions in terms of 
maximum current, which is presumably i = q(~c/circumference). 
With n = 392, we expect t&nl~) 3 to carry the operating point to 
near the edge of a diamond.(d If» following Adams, we take 
~ = 0.4 cm-Tthe radius of the injected beam), Ro = 8600 em, 

Kinetic Energy = 50 Mev, and p = 0.314, we find from equation (6) 
that 

i = 1.2 x lo-3 . \~n\ amperes 

constitutes a limiting current (for one-turn injection) similar to 
the 3 ma cited by Adams. 

We give below a table of permissible values, calculated ( ) 
from equation (5), for a circular accelerator of 8650 em radius e 
and with the permissible l&nl limited to 1.8. Kinetic 
energies for proton injection of 4 Mev and 50 Mev are considered. 
In addition, we first consider an injected beam of 0.3 em radius, 
spiraling inward so that injection continues for six turns; secondly 
we consider a total beam of 4.0 em radius, without regard to the 
details of the injection process. It is noted that the estimated 
acceptable injection currents for 50 Mev injection are about 45 
times those for 4 Mev (proportional non-relativistically to the 
three-halves power of the kinetic energy). 

4. Conclusions: 

From the foregoing examples it is clear that space-charge may 
seriously limit the beam currents in certain of the accelerator 
designs presently under consideration. It is important, therefore, 
to be as certain as ~ossible concerning the following points) 

(i) Is the conventional analysis presented here valid? 
(ii) Are the integral and half-integral resonances so important 

that space-charge should not be permitted to displace 
the operating point across such resonances?9 

(iii) If the present analysis is considered adequate, is it 
best to associate A with ~he radial width of the 
proposed injected beam,9,1 with the pitch of the 
spirallO,ll described by the injected beam, or with 
the semi-aperture of the accelerator? 

The advantage of injection at high energy is apparent, if the 
injector supply can deliver the currents desired. It would be 
unfortunate to have an in.jector system incapable of delivering 
the desired currents, but it would also be frustrating to have 
designed an accelerator which could not accept the injection 
(d)or see diagram VI of Adams• paper.l4 

(e)such a radius would permit, for examp~e, attainment of 25 Gev 
in a field of 10,000 gauss (l weber/M ). 
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EXAMPLES OF ESTIMATED SPACE-CHARGE LIMITATIONS 

R0 = 8650 em, l&nl = 1.8 

~ = 0.3 em ~ = 4.0 em 

Kinetic Revolution Charge Charge Particles, Total 
1. ~rna), Particles, 

Energy i assuming if assuming 
~ Period Revolution (rna) 6 Rev. Charge inject 

of jJSec (coulombs) (coulombs) 50~ ~oulombs) for 50~ 
Protons capture 1 Rev16 Rev 

capture 

50 Mev 0.31~ 5.76 7.1 x lo-9 1.2 42 x lo-9 13 X 10lO .26x 10-o 220 36 3.9 X 1012 

4 Mev 0.09~ 19.7 5.3 X 10-lO 0.027 3.2 X 10-9 1.0 X 1010 ~.4 X 10-8 4.8 Oj30 0.3 X 1012 

---- -~ 

The computed acceptable charge is rather considerably greater for electrons (which one could 
easily inject at high energy from a linear accelerator of the Stanford type) than for protons of 
the same energy. For injection energies which are relativistic for electrons and non
relativistic for protons, the ratio Qelectrons/qprotons appears to be approximately 

,Total Electron Energy)3 
2 (Proton Kinetic Energy) (Electron Rest Energy) 2 ' 

or about 5000 for 50 Mev injection. 

-~ 
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currents which it was planned to attain. Attention should be given, 
moreover, to the avoidance of R.F. voltages which would bunch 
the beam to an extent that space-charge would cause the beam to 
expand beyond the bounds of the effective aperture. The space
charge effects appear to be considerably less serious in comparable 
electron accelerators. 
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1/2 this result assumes the form

2 
q = E~21f E0B0 1 _ p2 .A i 

with the substitution Bov 
2 
=~2i~/ ___ , one has 

1 - fJ eR'\Eo · 
2 2 2ET3 ~2 

q = Ie~o f9 ~ ~~ in agreement with our expression 
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v2 (-n l/2 w/2 2 - ~ 
i =1T~oBoR l-v2/c2 n ) (R ) - ~ 
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MURA UOTES 
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APPROXIMATION OF EIGENVALUES, Alffi EIGENFUNCTIONS, BY VARIATIONAL METHODS 

1. Motivation 

In consideration of various accelerator designs employing the 
alternate-gradient principle, one is often faced with the problem of 
determining the values of the design parameters at the limits of stability. 
If one knows the general character of the solution to the differential 
equation at such points one may substitute a suitable simple trial function 
(or simple trial functions), containing adjustable parameters, into the 
associated variation problem and readily determine the eigenvalues with 
considerable accuracy.1 It is the purpose of the present note (i) to 
illustrate the use of va.riational methods in a simple boundary-value 
problem where the dependent variable is fixed at the boundaries, (ii) to 
apply a similar technique to the Mathieu equation, for which the eigen
solutions are periodic, and finally (iii) to point out the a~icability 
of the method to a problem arising in connection with the analysis of a 
Mk. V FFAG accelerator. 

2. Example Concerning !!: Boundary-Value Problem in which the Dependent Variable 
is Fixed at the Boundaries · 

We consider the differential equation 

yn + 'A y = 0 , with y(_:tl) = 0 • 

The simplest solution to this problem is knol'rn to be of the form. 
n n2 

Y1 = cos2x and is obtained when 'A = "If" • 

The above problem is equivalent to the isoperimetric variation problem 
in which we seek a function, such that y(,:tl) = 0, for which 

;
1 ~1 2 

& y'2dx = 0, subject to j y dx = const. (say 1); 
-1 -1 

that is, introducing the Lagrange multiplier -'A, Euler's equation for 
1 

5 I (y' 
2 

- A y2) dx = 0 
-1 

is our original differential equation yn + 'Ay = 0 • 

A trial solution (even in x), satisfying the boundary conditions, 
may be taken of the form 

y = (l - x2) (~ + a2 x
2) , 

for which/1 2 (y' - 'Ay2)dx = 
-1 

The latter expression will be stationary when 

<16 _ E'A) + 
3 15 ~ 

16 ~) 
(15 - 105').. 8.2 = 0 

16 ..&. 
(15 - l05'A) ~ + 

176 ~ 
(105- 315'A) a2 = 0 
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We accordingly find that ;\ must be given by 

A 2 - 28 A + 6 3 = 0 , 

of which the lesser root is ;\ = 14 - (133)
1

/ 2 = 2~467437 and ~ = -o .22075. 
n2 B:!. 

This value of ;\ may be compared with T = 2.467 401100 022 .•• ; the inclusion 
of additional parameters in the trial function would permit further improve
ment of the estimated value. ~The use of three constants (~, a

2
, a

3
) has been 

reported (Buck) to give ;\ = 2.467 40ll0g J 
It may be noted that with the trial solution normalized so that our auxiliary 

( 1 _ _:, ~1 2 
integral (in this case.,_1 y-dx) is unity, the value obtained forj_

1
y 1 dx 

m~ be shown to be cur value of ;\ and will be greater than the exact eigenvalue. 

The equivalent variation problems for other differential equations with 
other types of boundary conditions are pre~ented in Courant-Hilbert2, Ch. IV, 
Sect. 5, esp. p.l82. One may further note that, in particular, with 
J of the form 

rtx2 
J = J F(x,y,y 1 )dx, 

Xl 

aJ = ~F oylx2 - j"x2r~< i'F)- l'F]oydx. 
1Y1 x

1 
~ - d.x ';y' ~Y · • 

accordingly if :;, is independent of x or periodic (period x2 - x1 ) in x • 

boundary conditions requiring y to be periodic (period x
2

- ~) resul. t in 

the variation problem again reducing to the problem governed by Euler's 
equation 

3. Cha.racter of the :Eigcnsolutions of the Mathieu Equation 

At the stability boundaries for the Mathieu equD.tion, 
2 

U + (a + 16q cos 2x) 1 = 0 , 
dx2 

the characteristic bounded solutions are periodic, \'lith period 1'T or 2TT. 

When q = 0 • the periodic solutions are, of course, 

1 COS X 

sin x 
cos 2x 
sin 2x 

cos 3x 
sin 3x . 

• • • I 

the l4athieu functions which reduce to these fonas when q ~ 0 are 
designated (notation of Uhi ttaker and 1latson3) 

ce
0

(x,q) ce
1 

(x,q) oe
2

(x,q) ce
3

(x,q) 

se
1 

(x,q) se
2

(x,q) se
3

(x,q) · ··• 

the functions in the first 1 ine being even functions of x and those in 
the second line odd functions~ 
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The stability boundaries arA given in series form for the first few 
cases3 and are also listed in tables4; coefficient~for the Fourier expan
sion of t~e eigenfunctions are likewise available3• • The stability 
boundaries are graphed in Fig. 1 and the character of the solutions illus
trated in the accompanying Table I. The solutions of the table are arranged 
in the same orde~ as the ~~tities appear on the gra~h. The quatities 
be0 , bo1 , be1 , ••• are tabulated as functions of s= 2116ql in ref.4, as 
are the coefficients in· Fourier expansions of the even functions Se0 , 

Se1 , ••• and of the odd functions So1 , So2, ••• ; for q < 0, these functions 
give the desired solutions if we set s = 2( -lGq), while, for q) 0, we 
set s = 2 (16q) and replace the argument by x + 'ff/2 • 

4. Approximation, Ez Variational Methods, ~Eigenvalues and Eigenfunctions 
for Ma.thieu Eq_u.ation 

The first eigenvalues of Ea.thieu' s equation (given by be 0 , bo1 , be1 , bo2) 
may be approximated by a procedure paralleling that employed in the example 
of Section 2. We consider, in this connection, the variation problem for 
the form of the eigenfunctions 

S
2'" 2 2 2 5 (y 1 - ay - 16 q y ·cos 2x) dx = 0 
0 

into which we introduce periodic trial solutions. 

(i) For the first stability boundary we employ trial solutions, even in x 
and of period 'TT , of the form 

A
0 

+ ~cos 2x + A2 cos 4x + 

If only two terms are retained, the integral becomes 

2'1T C-aA
0

2 - 16qA0 A1 + (2-~)~2 ]. 

This expression is stationary if 

- 2a A - 16 q ~ = 0 
0 

-16q A
0 

+ (4- a) Ar = 0 . ' 
and gives us a relation from \'lhich one obtains a good first estimate of the 
first stability boundary: 

(16 q) 2 = 2a (a- 4) . 

We thus obtain, for the first sta.bility boundary, / 

I 2 1 2 
a = -2 /(1+32 2 )1 2 -17, lL/A .; (l+ 32 ~) -l and, 

- q - -~ 0 q 

by way of example, if 16 q = _:t4 , 

a;, -1.464 A1 /A
0 

• _:t0.732 (the signbeingthatof q). 

[The second root for "a" is 2/jl+ 32q2)1 / 2 + 1] or, in this example, 
5~464 with A.r/A0 ,; -=F2."f)2 .] 
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TABLE I 

CHARACTER OF EIGENSOLUTIONS ro MATHIEU EQUATION 

a II '0 1T 1T 2TT 2TT 3Tt : 3TT 
. . . ... - ·-~ 

a be
0 

(32q) - 16q bo1 (32q) - 16q : be1 (32q) - 16q bo2(32q) - 16q be
2

(32q) - 16q bo
3

(32q) - 16q ! be
3

(32q) - 16q 

16 q 

4.o 

1.367 

0 
= 

16q 

-
0 

1.367 

ce 
0 

ce
1 

se
1 

1 . 0 cos x . sin x 
+ 0.7570cos 2x + 0.1953cos 3x. + 0.3104 sin 3x 
+ O.C~Ocos 4x + 0.0148 cos 5x: + 0.0275 sin 5x 

1.0 cos x sin x 
+ 0.3260cos 2x + 0.0785cos 3x: + 0.0930 sin 3x 
+ 0.0138 cos 4x + 0.0022cos 5x . + 0.0027 sin 5x 

1 

ce
0 

(From Se0 ) 

1 

COS X 

se1 
(From So1 ) 

sin x 

sin x 

I ce1 I 

(From Se1 ) 

; 

COS X 

1 .0 sin x cos x 
- 0.3260cos 2x - 0.0785sin 3x.- o.0930cos 3x 
+ O.Ol38cos4x + 0.0022sin5x ·+ 0.0027cos5x 

se2 \ ce2 

sin 2x - 0~3866 
+ 0.1639 sin 4x + cos 2x 
+ 0.0102 sin 6x + 0.1870 cos 4x 

sin 2x 

se2 
(From se

2
) 

sin 2x 

cos 2x 

ce2 
(From Se

2
) 

cos 2x 

' 
I 
l 

ce3 s~ 

- 0.1972 cos x - 0.3140 sin x 
+ cos 3x + sin 3x 
+ 0.1269 cos 5x + 0.1288 sin 5x 

COB 3X sin 3x 

1 

se
3 

ce
3 

(From so
3

) (From se
3

) 
' 

sin3x cos 3x 

-4.0 I 1.0 sinx cosx sin2x 0.3866 O.l972sinx; o:3140cosx 
- 0.7570COS 2X - 0.1953 sin 3X ; - 0~3lo4 COS 3X - 0,1639sin4x + COS 2X + sin 3X : + COS X 

a 

ft.i • 
0 ~ 
'd 0 o'a 
..... Q) 
J..t !Ill 
Q) ..... 

P-tf.xl 

+ 0.0870cos4x + O.Ol4Ssin5x + 0.0275cos5x + O.Ol02sin6x - O.lS70cos4x - O.l269sin5x ~ O.l288cos5x 

be
0 

( j32q j) 
- jl6qj 

TT 

bo1.< l32ql ) 

- 116~ 

21T 

be1 ( l32ql) 

- ll6ql 
·-'- .... - ......... 

2TT 

bo2 <j32qj> 

- ll6qj 
--- --· ·-· -··· -· .. !. . .. 

TT 

be2 (! 32qJ) bo
3

<l32qj) be
3

(132ql) 

- i16~1__. - 116~ - ll6qJ 
: 

TT I 2TT 2TT 
I 

I 
\Jl 

I 
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If .re refine our approximation by includ.i~ three par8l:leters in 
the trial £unction, the int&gral becomes 

2 2 · a 2 
2trf:aA0 - 16 q A0~ + {2- ~)~ -8 qA:t.A2 + {8- 2)A2 .J. 

l'le thus obtain the simultaneous equations 

-2aA 
0 

- 16q~ = 0 

-16 qA
0 

+ {4- a)~ - 8 qA2 = 0 

-8 q ~ + (16- a)A
2 = 0 . 

we thus obtain for the first stability boundary {for 16 q = ,:t4 ) 

a = -1.51365 , ~/A0 = !0.75682 , A2 /A
0 

= +O.o864 

and a second solution 

a = +5.176, 

We thus are obta.ining what e.:ppears to be a good approximation to the 
first eigenv·aJ.ue and its associated solution as well as a reasonable e~timate5 
of the value and solut:ion corre.~~ponding to ce2 • The correct values are 

First solution: a= -1~51396, ~/A0 = !o.7570, A2 /A.
0 

= +0.0870; 

Second solution: a= 5:17266, ~/A0 = +2.5863, A2/~ = .:to:lS70 . 

The fir~t stability limit ~ay,7 of course, be alternatively estimated 
by use of tha smoo ~h approxination; in this way we find a = - 32 q2 , 
which represents a good a:?Proximation t.o the correct value l'rhen q is 
sma.~.l {as is seen. by expansion of our first 1:-estl.l t or by reference to the 
series given on p.411 of ref .3) and gives the numerical value -2 for 
16q= ,:t4. 

(ii) One may proceed similarly to locate the seco~d stability boundary 
and to examine the character of the associated eigensolutions. In this case 
{when q 7 O) we employ trial solutions (with period 2TT) of the form 

F1 cos x + B2 cos 3x + :a
3 

cos 5x + • · · • 

Retaining three terms, the integral becomes 

and leads to the eq_uations 

(1 - 8q - a)B - 8qB.., 1 c:.. 

-8qB 
1 + (9 - a):B

2 - 8q :B 
3 - 8qB

2 
+ {25 - a)3

3 

= 0 

= 0 

= 0 • 

The location of the first stability boundary of the present type is then 
estimated to be, ''~hen 16 q_ = 4 , 

4 
The correct values are 
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(iii) Proceeding to the next stability limit, .one assumes trial solutions 
(again of period 2n) of the form 

0
1 

sin X + 0
2 

sin 3X + 0
3 

Sin 5X + • • • • 

Since we are concerned only with this problem as an illustration, we 
keep merely tt-ro terms here to obtain 

2nr<1 + 4q - ~)c 2 - Sqo o + <2 - ~)o 2 ] 
-2 21 12 2 22 

for the integral. 

We then obtain the equations 

(1 + Sq - a)c
1 

Sq c2 = 

- Sq o1 + {9 - a)o
2 = 

with the sol uti on of interest, for 16 q = 

a = 6 - (13)1 /2 ~ = 2.3944, 

The correct values are4 

a = 2.3792 , 

0 

0 

{iv) The fourth type of stability limit is investigated by aid of the trial 
function {period n) 

D1 sin 2x + D
2 

sin 4x + D
3 

sin 6x + 

Again we retain only two terms to obta.in 

2n[(2 - ~)~ 2 
- 8qD1 D2 + 

for the integral. 

t-Ie then obtain the equations 

(8- !!)n 2 7 
2 2 -

{4 - a)l1_ - 8 q D
2 

= 0 

- S q D:J. + ( 16 - a) n
2 

= 0 , 

with the solution of interest, for 16 q = 4, 

... 

1/2 . 
a= lo-{4o) = 3.67 54. n2/n1 = 0.1623. 

The correct values are 
4 

a = 3.6722, 
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5. Application~ Variation Methods to ! Problem arising in! Mk. V ~ 
g . 

In the analysis of the oscillations about a scalloped orbit, as 
for a Mk.V FFAG accelerator, one obtains differential equations of the form 

~ {" ,z '9 + · a + Co cos 2t + c cos (4 t + 8 ) ] J y = 0 , 
dt 

or 

!:~ + {a + [b cos 2t + c cos 8 cos4t - c sin a sin4tJ} y = o. 

In a typical case, 
+ . 

b = -1.3672. c = .:!:0.2462 • and 8 = 0.0331 radian. 

It is desired to determine values of the parameter "a" at those stability 
limits which lie near zero. 

(i) Since 8 is small it may be expected that a good estimate of the stability 
boundaries may, in fact, be obtainable by setting 8 = 0 and using trial 
solutions 

A
0 

+ A2 cos 2t + ~cos 4t for one boundary 

and ~cost + A
3 

cos 3t (in the case the upper sign for 11b" is taken) 
at the other boundary. 

In these respective caces, preceding by methods similar to those used 
before, one finds the det~rnanental equations 

-2a -b -c 1 b b c -a --
-b 4 c b 0 and 2 2 2 - a -2 = = 

b 2 b c 
9 16-a -- - a -c -- 2 2 2 

The first determanental equation leads to the first boundary location 
(when b and c have the values indicated) 

a = - 0.23429 for c > 0 , 

a = - 0 . 2154 5 for c < 0 . 

0 . 

The values obtained in general from this first determanental equation approach, 
when b and c are small, the value given by the smooth approximation7: 

b2 2 
a ~ -(- + £.....) 

g 32 
but, in third order (order of b2c), appear to permit a slightly more negative 
value of "a" when the maximum })OSi tive excursions of the cos 2t and cos 4t 
terms add in phase. For the values of b and c assumed here the smooth 
approximation gives a~ -0.2355. 

The second determanental equation leads to the second stability boundary 
estimated to be given by 

a = 0 ~ 24 21 for c) 0 , 

a ,; 0.28o4 for c< 0. 

1-194 



-9-

(ii) If we do not neglect 5 in the given problem, it then appears appro
priate to take trial functions of a more general form, although the deter
manental equation will be found to factor into two equations, corresponding 
to eigensolutions of periods TT and 2TT . 

~re accordingly take as a trial function 

y = A
0 

+ A:i, cos t + A2 cos 2t + A
3 

cos 3t + ~cos 4t 

+ :s1 sin t + :s2 sin 2t + :s
3 

sin 3t + ~ sin 4t , 

for which the integral which is to take on a stationary value is 

21TC- a A
0
2 - bA

0
A

2 
- c cos S A0~ + c sin 5 A

0
1\, 

+ (!.-~-~)A.. 2 + (-E -.£cos~)A..A +£sinS A..] 
2 2 '+ -~ 2 2 --:1 3 2 --:1 3 

+ (2 - ~ - ~cos 5 )A 2 - EA_k. + .£sin 5 A :s 
2 '+ 2 2 2~ 2 2 2 

+ (~ - ~)A 2 + .£sin 5 A :S + (8 - !)A •. 2 
2 2 3 2 3 1 2 -~ 

+(!.-~+~)R2 + (-E+.£cos5):B:B 
2 2 4-1 2 2 13 

+ (2-! + ~cos5)B 2 - E:a B. 
2 '+ 2 2 2-4 

+ (2 ~ ~):B 2 + (8 - ~)'A. 2 7 
2 2 3 2 -J.+ - • 

The resulting determanental equation may be factored to read 

-2a -b -c cos 5 0 c sin 5 

-b 4-a-E.coso -b/2 c 
0 2 2 sin 5 

-c cos 5 -b/2 16- a 0 0 X 

0 ~sin 5 0 4-a+E.cos5 
2 -b/2 

c sin 5 0 0 -b/2 16- a 

b b c 0 ~sin 5 1-a--
2 

--coso 
2 2 

b c 9 -a ~sino 0 ----coso 
2 2 0 & b b c = 

0 % coso 1 -a+ 2 --+-COSo 
2 2 

c b c 9 - a 2sin 5 0 --+-cos 6 
2 2 

and is seen to reduce to the previous result if 5 is set equal to zero. 
Vanishing of the first determanent would permit one to obtain ratios of 
non-vanishing coefficients A

0
, A2 , ~· :a2 , )\~· qorresponding to a solution 

of period TT, and the vanishing of the second permit an independent similar 
determination of ~, A3' :s

1
, :a

3
, corresponding to a solution of period 2TT . 
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With regard to the 5 x5 d.etermanent, it has been noted that it 
will factor when 8 = 0 to give the earlier result. If 8 f 0, the 
deterrnanent ma;v be expanded as a sum of 3 x 3 minors and their asso
ciated 2 x 2 cofactors to g~ve a correction of order c2a2. to the 
original 3x 3 determanent. In addition, it is to be noted that the 
original 3 x 3 determanent is itself modified by a term of order c52; 
a rough numerical check seems to indicate that this latter effect is 
somewhat the greater and woUld result (as might be expected) in 
bringing together the estimates of the first stability boundary far 
the two cases b ~ 0 • ':lith the present value of 6 , however, the 
change of 11 a 11 is believed to be small -- perhaps of the order of 
~0.003 -- and a direct revaluation has not been undertaken. 

':-Ii th regard to the 4 x 4 determa.nent associated with the next 
st~bility limit a similar situation is seen to a~ly. Expansion in 
a series of products of 2 x 2 determanents and adjustment of the 
original determancnt to take account of cos 6 f 1 is seen once again 
to introduce corrections of the order of 6 2 • 

6. Approximate Association of Parameters in Mathieu Equation 

with the Value of a --- --
It appears possible, with a bit more algebraic complexity, to 

employ variational methods to relate the paraneters of the Mathieu 
equation to values of cr avu~.y from the stability boundaries. To · 
this end we note that, as pointed out by Courant and Snyder (J;nc-lrfj, 
stable solutions to equations of the form considered here may be 
written in the form 

x ( t ) · = w (t ) e.:t i ¢ ( t ) , 

where ¢(t) = ¥t + f'(t) , 

w(t) and ~(t) are real functions, each periodic with 

the period T of the coefficients in our differential equation, and 

cr is a real constant. 

In connection with the differential equation 

d2y 
- + (a + b cos 2t) y = 0 , 
dt2 

we accordingly express solutions in the form 

y = w(t) e.:ti [ ~ + ~(t)] 

with W and f/1 each periodic with period TT • '·Te then consider the 
Yariational problem · 

TT 

5 (J-lw'
2 

-!b (cos 2thi +! (~ + tj') 2
w2 ]dt = 0, 

'-'
0

- 2 2 2 TT . 

TT 

with J ~w2 dt = 1 • 
0 
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\fi th the introduction of the Lagrange muJ. tiplier -a. , we 
then obtain 

'I'T 

5( ~L-w• 2 - a.w2 - b (cos2t)w2 + (~ +¢''>2
w2J dt = o • 

~0 

with the restriction that the average value of ~· shall vanish. 

From this variational statement we then obtain the differential equations 
a ' 2 w" + [a + b cos 2t] w - ( Ti + l/1 ) w = 0 

( ~ + ~ 1 
) w2 = cons t. , 

which are the differential equations governing the periodic functions 
w and &f' from which the solutions to our original differential equation 
may be constructed. 

If, to proceed in a simple way, we take the trial functions 

w = A0 + A:J. cos 2t 

~I = B cos 2t I 

the integral becomes 

'IT r-;. 2 2 ~2 

2 L2Al - aAo - a 2 

We accordingly obtain the simultaneous equations 

a 2 2 a 1-=2a. + 2 (;:r) + B ] A
0 

+ f:b + 2; B J A:t. = 0 

fb + 2~ B] A
0 

+ ~ + (~) 2 
- a + "¢:s2J ~ = o 

CAo2 +~~2J:s + 2*AoA:t = 0 

It is desired to determine values of the parameters such that the 
solution of these simultaneous equations does not require the 
coefficients A0 , ~· and B to vanish. 

By \'lay of example, we take q =.0.09 or b = 16q= 1,44 and 
cos a = 0.6 or a= 0.9273 = 0.29517 'IT. 

The simultaneous equations then become 

@.17425 - 2a + B2_7 A
0 

+ ["":.1,44 + 0.59033B] A1 = 0 

L-:.1 ~44 + 0.59033 B] A
0 

+ C+ .087125 - a + ~B2] ~ = 0 

/A 2 + 3 A...
2

7B+0.59033A A... = 0. - 0 4 -J. - 0 -l. 

The algebraic complexity of these equations suggests that a solution be 
obtained by trial. t·Te find in this way 

a = -0.17564 (~/A0 = 0.3624, :S = -0.1948) • 

This result may be compared with that obte.ined by constructing a. graph for 
cos a by numerical integration and adjustment to the known stability 
boundaries -- viz. a = - 0.180 • 
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lt;ft'h,, j J.j r-~ ~1-t--r~··: t r r . . r- f -;--¢---· ----~--! · r r= · r I J 1· tJ I 
46 ~ ---- ' 
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2 by 2 ; 
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APPLICATION OF WALKINSHAW'S EQUATION TO THE 2U= 6 RESONANCE 
~ ,. 

L. Jackson Laslett* 

Midwestern Universities Research Associationt 

A method of analysis which appears to account for the behavior of 

the axial motion, in the presence of appreciable radial oscillation, has 

been developed by Walkinshaw, (W. Walkinshaw, "A Spiral Ridged Beva-

tron," A.E.R.E., Harwell (1956)]. The differential equation character-

izing the axial motion is treated as linear, but contains a coefficient 

which involves the radial motion. As is well-know, the forced radial 

motion enhances the A-G focusing which appears in the axial equation -

now, however, the additional effect of the free radial betatron oscilla-

tions is also included in the axial equation. The super-position of the 

comparatively-long-wavelength radial oscillations on the forced motion 

in effect modulates the smooth-approximation coefficient in the axial 

equation, to yield a Mathieu equation with a coefficient having the 

period of the radial motion. Under "resonant" conditions, which will be 

seen to include the case of interest here, this equation may have 

unstable solutions and, in such cases, the characteristic exponent of 

the solution appears to compare reasonably in magnitude with the lapse-

rate characterizing the exponential growth of the ILLIAC solutions of 

the "Feckless Five" equations. 

*At the University of Illinois, on leave from Iowa State College. 

tAssisted by the National Science Foundation, the Office of Naval 
Research, and the Atomic Energy Commission. 
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Walkinshaw's analysis pertains to different::ia:l equations which, in 

the MURA notation [f. ex. , WL(MURA)- 5] , are taken to be of the form 

x" +- (-1.+•) x ::. - f .Sit'\. ( x.;...,-- f\/e) 

~, + (- ... - ( f/t.r )c.os ( X/c.r - N e) J ta = 0 

[cf. WL MURA Notes 6-22 Oct. 1956, Sec. 6, for y/w << 1]. A solution 

for the radial motion, representing a free oscillation of amplitude A 

superposed on the forced motion, is taken of the form 

x =A c.os.(.JJC.e+6)- ( -f/.n.1 ) s'"' J Jl d.B 1 

where ( ..) I ) ( ) A V\ ~ V.. _:_. ·( -A + l) '/1. .n. ~ N +- A "'1....r · s• ~ ..Jte e + 6 

This solution is substituted into the axial equation to yield, after 

some approximation (and a shift of the origin of ewhich we introduce 

for convenience), 

L.t, -t- [ _ ~ + :1 ~ ( 1 -r :2. A J~ c:. o s. ..J>c e ):l 'a = o 
·~ ..s"'N'- IJ'N IJ 

It is noted that, when A- 0, this equation reduces to that given by the 

smooth approximation - we accordingly write 

to obtain an equation of the Mathieu type with a C·Oefficient of period z-rr/Jlf. 

in 9. By the transformation J.x 9 2 t, we have the standard 

form 

+ 
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with a coefficient of period'TT in the independent variable t. 

A solution of the Mathieu equation 

d..'~ + la + (r eos ~-t l ca :1 0 

dt 1 ' 

for b small but not zero, will exhibit instability when the coefficient 

a is equal or close to the square of an integer. In the present appli-

cation stop-bands may thus be expected at operating points such that 

2.Jy;Jx m, the broad band of instability at 2 Jy/.Jx - 1 (or 26'yj 

~x - 1) being of chief interest in connection with the work presented 

here. It appears, moreover, possible to employ the Mathieu equation to 

account semt-quantitatively for (i) the range of b, and hence of the 

amplitude of free radial oscillation, which may be permitted when the 

oscillation frequencies depart by a specified amount from the resonant 

condition, and (ii) the lapse-rate found to characterize the growth of 

the axial motion when the.radial oscillations exceed this limit. 

The numerical application of the Mathieu equation to specific prob-

lems of stability or instability may be accomplished by reference to 

ILLIAC solutions for the stability boundaries or for the characteristic 

exponent characteriz~ng the solution. 

(i) A useful estimate of he expected restrictions on the radial motion 

may be obtained, however, by appeal to the fact that near a- 1, b - 0 

the stability boundaries can be represented rather well by the condition 
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We find in this way the following estimate for the limiting amplitude: 

l e· ,/~~ f -i I 
- ( .2 J 'a - v)( l .f o yo ~ - 1 

It may be noted that this result, although expressed in terms ofJx and 

J'a , concerns an inherent sector resonance which arises when 2tJ y/(!j x -

1. 

(ii) An estimate of the lapse-rate characterizing unstable solutions 

near a - 1, b - 0 may, moreover, be made by taking 

. jC -' I 1. ( )A. + y A .J. :a 1r (&...~L ..... l L I ? ~ l ~- d) A::::. l.J -v"' ... 'i a-t ""&P•'f'' -l:. r 

= ~ * 4 & ,. _ 'i (a. -1~1 
"t\ Q. pu· s fCY" soc-let> 

~~4f'fl r . 
t.S7 

[ ( :1 V; ) 1- .J IC 2. J "/ .J>\ t. ....,~p~.s pew &¢ciov = -N -~~ r~P 

o.6i N! r:; r -[ ('. v:• - ., .: J ; J .. • 
"'eco.clu P'"' u.c.1o'W". 

N 
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A convenient alternative form for this last result is 

nep.ers/sector 

-- decades/sector. 

Results obtained with the ILLIAC, for 5-sector machines with 

model-like parameters such that 0.51T'<tixo < 0.61'1"' and 0.211" <6'"yo < 

' 0.41r, appear fairly close to these estimates. In all the ILLIAC runs 

the radial amplitudes were measured, however, near the center of a 

focusing region, at NB- 0 (Mod. 2~ ), where the amplitudes of he non-

sinusoidal A-G oscillations can exceed those corresponding to the smooth 

approximation representation of the motion. By way of example we 

present here the results for an accelerator for which 

-if .. 2.0. 1.2. 

In this case the,oscillation frequencies are such that 

c-)(0 = o. S3il1r ..J,..o :1" Llli7 
D'lf" 

O'"'fc) - o . .2. ISS' n- ..J '1 0 :=. o. 714 -
and the limiting amplitude for x appeared to be some 0.0075 units to the ' 

left of the stable fixed point (N&- 0, mod. 21r). For these machine 
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parameters the equation for A 1 yields 

A, 
soo 

:('l.O. 82.l 
::: Soo X. l. 3 4.4 7 x. D. I '4 3lt 

~ 0 2.5' 

- . 0092, the observed limiting amplitude at N 8 - 0 (Mod. 21T) thus being 

within 20% of this estimate. 

With respect to the lapse-rate, we continue this example by considera-

tion of the case A - 0. 0225. Then J A''· .. A,~"' - 0. 02035, and one expects 

3 /A-. a, 171 (2.0,f2) (o.o2oas") 
6:J.S: 

in close agreement with the value 0.055 decades/sector found from the 

ILLIAC work. 

[For this case the coefficients in the Mathieu equation are a- 1.12, b 

- 0.604, for which an independent extrapolation of coarse tables extend-

ing to·a > 1 suggests f4- - 0.107 nepers/sector - 0.046 

decades/sector.] 
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LECTURE AT MADISON, WISCONSIN - 20 JUNE 1956 

CALCULATIONS CONCERNING PARTICLE MOTION 
IN SPIRALLY-RIDGED AND SEPARATED-SECTOR 

FFAG ACCELERATORS 

L. Jackson Laslett 

MURA 

(On leave from Iowa State College) 

I. INTRODUCTION 

The subject with which I shall be concerned today is the particle 
motion in a Fixed-Field accelerator of the spirally-ridged type,l 
including computational preparations for examination of the separated
sector variety, but with no reference to acceleration processes. 

To define. the problem, the starting point in analysis of the 
spirally-ridged structure· is the assumed median-plane field, which we 
prescribe. In contrast, the separated-sector machine, or even certain 
slightly-modified spiral sector machines, make the specification of the 
pole contour more natural. If the pole contour is specified, one has 
the preliminary problem of determining the fields (or the magnetostatic 
potential) 'which they produce, while with the median-plane field 
prescribed at the start one must find the fields at other points and the 
location of equipotential surfaces along which the poles may be located. 

It may be noted that, perhaps through lack of ingenuity, we have 
not attempted to start with a system of orbits and then endeavored to 
find a Maxwell field which would give rise to the prescribed orbits. We 
have, however, always imposed a scaling requirement in a sufficiently 
strict sense that not only are the number of radial and axial betatron 
oscillations around the machine independent of particle energy, but the 
orbits for different energy particles are themselves geometrically simi
lar. 

The basic idea in these structures is that the average field around 
the machine shall vary with radius as rk, with k sufficiently great as 
to give an adequately large momentum content, and that stability will be 
provided by the A-G action which arises from having the field alterna
tively higher and lower than average along spiral curves which all 
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particles must cross. The most general type of median-plane field which 
is considered is, then, 

-- < 8 >/t) -~.{, + L (~ SOt. ~ [ ~(~.) - Ntp] 
{ .... ,., .: I e.s-

+ ~~cos~ [ 4 ::· _ N f;}] 

Powell2 has shown how such ~ field may be developed for points out of 
the median-plane, to give the various field components, the vector
potential components, or the magnetostatic scalar potential. For these 
various quantities Powell's development is quite similar in form and.is 
expressed in terms of the dimensionless parameters ~/ 

x== Ne::N~-A(1;J 

where r1 is chosen so that, for the particle momentum under considera
tion, x will be small. Then the scalar potential, for example, is writ
ten 

~ ... , ~ { ..;::- ,; -. [4 !f!x1 - NfJ] '\P = (I + X ) ~ L i. r:;; I i. ~ "" S ,., --• . 

'%(.+/ 

[
:;b. (t+>t1 - N8 l) ( ~/H'tl) 

+ /.( .:,,.... C.os ~ w- J )' r. . 1 l'2l. ..,.,J). 

where re~ursion relations are given by Powell for the coefficients. It 
is noted that the definition of x is based on use of a cylindrical coor~ 
dinate system; it may be pointed out that Dr. Akeley has suggested that 
reference to a system of spherical coordinates may have certain advan
tages and has written a report on this topic. This' series of Powell's 
has formed the basis of a computer program--the "Potentate"--whereby the 
height (y) of a specified equipotential (,) may be found digitally as a 
function of l} and x. By a quite similar program--the so-called "MKV 
Stormesh Leader"--values proportional to 

1/J / ~+I 
r ;(t+x) 

'(1 / { l-t x) 
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may be obtained. 

II. PROGRAMS FOR COMPUTING TRAJECTORIES3 

For the computation of trajectories in the spiral ridge accelerator 
no direct use has been made so far of Powell's expansion, although it 
has assisted in providing the base for some new programs which may come 
into use soon. What has already been done computationally has been with 
two programs which I shall now discuss--

First, the "Ridge Runner", based on exact equations for motion in the 
median plane, and, second, what was supposed to have been an interim 
program for combined radial and axial motion, the so-called "Feckless 
Five". In these two programs the prescribed median plane field is taken 
to be of the form4 

' 
no harmonic components being admissible. 

1. Ridge Runner4a 

The differential equations for the Ridge Runner program are written 
quite readily, since the "fields, and hence the forces, may be explicitly 
formulated immediately. The equations are written as first order equa
tions, in terms of the canonically conjugate variables 

X 

{ (! + ><) :z..,.. ,a. 
X , --

and are integrated by the Runge-Kutta procedure. Computation takes 
0.37 sec/RK, or, with 32 RKjsector, about 12 secjsector plus punching 
time. 

2. Feckless Five4b 

For inclusion of axial motion in the computations attention must 
first be given to the development of the field out of the median-plane. 
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One wishes, in fact, to obtain the vector potential, in order that the 
equations of motion (which involve the velocity-dependent v xB forces) 
may be strictly Hamiltonian in character. The systematic development of 
the vector potential has been treated in reports by Dr. AkeleyS about a 
year and a half ago--the process is strictly an infinite one, involving 
tha repeated application of the V operator to vector quantities, and 
becomes rather elaborate if carried out properly in cylindrical coordi
nates. In setting up the "Feckless Five" equations this type of 
development was kept in mind--the view was taken, however, that curva
ture effects of the sort which distinguish a cylindrical coordinate sys
tem from a Cartesian one could be regarded as small corrections which 
need not be included exactly and that the dominant y-dependence would be 
given by hyperbolic functions of an argument close to yjw. In this way 
an approximate vector potential with components Ay and A2 was contrived, 
from which a set of exactly-Hamiltonian equations was derived with the 
dependent variables x, y, 

X 

I + X ' I+- X 

One supposes that the variables x andy themselves will be small, 
but that ~ and r may be comparable with unity. w w 

This program requires 0.71 sec/RK-step, or, with 32 RK/sector, 
about 23 secjsector plus punching time. 

The program is to be regarded as an approximate one, whose accuracy 
is expected to be good for large-scale machines but not as great for 
models where curvature effects play a more pronounced role. 

The Feckless Five program is seen to be substantially half as fast 
as the Ridge Runner and it would be nice if we had some equivalent 
transformation which could be used to carry the particle rapidly through 
sector after sector in studies which require continued computations 
through a large number of sectors. 

3. Overwrites: 

Available for use with these programs are various embellishments or 
"overwrites". Thus the Ridge Runner may be adapted to permit the intro
duction of an algebraic transformation to simulate passage of a particle 
through a straight section. The Feckless Five may be supplemented by an 
overwrite which gives once or twice a sector the square root of the qua
dratic forms which remain invariant in the linear approximation: 
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and Ky similarly. 

In addition, as we shall illustrate later, it is possible to introduce 
various kinds of "bumps" into the Feckless Five program, to simulate 
certain misalignments. 

4. Small Five: 2 

It has been hoped that the Feckless Five will be replaced by the 
proposed "Small Five" program, in which a more systematic development of 
the magnetic field would be employed, based on Powell's series, and with 
which it would be possible to study cases in which a limited number of 
harmonic components would be present in the field. Programming of the 
Small Five was begun and then interrupted in the interest of other work 
considered to be more pressing--it is hoped, however, that work on the 
Small Five will be recommenced and this program completed. 

5. Stormesh:6 

Since the first of the calendar year it has become increasingly 
apparent that one is unnecessarily and undesirably restricting oneself 
by confining attention to fields which in the median-plane are strictly 
sinusoidal or which are even restricted to a very limited number of har
monics. This recognition was reinforced by the result of some simple 
field-surveys,7 made by solving Laplace's two-dimensional equation on a 
"50 x 50" Cartesian not (49 units x 14 units), and by the increased 
interest which the separated-sector type of structure appears to war
rant. It seemed important therefore to bring into operation a double 
program, which (i) would commence with the contour of the pole boundary, 
on which the magnetostatic potential would be considered as given, and 
solve Laplace's equation for the space between this boundary and the 
median-plane, and then (ii) would permit investigation of particle tra
jectories in this potential field. It was felt that mesh-storage would 
be the most practicable approach and that storage should be confined to 
the fast-memory of the ILLIAC, when solving the dynamical problems, in 
the interests of achieving reasonable speed. It was further recognized 
that considerable simplification would result in the potential problem 
and a considerable reduction of the subsequent storage requirements if 
advantage were taken from the start of the scaling property of the 
field. The desire to economize to the utmost in storage suggested that 
the computational programs be planned in terms of the scalar potential, 
despite the impossibility of strictly Hamiltonian equations .of motion 
when using fields derived from a somewhat-in-exact scaler potential. 

The scaling character of the field can be seen by reference to 
Powell's expansion. cited previously. It has evident from this develop-
ment that "V /C 11- x) A+ 1 has the same value at all points for which 
both y/(1 + x) and p:: b(Jtxl - NE> have the same values. 
Also, with y/(1 + x) consta~, 1tJ. /(t+><)~-~'~ is periodic inp with 
period 2rr. The potential, with its scaling fact.or (1 +x)k + 1 is thus 
conv~niently expressed in terms of two independent variables which we 
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take to be 

s-= I l ~::.+'1<). Ne] -2.'1r 

"7= [I .-~" ( t'\3" II) ': ~ 
.2..,. t..r 

,.,... )(. 

'1}'-::. I -A.-t I J'l f-1(/+-l<) . CS.,~) 
' 

with Jl periodic in ~ with period unity. 

This last equation may be alternatively interpreted (i) as refer-
ring 'tV /(It- x )'i'tl to the value at a suitable point in the 8 = 0 
plane or (ii) relating it to the value at a suitable point in the 
cylinder x = 0. By virtue of this relationship, Laplace's equation for 
this scaling field may be reduced to a second order differential equa
tion for .fl. with only two independent variables (! and "1 ) . The mag
netic fields, moreover, may be obtained from~ and hence storage on a 
two-dimensional net will suffice. For most efficient storage it was 
felt appropriate to store a quantity proportional to Jt/~ , since this 
quantity will be more nearly constant than .fl. itself and a greater 
number of significant figures would be retained. The field-strengths 
which enter into the (First-order) differential equations of motion are 
then to be obtained by First-order differentiation of !l./'1 , interpo
lation and interpolation-differentiation being necessary because these 
quantities are stored on a net. To insure continuity in the differen
tial equations it was then felt desirable to use an interpolation for
mula which would exhibit a continuous derivative upon crossing from the 
region covered by one cell to that covered by an adjacent cell. Such an 
interpolation Formula, being the only reasonable one of its type extend
ing through ~3 and based on four values of the function, is used 
throughout in preference to Bessel's more conventional but only 
slightly-different form. 

This formula is: 

A (1:,0 + ~-l) = c.t.l\, t- (l-~11\. + ~ l..\.(a-~)(-l\1.+t\,+/\o·/\_,) 

in contrast to Bessel's form: 
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The quantity .0./~.!1./~0 
some 2000 mesh points as 13 binary 
written in terms of coordinates 

S = ~ (I+ X.) 

7 

is stored for each of as many as 
bits. The differential equations are 

/::: 

to avoid the complications of a logarithm routine in the program, 
although print-out is performed in terms of the more-familiar variables 
x, y, px, and py. 

The part of this program which seeks a solution to the p.d. equ. 
for 1'l. is termed the "SCAPOCYL" and the dynamics portion, the "Stor
mesh". Trouble-shooting of the first portion and testing of the second 
is currently in progress. The speed of the Stormesh program has been 
found to be intermediate between that of the Ridge Runner and that of 
the Feckless Five. 

III. COMPUTATIONAL RESULTS 

By use of the Ridge Runner and Feckless Five programs, surveys have 
been made of the particle motion in spirally-ridged structures. 
Although the larger portion of this work was with parameters charac
teristic of models, the general features of the results no doubt apply 
also to large-scale machines. 

1. Radial Motion8 

The results of computation pertaining to motion with one degree of 
freedom are appropriately and conveniently represented by means of phase 
plots, depicting on invariant curves the position and associated momen
tum of a particle as it progresses through successive "sectors" (periods 
of the structure) from one homologous point to another. Such studies 
provide information concerning the location of "fixed-points", 
corresponding to an equilibriu~ orbit; the phase-change of the betatron 
oscillation per sector ( ); the displacement associated with trajectory 
directions different from that of the equilibrium orbit; and the extent 
of the region within which stable motion is possible. The characteris
tics of small-amplitude motion found in this way agree well, for the 
sinusoidal fields, with the analytic work to be discussed later. At 
large amplitudes, unstable fixed points--representing an unstable 

,equilibrium orbit--make their appearance. Associated with the unstable 
fixed-points one finds a separatrix: constituting an effective stability 
limit, which in the majority of cases the ILLIAC results depict as a 
sharp boundary and outside of which it is frequently possible to draw 
the initial portions of what appears to be invariant curves for the 
unstable motion. 
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With regard to stability the requirement for a strictly linear sys
tem is that the condition 

0 <. tJ 

be satisfied for operation in the first stability zone. Due to the 
non-linear character of the oscillations in a spirally-ridge FFAG, how
ever, it is not surprising that for such structures the permissible 
amplitude of oscillation is much curtailed if tr lies near .. ~I "3 or 
&~/~. In fact Dr. Christian at Los Alamos has made computations which 

show the amplitude limit to be reduced, altho1-1gh not to zero, for 
<5" -= '-"tr I s- If the small- amp 1 i tude tr is in the neighborhood of 

2~/3, ~will at first change only slowly but then quite near the sta-
bility boundary will rapidly approach 2.-n- l '3 1 and three 
unstable fixed-points will appear. These correspond to an unstable 
equilibrium orbit which repeats after progress through three sectors. 
Similarly, near 2~/~, four unstable fixed-points may be expected to 
develop. When the machine parameters are such that tr is essentially 
midway between the values '2.trJ3 and "-Tr/f(, a comparatively large stable 
region is found and the apparent limit of stability is defined by a 
separatrix which may be associated with a larger number of unstable 
Fixed-points, 7 such points being found in one example. In special 
cases rather elaborate island-structure is seen to develop within the 
main stability region. In some cases the phase curves near the stabil
ity boundary do not appear well defined and the location of the stabil
ity boundary can not be fixed with high precision. 

A case with one of the largest radial-amplitude limits for machines 
with model-like parameters has a 5x near I.JTr/7. In this case -It= o. g 
-1;:=2'3.0 f:: -t NoS , and the "ears" of the phase-plot (at NE> = 0, 
mod. ~) extend to x =~ 0.09; similarly for a case currently of consid
erable interest in connection with freezing the parameters of the Illi
nois spiral-sector model k = 0.74, 1/w = 23.7, f = 1/4, N = 5, 
( IS "• = e, S 6 3 '11" ) , and the ears extend beyond x 0. 06. It has 
been noted that, for reasons which will be suggested later, if 
increased and 1/w concurrently decreased to maintain a similar 

F is 
tr , the 

y 
amplitude limit may be made substantially greater--for comparison gith 
this last example, the case -4 = o. 7'# ~ ::: S. 'f~ '5 f .=. 1 

N=s ('-•"=' CS""x..'"' o.sa<JG'T) led to a material change in the shape of the 
phase-plot but to a radial amplitude limit some 2.5 times that found in 
the earlier case. A similar result for the limit of stable axial motion 
would not be unexpected. 

2. Axial Motion:9 

Introduction of axial motion into a study of spiral-sector 
accelerators produces complications for all but the smallest-amplitude 
oscillations, since in general there is coupling between this motion and 
that occurring in the radial direction. For small-amplitude axial 
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motion one can find the ~ and the various matrix elements which 
y 

characterize linear oscillagions. For large-amplitude axial motion one 
can undertake an experimental survey to determine how large an initial 
y-amplitude can be tolerated if the motion is to "hold on" (i.e., not 
exceed the limits of the computer, which are normally given by~< 3.14r) 
for some arbitrary number of sectors (e.g., 80 sectors). By way of 
example, one finds in this manner for the first of the model-like struc-
tures cited earlier ( ......_.,_ o,s -t:;. ::.2.'! f =t-4- N u iO ) an axial 
amplitude limit close to y = 0.014; this limit applies to locations such 
that N8 = 0 (mod. 21r), near the center of an axially defocusing region, 
and has associated with it amplitude limits which become almost twice as 
large at intermediate points. As with the radial motion, the limiting 
amplitude is curtailed if the operating point approaches such "resonant" 
values as ~1r/3 . Analysis of such resonances has been given by 
Moser,lO Hagedorn,ll Sturrock,12 and others. 

3. Motion in Two Degrees of Freedom: 

With motion in two degrees of freedom one can make searches with a 
wide variety of initial conditions to determine emperical stability lim
its. Beyond this, however, it is difficult to proceed systematically. 
As a result of a suggestion by Sturrock,l3a,b it was hoped that investi
gation of motion in two 2egrees

2
of freedom could be systemitized by use 

of the quadratic forms K and K , mentioned earlier, which remain 
invarient on the basis o! lineat theory. We were led to expect that 
plots of Ky vs Kx would depict the point which represents a single tra
jectory moving on a portion of a conic curve and that regions of stabil
ity or instability could be distinguished. From a limited number of 
results obtained to-date; it appears that the expectation is an over
simplification--the values of Kx and Ky scatter sufficiently that a true 
curve is not defined, the nature of a curve near which the points lie 
appears sometimes to be elliptical and sometimes hyperbolic, and the 
regions of stability or instability are not readily apparent. It may be 
that further work along these lines is merited, however. A possible 
refinement of this technique would involve the plotting of running aver
ages of Kx and of Ky, averaged over possibly 20 values in the interests 
of smoothness; in addition, one could consider use of more elaborate 
algebraic forms,l3a in place of Kx and Ky themselves, between which sim
ple relationships may be expected to apply. 

4. Coupling Resonances: 

Evidence of apparent instability appears for operating points in 
the neighborhood of certain "coupling resonances", notably: 
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In such cases one finds a exponential growth of y-amplitude, con
veniently represented by semi-logarithmic plot of Ky vs. the number of 
sectors traversed, which may begin with very small initial y-amplitudes 
(or even in the "noise" of the computer) and extends over many orders of 
magnitude. The y-growth appears to be the more rapid the greater the 
amplitude of the radial motion, above a certain threshold, and the more 
pronounced the closer one is to the resonance in question. This 
phenomenon has so far been studied in greatest detail for the 

elK= 2~~ resonance. If the initial radial amplitude is not too 
great, the exponential growth may be seen eventually to terminate rather 
suddenly (For example, near y = 0.01 or y = 0.02 in some typical cases 
involving model-like parameters) and to change to an exponential 
decrease for a time. This decrease may then be followed by an interval 
characterized by an exponential growth. When one is very close to the 

e> = 25. resonance, so that the y-growth occurs for even a rather small 
X ~ . 

amplitude of the radial oscillation, it is possible to see from the com
puted values of Kx and Ky that as the axial amplitude increases there is 
some decrease of the amplitude of the radial oscillation. .Because of 
the cessation of growth at axial amplitudes not far from those at which 
violent instability might be expected to occur, it is questionable 
whether machine operation would be satisfactory under such conditions-
in such cases the majority of the particles would be expected to find 
themselves near the outer limits of the beam from time-to-time and 
misalignments may be expected to reap a heavy toll in such cases. These 
matters are being further explored computationally at the present time 
and theoretical progress has been made with respect to those aspectj of 
the phenomena which concern the initial exponential growth. 

5. Studies of Misalignments: 

Some computational investigations of the effects of various "bumps" 
have been made before making a final commitment concerning the parame
ters of the Illinois spiral sector model. The results obtained will be 
reported in a factual way, little theory being available for organiza
tion of the results, and the work will be seen to represent no more than 
a coarse survey of the effects which certain misalignments can cause in 
a specific case. The slowness of such computational work is a real han
dicap, which arises in part from the misalignments being a property of 
the machine-as-a-whole and the consequent necessity of going through a 
number of sectors to traverse one period of the perturbed structure. It 
may, moreover, be noted that, as Symon and Christian have emphasized, 
certain types of bumps may excite certain potentially dangerous reso
nances only indirectly; hence, unless a suitable, and perhaps unrealis
tic, perturbation is selected, a resultant instability may develop so 
slowly as to pass unnoticed in a run of reasonable duration. It would 
be of considerable convenience in such work to have at hand the most 
general transformation required to represent the effects of harmful 
misalignments and a know~edge of the manner in which ~he parameters of 
such transformation are related to the magnitudes of the constructional 
misalignments which the transformation represents. 

1-216 



11 

The work reported here pertained primarily to an operating point 
chosen to be clear of the ~x = 2~y resonance, to lie between e-x= ~/4 
(For which J" = S/y ) and the half-integer resonance Y~e ::. ~/2. and 
to fall below '\} ~::: i The nearby inherent resonance ~ 6' 'IC+ D'"~-:. g,1J" 

had not been found harmful in a machine free of 
imperfections. The nearest other imperfection resonances, aside from 
difference resonances, were those for which '!. .J '?1 + v)( == If and 
~ J ~= ~ The parameters of the machine selected for most of the 

studies (denoted "d") were: 

for which 

=-2!..7 I ::: I 
I{ 

In studying certain bumps, neighboring operating points were also 
included. The computations were performed by aid of various overwrites, 
applicable to the Feckless Five master program. 

Results 

(i) Bumps Absent: 

In the absence of bumps, radial motion was stable in machine "d" 

for an x-displacement{ :: ~Z~ from the stable fixed point, and the ears 

of the phase plot extended beyond± .06. Similarly an initial y
displacement of ± .011 appeared to be stable. These displacements refer 
to points for which N8 = 0, Mod. 2~. 

(ii) Momentum Bumps: 

As a first attempt at the introduction of bumps, the combination 
was introduced once a revolution. The 

permissible amplitude of the radial phase plot appeared to be reduced by 
a factor of about 2. 

RESONANCES IN NEIGHBORHOOD OF "d". 
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RESONANCES IN NEIGHBORHOOD OF "d". 

(iii) Coordinate-Dependent Momentum Bumps: 

In this series of runs a few different combinations of momentum 
bumps ( ArM ' .A f'al ) were abruptly introduced into the computations 
once every 5 sectors--i.e., once per revolution. In one case the combi
nation 

- • co~ -.2. )( ... :1.. x'- IDX.l 

A f-a = .,.. , oDo !;' - • 2 ~ I 

For which the Jacobian of the transformation is unity, was employed. In 
this case the stable region of the radial phase plot was very materially 
reduced, each dimension of the plot being reduced by a factor estimated 
as close to 3. With the signs of the x-dependent terms reversed, the 
decrease of each dimension was similarly by a factor close to two. 

(iv) Radically-Displaced Sector: 

In this series a displacement, A~ , was introduced for an inter-
val 2.1r IN to simulate a radially-displaced sector. Various phases 
for introduction of the bump were investigated, as well as various mag-
nitudes of AX In this case a reduction of the stable region, of the 
radial phase plot, by a factor of 2 seemed to result from a displace
ment, A X. , lying between 0. 0021 and 0. 0063. Thus, with the smaller 
bump, motion with an initial x lying .0250 to the left of the fixed 
point was stable regardless of the phase of the bump while motion with 
an initial x lying ,0375 to the left was stable in none of the cases 
studied; with the larger bump, an initial x lying .0250 to the left of 
the fixed point led to instability in most cases .. 

(v) Axially-Displaced Sector: 

With an axially-displaced sector there resulted a very noticeable 
increase in the frequency of axial betatron oscillations, an increase 
which varied predominantly as the square of the sector displacement 
A~ . Because of the proximity of the integer resonance J~ =I 
it was felt appropriate to suppose that in actual practice suitable tun
ing controls would be employed to restore the operating point to its 
desired location despite the presence of unavoidable misalignments. For 
this reason the work to be reported here is concerned with a struct,v-e 
(denoted "e") for which 
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in the absence of any sector-displacement 

J~ = o. B 3'1 

but with a displacement {A 'a I= .oa~s-D for one sector 

The axially displaced sector, A y = -.00350, was found to effect a 
reduction of the stable x-amplitude by a factor of 2 and the y-amplitude 
by a factor of 3. 

(vi) Tilted Sector: 

In this series a tilted sector was simulated by introducing, once 
per revolution, two bumps, ( 4~ 1 ., AF,,) ,_,..,t { l:o'a t,Aftt.)' at points one 
sector apart. Specifically, A~ 1 ·A~t _,Ar.,,=-~·~·' Af)1.'•,•'a• . A reduc
tion of the stable amplitudes of radial and axial motion by a factor of 
nearly 2 was found to occur when A "a, = -. 00350. 

(vii) Parameter-Shift: 

In this series the parameter 1/w was changed for an interval 
corresponding to one sector and a concurrent change was made in f in an 
effort to allow for the increased spatial modulation of the field which 
would be expected to result if the ridges of a spiral sector accelerator 
were separated. Work has been confined to the case in which one sector 
of accelerator "d" was modified as follows: 

Unperturbed Sectors: 1/w 23.7 , f 0.25 ; 

Perturbed Sectors: 23.07423 0.2533996. 

In this case little reduction of the stable region appeared to result, 
although a radial phase plot of a nearly-limiting amplitude run appeared 
to be a bit more ragged than for the unperturbed case. 

In summary, it is seen that displacements which correspond to about 
1 mm, when r1 = 300 mm, under a number of circumstances can cause a 
serious reduction of the stability region. 

IV. ANALYTIC WORK PERTAINING TO UNPERTURBED STRUCTURES 

1. The Equilibrium Orbit: 

One of the distinctive features of the spirally-ridged accelerator 
is that the equilibrium orbit is not circular.4 If one expands the 
equations which govern the motion in the median plane about a reference 
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circle, a forcing term makes its appearance and leads to a scalloped 
equilibrium orbit. The departure from a circle is, in fact, close to a 
sinusoid, given by4 

. f 
= 

N 1.- (-A. +I ) 

and has been determined with greater accuracy by Juddl4 and by Cole.lS 

2. The Small-Amplitude Betatron Oscillations: 

The character of small-amplitude betatron oscillations must be 
obtained by expansion of the equations of motion about the equilibrium 
orbit and leads to frequencies materially differe~6 from those which 
would be obtained by ignoring the effect of the forcing term. Qualita
tively this is to be expected, since the field gradient is in a sense to 
favor radial focusing over a smaller interval of 0 if one examines the 
gradient in the neighborhood of the scalloped orbit instead of along a 
circular path. 

We will no.t undertake here to discuss development of the equations 
for betatron oscillations on the basis of Symon's unified theory of FFAG 
machines,l7 but shall outline a more specific approach developed with 
increasing degrees of completeness by myself,4 by Judd,l4,18 and by 
Cole.lS From the prescribed median plane field, vector potential com
ponents are developed and employed in a space-like Lagrangian from 
which, by the principle of least action, the differential equations for 
the trajectories may be derived directly:l9 

f..cx,y;x' ,y' ;9) -p ds/dO + e A ds/dEl 

prl r(l + x)2 + x'2 + y'2 

+ er1 [(1 + x)As + x'Ar + y'Az] 

A change of variable is then made (u = x - Xf) to modify the· Lagrangian 
so as to eliminate the forced motion, and the differential equations 
which result from the modified Lagrangian are then taken as the equa
tions governing the betatron oscillations. In this way the coefficients 
of the linearized equations, applying to small-amplitude motion, are 
obtained and the major non-linear terms also may be noted. 

The linear equations are of the Hill form and, if relatively small 
terms are ignored, are substantially of the form 

u" ..,_ (ax + bx cos N8 + Cx cos 2N8)u 0 , 
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and similarly for the y-equation. For orientation, it is helpful to 
note the frequencies which the smooth approximation20 gives for the 
solutions to these equations. Ignoring the relatively small contribu
tion from the term involving c cos 2N8, one obtains 

b2 

~X 2 - l X 
a + 2 N2 X 

. 
[ (k + l) - ~ (f/w)

2 

1)1 + 
1 (f/w) 

2 

N2 - (k + 2 N2 

. 
k + 1 = 

.Jy2 - [- k + 1: (f/w)
2 

1)] + 
1 (f/w)

2 

2 N2 - (k + 2 N2 

. 
k + (:N)2 = 

It is thus seen that the frequency of the free radial oscillations is 
substantially determined by the exponent k characterizing the radial 
increase of average field strength, so that k = 1 must be positive, and 
that axial stability may simultaneously be obtained if the enhanced A-G 
term, (f/wN)2, is sufficiently large to dominate -k. 

More exact information concerning the solutions of the Hill equa
tion, with the term c cos 2NO retained, may be obtained by use of 
tables pertaining to this equation and which were calculated by aid of 
the ILLIAC digital computer. The first set of tables was prepared by a 
variational method which is believed to be quite accurate at the stabil
ity limits, tr = 0 or n', and also for the smaller values of a" in gen
eral. The most satisfactory form in which to use these results is by 
recourse to the graphs which accompany the tables. A second set of 
finer-mesh tables has been subsequently prepared for the Hill equation 
by direct integration of the differential equation. These tables, which 
have been duplicated and are about to be distributed, give cos~. 

~ltr, and selected values of a quantity (s~~~) proportional to the 
square of the amplitude function and from which the Roquet solutions in 
the phase-amplitude form can be obtained. In each of these tables an 
independent variable is used such that the argument of the cosine func
tions is 2t, and multiples thereof. 

By use of the foregoing theory, and by aid of the available tables 
or graphs, the first stability region may be plotted in terms of machine 
parameters. The basic variables, when k > > 1, are k/N2 and f/ (wN2) . 
The result of direct integration of the equations of motion, by use of 
the Ridge Runner or Feckless Five programs, yield results which for 
small-amplitude motion are consistent with the predictions of the 
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analytic theory. 

3. The Limiting Stable Amplitudes: 

(i) The stability-limit for radial oscillations: 

In a large fraction of cases the limit of stability for the radial 
motion is characterized by the appearance of three fixed points. For 
such cases a convenient approximate formula may be developed by recourse 
to a differential equation in which the important non-linear term is 
taken from Cole's report:lS 

u'' + (a + b cos Ne)u 
f 2 

(sin NEt) u 
2w

2 

One may attempt the solution of this equation by substitution of the 
trial solution u =A sin(N0/3) and application of harmonic balance. 
One may alternatively replace the differential equation by an equivalent 
variational statement and then employ the same type of trial solution as 
before. Finally one may employ a variational procedure of the type out
lined by Sturrock.l3 These various methods appear to agree in giving 
for the limiting amplitude the expression 

It is noted that the character of the trial function taken in this work 
was extremely simple; the formula appears, however, to give estimates in 
good accord with the Ridge Runner stability limits in both model-like 
and full-scale machines for which the nearest resonance is that for 
which crx = 2nj3. It may be noted that, since the betatron frequencies 
are essentially determined by k/N2 and f/(wN2), a desirable increase 
of stable amplitude might be expected if f and w were each increased 
by the same factor. Dr. Sessler has extended this formula in an attempt 
to take account of fields containing higher-order Fourier components. 

(ii) The Stability Limit for Axial Oscillations: 

In considering the stability limit for axial motion, it has been 
pointed out that larger amplitudes of axial oscillation cause the parti
cle to sample fields of a necessarily greater flutter-factor. The 
flutter-factor of a simple sinusoidal.variation increases approximately 
by the factor Cosh(yjw) for points out of the median plane. The 
suggestion has then been advanced that the effect of this increased 
flutter in the field is to "tune·" the oscillation frequency towards the 
next higher resonance and that instability will result when this 
resonant value is reached. On the basis of this simple, and perhaps not 
entirely true, idea, one may proceed to write 
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With f 
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and AV y 

fl.. f 

N2 2 Jy w 

k 

f 
0 

<y>eff 
Cosh--

w 

2 f<y > 

-;-;;'2 

17 

If we write <y2> 
close to the value 

A2/2 and consider cry to be below but fairly 
211"/3 ' 

4 
w 

2 1 N3 4 ( 
_Y--=.y_f----::2,.------w_ i 6'y] 

1i 

Since Jy is presumed close to N/3 (i.e., () y close to 21l"/3), this 
result may be expressed in the simpler form 

0 8 ~ .?. - (J"y 2 2 jf]f 
. f 3 'If 

Comparison of this equation with Feckless Five results suggests that the 
formula may over-estimate the permissible amplitude but that within a 
factor of about 4 it gives a correct estimate in a variety of cases. 
Again., the desirability of increasing f and w together by the same 
factor is suggested. Sessler has undertaken. to extend this formula, by 
the same type of reasoning, to cases in which higher-order Fourier com
ponents are present' in the field. 

4. y-Growth: 

We shall discuss here analytical work relevant to the exponential 
growth of axial amplitude observed in the neighborhood of certain 
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resonances, with particular emphasis on the X 2 y resonance. 

(i) Walkinshaw's approach: 

In a recent memorandum, Walkinshaw21 has pointed out that the dif
ferential equation for axial motion, although properly treated as linear 
in y for small amplitudes, contains a coefficient which involves the 
radial motion. Just as the forced radial motion is known, as we have 
seen, to affect the axial focusing, so the presence of an appreciable 
amplitude of radial oscillation may be expected to affect the axial 
motion under suitable circumstances. The view is taken that the super
position of the comparatively-long-wavelength radial oscillations on the 
forced motion in effect modulates the smooth-approximation coefficient 
in the axial equation, to yield a Mathieu equation with a coefficient 
having the period of the radial motion. Under "resonant" conditions, 
which appear to include the case~x = 2~Y' the equation may have 
unstable solutions. 

Walkinshaw commences with the basic differential equations (in our 
notation): 

x'' + (k + l)x -f sin(~ - N8) 
w 

y" + ( -k- ~cos(~- N9)] y 0 

A solution for the radial motion, representing a free oscillation of 
amplitude A superimposed on the forced motion, is taken of the form: 

X 

with x£3 

and .J 
X 

x('1 + 

A sin(J e + oc.) 
X 

X ' C' 

w 

[k+l «N. 

-2 X~ 
N) sin(Ne - W) 

This solution is then introduced into the axial equation and, after some 
approximation, gives 

y', + [ -k + f X(& 1 w cos(N8 - ~) y 0 . 

At this point the attempt is made to eliminate the cosine term by appli
cation of the "smooth approximation", in effect replacing theN which 
usually appears by N- x~'/w: 

1-224 



19 

y', 0 

or y', + [ -k 0 . 

It is noted that the terms within the square brackzt and which do not 
contain x~' are just those which normally give ..J by the smooth 

yo 
approximation. Hence, with this substitution and replacement of x~· by 
AJxcos(vxQ + ~). one obtains 

y', 2 . 2A f
2J J 

+fJ + 33 xcos(Jx8+0() y=O 
l yo w N 

This Mathieu equation may be put into standard form by the change of 
independent variable 

to obtain 

+ 0 

with a coefficient whose period is ~ in the independent variable ~. 
Such a Mathieu equation will exhibit instability when the constant term 
in the coefficient is equal or close to the square of an integer -- in 
particular, there is a fairly broad band of instability near 

corresponding to v = 2..) . This instability will be expected to extend 
x yo 

over a wider range of values of~ the greater is A, the amplitude of 
y 

the radial betatron oscillation; s~milarly, for a fixed value of 2J ll 
y vx 

and within the unstable zone, the lapse rate characterizing the grow~h 
of the axial amplitude will be the greater the larger the radial oscil
lations. The predictions of this theory, both with respect to the 
threshold at which instability sets in and with respect to the lapse 
rate in the unstable region, appear to be in good accord with the 
results of the ILLIAC computations. 

(ii) An Alternative Approach: 

Despite the success of Walkinshaw's ingenious and successful 
account of the t5"x = 2d'y resonance, it was felt that the method involved 
some uncertainties, especially in the first application of the "smooth 
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approximation", which were difficult to rationalize. It was thought. 
desirable to develop an alternative, and perhaps more general, method 
which would be applicable to other resonances and which would be based 
in a straight forward way on the differential equations developed by 
Cole.l5 

If we regard the amplitude of the betatron oscillations themselves, 
taken with respect to the closed equilibrium orbit, as small, they may 
be supposed adequately represented by the linear differential equation 

u', + (ax + bx cos N~ J u 0 

with 

k + 1 -
f2 , 

-A+l-
f2 

and a 
2w

2
( N

2 
- (k+l)) 2w

2
N

2 X 

b f/w 
X 

A suitable solution to this equation may be sought conveniently by a 
variational method in a variety of ways. A method which we shall employ 
again imagines that the frequency of the oscillation and the basic fre
quency of the structure are commensurate in a sufficiently large inter
val and, hence, that the solution may be regarded as "periodic" in such 
an interval. Such a periodic solution might normally be thought to 
correspond to a stability boundary, but in the present instance we find 
that there are two periodic solutions and the zone of instability which 
one might imagine to be present is of zero width. 

We write, then, the variational statement 

(I f-12 (u' 2 2] o - (a + b cos N8) u d9 
X X 

as equivalent to the differential equation. 

A trial solution of the form 

0 

u AcosJ9 + Bcos(.J+N)e + Ccos(.J-N)9 

may be introduced into the integral, the integration performed, and the 
resultant algebraic expression adjusted to be stationary by proper 
selection of the frequency J and proper proportioning of the coeffi
cients A, B, C. One finds in this way 

- a 
X 
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b 
B 

,., X 
(1 - 2JjN) A 

2N
2 

b 
c ~ 

X 
(1 + 2JjN) A. 

2N
2 

Thus the value found for .J in this approximation is concordant with the 
result of the smooth approximation and we have the approximate solution 
for u: 

u [cos .J e 
b 

bx 2.J 1 X (1 - 2JjN) cos(~+ N)9 A + 
2N

2 
+ -

2 
(l+t.f) cos (J -N)8 

2N , 

A [cos.Je 
b 2b .) 

N8 J . X 
cos J 8 cosN8 + 

X 
sin Js sin + 

N2 7 
Likewise, if a trial function employing sine functions had been 
employed, a similar result would have been obtained: 

u A [sin Je 
b 2b J 

+ N~ sinJe cos N8- N~ cosJe sin Ne]. 

We accordingly take the general solution to be: 

u 
b 

+ x sin(J f!l +e )cos N8 
N2 X 

+ f
2 

sin(Jxe + ~) cos N8 
wN 

2f.) 
x cos(J 8 + ~) 

wN3 x 
sin N9l 

f 
The complete radial motion is x = sin N8 + u and is found to agree 

N2 
with Walkinshaw'.s form when the latter is expanded .. 

For study of the y-rnotion near the frx = 2fiy resonance we again 
refer to Cole's reportlS to write the linear equation in y: 

y'' + [ ay + by cos N8 - b 5u] y 0 
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and 

a = 
y 

b = - f/w 
y 

b ~ (fjw2 ) sinN9 
5 

22 

to sufficient accuracy for the present purpose. 

We then substitute our solution u into this equation, ignoring terms 
in 2N9 and dropping the phase-shift ~ as a matter of convenience, to 
obtain 

y', + r a + b cos N9 l y y 
cos .Jxe 1 y 

Af 
2 sin N9 sin.J/~ + 
w 

This equation is of the form 

y', 
[ay + b cos N8 + 1 

cos(N -.J )9-
1 

cos (N + J )9 + -c -c 
y 2 y X 2 y X 

+ d cosJxely 0 
y 

with ay and by as before, 

with Cy Af/w2 
' 

and 

with dy + Af2,J x/ ( w3N 3 ) 

The equation may be case in the form of a variational statement and sta-
bility boundaries sought by the use of trial functions 

yl B cos~ + pl 
;. w- J"! 

9 + p2 cos 
.2.N+ J.,. I) cos 

:z_ ,_ ;L. 

y2 c sin~ + Ql 
. ~N-~ 8 .... Q2 sin :J.N ~v_. B 

~ 
s~n ;~. ~ 

One finds in this way that the stability ~oundaries in the neighborhood 
of .J = 2-J (where ..J 2 ~ a + b!l / ( 2N ) corresponds to solutions of 

x Yo Yo Y y 
the y-equat~on when A = o) are given by 
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This result is in agreement with the location of the stability boun
daries of the "equivalent" Mathieu equation originally suggested by 
Walkinshaw. 

Continuation of the analysis of our equation, along lines indicated for 
the Mathieu equation by McLachlan,22 moreover leads to lapse rates in 
the unstable zone which agree with the values implied by Walkinshaw's 
equation and which appear to be in reasonable accord with the ILLIAC 
results. 

(iii) Other Resonances: 

We have applied our methods to the examination of other resonances 
where y-growth may occur. It appears possible in this way to account 
for the behavior at the resonance (1" + 26' = 2'1r and at 2t:r + 2~ 2'tr. 

X y X Y2 
In this latter case one should consider not only the term ~c10 u y in 

the y-equation but also the double frequency (2.Jx) terms which can-enter 
the term bsuy by use of supplementary terms in u obtained by a per
turbation solution of the non-linear u-equation. It appears, however, 

that the direct contribution from ~c 10 u
2

y definitely dominates. 

In the neighborhood of the possible ~x =~y resonance, the ILLIAC 
results have revealed no y-growth. Our analysis, differing in detail 
from Walkinshaw's, indicates that instability leading toy-growth would 
occur over a quite restricted range of radial amplitudes and that the 
lapse rate within this narrow zone of instability would be so small as 
to be far beneath notice. 
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AXIAL-AMPLITUDE LIMITATIONS 
EFFECTED BY rT x + 2 o-y = 2 n 
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ABSTRACT 

Evidence, based on Feckless Five computations, is presented 

appearing to support Parzen' s suggestion that the a-x -r 2 tr ;; 2 1C 
y 

resonance, rather than ~y: 21r/3, is responsible for the limit 

of stable y-amplitude in spirally-ridged accelerations free of 

imperfections. The computations covered a small number of 

structures with k = 0.2, f :. l/4, and N-::: 5, for which frx was in 

the neighborhood of tr/2. 

l. Introduction: 

The question has been raised by Parzen (Madison summer 
1 

session) whether the stable limit of y-amplitude observed in 

Feckless Fivt runs with tr near 0.67T is attributable to the 
X 

fTx + 2ry.:. 2 71: resonance rather than to (T Y-= 2 "7'(;/3. Be-

cause of the importance of this question in connection with the 

design of spirally-ridged (or separated-sector) FFAG accelerators,
3 

a quick computational examination was made to distinquish between 

the two possibilities. The ccm?utations were performed by aid of 

the Feckless Five ILLIAC Program. The results of this study are sum-

marized below and, although unfortunately carried out with o-;_ undesir

ably close to'T(/2, appear to substantiate Parzen's proposition. 

* On leave from Iowa State College. 

tAssisted by the National Science Foundation, the Office of Naval 
Research, and the Atomic Energy Commission 
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2 ~ Results: 

- 2 -

Internal Report 
MVRA-LJL-Int.~ll 

The parameters and characteristics of the structures studied 

are summarized in Table I. The results of SO-sector searches 

for the axial stability limit are also included in the table. In 

all cases the x-motion was started substantially on the fixed 

point. Figures 1 and 2 depict the y-stability limit, expressed 

in ter~s of the initial value y(O) with y1 (0) = 0, as a function 

of ljw and of try ol-rt·. 
3. Conclusion: 

The results of this brief survey appear to substantiate 

Parzen's suggestion that the lrx + 2 tr ~ 2~ resonance, rather y 

than try = 2 Tr/3, is responsible for the limitation of stable 

axial motion in this region of the working diagram for a structure 

free of misalignments. It is expected that this matter will re

ceive further study. It may be of interest to mention in closing 

that it has been conjectured that generally, in structures free 

os misalignments, resonances of the form 

p Glx + q tTy -: r ( 2 TC) (p,q,r - integers) 

are significant only if q is ~· 

4. References: 

1. F. T. Cole, L. J. Laslett, and J. N. Snyder. Bull. Amer. 
Phys. Soc., Ser. II, #4, Paper G5 (April 26, 1956}. 

2. L. J. Laslett, MURA Report LJL(MURA.)-5 (July 30, 1955), 
Appendix I I. 

3a. D. W. Kerst, et al., Bull. Amer. Phys. Soc. 30, #1,, 
Paper D5 (January "L7, 1955) . 

b. K. R. Symon, et al., "Fixed Field Alternating Gradient 
Particle Accel"erators" (to be published in The Physical Review). 

c. Pop. Mech. 106, #l, P. 94 (July 1956). 
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May-June, , 1954 

The following notes deal (i) with the possible supplementary damping 
of oscillations in a synchrotron, (ii) with the energy tolerance required 
at injection, and (iii) with certain aspects of coherent radiation. These 
provisional notes do not represent a complete analysis of these subjects, 
but were begun in preparation for the May 22-23 meeting of the technical 
group and to a small extent reflect the discussion at that meeting. 

I. DAMPING OF OSCILLATIONS 

l. Introduction: 

At recent meetings of the technical group attention has been given 
to the possibility of damping synchrotron oscillations, through the use 
of a radio-frequency E.M.F. per turn which varies across the radial ap
erture of the accelerator.l This possibility has also received attention 
by the Princeton group2 and in an early Berkeley report3 recently called 
to the writer's attention. Since it appears from the analysis that one 
may expect an undamping of betatron oscillations if the synchrotron os
cillations are damped in this way, the arguments are outlined hereunder 
(i) as a r~view, (ii) as a challenge to devise (if possible) an acceptqble 
damping mechanism, (iii) as an .indication of the tolerances required in 
cavity construction, and (iv) with the thought that in some accelerators 
some additional damping of one of the oscillations may be desirable, even 
at the expense of a certain undamping of the other. 

2. The Phase-Eguation: 

The equation governing the phase oscillations may be obtained in 
a manner suggested by the work of Twiss and Frank,4 recently reviewed by 
Livingood,5 by writing the equations for a general particle and for the 
synchronous particle as follows:6 

We consider the E.M.F. per turn to vary in a substantially linear manner 
across the useful aperture of the accelerator 

E, M F. - V0 ( I - cr n ~) 51 1'1 ? 
1 rs 

where Ar .. r- r 5 • 

Introducing the .vector potential of the guide field LrA = {f!lux\_l.;;.nJ, 

e Yo 

.4-(p~"" +- e~""A) = -:v;T (1.- o-n k )sint 
dt r 5 

e.V 
... ---2..-

211 
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By subtraction: 

where w
0 

represents :2..'i/ for a hypothetical particle 
period of revolution 

moving on the radius r~ with the speed of light. 

In the traversal of several cavities (or of a single cavity several 
times), we write in the usual notation, 

and obtain: 

!t (.~.; ¢) = - ~0 .2~ :V.;- c~.-l(\ ¢ -~in ¢,) + 

which is of the form: 

t= 
with M = -2..J 

-Y 
A .:. a..:::. 

a. C!'Y'l 

~y 
e.~ • 
- ne cin,;, ,.;rr r ..,.. ) 

This result appea~s concordant with the non-relativistic eq. (15) of 
ref. 3 for a convehtional synchrotron in which Ps increases linearly 
with time, where 

h = 1 o-n = - € 
c 

1- ... ~~..... 
~111 s ~s/f!s ~ 0 

'= -1. 

1 w.., eV. e.Ve. . A. ("'-E/:H· )s (d.f'/cLt)s 
- ~. ~io ¢

5 
:: 1:._ ~ __. .o;•n ~~ ,. 

E's ~ ..... E~ ~.2. ;z..1T (3:z.Es Fs 

The conclusions of ref. 3 concerning the damping of the resultant 
motion will thus be found to be consistent with ours for this case, 
as will also the results stated for the extreme relativistic situation. 

3. Solution of the Phase Eguation: 

To facilitate solution of the phase equation we replace sin ~ 
by ~in 1s in the damping term and, rather than proceed directly with 
the differential equation, note that the motion may be derived from a 
Lagrangian 
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where U{l) "'cos¢+~ .;i~¢r;• 

The motion accordingly may be characterized by the Hamiltonian 

H = -bfexp(sin ¢s}ffcit')]p~ - A[~>c'p(-sin fsj~d.-e')][v(~)-U(i5 )] 

~ fH ~P {s/r;;/5 j!J;r-dt 1 J]r? + ~ &-xp f-s,r, ¢ 5jf;rdt 1 ))c-os ¢5 {l-Is)~ 

. 
with the canonically conjugate momentum f' = H ffixp (-s/1') <~s}~d:t) J-1. 

In adiabatic changes of the roughly periodic motion, the invariance 

of the action integral insures that F'rn::A..x. ( ~ _ ¢'s)mo..;l' remains constant: 

thus ..n. Mf:.-exp (-st"n rls j~ d.t 'J..] (¢- ~5 )..2-ty)o.-x 

=cAM e-o~ is) tj~ f:e.xp (-st"n 1, J~d;~ 1)·' (t/- ·~. )~ 
5 II 'J S m o-)(' 

remains constant~ or 

(/-Is) rna..>< oe rA r-1 c. as ~s)- 1/Jt e..)lp [?1/~){s/a ¢s ) j fr a.:t '_]_ .. 

The factor (AM cos ¢ s r I/J1 represents the customary damping of 
synchrotron phase oscillations and leads to the familiar e. -t/i.l damping 
at energies such that Y is substantially constant. It is of interest, 
therefore, to estimate the exponential factor which is introduced by the 
variation of E.M.F. with radius. 

and 

(dp/cl-i)s. 
yo'=> ) 

in agreement with the 
results of ref. 3 when 

~ 
Cit..,.. '1-n 1 ern == - f) and 

r <:£ t 
for an alternate-gradient 

synchrotron operated near the center ~f the stability diagram. 

In a typical example an i11crease .of momentum from that co·rresponding to 
an injection e.nergy of 50 Mev (pc = 0.31 Gev) to ;an energy in the neigh
borh~od of a transition energy such that pc = 9.70 Gev then leads to 
the additional damping factor 

-~. 4tr 
(Cf.1o/o.Et) 

/ . )·....: &J;, 4-o-
- '(.3l,,Z J 
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or approximately 0.18 for~= 1~.i. It is noted that the sense of 
the damping is unaffect'd by flipping the phase at the transition energy. 

It appears from the foregoing that, from the standpoint of the 
synchrotron oscillations, this damping mechanism would be desirable in 
reducing the difficulties associated with traversal of the transition 
energy, since the increase of amplitude resulting from an inexactly
timed change of pha·se would start from a lower level of amplitude. It 
is necessary, however, to consider.the effect of this mechanism on the 
radial betatron oscillatioris. 

4. Associated build -up of Betatron Oscillations: 

It appears that consideration should be given to two ways in 
which the mechanism suggested may influence the magnitude of the radial 
betatron oscillations. The first of these 7 involves the e[v]( 8] 
forces arising from the magnetic flux-leakage within the cavity, and 
presumably ~· similar radial impulse would be expected in ~ase a reson
ator with an oblique gap were employed. The second effect3 is that 
resulting from the abrupt change in the equilibrium orbit at each tra
versal of the acceleration cavity. We proceed to consider these effects 
in turn. 

5. Evaluation of Impulse from Leakage Flux-Density: 

Writing the E.M.F. per cav_ity as VCt-C"''"' ~r].~,..,(h....,~t\ I . S 

we have 
~ 

-= - J J r f3.· (rJ;;)dr cle 
~ 

VI cr n S I n ( h ;..L~. /c- ) 
rs 

-:. Jr ·b (r; B)cUi 

v, Q:!l ~ 0? ¢ : 
r,(..o.)S· (:'5 

integrated through 
the c.avity. 

It is realized ... that the R.F. electric and magnetic fields must constitute 
a self-consistent solution .to Maxwell's equations and that difficulties 
could in fact arise if one attempted to achieve an E.M.F. which over an 
exte,...,.jed r€:q:'.:on were. strictly independent of the path. The statements 
made herein appear to be satisfactory, however, for an E.M.F. of the foTm 
assumed, a.nd considerations based on curl ·r;- · = is suggest that neglecting 
.the ,..,u; H· so .implied by a spatially constant E.M. F. affects the amplitude 
I:.r- ~- /\L:. r'. by an.arr.()unt negligible (5 to 30 percent Ln a _typical case) 
in comparison with ~he term -a.(.~;-) c."~ if. cc;msidel;"ed later., · 

We thus obtain for· t.he impulse .... 

A p,_ : J F d. t : e f ~ ~; d. t 

= -ejo t;(s = 
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A(~~) 

A (d. (r/rs)) 
:(.9 

= .J:_ 1::. (::.:Lr) "' _ e Vi g:o. c..os ¢ ~ _ <2 v, Q:..!2 c..os 4 
5 v'=' cH "?75 \--l (3::<-Es h 

= - (LlE I ) E:.!1. t 1 = - (-dPL) c..t:Y") .J 
'~.:2-;: s n c. n s p s " 5 

If this impulse were the only mechanism affecting the betatron 
oscillations, it would be reasonable to consider the use of cavities 
in pairs, spaced by a half-wavelength of the radial betatron oscillations. 
The maximum extra relative displacement which would then be expected 
to arise in this way between the members of a cavity-pair would not exceed 

2 (~---) \ ~ (j_ Cr/rs)) l = ~ _!_ (olPl.) crh c:tn -J , 
rs d.9- 'f"$ p s "'S 

(The factor 2 is that estimated by Courant, Livingston, and SnyderS to 
allow forth~ non-sinusoidal character of the osci!lations in an A.G.S.) 

cavities in all, each excited to a similar R.F. level, 

equals 

tL J ;2.-TTr [1 +-
5 .,1.1'1'r's, (~) 

-----,~,..,-c:.-,.Jl,..-_ t::_.::=,....__ cit s 
c~" s 

or substantially 
h (3;;z;c {a.cc.. ~ime.) c 

in addition we may take ~/rs = :;..j{n radians and obtain 

E ~ , 
--) 

e:s 

2.1'frs [j + f#r-; J c..~ n ¢ ~ 
c · acceleration time 

from a single 
cavity. 

Typically, with n = 400, hr. = h = 16, acceleration from an injection 
energy of 50 Mev (kinetic) t~ a final energy of 25 Gev, and a rise-time 
of one second, 

4 )( 9ooo 
I (., X I lo 

= 0. 1 ~cr.. o..t ·,/~ . .::.bo""") 

which is considerably less than unity (for the harmonic number assumed) 
with any reasonable choice of a. 

The impulse from the leakage field of such cavities also will 
imp]_y an accumulative di,splacement in the case of particles for which 
the betatron wavelength 'is not exactly twice the separation of a 
cavity-pair. For e3timatihg this effect we presume that through care
ful control of the magnet perfor~ance n is not permitted to wander 
more than from the center of a small stability diamond half-way to the 

11'/.1./ 
ed~--~. We accordingly consider loKI= FJ;"Ti 'C. flrn, o<- lon\::. o.;;.~ 
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(where k enters as exp(~;~) in the characteristic solutions for 

traversal of a sector-pa·ir}. 9 Since .the increase of relative amplitude 

=TIX../00 
I G)( I l<> 

.2-n '!< [~,5o')( I , '? x 6 
3 1'- I o8' )( I 

The increase of amplitude per revolution would, 

at the worst, be ~ times- the above result 

and after several rev-olutions might be about 

2.62 times larger still, if we stay away from 

resonances by no less than the amount suggested. 

We accordingly write 

J..J: I n 
~ 

.- c.\\ u, C. X )_,-y ·. 

~(, X /Oq 

'{'7 )( I 0 C.. 

With r:r som.e.wha t less- than unity, this result does not appear to be 
excessive in a magnet whose radial semi .. aperture is comparable with ::. f"S/1'1 

6. The Grcwth of Oscillations from stee-wise Shifts of Equilibrium Orbits. 

It has be-e-R--pointed out in the Berkeley report3 to which reference 
has been made earlier that in trave~sal of a R.F. cavity the instantaneous 
equilibrium orbit is sudcterrly displaced by an amount 

(£=.f..) - a. L>p I 
rs ..eq,v-'\:;, - 7 

"' 
Wit'1 this displacement there is associated an increase of the square of 
the relative amplitude x~ of the betatron oscillations which, for sin
usoids, would amount to 
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where ~ is the phase of the oscillation at the time of traversal. 
If we take over this expression as roughly indicative of the behaviour 
in an A.G.S., we note that 

.( L\. x ,~ . 2 · ?, = Q... cr n (Ll P :1 ) . 
... . ""v e .::. 

and hence there. re.sults a-growth of amplitude on this account: 

The growth-factor so found for the betatron oscillations is thus as 
rapid as the attenuatio~ fc~tcr found in section 3 for the synchrotron 
oscillations. 

The effect just deseribed appears definitely to detract from 
the utility of a system~· in which the E.M. F. decreases as one moves 
radially outward a eros s the- aperture. In some circumstances, how
ever, the radial betatron oscillations may be of somewhat secondary· 
importance to t~e synchrotron oscillations -- in such a situation 
consideration might be ~}'iven to the use of cavities for which cr 
is such that the effe-ct in question is just sufficient to cancel the 
cus ternary 1 /vf- adiabat-ic damping of the betatron oscillations: 

cr < tj'-l. '6 :::::::::: o . .2~ 

As has be~rt re..mark.ed at the May 22-23 meeting of the mid-west tech
nical group, howevGr, a more adequate treatment of these effects would 
consider the betatron and synchrotron motions together in a general 
u~ified analysis. 

It may be noted that Kerst has pointed'outlO that a betatron 
inherently involves an induced E.M.F. which increases with radius. 
Although "g~ps" may in a sense be present, due to the shielding effect 
of the cond11cting sections of the vacuum chamber wall, phase stability 
is not involved and the effect on the betatron oscillations may be 
beneficial. 

7. Possible Statistical Growth of Induced Betatron-Oscillation Amplitude: 

In section 6 it was indicated that, when u = 0, the betatron oscil
lation amplitude changes upon traversal of a cavity by 

- ;,'.... :...1.. )( (L}p I) 
,..,.., -. r s 

cr 
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Although as previously stated, the values of cos ~may be presumed to 
average to zero, there could conceivably be random variations of n such 
that the values of <{-' are distributed in a substantially random way sta
tistically. In such a case we have a situation simi 1 ar to the projection 
of a two-dimensional "ramdom walk" problem and may wr.~..te for v cavity 
traversals 

Integrating9 

"" 
0..~ 

= -v-
o...:l.. 

~ 

= 

~~-.:.li:? .L 

~ 

~>Ft. 
(~or E,·- Eo << Eo> E.~ >> f.,) 

C,· -E0 

:J. -,.,. ~'"'s ~l ] [1+~ E~ 

~. (a~.1.. ti"fY'.e) Ei -Eo 

:2 lr ,C: "~- (p . t)~O .,: I· 2 
3 )( iOZ x I 

I . '5'3 )( I Cl 
-'-I 

Q.Oif:), 

;;.t, ",o'1 

So x 1 ·:.' u. 

E.f J E 0 

In the case of the electron synchrotron described in an earlier 
report,ll we similarly write 

( /". .::z. :I:;.. 
.'-"X r-r.) )> = 

= 

I ... 1 ~ ! '_;t_ , __ -·) 
, ,-, I 

o. '-isS' 
VI he. 1 /::U 

h 1/:;l._, 
v 

. 0 . gq ~ >( I 0 (& 

50 X 101&; 
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8. Operation with a Single Cavity: 

The effec~~ considered in the preceding sections do not appear 
to preclude o~e~3~ion of a high-energy proton synchrotron with a single 
cavity, since even with random phases we find from the results of page 8 

that n<(.:.x.,-,-,);:>::z ;;: 0 . oG:> when h c..= l; due to the non-sinusoidal char

acter of the a~clllations, we might consider that this result could be ~s 
great a~ a little ever twice the value found there -- say 0.14. 

In a single traversal of such a cavity 

f.'£: /v I \n·A><ml .:. Lj.gl p 
5 

cos i' 

= o. oo.:2.C( . 

Again~ due to the non-sinusoidal character of the oscillations we may 
better write 

n(,.>xf'Y:j ~ o.oo1, 

II. REQUISITE ENERGY TOLERANCE AT INJECTION 

1. Motivation~ 

The question has been raised concerning the requisite energy 
tolerances at ~njection and whether there exists a disparity between 
t~e Linac requirements as ~~ecified at Brookhaven and those currently 
co~ceived in the mid-west group ar.~ elsewhere. 

2. Acceptance into Stable Synchrotron Oscillations: 

One approach to this problem has been given by K. Johnsenl2 in 
the CERN proton-synchrotron lectures. In this approach the requirement 
considered has been that the initial momentum spread shall be no greater 
than that acceptatle into synchrotron phase oscillations. For the case 
of no f:::<:c;:.:::r:cy er:::-or Johnsen cites [cf. his eq. ( 3)} the result 

I 

= ::_ ~ -/ e vo ~~~-z;-.~:¢-;-- { ~0 - -rr j:z,) 5,.'1 s1" J 
m ~ h 
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which is consistent with eq. (16) of a report6 by the present writer 
'if 1~r 1 in this latter equation is regarded as substantially unity.l3 

ror the similar acce~erators considered in the CERN and MAC reports 
we list the following parameters and find 

Inj. EI"lergy, Ki.netic 
" " Total 

t:..E 
E: 1<. I {l 

~p/p 

CERN (October 1953) 

50 
0.99 
0.314 
~ 1 

23.1 X 103 
based on B =

3
s2 KG/sec 

+ 1.80x:o-2/h 112 
-= +0,29xlo-2 -

LJL(MAC)-3 

50 Mev 
0.99 Gev 
0.314 
0.88 

18.7 x 103 ev 
r:tdian 

(38) 

+1.73 x lo-2/h11 2 
-= ±0.28 x 1o-2 

! o.55 x 1o-2 

The~e results ~~y be compared with what would then be a satisfactory 
expected performance of the linac, as reported by L. H. Johnston:l4 

"· 50 ::::_ c :.'... l'1ev, 

The moffientum spread t3~ulated above appears to constitute
2

the basis of 
the CERN .::lesign specifications [j>.6 of the CERN report 1 J. For the 
Brookhaven rlesign a higher harmonic number may be under consideration 
-- the foregoing example with the harmonic number change~ to · 88 would 
lead to 

_:) p 
::: + C· ! (,.~ 

,_,- _J_ y- - )( t..__ 

.M_ ::: 
.,. 

0·31 X I 0-2. -t:' \(, i , . .,. 

3. Avoidance of Resonances: 

Note added in proof: 
The Brookhaven Accelerator 

Development Division minutes (#57) 
of their March 16~ 1954 meeting 
suggest the requirement 
+l/2% in energy, +lo-3 radian, and - . -
a width of 1/2 inch. 

Th& change in effective n due to momentum error should for 
sa:ety be no greater than that which will displace the operation point 
fro11 ~lie center of a small diamondp bounded by 2 IT- and 'TT -resonances, 
half-way to the edge. The momentum spread which is tolerable on this 
acount has been .e::;ti•:-,:~t8d earlier6 as +0.20/-fi'i for operation near 
the center of the "nee kt ie diagram" .( o--= ,., /2 L or +0. 31/fil for a point 
s.it~lateci on the diagonal but closer to the origin T C?" = 0.31T ). For a 
field index (n) in.the neighborhood of 400, these considerations 
ne .. ~ssi tate a :olerance of about +l per cent in momentum or +2 percent 
ln ,~~:ergy and are evidently less 'demanding than the requirements dis-
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cussed previously cf. Fig. 9A, p. 111 of .the CERN report12 and the 
accompanying disr:•Jssion by Adams (Sect.lll-4, esp. p. 102} • 

4. Clearance of Infle.cto.r Electrode: 

An additional and more severe limitation of the tolerable energy 
spread may arise if the beam is obliged to clear the electrode of an 
electrostatic inflector structure as it spirals inward during the in
jection interval. It should be· noted that such an arrangement pres~nts, 
possibly, serious difficultie-s- in machines of the types presently under 
consideration, due to the very small pitch of the spiral in the presence 
of a linearly-rising magnetic field -- about 0.6 mm per turn. If it is 
intended to inject at the start of the injection interval particles whose 
trajectories have initially the scalloped appearance of the repetitive 
orbits illust~ated by Courant, Livingston, and Snyder [ref. 8, Fig.~' 
it may be not~ that for some particles an excess momentum will requ1re 
the superposition of a betatron oscillation (of an initially negative 
sign) oi amplitude (6.39/n) (Ap/p). In the course of a revolution, this 
betatron motion may come to represent·a positive displacement at the 
inflector location. The raaial error from this effect can then amount to 

.Q.!: =- 2 )< . ~ . .6.? 
r n f' 

and would restrict the permissible excess momentum to 

~f' -

With, for example, ~r = 0.6 mm = 0.6 x lo-3 M, n = 400, and 
r = 86.50 M as before, we thus find the comparatively severe limitation 

4-0 D 

:;.:_X ~.3Cf 

The discussion of this section presumably leads only to a rough estimate 
of the desired energy toler~~ce when an inflector is used -- to obtain a 
more definitive idea of the requirements it would seem appropriate to study 
in some detail the individual ttajectories of representative particles 
injected with various amounts. of momentum- and angular-error at various 
times within the injection interval. 

III. COHERENT RADIATION 

1. Introduction: 

Since there has been within the.mid-west group some expression of 
interest in the construction of a circular_ electron accelert~or, the atten
tion of the Technical Group ·was directed to a recent report by Nodvick 
and Saxon "On the Suppre~sion of Coherent Radiation by Electrons in a 
Syn~hrotron". Since some general discussion of coherent radiation resulted 
at the May 22-23 meeting, the following comments are appended for whatever 
interest and reference value they may have. The mathematical notes are 
somewhat crude but may have the merit of affording a simple feel for the 
phenomenon. 
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2. Rough Formul.ation of Form-Factor for Coherent Radiation: 

If the power radiated non-coherently is P0 {w) ~w per electron, 
the coherent radiation power from a small bunch of N electrons charac
terized by a symm.e..trical distribution density p is 

oo ~ 

N~ j [t: (w8 ?o (c.;,) c:L~' 
0 

where 
JrC><) a.-eos ~ cL)( 

f P (x) d-x 
, F (~...:>) "" 

3. List of ForliL-c"Factors: 
/, 

We consicie..I:.-the fallowing. -form-factvs: 

( i) For a uniform bunch of length t., 
sin h.c..v 

F == 
,;;...c.-

~ :u:.-

(ii) For a Guassian bunch, of width L between 1/e points~ 

f =- e.xpL- (~:'/J • 
(iii) For a group of particles moving with S.H.M. and with 

amplitudes uniformly distributed from 0 to L/2: In this case 
J.,j:;_, 

p{><") o<: J c:Ls/(s 2 -x 2 ) 1/:t. =cosh -j ~.x 
>( 

L/..7.. 

P -- _j___ c.osh- __:::._ Co5 C.:>< cl,.c J . :1 
.,. !... ,2)( ....... 

0 i 

= _& j ~O~h -:i 1 •-A c_. L c.Jy _/Y 
11 .O ~ -~ ~ ~ I 

4. Introduction of the Incoherent Spectral Distribution, P0 (w}: 

If, for the low-frequency radiation important in the ctherent 
effects, we write 

-p (w) "' K w :1./3 > o. 

the coherent radiation in the cases considered becomes 

(i) For a uniform bunch, • 

.2 Tt' I< N :2, ( ..f'-:) 4/3 
13 r (!i/3) ... 
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(ii} For a Gaussian bunch, 

7 (;~.) = 3/ ( t) I< N.:2. (~) "1/:3 

:2.. (c:.. ) y /3 = .:<-.7/ 1< N ""C 

(iii) For S.H.M. oscillations with uniformly-distributed 
amplitudes the integration is more complex, but it appears safe to take 

The factor of 6 represents a (pessimistic) estimate of the integral 

(~).:t (-;.)4/"3 ;: t/3 cl~ L /
1

cos-h -1. (; )· C..:ls zy dy ] 2 
.. 

0 0 

5. Resultant Formulas for the Coherent Radiation: 

From eq.. (II. 20.} of a paper by Schwingerl6 we find ( E >> E0 ) 

( 3 )7//, 1' (s)e.:J.. (R)i/3 t/3 
-p0 (~) d.w ~ · .:2.'11' ~ 1<. c. w e:J._~, o("' 

k = (3)7/f# T' (f) ~2 (~) 1./3) e.s.~.o<.. 'oe..il')~ ..... ~~~.~. 
:;. 1'7' '' 

We then find 

(i} for a uniform bunch 

"f(l) = .:2-TT {3) :J./3 

The E.M.F. loss per turn is, accordingly, 

V (') = ;:J.. n ( 3) ~/3 ~ ( ~ ) 4/3 

statvolts/turn 

vo~ts/turn 

volts/turn, 

with e still in e.s.u. 
and R in em. 

This result may also be expressed as a Mradiation resistance"~ 

\1 
(Nt: )Jr = 

(.;2.rr)-1. f3)A/3 (.R)i.J/.3 
rJ, .. . · .., statohms 

~ (.'v'SRJ i-J/3 ohms, in agreement with a = 1 ~ 0 ~ ~. · result stated by Schwinger.l 7 
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(ii) For a Gaussian bunch 
I/ -:<, ..:2. IV 2-e. ~ (i~ ) 4/3 c. 

I- (2).::- ~ (3) G [r (3 )] R ... 'Ffr<_ 

in agreement with eq ..... (2.0.) of a paper by Schiff .18 

V(;;_) = J1 : 3 )'I~ [, (;)] :2 ¥!: ( ~ ) 4 I 3 
statvolts/turn 

volts/turn, again with 
e in e.s.u. and R in em. 

(iii) For the S.H.M. case with distributed amplitudes we estimate 

..-v / , 3 'tJe.. ((~) 4/3 volts/turn, with e and R v (3) = (p _.,( I Q -;::) I 

~~ ~ in the same units 
as before. 

6. Nur:le.Ii.c 3.~. ~mp l e s : 

By way of an example~ first consider a single bunch of electrons 
for which 

then 

IV :::.. 1.0 II 

S11>i0 c. mJ 

L/i< = 
'/ ,..y 

(3) = 

0.~ I 

J 3 /O I/ ,/ t7 -10 G .)(' 1 0 X X H. 4 X I 0 

5;' /-'f X 10..3 

volts 
7S' turn 

If~ on the other hand, 

N -· 3 x loll per bunch, 

R ~ 700 em~ and 

L/R -= 0.037, '-'~· might be expected with operation 
in a high harmonic, 

then V (:3) ~ t:, X I Q 3 X 3 X I 0 II X ':f_J_ .. ?'- ·- r_q_~-; ::__ 
'/d·:J 

I I ;;;- ' !, 
'x a. 0 1.?3 . ,Q "/•'-'rr). 

For comparison, the incoherent loss, for electron-energies of 
10 Gev and 2 Gev correspond in these respective cases to~ 

'/ ./. g >< 1 o- 1 0 
( I o ooo) 4 __ · / 

Inc.::' r:. 4 c ::? n 17 X I 0 ~ v. iu. rn_; 
s1 >to o. 5'1 

v. "-
1 ·{Jc.cY·,. 

I -10 .I 
H.l )( 10 ( .;J..oco_)-'1 := 

7oo e>.SJ 

7. Effect of Shieldinq: 

The coherent radiation, which is of relat1vely long wavelength, 
may be reduced considerably by suitable shielding. By use of a suitably 
modified Green's function, Schwingerl9 has considered the case of a uni
form bunch between infinite parallel conducting shields, of separation a, 
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and obtained a shielding factor (1/2}(1/3} 1/ 6 (a/R)(R/L} 213 , for L ::>a. 
Saxon has reviewed the d~r.ivation of this factor, which he considers may 
assume the value 0.071 in a typical case (R/a =50, L/R = 0.04), to in
clude an estimate of the shielding effect for parallel conducting sheets 
of finite width. 
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I. INTRODUCTION 

The Mark V or "spiral ridge" FFAG accelerator is a version, origi

nally proposed by Kerst,l,2 of the fixed-field class of A-G machines. 

In this design the general fk increase of field with radius is modified, 

to produce alternate gradient focusing with no marked increase of cir

cumference, by introducing a spatial ripple into the guide field so that 

the particles encounter regions in which the local "n" and restoring 

forces alternate. This is achieved by constructing a field which, in 

comparison with the average field at a given radius, is alternately 

higher and lower along oblique curves which all particles must cross. 

In practice such a field would be attained by the use of spiral ridges 

on the pole surfaces, supplemented, when required, by similarly disposed 

current-carrying conductors. 

It is the purpose of this report to derive analytically information 

concerning the particle motion in the Mark V accelerator and, in Appen

dices, to record some techniques useful for further study of the motion 

by aid of the ILLIAC digital computer. 

II. THE MAGNETIC FIELD 

A. Form Assumed in the Median Plane: 

Without the use of poles excessively close to the median plane, the 

type of variation of magnetic field which is most readily realizable is 

sinusoidal. To obtain a field which would subject the particles to 

alternate focusing forces, it was originally conceived that the field 

·prescribed in the median plane be of the form 

LJL.MURA.S 
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In order that the field scale, however, in such a way that the essential 

features of Lts effect on all particles be the same,3 it appears desir-

able to make the quantitatively minor modification of adopting the form 

with w constant. This revised form for the median plane field will be 

the basis for the remainder of this report. The momentum compaction is 

then clearly given by (J)r/r)/(Ap/p) 
1 

k+l. 

From these expressions it is seen that N is the number of spiral-

ling ridges passed over by a particle in going around the machine once 

in the 0 direction. f is the fractional flutter, in the magnetic field, 

due to the ridges. Finally, if the radial width of the annulus is small 

in comparison to the outer radius, r 0 , 1\ = 2""' = 21rr0 w is substan-

tially the radial separation of the ridges. The angle by which the 

ridges spiral out from a reference circle is of the order Nw and in 

practice will be quite small. The exponent k is taken to be positive. 

It will be convenient in what follows to work with dimensionless 

quantities defined as follows: 

p1 

x= 

LJL.MURA.S 

1-259 



4 

the median plane field may then be written 

B 
zo 

pl (l+x)k ( 1 + f sin[.!..l"'(l+x) - Ne]J, 
er1 \ w 

B. Development of Vector Potential: 

To obtain the differential equations governing the particle motion 

it is desirable to characterize the magnetic field by a vector poten-

tial, which should be at least approximately compatible with the 

prescribed median plane field and with Maxwell'' s equations, in order 

that the resulting equations be rigorously Hamiltonian and th~ solutions 

thus satisfy Lieuville's theorem. In attempting to write suitable 

expansions for components of the field and vector potential, one may be 

guided by the consideration that x and y will themselves be quite small 

but that x/w and y/w may, in cases of practical interest, be comparable 

with unity. In the work described in the body of this report terms 

involving powers of these latter quantities will be retained so far as 

practicable, but no more than quite limited accuracy may be expected for 

values of x or y nearly as large as w. kx and ky, however, will be 

typically rather small ( 0.1). Also Nx and Ny are normally less than 

kx and ky. 

We undertake an expansion of the median plane field, through cubic 

terms in x, to obtain 

LJL.MURA.S 
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B 
zo 

5 

P 1 2 1 3 
1 k [ x - -x + -x 

erl (l+x) .. 1 + f sin( 2 w 3 - Ne}J 

1 - f .S''- NS 

Likewise, for use in what follows 
' 

where 

B I-f $Ill N8 
0 
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= (1.+1){-1.¥1-1) 
6 . ~l 

f . ..J- ... .31'-1 
+ J .... c.osNB 

l~ttr 
We now seek a vector potential such that Ar and A2 vanish at z = 0 

(in general, the components Aa- and Ar will be even functions of z or y 

with Ar involving only y2 and higher even powers of y, while A2 will be 

an odd function). Then in the median plane Ae must satisfy4 

leading to the possible solution 

.e_ (l+x) A
80 pl 

_e_ .,a. ' ~ , 
AB - .D

1
x +_ D

2
x 2 + o

3
x 3 + o

4
· x 4 

pl 0 . 

where 

cl -B 
0 -I + f., ... "'" 

c2 
Bl 

=-2 

c3 
B2 

==--
3 

B 
3 

or 

c4 =-4 - A t~.,,Jt~:Y 
. . 2f'f....L. -1/i4 . .J.. r·~!! ~ ~t.« ... ,XI-•J)s,,. N9J 

+ f "'• ,;..... ~of /'19 + t.lf · ...,~ 
~., ....s 
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-1;.• + 1(-~c.~lle + -l;• .s,.,Ns) 

~~:zi+J . 1·[- !..! c~Nf) -+(-..!.., + 1.~21+1\ 
6 + 3 a..r 'c..r 6 J 

$'"'HE>] 

To develop the vector potential for points not in the median plane 

we employ a gauge in which divA= 0 and note that, in the notation of 

E. S. Akeley,4 

Likewise 

LJL.MURA.S 
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In this way we find 

e D D 1. D "'.l D .. x." -·-A = ·' X. + . "1. X + 3 '"' + .., pl (J 

- ~ 'L [ {D.-+ .2. D:L) + (- .2.D 1 + ;2. 02 -t 6 Ds + 'D, ') )( 

e A 
r 

I I l D," .)( + (- 2 D. '-rD-a I) ./] ~1 +- D, ~ 2[)2 ~If and 

M S ( 1 I 1 I "'I ] 
+ 1- (- D. + 2D~) + (3, D,- '-1 Dl'+- ~D3. T D, )'X J 

primes denoting differentiation with respect to 8. These components of 

the vector potential represent expansions through fourth order in x or 

y and, as a check, can be verified to satisfy 

r, ~·A +)A,.-tb+ :=o 
o>< I+~ +X. 

through third order. 
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III. THE EQUATIONS OF MOTION 

A. "Lagrangian" for Use in Principle of Least Action: 

The differential equations governing the particle trajectories in 

the aforementioned magnetic field may be conveniently obtained from the 

principle of least action by use of the "space Lagrangian" 

,f!_ (x,y;x' ,y' ;8) 1 2 2 2 pr
1 1 

(l+x) + x' + y' 

, "'l. I 2.. 

~ ..L )( +~ 
C::JC l+X-t;~, ITX 

+ 

_l. ( I l. I"\.) 2, 
,. )(+a 

+ ~ [ ( I+ x) A 8 + x 'A.,. + 'a' A~] 

-+[( D,+2Pa) + (- D, +-l{Dl-+ {. D lTD,'')")( 

( 
,. , ) 1 +- n, - D'" + q o 3 .... 12. D ~.~ - D, +- D"' x 

[ " '']l 3D I- 6 I> 1 + 12. D:r + 1 'i I>.., - "Z. D I + '-1 D2. J 
' 

in which we have treated x' and y' as of the same order as x and y 

despite the fact that these derivatives may be expected to be some N 

times greater than the dependent variables themselves. 

The Euler-Lagrange equations, if applied to the Lagrangian of the 

preceding paragraph, lead to differential equations for the motion which 

might be susceptible to solution by digital computations,S but which are 

not in a form most suitable for analytic study. The equation f?r the 

radial motion, in particular, is marked by the presence of a forcing 
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term f sinN8 derived from the term (l+C1)x in the Lagrangian. It can, 

in fact, be shown that the magnitude of the (periodic) response to this 

forcing term is sufficient (~- f/N2) that non-linear terrris in the dif-

ferential equations affect significantly the character of small ampli-

tude betatron oscillations.6,7 It is desirable, therefore, to undertake 

a change of dependent variable such that the forcing term is suppressed 

and the resulting equations, if then linearized, may be used to provide 

an analytic basis for determining the character of small-amplitude free 

oscillations. 

The Lagrangian as written is in a form somewhat inconvenient for 

the analytical work to follow because of the presence of terms arising 

from centrifugal effects. Since the first derivative terms which result 

in the differential equations are in practice small for excursions of 

the order of the forced motion (at least in the case of "full-scale" 

high-energy accelerators), it is expedient to simplify the Lagrangian in 

such a way that the troublesome terms are removed but with the remaining 

terms of the differential equation modified only slightly. We accord-

ingly continue by use of the following Lagrangian, 'which yields dif-

ferential equations free from terms involving first derivatives of the 

dependent variables and, in the remaining terms of the equations, modi-

fies only slightly the original terms involving y2, xy, xy2, x2y, xy3, 

and x4: 

LJL.MURA.S 
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B. The Forced Motion: 

11 

-P~ 

• "3 27 D Ft = - D I - D2 - -.]) 3 - 6 .D, - _, 
r " I' 

G .. D, - .14 r '1>.3 + D ~ 
2.'1 II .2.. 

N 

- D, 
2."1 

, 
.D 

,, 
- .a --;;-

With the aim of separating out the major effect of the forced 

oscillations we now introduce the new .dependent variable u by the sub-

stitution 

X K1 sin NO + K2 cos NO + u 

a numerical integration for a particular example having suggested that 

the forced motion is in fact close to sinusoidal. The resulting Lagran-

gian (after subtracting a term which is a function only of 0) is: 

,t. ,z. ' "I. I: ..:. t(. +-'a +- N ( 1(, cot N9 - 1< a. s'"' NB) tA.. -r [. r 1(, &1~£> ~ k'"cosN~t.\. .,. 2:" 
~- ~ 

i- ~· { [I;, + 2 i:L ( 1(, .,, NfV -l(.<oH>IB} 1" 3 EJ ( l(,s. • .,,. • K,c .. N9) 

+- 4 £ ~ (I<' s '"' N9., Kr.. c.oiAJtJ)J.J C.C. l 

[ { 
.. . . ~ K nte' .,. t E'l ( K, s'". Ne + Kt.coJNe)] ~ z. _,... Ea.-t-~f! 1(1 Jt .. Nf;7-. ~,co J . . 

· )) 3 r tc. f 
... [E: 3 + Lf £LJ ( K.,.s , .. we +-IC'L c_oJ N_/) ((.. + ~'I 

l... .J, 

+ [ Fo t- F, (K, u~o.JJ6 +- 1<,_ c o.nve) ;- F~. ( K, St).. t-Jf:) t- 1<\. (O;f N.e) J ~ 
-t- [ f, + 2. tl ( J<, rn• N8 + t:\. <o.r AlB) 14~ 

t.. 

l.. t. . G~~~.} + F,. ~ 'a + o 
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of which we shall be chiefly interested in terms of second or lower 

order in the variables u, y. 

This Lagrangian leads to a residual forcing term in the equation 

and is to be suppressed by suitable choice of the constants Pl/p, K1, 

and K2. It appears from this development that a measure of the adequacy 

of the analysis is afforded by the degree to which the values found for 

K1/w and K2/w are small in comparison to unity. 

The forcing term contains the following Fourier-components, which 

may be made to vanish: 

Constant Term: 
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where 

ol <i+2) {3 
1 -
w 

k2 
b 

k 1 k2 
a = -2 c = --+ T w 

2w
2 

k3 k2 1 k k3 
A=-- B --+ 

3 
c 

2 
+-6 2w 

6w 2w 
6 

We have attempted to find solutions which make these coefficients vanish 

when the machine parameters lie within what may be considered the normal 

range of values. In this way we find: 

f -- I 
- N a.- ( -l.-r1) -r t{~}:~. 

:1~ 
or very nearly zero, and 

The forced motion is thus represented approximately by: 

xforced 

x' 
forced 
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accordingly, at 0 = 0, the "fixed points" are given by 

x' 
fixed 

Nf 

and the amplitude of the forced motion is given approximately by the 

magnitude of the coefficient - N1 _ ~k+l) 

The validity of these results is expected, as noted previously, to be 

measured by the degree to which K
1
;w or 

2 
· f/w is small in com-

N - (k+l). 

parison to unity. 

C. Character of Small-Amplitude Betatron Oscillations: 

For small-amplitude oscillations·about the equilibrium orbit, the 

governing differential equations will be of the form 

u'' + F u 0 
u 

y'' + F y 0 
·Y 

On the basis of the Lagrangian of the previous sub-section, the spring 

factors which determine the frequencies of the oscillations are respec-

pl - p 
tively (neglecting p , K

2
, and powers of K

1 
above the first): 

F 
u -= 

LJL.MURA.S 
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"l.. 

Wc..r) 31., 1.. NEJ 
A/"- { .,f~,) 

- ..J:.. c.ot NB - ..1.. (f/t.U )" c.os .2. N 8 
t.U :Z. IV.,__ (-/.+I) 

The linearized equations representing small-amplitude be,tatron 

oscillations are seen to be of the Hill type. Some aids for the solu-

tion of these equations -- especially for the determination of stability 

boundaries and the characteristic exponents (~u and lry) of the motion -

are noted in Appendix III. As Kerst has pointed out,8 useful orienta-

tion is readily provided, however, by application of the "smooth approx-

imation" technique introduced by Symon.9 If the normally-small contri-

butions from the cos 2N8 terms are ignored and if k+l is neglected in 

comparison to N2, the smooth approximation leads to differential equa-

tions of the form 

u'' + ..J ~ u 0 

y', + \}~ y 0 

'1. 
2. 

J.+ I i {-!;;) 
1 

_,. f (-j;J where .J" 
. -
= --A+ I a,.,J. 

1.. 
2. .J_ (/;-;,) v" . - -R, 1" t~) + 1 -

' -- c.:1.r·- ~ - 441'1 

It is thus seen that the frequency of the free radial oscillations is 

substantially determined by the exponent characterizing the radial 

LJL.MURA.S 
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increase of average field strength, while axial stability may be 

obtained concurrently if ( fN)
2 

is sufficiently large to dominate•k. w ' 

It will be noted that the~e features of the_betatron motion differ 

markedly from the performance which would be expected on the basis of an 

expansion about a circular reference orbit while ignoring the presence 

of the forced oscillations. This situation can be understood physi-

cally6,7 by reference to a diagram on which are drawn contours of con-

stant magnetic field strength in the median plane, with the expected 

equilibrium orbit superposed (Fig. 1). One notes that the field gra-

dient is in a sense to favor radial focusing over a smaller interval of 

8 if one examines the gradient in the neighborhood of the scalloped 

curve than if one merely examined it along a line of constant radius. 

IV. ILLIAC STUDIES OF THE PARTICLE MOTION 

Although the results of the foregoing analytical work are believed 

to describe reasonably well the general character of particle motion in 

typical Mark V machines, it is clearly desirable to study _the motion in 

representative structure of this type by means of digital computation. 

Such a program not only would provide a useful check on the analytical 

results and provide information concerning structures for which the 

approximations which we have introduced are invalid, but can take 

account of the inherently non-linear character of the dynamical equa-

tions and provide accurate information concerning stability regions. 

Work directed toward these ends is listed below: 

(i) Exact differential equations governing the motion in the 

median plane have been prepared for use with the ILLIAC ("Ridge Runner" 

program). 

LJL.MURA.S 
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(ii) Relatively simple, approximate differential equations for 

the three-dimensional motion have been prepared, attempting to take 

account of the fact that x/w and y/w may be large (comparable with 

unity), but supposing that variables x andy themselves will be small 

("Feckless Five" program). 

(iii) More accurate, but_somewhat more elaborate, differential 

equations for the three-dimensional motion have also been set up by 

Vogt-Nilsen, based on recent vector-potential developments4 of E. S. 

Akeley ("Feckful Fiv~" prog~am).10 These computer programs are being 

directed toward a comprehensive study of the particle dynamics in Mark V 

machines, chiefly through the efforts of the Illinois group. 

In Appendices I and II to follow we outline the development of the 

equations listed as (i) and ·(ii) above. In Appendix III we describe 

some techniques which have been applied for obtaining information con

cerning solutions to the.Hill equation developed in Section IV of this 

report. In Appendix IV we make some numerical comparisons, in certain 

examples, between results obtained from the analytic theory and from the 

ILLIAC computer. As Appendix V we present a stability diagram computed 

from the analytic theory. 
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APPENDIX I 

EXACT DIFFERENTIAL EQUATIONS FOR MOTION IN THE MEDIAN PLANE 

For the accurate exploration of the character of particle motion in 

the median plane of the Mark V accelerator, and for aid in checking 

results obtained by other methods, exact differential equations govern-

ing this motion were prepared in a form suitable for ILLIAC computation. 

It is clear that this is possible, since the field -- and hence the 

nature of the forces -- is prescribed in the median plane. The resul-

tant program, has been termed the "Ridge Runner." 

For z identically zero, the equation of motion is 11 

+ 

With r = r1 (l+x), 

( 
X 

1 

{{t+x) 2 -t X 
11 ) + 

I+ 'I( 

p 
(H-x)B-a 

We let 
x' 

x'· (l+x) 
px 

Px or 

.Jot-)() 1. + ,-a. ~I - fl(~ )( 

and put 
k 

N8 N¢ + k (ro/rl) @B (r
1
jr ) rl pl ' 0 0 

to obtain the simultaneous first order differential equations 

p , 
X 
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x' 

[These equations are clearly in Hamiltonian form, since 

'Qx'/dx = - 0 px'loPx' the "Hamiltonian" being 

;e, 1""', I )(.( I+ )() B tJ. X r .t 

t- -f;- fo+ t)rf.,., {I+ f so, [ ~ .Lt (1+ )()- Nt/J ]} ax 

in which the second term represents the contribution - ~ ~ A from the 
p r 1 0 

vector potential.] For automatic digital computation, r
1 

may be taken 

so that p
1 

= p (for convenience). 
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APPENDIX II 

APPROXIMATE DIFFERENTIAL EQUATIONS OF·MOTION 

In the attempt to permit relatively simple exploration of three-

dimensional Mark V motion with the ILLIAC, relatively simple differen-

tial equations of 'motion have been formulated. The intention was to 

retain the dominant influence of the quantity xjw, which is not neces-

sarily small in comparison to unity, but to make approximations con-

sistent with the supposition that z and kx will be small in most cases 

of interest. The resulting program is termed the "Feckless Five". 

We employ the notation 

r - r
1 z 

X y -
rl rl 

0 tan -1 
[ (k+l)w) sec 6 

[ 
2 2 2 . ] 1/2 

. 1 - (k + k + 1 - N )w - ~2(k+l)wJ 

The field in the median plane is taken to be 

B 
zo 
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in which we regard the last term as a small correction. 

If the vector potential in the median plane is taken to have a 8-

component only, we employ the relation 

to obtain f+~ 

- ..L. (I+><:)Ae _:_ ( r+ x) -
fa 0 -t+;a. 

.A.)( 

or - ~ r. 
f t.V ~ c:ce (~ -"'e-1' S) 
sec~ 

-{s.ac l" X
1 

cor(NB+C) . 
- . 0 6...t' 

For developing the vector potential at points not necessarily in 

the median plane, we note 

divt A80 
. 

Nfw 

Nf X'l 

3e..f 

and apply the methods4 used previously in Section IIB to obtain 

- ~(H-x)Ae ~ Qt-lC)•tt..;. "'- ~?..·( i+X)4-t ..._l(-4-t) "b" (t-tx)~-" 
p, -1-t-'l 1.. '2. 4 . 

_ .[rv e.(l+•)~ (. cot(6- Nti)+~) CO£L. ~ c:os ~~ \ , 

s•<"~ · s.• .. (f; ""N8-t') s, ... ~ ~ .s., .. ts~ 1 
( ~-,)~ 

~ 
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.e. . -1'l Av = 0 (being of order wy2) . 

The equations of motion are now obtained by use of these vector 

potential components in.the Lagrangianll 

2 2 
• x' + y' e ( I 
= 1 + x + 2 (l+x) + p (l+x)A8 + y' A

2 
J (since we take Ar ' 0) 

or the Hamiltonian 

[ 

p 2 + (p - ~ A ) 
2

] 
-(l+x) 1 - x ~ p z : (l+x) A

8 

One thus obtains, if p
1 

is set equal to p: 

x' 

y' 

p , 
X 
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y 

where 

A 

25 

Nf w (k-l)x sin(~ _ NB + c) . 
py + sec5 Y e w u 

It is believed that solutions of these equations for certain cases, 

involving motion in the median plane only, have been in good agreement 

with solutions of the exact equations of the "Ridge Runner" program. 

More accurate, and more elaborate, differential equations for the three 

dimensional motion have been in preparation by N. Vogt-Nilsen,lO guided 

by E. S. Akeley's treatment4 of the vector potential. 
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APPENDIX III 

VARIATIONAL METHOD FOR DETERMINING STABILITY BOUNDARIES . 

AND CHARACTERISTIC EXPONENTS FOR THE HILL EQUATION 

By the change of variable NO = 2't", the Hill equation encountered 

in the body of this report may be put into the standard form: 

d
2
Y 

+ (A+ B cos 21r+ C cos 4~)Y 0 . 
d'tl 

Information relating the coefficients of this equation at the stability 

boundaries may be obtained conveniently by variational methods, since 

the equation then has a periodic solution. By considering the "isoper-

imetric" problem 

2 2 
Y' - (B cos 2't' + C cos 4'r)Y ] d "t" = 0 

.with A playing the role of the Lagrange multiplier, we arrive at the 

result 

A=-

'IT t 

[ ~ [ Y'- C s c.os 2. "t" + c eo~ 4-r) y 1
] oJ.-r 

!"It- ~ y lo(. 'L 
o· 

By use of trial solutions 

y 1 + 2P cos 2 r + 2q cos 4 t" + 
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or Y cos'Z'+ U cos 3't'+ Vcos S't'+ 

the expression to be minimized may be put into an algebraic form 

appropriate to the lr= 0 or cr= ~boundaries, respectively. This form 

is suited to rapid solution by a high-speed digital computerl2 -- by the 

minor modification of leaving the normalization of the trial functions 

unspecified, the same general technique may'be used to provide simul-

taneous homogeneous linear equations suitable for solution with a desk 

computer.l3 

With a bit more algebraic complexity similar methods may be applied 

to estimate the relation between the parameters of the differential 

equation and values of a- away from the stability boundaries. For this 

purpose one notes that on the basis of the Floquet theory, as Courant 

and Snyder have po,inted out, 14 solutions may be written in the "phase-

amplitude" form 

Y('L) w(t"') 

where, in the stable case, w(T) and 'f) ( 't'") are real periodic functions 

with the period (~) of the equation and L is a real constant equal to 

lr" 1~. One then considers the variational statement 

5 . { ~ [ w' 
2 

- (B cos 2"t + C cos 41:)w + (L+ "'I') 2w
2 d "'t" = 0 
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to obtain 

II- 1
1T ~ 

0 
f [ 41''- ( B Co$ .2-r' -t- C ~or li7')w"1" (L+ y.>')~"J e:I"C' 

I 'IT i IV ' cr(7;" 
• 

By use of trial functions 

w = 1 + 2P cos 2'1' + 2Q cos 4't" + ... , 

1'' 2R cos 2"t' + 2S cos 4't"+ ... ' 

the expression to be minimized again assumes an algebraic form which, by 

aid of high-speed computation, can give estimates of the value of A 

associated with specified values of B, C, and L = ~~~. 

The foregoing methods have been used in ILLIAC computations to pro-

vide tablesl5 giving the estimated values of A for values of the 

remaining parameters in the range 

L: 0 (0.1) 1.0 

" B: 0 (0.2) 5.0. 

C: -2.5 (0.5) 2.5 

together with the values found for the coefficients of the trial func-

tions. For convenient use, and because the estimates of A are some-

what inaccurate for values of L close to but less than unity, supple-

mentary graphsl6 have been prepared from these data giving (i) A vs. 

cosa for various values of B and C and (ii) A vs. B for various values 

of C and a 
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As has been remarked, the foregoing methods appear to suffer some-

what in regard to accuracy for values of L near but less than unity, 

although very close agreement with known values for the stability limits 

is found in those cases for which comparison can be made. It is 

believed that close to the = ~ limit the form assumed for the trial 

function which represents ll* is not favorable. It may, therefore, .be 

appropriate to mention a modificationl7 of the variational procedure 

which might be useful if more accurate results should be desired for 

other applications. In this modification the single trial function w is 

employed, use being made of the identity w
2 

(L+ "\> ') = K
2

, a constant. 

Specifically, 

~L - r:r 

or 

Since, as has been noted, 

A-
l ) ~ 

IV , - (B c.o~ 'Z. "t'"' +- c CO.J it r tJ" -#-

< ~'> 
( t. + qJ') '"'" • > J . 

"h-t ,., . ' 

we obtain the equivalent result 

[ 

( ev · > -< ( B cos 2 7:" + C cos it 't") w '> 
< LV"> 

For convenience one may make the change of variable 

2 
,v w 
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,t 

<~ ) 

30 

< {8 Co5 2'7:+ C c:o.S 'tT)"tf) 
' l . 

+ L . . n>. 
. ...,.,. ,, . 

These expressions are conveniently homogeneous of degre•e zero in their 

respective trial functions.. The trial functLons should be non-zero, 

continuous, have a continuous derivative, be periodic with the period 1r, 

and (in the case considered here) be even about 0 and 1rj2. By virtue of 

the property last mentioned, the averaging need then be taken only over 

the interval 0 to 7r/2. A limited number of hand-.computed exampled with 

simple trial functions indicate that this modified procedure will give 

good results, even for values of L near unity, although in practice 

some of the integrations associated with the averaging process may have 

to be performed numerically. 

If the trial function v is taken to be of the form 

v 1 + 2P
1 

.cos. 2-r'"+ 2P
2 

cos 4~ ... , 

we thus· obtain 

A 

In tabulating the results of a minimization procedure based on this 

method, it would be desirable to include the value of< 1/v), since ~n 

estimate of 1/(L + qJ ') 112
, which equals [I<~ ~l/2, is useful in judging 

the amplitude resulting from scattering and for determining the dis-

placement of ·the equilibrium orbit due to misalignments . 
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APPENDIX IV 

NUMERICAL COMPARISON WITH ILLIAC RESULTS 

In the table which follows we give comparisons between the results 

obtained for radial motion with the ILLIAC, using the exact equations of 

motion, and the corresponding values predicted by the equations of this 

report. 

The theoretical equations used for estimation of the fixed points 

are 

x'fixed 
----::o-__ N_f ___ ~ F 

N2 - (k + 1) xfixed 

For comparison with known results in one case, we take the predicted 

amplitude (about the fixed point) for the forced oscillation as 

f 

N
2 

- (k + 1) 

The phase shift,fJ , experienced by the small-amplitude radial 
u 

betatron oscillations in traversing one period is given by the smooth 

approximation as 

2n ..[k+l' 
lfu N 

For a more reliable estimate, we determine the coefficients A, B, and C 

in the standard Hill equation 
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d
2

u 
. --

2 
+ (A + B cos 2't' + C cos 4't')u 0 

ctt' 

using the relations 

A 

B 

c 
' 

and then interpolate a from the graphs mentioned in Appendix III. 
u 

As one measure of the extent to which one might expect in advance 

accurate results from the theory, we list the quantity 
2 

fjw , which 
N - (k+l) 

should be small in comparison to unity. 

It should also be mentioned that the examples given do not neces-

sarily represent practicable combinations of machine parameters, the 

first example being in fact axially unstable and others having possibly 

undesirably large values for tJ . 
u 
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COMPARISON WITH ILLIAC RESULTS 

Machine Parameters Fixed Points Forced Amplitude 

k' = f/w X A 
k k+1 f 1/w N Theor. Observed Theoretical Observed B 

N2-(k+1) x' c 

75 76 0.25 167 27 0.064 -0.000043 -0.00004 0.4097 0.6511 
-0.01034 -0.0104 0.2291 0.6511 0.6511 

0.0013 

75 76 0.25 1047 21 0.401 -0.000043 -0.00004 0.1291 0.6511 
-0.01034 -0.0108 1.4372 0.8211 0.7911 

Approx • 0.2879 
.... 
' 4000 0.416 -0.0000116 -0.0000144 0.000104 0.0000987 N 299 300 0.25 52 0.137 00 

I.C -0.00541 -0.00564 1.48 
0.307 

150 151 0.25 2094 31 0.430 -0.000023 -0.00004 0.1125 0.6611 
-0.0076 -0.0079 1.53 0.911! 0.8611 

Approx. 0.3287 
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APPENDIX V 

DIAGRAM OF STABILITY REGION 

The first stability region has beep plotted (Fig. 2) as a function 

of machine parameters on the. basis of the theory presented in this 

report and assisted by the graphsl6 describing the character of solu-

tions to the Hill equation. The basic variables are k/N2 and f/(wNl.J, 

for k >"> 1, and the computed results are expected to apply for small-

amplitude betatron oscillations most accurately when the ordinates are 

small in comparison to unity (say f
2 

< j}. A more accurate plot of 
wN 

this character could be prepared, if required, by use of ILLIAC solu-

tions of more accurate equations of motion. 
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PARTICLE MOTION 

IN .THE 

MARK V FFAG 

LJL(MURA)~5~ Sequel 
1 August· 1955 

[The foll·owing .material is intended to represent an abbre= 
viated presentation containing the essential elements of the 
material in Se.ctions II B & III A,B; C of LJ"L(MURA)-5 J 

Expansion of the Magnetic Field3 

We proce~d on the supposition that there is interest 

in examining the particle motion under conditions such that 

k.(.l.. , N2<~ 3 and .-!. ~ 1, 
w w w 

this last inequa~£ being consistent with the results to 

·be obtained if 2 <::... 1 and if attention is. confined 
wN 

to small=amplitude betatron os·cillations about the (non~ 

circular) equilibrium orbito 

The prescribed median= plane field may be expanded 

B : ~Pl ·[ltkxfk(k;l) x2J r ltf.· sin(x·=l/2 x2· =NG)l 
zo er1 . . L.: · w ~ 

- -~;l [ltkx/(k~1 ) x.:) ~tf x-1~2 . x2 
cosNG 

-J (1- ~~ ) sinNGJ 

:: -*
1 

{ [1- fsinNG] t [:< f- f< ~ c<>sNG -ksinNG~ X 
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August l~ 1955 

tk<:-ll rf< k;l/2 cosNG {2;2 - k(k;lj sinNGTI x1 
"';; _p l .r [i- f sinNI.lj t [ k t. { ( ! c osNI.l -ks inNG_]J X 

erll 

t -f [2
: cosNG t ~2 sinN~ x

2
]. 

The magnetic field components off the median plane may 

be written by aid of series expansions consistent with the 

vanishing of the curl and divergence (cylindrical coordinates) 

l Qf o LJL(MAC)=4, with 

~ :: 0 a ~ 0 

I< :i:: ~fsinNG 1 ~ = L[~cosNG -r.-1 sinNG 7 
(...~ 3 w · w2 :J 
~ ~ 0 c ~ 0 

n ~ =k + ft ; cosNQ + ksinNGlJ g 

Bz "' ~~11 [!. -{ sinN~ +[kf f(; cosNG ~ksinNG~ x 

t ...t;[ 2~ cosNG t-~ sinNGJ (x
2 

- y
2j 

Br ::-e:~f0tf~~ cosNG - ksinNG~ y f(-~cosiiG t ~2 sinNG)xyJ 

B = perl
1

{ N,CycosNG "f'o o ~~J and will be ignored sin-:e 1 t 
Q ~ ' can only interact with the 

velocity components xe or ye 
and does not contain+ in its. 
coefficiento 

For subsequent use we then take 9 to this order 9 
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(1 t x)
2 

B z :: [ -1\-f sinN:l t [-(kf2) f f (- f cosNQ 

er1 (1 

P1 

t (k t 2)s1nNG)J x t{f2! .cosNQ t- ~ sinN~(y2": x":l 

1 ,l -2k 
tx) Br := [ -kf {<=-;;- cosNQ 1"'ksinNG2_j Y= L ~cosNG 

t ~2 sinNj x:y 

The Equations of Motiong 

•2 y 

These equations of motion will be reasonably~well duplicated 

(if xn 2 and yn 2 <.<. 1 and if BG is ignored) by the differ= 

entia1 equations resulting from the Lagrangian 
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-·4= LJL{MURA) =5 Sequel 
1 August 1955 

and 

We thus find it possible to work with· a simple .Lagrangian or 

Hamiltonian system 9 selecting 

~ " : 1 f [lt fsinN~ x tll{ ~(kt2l tf ( -~ cosNG 

t (k t 2 )sinNG'iJ x2 t 1/2 [_ki f<;cosNG ~ksinN~ y2 

t -f e! cosNG f' ~2 sinN~ (3xy2 - x3)J , 

For convenience we shall select r 1 so that p1 ~ Po 

The Forced Motion8 

Because of the presence of a forced oscillation in the 

x-motion, we undertake to study the free oscillations by 

suppressing the forcing term through a suitable change of 

dependent variableo We select for this purpose the trans= 

formation 

X ;: 

a numerical integration in a particular case having suggested 

that the forced motion is close to sinusoidal; we shall~ in 

fact, find that of the three coefficient;; introduc>2d in this 

transformation, the coefficient K1 plays the dominant I'o1e o 

The Lagrangian then becomes effectively (dropping te~ms 
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which depend only on Q)g 

t(k~2)sinNG)J 

=5= LJL(MURA) =5 Sequel 
1 August 1955 

t terms of order uy2 and u3o 

The rorcing term extracted from this Lagrangian has the main 

Constant term8 

and 

Coeffo of cos NG~ 

in which we have neglected additional terms of second or 

higher order in the quanti ties K 
0 3K1 ~ K2 and which prove t,o 

be comparatively smallo 

For values of the machine paramete,rs lying in the range 

of interest, these Fourier components can be caused to vanish 
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by 

as 

sel·ecting 

followsg 

Kl 

Ko 

-6= LJL(MURA)=5 Sequel 
1 Augus't 1955 

the constants to have values given approximately 

f 
!: 

N2 - (k t 1) + ~ (:Z)2 
WN 

""'-J r - 0 -
N2 - (k t 1) ' 

.! k+2 _f_ 
Kl - ktl 2 

,....; -1/2(~ 2 - and is fairly small~ 

K2 is very small, being 9f the order 
r;:- _t k Kf "'=' k r 3 
~ 4 --; N2 = 4wN6 o 

The .forced motion is thus represented approximately byg 

£ =l/2 ( 1.. )2 r sinNG 9 X - 2 forced N N = (k t 1) 
Nf 

' £ 
cosNG~ xforced ~ 

N2 = (k t 1) 

and the "fixed evaluated at Q :;;: O~ are given by points en, 

& (_f_ )2 
0 _ .... Jif 1/2 xn = 

X ~ = ~ = 
fixed N ~ fixed N2 

Likewise, the amplitude of the forced motion 

imately by the magnitude of the coefficient 

6 

~· (k tl) 

is given approx= 
r 

= 0 

N2 = (k t 1) 

In closing this section it may be re-emphasized that the 

foregoing analysis will not be expe«:ted to apply unless / K1 : /vr;. 
f;w 

or ~ is small in comparison to unityo 
Jr2 ~ (k r 1) 
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Character of Small~Amplitude Betatron Oscillations3 

For small=amplitude oscillations about the equilibrium 

orbit, the governing differential equations will be of the 

form: 

u" t F
11

u :: o 

y" t F:/ = 0 

On the basis of the Lagrangian indicated previously ~ the 

spring factors which determine the frequencies of the free 

oscillations are respectively8 

Fu = k t 1 t f< ~ cosNG =(k t 2)sinNG) tf<s:-- cosNG 

f'.J:.. sinNQ) (K t K
1

sinNG f' K.cos NQ) 
w2 0 ~ 

r--J f' fKl 2 
:: k t 1-f w cos NQ t w2 sin NG 

fK f .;..·K 
::: [(k j"' l)t ll q.,- cos NG ~ ..::'....~ IZOS 2NG 

2w2 w 2vf2 
~ r(k t 1) =1/2 (f/w)

2 Jt_fcos ITQ 
L i2 =<k+l w 

( f /w)2 t 1/2 cos 2NQ 9 
N2 -(k t 1) 

Fy ~=k tf<=; cosNG r ksinNQ) =f<!f' cosNQ t.;2sinNG) 

(K0 tK1 sinNG t K2cos NG) 

A.; :f TKl 2 
~ =k = cosNG = ---- sin NG 

w 2 w 

:: [=k = fKl :J = 1. cos NQ 
2w2 w 

2NG 
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£ 
[-· k + 1/2 

( flw) 2 J = f cos NQ. - N2 - (k i-1) w 

1/2 
( f/w)2 

N2 ~<k rl) 
cos 2NG ~ 

in which we have rejected small out~of-phase termso 

These linearized equations representing small~amplitude 

betatron oscillations are seen to be of the Hill typee Some 

approximate tables have been constructed to aid in the 

solution of these differential equationsa As Kerst has 

pointed out, however, useful orientation is readily provided 

by application of the "smooth approximation91 technique intro~ 

duced by Symono If the nomally = small contributions from 

the cos 2NO terms are ignored and if k t 1 is neglected 

(for convenience ) in comparison to N2 , the smooth approxi-

mation leads to differential equations of the form 

u" t v2 u = 0 -u 
y" -t v2y :;: 0~ y 

where 
v2 0 1/2 ( t- )2 ( £_ )2 - k t 1 t 1/2 u wN WN 

= k + 1 

v2 £ 
= k t 1/2 ( -{) 2 + 1/2 ( _f )2 y w wN 

= ( t: )2 =ko = wN 

It is thus seen that the frequency of the frae r._gdial o.scill.fl:= 

tions is substantially determined by the exponent characterizing 
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the radial increase of average field-strength~ while axial 
f 

stability may be obtained concurrently if (-;N[) 2 is 

sufficiently large to dominate ~ ke The nature of the 

restoring forces~ and hence the magnitudes of the oscillation 

frequencies, when recognition is taken· of the scalloped 

equilibrium orbit, differ markedly from what would be expected 

from an expansion about a circular reference orbit with the 

effect of the forcing terms ignoredo 

LoJackson Laslett 

Iowas State College 
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1IURA-LJL ( 6) 

ADDENDUM - August 12, 1955 

The following calculated coordinates may be of use 

although a more accurate story would be given by a remaping 

based on ILLIAC solutions of more accurate equations of 

·""' motion. For large values of the orginate (values of f/wN~ 

near the top of the diagram ~ say 7 1/3)~ my theory may 

overestimate ~H a bit. 

2 
Values of k/N 

c::r-H 0 

f/wN2:o o 
0.1 0 

0.2 0 

0.2 7/ 

0.01 

0.007(?) 

Oo009 

0.3 -0.0006~) 0.0098 

0. 4 -0. 0009(?) 0 0 0086 

0~5 -o.oo60) Oo009 

<:::T"y 0 o.2 rr 

f/wN2=0 0 ~0.01 

0.1 Oo010 0 

0.2 Oo04o 0.030 

0.3 Oo09l Oo082 

0.4 Ool67 Oo159 

Oo5 Oo280 Oo269 

Oo04 

Oo038 

Oo038 

0.034 

0.,030 

Oo028 

Oo4 Tf 

-Oo04 

=0o028 

+Oo003 

Oo056 

Ool34 

Oo244 
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0.6 -rr 

Oo09 Oolb 

0.0875 Ool55 

Oo082 Ool35 

Oo072 Oo1145· 

Oo064 Oo094 

Oo054 0,079 

Oo6 Tr Oo8 -rr-

=0o09 =0ol6 

=0,0?8 ~Ool42 

Oo043 -Oo0}5 

+Oo018 -o o02~) 

OolOO +Oo06') 

Oo2lJ 0,1?9 

1 .. 0 71 

0 ?'-\ o-_, 

~J G 20 5 
. ,h.\ 0 - •''9 

0 .J... ""'. 

0 '1- p 
o.-..,j~ 

OollO 

Oo093 

lo0-rr-
-·--...c-.> 

~::> .. 25 
c ., 9'.' = ;oJ. \::· 

.... '") -('"'I 

-L1 o . .l.~) 

-Oo049 

+Oo \)'+~) 

() 0 ~.L6~ 
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REMARKS ON THE INVARIANT QUADRATIC FORMS PERTAINING TO 

MOTION CHARACTERIZED BY A LINEAR DIFFERENTIAL EQUATION WITH 

PERIODIC COEFFICIENT 

L. Jackson LasLett+ 

November 21, 1956 -

ABSTRACT~ The nature and interpretation of the invariant 

quadratic forms are reviewed and means for determin-

ing the coefficients are outlined. Computation of 

such quadratic forms can be helpful in following 

the secular growth of "amplitude" in certain 

cases involving coupling resonances. 
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( 2) 

1. The solutions of the linear equation (forced motion absent) 

X 
11 

+ F ( 9 ) X = 0 ' 

with F(B) periodic with period T, may be conveniently expressed 

(7() . (A B)(;t 
-;;r' e .... r = ( G I) · x'l. 

M!...:RA-206 

Here A9 B9 C, D are periodic functions of 8 (period T) such that 

J ~ ~I= 1 (constancy of the Wronskin) 

dA = BF + c dB = D - A de ~ 

dC = (D -· A)F dO = -(BF + C) (Appendix A) d"e d9 

l/2 Trace - 1/2 (A+ D) = coso- , an invariant. 

2. ~he qu.C~nt1ty 

.1. 

2 = ·Cx '2 + (A ~ D) -;;( X 
1 

+ B x 1 2 

constitute~ ~n 1nvariant of the motion. (Appendix B) 

ir par~~ru,ar it is of interest to construct from this the two 

qu,.,r.i1fies 
/' _,_, A-lJ I 8 x'' 

x~ + ;r X- + .. 
-. -. -,..,....- ,.2..!' J ,. .... (. ,,_ cr- ) 
,...~.,. v 
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( 3 ) 

=md 

at homologous 

points a 
2 

The f:J..rs-t of t-hese gi·Jes the in•ariani R which is 14f times 

the are': of the ellipse described by "the phase-c,point (x 9 x 1
) 

plaited a1 homologous points; the second gives the quantity K 

represeniing the maximum displacement for the particular set of 

homologous points chosen. 

3a wr_;_•ing 

R
2 

- ax. 2 + ~ xx
1 

+ ......c. x' .,.,., 

and 
2 

=.f 
2 

+ p/xx
1 +J /Y 

K X X 

ihe coefficients may be. expressed in terms 

the e~lipse descrlbed by the phase-point 

IA.opend.h C)·: 

-j 

(. = 

.. c 

of the parameters of 
I 

X 9 ..X = y) 

z/=1 

w~·· h 

m _, :cr 

root selected to be positive if the 
c!:-rrrtl, T ~ quadrants 9 and converselya 

1-307 
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! ~ ". £' 40 ALternatively? of course 9 the coefficients a~b,c; '/ './ 

may be computed from the matrix elements A~B,C,D by aid of 

two one-sector runs between successive homologous points of the 

i.ype of interest. 
I 

Thus, most simply 9 if a run is commenced with y = 0, 

A = 

c = 
and a run commenced with y = 0, 

(If F(fJ) 

A = D = cos ~ 

B = Yt /'jo' 

D = y,~: • 
possesses ~mm~_tr.y 

~:;. 
& C - ~ - - :8 -

about the reference point, 

The matrix elements and cos cr-

may then be obtained, if desired, through the use of formulas 

pertaining to two runs each of length T/2.) 

5. The square root of a quadratic form, such as R, may be evaluated 

by a convenient construction: 
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(5) 

Choose/<-, );.. 
( :C?. =- 4:. l _.:;. e 'J .-G, = ...c3 _;-:;;;-; · 

6.-<..3;~,) ~ A:. J ,._ ...c. :L : ...-c 3 .;:;:- .. 
J 

,.-·~ ....-c., .......c.2.. 
=~ ,t ~ 

.X . ~·,;l'lr ex -
~--~-- a:: - 0< I~ .-c.. -c. .:t ..J • 

3 

1-309 



(6) MURA-206 

APPENDIX A -- Proof of the differential relations for A, B, C, D: 

To first 6rder we e~pand 
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( 7 ) 

APPENDiX B ~ · Proof of the in variance of I: 
2 

Differentiation of the ~xpression given for I leads to· 

di ~: - .::;.. C ;x :::t' -i- (;1-.lJ Yx i ,._. +- ·x :A ;}-r· :.i.: 8 .Y ''X II 

d ~ - c 'x.;_ r a:_ D 1) _z:. ..7'C- I -+ If,/;';..--

The terms (A - D) x 
1 2 

and B / :;..c; / J.-- canceJ by virtue of the 

rei~n ion B 
1 = D - A. Employing the relation xI/=: - FX 9 • 

d r~ (- 1 I ) / 1- I f: :-.)) !2 do= -.2G+d- b- ~tJ=' x;x _-LC r~r/J-:1/ ~ 

which ~·anishes by virtue of the reJ.ation 

/ . . I 

_.--7 = ~ D = B != + C 

C '=: (P-ll) ,:-, 
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2 2 
APPENDIX C -· The interpret~tion of R and K : 

2 ;( tflc~.;( . 

2 The quantity K is .o f(''L and hence is invariant for any 
I o 

par-r.icu.Lar set of homologous points. 

J( m,_,; occurs w /; e" f' = - -<' ~- l( 

r- = (]- ~"'; )y:.'t/ : "'~~x 
3o "':he mc-.:x:imum amplitude at ~ point along a gi'ien orbit may be 

expressed in terms of K at some reference point 9 or in terms of 

, .. /(/-u{ 
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MIDWESTERN UNIVERSITIES RESEARCH ASSOCIATION* 

ABSTRACT: 

CONCERNING THE y-GROWTH PHENOMENON 

EXHIBITED BY ALGEBRAIC TRANSFORMATIONS 

L. Jackson Laslett** 

March 11, 1957 

Hamiltonian algebraic transformations which can 

lead to extensive exponential y-growth are discussed 

in regard to the threshold for y-growth. Computational 

examples are given. 

Contents 

l. Motivation 

2. Statement of the Algebraic Transformation 

3. Analysis Concerning the Onset of y-growth 

A. Method 
B. Solution for Threshold by Use of Differential 

Equation 
C. Threshold of Difference Equation 
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7. Computational Example 
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1. Motivation: 

MURA-246 
Internal 

As is well known, non-linear c6uplin~ between the radial and 

axial motion in particle ac6eler~tors can lead to e~~ensive ex-

ponential growth of the axial·Oscillations. They-growth appears to 

be more rapid the further the x-~mplitude is above a critical 

threshold value and the threshold becomes zero as a resonant relation 

between the radial and axial frequencies is approached. The amplitudes 

resulting from y-growth may differ sufficiently fr~m those prevail-

ing originally that instability is soon seen to develop, but in other 

cases the y-growth is found to "turn-over" and stability, for at least 

a limited interval of time, appears indicated. 

Certain aspects of these phenomena have been studied both 

analytically and computationally. The computations may be based 

either on differential equations which represent closely those which 

govern particle motion in an actual accelerator or they may employ 

idealized differential ~quations whith, it is' supposed, contain 

the essential significant feattir~~ of the eiact equations. In 

either case, however, the computational time required for the 

integration of any particular problem is sufficiently great as 

normally to preclude carrying a single computation beyond a few 

hundred "sectors"-- i.e., through perhaps 100 oscillations. 

It appears noteworthy that the y-growth and turn-over found 

by integration of differential equations for an AG (alternating

gradient) accelerator may be replicated fairly closely by a suitable 

non-AG problem and that, in the latter case, ·the particle does not 

appear to enter during the computation all regions of phase-space 

which are energetically available to it. Since some of the particles 
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which the computations thus indicate as "stable", in the equivalent 

non-AG structure under consideration, have sufficient energy to 

become unstable by traversal of a pass in the potential-energy surface, 

there is some interest in the ultimate fate of such particles~ 

Because of the interest in more extended computations, atten-

tion is directed to the use of algebraic transformations, which may 

be performed with a speed perhaps two orders of magnitude greater 

than typical for solution of differential equations. Although a 

close equivalence between the differential equations and some specific 

transformation may be difficult to establish definit~ely, it appears 

possible to find transformations which describe well the general 

features of the solutions found computationally for the differential 

equations of interest. 

We consider in this report a particular type of algebraic 

transformations which may be representative of motion influenced 

by the a-x= 2a-y resonance. The scaling features and threshold 

for y-growth are discussed. Examples of computations through 1200 

sectors, performed by the ALGYTEE program are also given. 

2. Statement of the Algebraic Transformation Und~r Consideration: 

We consider here a transformation in which the coupling is 

provided by the addition of y2 terms to the equations for x, !'x 

and by the addition of xy terms to the equations for y, ? y: 

7f,. = 4.;r 71"--1 -1-_t;r -t'.r >1-1 r(;,/;z )(J-,,Jk-'j) lj-n~l 
fo..._ =- ,c_" ---',._-I+~ -t'".,_, .,_ (;. I~)(.Jx/-"~ )~ :_, 

'ln. =- a; Jn-1 +? -1',,_, -1- :1 ?(/) -1 y n -/ 
-ftn '..c,J -'/n-1 +' -fJ,_, + /t {J~ /J;)-;r,_, }(IJ-1 
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.<:..~ JJ( .-G-y. J~ 
coupling terms selected to have coefficients which depend on a 

single parameter ~ to insure that- the transformation be Hamil

tonian* (as adjudged from the bracket expressions). 

If, for simplicity, we wish the diagonal members of the 

linear part of the x,~~x transformation to be equal and likewise 

for the y,...JJ transformation (corresponding to the situation in , -ry 

which the amplitude functions for the associated Floquet solutions 

are stationary at the point of reference), we may put 

and (2) 

( 3) 

r 

* The equations actually iterated on the computer in ALGYTEE runs 
10-18 were strictly not Hamiltonian, but would become so by a 
trivial (non-canonical) transformation such ~ha~ they and f'v 
values employed by the computer be each mult1pl1ed by the scale 
factor -.j: A to obtain the corresponding canonical quantities. 

':<.. ~ _,.c--1- . . 
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This transformation is seen to be of the same form as (1) 

now playing the role of ~ ), with symmetry in the 

diagonal elements of the linear portion. By suitably choosing 

do... x and 0-, Y' the off-diagonal elements may also be made equal 

save for sign specifically, identifying(l/2Xax + 

and (l/2X ay + dy) = cos 'X' , we choose 

(4) 

This conveniently simple form for the transformation is thus seen 

to be inherently as general as the original form (1) and will serve 

as the basis of the analysis to follow. 

3. Analysis Concerning the Onset of Y-Growth: 

A. Method: 

If we direct our attention to cases in which the axial-ampli

tude is initially very small, we may analyze the transformation 

equations in the spirit of Walkinshaw. The Y~terms are accordingly 

ignored in the recursion relations for the radial motion, whereupon 

the radial motion becomes represented by linear difference equations 

whose solution may be entered as a prescribed function of n into the 

axial equations. It is recognized, of course, that this proc~dure 

destroys the Hamiltonian form of the equations treated and precludes 

drawing in this way any inferences concerning the eventual character 
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Proceeding to ignore the Y ~term in the I and 1!t; equations, 

the solution for the radial motion becomes 

Xn=-~n~)Io + ~ -nv) £o • 
This solution, when inserted into the remaining (axial) equations, 

then gives · 

r;; ~ { Cq..- 7'f T ;;, ll (4-v ( ,_,) .., )X- + (,.,;,. r n -1)..,) Pr. ;J) t;, -t ~ ~) f'y,_, 

J?n "- [-,.,;,.. 71+ A~~ /1fHJ(n-1)-v)X • T-~ fn-1 }v )1i: J)Y,_tr;... 7f )Pfn_,J 
which, it may be noted, is a transformation with determinant unity. 

The two equations just written may, for the present purposes, be 

conveniently replaced by a second-order recursion relation involving 

only the quanti ties Yi : 
Y;;.,- {?..~ -k)-1- A 1 fl~ n-vlz

0 
+(a;,. n-v)lX.ol} Y,; + ~-I= O. 

Since th~ expression within the square brackets may be interpreted 

as the radial displacement, it is natural to replace it by A cos ~v+G), 

in which A represents the amplitude of the (prescribed) radial 

motion and in which the phase-shift € may be ignored for reasons 

of convenience. We accordingly direct our attention to the equation 

~+'- !?-~1( + ~lt~n--v]Yn t- Vn- 1 = tJ. 

B. Solution for Threshold by Use of Corresponding Differential 
Equation~ 

It is informative to note that, if 1\' and A'A are taken as 

small, the equation just obtained at the end 6f the preceding sub

section may be nicely approximated by a Mathieu differential 

equation of a type similar to that encountered in other treatments 

of y-growth. We note that 
d~Y v v 

- \/ - 2 lrl + 'YJ -J ~ 1 r1+1 
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J :z y 
dn ~ 

cJ:ly 
dn~ 

or, with vn~ 

d~Y 

Jr').. 

I 

+ {?. (;-~1f)- 'A A~ 11J y J:. 0 

+ [-K:L- //)~-vn) y =- 0 

~'C, 

._[(~/'-
~ 

~ :J z:JY= tJ. 
J//1 fi 
v~ 
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The stability boundaries pertinent to the crx = 2cry resonance 

( -r/ = 2 It) are then, for 4 )\~ A/v 2 small, of course given approxi-

mately by 

or 

In terms of the quantities involved 1n our original transformation 

( 1) ' 

amplitude of x = A/~x 

= :l4 :/ / v~- (a~)~; 

C. Threshold of Difference Equations: 

It would be a more consistant procedure to derive directly 

the stability limits for the difference equations, without' recourse 

to any allegedly-similar differential equation. It appears that this 

may be done by a variational method which closely parallels the method 

. whereby we have elsewhere estimated stability limits for diverse 

Hill equations. 

We imagine that ~ is commensurate with the interval covered 

by the transformation, in that a whole number of radial oscillations 
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will fit into some whole number of transformation intervals. For 

convenience, then, we write 

-1.,; = m (:z_ '1Y), w;-/:h 1' n, in le.'je ~ ~ (i, ev~n). 
By employing the concept that periodic solutions of the difference 

equations correspond to stability boundaries, we then consider 

~~,-£;l.~-x+A;A(~-i.2;~)]'4 + yi_,--o 
with 'G -r-p - Yj . 
(Solutions conforming to the aforementioned boundary condition are 

thus periodic in the interval An -= ?'.) 
The recursion equations written above are those which formally 

The connection between I'\ , v and A at the stability boundaries 

can then be sought by the introduction of suitable trial solutions 

into i). For the purpose of this report it may be sufficient to 

consider, in turn, the simple forms 

v 12 ~ · --trm 
T-j-::.. PI ) ? 

* A rigorous development of this method might better regard the 
"minimization'' as causing a sum to be stationary subject to an 
auxiliary (isoperimetric) condition. The use of a Lagrange 
multiplier should then result in the equations with which we 
are concerned here. 
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which represent the dominant terms of solutions appropriate in the 

neighborhood of the ~x = 2~y resonance. 

With the first of these trial solutions, $ becomes given by 

(Y,)S~[t ~ 7 -{: ~ ~-f )j~J~~ 
and is "stationary" (for B;~ 0) when 

A-~ L~ ~ --~-xJ; 
~ ~ 

similarly, with the second trial solution, 

and 

to be 

or 

(/1') ~ ~ p;. ~ ~ -lf ~ '!!; -f A/1} C, 2 

...:L- r '7r rn J II= ~I L~ 7(-~ f . 

Recalling that ~~If = v/2, we thus find the stability boundaries 

approximately located at 

!l . fr 1~7'\ -.4kvfVh)/ 
"'-f-r / ~ :~. (v/'! )- __ .,_, P--(1'( k) /J 

A -

= _§__ ~~ ~ (,;Itt)-~ :J_( "J( /:z)/_ • 
amplitude of ?( ~ 

With n small one notes that this result for the threshold 

reduces to that obtained from consideration of a differential equa-

tion (cited at the end of sub-section B): 

amplitude of 7 f5 
2

1>, j -u~- ~ /() :;_/, 

* In terms of the quanti ties cos 7/ and cos ~ most directly available 
from the original transformation, this result may be written 
perhaps most conveniently for calculation as 

amplitude of x ~ -{- / /' +-~..1 _ ~ '?( /. 

1-321 



4. Estimate of Lapse-Rate~ 

MURA-246 
Internal 

An estimate for the lapse-rate to be expected when the initial 

radial amplitude is above threshold may be readily obtained by 

reference to the differential equatlon cited in Section 38. 'The 

general procedure for obtaining such-an estimate has been outlined by 

McLachlan [''Theory and Application of Mathieu Functions" ( Claredon 

Press, Oxford, 1947), Sects. 4.90- 4.91~ and has been applied in 

previous discussions of y-growth. 

In this way the lapse-rate associated with the Mathieu equation 

cited is found to be 

("A '/ v :l_) i ,4 :t_ A~"~; nepers per unit increment of --z:: , 

or 
I 

-:;"" -/,4 ~- A ·~n~. nepers per iteration. 

In terms of the amplitude "a" for our initial variable "x", the 

corresponding lapse-rate is 

or 

nepers per iteration 

0 . .21115 ('A /11) ~':.a:z,1 decades per iteration. 
~" ,., 

A procedure parallel to that outlined by McLachlan, if applied 

to the difference equations, suggests a lapse rate which, when 

small, is 

f~(7)/~ ~..t-Gt~~v-. nepers per iteration 

or 
). - -

o./ p! 5 '7 ~ (v /..z)-}a '2....aJh~: decades per iteration. 

This formula, which for v small reduces to the result found for the 

differential equation, is presumably preferable for predicting the 

lapse-rate developed by the transformation. 
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A ...)a 'l.- a~~~~~ 
Lapse-Rate ::. -;;- --;:======-

' -1.-t ('-~· -v) 
= O,I535S ~ .f«-2.,-~ii,-r. 

nepers per iteration 

decades per iteration. 

y 1-~~ 
5. Generating Function: 

The transformation (4) may be written 

X, -=-~-v)Xn-1 -t-~ v) 7i_ n 1l, 

~n-1 ~ (;:&.,_ -·)Xn-1 + ~-vfP_x.,- C,'/~)(~ -r) Y;,_, 
~ = ~~) Yn-t +(~ ~JtJyn 
rc " ( kv '?!) '(,_, + ~ .,,,) -.Py" -/, f.Cd<:- '1() Xn-1 Y~-1. 

Yn-1 

These relations may be derived from a generating function 

w(&:n) ~'tnj Zn-IJ Yn-) 
==- f {A-n -v)Xn~l + /<u~ v)X/J-1 "&;, -f~ ~ -r/ )7in ~ 

2 
- (/l ~)~ ~ )~-/ y;_, 

+{. ~tv ';~() 'fn~ +-~ *) /';;-I .7}n ~ ~ ~-K-- ~ )7yn ~ 

r;: =- ); w /)7yY) 

P'fn_,:= JWj) Yn-1 • 

It is possible that this generating function will be found 

of use in the further application of dynamical theory to trans

formations reduceable to the form represented by equations (4). 

6. The Inverse Transformation: 

The inverse of transformation (4) is found to be 

Xn-1 == (~'f/J.:Zn- (~v} ~ 
II 
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""Pzn-l ~ {~<~n-v)In +- ~-v)t;, -(~~~~~~)[f~;t)~-(~~)tyy,] 

'fn-1 ::. ~ ~) Yt)-~ -x) fyn 

frn -1 ~ ~ ~) Yn + ~ *) Py¥1 

-t(.c.c. '1()/J~ v)X0 -~"- tJ) Pxn}tecv 1() 'fn-(..;.-t~) Py,} 

As with the forward transformation, this inverse transformation is 

again a rational algebraic transformation of degree not exceeding 

two. It would appear that transformations of this degree could 

be synthesized so that a closer s1milarity of form would obtain 

between the direct and inverse forms. 

7. Computational Example: 

A. Discussion: 

A transformation equivalent in form to (4) has been run on 

the I.B.M.-704 computer by aid of the ALGYTEE program. Denoting the 

variables employed by the computer as/, I; , y , and ~ , 

the equat1ons directly iterated (Runs 10-18) were 

~ ;;;: -. J;;._ R 1- I + /. 7 ~'/ ~ -r- , II 9 3 '17i f ~I?-~ 
I? /II ''1-1 

~ 

c:/~~ --~~~~ _,ooC&R&~R~_ 1 -#, = - • :::;/ (p IIJ -I I ;J, -1 

+., ~ . 7'1 -4;,_, -1- 2. ,/,(} lh_, +. '78 ,.:_, --fr/1 -1 

-J:) :. - .. 17'/ +n-1 -f- .. 77' ~ -1-. 22 cZ4.1 ~-1. 
I Tn n-1 

These equations may be put into the form (1) [see footnote, 

section 2} by the substitution (change of scale) 

f}= -x1· ~· = /1'//~ iS-2. Y 
~ . :. ~ l¥j =- t :JJ. I.;. v: s- 2 7; 

to become of the Hamiltonian form: ~ 
~n =- -.1~8 ?<'IJ-1 -1-/. 7 ~Y ~~ ,_ 1 -f • :<.6/J, ~h-I 

-jJ~ = -. 5~ L/ ?(I'J ... I-., /~! -r~n-l - . 0 192 j 2-n -I 
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From the results of Section 3C we expect the threshold x-

an:plitude for this problem to be 

a,thr. =- ~.~1 (;. '1¥--/ t?. '13;_] 
= 0-¥1 . 

The computational results to be reported suggest 

for this transformation, affording what may be regarded as a 

satisfactory check of the theory. (The approximate theoretical 

result, obtained from a differential equation in the limiting 

case of small ~ , is e(thr-. = (). 'f55 , in somewhat poorer agreement 

with the computational result.) 

Likewise, for the lapse-rate, the results at the end of 

Section 4 suggest 
o. JS3SS .>t 0. ttg _( 
y ~.8 7 ,2, ,a :J.._tttiJ r. ~ decades per iteration 

or decades per iteration 

(to employ the computational result for the threshold amplitude). 

We tabulate below the lapse-rates calculated from this last formula 

and the corresponding values observed from the computations. It 

may be noted that the form of the theoretical equation suggests 

that the sguare of the lapse-rate will grow linearly with a2 , for 

values of a ~ atAr. , a prediction which appears to be substantiated 

by the computations. The theoretical and computational results for 

d(~~)/da2 are, respectively, Oa016 and 0.014 (decades/iteration)
2

. 
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7-o /7() ... dihr-.1 
La~se-Rate (decades _per iteration) 

Calc. from Theory From IBM Computations 

-0.4 0.01 0.012 0.0116 

-0.6 0.21 0.059 0.055 

-0.8 0.41 0.09 0.084 

-1.0 0.61 0.12 0.11 

B. Method: 

The computer printed jJ , ~ , /p , and /r after 16, 17, 

18, 19, and 20 iterations, after 36, 37, 38, 39, and 40 iterations, 

etc. through 1200 iterations for each of 9 runs. In each run, 

--+o = 1.0 X 10-4 , ~ = 0, and f-4: = 0. The initial values of 

/ for the several runs were -Ool, -0.2, -0.3, -0.4, -0.6, -0.8, 

-1.0, -1.2, and -lo4. An artificial limit of 64.0 was imposed on 

all quantities. As shown on the accompanying semi-logarithmic plot, 

the first three runs showed no evidence of~ -growth, the next two 

grew exponentially for three or four decades and then ''turned over" 

to perform apparently stable oscillations of ~-amplitude, while the 

remaining four runs appeared unstable. In constructing the plot, 

the amplitude was estimated simply as the maximum ~ appearing in 
I 

each group of five consecutive printed iterations. 

Graphs depicting the lapse-rate, as obtained from the afore-

mentioned plot, are also shown. 
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CORRECTION - To MU-RA-246 (Int.) 

"CONCERNING THEy-GROWTH PHENOMENON 

EXHIBITED BY ALGEBRAIC TRANSFORMATIONS" 

1. We have detected a slight numerical error in the calculations to an example given 

in Section 7A of MURA-246 (Int.). On p. 13, the expected lapse-rate should read 

0. 15355 x 0. 78 / a2 _ a2 
thr. 

VL 128 
decades per iteration 

or 0. 11277 -vfa2 - 0. 1505 decades per iteration when the computational result 

for the threshold amplitude is employed. 

2. The theoretical and computational results for d{f 2)/d(a2) accordingly are 

0. 013 and 0. 014 (decades/iteration)2, respectively. 

3. The table on p. 14 should read 

.%0 I xo- a.tl,r.\ 
Calc. 

Lapse-Rate (decades per iteration) 
from Theory From IBM Computations 

- 0. 4 0. 01 0. 011 0. 0116 

- 0. 6 0. 21 0,052 0.055 

- 0. 8 0. 41 II 0.079 0.084 
! i 

- 1. 0 0. 61 l 0.104 0. 11 

i I 
4. Similar results, giving a computational value of d(p 2) / d(a 2) just slightly greater 

than the theoretical value, have also been obtained in subsequent computations with 

a similar transformation for which cos1) = -0.125, cosl(= 0. 75, andA = 1. 
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THE ALGEBRAIC TRANSFORMATIONS OF MURA- 246 (Int.) 

L. Jackson Laslett** 

March 18, 1957 

ABSTRACT: 

It is shown that the algebraic transformations of 

MURA- 246 (Int. ) may be written in a form which 

more directly shows symmetry between the form 

of the forward and inverse transformation. 

* Supported by Contract AEC #AT (11-1)-384 
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1. In MURA- 246 (Int.) the writer introduced and discussed second· degree algebraic 

transformations, capable of exhibiting y-growth, which were evidently able to 

represent certain features of the differential equations previously used to represent 

particle motion in FFAG accelerators. In Section 6 of that report the inverse trans-

formation was presented and it was noted to be of a form superficially somewhat 

different from the original forward transformation. It is the purpose of the present 

note to indicate that this disparity of form is more apparent than real. 

2. A simple change of variables given by a linear transformation of the form 
'7:) • 

Ui { C¢-J 4) A J + ( ~ 4) I :Z:.j 

/JAj -~,4) z.; -r r~~J ~i 
v;;· ( ~ ~) Yu· -r- ~~( o) ?yi 

fv-;· = - (.-4u-< a) t;· + { C-b-:1 Q) t;-J. 
when introduced.Jinto transformation (4) of MURA-246 (Int.), converts the latter 

into 

( C.H -r-)Pn-; -1- {~t-~ 1 r)jAn-; 

+ r ~~:fr:·;?) f!C*I ?!) v;,_, -~ ~~v;,-J 2 

-~ r)/An_, T ( Qr.; v-) ~,_ 1 
-f- J_l 0rd {r rrJJ!(uN :~)-r;:.; 

2 ~ .... x Lc 
- (CA-d 7\)7!t -I -t- (.44-.~ k)~ -I 

t- ~ '~:!:k: ~) fer~fu.-,-~~/1-.)fj<b<i)V::.-;-(<'~~fv; 

__ ~ -K)1/;.., + (cwK) Jr.,., 
-f ,\ ' C-H _i~ II)BCbl~)u"_,- ~;J)fi~-}{!CM0Y;.,-~ ~fil-~ 

- 2 -
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and the inverse transformation becomes 

U11 .1 = {eN -vw)u~,- (~ 7!)fpJ<- ~ ';::{CH(kr7S)Yn -~t{kt<r)f-vn}l-
/JA;.., = (~ -vJun +(CN -v-} /i A _ ~' ~~ [eri(1o-?S)r;, -A~ (f(t o) f1/:j 2 

Y:,- 1 = ( CH k) 1/h -~ K}lrr;,_ . -
- A'~~ [ ~(v-;-!1) uh-~(rt4}!u;/[C<rt(k.,~)v;. -s-~cx-ro) lv-0 

~'K . 

~11;; ::. ~ ~~ "f- ( CH ~)P-tJ;f 
- >-:.:::.;. r~rtr, 1~. _ fo.(-v-~ ~~<JJ p.t0-1o) ~ -~ U,[K , .. )1"' .J 

3. We accordingly may emphasis the symmetry between direct and inverse trans-

formations of the type under consideration by choosing/.:: -~ and (f = _ ~:.Z . 

One than obtains 

a J1 == ( (kl -v-)u ~,_, +- ~~ v) fu J-<-' 

1- (/Yz.)0~· ~)[!~ */:.)1!;;_, +-(A~ ~)f11i. ·I] 2. 

fu 
11 

=- -~ v-) u ji ·' + (CA-t v-)/tt J-.- 1 

-f- (/1z )((;oTt V/.2) [j ~ ~) -z/; -I -f (~ -kj:J.) fv-;_ · I] ~ 
-v; = (C<H'k)v;., +-~kj~rz_, . -

+_/( ~ KJ•l!~ o/t_) U, _, -t{fo 1J7,;_ )ju., -J fGH tr/:_)-vi:-d~"'- k!:)~] 

(v; = -~ Kjv;,., -t-{un'k)/v-~., . J 
~ _/< (eM tt;.~.Jf~ '0.)"1. j (~ -v;t>)~. _J (!c.- Kj .t) 1/i, _, -t(A ... trp)fr.. ' 

and 

fA,.,-, = ( CtH 1r) U,., - {!.u... tr)P.u,., z. 

+{%)~ -ti/z}[{~x;~-v;. -(~ ~JJ:4rJ 

f.(/;.- I ::: ( ~ 1,U A + ( ~ r-} Ia "'-
-{"A.)( c-Ylz. ){! c- k,6)~ -~ Kj.l) /-v;,] " 
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~ ~ t(I.Yjj CA-d ~)P.,-~ ->f.) /'-P A 111 (Ad J(j:'-) 1IA - ft,;_, k/:>.) I~] 

I 11;-J = ~ iJ-v;; + f (j-d ~); V;, 

-~ (t#J !(j~[{ CAH ~)41t -~ rft)Jit'JflC# 1Y2)~ -~ fr/J.)f't~;.] 

M/f ~ = A/{~;~) 
It is evident that, in this form, the inverse transformation differs from the direct 

only by a reversal of sign of -J , 1< , and ~ 

4. It is perhaps worth noting that, according to the foregoing transformation, 

and 

( ce;r kj;) -p; . 1 f ~ 1</~ j3v;_
1 

- ( CN ;f/'-) tJ; - (A~ 7(j~) ftr;r . 
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MIDWESTERN UNIVERSITIES RESEARCH ASSOCIATION+ 
2203 University Avenue - Madison, Wisconsin 

STABILITY LIMIT IN SPIRAL SECTOR STRUCTURES NEAR 

L. J. Laslett* and A. M. Sessler** 

March 18, 1957 

Renewed interest in the ''handy formulas", stimulated by the possibility of applying 

them to the study of imperfection resonances, may make the following simple derivation 

of a stability limit near ~ = ). 'ii of general interest. 
~ 

We start with the equation describing motion about the forced orbit in a spiral sector 

accelerator, I' . 2 ..L .£1 6xl ;VB, .i 

,, {.~ /z P f!.IH AI f) ]h = ~ Y z. ,./'~ N ~ t- 6 t.J3 ~ 
A + L~~-;-:;.u;~N2. + J£; r ~ w 

where only the dominant terms have been retained. 1 

In the neighborhood of {j~ : ;2 7T' we may keep only the resonant terms, or: 
~ 

I /j A/ .3 = 6 ~J &>-d/V~ 
where is the x-tune, and approximately: 

)11-
2 = J -t I 

A trial function is now employed and solution is obtained by the method of harmonic 

balance. 

Let 
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Thus if 

by harmonic balance: 

(v-,/- 11;-') IJ ~ ( ~e r ~ 
( ~ Z _ -rtL) > 0 ~ = () 

( )/; ~- .i:!..L\ < 0 E :: '1L 
1- /6 ) - ;;.. 
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-.1 - !h.. /6 ~ ;. 
and in either case. /_f} 2. _ 1 2. _ N ~~ I 

fitAJ ~ ;; = v T 1/1. li 
!6 

.L 

l/2 
I 

It might be remarked that this method is the very sarne as that used previously 

to obtain the stability limit near 

This result is, of course, the same as that obtained by Parzen by his more 

sophisticated techniques. 3 

2 
L. J. Laslett and A. M. Sessler, MURA Notes, 6/1/ fi:J. 

3 ' 
G. Par zen, Non- Linear Resonances in Alternating Gradient Accelerators, MURA-ZCO 
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APPROXIMATE SOLUTIONS TO THE MATHIEU EQUATION 

L. Jackson Laslett* and A. M. Sessler** 

April 10, 1957 

ABSTRACT: Floquet solutions and the coefficients of a trigonometric 

series representing such solutions were obtained com-

putationally for the Mathieu equation 

t''..;,..(li+B~~t.)t/=0 
for representative cases with B =, 1. 5 or 1. 0 and 

0 ( (J <'if· Algebraic formulas, in good agreement 

with the computational results, are given for the important 

coefficients in the series expansion. 
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I. INTRODUCTION 
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For analytic work concerning the motion of particles in a cyclic accelerator, 

as in the study of imperfections when 2 -rJ has values near an integer, solutions to 

the Mathieu equation may be required which remain accurate when u is near <TC . 

Results which appear to describe such solutions adequately are presented here, 

for convenient reference in future work, although it is recognized that essentially 

the same problem has received considerable attention previously by other workers:- 6 

motivated either by accelerator problems or by an interest in solid-state physics. 

The present report consists of two parts: Firstly, the Floquet solution of 

the Mathieu equation is obtained in representative cases and analysized in a 

series of cosine functions by means of digital computation (MURA I. B. M. 

"DUCK-ANSWER" and "FORANAL" programs). The adequacy of retaining only 

a limited number of terms in this expansion is examined. Secondly, algebraic 

ezpressions for the coefficients in such an expansion are obtained by harmonic 

balance and compared with the coefficients given by digital computation. 

The differential equation with which we shall be concerned throughout the report 

is written 

11 [ j + ~-~-e~Nt}'t:::OJ (1) 

with N =2 and with representative values of the constants considered to be 

B = 1. 0 or 1. 5 

A such that O<<J<ti'C. 
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Expansion of the even Floquet solution ( flo: I -" :/o ~ 0 ) in the form 

:f = j" -en tJt r ~ [!,.. ~ (.m N- .Y).t r j, ~ {mN +V).t} (2a) 

= J• ~ tJi. + Z l(f}'YI-r JW')tC41 m#t eM vt +-(f,.-J~~ mNt ~vt1 
h?sl L{ ](2b) 

is specifically treated, from which the general solution may be written by replacing 

~ t with 1ft+- t : 
"f= 71>~ (vt+t.) . 

-1- :t:Jt.. pw{(mN-V).t- €} + ,,.. -eM {(m A/t1J}.Ct- €}} (Zc) 

Note that, with N=2, .Y represents u jff. In terms of this notation it may also 

be noted that the matrix which carries the solution ( 11~, ) between j. := 0 and 

t :: :J. o/rJ is 
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II. COMPUTATIONAL RESULTS: 
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A series of DUCK-ANSWER solutions to the equation :;'~(A+E ~J..t)~= rJ 

were obtained with B = 1. 5 and with B = 0. Values of A were chosen which were 

intended to lead to values of uj'll' close to simple rational fractions in the range 

between 0 and l. From the computational solutions, 1'1,, =- /'1ll- = <.DScr' (and, 

hence, of'Tl: ) could be determined, as could also the remaining matrix-elements 

M12 and M21 . These results are summarized in the accompanying table. 

Taking as a guide the nearest simple rational fraction which would serve to 

represent o/'il' in each case, an interval of t was found within which the solution 

was substantially periodic. The solution within such an interval was then sub-

jected to Fourier analysis, by the FORANAL program, to yield the coefficients 

of a cosine series representing the solution. The coefficients so obtained are 

given in tabular form below and serve as the basis for the curves denoted 

"Digital" on the graphs appended to this report. 

From the results of these computations - - considered representative of 

particle motion in a spirally-ridged FFAG accelerator with sinusoidal.ly varying 

median-plane field -- it appears that the coefficients 72. and certainly h are 

quite small. One measure of the adequacy of the previous coefficients to desc-

cribe the solution is provided by a comparison, given in tabular form belo'N 

(for the case B = 1. 5 and ()::. (J·~.!Cf17.), of the actual solution with tha-t computed 

from a limited number of coefficients. A more sensitive test, which may be 

relevant only in certain applications, is a comparison of the actual computed 

matrix element M 1z with that given by retaining only the first few terms of the 

series. The result of such a comparison, for a few representative cases, is 
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also tabulated below. The conclusion may be drawn that the retention of 4 or 5 

terms (through J;. or, possibly, through J"J.-) affords a quite good representation 

of the Floquet solution in the cases considered. In the following section, there-

fore, we direct our attention to formulating algebraic expressions suitable for 

calculating the relative coefficients ;:1· . - --
III. ALGEBRAIC EVALUATION OF COEFFICIENTS: 

We seek the even solution of 

(1) 

in the approximate form 

1: Jo MH' Jt 
-rt <:.H (IV- v)t t- !' ~ (/tl-r.Y):C 

.,..fz ~ {:JI'I- v}t -r jz. ~(~1'1 f v)t 
(2) 

By application of harmonic balance the following set of five algebraic equations 

is obtained: 
II - -,) L -r (If~) (;:; t- G) = 0 

[A-(#- vJJF; t-{~) (1 t- FJ o 

{II - ( /'1 + V) ]G,t{~)(l + C~) 

[4 -(JN- v)jF;. -t(%_) F, 

[A- (~1'1,. V}j C-,_ -r ( '%_) C-, 
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where F
1
, 

2 
and G1, 2 denote respectively /,,0• and :ft, z;j., . 

From these simultaneous equations it follows that 

(4) 

provided the frequency satisfies 

L 

V = II + 

+ 

(5) 

It is noted that in some applications, when -J« /1, equation (5) and the first two of 
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equations (4) may be replaced by 
2 :t::). 

1) _:_ ll + fN~ 

~ 

MURA-252 
Internal 

(6) 

equatio~of this latte·r form having been employed previously5 for the study of 

resonances in spirally-ridged accelerators when V is small. 

The use of equations (4) in analytic work does not appear significantly more 

troublesome than use of equations (6) if the value of A associated with 'I) is 

known from tables 7' 8 or available from orientation runs with the digital computer. 

The accuracy of equations (4), as contrasted with that of the simpler relations 

( 6) ~·,; [~ 1'1 fN _ :J v}j and fl1• =. {!IN ( N! .2 -.1) J ::t'ndicated by the comparison with 

results of digital computation given by the graphs appended to this report. (In 

calculating values of the coefficients used to construct these graphs, values of V 

associated with the parameters A and B were obtained from the digital com-

putations.) It appears, moreover, that numerical solution of equation (5) for 

Y in terms of the parameters A, B, and N will yield values in agreement with 

those obtained by digital computation to engineering accuracy, or to better than 

0. 2 percent for values of cr as high as 0. 93 '/[ . . 

Commencing with recursion relations which are basically those employed in 

the present report, to the number of terms retained, Slater6 obtains algebraic 

expressions for the coefficients li; .J Gt: in terms of B and o/1't alone. Possibly 

because of the steps taken to eliminate the parameters A, however, convergence 
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difficulties seem to be encountered when cr' is near 1T 
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LINEAR EQUATIONS .FOR WHICH FLOQUET SOLUTIONS OBTAINED 

Run Nos. Par am.§.. 
DUCK FOR- E -ANS. ANAL 

779 30 1.5 
780 34 
781 37 
782 38 
783 39 
784 40 
785 41 
786 42 
787 43 
788 44 
789 45 
790 46 

779 50 1.0 
780 54 
781 57 
782 58 
783 59 
784 60 
785 61 
786 62 
787 63 
788 64 
789 65 
790 66 

* With N = 2, 

t Approx. 

ll 

.1782 

.1648 

. 1514 

. 1216 

. 0904 

. 0327 
-. 0352 
-: 0850 

-. 1470 
-. 1823 
-. 2170 
-. 2330 

. 450 

. 430 

I . 411 

l . 368 
. 323 
. 244 
.180 

j .092 
. 017 

-. 025 
-.065 
-. 086 

,, 
d + (A + B cos 2 C) t :. 0 

Matrix Elements 0/'Tr:~ 

M21 M12 
M11=M22 
= cos a- From cos (J 

-.010328 4. 1584 -. 978 291 . 933 557 
-. 027 410 4.2329 -. 940 199 . 889 362 
-. 043 702 4.3085 -. 900 950 . 857 129 
-. 076 968 4.4800 -. 809 434 . 800 226 
-.107163 4.6646 -. 707 195 . 750 040 
-. 149 384 5.0202 -. 500 067 . 666 691 
-.173 818 5.4628 -. 224 636 . 572 119 
-.172 270 5.8048 +. 0004918 . 499 843 
-. 144 598 6.2520 . 309 801 . 399 737 
-.114 921 6. 5175 . 501 004 . 332 964 
-. 075 130 6. 7864 . 7oo 1oo 5 . 253 139 
-. 053 061 6. 9131 . 795 7284 . 207 088 

-. 028 369 2. 3618 -. 965 918 . 916 658 
-. 054 616 2. 4415 -. 930 942 . 881 012 
-. 078 378 2. 5188 -. 895 869 . 853 446 
-. 127""621 2.6993 -. 809 637 . 800 336 
-.171 786 2.8967 -. 708 788 . 750 758 
-. 228 507 3.2654 -.503814 . 668 070 
-. l52 125 3.5856 -. 309 811 . 600 266 
-. 246 364 4.0590 \.. 001 2994 . 499 586 
-. 201 068 4.4945 . 310 321 . 399 563 
-.157 353 4.·7518 . 502 2775 . 332 496 
-.102 323 5.0062 . 698 389 . 253 901 
-. 067 892 5. 1435 . 806 719 . 201 241 
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14/15 
8/9 
6/7 
4/5 
3/4 
2/3 
4/7 
1/2 
2/5 
1/3 
1/4 
1/5 t 

11'/ 12 
8/9 t 
6/7 1-
4/5 
3/4 
2/3 
3/5 
1/2 
2/5 
1/3 
1/4 
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Unnormalized FORANAL. 
Coefficients For -1 .: f o ~ y r + 
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= ~o CP Y + . Z (.!, ')j,..)~ mhr ~'It' +(i,..-~~~ m 
/&":I t.JI"Ji.. 'f, 0 ., I 

t-

FOR- NOM-
/, ANAL INAL ~0 J· ;: ?~ .h 

NO. .y 

30 14/15 . 5000 . 4173 . 0446 . 0340 . "'.002. t i"'. oo21' 
34 8/9 . 5260 . 3903 . 04835 . 03083 . ool52 . 0009 
37 6/7 . 5449 . 3726 . 05166 . 02880 . 00164 .00082 
38 4/5 . 57446 ~34116 . 05599 . 02533 . 00183 .00070 
39 3/4 . 59808 . 31626 . 06023 . 02269 . 00201 .00062 
40 2/3 . 63147 .27953 . 06715 . 01896 . 00232 . 00050 
41 4/7 . 6616 .2445 . 0749 . 01555 .00267 . 00038 
42 1/2 . 6796 .22266 .08082 . 01356 . 00299 .00034 
43 2/5 

I 
. 6988 .1968 . 08918 . 01128 .00344 .00027 

44 1/3 I . 7404 .1596 .0834 . 010 . 006 ~ ~~ 
45 1/4 

I 
. 721 . 167 .103 . 0087 . 0042 N, 0002 

46 l/5t . 73 .16 .11 . 008 . 004 - - -

50 11/12 . 5488 .3942 """· o35r "'. 022 * 
54 8/9 t . 5850 . 3794 . 0373 . 0208 . 0009 . 0005 
57 6/7 t" . 60 .35 . 049 . 0275 - - - - -
58 4/5 . 6363 . 3038 . 04262 . 01538 . 00093 . 00028 
59 3/4 . 665 . 2733 . 0459 . 0133 . 0010 . 0002 
60 2/3 . 7034 .2323 . 0512 . 0106 .00114 . 00015 
61 3/5 . n12 . 2067 . 05534 .00908 . 00131 I --
62 I 1/2 . 7534 .1763 . 06133 .00728 . 00153 1 . 00013 
63 2/5 . 7716 .1530 . 06737 .00593 . 00175 . 00010 
64 1/3 . 780 .1402 . 07155 .00524 . 00192 N, 0001 
65 1/4 . 793 .127 . 077 . 00441 . 00206 - -
66 1/5 . 795 .120 . 0809 . 00410 . 00228 - -

i 
I 

* In general Jt may be replaced by '}) 't + t-

t Approx. 

Est. (not fm. Forana1) 
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COMPARISON OF CALCULATED AND TRUE EVEN FLOQUET SOLUTION 

FOR MATHIEU EQUATION 

WITH B = 1. 5 and (J =- 0 · i'J'9 'it' 

tj't'r' Calculated 1?' True :1-
(Sectors) ,Y( (/. ~ f, ~ ~,J fl(~., /,, f, ~ f' .. j Duck-Ans Run 780 

0 . 9647 . 9955 1. 0000 
l/8 . 8683 .8788 . 8800 
1/4 . 6226 . 5991 . 5989 
3/8 . 3173 .2907 . 2938 
1/2 . 0152 . 0206 . 0213 
5/8 -.2755 -. 2452 -. 2470 
3/4 -. 5592 -. 5438 -. 5420 
7/8 -. 7961 -. 8158 -. 8146 
1 -.9065 -. 9355 -. 9379 

1-1/8 -.8367 -. 8361 -.8357 
1-1/4 -. 6112 -: 5822 -.5808 
1-3/8 -.3208 -. 3406 -.3030 
1·1/ 2 -.0437 -. 0591 -.0597 
1-5/8 . 2006 .1703 . 1718 
1-3/4 . 4281 . 4228 . 4210 
1-7 I 8 . 6276 . 6543 . 6523 

2 . 7390 . 7625 . 7636 
2·1/8 . 7030 . 6925 . 6915 
2-1/4 . 5259 . 4951 . 4932 
2·3/8 . 2855 . 2750 . 2761 
2·1/ 2 . 0670 . 0905 . 0910 
2·5/8 -. 1015 -.0748 -. 0781 
2 3/4 -. 2455 -.2508 -. 2496 
2-7/8 - 3834 -. 4138 -.4119 

3 -.4824 -.4977 - . 49'81 
3 ·1/8 -. 4851 -.4653 -.4646 
3 1/4 -.3773 -.3483 -.3466 
3 3/8 -. 2158 -. 2158 -. 2161 
3-1/2 -. 0821 -. 1111 -. 1114 
3·5/8 -.0099 -.0297 -.0288 
3-3/4 . 0332 .0485 . 0484 
3·7 /8 . 0930 . 1233 . 1222 

4 . 1675 .1729 . 1729 
4 1/8 . 2086 .1820 . 1820 
4·1/4 . 1831 .1595 .1586 
4-3/8 . 1201 . 1307 .1302 
4-1/2 .0874 .0874 . 1185 
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Duck-Ans. 
Run No. 

780 

781 

789 I 
I 

780 

788 

789 
I 

i 
790 I 

I 
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CALCULATED AND COMPUTED MATRIX-ELEMENT M IZ. 

I 

/'1,~ 
For anal 

B 1) Calc. fm. Calc. fm. Calc. fm. From I. .t:S. M, 
Run No. 3 Terms 4 Terms 5 Terms Computations 

34 1.5 . 889362 1. 8878 4. 3391 3. 9684 4. 2329 

37 . 857129 2.2272 4.4057 4. 0819 4. 3085 

45 . 253139 5. 7592 7. 9081 6.6296 6. 7864 

54 1.0 . 881012 1. 8442 2. 7978 2. 7111 2. 4415 

64 . 332496 4.4561 4. 9766 4.7577 4. 7518 

65 . 253901 4.6595 5.2460 4.9400 5.0062 

66 . 201241 4. 8153 5. 5416 5.0963 5. 1435 
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THE NON-LINEAR COUPLING RESONANCE 2~- J)x = 1 

** L. Jackson Laslett 

January 2, 1959 

ABSTRACT 

Computational results, obtain.ed with the DUCK-ANSWER program 

and pertaining to the 2 vy - vx :: 1 resonance, are reported for two examples 

of coupled Hamiltonian differentia 1 equations. Each of the examples contains 

a term involving x · y (with a periodic coefficient) in the y-equation. The 

width of the resonance appears in each case to be roughly proportional to the 

first power of the x-amplitude. Results are also presented to show the effect, 

on the y-motion, of traversing the 2Yy - 2.{ ::: 1 resonance, at various rates. 

A rough analytic examination of the second set of equations is also 

given. Comparia:ns with the computational results suggest the theory to be 

semi-quantitatively valid. 

* AEC Research and Development Report. Research supported by the Atomic 
Energy Commission, Contract No. AT (11-1) 384. 

>:<;'<Department of Physics and Institute :Dr Atomic Research, Iowa State College, 
Ames, Iowa. 
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I. MOTIVA T:iON: 

The character of the solutions to non-linear coupled differential equations, 

for oscillation frequencies in the neighborhood of certain non-linear coupling 

resonances, has been reported previously in a number of MURA reports 1t and 

by members of the Harwell group. 2 Recently there ha~ been interest in the 

2 Vy - Vx :-:: 1 resonance, since (i) the proposed operating point for the ANL 

12. 5 Gev accelerator 3 lies close to this resonance and (ii) it may be necessary 

to traverse this resonance when employing the Hammer- Bureau method4• 5 of 

beam extraction from a conventional betatron or synchrotron. 

Two systems of coupled differential equations have, accordingly, been 

studied by means of the MURA IBM 704 DUCK-ANSWER 6 computational pro-

gram. Although neither of these systems may represent closely the physical 

situations mentioned above, it was felt that the results would be of interest as 

illustrative of effects attributable to the 2 Vy - ~ = 1 resonance. Attention 

has been focused on the growth of y-amplitude (axial-amplitude) rather than on 

the possible eventual "turn-over" of the y-growth, axial limitations of aperture 

frequently making turn-over of somewhat secondary interest. To simplify the 

study, only those non-linear terms were introduced which would be required 

to give a Hamiltonian system of equations capable of responding directly to the 

resonance in question and first-derivative terms were omitted. 

A guide to the magnitude of the y-oscillation amplitude was obtained by 

computing the quantity 7 

Ky= [l'+(Sy/Sy)ff}~. 
which should be an invariant for small-amplitude oscillations. 

f References are given in Section VI. 
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II. THE EQUATIONS STUDIED· 

The equations employed in this study were the following: 

SET L 

d2x/d92 + (0. 536- L 8 cos 8 9 - 0, 075 cos 9) x = - (0, 025 cos 9) y2 

d 2y/d9 2 + (-160 s 2 + L 2 cos 8 9 + o. 050 cos 9) y = -2 (O, 025 cos 9) x y. 

which wereput into a form suitable for use of the DUCK-ANSWER program by 

the transformation 4 9 = ?: : 
2 2 6'[ 

d x/d'r = 10 (-0. 00335 + 0. 01125 cos 2 "C + 0. 00046875 cos~) x 

+ (-0. 0015625 cos ~i) y 2 

ct2y/dT 2 = 10 (S2 - o. 0075 cos 21: - o. 0003125 cos ~i) y 

+ 2 (-0. 0015625 COS ~7) X • Y , 

The constant coefficient S2 was adjusted to obtain small-amplitude y-oscillation 

frequencies located as desired in the neighborhood of the 2 2) y - 2) x = 1 

resonance. 

SET II. 

d 2x/d92 + (-2. 5 S1 - 0, 063 COS 9) X = (-0. 0825 -0, 105 COS 9) (x 2 - y 2) 

d 2y/d9 2 + (-2. 5 s 2 + o. 063 cos 9) y = 2 (O. 0825 + o. 105 cos 9) x· y, 

which were transformed by the substitution 9 = 2 't' to obtain the working 

equations: 

d 2x/d'L 2 = 10 (S 1 + o. 0252 cos 2'1: ) x + (-0, 33- o. 42 cos 2't) (x 2 - y 2) 

d 2y/d't 2 :;: 10 <s 2 - 0.o252 cos 2T> y + 2 <o. 33 + o.42 cos 2c) x· y. 

In this case the constant coefficients s 1 and s 2 were adjusted together, i::1 

concordance with the relation s 1 + s 2 == -0. 4036, to obtain desired operating 

points in the neighborhood of the 2 V y - 2{ = 1 resonance. 
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In connection with this set of equations it was also of interest to traverse 

the resonance "dynamically''--i. e., during the course of a run. This could be 

accomplished by introducing, in effect, a secular change in the coefficients s1 

and S2. Specifically, the factors S1 + 0. 0252 cos 2't and s2 - 0. 0252 cos 2't: in the 

last equations were then· supplemented, respectively, by 

4't 'T( 4't 71 
Bl cos ~6384 -t T) and B2 cos (16384 + T) , 

where the coefficients B 1 and B 2 are related to the rate-of-change of the 

"field- index, " n, substantially by 

B 1 ~ - 3300 dn/d9 and B 2 -;;t + 3300 dn/d9 . 

The location of the working points, in relation to the 2 V - V = 1 
y X 

resonance line, for these two sets of equations is indicated in Fig, 1. Infer-

ences drawn from the computational results for the amount of non-linearity 

introduced in these equations may, of course, be re-interpreted for other 

magnitudes of non-linearity (of the same form) by "scaling" the dependent 

variables--i.e., by use of the transformation x = t:X..X, y = O(..Y, which has the 

effect of increasing the relative amount of non-linearity by the factor a.. 

III. RESULTS FOR THE EQUATIONS OF SET I: 

A. The Oscillation Frequencies: 

The frequencies of small-amplitude oscillations· were determined for 

the equations of Set II (for various values of the parameter s2) by preliminary 

orientation runs in which the non-linear (coupling) terms were suppressed. 

The results are shown below in Table I. 
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TABLE I 

Oscillation Frequencies for Equations of Set I 

~ = 0. 7483 

Sz - 16o s
2 

2)} - 1) 
y X 

-0.005235 0.8376 1.0938 

-0.005075 0.8120 1. 0664 

-0.004995 0.7992 1. 0515 

-0.004915 0.7864 1.0379 

-0.004835 0.7736 1.0235 

-0.004755 0.7608 L 0090 

-0.004675 0.7480 0.9943 

-0.004595 0.7352 0.9796 

-0.004515 0.7224 0.9646 

-0.004355 0.6968 0.9344 

-0.004195 0.6712 0.9036 

B. The Examination of y-Growth:, 

For each of the frequencies listed in Table I, runs were made with a 

small initial y-amplitude (0. 001) and various initial x-amplitudes, in an 

effort to find y-growth characteristic of the coupling resonance. When such 

growth was observed, '~he lapse-rate 11 denoting the rate of exponential growth 

was measurable from a semi-logarithmic plot of Ky ~ c /1'( and could be 

conveniently expressed as decades per .6.r-( = T(. Since 7:: = 4 9, the lapse-

rate so determined may also be regarded as expressed in ''decades per 

octant. 11 

The results of these runs are summarized in Table II and portrayed 

in the form of an altitude chart in Fig, 2. In the figure each notch corresponds 
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to a lapse-rate of 0. 005 decades per octant As mentioned in Section II, 

the results could be re-interpreted for other strengths of the non-linearity 

by suitable scaling of the dependent variables. 

TABLE II 

Lapse- Rate fot' Equations of Set 1 

Lapse-rates are given in decades per octant 

2.{:::: 0 .. 7483 

s2 12v -u xo 
I v 21 7,0 4"4 2.2 0.7 J v 

-0.005235 I 1. 094 lrhrob- factor 5. 8 I ' l 
-0.005075 

I 
1.066 0. 0101 Throb-factor 4. 3~ I 

I 

l -0.004995 l L 0.52 0.0062 

-0.004915 i L 038 0.0028 t 
i 
I 

I -0.004835 l L 024 0.0141 0.0089 0.0043 
l I 

-0.004755 i 1.009 0.0143 0.0048 I 
I i 

-0.004675 
I I 

! 0.894 0.0144 0.0091 0.0048 I 0 

-0., 004595 
( I i 

: 0.980 0.0136 0.003 l ' 
-0.004515 ' 0.865 0.0123 0.0065 0 I ~ 

I I 
' I 

-0.004355 i 0,934 0.00715 0 I 
• 

I 
I 

l 
i 

-0.004195 0.904 0 
t -

IV. RESULTS FOR THE EQUATIO~S OF SET II: 

A. ResultE wi.th no Secular Change. 

As with the equations of Set I 1:l-:<e· frequencies of small-amplitude 

oscillations were determined for the PC.;t:ations of Set II by short orientation 

runs with the non-linear terms suppre.ssed. With the non-linear terms 
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present a search was made to find y- growth, again using a small initial 

y-amplitude (0. 00001) and various initial x-amplitudes. When y-growth 

was seen to be present, it was followed through a few decades-- in every 

case through more than one decade save for those runs with x 0 equal to 

0. 01 or to 0. 005- -and the lapse- rate determined. For the equations of 

Set II, in which 9 '~ 2?:; . the lapse-rate is conveniently expressed in 

decades per A 'C .,.. 1"( or, equivalently, as decades per revolution. 

The results, giving the lapse-rate for various values of the 

parameters s1 and s2 together with the associated frequencies for small-

amplitude oscillations, are listed in Table Ill. The lapse-rates are also 

shown in Fig. 3 in the form of an alctude chart, with each notch corres-

ponding to a lapse-rate of 0. 02 decades per revolution. 

B. Results with Secular Change: 

As remarked in Section II, the motion characterized by the equations 

of Set II could be caused to traverse the 2 l)_y -
41.:" duction of the terms B 1 or 2 cos rt-38-

4
-- + 

V = 1 resonance by intro
x 

f). with B 1 ::: - B 2 . These 

terms, in effect. are equivalent to a slow (substantially linear) secular change 

of the coefficients s1 and s2 and pr·,,iuce a change of the small-amplitude 

oscillation frequencies simulating a :; r~ear change of the field-index, n: 

dn/de 2-" H 2 /3300 . 

The values of s1 and s2 actually u.~'' d throughout this series were -0. 1618 

and -0.2418, respectively, correc:;}>· i ng to initial oscillation frequencies 

Vx = 0. 6334 and Vy : 0. 7765. v;itt; 2 L{__- V .. : 0, 9196 [Table III]. 
,J X 
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-I w 
c:l'l 
Q 

s 1 

0.1618 

0.1525 

0.1505 

0. l 495 

0.1485 

0 1475 

0. 147 0 

0.1465 

0.1460 

0.1455 

0.1445 

0 .1 43!1 

0.1425 

0.1408 

0.1405 

0.1268 

0.1233 

0.1198 

0.1124 

TABLE 

OSCILLATION FREQUENCIES .AND LAPSE-RATES FOR EQUATIONS OF SET II 
Laose- Rates are 1 ven in decades per revolut1on SJ+S?: -0 .. 403G 

Sz ~ -Jy 2~ -,! Xo 
0.50 0.25 0.10 0.050 o. 025 0.010 0.005 

- - - - -
-0.2418 0.6334 0.7765 0.9196 

throb-factc :· 
-0.2511 0.{,)143 0. 7 914 0.9685 2. 5 or 2. 6 

-0. 25:~ I 0. 6101 0.7946 ll.!--"1791 0.0175 

1-0.2541 

I i hr?b I 

jl 0. 6 OHO 
- actor I 0.7962 1 o.9844 2.5 

I 
I I i -0.2551 

I 
1 o.9896 0.0086 I f), 6058 0. 7977 0.0287 I I 

! 
I I 

-0.25fil 
l 

o. 6 o3 1 1 o . 1 9 0 3 0.9948 (). 01 41 I 
-0.2566 0. 6027 0. 8001 0.9975 0.0052 

-0.2571 0. 6016 0. 8009 1 . 0001 0.0306 0.0156 0.0062 0.0031 0.0016 o.ooo62 o. ooo:H3 

-0.2576 o. 6005 I o. 8017 1.0028 0.0046 

-0.2581 0.5994 0. 8024 1.0054 0.0127 
. 

-0.2591 0.5972 0.8040 1 0107 0. 0241 0.0044 

-0 2601 0.5950 0.8055 1- 0160 0 

-0.2611 0.5928 0. 807i 1. 0213 0 

-0.2628 0. 5891 0. 8097 1. 0304 

-0.2631 0.5884 0-8102 1. 0320 0 

-0.2768 0.5561 0.8311 1 . 1 061 . 
-0.2803 0.5469 0.8364 1.1258 

-0.2838 0.5370 0. 8416 1 .1462 

-0.2912 0.5000 0.8525 2.2050 
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In all the runs made employing this secular change of parameters, the 

initial y-amplitude was, as before. taken as quite small (0. 00001). It would 

be expected that the factor by vVhich the y-amplitude is increased by traversal 

of the resonance would depend in a somewhat accidental way upon the phase with 

which the oscillations enter the region of instability--in most of the work re-

ported here the initial amplitude of x-oscillation was obtained by taking 

x 0 = 0. 50, PxoE. [dx/d"C) 0 ::: 0 or x 0 -·.;;. 0, Pxo :::0.51 (each corresponding 

to an initial amplitude 0. 50), or by x 0 = 0. 25, Pxo = 0 or x 0 = 0, Pxo = 0. 255 

(corresponding to an initial amplitude 0. 25). The rates of secular change 

which were employed are listed in Table IV. 

TABLE IV 

Values of the Coefficients B 1 and B2, 
Introduced to Represent a Secular Change of Frequency, 
and the Corresponding Rate-of-Change of Field- Index · 

Bl B2 Approx. dn/d9 

-0.0990 0.0990 o. 000 030 

-0.1452 0.1452 0. 000 044 

-0.2145 0.2145 0. 000 065 

-0.3168 0.3168 0. 000 096 

-0.462 0.462 0.000140 

-0.66 0.66 0. 000 200 

-0.99 0.99 0. 000 300 

The results of such runs are shown in Figs. 4-.10. Although traversal 

of the resonance 2 2) - ]) = 1 is seen to have a material effect on the 
y X 

amplitude of the y-oscillations, normally increasing the amplitude by a sub-
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stantial factor, the magnitude of the effect is seen to depend considerably 

upon the phase (of the x-oscillations in this case) at the start of the run and 

in some cases a decrease of y-amplitude is seen to result [Yigs. 9 and 10]. 

In some of the runs, specifically those with the more rapid secular changes, 

the computations continued for a sufficient number of revolutions to carry 

the operating point to the neighborhood of OX .. 1f( j)x = 1 I 2)--in such cases, 

of course, the x-motion would be expected to experience instability and, 

through coupling with the y-motion, exert a pronounced influence on the 

latter. In an auxiliary investigation, 8 however, no resonances leading to 

y- growth were detected in the interval between 2 Vy - 2) = 1 and V = 1/2 
X X 

for the simple equations of Set II (as was to be expected). 

Since, as noted above, the effect on the y-amplitude of traversing the 

coupling resonance will necessarily depend markedly upon the initial phases 

of the oscillatory motion, the results depicted in Fig. 7 [B1 = -0.3168, 

Bz = 0. 3168; dn/d9~0. 000 096] were supplemented by sixty additional runs 

to give what it was hoped would be a representative selection of initial phases 

for both the x- and the y-motion. As before, the initial values corresponded 

to an initial x-c:t.r:!l:P~~t~de of either 0. 50 or 0. 25, From the results of this 

survey (summarized in Appendix I), it was felt that the following factors 

represent a fair estimate of the amount of growth which may be obtained with 

this rate of traversal of the 2 lJ y = ).)x "' 1 resonance (<:;t Fig. 13): 

For an initial x-amplitude of 0. 50, growth by a factor 18 

or 1. 25 decade; 

For an initial x-amplitude of 0. 25, growth by a factor 3. 3 

or 0. 52 decade, 
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V. APPROXIMATE ANALYTIC TREATMENT: 

A, The Case of No Secular Change: 

It may be of interest to attempt an analytic treatment of the equations 

of Set II along the lines previously employed9 in examination of other coupling 

resonances, although the accuracy of such theoretical results may suffer in 

the present instance because the oscillation frequencies are sufficiently high 

that both 0"';( and a-y lie rather close to 7(' . The method 10 basically 

assumes the x-motion to be prescribed, unaffected by coupling with the 

relatively small y-motion, and this solution when substituted into the y-equa-

tion thus gives a differential equation linear in the single dependent variable y. 

Since we are here attempting no more than an approximate treatment of 

the 2 vy - l)x = 1 resonance, it apparently is sufficient to employ a simplified 

form of the y-equation 

d2y + [-1 J2 J d8Z J./ y + (d/2) (cos 9) x y = 0, 

where d = -0. 42 in the computations reported above (Section IV). If a simple 

representation of the x-motion, 

is now employed, one obtains 

d
2

y + [2) 2 + (Ax d/ 2) (cos Vx 9) (cos 9)] y = 0 
d9 2 y 

or 

d2 [ 2 J ~ + V + (Ax d/4) cos (1 + Vx> 9 + (Ax d/4) cos (1- Vx> 9 y = 0. 
d9 y 

For purposes of studying the 2 Vy - 2..{ = 1 resonance, we may ignore the 

last term in the coefficient of y and consider the simple Mathieu equation 
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(1.) This last equation has, as is well known, the stability boundaries 

[ cf. Ref. 9, Appendix IB, C]: 

-. (~ 2 v 2 Ad I ,;. < (2 ))y> - (1 + ) .( + 
leading to a full-width for the resonance which may be conveniently expressed 

as 

= 

Nurnerically, for the problem at hand, this becomes 

W' 0. 42 A 
""""3."2 X 

= 0.131Ax, 

where w denotes the full-width of the resonance in units of 2 vy- vx. 
We may compare this theoretical Nidth with that estimated from the 

computational results of Section IV A, as is done in Table V below. 

TABLE V 

Comparison of the Theoretical and Computational 

Width for the Resonance. 2 })y - 2{ ::: 1 

The Table gives the widths in units of 2 ~ - Vx 

d = -0. 42 Vx ,-..j 0. 6016, .Vy-::::: 0. 8008 

Ax 0.50 0.25 0. 10 

wtheor. 0.066 0.033 0.013 

Wobs· 0. 051 
I 

0.029 0.012 

(2.) The lapse-rate characterizing y-growth in the unstable region 

1-364 



MURA-44::i 

may also be estimated for the Mathieu equation cited earlier, by reference 

to methods used previously [ cf. Ref. 9, Appendix IV J One obtains 

- ~ / w2 - 4 q2 nepers/radian of 9 ' 

where q denotes 2 ~ - 2{ - 1 and Athr. the threshold 
amplitude, 

~Max. =/~I 1 + Vx - ~ nepers/radian of 9 . 

If, for convenience, we convert these results to decades per revolution 

(through multiplication by 27'(log e = 2. 72875) and insert the appropriate 

constants for the problem at hand (when required), we obtain 

H 0 0 8 9 /A 2 A 2 :..._ 0. 6 8 r_W 2 - 4 q2 ~ = · ~· x - thr. · ~ ~ decades /revolution of 9 

and 

~ax. == 0. 089 Ax = 0. 68 W decades/revolution of 9 . 

The formula for AM may be compared with the computational ax. 

results, summarized in Table III, for 2 Vy - Vx = 1. 0001, which corresponds 

closely to the resonant condition and for which the lapse-rates attain nearly 

their maximum values. This comparison is given in Table VI. 

TABLE VI 

Comparison of Theoretical and Observed Lapse-Rates. 

Lapse-rates are given in decades /revolution. 

s1 = -o. 1465, s2 = -o. 2571 

Ax 0.50 0.25 I 0.10 0.050 0,025 0.010 0.005 

~Calculated ! 
0.045 0.022 I o. 0089 0.0045 0.0022 0.0009 0.0004 

from Ax 
_)A, Calculated 0.035 0.020 0.0082 

from Wobs. 

~o~s. 0.0306 0.0156 0.0062 0.0031 0.0016 0.0006 0.0004 bli~m om-u er 
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From the comparisons shown we infer that the simple theory outlined 

in this section appears to provide a semi-quantitative account of the effects 

of the resonance, in the absence of secular change, although the widths for 

the resonance and the associated lapse-rates appear to be somewhat greater 

than observed from the computational results. 

B. Effect of Traversal of Resonance: 

It is tempting to employ the foregoing theoretical results to estimate 

the possible increase of y-amplitude when traversing the 2 Vy - Vx = 1 

resonance. The results of such an attempt certainly cannot be expected to 

be of high accuracy, in part becaus~ of the approximate character of the 

preceding analysis and in part because of a certain amount of adiabatic 

amplitude-change (which we shall ignore) before reaching the resonance, 

but perhaps primarily because the situation with secular change is in a 

sense different and the net effect upon the y-motion will certainly (as we 

have seen) depend markedly on the pl:ases of the respective oscillations. 

From the results of the preceding sub-section, we estimate the 

growth of y-amplitude which can result from traversal of the 2 vy - 2)x = 1 

resonance to be, if the ascending exponential solution dominates, 

Growth -JIW2- 4 q2 - 4 

1 

= 

d9 
nepers,. with the integral taken 
through the resonance 

i wtz jwz-4qz ctq 

W/2 

d~ 

nepers, 

1-366 



MURA-443 

where, as before. q denotes 2 ~ - Vx - 1. From the observed dependence 

of Vx and 2)y on the parameters s1 or s2 (Table III) .. and from the rate at 

which the coefficients B 1 and Bz in effect modify s1 and s2, one finds for the 

equations of Set II (with B1 ~ -B2), 

and 

I dq (,.j 5. 3 I I 
d9 = 8I'92 B1 

Growth 

-· 

= 

8192 
"5.3 

303.5 
w2 

1BJ 
132 

wz 

/B1j 

nepers 

nepers 

decades, 

W being the full-width of the resonance, for the x-amplitude under considera

tion, measured in units of 2 Vy - z{. 

In particular, for the case B 1 = -0.3168, B 2 .,:: 0. 3168, 

Growth = 416 w 2 decades. 

If we employ the observed widths of the resonance (Table V) for the x-amplitudes 

0. 50 and 0. 25, we then expect 

For x
0 

:-:: 0. 50, Growth of l. 08 decades (factor 12); 

For x
0 

= 0. 25, Growth of 0. 35 decades (factor 2. 2). 

{!.f the theoretical values of W '>·Vere employed, the expected growth would 

be somewhat larger--L 81 and 0. 45 decades, or factors of 65 and 2. 8, 

respectively] As noted in Section IV B .. the corresponding figures estimated 

from actual computational runs (32 runs for each x-ampJitude) were 

For x 0 :-:: 0. 50, Growth of 1. 25 decades (factor 18); 

For x 0 "" 0. 25, Growth of 0, 52 decades (factor 3. 3). 
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8rn an investigation to see whether any resonances leading to y-growth could 

be detected for the equations of Set II in the interval between 2 Vy - 2{ = 1 

and Vx ::: 1 I 2, the initial x-amplitude was determined by taking x0 = 0. 50 

and, as before, the value y 0 ~ 10- 5 was employed. The values used for the 

constants s1, s2, and estimates of the corresponding small-amplitude 

oscillation frequencies are listed below [ s 1 + s 2 :: -0. 4036]. 

s1 s2 Vx(esL) vy (est. 

-0.1380 -·0. 2656 0.583 0.814 
-0.1355 -0.2681 0.577 0.818 
-0.1330 -0.2706 0.571 0.822 

-0. 1305 -0.2731 0.575 0.8255 
-0.1280 -0.2756 0.559 0.829 
-0.1255 -0.2781 0.553 0.833 

-0.1230 -0.2806 0.546 0.837 
-0. 1205 -0.2831 0. 539 0.8405 
-0. 1180 -0.2856 0.531 0.844 

-0.1155 -0.2881 0.523 0.848 
-0.1130 -0.2906 0. 510 0.852 
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As expected, with the coupling terms employed in the equations of Set II, 

no evidence of any coupling resonance was seen in this interval. For the 

two runs for which the coefficients were those listed in the last two lines of 

the preceding Table, however, x-instability for the x-amplitude employed 

(0. 50) rapidly became apparent, att.ributable to the proximity to the 

o-x =7[ <4 = 1/2) resonance (Figs. 11 and 12). 

9Esp. L. Jackson Laslett and A. M. Sessler, MURA-263 (May 6, 1957). 

10The procedure in principle thus parallels that suggested by W. Walkinshaw 

for analysis of the 2 2Jy- Vx = 0 resonance--W. Walkinshaw, "A Spiral 

Ridged Bevatron," A. E. R. E., Harwell (1956). 
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,.. 
IAxl ::: 0. 25 

Growth Factor Geom. 

xo Pxo Yo Pyo For Successive Maxima and Minima Mean o~ 
Middle 

After Traversing Resonance Factors 

. 25 0 .00001 0 3.899 2, 759 3.681 2.843 3. 187 

. 177 .1805 4.010 2.857 3.745 2.945 3.271 
0 . 255 3.615 2.497 3.291 2. 590 2.867 

-.177 .1805 2.625 1. 851 2.459 1.949 2. 133 
-.25 0 1. 338 0.922 1.234 0.960 1. 067 
-.177 -.1805 0. 561 0.419 0.541 0.436 0.476 

0 -.255 2.045 1. 478 1. 917 1. 510 1. 683 
. 177 -.1805 3. 280 2.293 2.988 2.409 2.618 

. 25 0 • 00000 7101 . 0000 11999 2.031 1. 402 1. 877 1. 510 1. 622 

.177 . 1805 3. 285 2.348 3.070 2.412 2. 685 
0 . 255 3.969 2.802 3.667 2.846 3.205 

-.177 .1805 4.074 2.840 3.774 3.020 3.274 
-.25 0 3.579 2.491 3.314 2. 601 2.873 
-.177 -.1805 2. 591 1. 808 2.395 1.823 2.081 

0 -.255 1. 310 0. 905 1. 191 0.945 1. 038 . 
177 -.1805 0.526 0.381 0.513 0.405 0.442 

. 25 0 0 ,. 0000 16999 1. 331 0. 921 1. 229 0.934 1. 064 

.177 .1805 0.590 0.442 0.567 0.455 0.501 
0 . 255 1. 999 1. 461 1. 915 1. 472 1.673 

-.177 .1805 3.259 2.255 2. 986 2.409 2.595 
-.25 0 3.975 2. 761 3.669 2.881 3. 183 
-.177 -.1805 4.007 2.863 3. 754 2.843 3. 278+-

0 -.255 3.565 2.491 3.285 2.607 2.861 
.177 -.1805 2.686 1.833 2.435 1.958 2. 113 I 
. ~5 0 . 00000 7101 0000 11999 3. 568 2.529 3.361 2.569 2.915 l 
.177 .1805 2. 584 1. 810 2.406 1. 885 2.087 

I 0 . 255 1. 341 0.908 1. 204 0.980 1. 046 
-.177 .1805 0.314 0.491 0.369 0.483 0.426 

I -.25 0 2.025 1. 440 1.900 1.493 1. 654 l 

-.177 -.1805 3.204 2.325 3.052 2. 322 2.664 ! 
l 

0 -.255 3. 931 2. 753 3.626 2.892 3. 159 ' I 
. 177 -. 1805 4.153 2.849 3.768 3.038 3.276 i 

j 
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Fig. 1. Frequency diagram, showing location of the working points 
used in computational study of the equations of Sets I and II. 
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ABSTRACT 

The characteristics of orbits in the median plane of a spiral orbit 

spect~ometer are briefly examined from the viewpoint of phase -plo1 s ~;imiiar 

to those used in accelerator theory. The characteristics of the spiral orbit 

spectrometer may be suggestive of injection methods which would prove useful 

in accelerator design. 

*AEC Research and Development Report. Research supported by the Atomic 
Energy Commission, Contract No. AEC AT(ll-1 )384. 

**Department of Physics and Institute for Atomic Research) Iowa Stai.e College, 
Ames, Iowa. 

1-385 
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The ingenious spiral orbit spectrometer has been described 
1 ~ 7 t' and 

analyzed 
1

' 
3

-
5
in a series of published papers and its experimental use reported 

8
' 

9 

+ for the study of~ meson decay. The instrument employs an axially-symmetric 

magnetic field characterized by a vector potential (A~ 
9

) having a stationary 

value at a radius (r) such that Br at that radius is equal to the magnetic 
t;1 

rigidity of the particles. Particles with this magnetic rigidity, or momentum, 

emitted from a source on the axis then describe orbits which approach (asymptot-

ically) a circle of radius r a while particles of lower momentum do not reach 

this radius and particles of larger momentum cross the circle quickly. The 

field-configuration thus appears well suited for the selection, with good resolution 

and large solid angle, of particles of the selected momentum -·- particularly if 

a directional detector is used. 

Although a source ~ the axis may not be realized exattly m practice and 

the particles which are emitted with initial conditions suitable for approaching 

the circle of convergence thus (even assuming the mechanical momentum to be 

correct) in a sense constitute a set of measure zero, the orbit charact.er1 sties may 

be of interest (beyond the spectrometer application) in su.gge sting effective means 

for injection into particle accelerators. The spectrometer characteristics have 

been calculated in some detail in the references cited (esp. ref. 3), but it may 

be useful here to describe the radial motion (in the median plane) briefly in a 

way which parallels the viewpoint frequently adopted for the examinatlon of orbits 

"tReferences are given in Section IV. 
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in particle accelerators. Radial phase-plane plots may then be examined, 

in analogy with the procedure used in accelerator design. The magnetic field, 

as a function of radius, is normally bell-shaped and axial focusing may be 

expected Gee, F. ex., eq. (43) of ref. 3 J 
II. THE ORBITS IN THE MEDIAN PLANE 

Employing polar coordinates (r, 9) the trajectories in the median plane 

may be obtained from the "space Lagrangian" (principle of Least Action) 

L + e r A(r) 
p 

[emu or MKS J (1) 

where A(r) represents the vector potential, e and p the charge and mechanical 

momentum of the particle, and a prime denotes differentiation with respect 

to 9. It is convenient to normalize the argument of the vector potential so 

that it may be expressed in terms of a normalized function a(""') as follows: 

A(r) - - __E_a_ a(rlr0 ), (2) 
e 

where a(1) .. 1 (3a) 

and a'(l) = 0. (3b) 

{j:hus at x=. r I r 
0 

::.: 1 the vector potential is stationary and, at this point, 

IBr/ '= J p0 l e/; hence a possible orbit of a particle with mechanical momentum 

~ is the circle r ::: r 
0

] 

We thus write 

L ==.(;..2 + r'2 1 
1 + ! 

~ ro{,.&z + x•z 

r a(rl r 0 ) 

1 x a(x)} (4) 

1 +~ 

where xE rlr0 and€: p/p0 -1. One may then employ in what follows the 
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From the Lagrangian (5) one obtains -
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(5) 

p :.~ R :::: x' !/x2 + x12 :::: r' ;/r2 + r' 2 = cosC:(. or (6a). 
ax 

x' = Px 1£- P
2 (6b) 

(6c) 

where tJ... denotes the angle between the direction of motion <;ind the radius 

vector; 

P' - + JL = xflx.2 + x• 2 

a x 

The corresponding Hamiltonian is 

71- - Px' - ~ 

... -xF- P 2 + 1 x a(x) , 
1 +f 

1 ~a(x)J. 
~X 

and will be a constant of the motion. Again from fl.the equations for the 

trajectory may be obtained: 

x' _ut = Pxl-/t-PZ 
~p 

P' ·- - :J H =li""-P2 - 1 a ~ a(x) J , 
dX 1 +E dX 

as before. 

(7) 

(8) 

(9a) 

(9b) 

The geometrical interpretation of P, the canonical momentum conjugate 

to x, as the cosine of the angle between the direction of motion and the radius 

vector is noted; one also sees ~rom (9biJthat one can have P identically zero 

(x' = o, corresponding to motion on a circle) at x::l forE ::0, sincef/d x [x a(xj::::l 

::1, 
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For a specific illustration of the features of !he trajectories, as described 

by the foregoir.g equations, one may consider a bell-shaped magnetic field for 

which the vector potential has the simple form 

a(x) = 2x 
1 + xz , (10) 

for which, as desired, a(1) = 1 and a'(l) = 0. The general nature of the 

median-plane magnetic field, B, implied by this vector potential is indicated 

in Table L 

TABLE I 

CHARACTER OF MAGNETIC FIELD DESCRIBED BY a ( x) ::: 2 x / ( 1 + x 
2 

) 

Radius 

X 

0 

0. 2955 9774 

1 

Field 

-(er /p ) B 
o ·o 

4 

3. 382 97 58 

1 

Field Times Radius 

- (e/ p 0 ) rB = - x{<:er 0 / p0 ) B] 
0 

l 

1 

It is noted ilea·. the radii. represented by each of the las~ two lir..es of this table 

correspor.d to pcssible circular motion of a particle with rr.echanical 

momer_tum p
0

• 

The invariant phase curves, in the x, P-plane, are given by '1/.-: constant. 

With a(x} as g:i.ven. by eq. (10), such phase curves are illustrated
10

in Fig. 1 

for€ ,., 0 \p::: p
0

}. rt is noted that the axis of the spec•;rorneter (x ::: 0) 

corresponds to#=: 0 and that the curvet/.:-= 0 passes throu:gh the p0i.:r~t (1, OL so 

that particles emitted from the axis with p = p
0 

may approach the circle :r :~ r 0 , 

albeit requiring a logarithmically infinite time (as we shall see 1 to reach this 

radius. The dotted lines in Fig. 1 which connect br-anches of p}'lase curves for 
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which h > o evidently correspond to retrograde motion, for which the motion 

in time is backward in 9 and -Ti"- P 2 = sinoL should be taken as negative. 

( I \u/ 
\ I I 

---¥---
1 

The situation for particles of somewhat larger momentum ( E >0) 

is illustrated in Fig. 2 and for particles of momentum smaller than p
0 

(E < 0 ) is shown in Fig. 3. 

III. CORRELATION OF PHASE POINTS WITH 9 OR t 

The progress of the motion along the phase curves, such as those shown 

in Fig. 1," may be indicated by noting values of 9 along such a curve. The 

progress of 9 is given by 

X 
~9 = / dx 

x' 
~, 

~/ -fi:2 
dx (11) 

x, 
[cf eq. (15) of ref. fl, where P(x) is given in terms of the parameter ff by 

eq. (8), Near the circle of convergence (1, 0) forE =0 and 7f = 0 the quantity 

P approaches zero in such a way that 9 becomes infinite as x approaches 

unity; thus, for€ =0 andfl=o. 
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(12) 

Fer olher phase curves the progress of 9 may perhaps be most conveniently 

found by numerical integration, aided by analytic integration of asymptotic forms 

applicable in the neighborhood of P = 0. 

Tb.e progress may also be noted in terms of time, by noting 

.A~ c:. r
0 

rX dx 
v .J p . 

x. 
Again for€ ---' 0 and#= 0, a logarithmic infinity is obtamed in approaching the 

point. tL 01: specifically with the form of field considered here and forE = 0, 

ll.:o, 

+.1,xl ··· t<O) !X 1 2 dx - ro + X 

v 1 - xZ 
x, 

- ro ~ 1 + X - xJ = ro [2 tanh - 1 X - t]. (13) 
v 1 - X v 

In Fig. 4 the eurves7f= 0 and "JJ= -. 025 of Fig. 1 ( E = 0) have been 

approxima-4;ely labeled wEh values of 9, fixing arbitrarily the relative positions 

of :he points 0 = 0 on the two curves. As 9, the independent variable of our 

formulr.c~.or., increases, phase points located between these two curves will pro-

gre ss as ir:.d~:.ca:ed and one may expect the area occupied by such points to be 

conservPd. The progress of points with time, however, may be of somewhat 

greater in~ere s<: and in Fig. 5 an attempt is made to attach time labels to the 

curves ff-=- 0 ar,d;f,.-; ~. 025 of Fig. 1. It does not appear that the region occupied 
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by points in an x, P phase plot, when observed at a time common to all such 

part:icles, should be c;onserved. From Fig. 5 it is at any rate apparant that a 

cer~;ain accumulation of points in the neighborhood of the equilibrium circle" 

(x ""' 1) is obi:ffi.ned. 

IV. REFERENCES AND NOTES 

1. G. Miyamoto, Proc. Phys. - Math. Soc. Japan [Nihon Sugaku -
Buturigakukai KaisJ ..!:2_, 557 (1943) -- in Japanese. The present 
writer is indebted to Dr. R. Sagane for his courtesy in providing 
reprints of this and some of the following references, with English 
.,._ranslal:ions of references 1 and 3. 

2. R. Sagane, G. Miyamoto, K. Nakamura, and Takechi, Proc. Phys. -
Math. Soc. Japan 25, 27 4 (1943). 

3. G. Iwata, G. Miyamoto, and M. Kotani, Jour. Phys. Soc. Japan 
{fhhon Buturigakukai KaisQ?:_. 1 (1947) --in Japanese. 

'· 
4. M. Sakai, Jour. Phys. Soc. Japan~. 178 (1950). 

5. M. Sakai, Jour. Phys. Soc. Japan~. 184 (1950). 

6. G. M1yamoto, Proc. Phys. -Math. Soc. Japan 24, 67 6(L) (1942). 

7. G. Miyamoto, Jour. Phys. Soc. Japan~. 68 (1951). This reference 
cc:ncerns a spectrometer with two circles of convergence. 

8. R. Sagane and P. C. Giles, Phys. Rev. 81, 653 (A) (February 15, 1951). 
This reference is an abstract of a paper presented before the 
Los Angeles meeting of the American Physical Society (December 29, 
1950). 

9. R. Sagane, W. L. Gardner, and H. W. Hubbard, Phys. Rev. 82, 
557 (L) (May 15, 1951). 

10. The writer is happy to acknowledge the assistance of Mr. Bob Clark; 
of t>he MURA Laboratory, in preparing the figures for this report. 

11. It has been pointed out by Dr. D. Judd (private communication, 1959) 
tha+ the "space Hamiltonian" which we have employed is essentially 
-pQ; i.e., the negative of the canonical momentum conjugate to 8, 
wh1ch of course is a constant of the motion in the present problem. 
This proc::ess of changing from the independent variable t of a true 

· Hamiltonian to the variable 8 (which may be demonstrated generally 
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by use of Hamil~:on's principle). and the distinction between observation of 
phase points projected in the r, Pr-plane at a common 9 or at a common time, 
is illustrated by the following artificial example: 

Consider the Hamiltonian 

H tx, 9; Pxo Pg ,; t) = 
2 

1 <Pe + 1 Px ). 
X 2 

For this Hamiltonian the equations of motion in time are, of course, 

• oHia p9 
9 ··- Pe = - aH 

as 
·- 1 = 0, or p9 = const.; 

X 

X - 'iJH/ a Px px = - aH 
ax 

Px /x; 1 
2 

==H and H = const. ·- = Pg + Px 
I 2 X 

xZ 

From these equations it follows that the derivatives with respect to 9 are 

x' -· 

p' "" H ' X 
with solutions Px = p + HQ xo 

X = X + p 9 + 1 H9 
2

' 
o xo 2 

and the functional determinant, 2> (x, Px)/?J (x
0

, Pxo), with the partlal derivatives 

evaluated with 9 held constant is, of course, unity, 
ax 'dPx 

a (x. Px> a Xo axo 
= 

alxo, pxo)- ~ a Px 
qPx ~p 

o u Xo 

The !ime, t, is given in terms of 9 by 

d1: ·- X d G 
2 

· · {x0 + Px 9 + 1 H9 ) d9, 
0 2 

t - t
0

::: (x0 9 + 1 Px e2 + 1 H9
3 

). 
2 ° 6 
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In concordance with Judd's observations, the equations for x' and p~ 

may be obtained by writing 

'1-/-<x, t: Px' - H; 9 ) = -pe 

-xH + 1 
2 = Px 

2 
from which 

ax ~m-= Px O'Px = lll = H 

69 8 Px a9 8-x 

at =Ef= X a<-H> =-~= 0 

~9 Q-(- H) a 9 ~t 

as before. 

If, for simplicity, we consider the particular solutions for which H = 0, 

9 -· 

x = xo + Px 9 ' 
0 

+txo
2 

+ 2px0 ( t - to) , · 

Px0 

If we form the functional determinant d(x, Px> I a <xo, Pxo> from these solutions, 

performing the partial differentiation with t held fixed, we obtain 

ax JPx xo 
a(x, -;}xo axo ix~ 0 Px) = + 2pxo (t- to) 
~(xo, Px

0
> a X ;}Px t- t 0 = 

'dPx
0 

a Px . 
0 ~.~ (t- t

0
) + 2px 1 

0 

xo 

X 

this expression clearly will not in general be equal to unity. 
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The writer is indebted to Dr. B. C. Carlson and Dr. F. T. Cole for 

helpful ger:.eral discussions concerning such specialized phase plots and in 

particular for ~,ema.r ks l.eading to the following summary: 

Ths example i~Justrates a general situation of some interest. If one 

takes a group of particles governed by a Hamiltonian and projects the region 

occupied by these particles on a subspace of the total phase space, the area 

occupied by these particles on this subspace may or may not be constant as 

the motion develops, depending on the way in which'the initial conditions of 

the particle are chosen. 

Consider a system of two degrees of freedom governed by the 

HamEtoniaP. H i:r, pr; 9_, p 9; t), where H is independent of 9, as in the 

examp~e above. Then p 9 is a constant of the motion and if we consider 

a group of part.ic~es with the same p9 , but different values of r and Pr 

and observe the progress of the system in time, the area projected on the 

r - p plane by +.he particles will be constant in time, since effectively r 

H ::: H {r Pr, t}. Geometrically, all the phase space points representing 

the particles lie at all times on the hyperplane p9 = const. normal to the 

r - Pr plane in the four-dimensional phase space. 

Jf, however" as a second example we choose a group of initial 

conditions with the same H and differing values of p 9, the functional 

dependence of H ~r, pr; t) varies from particle to particle, so that all 

partic:es are not governed by the same Hamiltonian. 

plane is not conserved in time. 

1-395 

Area in the r - p 
r 



I 

MURA-444 
Internal Report 

The same problem can be vie wed with 9 as independent variable·; 

the "H.:..m:'.c:tonis.n" is -p9 ~ h (r, pr; t, -H; 9). If H is independent of t, 

it is a conE>td.nt of t:he motion, and plays the same role as Pe did when H 

was the Hamj;tonjan. A group of particles with the same H, but different 

values of Pg (as in the second example) will have the same Hamiltonian 

h (r .. Pr, e..~ governing the motion and the area in the r - Pr plane will be 

constant in 9. It goes almost without saying that Liouville's Theorem, 

wh.~cb i'3 concerned with the total phase space volume, is conserved in all 

cases. 
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CONCERNING THE VIN ~ 113 RESONANCE, l 

APPLICATION OF A VARIATIONAL PROCEDURE AND OF THE 

MOSER METHOD TO THE EQUATION 

2 

::~ + (
2
:) v + ~ (sin 2 t) v

2 ~ 0 

}:<* 
L. Jackson Laslett 

April 13, 1959 

ABSTRACT 

As an introduction to certain non-linear dynamical problems in vv~.ich 

the 1 I 3-resonal?-ce plays a dominant role, the stability boundary for the equa.tlon 

d 
2
v + ( 2 1) ) 

2 
v + ..!._ 2 (sin 2 t) v . .: 0 

dt2 N 2 

has been studied analytically and by digital computationo 1 Jse cf a rslatbely 

simple trial function in a variational procedure or with harmomc balance is 

shown to lead to simultaneous algebraic equations, for the coeffici,_mt:s in the 

trial function, whose solution affords a good estimate of the unstable fixed 

points. Application of the Moser method of solution is also carriPd through 

in detail, to include terms of the order ( z} IN- 1 13) 2 . and the results com-

pared with computer data for various values of V/N 

~'c 
· AEC Research and Development Report. Research supported by the Atomic 
Energy Commission, Contract No. AEC A T(11-1 )- 384. 

':'*Department of Physics and Institute for Atomic Research, Iowa Stat~ College. 
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A. MOTIVATION 

Simple applications of a variational method or of harmonic balance 

~· 
have been used previously!·· to obtain 11handy formulas 11 to indicate the 

stability limits for certain non-linear differential equations, with periodic 

coefficients. oca.rring in the theory of cyclic accelerators. The applica-

bility of the method described by Moser2 has also been recognized and it 

may be noted that this latter method affords the opportunity of obtaining 

more detailed information concerning the solutions, since the previous 

methods are most simply applicable to the special problem of determining 

the unstable equilibrium solution, whose period is a multiple of that for the 

periodic coefficients in the differential equation. 

Work currently in progress 3 concerning the possible practicality of 

injection into FF AG accelerators with a "field bump" deliberately introduced, 

with a period which is some integral multiple of the basic period of the un-

perturbed structure, has made it desirable to re-examine the analytic methods, 

in comparison with computational results, and to attempt to obtain analytic 

formulas of accuracy adequate to provide quantitatively useful orientation for 
• 

detailed computational studies. 

In the present report we develop analytic methods, which are compared 

with computational results, for solutions--particularly at the stability limit--

to a simple type of differential equation for which the stability limit is deter-

mined by the one-third resonance(MN ~ 1/ 3), The application of these methods 

in the present case has been felt to be fruitful and later reports may make use 

of similar methods in more complicated situations. 

*References are given in Section E. 
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B. THE DIFFERENTIAL EQUATION EMPLOYED 

In the theory of spirally-ridged FFAG accelerators the radial betatron 

motion, about the stable equilibrium orbit, may be convenienty represented by4 

(1) 

where u denotes the dep.arture from the stable equilibrium orbit, in units 

of the radius, 

b ~ flw , and (2a) 

(2b) 

By introducing the scaled variables 

t = (N I 2) 8 , (3a) 

4 f u 

wN2 --;; 
v = (3b) 

eqn. (1) assumes the form 

(4) 

Although it is possible by ·a suitable transformation to remove the 

alternating-gradient feature of the linear term, 5 it is frequently convenient, 

in the interests of simplicity, to replace 6 the A-G coefficient by (27} /N) 2 . 

The equation whi~h results is, then, 

(5) 

It is this equation with which we shall work in the present report, being 

concerned in particular with the limiting-amplitude solution, governed by 

the one-third resonance ( 11 IN -+ 1 I 3). Results of a variational solution 

(or equivalently, of harmonic balance) and of application of the Moser pro-

cedure will be presented in Sections C and D, respectively, and compared 

with computational results. 
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Illustrative machine parameters might be 
' 

~ I ""' f :-: 1/4, N = 33, k::: 79, 1 w: 1252, 

for which 

k/N 2 = 0. 0729, f :::: 0. 2875, 
wN2 

and, from the approximate equations of motion, the frequencies of the 

small-amplitude (A-G) radial and axial oscillations are respectively such 

that 

z 1) /N: t:r hr = o. 1983; 
y y 

in some of the work to follow the case 2..,) xiN = 0. 6 will be specifically 

considered. 

C. THE VARIATIONAL METHOD 

1. Analytic Development 

The unstable equilibrium orbit, or the associated ''fixed points'' 

characterizing the limiting-amplitude solution of eqn. (5), 

d 2v/dt2 + (21) /N) 2 v + (1/2) (sin 2 t) v 2 = 0, (5) 

may be sought by insertion of a trial function of suitable form into the 

variational statement 

We shall employ here the relatively simple three-term trial function 

v: A 1 sin 2 t/3 + A2 sin 2 t + A 3 sin 10 t/3, (7) 

in which the form of the last two terms may be suggested by insertion of 

the first term into the differential equation (5) and considerations of 

harmonic balance. 
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By insertion of the trial function (7) into the variational statement (6), 

or by harmonic balance in the differential equation (5), the following three 

simultaneous non-linear algebraic equations are obtained: 

[:- (2:)2]Al 1 A 2 1 1 1 0 (Sa) + - 1 - 2 A1A2 + 4 A1A3 - 4 A2A3 ·-s 

[ 4 -(~) 2] A2 - 1 2 3 2 1 - _!_A2 0 (Sb) 4 Al - BA2 4 AlA3 4 3 
-

• 

[l~0-(2:/]A3 1 2 1 1 
+-A - 4 A1A2 - Z A2A3 = 0. (Sc) 

8 1 

. A systematic solution of eqns . (Sa-c) in ascending powers of ( : (4/9) - (2 '11/N) 2 

may be obtained, but for operation an appreciable distance away from the 

1//N ~ 1/3 resonance--i.e., when ~ is not very small--it may be con-

sidered more satisfactory to solve these equations numerically. 

For the case 2-,/ /N = 0. 6, a direct numerical solution of eqns. (Sa-c) 

leads to the values 

A 1 -- - 0. 5751 517 

A 2 = t 0.0229 394 

A 3 = - 0. 0041 574, 

so that the approximate solution 

v=: - 0. 5751 517 sin 2 t/3 + 0. 0229 394 sin 2 t 

- 0. 0041 574 sin 10 t/3, (9a) 

dv/dt-:::::' -0. 3S34345 cos 2 t/3 + 0. 045S 7SS cos 2 t 

:.. 0. 013S5S cos 10 t/3 (9b) 

is obtained. 
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An algebraic solution of eqns. (8ac~c) in ascending powers of E .= 4/9 - (2-z//N)2 leads to 

the series 

where 

A 1 : - 8 E [ 1 - 2 (: + ~ )t: + 4(E....+~ + _2_)f 2 
p2 PQ Q2 

- 4 ( 652 + 292 + ~ + _!_Q_) 3 
p3 p2Q PQ2 Q3 E 

'-· -+ 4 (14912 + 8294 + 2808 t 577 +~) E 4 + ··] 
p4 p3Q p2Q2 PQ3 Q4 

(1 Oa) 

A2= 16C: 
2 

[ 1 _/J-6 +.2.)ft(326-t 100't~\L:l_.f1864+ 785 +188+~)€ 3 + ... ] 
p \p Q p2 PQ Q2~ ,. p3 p2Q PQ2 Q3 (1 Ob) 

A3 = _ 8 E 
2 

[ 1 _ 4 ( 2_+ _!_)E +~ ( ~+~t_2_)fl.-¥fi234 + 744 + 219 + 28 )E 3i- ... (1 Oc) 
Q p Q p2 PQ Q2 \- p3 p2Q PQ2 Q3 · 

E = : -( 2:/ )2 

p:: 4-

Q = 100 
9 

(2¥ )2 

- (2 ~ )2 
• 
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In the case considered previously, in which 2 ..,) IN = 0. 6, so that 

t = 19 I 225 = 0. 08444· · ·, the series (lOa-c) appear to converge rather 

slowly. Evaluation of the terms listed would suggest 

:-, -0. 6755 555 [ 1 - 0. 2013 012 + 0. 0774 000 

- 0. 0379 715 + 0. 0209 305 + . 0 J 

~ -0. 6755 555 X 0. 8590 578 ~ -0. 5803 413, 

A 2 = + o. 0313 445 [1- o. 3947 478 + o. 1945 985 - o. 1074 831 + · ·.] 

~+0.0313445-x 0.6923676 = + 0.0217019, 

A 3 - - 0. 0053 061 [ 1 - 0. 3098 062 + 0. 1414 688 - 0. 0755 171 + · ·] 

-~ - 0. 0053 061 X 0. 7561 455 :: - 0. 0040 122. 

As was just mentioned, it is seen that the convergence of the expressions 

for A1, A 2, and A
3 

is quite slow in this example, each term being roughly 

minus 50 or 55 percent of the term before it, and only about two-figure 

accuracy is obtained* for the solution of the algebraic equations in this 

case without extension of the series to include terms beyond those shown 

here. The convergence, of course, would be markedly better if one were, 

say, one-third as far from the resonant frequency as was the case in the 

example considered here. 

It may be noted in passing that retention of only the leading term in 

A 1 leads to 

Ampl. of v g{. 8 t E I = sl (419) - (2 v IN) 2 1 ' 

or 

Ampl. of u ~ (2 w2 N 2 1f) I (419)- (2 '21 IN) 21 

= ( 8 w 
2 I f) .I (N I 3) 

2 
- v 2 I ' 

in agreement with the "handy formula" previously cited. 
1 

*Cf. the results of the numerical solution which led to eqns. (9a, b). 
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2 Computational Results 

(a) The coefficients of the tria: function: For compa::-ison with the 

solution (9a, b) which was found in sub-section 1 by a variationa: method, 

the unstable equil.ibrium solution (period ll t . .., 1r /3} of eqn. (5;• was found 

computationally for 2 ll lN :. 0. 6 by means of the DUCK-ANSWER program7 

and subjected to Fourier analysis by aid of the FORANAL program. 8 The 

result of this computational work is given below: 

v ~- 0. 575116 sin 2 t/3 + 0.0229 44 sin 2 t 

- 0. 0041 59 sin 10 t/3 + 0. 0001 82 sin 14 t/3 

- 0. 0000 19 sin 6 t + · · · , (12a) 

dv/dt - - 0. 383411 cos 2 t/3 + 0. 0458 88 cos 2 t 

- 0. 0138 65 cos 10 t/3 + 0. 0008 51 cos 14 t/3 

- 0. 0001 16 cos 6 t + . . . . (12b) 

It is seen that the coefficients found for the first three terms of v and dv /dt 

check quite closely the results obtained by hand calculation in sub- section 1 

[eqns. (9a, b)] and that the remaining coefficients are relatively smalL 

(b) Coordinates of fixed points: The predicted coordinates of the un-

37f 
stable fixed points for t ~ 0 (mod. 7f L or alternatively for t -= -

4
- (mod. 1f ), 

may be obtained by substitution of these values into the expressions of eqns. 

(9a, b). The results in the first case, then, refer to solutions of 

d2v/d t 2 + (211 /N) 2 v + (1/2)(sin 2 t) v 2 ~ 0 at t :::: 0, mod. 71' , 

and in the second case to 

which are examples for which computer information has been obtained. 

The results are summarized in Table L The agreement betw,~en the resul!s of 

• 
eqns. (9a, .b) and the computational values is seen to be q11ite good in these examples. 
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TABLE I 

COORDINATES OF UNSTABLE FIXED POINTS, AS CALCULATED 

FROM EQNS. (9a, b) AND AS OBTAINED FROM COMPUTER RESULTS 

From Eqns. (9a, b) From Computer* 
t 

v dvldt v dvldt 

0, 0 - 0. 3514 0 - 0. 3506 

mod. 1f + 0.4945 0.2445 + 0.4943 0. 2440 - -
3 7f I 4, - 0. 6022 0 - 0. 6024 0 

-
mod. 7f 0.2667 + 0.3201 0.2668 + 0. 3207 

D. THE MOSER PROCEDURE 

1. Outline of Method 

The differential equation (5), with which we are concerned in the 

present report, may be derived from the Hamiltonian 

H'"' (112) p 2 + (1/2) (2 VIN) 2 v 2 + (116), (sin 2 t) v 3 , (13) 

with p ::, dv I dt. It is the purpose of the work to transform the variables 

(v, p) in such a way that the time-dependence is removed from the cubic 

term in H; the resultant Hamiltonian through terms of this order (and in-

eluding the time-independent part of the terms of next higher order) may 

*In much of th~ computational work the variables actually employed were 

vll. 15 and (dvldt)ll. 15, representing respectively ulw and (2IN)(duld9)lw 
4 f 

when --2 = 1. 15. To avoid complexity, however, the results are presented 
wN 

here in terms of the variable v which is employed in the analysis of the pre-

sent report. 
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then be taken as an approximate constant of the motion, from .vhich invariant 

phase curves can be constructed and values of fixed points determined. 

The work first will be outlined l.n terms of complex variables (j , ~ 
0 0 

~ , r; ) of the sort introduced by Moser, 2 and secondly will be carried out 
I ~ 

in a way which may be somewhat simpler for the present purposes, using 

quantities akin to angle-action variables. The use of these two methods may 

be of some inherent interest and serves to check the algebraic work. 

2. Useof..$ ,~ Variables 

(a) The forward transformations: Commencing with the Hamiltonian 

(13), which is expressed in terms of v, p, and t, a first transformation 

is made to variables;{ , ;{ which are complex conjugate quantities (with 

v and p real) but which are to be regarded as independent for the purposes 

of Hamiltonian theory, with 1./ playing the role of a coordinate and T1 
. ?o ~o 

representing the canonically-conjugate momentum. ~ and~ are de-

fined in terms of v and p as follows: 

~o= ( V /N) 
'/z 

[v 
i N P) + 227 (14a) 

Jo= ( -v /Nr
2 

[v 
iN 

p J , (14b) - --zv 
and, correspondingly, 

1/2. [ - J v = ( 1 I 2 > (N I -z) > j
0 

+ J (14c) 
~2 _o 

p = -i(-zJ/N) [J" -J 0 ]. (14d) 

It is noted that the functional determinant is 

= - i J (15) 

but that one can write 
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p dv = + i ( $
0 

d Jo ) + perfect differential; 

hence, although the transformation from v, p to J
0 

, !J~ is strictly not 

canonical, the pair J,
0 

, j
0 

may be regarded as canonically-conjugate 

in association with the Hamiltonian 

./1 0 ~ - i H 

3k 
- - i (2 -z) IN>-Xl- (il48) (NI z/) (sin 2 t) <J

1 
+ j

0 
)
3 

A canonical transformation from~" ,j
0 

to j 
1 

, J, is now per-

-

(16) 

(17a) 

(17b) 

formed by means of a generating function F 1 ( ::£
0 

, J, ). The generating 

function is so chosen as to remove from the Hamiltonian all time-dependence 

in the cubic term, save that associated with the resonance -z) IN __.,. 1 I 3, 

the coefficients of the transformation thus remaining finite as the resonance 

is approached; supplementary fourth-order terms are also included in the 

generating function in order that, to the order that the work is carried, the 

new variables Cl , fi conveniently will be complex conjugates. 9 The 
' ....,, ~. 

where ~Q 

namely 

are taken as periodic solutions of the differential equations 

i (dl
0 

ldt) + 3 (2VIN)J
0

- (112) e- 2 it= 0 

i (df
1 

ldt) + (2 V IN)j
1 

+ (312) (e 2 it- e- 2 it) ·- o 

i (df ldt) -
l-

i (d~ ldt) -
3 

(27JIN)f + (312)(e2it_e-2it)= 0 
2. 

3 (2 VIN>} + (1/2) e 2 it= 0, 
3 
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~ 1 -2 it (20a) 
Yo ~ 4 ( 1 + 3 v IN] e 

;t ' 3 2 it . 3 e- 2 it (20b) 
':t, =-= 4 [ 1 - -z) IN] e + 4 ( 1 + v IN] . 

3 2 it . 3 -2 it - A; 1
' (20 ) t = 4 ( 1 + z) I NJ e -r- 4 ( 1 - zJ IN] e - 't' I c 

2. 

_ 1 e2 it i - 4 [ 1 + 3 v IN] 
3 

tf0 = - < 3 1 4) ~a l, 
V, c-: - (312)i)

0 
p

2 

:!,= - (914)~ !3 
ll= - (312)f ~ 

:s I 3 

?l=- (314)1 t if l ~ 

(20d) 

(21a) 

(21 b) 

(21c) 

(21d) 

(21e) 

The transformation equations then read 

and 
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with primes denoting differentiation with respect to t. It is now necessary. 

of course, to sol.ve eqns. (22a 2 b) algebraically with sufficient accuracy 

that eqn. f23} for J1
1 

may be expressed explicitly in terms of the new 

-
variables ll . V 

_;)/ .;)/ r 

~I 

where 

The algebraic steps leading to the expression of f'1; in terms of 

g are detailed in Appendix A, with the result 
I 

- 3/2.[e 3 JL ' -i (2 -zJ /N) ~ ~ - (1 /96)(N /-,) ) e2 it ~ 
I II , 2. I 

i 3 ~-
-0\. 2048 (N I v ) ~ 1./ ., -1 

- V/N 1 
J.. : 6 1- ('ZJ/N)2- 1 + 3V/N 

3 
_ e-2 it~ J 

I 

(24) 

{25) 

and where we have only retained in the quartic term that part which involves 
2 2.. 

!J. f1 and which is independent of t. 10 
I ,1)1 

It is now convenient to introduce variables 0 and J, to play the 

roles of coordinate and momentum, defined as 

7);;-1 krK/11) 
2i I..:;, (26a) 

-
J ~ ~ ~I (26b) 

so that, correspondingly, 

~ ·-· J 1/J. e-i¥ (27a) 

j 1/j_ . ¥' 
·- J el , 

I 
(27b) 

In this case the functional determinant is 

(28) 

and 

~ d j, ... - i J d &' + ± dJ 

. . - i J d K + perfect differential, (29) 

1-415 



MURA-452 

so the new variables fl , J may be referred to the Hamiltonian 

H1 = i..fL1 • 

It is noted that the functional determinant of the over-all transformation 

from v, p to ?/ ·' J is 

~
~-

so that the pair ¥ , J may be regarded as canonically related to the 

original pair v, p. 

From the expression (24) for Jl., and the relation (30) which 

connects H 1 with A, , we immediately find 

3/2.. 3/.z. 
H

1 
c: (2VIN)J- (li48)(NI7)) J sin(3?{-2t) 

(30) 

(31) 

+ (C:X.. I 2048) (N I -zJ )3 J 2 (32) 

-
A final canonical transformation to variables ?f , J, defined by 

the generating function 

- .1:- t) 
3 ' 

(33) 

leads to 

J = oF2Ja>t - J (34a) 

-r = ~~/qi = ~ - yt (34b) 

and 

(35) 

By a sequence of transformations between the pairs of variables 
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Coordinate Momentum 

J 

J 

we are thus led to a Hamiltonian Hz [eqn (35)] from the first .two terms 

of which the independent variable t has been entirely removed and in the 

last term of which we have retained the t-independent part '~ The retention 

of the last term in this form is believed to be desirable, since it can exert 

a significant influence on the J-dependence (or amplitude-dependence) of 

the oscillation frequency. 10 To the degree of approximation considered 

here, then, we take Hz in the form expressed by eqn (35) to be a constant 

of the motion. In this spirit invariant phase curves of the problem are 

determined. 

(b) The separatrix: The assumed constancy of Hz means that for 

any particular value of t and points homologous thereto (t taken modulo 71), 

the quantity 

- {~ - !:JL) J 
N 

1 --
48 

..3,4_ 

(~) 
"!:/ 
-:~ . 3 

sin (3 <Y - Z t) + oL /N) JZ -
Z048 c zj 

J 

is constant If we introduce for convenience the scaled quantities 

Hz (36) 

~~'A little reflection will show that only that part of the quartic terms in Jl 
I 

which have been retained in (Z,4) make a t-indeperident contribution to the 

final Hz. 
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J >- -(-4-8)_2_(_2_/ 3---2-\-)/_N_) 2-( _V_/_N_)_3_ J (37a) 

X 1 (37b) 

and 

7\ - (2/3- 2 V /N)d. 

e (2 - 2 ~ ) [ 6 -,}/N - 1 J * 
:-:3' N . 1 -(z//N) 2 1 + 37J/N , 

eqn. (36) assumes the more concise form 

2 3 4 J +) sin (3(/ - 2 t) - (9r./8~ -::J<. 
The fixed points for the motion, in particular, are characterized by 

expression (38) being stationary with respect to '({ and} . For the un

stable fixed points associated with the separatrix between stable and un-

stable regions, we take (f as having values for which*:f.: 

sin (3 "2f - 2 t) :=: - 1 

[;r ~ - 7T /6 + 2 t/ 3, mod. 2 7r /3] 

and) to be the root } 1 ' 
near 2/3, of the quadratic equation 

(9 "/2)) 2 + 3) - 2 - 0: 

;/1 
• J, ~ + 4 "}.. - 1 

3).. 

;,~F- ~ +2;\ 
2 5 :X. 3 

+ 14~ 4 ... J. 

(37c} 

(38) 

(39a) 

(39b) 

(40) 

(41a} 

(41b) 

* For 'Z) IN,,, 0. 3, ~:= 1. 451706, "'·' 0. 0967804, and (9/8) .,.._" 0. 108878. 

**with this choice of sign for sin (3 ¥ - 2 t), the value of} which we 

select is positive. 

1-418 

I 

~ 



MURA-452 

In the work to follow it will be convenient to employ a quantityo normally 

:A: 
near unity, · which we denote as '1, 

~ J, 
-/,.-1 _+_4_)._ 

-· ....;_ _ _,2-~.:.---
- 1 

• 1 - " + 2 ).. 2 - 5 ~ 3 + 14.,... 4 

Abeing defined by eqn. (37c). The associated value of X is** 

4 

(2 - _!;, ) I 4 

?, ,_ (3 - 7 I ) 

2 

Associated with this value of J< there is a value of J , which we 

denote by Jz. and which is normally roughly J 
1 

I 2, which corresponds 

to setting sin (3 (f - 2 tj '"' + 1 in eqn. (38); if we write ~ J-. -.: ~ 3 ;z.. 

. *** in analogy to eqn. (42a), ~2.. will be roughly 1/2. 

In summary, then 

lj;;. .r~ 
J = 64 (1 I 3 - -z) /N) ( -zJ IN) 7 

(42a) 

(42b) 

(42c) 

(43a) 

(43b; 

(43c) 

(44) 

[:!: et9-n. (37afJ; points on a particular phase curve specified by its value 

of 7< I are then obtained by use of values of ?I and J which are mutually 

consistent with 7< through eqn. (36) or (38), evaluation of the correspond-

ing values of ~ , ), 
. I 

I and finally proceeding back through the trans-

formations to obtain the associated values of v and p. Without continuation 

*For -,J IN:.= 0. 3, ~."' 0. 61225 and 7,, ~ 0. 918374. /) . 

** - J For v IN -~ 0. 3, .·~ "" 0. 130049. 
**:.6: . . J "''/ ·For 7.) lN :~ 0. 3, the value :z... corresponding to /", 1 == 0. 130049 is 

)-1... :=: 0. 31570 and '7 :2... ~ 0. 471_~5. 
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of the analysis beyond the transformations described here, it is pointless 

to express the results to terms beyond those which are second order in the 

quantity (1 I 3 - V /N). 

We give below, in Table IL such values of ~ , ~ , for the two 

types of locations considered in the examples of Section C 2 b, namely 

t ~ 0 (mod. 71 ) and t '' 3 7f' I 4 (mod. 7r } . 

(c) The reverse transformation to the original variables: For evalua-

, and hence of v, p, we now make use of the transforma-

tion equations previously exhibited. Since, by eqns. (14a, b), the quantities 

required for evaluating v and p are explicitly ~0 + j'
0 

and ~0 - Jo 
respectively, we make use of eqn. (A4) of Appendix A, 

jo -to~ _:.~ + i, +- (~/'lg)(N/v)~~[(-310 + J) !54.+(-~§, +J..-l_) ~ S 
I 1 4-:J..II 

+ (- ])~ +.? ~ ) 5, ] , ( 4 5) 

and the corresponding expression 

~/)- jtJ = ~ -~ +- (~/~s)(¥)-v /Z (3l -ri) ):z.. +- (~g +d2.~ ) :5,5, + ( ~ +3~ ) .!, J 
" I I I ;,:a. ' ~ J 

obtained by subtraction of eqns. (Al) and (A2). It is a matter then of 

straight-forward algebra to evalu~te ~0 1 , , 1 ffi.3for the value of t which is 

of interest, to- evaluate J;, + jiJ from the previously written :!,1 , j, 

~-g., those listed in Table II), and thus determine v, p. The results, for 

the cases to which Table II pertains, are given in Table IlL 

..p 

(46) 

Int:ercept 

F. f. 
1.i 

Separatrix 

1-420 



-I ~ 
N -

J 
), 

>~ 

TABLE II 

VALUES OF !j;
1 

AND j
1 

CORRESPONDING TO THE SEP,ARATRIX OF 

EQUATION (5) FOR t = 0 (mod. 7r) AND FOR t = 3 7T I 4 (mod. 7T ) 

MURA-452 

The first lines apply to the unstable fixed points; the last line refers to the intercept of the· 
separatrix with the symmetry axis of the v, p diagram. 

For t = 0, mod. -,.. For t = 3 ?r I 4, mod. Tr 
({ 

~-

:>, ~I _!!,, 31 
1T 2 t ..3)~ 3/~ 3/z. J/a. 

_-+-- 32 ( 13-r i)(_!_- -d)( y_) 1, 32(r'3- i)(~ - ~)( *)'], 32(1 -7"3i){_!_- 1l)(.1L)~ 32(1~-13 i)(_!_ -1LX.1L) 7 6 3 3 N N 3 N N1 3 N N I 

_57rt2t 
.1JJ.. 3/l.. 3/).. 

1 ..,; '.:JL 3_k 
-·32(6 -· i)(!_ "· v)(v') '' -32 (-/.ir i)(_!_ -lLX.zL) ~' 32(1 +-13 i)(_!__lLJ(.U.)~ 32(1 - -f3 0(-- -){ ) { 6 3 3 N N 3 N N . 3 N N 'I 3 N N I 

71 +3._! 
2 3 

. 1 v x2)) 3/J.. 
.. 64 1 (-- - - "'), 

3 N N 
. e -v)( -v )3/l. 641 ---- ~ 

3 N N I 

3/.2-

- 64( _!_ - .!!_y.v) 7 
3 N N I 

1 -)XV) 3/z. 
- 64( 3- N' N' p, 

1 .,) ("-J JJ:A-
J/& 

1 v J/~ 1 r;~.:u. .3)2. 1L 2 t ·e vx.vJ - 2 -r-3- 6 4 i ( 3 - N") N") "J:J. - 641 3- N N f:J.. 64(-- N)(Jl) I 64(3- ~ N) 72-3 N Q. .. 
~------ ------- -·- -
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I 

.a;:.. 
N 
N 

t 

t = 0, 
mod.'T( 

t=37t'/4, 
mod. 'Tt 
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TAb ...... i;III 

VALUES OF v AND p CORRESPONDING TO THE SEPAR.ATRIX 

OF EQUATION ( 5) FOR t = 0 (mod. ?"'( ) AND FOR t = 3 1(/4 (mod. '7t) 

The first lines in each group give the coordinates of the unstable fixed points; the last line 
refers to the intercept of the separatrix on the axis of symmetry. 

v p 

[ ~I 2 t ( ) J -t-32 {3 1 - v 1) 1 - . 2. . . 1 . 1- 1} 6 ~- 1) i[ t" . 10 . 1 ~- ~ 
- (3 Nx ~)rl, ~ _ z}JNG+3V/~ Njq, ~3 ~Nh ~- tJ2JN2 \+3t.I/N) 3 N ~~ 

2 f . . 
0 

0 

/~ lJ)fv)· [ _( 1oUN · 1 \(!._.lL\nJ 3\3 -NJ\N ~~ t ll -7J /N2t1;3iJiij\3 NJ (t 

_64/l_ t1Vt>)'fl,~J2 tJ/N _ ~(.!_ ill 11] 
\3 "N},."Nl ( [ 'ti - 1}2/N2 1+ 3VIN}~- NJ I 

64/l t)'lJL)"Y} ~ I 2 VIN 1 \11- J)_\.n ] 
\3- N}\_N, .l'zt -h -7J2 IN2 -~\3- · "N} 'loz. 

1 1) . . 2• 1 .1 v 
-128 -- - • . ... - ... _ (3 **),, G _ 11 /N2 ~(s ~Y!J 
128 ~- v ]!._ 2 t 2 .... - . 1 . ~-1L - J" (a N%.1 fbi~ -V2/N2 .~ N)'fk 

-Ft>4 fi(~-JLVJJJ2 /H. 2 v/N . _ . 1 ')/~_J/j J 
3 N]~J ~'L 1 - z} IN2 11" 3 VtNA_3 N} "'/., 

0 

0 

Since the ~o-regoing results have not ~een carrfed co~istently beyond terms bf ord~r(~ - f)z , it may be ... 

cons1dered suff1c1ent to replace the coeff1c1ents of( "3 -¥) m the last term of the correctwn factors by the value wh1ch 

these coefficients assume as VI N ~ 1 I 3. Thus the correction factor for the value of v given in the first line of 

Tableiiimightbeconsistentlywrittenas[}. -(714)(113- VIN~. Indeed, since l'l,~1-A~1--(712)(113- VIN), 

the factor ~1 outs1de the square bracket might be replaced by unity and a composite correction factor 
[1 - (21 I 4)(1 I 3 -7/N> employed in this case.* Although this contention cannot be gainsaid; we elect, however to leave 

our results in the form summarized in Table III, being guided, in part, by some computational results pertaining 

to the case t = 0, mod. 'T'( [sect. D 4]. 

*Also ~~(112)(1- 5 Al8). 
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3. Use of Quantities Akin to Angle-Action Variables 

(a) The forward transformations: We commence again with the 

Hamiltonian of eqn. (13) 1 

H = (1/2) p 2 + (1/2) (2 V/N)2 v 2 + (1/6) (sin 2 t) v3 1 (13) 

and make a series of canonical transformations from the conjugate pair 

vi p to 0o 1 J 0 ; <1, 1 J 1 ; and ~~I J
2

. The first transformation 

is defined by the generating function 

so that 

thus 

J 2 ./ G0 (v, ~0 ) = ( -z) /N) v ctn lf 0 , 

p = -a G 0 / ~ v = (2 7.J /N) v ctn ~ 

J 0 = - 0 G 0 / o ¥ = ( -z) /N) v 2 csc2 ~ 

ctn ~ N ....E..... 
= 2v v 

1 ( N ) 2 
2
1 ( N2 -z} ) v2 Jo = T '7iT P + , 

. 1/J_ I/'J- j 
v = (N IV ) J 0 sin ;r

0 

'h.. 1/,_ 
p = 2 ( v /N) J 0 cos )<, 

and the new Hamiltonian is 

= H 
.J/.2. 3/~ 

= 2 (u/N) J 0 + (1/6) (N/-z.J) J
0 

sin3 ~ sin 2 t 

3/.o. 3/:J.. 
= 2 ('2) /N) J 0 + (1/48) (N/v) J

0 
~cos <fo - 2 t) 

(47) 

(48a) 

(48b) 

(49a) 

(49b) 

(49c) 

(49d) 

- 3 cos ( ~ +~) + cos (3 i + 2 t) - cos (3 ;I_- 2 tlJ, 
o a (50) 
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In analogy to the procedure followed in Section D 2 in formulating 

the transformation from ~D , jo to :5, , ~ 1 , we now introduce 

a second generating function 

.1/.;.. .1/..:L fi . ~/ .. J 
-./ .J (li96)(NI-' j J 3 sm ( 10 - Zt; + 3 sin ( ~0 + 2 t) 

G 1 ( 0 I ' J 1 } = J 1 . (Jo + U 1 1 - -l) IN 1 + -z./ IN 

sin (3 ~ + 2 t) J (51 ) 
1 + 3 -2) IN ' 

so that 

= J + (li 32)(Niv) 3 cos ("'0 -2 t) +cos (?"0 + 2 t) _cos (3 <!o+ 2 t) (52a) . 3/~ J/.;2.f ~/ _/ ./ ] 
1 1 1 - 7J/N 1 + v IN 1 + 3 j,) IN 

?!, = o G1 I;;. J 1 

..... 9 .34 ~~,_F . ( J 2 ) j .. J J = tf,+ (1 164}(N IV) J 3 sm ~0 - t + 3 sin( ~0+ 2 t) _ sin(3 t!o+ 2 t) (52b) 
D 1 1 - -z) IN 1 + -v /N 1 + 3 :zJ IN ' 

and 

K 1 = K
0 

+ 9G 1 1-a t 

K (l 148 }(NI-/)/~J 3/~( 3 cos( lo- 2 t) + 3cos( "Ia+ 2 t) _ cos(3 ~+ 2 t>1( 53 ) 
= o + v 1 1: 1 - v IN 1 + v IN 1 + 3 =iJ IN :J 

The new Hamiltonian, K 1, can be expressed in terms of the new 

variables i, , J 1 without much difficulty [;_ppendix B J, with the result 

.1/"" 3 /'2- -/ 
K1 = 2 (-JIN) J1- (1148) (NI-1)) J1 cos (3 4J -2 t) 

1 
] (54) 

1 + 3 -z.J IN , 

in which we have retained 10 only terms independent of t and of a{ in 

the term involving J f 
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It now only remains to introduce a third generating function, 

Gz ( j I ' Jz) ~ Jz < ~ 
2 - 3 t) , (55) 

which effects the transformation 

J1 ... a G 2 1 QJ{ - J2 (56a) 

~= 'd G 21 ;; J 2 i, 2 
= - t 

3 
(56b) 

with 

= 
2 

K1 - 3 J 2 

- 1 . 1/z.. 3/z_ _/ 
(213- 2 -viN) J 2 - (1148) (NI--z)) J 2 cos 3Q.,_ 

+ (o(.. 12048) (N I 7.) >3 J f , (57) 

where, as previously, 

6 -JIN 1 [ cf. eqn. {25lJ 
1 + 3 -z} IN 

and t-dependent terms have been omitted 10 from the term involving J f 
This final Hamiltonian K2, as expressed by eqn. (57) and which we 

shall take to be substantially a constant of the motion, is seen to be identical 

in form to the Hamiltonian Hz of eqn. (35), as developed in Section D 2 

save that the sine function is here fortuitously replaced by the cosine. It 

remains to perform with the present variables the reverse transforrm. tions 

required to carry particular values of ~ , J 2 back to the original 

quantities v, p--both the forward transformation and the reverse trans-

formation which follows, however, appear to be somewhat simpler alge-

braically than the corresponding steps required with the J , ~ 
variables . 

• 
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case_, 

Cb. Tb.e separatrix: To initiate the reverse tranSbrmation in this 

we shall focus our attention as before ~ection D 2 iJ on the par-

ticul:ar salient points of the separatrix:* 

For the Fixed Points 

'1rl3 + 2. tl3, 

_,.,l3+2t/3, 

?r + 2 tl3, 

For the Intercept of the Separatrix 

(58) 

1/.£. ~ 1 I 3~ 
withJ 1 ::64(113-"V/N)(V/N) 1,_,, (59) 

(c) The reverse transformation to the original variables: For evalua-

tion of the original variables v, p one notes from eqns. (49c, d) that the 

quantities explicitly required are sin ~ and cos fo , in addition to J
0

1

h.. 

To the degree of accuracy with which we are concerned in the present 

work, it is sufficient for this purpose to refer to eqn. (52b) and write 

sin fo ~ sin /, 

~ sin -1, 

- (cos rf ) ( ~- - ~ ) 
_ cos >(, (.Ii ~- 11~ sin(?/, - 2 t) + 

3
sin( lf( + 2 t)_ sin(3 I,_+ 2 t)l 

64 7)) J 1 t: 1 - ;; /N 1 + -z) /N 1 + 3iJ IN J 
(60a) 

and 

cos ~ ,; cos I, + (sin I, ) ( '( - ~ ) 

~ cost, 
sin '/, (N)J,Il. 1/~Fsin( Y,- 2 t) sin( '1, + 2 t) sin(3 {. + 2 t)] 

t - J t3 I _ I 

64 """7l, 1 1 - 7.) IN 1 + -tJ IN 1 + 3 -2) IN I' 

. (60b) 

*Because of the presence of cos 3 ¥'0l in eqn. (57), in contrast to the pres

ence of sin 3 t in eqn. (35), the values. of 12. which are of interest here 
may be related to the corresponding values of 'i' by ~ :.: :;- + 7r I 2, or, 
similarly, '¥, -::1( + "1r I 2. This distinction between lf"a.. and -? of course 
could have been avoided by introduction of a phase shift in the generating 
function G 2 . 

• 
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1/z. 
while obtaining J

0 
by fu: eqn. (52a)J 

J ~.:a. ~ J ~~~ ~ + ..!....(N)~. "'/irs < t. - 2 t> +cos < .,-: + 2 t> _ cos (3 ,.; + 2 t>l J 1600 , 
0 1 ll 64 ·. v 1 1 - -,)IN 1 + ;; lN 1 + .3 v lN :J J 

Thus for t = 0 and ?(, = + iT 13 , eqns. (60a-c) give 

' ~ 1 [ 9 
cos & = T, 1 + 1 - 7) 2 IN2 

and 

+ 1 ~(~-~)~J 
1 + 3 ,) IN J 3 N lt, ; , 

so that, by eqns. (49c, d), the fixed point coordinates 

~(-1 - 1)~' .. 1Jh F (- 2 1 )(-1 _ ') J v - + 3 2 , .j - _.J::_ ..L. /, ' 1 - - . - - .JL_ 
. - - . 3 N N 1 1 _ 4) 2 IN2 1 + 3 -,)IN 3 N . ?1 

are obtained. Similarly for the next case in the list (58), with t = 0 and 

't, = "rr , 

sin Yo = 0 

so that 

v = 0 

P = _ 12a (~ -...lL)(.zl.)~ fi J 2 - 1 '(..!.... -.,U_)n] 
3 N N 1, L- fi - )) 2 IN2 1 + 3 -z) IN 1 3 N {I I 

In this same way one finds complete agreement with all the results listed 

in Table III. 
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(d) The unstable equilibrium orbit: The procedure just followed can, 

of course, be employed in general to provide, as a function of t, the equa-

tion of the unstable equilibrium orbit, which is represented (mod. 7T ) by 

fixed points as listed in sub-section (b). 

For the unstable equilibrium orbits, in particular, the Hamiltonian 

equations which follow from K2 [eqn. (57D permit Y,_, and J 2 to be 

constant, with, let us say, 

1/a, ¥a. ] 
and J 2 = 64 (113- iJIN) (VIN) 7

1 
[cf. (b) . 

Then 

= 

'I• J1 = 

= 

7r 

J2 

2 t +--3 

+ 2 t 
-r 

1/2... 

Jj..,_ 
64 (1 I 3 - V IN) ( -z) IN) 1, [.cf. eqns. (58)] . 

By making use of eqns. (60a-c), in conjunction with eqn. (49c), the 

equation for the unstable equilibrium orbit, v(t), is then found to be 

(61a) 

(61b) 

v(t) = _ 644 _ -,))(-.,))n fi~ _ sin 2 t I 3 + 4 (-z) /N)sin 2 t -{ 1 _ 1 Nf. 10 tJ 
3 'N"" N 11 3 1- N 1 -;:12/NZ 1+'ii/N 1+3'iJ/ m 3 

( -+- if)?,j ' (62) 

through quantities of the order of (1 I 3 - V /N)2 . The expression (62) is 

seen to contain circular functions of argument 2 t/3, 2 t, and 10 t/3, as 

was the case for the trial function (7) employed in the variational treatment 

of Section C. By substitution of particular values of t, the specific values 

of v for the fixed points listed in Table III may be obtained. 
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It may be noted, however, that differentiation of (62), which results in 

p =. dvldt = - 128 (...!...- -zJ)(-1- .Jjnlc~s~-[cos 2 tl3 + 12 (-;)IN) cos 2 t 
3 N 3 N t, r 3 1 - -z)jN 1 - -zj2 INZ 

-
5
(1 +\;IN- 1 + /,; IN)cos 

1 ~ 1(i -11-h}' {631 

does not lead exactly to the specific forms listed in Table III, although the 

forms -become coincident through (1 13 - V IN) 2 when(J:. .:Ji) is expanded as 
2 3 N ( *) [1 + 3 (1 13 - .,) IN}). An expression for p may be obtained directly 

from eqn. (49d) of course, just as eqn. (62) was obtained from eqn. (49c), with 

the result 

p - 128 (...!...-JlV.J1) 2
h J"'cos.3_!_+[cos 2.tl3 _ 4 cos 2 t 

3 Ni{ N £1 ( 3 1 - V IN 1 _7) 2 IN 2 

•( 1 .~IN+ 1 + 
1
3viN)cas 

1 ~ 9(~ -~J1]' <
641 

from which the "momenta" for the fixed points listed in Table III follow for 

the special cases. 

4. Computational Results 

(a) The unstable equilibrium orbit: To establish a connection with 

Section C, in which the results of the variational method :vere presented, 

we note first that for V IN = 0. 3 eqn. (62) leads to the unstable equilib-

rium orbit as given by 

v (t) =-0. 56206 sin 2 tl3 + 0. 02373 sin 2 t- 0. 00437 sin 10 tl3 , (65) 

while the alternative forms for p [;qn. (63), obtained by differentiation 

of eqn. (62), or e qn. (64), obtained directly from ~ , J 
2
] are 

p = ~: =- 0. 37470 cos 2 tl3 + 0. 04745 cos 2 t- 0. 01457 cos 10 tl3 (66) 
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or 

p = - 0. 36808 cos 2 tl3 + 0. 04745 cos 2 t - 0. 01399 cos 10 tl3 . (67) 

These expressions may be compared with the Fourier analysis of computer 

results for this case, as given by eqns. (12a, b) of Section C 2. There is, 

of course, no fundamental basis for choosing between formulas (66) and (67) 

since, as noted previously, eqns. (63) and (64) are identical through terms 

in (1 I 3 - v IN) 2 . · It is in any event clear that the present results differ by 

a few percent from the computer results for z.J IN = 0. 3. 

(b)The fixed points: The results presented in Table III for the unstable 

fixed points at t = 0 (mod. ?r ) and at t = 3 7r I 4 (mod. f1) have been sub

jected to computational checks for tJ IN = 0. 3 and for -zJ IN = 0. 3275. 

Computational data pertaining to the fixed points at t = 0 (mod, 7r ) have also 

been obtained for a series of values of -z) IN, ranging from 0. 30 to 0. 36, 

in order to exhibit the dependence of the accuracy on the proximity to the 

J) IN _, 1 I 3 resonance. We present these results below, to be followed 

in the suceeding sub-section by data for -zJIN = 0. 3 which pertain to the 

"intercept" of the separatrix on the symmetry axis of the phase diagrams. 

The coordinates of the fixed points, as calculated by the expressions 

listed in Table III, are compared with computer results for -z) IN = 0. 3 

in Table IV. The agreement with the computer results is seen to be poorer 

in TableiV than was obtained by the variational method summarized in 

Table I for -zJ IN = 0. 3. 
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TABLE IV 

COORDINATES OF UNSTABLE FIXED POINTS, 

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III 

AND AS OBTAINED FROM COMPUTER RESULTS 

VIN = 0. 3 

t From expressions of Table III From Computer 
v p v p 

OJ 0 - 0. 33461 0 -0.3506 

mod.')r + 0.48297 0.23849 + 0.4943 0.2440 - -
311 I 4J - 0. 59015 0 - 0. 6024 0 

mod.?r 0.25949 + 0. 30665 0.2668 + 0. 3207 

To illustrate results applying to operation nearer the -J IN ~ 1 I 3 

resonanceJ the coordinates of the fixed pointsJ as calculated by the ex-

pressions listed in Table IlL are similarly compared in Table V with com-

puter results for -zliN = 0. 3275. 

TABLE V 

COORDINATES OF UNSTABLE FIXED POINTSJ 

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III 

AND AS OBTAINED FROM COMPUTER RESULTS 

?) IN = o. 3275 

t 
From expressions of Table III From Computer 

v p v p 

OJ 0 - 0. 07778 0 - 0. 07793 

mod.?t + 0. 10284 0.04191 + 0. 10295 0.04195 - -
31r l4J - 0. 120095 0 - 0. 12021 0 

mod.1r 0.05854 ~ 0. 06812 0.05861 + 0.06825 
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As is to be expec.ted, the agreement in this case, with -zJ IN = 0. 3275, 

is considerably better than for the case 7J IN = 0. 3 for which the results 

were described previously in Table IV. 

As was mentioned earlier, it is of interest to examine the analytic 

results, in comparison with computer data, for various values of -z) IN. 

The results of such a comparison, for t = 0 (mod. fr ) and YIN in the 

range 0. 30 to 0. 36 are summarized below in Table VI,* in which the 

formulas used to obtain the theoretical results are those of Table III. The 

data are presented graphically in Figs. 1 through 3, and the percentage of 

error in the theoretical results is shown in Fig. 4. 

A detailed numerical examination of the computer data summarized 

in Table VI (forming, for example, such quantities as 

1 

7) IN - 113 

and 

1 [ p 

?) IN - 1 I 3 128 (-z) IN) 2 ( -z) IN - 1 13) 

for the various values of -zJ IN employed and noting that these quantities 

respectively approach 7 I 4 and 21 I 4 as V IN ~ 1 I 3)suggests that the 

theory has, in fact, been carried correctly through terms of second order 

in ,) IN - 1 I 3. The correctness of this conclusion may, in fact, be 

immediately apparent from the second order dependence of the relative 

error on 7.J IN - 1 I 3 in the graphs of Fig. 4. 

*I am indebted to Mr. Igor Sviatoslavsky for assistance in performing some 
of the calculations necessary in the processing of these data. 
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TAB VI 

COORDINATES OF UNSTABLE FIXED POINTS, 
AS CALCULATED FROM THE EXPRESSIONS OF TABLE III AND AS OBTAINED FROM COMPUTER RESULTS 

t =- 0 (mod. 7J ) 

V/N 
Fixed Point on ~metr_y Axis Fixed Points to right and left of Symmetry Axis 

p p t<:rror ± v ±V t;rror p p ~<:rror 

!formula computer .. formula computer % formula computer % 

0.300 -0.33461 -0.35065 -4.57 ±0.48297 ,±-0.49430 -2.29 + 0. 23849 ..,. o. 24398 -2.25 

0.305 -0.29897 -0.30971 -3.47 ±D. 42445 ±0.43205 -1.76 +0.20384 '1"'0.20731 -1.67 

0. 310 -0.25895 -0.26554 -2.48 ±0.36171 ±0.36638 -1.27 -r 0.16850 of-0.17049 -1.17 

0.315 -0.21416 -0.21768 -1.62 ;tO. 29439 ±0.29689 -0.84 ..,. 0.13262 of-0.13361 -0.74 

0. 320 -0.16408 -0.16558 -0.91 ±0. 22202 ,:t0.22310 -0.48 ~0. 09639 +0. 09678 -0.40 

0.3225 -0.13688 -0.13774 -0.62 ±0.18379 ,:t0.18440 -0.33 +0.07822 +0. 07843 -0.27 

0.325 -0.10815 -0.10856 -0.38 ±0.14409 ;t0.14439 -0.21 +0. 06004 ... o. 06014 -0.16 

' 0.3275 . -0.07778 -0.07793 -0.20 .:t0.1 0284 ,t0.10295 -0.11 +0.04191 ~0.04195 -0.08 

0.33 -0.04568 -0.04571 -0.08 ±0.05994 ±0.05997 -0.05 + 0. 02386 ~0.02387 -0.04 

0.3325 -0.01174 -0.01176 --- ±D. 01529 ~0. 01531 --- + 0. 00594 +0. 00595 ---
. 

0. 340 +0.1 0237 + 0.10269 -0.30 ±0.13038 ±0.13060 -0.17 -0.04649 -0.04654 -0.10 

0.345 +0.19025 +0.19226 -1.04 ± 0. 23878 ,rD. 24027 -0. 62· -0.07963 -0. 07987 -0.31 

0.350 +0.28943 -t-0.29655 -2.40 ;!-0. 35808 ±0. 36341 -1.47 -0.11042 -o. 111 o6 -0.57 

0.355 +0. 40211 -r0.42186 -4.68 ±0. 49047 ±D. 50549 -2.97 -0.13781 -0.13883 -0.74 

0.360 -H>.53130 +-0. 58071 -8.51 ::t;O. 63906 ±0.67734 -5.65 -0.1603 -0.16070 (.-0. 25) 
----- --- - -- -- - --~---- -- ~ --- ~ - - ---
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(c) The intercept: The intercept of the separatrix on the symmetry 

ax:s, for which formulas have been given in Table III, is somewhat more 

tedious to determine computationally than the location of the fixed points. 

Computational estimates of the intercept have been obtained, however, 

for V IN = 0. 3 at t = 0 (mod.?; ) and at t = 3 7r /4 (mod . .-,..,. ). The 

comparison of the theoretical and computational intercepts for these cases 

is given in Table VII. 

TABLE VII 

LOCATION OF THE INTERCEPT ON THE AXIS OF SYMMETRY, -zJiN= 0. 3 

t LOCATION OF INTERCEPT Relative Error 
(mod.,-) From Table III From Computer o/o 

0 
p ::: 

0. 1886 0. 191 2 

v = 
3 7r /4 0.3024 0.308 2 
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APPENDIX A 

EXPRESSION OF j)_ EXPLICITLY IN TERMS OF 9 , ~ 
I ~I I 

An iterative solution of eqn. (22b) far 5, ( f!' , , ~ ) leads to 
0 .::;, ....:;.~, z I 

_3'
0 

= J, + (i/48) (N/ zJ )J/& [ rp, 5/ + Z ~1. ~ f, + 3 } 3 3, ] i! ---3 

- (1/1152) (N/ 7.) )3 [ ( ~: -t- 7p,) ~3 + (3 ~~ ~' -t- 2. 7/)2.) ~il-~ + ( 3 ~~ ¢3 -;- zff;: 1- 3 lfJ)~~ +{J~~t-lf 7/)-1)~ 
"" 5, + (i/48) (N I 7.) )3/1. [~I $,?. -r z ~1. 3, g, + 3 ~J g,z.] _t 

+ 0/1152) CN/ v >3 [ ((.3/2-) /;, t -{1/2.)/;/)3,3 +(('1/~)p0 p,-(l/'2.)~ ~z.)3/$ {rrzJ/,~ -(f,)j,_~)~~. CAO 

in which the cubic term has been simplified by elimination of ~ , · · · through use of eqns. (2b-e). Solution 

- -
of eqn. (22a) for 3;, ( 3, , 3, ) similarly gives 

I ~ 

-(i/48) (N/ zJ >31~(3¢. (e2. -t2. ~ ~ ~ + i ~ ] o0 1 , ~I z. ::;1 Z. ..;;! 

+(1/1152) (N/ V)3 [(3i,. {>, + 1/ lpo)$ 3 +(h/o ~+ />/'+ 3 ~)$.1~ t{9Po~31-Z~ tl,+Z'/~~f +P~/it-/1)~ 
~0-5, 

2. I ~ I 

= 3, -(i/48) (N/ V )3~ [3t ~ + 2 ¢, 5, ~ -f iz. .)
1

] .J 

-t (1 I 115 2) (N I v >3 [(( 3/2J) io<$,-( '12.) ~ 2j ~".! -1{(9/~ ir/3-('~) i, f $, t lf3/~) /,~ -( '/;.) j, 2.) 3, 
It may be noted that, since p2. '=' P, * and ~ = rfo * [eqns. (20c, d)], eqns. (A1, 2) are consistent 

with the statement that ~ , 5, form a complex conjugate pair to this order. 

Forming the product of eqns. (A1, 2) then leads, through fourth order terms, to 

• (A2) 

-t1 :5,J+b/4Bl!N/Zhat"{-3P.5_3-P,.J,,.{-rJ.3,3,r3j.~'] • _, _
4 

-r (11768) (NI v >3[lP,3, 4+-I/-~o~-;.5,~ -t{ttlotr¢,rpJ5;! ~If irA J:$ -t Ji.~~} . (A3) 

In addition 
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.5or%:, :5,+~ + (i/1/l)(l(/v/
1"[(-3£ t/,)3/ +(-zf+z.jz)~,~ ~r-11, r3j3)~il. 

-t- terms of third' order. 

so that z. J 
-3 .3 ~~ (:; y 

(.Jo +-3o) .:. $, r 3 3, 0 + 3 g, ..?1 + .:;}1 

di/1' XNt,f' {f-3[, '1,) ~ •' (- t.l, •4,) .§;~ •(-3 I. -3 i + 3Pj- 3J).f.ff{zi, 4~{·(~·3.1,)~ ). 
Finally, the expression for d F 1 I d t, which appears as a function ~ , ~ in eqn. (23), assumes 

the form 

~F/ .dt = - (i/48) (Ntvfl:l-M'~3 f~,~z.J. +~'3.1-~-t'$., J , ,..::;, , ;t';. / / J-

+ (1 /23o4> (N/ v >3[(3i,'i +~ 511,') 5,9 r- ~i,'~ +i?. i"~ -rz ~')~ 3; 

(A4) 

(A51 

o~-(9[~3 + iLJH~ +-~~ +?-_!;)~':ffj'~'/j+zl/[+z~~{+f3J;~+z~'J.1J 
- (i/48) (N/U >JP.r¢_,'t:P~ + J' r,:zt; rJf: ~ ~ +- !1.

3
' 3:] L ~ o.._7, :t/ ...:;, .), z, ..:;;, ~/ '/ ~ 

-r o /15361 (N/ -v > 3{ri~-i. rf,?~"~z(~'rA -ii_')5,3~ t(.1Ji~ +-.¢,~ -il.r.'-3/, ~).5,7-$ 
~zr~~ -!I,?;J.r, 1 ~(~~-~!A'J!; j (A6) 

in terms of the variables .S: , ~ 
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.• ccordingly, the Hamiltonian 1l-1 becomes 

• - i (<. z)/N)_g. ~. - ( tM){tV/Vl" ( G ~·t - .,,-•<t) (.~. ~ !/ .. JF,/Jt ..rl,= .11.0 -t ;;F;/IJt 

= - i (2. V/N)~ff, 
[ i J;.,. h(V/N)l. + (1/,J(e'-''- e _zit) J 5,

3 

3 ~.. 1 + [i ~· + z (liN)~ +Ofz){e"''- e-"
1 
J ]3,~.5, 

I /'{ I" I -• - iji ( i)) + [i I; -Z. (VIN)/. +(3ft.) (e~lt - e·•lt) ] _5, ~ 
+ [ i/; -' (1)/N)~. +{liz){~"" - c -•'t) J ~ 

. (li- 3 --(5Jt, 1)) 

--

{ [ij; 1-' (t.Y/'1)/>, +( 'l~)(e •«. e -ait)] l, . ) 'I 

\[ i ~· t ;,(V!N)f, ,,('!,)( e ''t ·e. ·•'')] ~. - (¢-J{J/. ·1,)(e!" -e ·•

11

) 5, 

( z[ <J: + UV/rt)f. + (f..)(e'''-~ _z;t )]~1- ) J - · 

+ \:l.[ i 4'~ -z(7J/N)4>,. df>.){e"' -~-ut)]f., -M. -j,J{e"''-e'"''J ~ 3; 
• 

3 [ttl; ,.t.{V!N)/,,'f{~)(e"tt _,,:•'?] i, 
+ [if' .,..z (tJ/N)~ d3/¥e'-'

1 
-e '''9] t} 

" 1 - [;pi -Z (zJ/N)~ + (Wj.e•Li-e"'-'
1)J 'I; 

3 [; f; -h tvf#)fA ,.( •h)( e ••t -~ -•'? JPo -('/-;.)(f.+~. -A- tf,'fe •"-e:ut). 

( z[.Jl,' + z(zJ/N)P, .M .. )k'"-e-a')]!J, \ -' · 
+ \: Z.[i ~·-I. (V/N)¢, +('h.) (e''1- e.-"1)]~ - (I_ - 3j.){e"' t- e -Lit) /.5, $, . 

( 
[, P~ -z c vMP. ,.(3/¥e"''1- e·"')] ~ '\ -• ~· -[; J; -t, {VI#)~+ {'/~){e""- e ·•<tJJ~. -l'/z)(l, -3~){e"1 -e-•<t~5, 

--
--

--

' 

--
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which, by virtue of eqns. (19a -d), reduces to -

_l)_,::: -i. (z v/N)3; ~ - (1/'ft.)(N/v/1:;, [ ~2-it ~ 3 - e ~z.i.t g_J} 
/ 

( 
-.i.-.(~)3 \ 

-3o12. Vj 

[-3~(ezit -~ -z.•+) +I. (z.e;.:,•t -e "-2-it)j g'~ 
I I 

-t [-~i (e,t.·/t -C~z.it) ~ zA_ (z.e'-'·t-e•Ut)] ~3 ~ 

+ [-3fo (ez.d~ze~z.~~-3f, (e".-t-e.·l-i.t) 

+- 3 ~'- (e;,,·t.- e -t-it) f 3 cA (Z~zit:: -e -2.it) J ~z 5, z 

+ [2fA- (eZd _ 2 e"ZL-t) +-~I_ {ez•t -e-z,d)'7~ g_
3 

I '£?J 'j / I 

+[-A (e.ztt -ze-zi-t) +-3 rA (e~d-e-2-it)] 5, oJ 

With respect to the quartic terrriS, use will be made in particular1 0 of that part of the coefficient 

~ _i. 
of g; J; which is independent of t --this specific contribution to fl.

1 
isr 

2048 (~/ [s V/N , · ]rf 
rf>o ' P, , ~t. , and ~.! 

1 - ( TJ/N)2 

as is readily found by use of eqns. (20a-d) for the functions 

.,,It was to effect this specific reduction of the cUbic term that the quantities r}
0

, • · · 4 were required 

to satisfy eqm. (19a-d). 

(A7) 
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APPENDIX B 

EXPRESSION OF K1 EXPLICITLY IN TERMS OF t; , J 1 

The Hamiltonian K1 as given by eqn. (53), with K0 represented by eqn. (50) and the dynamical 

variables by eqns. (52a, b). may be expressed 

K1 = 2 (?)IN) J +- (1 I 48) (N/'th~ J .V:z. G cos ( ~ - 2 t)-t-3 cos'< 6+2 t) 
1 1 L 1 - iJIN 1 .,.. /N 

-3 cos (3 to+- 2 t) ] 
1 -t 3 VI N 

+ (1148) (NIV)S/~(J13/"-r<3l64) (NIV)'ti,.J{ [cos (Yo- 2 t) +cos (/o-t-2 t) _cos (3f;t2 t) lJx l 1- 1JIN 1+-VIN 1+ 3 VINJ 

• [ 3 cos ( f., - 2 !) - 3 c~s (f.+ 2 !)-+-cos (3 'fot 2 !) - cos (3 Yo •· 2 !) } 

+ (1 I 48) (NI7J )3p,J3/~ [- 3 cos (Yo - 2 t) 3 cos ( Yo-t- 2 t) - cos (3 /o1' 2 t) J 
1 1 - ill N +- 1 + 7J IN 1 + 3 D IN 

.:::.2(VIN)J
1

.,. OI48XNf7.))312 J312{ [3 cos ( fo - 2 t) 
1 1 - 1JIN 

-+ 3 cos ( Yo +- 2 t) 
1 +VIN 

- 3 cos (3Yo t' 2 t) 1. (_i_) 
1 -to 3 V IN J N 

+ 3 cos ( ~ - 2 t) - 3 cos ( Ia+ 2 t) + cos (3 to 4- 2 t) - cos (3 Yo - 2 t) 

-3 cos ( fo - 2 t) 
I- "1Jjt{ T3 

cos ( fot 2 t) 
I+- =tJ/ N 

COS ( 3 Yo + 2 t) . 

I-t 3 7J/IJ 

3 1 3 1 1 1 
... 312 2, 2 1 -1/IN -2 1t VIN -2 1-r 3 VIN 

+ (1 I 1 024)(NI v) J 1 
plus terms of argument 

4 t, 2 fo ' 4' Yo . 6 Yo , 2 ~ :t 4 t, 4 Yo± 4 t, 6 fo + 4 t I (B1) 
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By the nature of the transformation, as determined by the selected generating function G
1

, the coefficient 

3/2 
of J 

1 
is such that a considerable cancellation is seen to be possible. Those terms in the coefficient of 

J 1
2 which involve t and/ or Yo will be ignored, since, to the order to which the analysis is to be carried~ 

they will not cor.tribute t .. indepe!'dP.nt terms to the Hamiltonian which results from the final transformation, 10 

In view of the remarks just made, K1 is taken to be effectively 

K1 = 2 CV/N) J 1 ~ (1 I 48) (N/ U)3 / 2 J 13 / 2 cos (3 Yo - 2 t) 

-?) 3 2 [6 1JtN 1 ] + (1 /2048) (N/ ) J1 1 - 7)?.JN2 - 1 -t 3 'V/N 

Since G:!...:._ eqn. (52b)j the variable Yo differs from f, by terms of order J 1
1 I 2 , we may expect that 

substitution for fo in the second term of eqn. (B2) will contribute additional terms to the coefficient of 

J 1
2; this substitution, however, will not introduce terms other than those of the form which already have 

been ignored in the coefficient of J 1
2 and we therefore write, finally, 

K1 •? (V/N) J 1 - (1/48) (N/ c))3 /'2ii._/ 2cos(3 'f,- 2 t) 

+ (1 /2048) (N/ v )3 J[ [ 6 V/N 
1 - v2 /N2 1..-3

1

t)/N J. 
The last factor appearing in the J 

1
2 term will be recognized as the parameter denoted by ~ in the 

text [eqn. (25) J . 

(B2) 

(B3) 
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MIDWESTERN UN1VERS:T~ES RESEARCH ASSOC:AT~ON''< 

2203 Unive:- sity Avenue Mad:son, Wiscor~si.r>. 

CONCERNING THE VIN ~ 1 I 3 RESONANCE_. II 
• ' 

APPLlCAT:ON OF A VARIA 7IONAL PROCEDURE AND OF 

THE MOSER METHOD TO THE EQUA'I~ON 
I 

d
2

v + (
2 

V f v i I. [ L bm sin 2 m t] v 2 -· 0 
dt2 N 2 m ·~ 1 

"*'* L. Jackson Laslett · · 

May 20, 1959 

ABSTRACT 

As a continuation of an 'earlier report pertaining to the VIN ___, 1 I 3 

resonance, the stability boundary for the equation 

has been studied analyticaLy and (for b 1 ~ 1, b 3 ... 3/4. b 5 1/2) by digital 

computation. A re:iativel.y simple trial function, 

v :-:: "[ [Am sin {2 m - 4/ 3~ t + Bm sin 2 m t + em sin (2 m + 41 3)t 
m ;-; 1 

is employed in a variational procedure or with harmonic balance to obtain 

an estimate of the unstable equHibrium (perbdic)so.iution and associated 

fixed points. Application of the Moser method of solution is a.'.so carried 

througt.J to include terms of order (''/)IN - 1 I 3) 2 . T':'Je results are compared 

with computational data for V/N -, 0. 3267, 0. 33, 0. 3367, and 0. 34. 

* AEC Research and Development Report. Research supported by the Atomic 
Energy Commission, Contract No. AEC A T/11-1 }- 384. 

*':<Department of Physics and Institute for Atom1c Researct_. Iowa State Coll.ege. 
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A. MOTIVA.TION 

1* In a previous report, hereinafter designated as I, a study was made 

of the differential equation 

d
2

v + (2 V/N) 2 v + (1 /2) (sin 2 t) v 2 = 0, 
dt2 

(1) 

with particular attention to the limiting-amplitude solution governed by the 

one-third resonance (UN -H /3). As was pointed out in I, if the coefficient 

of the linear term in (1) had not been constant but involved a periodic function 

of the independent variable t, it would be possible2 to remove this t..;depend-

ence by a suitable trans:brmation. Such a transfor-mation, however, has the 

effect that the quadratic term becomes more complicated than in eqn. (1). 

As an extension of the results of I, we therefore consider in the present re-

port the equation 

with b 1 + 0. · 

+ (2 -zJ/N)2 v + (1/2) [ 'L bm sin 2m t] 
m=l 

V 2 0 = 1 
(2) 

As before, 1 results of a variational solution and of application of the 

Moser procedure3 will be presented and compared with computational results. 

In particular we shall be concerned with the limiting-amplitude solution 

governed by the one-third resonance, and undertake to carry the analysis 
~ 

consistently through terms of order ( 7}/N - 1 I 3)2. 

*References are given in Section E. 
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B. THE VARIATIONAL METHOD 

The unstable equilibrium orbit, or the associated "fixed points" 

characterizing the Emiting-amplitude solution of eqn. (2)j 

d
2

v + (2 zJIN) 2 v t (1/2) [ L bm sin 2 m t] v 2 ~ 0_, 
dt2 m::: 1 

may be sought by insertion of a. suitable trial function into the variational 

statement 

!) f .((dv/dt)
2

) ~- (2 zJ/N)
2 

( v
2 > ~ (1 /3) m"i;l bm ( v3 sin 2 m t >} = D. (3) 

We shall employ here the trial function 

v •;, A 1 sin 2 t I 3 + B 
1 

sin 2 t + C 1 sin 1 0 t I 3 

+ m0
2

[ Am sin (2 m - 4/3) t + Bm sin 2m t + Cm sm (2 m + 4/3) tJ, (4 

in which the first term is the dominant one and the remaining terms are then 

of a form suggested by considerations of harmonic balance. 

In the substitution of the trial function (4) into the variational statemertt (3), 

only those terms need be retained which will contribute terms of order no 

higher than ( VIN - 1 I 3) 2 to the solution--to this accuracy it is then sufficient 

to retain (cubic) terms in ( v 3 sin 2 m t) which involve A 1 squared or cubed. 

With this approximation the variational statement (3) then becomes ( on multi-

plication of (3) by 72): 

16[1- 9 (VIN> 2]Al + 16[9- 9 cUIN>2] Bf + 16[25- 9 <VIN> 2]c12 

+ 16 J=J [(3 m - 2)
2 

- 9 cz.JtN> 2
] A;, + [ (3 m) 2 - 9 ( VtN)~ B;, +[c3 m + 2)2 

· - 9 < VtN> 2] c~ 
+ 9 b 1 [A1

3
/3- 2 A1

2 
B 1 + Al c 11 

+ 9 ~ 2 bm [ Af (Am - 2 Bm + Cm >} to be stationary. (5) 
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By performing the appropriate differentiations of the algebraic form (5) the 

simultaneous algebraic equations for the coefficients of the trial function are 

then obtained directly: 

32 [1- 9 (thN>2J A 1 + 9 b 1 [Af- 4 A 1 B 1 + 2 A 1 c 1 ] 

+ 18 L: bm A 1 (Am - 2 Bm + 
m:-:;:2 

32 [9- 9 (t)/N) 2]B1 - 18 b 1 A 1
2 ~ 0 

32 [25 - 9 < tJ/N>2J c 1 + 9 b 1 A 1
2 

:: o 

32 [<3 m - 2) 2 - 9 ( V/N)2] Am + 9 bm Af == 0 

32 [<3 m) 2 - 9 ( t.,)/N) 2] Bm - 18 bm A 1
2 

:: 0 

32 [<3 m + 2) 2 - 9 ( V!N>2] em + 9 bm Af = 0 . 

In solution of eqns. (6a-f), one may first express B 1, 

Cm) ·- 0 

m~2 

C1, Am, 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 

(6f) 

in terms of A 1 by means of eqns. (6b-f) and substitute the results into eqn. (6a) 

to obtain an equation involving the unknown A 1 alone. An approximate solution 

of this last-named equation .. valid through terms of order ( V/N - 1 /3) 2 , may 

then be obtained and the remaining coefficients (B 1, c 1, Am, ... ) determined 

[Appendix A]. We thus find 

Al • - 3 
6
b
4
1 (1/3- VtN{ 1- SF 

32 - J 2 
B 1 = ~ (1 I 3 - V/N) 

c1:::- 31;1 (1/3- V!N>2 

A - - 128 m- --
3 b1 (m - 1) (3 m - 1) 

9m2- 1 
bm/b1 

(m + 1) (3 m + 1) 

(7b) 

(7c) 

(7d) 

m~2 (7e) 

(7f) 
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These coefficients, when employed in the trial function (4), provide us with 

an approximate representation of the unstable equilibrium orbit in the form 

of a trigonometric series. 

From the foregoing results for the unstable equilibrium orbit, the 

coordinates of the fixed points may be obtained, as desired. Thus, at t = 0, 

one finds 

v :: 0 (8a) 

(8b) 

From the experience reported previously in I (Section C of reference 1) 

it may be expected that the accuracy of these results, being carried only 

through second order terms, will be somewhat limited unless .!. - z) I is 
3 N 

small; reasonable accuracy might be expected, however, if I ~ -~ I were, 

say, as small as 0. 01. A comparison of the analytic results with digital com-

putations will be presented later in this report (Sect. D). We turn next to the 

applications of the analytic method of Moser to eqn. (2). 

C. THE MOSER PROCEDURE 

1. The Forward Transformations 

In this section we undertake to treat eqn. (2) by· the Moser procedure, 3 

in a manner paralleling that presented in Sect. D 3 of I. 1 Our basic equation, 
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eqn. (2), follows from the Hamiltonian 

H = (1/2) p 2 + (1/2) (2 V/~)2 v 2 + (1/6) [£;
1 

bm sin 2m t] v 3, (9) 

which we now subject to a series of canonical transformations designed to 

eliminate the t-dependertce from the cubic term in (9). 

We commence by employing the generating function 

(10) 

so that 

p = (jG0 / ~ v = (2 'l)/N) v ctn. Yo (lla) 

J 0 = - ;)G0 / d Yo = ( V/N) v 2 csc 2 ~ (llb) 

thus 

ctn (12a) 

Jo = ~ 6vi p 
2 

+ ~ c2:J v2 (12b) 

v = (N/zJ/2. Jo 
'/~ sin Yo (12c) 

p = . 2 ( V/N)1/2, '1'--J 0 cos Yo (12d) 

and the new Hamiltonian is 

= H 

= .2 ( V/N) J 0 + (1 I 6)(N I tJ>3
/-L J~t. sin3 f

0 
'E bm sin 2 m t 
m=1 

= 2 ( 7J/N) J
0 

I 1- l*- 3/~ ~ [3 cos (Y0 - 2m t) -3 cos(Y0 + 2m tj + (1 48)(N l/J J 0 w bm 
m = 1 + cos (3 Y

0 
+ 2m t) -cos (3/

0
- 2m t) , 

(13) 

with · Yo and J
0 

constituting respectively the new coordinate and momentum. 

1-452 



MURA-459 

We now select as a second generating function 

so that 

and 

sin ( Yo - 2 t) sin ( Yo + 2 t) sin ( 3 Y0 + 2 t) 
+ 3 - --_;;;.----,r--~ 

1 - V/N 1 + V/N 1 + 3 7N 

sin ( r 0 - 2 m t) + 3 
m- iJ/N 

+ L b _ sin ( 3 Yo - 2 m t) _ 
m=2 m- 3 VI N 

sin ( Yo + 2 m t) 
m + V/N 

sin ( 3 ( 0 + 2 m t) 

m + 3 7J!N 

[
cos(Y

0 
- 2 t) cos( Yo + 2 t) cos(3 ( 0 + 2 t) l 

1 - iJIN + 1 + V/N. - 1 + 3 iltN J 
cos ( Y

0 
- 2 m t) + cos <Yo + 2 m t) 

+ Lbm m- 1)/N m + DIN 

m=2 _ cos (3Yc,- 2m t) _ cos(3(0 + 2m t) 

m - 3 i)/N m + 3 N 

bl fo sin( Y0 - 2 t) + 3 sin( Yc, + 2 t) _ sin(3 Yc, + 2 tJ r 1 - z)/N ·1 + V!N 1 + 3 iJJN ] 

sin ((
0 

- 2 m t) 
3 

sin (Yo + 2 m t) 
3 + 

+ L bm m - 1J/N m + 7J!N 
m=2 _ sin (3 )'0 - 2 m t) _ sin (3 ~ + 2 m t) 

m - 3 1}/N m + 3 1}/N 

b
1 

[- 3 cos( ( 0 - 2 t) + 3 cos( )'0 + 2 t) _ cos(3 Yc, + 
1 - V/N . 1 + l)fN 1 + 3 

_ 3 cos ( "(, - 2 m t) + 
3 

cos ( ~ + 2 m t) 

L 
1 - V/mN 1 + 1J/mN 

+ bm v v 
cos (3 1 0 - 2 m t) _ cos (3 1

0 
_ + 2 m t) 

m=2 + 
1 - 3 1}/mN 1 + 3 1)/mN 
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it is now in order, of course, to express the new Hamiltonian, K1, explicitly 

in terms of Y
1 

and J 1 . -As a first step,, substitution of J 0 , as given by 

eqn. (lSa), into K
0

, as given by eqn. (13), results (after considerable sim-

plification) in eqn. (16) assuming the following form, through terms of order 

1 

1 + 3 7//N 

+ 2:: bmbm + 2 r 1 - ' 1 ] cos 2 (3 Y,- 2 t) 

m:.: 1 . bl Lm + 3V/N m + 2- 3 u:NJ 
+ terms which are neither constant, nor involve 

circular functions of an argument which is a 
multiple of 3 Y, - 2 t 

0 

It can be seen that the introduction of Y
1 

in place of Y in eqn. (1 7) 
0 

need not change the· form of this result, since the substitution, based on 

eqn. (15b), which is involved in expressing cos (3 Y - 2 t) in terms of Y1 - 0 

does not introduce into the J f term any terms of the form which we have 

elected to retain. It may moreover be noted that there is little point to re-

taining the last term in eqn. (17), involving the cross products bm bm + 2 , 

since. to this order, 3 ?J/N may here be set equal to unity with the result 

that the term in question vanishes. In this spirit, and in the interest of 

simplicity, we therefore write 
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where 

1 

1 + 3 t)/N 

-m-2=--_-9_1_7)~2-/N-2=--1 ( 19) 

(cf. eqn. (25) of I] and in which t-dependent terms have deliberately been 

omitted from the J 1
2 

term of K 1. 

For the final transformation we now. as in I. introduce the third 

generating function 

which effects the transformation 

with 

J 1 = (1G 2 I d y1 = J 2 

f2 ·- fJG2/ d J2 = y1 
2 

- - t 
3 

(20) 

(21a) 

(21b) 

K2 = K1 + IJG2 / 4t 

= K - ~ J 

1 (1 3 ~) b1(_N* r~ bf (_N)3 2 
= - 2 3 - N J 2 - 48 \zJJ J 2 cos 3 y2 + «. 2048 \V J 2 <22 > 

and in which <X.. is given by eqn. (19). K2• which, as written. is independent 

of t, is now to be regarded as substantially a constant of the motion. 

2. The Separatrix and Fixed Points 

The expression (22) for K2, which we take to be a constant of the 

motion,is virtually ident·cal in form to eqn. (57) of I [Section D 3 of refer-

ence 1) and the succeeding step thus will parallel the corresponding work 
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2 
in I, save that the values of J 2 (= J 1) will contain a factor 1 /b

1 
and ;;l_ 

is to be interpreted in the manner of eqn. (19). 

The fiXed points, corresponding to the unstable equilibrium orbit, 

are characterized by K
2 

being stationary; i.e., by 

cos 3 y2 ·- - 1 (23a) 

Y2 = + '711 3, /f( . (23b) 

~ = + 7't/3 + 2 t/ 3, 'f(+ 2t/3 - (23c) 

and 

'/'-' / 12' = ~ (-1 - 7)) {f f1, Yf J1 = 2 b 1 3 N N 1 
(24) 

where 

~1 = 
/1 + so<. <jta- VtNl' - 1 

4 ()(, (1 3 - ZJ/N) 
(25a) 

= 1-2 ()(; (1/3- -z)/N) + ... . (25b) 

Other points on the separatriX are determined by eqn. (22), with K 2 given 

• the value (implied by eqns. (23a) and (24)] 

Kz = - :1:: (~j 0 - ¥-J • 
(26) 

3. The Inverse Transformation 

To obtain an expression for the unstable equilibrium orbit in terms 

of the original dependent variable, v, we perform the inverse transformation 

from Y
1

, J 
1

, making use of eqn. (24) and (say) setting '(1 = 1(+ 2 t I 3 

[cf. eqn. (23c)J. We thus write 

J 1/t. ~ J '/"L r1 - b 1 m \3/~ J 'I~ . R] 
o 1 l 01f \.TTl 1 

sin '( 
0 

,; sin ~ - (cos Y1 ) ( ~ - 'f'
0

) 

v b 1 cos Y1 (N~~ 1/?.J 
= sin I 1 + 64 -:;-r J · S 

(/, 1 . 
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and 

cos f 
0 

; cos Y1 + (sin ~} ( ~ - ~} 

v b 1 sin ('1 (-N ) 3~ '/~ 
- cos D 1 64 7}j J 1 s ·' 

where 

H:! cos4t/3 +cos8tl3 cos4t 
1 - ZAN 1 + VIN 1 + 3 V/N 

cos (213} (3m- 1) t +cos (213) (3m + 1) t 
m - 7)/N m + 7J/N 

and 

3 
sin 4 t I 3 

S::. - 1 - 7}/N 

cos 2 (m - 1) t cos 2 (m + i) t 
m - 3 ii/N - - m + 17/N 

+ 3 sin 8 tl 3 
1 + 7)/N 

sin 4 t 
1 + 3 V/N 

_ 
3 

sin (213) (3m- 1) t + 
3 

sin (213) (3m+ 1) t 
m - iJIN m + V/N 

+ 
sin 2 (m - 1) t 
m- 3 il!N 

sin 2 (m + 1) t 
m + 3 i/IN 

Accordingly [cf. eqn. (12c)J 

l~ ~~ v 
v = (N I?) ) J 

0 
sin 1 

0 

(27c} 

(27d) 

(27e) 

= - (N Jz})~ Jrz- [1 -(1 - ~1 "/I · R] [sin 2 t/3 + ( 1- ~) Yj1 (cos 2 t/3) S J 

sin 2 t I 3 + 4( z) IN)sin 2 t _( 1 · _____!_______j 
1- UN 1 -Z)2JN2 ,-1 +UN- f+317!N} sin.10tl 
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similarly [ cf. eqn. \12d)J 

zJ 1~ tjz. 
p = 2 ( IN) J 0 cOS y . 

0 

= - 2 ( z}JN) v~ 4~ r -( i -~) 11 . , [cos 2 t I 3 - G -~ '1/1 ~in 4-) s] 
cos 2t/3 

~os 2t/3 _ 4 cos 2t \+( 1 
11 

/3Z)JN\cos lOt/ 
~ - 1J!N 1 _z;. /NZ) \1 +UN rJ 

--~(.!. - ~)(Jl}: Y1 
- b 1 3 N )\ N) . t 1 

(m _ \JJN + m .- ; iJ!N)cos (2/3) (3m- 2)t 

4 m cos 2m t 

mz- 1/-!N2 

m +l 3 i)/N)cos (2/3) (3m+ Z)t 

For comparison with the results of Section B, we may first examine 

the coefficient of sin 2 t/3 in the expression for v shown in eqn. (28a), 

making certain simplifications consistent with retention of terms through 

those of order(1- ffj This coefficient is 

A1 =- :~ 0 -~)f~)~1 [1- 11~3;)/!1N "l J 
! - 64 (_!_ - ~) 1:~) [ 1 - lz 0(. + 1 ~ (]_ - 7))] 
- b1 . 3 Nj \-Nj \.. 1 - i)/Nj 3 N 

; -:~ (i- ~X~) [ 1- (2 rk + %) (i- ~)] 
~ ~~1 0 -~) [ 1 

- (
2 II- + ~J a -~l 

and, with 

(28b) 

(29a) 

(29b) 

(29c) 

(29d) 

.J ; 7/4 + 4 ~ (bbm)2 9m2- 5 
~ ~ (9 m 2 - 1) (m~ - 1) 

m=2 1 
[ cf. eqn. (19) J, (30) 
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A 1 ; - 364b1 (-31 - 1)N~)[1 - 8 [1 + ml:cc2 (tl_bm1 )2 9 m2 - 5 l (.!. - U)\( (29 ) 
~ 1[' :. \. 1 (m2 - 1)(9 m2- 1) 3 N~, e 

in agreement with the expression given as eqn. (7a). A similar reduction 

of the coefficient of cos 2 t I 3 in the expression (28b) for p leads to a 

quantity whlch is 2/3 of formula (29e) for A 1, as it of course should since 

p -= dv/dt. 

Similar reductions of the remaining (second order) terms in the 

trigonometric series for v and p, as given by eqns. (28a, b), leads to the 

coefficients listed below in Table I. 

TABLE I 

COEFFICIENTS OF SECOND ORDER TERMS IN THE TRIGONOMETRIC 

SERIES FOR v AND p, FROM EQUATIONS 28a AND 28b. 

" 

Argument Sine Coefficient in v Cosine Coefficient in p 

2 

(+- :/12 2 t + ~ (]____ -z)~ + 64 
b1 3 N bl 

--· " 

10 t /3 - _1_§_ ( J:_ - .:Jdj 2 _ 160 e·- _ v1
2 

3 b 1 3 N 9 b1 3 N 

(2/ 3)(3m- 2)t 128bm 1 c _.JL)2 

- 3 bl (m - 1)(3 m- 1) 3 N 
_ 256bm 3m-2 c 7,))2 

9 bl ~m - 1 H3 m - I) 3- N 

256 bm 1 c f/)2 512 bm m 1 vJ 2m t -t· 
bf, 9 m:! - 1 3 - N + 2 9m2 - (3 -N 

b1 1 

(2/ 3)(3m + 2)t - 128 bm 
1 (1 - ll)f _ 256 bm 

3m+2 C u.r 
3 b 2 (m + 1)(3 m + 1) 3 N 9 bf (m + 1)(3 m + 1) 3 N ~ 

1 

The coefficients listed here for the terms appearing in eqn. (28a) for v are immediately 

seen to be concordant with the coefficients of the trial function of Section B, as listed in 

eqns. (7b-f). Similarly the coefficients listed for p are seen to be related to those given 

.or v in a way consistent with p = dv /dt. · 
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Coordinates of fixed points may of course be obtained directly from 

eqns. (28a, b). Thus, for one of the f:xed points at t ,.., 0 one finds 

v o: 0 (31a) 

2 1 

P --~ (1 -12)(~ 1{ - b 3 N N · 1 1 

1 + 3 -z.)/N 

(31b) 

This expression (31b) for p may be somewhat simplified if various reductions 

are made by aid of ~ 
1 
~ 1 - 2 0(. ( ~ - *) , use of eqn. (30), and the approxi-

mation czJ/N)
2 

i.!! ~ [ 1 - 6 G -~) 1 : 
p ,.; - ~(_!_- U) f1)f ~ 1 - []_ _ 16 2: m (bm/b1) ](1 _ -z)_~l 

b1 3 N/ fJiJ ~1 l 4 m"2 (m2- 1)(9 m2- 1~ 3 NJ'j 
;, - 1:8 (~- ~tl)f[1 -[~1 -s r 2m{bm/b1)-:{9m

2
-5)(bm/b1)

2l (_!_- v\1 
1 NJ flJ m"2 (m2 - 1) (9 m2 - 1) J 3 N) j 

,;, -;~s(~ -W'[1 -[ ~5 - 8 L 2
m (bm/b 1) - (9m

2
- 5) (bm/b\)

21 (~ -~\} 
1 NJ m:::2 (m2 - 1) (9m2 - 1) j / , 

(31b') 

which is in agreement with the result (8b} found in Section B. The other 

unstable fixed points associated with this value of t likewise may be 

obtained, by the substitution of t ~ + rr in eqns. 1(28a, b): 

2 1 

1 + 3 V/N 
1 -
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10 1 

+ 1 + 3 zJ/N 

The reduced forms (32a') and (32b') agree with the value of the trial function 

of Section B and its derivative at t = + rr.., namely v = + cff I 2) ~ (A -em> - - rfi11 m 

and dv/dt =- (1/3) '=':[<3m- 2) Am- 6 m Bm + (3m+ 2) em].- when 

the coefficients are taken as given by eqns. (7a-f). 

The coefficients of the trigonometric development of the unstable equi-

librium orbit, and particular fixed-point coordinates, are thus seen to agree, 
' 

through terms in (~ - ~2 
, when obtained by the variational method or by the 

Moser procedure. In the following Section we present some computational 

checks of these results. 
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D. COMPUTATIONAL CHECKS 

The analytic results of Sections B and C for the limiting-amplitude 

solution of eqn. (2), for which the solution was carried through terms of 

order ( V/N- 1 13)
2

, have been subjected to computational checks4 for a 

series of examples in which 

b3 = 314, and b 5 = 1 I 2 , 

and in which -rJ1N successively assumed the values 

0. 3267, 

0. 33 .. 

0. 3367, and 

o. 34. 

(33) 

The computational results for the trigonometric representation of the 

unstable equilibrium orbit, and for the coordinates (v, p) of the fixed points 

corresponding to t = 0, were compared with the results of the analytic work, 

both in the form obtained directly from application of the Moser method and 

in the simplified, or ''reduced", forms in which the results also could be 

expressed. A particularly decisive test of the results might be afforded by 

examining explicitly the coefficient of CVIN - 1 I 3)2 in the results- -thus by 

forming 

9 b1 (- p) 
1 - -rnr l- 1J 

3 N 
1 7,) 
3 N 

one might expect to obtain a result which would approach 

45 
4 

aL; 
m=2 

2m (bm lb1) ... (9 m2 - 5) (bmlb1) 2 

(m2 - 1) (9m2 - 1) 
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as V/N "'""+1/3[cf. eqn. (31b'~· Fromsuchtestsitappearedthatthe 

coefficients of interest were approximately of the size expected but assumed 

limiting values which depended appreciably on the Runge- Kutta interval 

employed in the computations--thus with NRK = 64 (requiring runs of length 

N E= 960 Runge- Kutta steps). the limiting value of 

9 b1 (- p) 
1 --- !_11 128 

3 N 

1 -z) 
3 - N 

appeared to be about 11. 7. In the results reported below, the computational 

results are taken primarily from runs made with NRK = 64. 

In Table II we list the Fourier coefficients of the unstable equilibrium 

orbit for the cases studied. For each argument listed, the first line gives 

the value of the coefficient expected from the results of the Moser theory 

~qns. (28a, b)]; the second line gives the value obtained from the reduced 

forms [see eqn. (29e) and Table I]; and the third line gives the coefficients 

obtained computationally. 

In Table III we similarly list the fixed-point coordinates, for t = 0. 

The agreement between the analytic and computational results, as illustrated 

by Table II and Table III, is felt to be completely satisfactory. 
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... 
I 

.&:o. 
0'1 
.&:o. 

Argument 

2 t/ :i 

2 t 

10 t/ 3 

·-

14 t/ 3 

6 t 

22 t/ 3 

26 t I 3 

1 0 t 

34 t I 3 

---· 

TABLE II MURA-459 
FOURIER COEFFICIENTS IN T <)TABlE EQUILIBRIUM ORBIT 

hl:l b<J=J/4 b.:=l/2 

Sine Coefficient in v 
V/N 

(l 1?.f>7 0 ~~00 0 ~~fi7 

-.133 915~(a -. 069 1337 +- • 073 9787 
-.133 4186(b -. 069 0676 .,. . 073 9068 

k -.0691799 + . 073 9996 -.13413til 

+. 001 2792 t. 000 3385 + . 000 3818 
-t. 001 4080 +.000 3556 +- • 000 362'1 

-t. 001 2 594 -t.OOO ::13 57 +. 000 3859 

-. 000 21 7!:> -. 000 0570 -. 000 0630 
-.000 ~347 -. 000 0593 -. 000 060ti 
-. 000 2101 -. 000 0560 -. 000 0643 

'". 000 0794 -·. 000 0211 -. 000 0240 
.. 000 0880 -. 000 0222 .. 000 0227 
.. 000 078ti ... 000 0209 . 000 0241 

1'. 000 0964 +. 000 0254 +. 000 0286 
1". 000 1 056 +. 000 0267 +. 000 0272 
-t. 000 0947 f' 000 0252 +. 000 0289 

. 000 0324 . 000 008~ . 000 0095 
... 000 0352 . 000 0089 . 000 0091 
··. 000 0318 .. 000 0084 -. 000 0096 

-
... 000 01 52 . 000 0040 -. 000 0045 

. 000 01 6[\ ... 000 0042 . 000 0043 
... ooo 01 48 000 0039 . 000 0046 

+. 000 0230 +' 000 0061 t 000 0068 
+. 000 OL!51 +. 000 0063 + 000 0065 
t-. ooo 022 5 +. ooo ooa 0 + 000 0069 

I· 000 0090 . 000 0024 . 000 0026 
- 000 0098 - 000 002!1 000 0025 

ooo oo9 0 ... 000 0023 -. 000 0026 

(a n::qn. (2 Sa) 

(h)lkdu•·ed fonns(29e).~ seq. 
(<- )Cornpul~ttionc.tl 

~ 

0 ~400 

.... 150 9863 
-t-.1503963 

-t . 1 51 3 083 

-t. 001 5780 
+. 001 4222 
+.0016175 

-.0002578 
-. 000 2370 
~.0002693 

-. 000 0994 
-. 000 0889 
-. 000 1013 

+. 000 1178 
-t. 000 1067 
-r.ooo121 0 

". 000 0390 
-. 000 0356 
... 000 0399 

. 000 0188 
- . 000 0169 

. 000 0195 

+ . 000 0280 
-t. 000 0254 
+. ooo 0288 

- . 000 01 09 
" 000 0099 
·. 000 01 o9 

Cosine Coefficient in p 

~ 

0 ~2fi7 0 3:iOD 
-.0891973(a) -.0460785 
-. 088 9457(b) -. 046 0451 
-.089 423 (c) -. 046 120 

.... 002 5584 t. 000 6771 
+.002 8161 ~. 000 7111 
t . 002 519 +. 000 671 

-. 000 7192 -. 000 1892 
-. 000 7822 -. 000 197 5 
-. 000 700 -.000187 

-. 000 3724 -. 000 0987 
-.0004107 -.0001037 
... 000 367 -.000 098 

+.000 5782 t. 000 1527 
1'. 000 6336 t.OOO 1600 
.... ooo 568 +.000151 

-. 000 2365 -. 000 0623 
-. 000 2581 -. 000 0652 
-.000234 -. 000 062 

··. 000 1322 -. 000 0350 
... 000 1453 -. 000 0367 

.000128 -. 000 034 

+. 000 2295 +. 000 0606 
+.0002514 ..... 000 0635 
+.000225 +. 000 060 

.. 000 1 01 4 -. 000 0267 
-' 000 ll 08 -. 000 0280 
-. 000 1 03 -. 000 027 

(a)Eqn· (28a) 
(b)H.educed forms 
(c )Computational 

N 

0 33fi7 

-t. 049 3068 
t. 049 2712 

.... 049 333 

.... 0007637 
t. 000 7254 
+.000772 

-.0002109 
-.0002015 
-. 000 214 

- 000 1115 
... 000 1058 
... 000 113 

.... 000 1714 
+. 000 1632 
T· 000 17 3 
.... 000 0697 
-. 000 0665 
-. 000 07 0 

.... 000 0394 

.. 000 0374 
... 000 040 

1'. 000 0680 
.... 000 0648 
+. 000 069 

-. 000 0299 
... 000 0285 
-. 000 030 

0 ~400 

f .1 00 5561 
-t.100 2642 

t .1 00 872 

.,.. . 0 03 1 5 61 
+. 002 8444 
+.003 23~ 

-. 000 8662 
-.000 7901 
-. 000 898 

-. 000 4611 
·-.0004148 
-. 000 47 3 

+.0007069 
-t. 000 6400 
-t.OOO 72 6 
-. 000 2869 
-.0002607 
.:. . 000 293 

- 000 162 5 
-.0001467 
-. 000 16g 

+. 000 2804 
+. 000 2fl40 
+. ooo 288 

-.0001233 
-. 000 1 I I 9 

- 000 12:~ 



z.1N 

0.3267 

0.33 

0.3367 

0.34 

TABLE III 

FIXED POINT COORDINATES 

(t = 0, modo 2 '1() 

b3 = 3/4 

MURA-459 

On ~ymmetry Axis To Right and Left of Symmetry Axis 
p 

-. 087 393(a) 

- . 0 8 6 9 55 (b) 

-. 087 64 (c) 

-. 045 600 

-. 045 542 

-. 045 65 

+. 049 849 

+.049 784 

+.049 87 

+. 102 799 

+.102275 

+.10316 

(a} Eqn. (31 b) 

(b) Eqn. (31b') 

(c) Computed 

~ 

v 

+.115 832(a) 

+. 115 396(b) 

+. 116 040 
(c) 

+. 059 834 

+. 059 777 

+. 059 8 92 

+. 064 108 -
+. 064 043 -
.:!:..064112 

+. 130 922 

'+. 130 396 -
=.131200 

(a) Eqn. (32a) 

(b) Eqn. (32a') 

(c) Computed 

1-465 

p 

+. 048 746(a) 

+. 049 029(b) 

+.048 794 
(c) 

+.024136 

+.024 173 

+.024153 
~ 

-. 023 420 

-. 023 462 

-.023413 

-. 045 185 

-. 045 530 

-. 045 204 

(a} Eqn. (32b) 

(b) Eqn. (32b ') 

(c) Computed 
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DUCK-ANSWER program of the FORANAL program [J. N. Snyder, (IBM 

Program 52), MURA-228 (1957)J. 
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APPENDIX A 

SOLUTION OF EQNS. 6a-f FOR THE COEFFICIENTS OF THE TRIAL FUNCTION 

From eqns. (6b-f) we immediately obtain 

2 2) -l B1 .: (1/16) b 1 A 1 [1- (U/N) 

.· 2 2J -1 c1 ::-(9/3.2) b 1 A 1 [2s- 9 (V/N) 

-1 
Am=- (9/32) bm Al [<3m- 2)

2 
- 9 ( z)/N)

2
] 

Bm = (9/16) bm A1
2 [<3 m)2 - 9 ( zJ/N) 2J -l m~2 

By insertion of the expressions (A-la-e) into eqn. (6a), and rejection of the trivial 

root A 1 = 0, the quadratic equation for A 1 is obtained: 

~ _, 2J 2 2t 1/4 9/16 '] 32 1 - 9 ( v'/N) + 9 b 1 A 1 - 9 b 1 A 1 4 1 z + z) 2 1 - ( v'/N) 25 - 9 ( /N) 

(A-la) 

(A-lb) 

(A-le) 

(A-1d) 

(A-le) 

81 2 ~ 2 [ 1 + 4 J 
-U A1 {;;

2 
bm (3 m - 2) 2 - 9 ( z)/N) 2 (3 m) 2 - 9 ('V/N)2 + (3 m + 2) 2 - 9 ( V/N)~ = 

0 

(A-2) 
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~- 64 (_!_- ~l[1- ~(.!.- 1)~ [-
3b1 3 Nj 2 3 N~ 

~- :!, (i-~-4• ~2G~J (m2 ~7)
2

(~:2 -1)}(~- ~~] J 
(A- 3a) 

in which V/N has been replaced by 1/3 in terms such that a simpli:&;ation could 

thereby be achieved consistent with the objective of retaining accuracy through order 

( 1 I 3 - zJ/N) 2 . To this same order we also obtain, by substitution of 

A 1 ~ - ..§.! (.!.- V) into eqns. (A-la-e) in turn, 
3 b1 3 N 

Bl = ~ (.!.- J}_'f-
bl 3 N) 

(
_!_ - 1)_)2 = -~ 

1 3 N} 3 b 1 

2 
bm/bl (1 Z)) 

(m - 1 ) ( 3 m - 1) -; - ;-

(A-3b) 

(A- 3c) 

(A- 3d) 

m :?2 (A-3e) 

C __ 128 bm/bl (.!. _ z)f 128 bm/bl (1 _ vt 
m - ~ (3 m + 2)2 - 1 3 NJ = - 3b

1 
(m+ 1) (3 m + 1) 3 N) · 

It is these equations which have been taken as eqns. (7a-f) in the main body of the 

text. The results for the special case bm = 0 (m :;,.2) can be seen to be consistent, 

through order €. 2
, with equations (lOa-c) of I [section C 1 of refereence 1}. 
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CONCER~l:NG THE ,)j N .... 1 I 3 RESONANCE I III 

Use Of The Moser Method To Estima:e The Rotation Number, 

As A Functwn Of Amplitude, For The Equation 

::r + eiJ 2 

v + ± (sir. 2t) v
2 = 0 

L. Jackson Laslett** 

May 28~ 1959 

ABSTRACT 

The Moser method of analysis, as applied through terms of order (7//N- 1/3)2 

in an earlier report, is here employed to determine the variation of rotation number 

(or "tune") Wlth amplitude for solutions of the non-linear differential equation given 

in the title. The result is given in terms of a complete elliptic integral of the first 

kind, with a modulus determined by the roots of a quartic equation. The rotation 

number is thus calculable in terms of an amplitude characterized by the value of the 

Moser t-independent Hamiltonian and this in turn may be related to some desired 

salient dimension of the phase curve of interest. This result, although by no means 

as convenient for hand calculation as the handy formulas sometimes employed for this 

purpose, is found to give results in very good agreement with numerical computations 

for a problem in which the small-amplitude frequency corresponds to -z.J/N = 0. 3. As 

is typical, the rotation number in this example departs initially from its small-amplitude 

value (0. 3) by an amount proportional to the square of the oscillation amplitude and only 

near the stability limit undergoes a rapid variation to attain the value 1 I 3. The area 

enclosed by the phase curves, most specifically by the separatrix, is also briefly 

examined. 

* AEC Research and Development Report. Research supported by the Atomic Energy 
Commission, Contract No. AEC AT(ll-1)-384. 

**Departm~nt of Physics and Institute for Atomic Research, Iowa State College, 
Ames, Iowa. 
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A. I~TRODUCTIO::-< 

In an earlier report, 1• *hereinafter denoted as I, a diffe1·ential equa:ior. of 

the form 

b 

2
1 

(sin 2t) v 2 = 0 ( 1) 

was discussed, the dependent variable v being so scaled, for convenience, that 

(~2. .1 . 2 + -N] V + z (Slil 2t) V = 0. (2) 

In that report 1 the Moser method2 of solution was applied to eqn. (2), through terms 

of order ( 7) IN - 1/3)2 , to obtain an approximate t-independent Hamiltonian 

3/2 3/2 
K2 = -26 J

2
- (1/48) (N/-z}) J

2 
cos 32(

2 

+ <o' /2048> <Niv >
3 J 2 

2 (3a) ** 

with 

oC.!! 1 
(3b)*** 

1 + 3<J/ N 

and 

J = 1/3 - vtN • (3c) 

the expression K2 thus representing an approximate constant of the motion. 

In I the results of the analysis were specifically applied to examine the character 

of the limiting amplitude solution of eqn. (2),. resulting from the "ll/N-t1/3 resonance-:.. 

in the present report we apply the results of the same general analysis to examine 

the dependence of the 11 rotation number 11 on amplitude. 

The Hamiltonian K2 [eqn. (3a)) was obtained in Sec. D3 of I by a seri~s of 

canonical tran!:formations. 

* References are given in Section D. 

**Eqn. (57) of I. 

*** Eqn. (25) of I. 

1-470 



in \Vh1ch 

ar1d 

Wlth 

and 

Coordmate 
' 

Momen~um 

v p 
~0 Jo 
Y1 J, 

Xz I Jz 

~2 - 'll-2+ ~r" ~ t 1 - • - 0 3 3 

Jz = J1 
~ 

Jo - = 

112 1/2. . .../ 
v = (N h) ) J sm I" 
. 0 0 

p = 2 <vI N) 11 2 J 1 I 2 
cos v' . 

0 0 

:~I l" P, .-\ - .f o 1 

(4a) * 

(4b)** 

(Sa>*** 

(5b) **"'* 

Phase plots of solutions to eqn. (2), plotted in v, p-space at t = 3 '1r'l 4, mod . .,.,. , show 

a transition in form from elliptical to roughly triangular curves (as 11lustrated) as the 

amplitude approaches the stability limit. 

t 
!fJ 
i 

F.P. 

Sepo.ro.trix 

*Eqns. (56b) and (5Zb) of I. 
.** 

Eqns. (56a) and (52a) of I. 
*** Eqns. (49c) of I. 
**** Eqn. (49d) of I. 
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Ope:-at:or:.a.llv, the ampll:ude may be charactenzed by the m:ercept v
1 

(see sketch), 

with v then serving to denote the value of this intercept for the separatrix. The 
I 

corresponding values of J 2 or, J 1 may be similarly designated. In the pre sent 

report we shall examine analytically the dependence of the rotation number on (J2 ) 
1 

;..;.nd hence on v1/v
1

, specifically for a case in which the small-amphtude frequency 

1s charactenzed by ~/ N = 0. 3, and compare the results of th1s analysis w1th 

corresponding results obtained from computer solutions. A brief exammation w1ll 

also be made of the~ enclosed by particular phase curves, in specific limiting 

cases. 

B. THE ROTATION NUMBER 

1. Analytic 

To illustrate the procedure to be followed in obtaining a rotation number to 

characterize a particular solution, we may first note that, due to the non-linear 

character of the differential equation (eqn. (2)] , J 
2 

is not a constant of the motion 

but 1s governed by the following differential equation: 

dJ
2

/ dt = - aK2 / -e)( 
2 

= -(l/16)(N/v>
312 

J
2 

3/2 . 3 '\/ s1n o 2, (6) 

and d "11
2

/ dt is similarly given by 8 K2/ ~ J 2 . In the course of integration of dJ 2 / dt, 

J 2 may go from an extreme value (say a minimum value) corresponding to its value 

(J 
2
\: a at the intercept vi to a second extreme value (say its maximum value) b in 

an mterval ~t = T. The corresponding changes of the variables of interest are then 

as llsted below: 

At J2 = J1 l(2 A~ 
0 a 0 0 

T b - 7r/3 2T/3- '1T/3 
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A frequency of revolt.:tlOn may then be •.ake:--: as 

;;'::.6~/T 

2 1'f 
= 3 3T 

or, since we cons1der N = 2 in eqns. (1) or (2). a "rotation number" introduced as 

(7) 

This quantity,~/ IN, will be seen to vary from the small-amplitude value, -z/ IN, to 1 I 3 

as the amplitude increases to the value corresponding to the stability limit. 

The differential equation (6) may be imegrated by making use of the constancy 

of K
2 

[given by eqn. (3a) J to eliminate "11'2 : 

dJ
2

/dt =-'aK2/!) ~2. 
3/2 3/2 ~/ 

= -(1/16)(N/1,)) J sin 3~ 
2 2 

• 
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J 
2 - 2$· J - K] 2 2 2 

(Sa) 

(8b) 



:\IL R.-\ · .fc l 

In the part~cdar case that ...J/;;;::: 0. 3, t1-:: 113 - 0 3 = 1130 a;;d cl.. = 

eqn. (8b) above ~hen assumes the form 

2r 
T = 12. 696 7851 

ay 4 3 
-J2 ot-28.4016840932 

2 
+ (76.180 714 27 K

2
- 6 448 334 695lJ

2 

-193.450 0409 K 2J
2

- 1450.875 307 K 2
2 

= 
25. 393 571 42 

J<c - a)(d - b) 

K (k) ~ 

(8-: 

(8c 

18c 

where a, b, c, d represent the roots of the equation obtained by settmg the clenommator 

of the integrand m eqn. (8c) equal to zero (a( b(c(d), 

(b - a)(d - c) 
(c - a)(d - b) , (8d) 

3 
and K(k) denotes the complete elliptic integral of the f1rst kind (modulus k). The 

,, 
values of T computed from eqn. (8c ) may ther: be substituted into eqn. (7) to obtain 

I 
the estimated rotation number, 1) lN, for this case. 

z. Comparison wit.l-t Computational Results 

In applymg the results of -~he previous sub-sectlOn, the valt.:.e a -:.. (J _) -= (J 1 ) 
" 1 i 

may be related to a corresponding value cf J
0 

by aid of eqn. (52) of I ard the::ce 

directly to the mtercept coordir..ate, vi. 
2 

The quan~ities (v,/vi) and (J1' /(J1 ) w1l~. 
- 1 I 

of course. be ro:.1ghly proportional to one another. The root "a" w11: have the val'..iE' 

* From Eqn. (3b)" or from p. 16 of I. 
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(J 1 ), ; for srr.all rJ 1 i ~he roots a a..11d b each aJ:prcach zero. w!u:e fer (J ) near 
• l l 1 i 

the limiung value (J
1 
\the roots b a.r..d t: ca-:h apT:;::-oact. 0.103 6384 ar..d 

a = 0. 027 5557. 

The results for a series of selec":ed values of (J ) a::-e l:..sted u: Taole I. For 
1 ' 

small values, the modulus k varies direC":i.y as (J, I 
314

,: being approxima.~ely equal 

3/4 
to4(J.) 

. i 
- - see Fig. 1. 

.1. i 

Observed rc:a~:or. !'.umbers from a senes of cor:1pu:er 

runs, made with the MURA I. B. M. - 704 computer by use of the DUCK-ANSWER 

4 
program, were obtained from examination of suitably n11mbered points on phase plots 

of the output data - - see Fig. 2. - - and are included in Table I. The results are 

expressed in terms of vi/vp or (v/vi)
2

, using the value of vi repor:ed previously in r.
1 

The va!'iation of rotation number with "amplitude" (or amplitude squared) is, 

finally, depicted in Fig. 3, in which the curve has been drawn to pass ~hrough the cal-

culated values listed in Table I and the circles represent the results obtained from the 

machine computations. The agreement between the calculated curve and the computer 

results is seen to be close. 
5 

Since the enclosed phase-space area is proportional to K
2

, to a reasonable 

approximation, an effective average value of-.J
1 
IN may be taken as given by 

j' (~ 1 

IN) dK2/ / dK2 - - i.e., by an average of~' IN sampled in equal intervals 

of K
2

• For the case considered, there thus results the effective val:..:.e 

I'Y o. 306 . (9) 
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.... 
I ... 

-.J 
0'1 

vi/vi 

0 

• 
050 = . 188 567 

.268 

i .1 00 
: .l68 :.373 1~4 

i 

I .o427 I 

.150 
~268=.55970l 

.200_ 71' ''6~ , 268- 0 It, 1~ ' 

• •t534 

.250 

. 268::. • 932 836 

(vi/vi)2 (J1 )i 
1/2 

0 0 

0. 3481 .030 918 

.13923 • 061 860 

.294!> .09 

.31327 . 092 826 

• 5!-;692 012382 

.5676 .125 

• 87 018 . 15483 

TABLE I 
I 

CALCULATED AND OBSERVED VALUES OF't)/N 

b, -1o3K
2 

a, (*) (J1). k K 
1 c. d 

u 
7(/2 = 0 

0 0 
. 228 8851 0 

1. 5708 
28.172 7990 

• 000 9559 0.06745 
• 000 9559 
. 001 0797 . 02331 l. 5710 

. 227 0228 
28.172 6257 

. 003 8267 

• 003 8267 0.~8474 
. 004 9413 
• 220 8204 

. 07139 1.!>728 

28 172 0957 
• 008 1 

• 0081 o. 61071 • 012 02!>1 .13883 1.~784 
.2103242 

:>.R 1 71 ?.~4R 

.008 6167 

• 008 6167 
. 012 9909 

0. 67 391 
• 208 9491 

.14725 1. 5794 

28.171 1274 

. 015 3314 

.0153314 1.25661 
. 028 0399 

• ?.7 010 1. 600'/ 
.188 5344 

28.169 7784 

.015 6250 

• 015 625 1. 28289 
• 028 9322 

.27746 1. 6024 ,187 5105 
28. 169 6164 

. 023 972 

. 060 689 
• 023 972 2.05366 .149319 . 54037 1. 7 093 

28.167 704 

.,) IN 
I 

V /N T 
Calc. Obs" 

1011/2:: 1/3··1/30 

15.708 = 0.3 ll. :1 

-·- ·--- -· 

15.808 0 .. 1002 O.JIJO~ 

·-·-

16. 1 ~5 0.3009 0.1010 

-

j 6'. 7 96 0. 3 022 .. -- -

16.886 0,1023 o.:w:n 

·-

1 ao 111 o. :-;04D 0 0 '10~1 

-- ~----

18. 502 0.3050 ........ 

---

2:l, 125 o. 31 07 0. :~ 1 l I 

---
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TABT 1 
(continued) 

(vJvi)2 (J 
1 
>/I 2 1 o3K 

a, b, k(*) rv Jv I (J 1 >. K - 2 
1 c, d 

. 025 600 

.9640 .9293 .16 • 025 6 2.20878 
• 071 529 

• 64067 1. 7849 .137 236 
28.167 319 

• 027 5557 

1 1 .166 • 027 556 2. 39707 
.1 03 6384 

1 

I 
• 1 03 6384 00 

28.166 8515 
------ --------- ---- - ---· --L____ -

(*) , . . 3/4 . . 3/4 
Forsmall(J1 )i, k lsproporhonalto(J1 )i , bemgapprox1mately 4(J

1
)
1 

• 

I I I 

T J)/N -,)/N 
Calc. Obs. 

25.593 0.3129 -~ - -

··--

00 1 ] 

3 3 I 

---- -- - ----
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C. THE PHASE SPACE AREA 

1. Anal ric L.,t.rodu ction 

It may be of some interest to inq1...1re concernmg the area, S, 1n phase space 

1nduded within a curve of constan._ K
2

, taking, as before, K
2 

as g1ven m eqn. (3a). 

We thus mve stigate 

S :j} p dv 

~.3 ?· 
= 61 Jz. d 'tz.. (10) 

with K
2 

given in terms of J 2 (=J
1

) and (/2 by &rom eqn. (3a) with.J/N = 0. ~ 

_L 3/2 J 2 
K

2 
=- ,5 J

2
- 0.126 787 629 J

2 
cos 34l 2 + o. 026 253 363 72 J 2 . (11) 

Equation (11) may be used to eliminate '112 from eqn. (10), with the result (written in 

s = 38.090 

t 

I -3K2 - (1/15) J 1 - o.o26 253 363 72 J 1
2 

3 5713 ~=======================-- dJ 1 • 
" J<Jl- a)(b- Jl)(c- Jl)(d- J1) (12) 

terms of J1 ) 

where a, b, c, d have the same meaning as before [i.e .. in connection with eqn. 

(8c') ] • 

If one were to undertake to evaluate the integral of eqn. (12) directly, it appears 

that the (complete) elliptic integral of the third kind would appear6 and we shall not 

further pursue this matter with such generality here. The character of tl'E integral, 

and hence the value ·of the area S may, however, be examined with some interest in 

the case (i) that K2 is small and (ii) ir the case that K2 =- -(K2 ) , corresponding to the 
I 

separatrix which encloses the entire stable area of .phase space. 

(i) For K small, the numerator of the integrand in eqn. (12) is approximately 
2 . . 

-3K
2

- (1/15) J
2 

or (2/15} J
1

, and is approximately constant, while-,(c- J 2)(d- J
2

) 

:::-.rcd = 2. 539 357 [ cf. Table il· Accord:!.ngly, in this limit, we may wnte 

eqn. (12) as 
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s ; 

= 2 'rr(J ) 
1 

(by a:-, elementary integrat~on) 

= 2frJ
0 

2.,. (V/ N) V· 
2 

= 1 
[py eqn. (5a)] ( 13) 

This result is immediately seen to be ccr:::-ect, for the area enclosed within an 

elliptical phase curve of semi-axes v. , 2(,)/N) v. [cf. eqn. (5b)1 , and thus, 
1 1 - ~ 

to a degree, constitutes a check of eqn. (12 ). 

I ·-- _t ______ -----

~ 
(ii) When K assumes the value (K

2
) characterizing the separatrix, 

2 I . 

b = c and the numerator of the integrand in eqn. (12) moreover may be factored to 

give us 

, with c = b 

j. 

-f(J 1 - a)(d - J 1 >] 
0.. 

= 

= (5. 28599 + a + d) tan- 1-M -/(b - a)(d - b) 

= o. 2805 (14.) 
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by use of the val~es a = 0. 027 5557, b = c = 0. 103 6384, and d = 28. 166 8515 llsted 

·in Table I. 

2. Compu~er Result for Area Within Separatrix 

From computer results obtained in connec~ion with the work !"eported previously 

in I, one finds (after scaling of those results so as to apply to the case b1 = 1 under 

consideration here) that the area enclosed within the separatrix (estimated from the 

original plot in the v, p-plane) is approximately 

5computer ~ 0• 296• ( 15) 

This area is some 5 or 6 percent greater than that suggested by the analytic result, 

eqn. (14), as might be expected in view of the observation that the computer values for 

salient coordinates and momenta on the separatrix were found correspondingly to be 

a few percent greater than the values derived from the Moser theory employed-here 

[see, f. ex. , Table IV or the first line of Table VI in I] . 
Finally, it may be noted in closing that if the small-amplitude result, 

s ; 2 7Tls<-K2 )_j 

= 307T(-K
2

) , (16) 

of eqn. (1~ had been applied in this form to the large value K2 =..0. 002397 which 

corresponds to the separatrix, one woctd have obtained the result 

s = o. 2259 

the value obtained in this way thus would have been some 20 percent lower than that 

calculated by eqn. (14). 
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actual use of this program for the work reported here, the coefficient b 1 in 
eqn. (1) wa.s given the value 1. 15; the computational values of v and p, accordingly, 
each required multiplication by the factor 1. 15 to bring them into agreement with 
the quantities employed in the analytic work presented here. 

5. Although the analytic approach outlined in the present report is of interest as an 
illustration of the applicability of Moser methods, and the results appear to be 
quantitatively quite accurate, the results obtained here [eqn. (8c"), etcJ cannot 
be regarded as particularly convenient for numerical evaluation. It therefore 
may be of interest to recall, as Dr. G. ParzE:n has kindly pointed out (private 
communication, 27 May 1959), that a "handy formula" has been proposed to 
describe the variation of "tune" in cases such as we consider here. One form of 
this formula is such that one would write for the present problem 

(v'/N)2 ; (1/J)2 - [(1/3)2 - (1,.1 /N):j -!1- (A/A
1

)
2 

(17) 

where A and AI respectively denote the 11 amplitudes" of the actual oscillation 
and of the limiting stable motion. In the present instance we might, perhaps 
somewhat arbitrarily, identify A2 as proportional to K and write 

2 

( v' I N)2 ~ (1/3)2 - [(1/3)2 - (0. 3/) -/1 - K
2
/(K

2
) • (18) 
I 

We now may make a comparison, presented below, of (i) the results derived in 
the body of the text, (ii) the prediction of the handy formula noted here, and (iii) 
the rotation number derived from the computer results: 

v"IN 
K2/ (K2 > 

I Formula of text Handy formula Computer 

0 . 3 • 3 . 3 
. 028 139 "3002 . 3005 . 3002 . 
• 118 786 . 3009 . 3021 . 3010 
• 281 137 . 3023 . 3053 • 3023 
. 524 226 . 3049 • 3107 . 3051 . 
0 856 737 • 3107 • 3211 . 3111 

1 1/3 1/3 1/3 
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Although the handy formula certainly represents 'correctly the general trend 
of v 'IN, it appears to be somewhat inferior quantitatively, at least as 
applied here, to the more elaborate result given in the text. 

6. See, f. ex., W. Grabner and N. Hofreiter, "Integraltaiel", Ed. 2 (Springer, 
Vienna, 1957) in regard to integrals such as they denote byJ' ~ n dx, n ;,. 1 

J 
y 

[as in Pt. I, Indef. Int. , Sect. 244, pp. 81 ff . 
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CONCERNING THE V/N ~ 1/3 RESONANCE, IV 

THE L:M;T~NG-AMPLITUDE SOLUTION OF THE EQUATION 

:~ 2 + (a + b cos 2 ¢ ) u + 
8

2
1 

(sin 2 ¢) u
2 = 0 

..... * L. Jackson Laslett ... 

June 3, 1959 

ABSTRACT 

The equation shown in the title is reduced, by the transformations 

-u and t ~· 
2 
~ 

¢d r/.. 7 , to the form 

= 0 . 

Use is made of the results of an earlier report, in which the characteristics 

of the limiting-amplitude solution of this latter equation were obtained by a 

variational procedure and by application of the Moser method, to obtain 

corresponding information concerning the solution u (¢) of the first equa

tion. Tr,e ana~ytic work is carried through terms of order (1/3 - V/N) 2 

and applied to an example in which 

a "" 0. 1262875 

UN 0. 2997 

Comparisons with the results of direct digital computation for this example 

indicate the results of the analytic theory are within a few (2 to 4) percent 

of comput'ed values. 

"" · AEC Research and Development Report. Research supported by the Atomic 
Energy Commission Contract No. AEC A T(ll-1 )- 384. 

'"'"Departrrient of Physics and Institute for Atomic Research, Iowa State College, 
Ames Iowa. 
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1: 

:n o. previous report. • hereina.fte;:- des~gnated as I, t'b..e character-

:s<.:ics of t~e different~a1 eq~.1a~.ion 

(1) 

were inves~igated. in particu:ar at the stabilit:r bour:dary. both by a varia-

tional method and by appl.:.caticn of the Moser procedure. These results 

were extended in a second report. 2 denoted by IL to describe similarly the 

results for the !imiting-amplitude solutions of the equation 

d
2
; + 12 :z..1N) 2 v + (1/2) r L:' bm sin 2m t] v

2 = 0, (2) 
dt l~~l 

the work being carried through terms of order ( V/N - 1 I 3)2. 

It was pointed out in I that if the coefficient of v in eqn. (1) had con-

tained an alternat:.ng-gradient \A-G) term, it would have been possible to 

transform the equation, through a suitable introduction of new variables, 

so as to remove the A -G ct.aracter of the linear term. In the present re-

port we undertake to apply this technique to the equation 

(3) 

and, by subsequent use of the results of II, then to examine the nature of 

the limiting-amplitude so1utions for a particular example with a small-

ampiitude oscillation frequency giver:. by VIN :;;;- 0. 2997: 

·B. ELIMINATION OF THE A-G ASPECT OF THE LINEAR COEFFICIENT 

We commence with eqn. {3! written above .. and .. for convenience in 

executing the transformations. note that it may be associated with the 

"'"References are given jn Section E. 

1-488 



Lagrang:.:1.n 

I.. :d-.....td"" 0 . 'I' 

in which 

1· m· 
.A, r· 

k 1¢1 5. a t- b cos 2 ¢ . 

Mt.JRA- 463 

T"le transformation i:o follow then makes use of the constant 2 V!N, 

where 2 7( U!N (~ cr) represents the change in phase of the solutions of 

the linearized eqn. /3) wten ..6 ¢ -· 7(' and also employs the function 

(4a) 

(4b) 

,B (~) commonly employed in the theory of A-G accelerators. 
3

• 
4 

We then 

introduce the variab~es 5 

v -7/nJ; u (Sa) 

N 
fr¢ 

t '::: 

2 i) ) (5b) 

.:> 

the transformation of the independent variable being such that in an interval 

A¢ ~ 7f E- e. in or:e period of the coefficients of eqn. (3) J :• 6t := ~ ii = rr 
and the period in terms of t accordingly is the same as in terms of ¢ . 

The Lagrangian in terms of the new variables is taken to be 

L 1 (dv I dt, v: t) -· 

1 
·- 2 

2 zJ# 
N 

(dv 
2 

dt:) + 

L 
0 

t) 
N 

!J.L 
dt 

dv v 
cF 

+ 1l ~ ~ / r:4/ -~ (2 ~4 J l 
Bl t 

v ,.8)5/ 2 
(sin 2 ¢> 3 

6 N J v 

1-489 

(6) 



Th:o Lo.g: ::.ng:c:n ·~. ~:= t~e~. r.:10di::ed by :::c:btracLor. of a perfect d1fferentia~ 

d r zj ro .,l 
. ct,.·ldt I d/' ..... 

Lz v :· i L, .--- ---.- v ! 
... d; L 2 ~ aqJ I 

J 

.... . .., .2 r :; 2 .. 
--i (~$)2 

l 
1 /d,~ '.{.. 1 (2 v : --'.:.... d c . f2! v2 ~ I . ' --,--·I __..__ 

+ K ! ~~cr:-· 2·\::\)LZ difi "'· c / 

- I 2 
Bl -'2V;5\J . 

!sin 2 p1 v 3 --- l .N -; 6 

'd .2 , 1? 1 ) )2 Bt t z),-?J I 2 1 :' v \ ~ :~ v2 - w ( 0 2 ¢> 3 
2 \. cttj 

------ sm v - 2 \ N ) 6 N 

the last reduc~i.:m bemg accomp~ist:ed by virtue of the re!ation6 

£' d2,.-:J 1 (d ,1 \2 
k 

.j2 1 - .... 
2 c.c:tl· 4 ~~) / \ . 

(8) 

I 

The d1fferentia_ equat~on wt:ich fo~2ov.:s from the Lagrangian ~7; is seen 

tc be 

. 2 
2 7./ \ 

. '· ;7 / v -

B -.· J/}·_512 
1 0 2 . ..-r;:: I 

-2-\_ N ) 
{ : 2 f1) . S.:.r. '( 0 

ar~c :he assoc1Citec fiam1~tcnian is 

H 

with p 

. 1 :2 z) )2 

~ -'--; 
2 \ ~I 

•sin 2 ¢> ·•· 3 

dv I dt According~y if one makes the expc..nsion 

I.Sk 2 rp/ ~ 
~ b {sin 2m t) 

m•·l m 

(9) 

ilO) 

. ttese results (9~ and \10} Ci::.--e in u~e for:m treated ::.n II \~ e proceed t!ren 

to an app!ica-:wr. o: tl:is analysis to a specific examp2e ln which for compar-

ison computational o;:o2utions are CJ.vailable for tne origi:1.al differential equa-

ticn Specifica~ly we sha~l take 
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2 0 126 2875 

b 1. 15 and 

cor.sider as in ,_: t!'-.e dep~nden: variab~e to be so .scaied that 

B - 1 l .~ .... lllc/ 

T't.e va~ue of z)rr.; wh:c~ is .implied by ~h:s partict~:a:~ se:ection of va.:ue.s 

for a and b may be estimated a!1alytica~~y 7 ')btair..ed from availab.ie tables, 4 

or determ:ned by a di:-ect compu:aticn-- ir.. the present example we fir..d 

or substanEal1y 0, 3. 

C. THE EXPANSION INVOLVING jS 

The function ~ up; may be estimated analytica~:y. 7 obtained from 

tabulated 4 values of ;J • .=inO"'") or found by direct computation, In the 

present ir.s~ance. with the governing parameters gi-o~en by .(12a, b). jB (¢) 

itself may be r-epresen•ed by the expansion8 (see Fig, 11 

D!_l .. 1.3956 [1 T 0 741 13 cos z.9 
N 

.,. 0 083 56 cos 4¢ 

+ Oo 004J·54 COS 6 ¢ ~ -•o] • 

(12d) 

(13) 

It may be of in~erest to note ir. passing that tbe analytic results of reference 7 

suggest that in the presen: case ~r.e quantity 2 z) /? ranges between the 
N r 

maximum and minjmum values (a<: ¢ . 0 ar.d at ¢ ,. 'T(Iz., respectively) 

2.. 539 and 0_ 474. wl':~lE the va:ues octained by a direct computation are sub-

stantially 2._ 552 and 0, 472, 

In the present wor-h we requ:.re tre expansion of B 1 (
2 ~ ;1 )" 

12 
sin 2. ¢. 

as a trigonometric .ser 1e "3 in the var iab~e t with t re]ated to p by e qn. (5bL 
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The coeff:.cier.ts8 of this expansion, (10. are as listed in Table I. 

TABLE I 

COEFFICIENTS, bm, OF sin 2 m t IN THE EXPANS~ON (11) 

a ~ 0. 126 2875 b "'L 15 

m bm 

1 1.0645 

2 1. 3531 

3 1. 2396 

4 0.9878 

5 0.7278 

6 0.5100 

7 0.3450 

8 0.2274 

9 0. 1470 

~10 ~ 0. 01 

These tabulated values may be employed, in application of the results given 

in II, to an examination of the expected limiting-amplitude solution to eqn. (3). 

The scale distortion in passing from the variable ¢ to the variable t is instru-
. ~ 

mental in effecting a pronounced peak in a plot of the (odd) functior(
2
NV-Ij sin 2 p 

vs. t (Fig. 2),. with a consequent enhancement of the higher-order Fourier 

coefficients bm; the effect of the higher-order coefficients on the salient features 

of the phase plots, however, would not be expected to be great.. 
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D. COMPARISON W~TH COMPUTATIONAL RESULTS 

For comparison with availab~e computer results we apply the pro-· 

cedure out~ined above to the spec:fic case for which:!< a -- 0. 126 2875 

b .. l. 15 

t);N = 0. 2997) 

particularly with respect to the location of the unstable fixed points which 

characterize the unstab~e equilibrium orbit at t =: 0. In terms of the nota-

tion of II, then, we rave 

1 I 3 - V/N - 0, 0336 3333 

C(, :-:.' 3, 975 962 

'(_(-:: o. 8201 1582 ' 

= 1. 009/30 

and 

making use of the values of bm (m ~ 9) listed in Table I. 

1. Location of Unstable Fixed Points 

For the fixed point on the symmetry axis (at t •"' 0) we calculate~·* 

v::.:O 

to obtain 

"~Eqns. (12 a - d). 

**Eqns. (31a, b) of IL 

2 1 

1 + 3 V/N 

v = 0 

p ... - 0. 2874 .· 
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again making 'JSe of the values of bm (m~ 9) in Table I. Similarly, for 

the fixed points situated to the r~ght and left of the symmetry axis (for t = 0) 

we calculate"~· 

32 f3(J. - 1litJ.\fl -
bt 3 NJ\ Nj"U 1 

1 

P = + 64 (J. _ v_V_vtn 1 + 
b1 \3 NA-N) (I 

to obtain 

(16a) , 

10 1 

- z) 2 1N 2 + 1 + 3 7)/N 

(16b) 

v = + 0. 4153 (16a') 

p ·- 1" 0, 2 7 59 , ( 1 6 b I) 

To transform the quantities v, p, found above, to the quantities 

u, P : du/dcf>, which pertain to eqn. (3) and which essentially constitute the 

working variables in the computational work, we note from eqns, (5a, b) 

that 

u ,[z# v = 1. 5975 v (1 7a) 

and 

* . Eqns. (32a, b) of II . 
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Mt:RA-463 

p 
1 5975 

when (as here at t 0 p 
(17b) 

0~ !:_~Jf - 2, 552 and d~/d¢ -~ 0 (Fig. 1). 

T~e resulting pred:cted fixed- point coordinates ar.d the corresponding 

values obtair.~d from dig:ta~ computa::.cn are presented in Table II. The 

latter va~ues were obtc.. ined wi:h the Mt!RA IBM 704 computer, by use of 

the DUCK-ANSWER9 program" A phase plot- obtained from the computational 

resul:s for 1 0 fmod. 1'[) is given in Fig, 3. 

TABLE IT 

COORDlNATES OF UNSTABLE FIXED POINTS AT ¢ c;: 0, 
As Obtained from ~t:e Ana~ysi s of ~his Report and from Computer Results 

b 1 15 

FIXED From Ana:ysis From Computer 

POINT u P S du/d¢ u P ~ du/d¢ 

I 

On Symm_ 
0 -0.1799 I 0 -0, 1866 

Axis I 

Rand L of + 0.6634 
. 

Symm. Axis + 0 ! 727 :;:0,6866 +0.1765 

It is noted from Table II th?t the va:ues found by use of our formulas are 

some two to four per cent less in magni~ude than those given by the com-

puter--a situation simLu ro th2.t sr,owr. in Table VI of I for an example 

with -r,/;N -; 0, 3 .. 
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2.. Rep::-esen!ation of the Unstable Equilibrium Orbit 

Our app:.ication of the results of II +.o eqn. (9) gives us, of course, a 

trigonometric (sine) series for v (t), from which. for example_. eqn. (16a) 

would follow. In the present example the pertinent coefficients for such a 

development of v \t)., and the similar (cosine) coefficients ca!culated sepa-

rately for p (t} by the expressions in II with which our present eqns. (15b) 

and (16b} are consistent, are listed in Table Ill (by use of Table I, consider-

ing m-' 9). 

TABLE III 

COEFFICIENTS FOR A TRIGONOMETRIC EXPANSION OF v(t) AND p(t) 
m~9 

Argument m Sine Coefficient in v Cosine Coefficient in p 

2 t/3 1 -0. 477 435 -0. 309 642 
2 t 1 + o. 018 056 +0. 036 113 
8 t/3 2 -0. 005 580 -0.015 631 

10 t/3 1 -0.003 329 -0.010 649 

4 t 2 +0. 005 343 +0. 021 370 
14 t/3 3 -0. 001 687 -0. 008 098 

16 t/3 2 -0. 001 567 -0. 008 145 

6 t 3 +0.002148 +0. 012 887 
20 t/3 4 -0. 000 665 -0.004 520 
22 t/3 3 -0.000 744 -0.005 354 

8 t 4 + 0. 000 959 +0. 007 668 
26 t/3 5 -0. 000 291 -0. 002 565 

28 t/3 4 -o. ooo 362 -0. 003 330 
10 t 5 +0. 000 451 +0. 004 511 

32 t/3 6 -0.000 135 -0.001 462 
34 t/3 5 -0. 000 180 -0.002 012 
12 t 6 +0. 000 219 +0. 002 631 
38 t/3 7 -0. 000 065 -0. 000 834 
40 t/3 6 -0.000 091 -0.001.196 
14 t 7 + o. 000 109 +0. oo1 525 
44 t/3 8 -0. 000 032 -0.000 475 
46 t/3 7 -0.000 046 -0.000 702 
16 t 8 +0.000 055 + 0. 000 879 
50 t/3 9 -0.000 016 -0.000 271 
52 t/3 8 -0. 000 024 -0. 000 409 
18 t 9 +0.000 028 + o. 000 505 
58 t/ 3 9 -0.000 012 -0. 000 237 
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The cor.version of v ~t) to u {¢) would appear to be rather tedious, 

involving as it does both the factor -fl' and the non-linear reJatior.. be

tween the independent variables t and 4· It is of interest to note from 

Table IIL however: that v (t) itse.~f evidently .should be rather well rep-

resented by its first one or two coefficients* --say by 

v (t)::!. -0.477435 sin 2 t/3 + 0. 018056 ,sin 2 t (18) 

If a table of values of u ~.: M v, vs. ;, is constructed by hand 

computation,, one finds that eqn. (18) suggests u <¢> should have a rep

resentation8 in which the leading terms are roughly 

u <¢> ~ -0.533 9 sin¥ + 0.1772 sin¥ + 0. 0155 sin 2 ¢ 

-0.0400 sin¥- + · · • (19) 

this result, eqn. (19). may be compared with the direct computer analysis10 

of the limiting-amplitude solution for eqn. (3), namely (with B1 ::: 1): 

u (¢> = -0.55231 sin!:{J... + 0.18429 sini./- + 0.02167 sin 2¢ 

-0.04919 sin~ + 0. 00575 sin¥ + 0. 00283 sin 4 ¢ 

-0.00140 sin¥ + · · · . (20) 

As with the data of Table II: it is seen that the major calculated coefficients 

in the representation (19) are some three or four per cent less than the 

corresponding directly-computed values shown in eqn. (20). 

*cr. the result of the numerical solution of eqns. (8a - c) in Sect. C 1 of I, 

or the computer results given by eqn. (12a) of that report ( z} -= 0. 3). 
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to Solutions of a Hill Equation, " MCRA Notes (Apri~ 3, 1956i. 
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CONCERNING THE -z-1N ~ 1/3 RESONANCE, IV A 

A TRIAL FUNCTION FOR THE L:MITING-AMPL~TVDE SOLUTION OF 

d2 Bl ~ + (a • b cos 2 rt.·, u + _ (sin 2 rA) u 2 ' 0 
d~2 T· 2 r 

L. Jackson Laslett~'* 

June 17 1959 

ABSTRACT 

For comparison with the results given in an earlier report, use of a 

trial function for the limiting- amplitude solution of the equation given in the 

title is i!lustrated for an example in which 

a 0. 1262875 

VIN -= 0. 2997 

b .. L 15 

B
1 

- 1. 

The trial function employed sine functions of argument 2 Pl3, 4 f/3, 2 ~~ 

8 ~/3, and 10 f/3. The coefficient found for the dominant term appeared 

to be withiP. one-tenth of a per cent of the computer result and the spatial 

fixed-point coordinate (for the unstable fixed points situated to the right and 

left of the symmetry axis at ¢ :: 0. mod. 'it) within 0, 2 per cent; the corre-

spending fixed-point momentum is found to be somewhat less accurate, due 

to the enhanced comr::.butions of error from the higher-frequency terms, the 

error being roughly 3o/o in this example. 

* AEC Research and Development Report_ Research supported by the Atomic 
Energy Commission. Ccntract No. AEC AT ill-1 )- 384. 

**Department of Phyc:;ics and Institute for Atomic Research, Iowa State 
College, Ames, Iowa. 
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A. ~NTRODVCTION 

In a previo·.1s repo:::-t 1 " solutions to the differential equation 

d 2u . , . b 2 J.., . B 1 ( . 2 rA) l 0 -- ~ ,a -:- cos i· u -r -- s1n i u "" 
d¢2 2 

(1) 

were studied by the Moser method" after use of a suitable transformation 

to eliminate the alternat:ng-gradient (A-G) character of the l.inear term. 

The limiting-amplitude solution was examined in this way for a particular 

example and the results compared with corresponding computer information. 

Recently an interest has been expressed2- in the use of a variational 

or harmonic-balance method to estimate the limiting-amplitude solution of 

eqn. (1), in a way which would parallel closely the application of this method 

in other papers 3 of this series and in earlier reports. 4 In the present re-

port we apply this method to eqn. q) and illustrate the results for the ex-

ample which was previously employed in reference 1. 

B. TEE VAR!.ATIONAL METHOD 

As in earlier work~' 4 the differential equation is replaced by a varia-

tional statement for purposes of determining the (periodic) unstable equilib-

rium orbit. In the case of eqn. (1), this statement is 

[ [~<u')2 > -a <u2 ) - b < u2 cos 2¢) - (B1 /3)(u3 sin 2 ¢>] ~ 0, 

(2) 

the prime denoting differentiation with respect to ¢ and the symbol <. ') 
denoting that the function embraced is to be averaged over one or more 

periods. The coefficient B 1 of eqn. (1) may, of course, be made unity by 

suitable scaling of t!'le dependent var1able u. 

*References are given in Section D. 
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In selecting an adequate. but :-easonabJy simple, trial function we note 

first that the dominant term :n a deve:opment of the periodic solution con-

trolled by the VIN --71/3 resonance would be expected to be of the form 

A 1 sin 2 ¢/3, the sine function being selected because of the predictable 

symmetry of the phase plots \at ¢ : 0_ mod. '!C) about the vertical axis. Be-

cause of the nature of the coefficient of the :inear term in eqn. (1), this 

dominant term should be supplemented 5 by terms of argument 4 ¢/3 and 

8 ~/3, while the non-linear term suggests 3 supplementary terms of argu

ment 2 ~ and 10 ¢/3. We select therefore, the five-term trial function 

u = A1 sin 2fJ/3 + A 2 sin 4 ¢/3 + A 3 sin 2 ¢ + A 4 sin 8 ¢/3 + A 5 sin 10 rp/3. 
(3) 

Substitution of the trial function (3) into the variational statement (2) 

leads to 

[ ~(1/2;[(2/3) 2 - aJ A 1
2 + (1/2)[(4/3) 2 - a} AJ + (1/2)[(2)2- aJA

3
2 

+ (l/2}(t8/3J
2

- aJAi + (1/2)[(10/3)
2

- aJA~ 

+ (b/2) A 1A 2 - (b/2) A 1A 4 - (b/2) A 2A 5 

+ (1/24) A
1
3 - (114) Al A

3 
+ d /8) A

1
2 

A
5 

- 0/8) A 1Af- (1/4) A 1A 2A 4 - (1/4) A 1A 3A
5 

- (1/4) A:A3- (1/4) A 2A 3A 4 - (1/4) A 2A 4A 5 

- (1/8) A]- (1/4) A3Ai- (1/4) A 3A;- (1/8) A.iA 53 -: 0, (4) 

where, for simplicity> we haYe set B 1 ::.:. 1. 

By making the appropri.ate d!fferentiations of eqn. (4), one then obtains 

the simultaneous non-linear algebraic equations 
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[ 
2] b b 121 1 121 1 

( 2 I 3) - a A 1 + z A 2 - 2 A 4 + 8 A 1 - 2 A 1 A 3 + 4 A 1 A 5 - B A 2 - 4 A 2A 4 - 4 A 3A 5 = 0 

[<4/ 3)
2 

- a] A2 + ~ A 1 -~As - i A 1 A2 - -i At A4 - ~ A2A3 - i A 3A4 - -i A 4A 5 ::; 0 
I 

[ 
2 J 121 121 321212 

{2) - a A3 - 4 A1 - 4 AtAS - 4 A2 - 4 A2A4 - B A3 - 4 A4 - 4 AS = 0 

[ 
2 J b t t 1 t 1 

(8/3) -a A 4 - 2 At - 4 AtA 2 - 4 A2A3- 4 A 2A 5 - Z A3A 4 -
4 

A 4As = 0 

[ 
2 J b t2 t 1 t t2 

(10/3) - a As- 2 A 2 + 8 At - 4 AtA3 - 4 A2A 4 - Z A3A5 - S A 4 = 0~, (S) 
/ 

/ 
which serve to determine the coefficients Al' · • • AS . 

C. NUMERICAL EXAMPLE 

In the specific case taken as an example in reference t, for which 

a= 0.126287S 

z4N = 0. 2997 

b = 1. 1S 

an approximate numerical solution of eqns. (S) leads to coefficients such 

that the trial solution assumes the form: 

u = -0. SS20 sin 2 ¢/3 + 0. 1840 sin 4 ¢/3 + 0. 0213 sin 2 ¢ 
- 0. 0497 sin 8 ¢/3 + 0. 0057 sin tO ¢/3 . (6) 

This result may be compared with the Fourier analysis of the limiting

amplitude solution given by direct:computational integration1• 6 of eqn. (1), 

namely 

u = -0. S523t sin 2 ¢/3 + 0. t8429 sin 4¢>/3 + 0. 02167 sin 2 rp 
-0.04919 sin 8 ¢/3 + 0. OOS7S sin tO ¢/3 + 0. 00283 sin 4 ¢ 

-0.00140 sin 14 ¢/3 + · · · . (7) 

From comparison of eqns. (6) and (7) it is noted that the coefficients 

given in (6) agree through three decimal places with the computational result 
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and the coefficient of the dcminant sin 2 ¢13 term is within or..e-tenth of 

one per cent of tte v&.lue found computationally. From eqn. (6) the spatial 

fixed-pomt coordinate (fo:- ~he unstable fixed points situa:ed to the right and 

left of the symmetry axis at c/J .. : G mod, '7t i is obtainab~e within 0. 2 per 

cent [c f. Tab:e II of reference l]. The corresponding fixed-point momenta 

are fourid to be somewhat Jess accura.te., due to the enhanced contributions 

of-error from the higher-frequency terms--mcluding those omitted from 

eqn. (6)--the error being of the order of 3% in this example. 

In summary, it appears that the use of a trial function of the form 

given in eqn. (3} permits one to obtain a reasonably accurate representation 

of the periodic soluEon to eqn. (1) with rather better accuracy and some

what less complexity than by employing the methods outiined in reference 1. 

These latter more general methods, however. do of course permit additional 

features of solutions to equation \lJ to be estimated anaJytica~.ly. 
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3
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ANALYSIS OF THE EQUATION 
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d
2

v ·(2. V) b 2. "\. 2 s -- + ·-- v - - (cos 2 s ) v - /\(cos--) 
dsz. . N 2. 3 

= 0 

L. Jackson Las lett.,."' and Seymour J. Wolfson*** 

August 17, 1959 

ABSTRACT 

An analytic and computational study has been made of the equation given 
' 

in the title, specifically for the fixed points in the case £liN= o: 3, b = 1. 15, 
·. 

and)\ usually equal to 0. 006. The equilibrium orbits and the fixed points are 

found to be_ obtainable quite accurately by a variational method or by use of 

harmonic balance if a numerical solution of the simultaneous algebraic equations 

for the coefficients of the trie~.l function is performed. A straightforward applica-

tion of the Moser procedure is seen to i!lv~lve as a first step the elimination of 

the stable forced equilibrium motion--as is given by the appropriate trial-function 

solution--and the new differential equation is then found to involve an s-dependent 

(A-G) coefficient for the linear term. The solution is· carried through, by con-

tinuation of the Moser method to the same order as in previous reports of this 

series, aided where app-ropriate by numerical work for the particular example 

considered. An alternative, and considerably simpler, analytic method similar 

to the Moser procedure is also examined and is found to lead to results of reason-
., 

able accuracy without requiring extensive numerical work. This last- method also 

permits one to estimate without great effort the critical value of /1. at which the 

stable fixed point and one of the unstable fixed points become coincident. 

Research supported by the Atomic EnergyCommission, Contract No. AT(l1-1)-384. 
*"~Department of 'Physics and Institute for Atomic Research, Iowa State University. 
***Summer participant from Wayne State University, Detroit, Michigan. 
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A MOTIVATION 

Computer studies, to be reported in detail e~sewhere, have been in 

progress to examine the regions of phase space from which injected particles 

may be captured into a stable region ,vhen a secularly-changing perturbation 

(decreasing field bump) is applied to an FF AG structure characterized, under 

certain simplifying assumptions. by a simple non-linear differential equation 

whose stability limits are determined by the V!N ~ 1/3 resonance. In 

parallel with the computer studies an analytic investigation has been made of 

unperturbed differential equations, similar to that employed in the computer 
,~ 

work, and the results summarized in a series of MURA reports. 
1

· 
2

' 3 It is 

the purpose of the present report to investigate in a somewhat similar way 

the character of solutions--particularly of the limiting-amplitude solutions--to 

an equation of this same form but containing a static perturbation (field bump 

free of secular change), 

B. PROCEDURE 

The differential equation which which we shall be concerned in the present 

report ..vill be taken to be 4 

dlv (2 V )2 b . 2 2 s 
ds2 + \~ V - l I,COS 2 S) V - )J COS - 3- ~ 0. (1) 

If one visualizes the application of the Moser procedure 5 to Eq. 111 in the spirit 

of previous reports in this series 1· 
2 3 

one realizes that the first step which it 

*References are given in Section I at the end of this report. 
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would be natural to undertake ...vou]d be the removal of the fore ing term 

z s .,; 
- ,7\cos -

3
- , from Eq. (1), This step ,vhich may be regarded as making 

a transformation of the dependent variable so as to measure displacements 

from the stable (forced) equilibrium orbit, appears to requ:re; then, determina-

tion of this periodic solution (period 31[) by harmonic balance or some similar 

method. It may be remarked that the very steps which are then employed to 

determine this stable equilibrium orbit are substantially those which also can 

serve to give unstable equilibrium orbits and hence, to a degree, may provide 

the solution to the questions of major interest with respect to Eq. (1). 

The elimination of the forcing term from Eq. (1) results, by this pro-

cedure, in the new differential equation containing a s-dependent (A-G) co-

efficient for the linear term, thus removing any simplification which it might 

have been supposed would result from selection of the simple non-AG coefficient 

for v in Eq. (1). A continuation of the analysis ...vould then require removal of 

this A-G feature from the linear term, by a transformation of the dependent and 

independent variables through use of the function ;1 isL in a manner paralleling 

that illustrated in a previous report. 3 Following completion of such preliminary 

steps it should then be possible to proceed with the Moser method, as it ...vas 

applied in reference 2, to obtain results which may be interpreted in terms of 

the original variables after application of the appropriate reverse transformations. 

It can be remarked, if one may anticipate. that the preliminary steps 

mentioned above can typically be performed with acceptable accuracy more 

*The writer is indebted to Dr. F T. Cole for discuss,ons concerning the straight-

forward method of applying the Moser procedure to equations of the form of Eq. (1 ). 
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satisfactorily by numerical solution of the algebraic equations, which serve 

to ~ecify the coefficients of the various functions which are required; than 

is possible conveniently by purely algebraic means. In view of this situation 

it is understandably difficult to expect that one can obtain satisfactory final 

results in a simple closed algebraic form. 

In what follows we undertake to carry through the analytical procedure 

outlined above for a specific example, using numerical solutions of algebraic 

equations where desirable but attempting also to note approximate handy 

formulas which may serve to indicate roughly the magnitude of the quantities 

with which we are concerned. As a second undertaking, we also attempt to 

follow, in Section H, a somewhat less logical procedure which, it is hoped, 

may have some merit in circumventing the inconveniences mentioned above. 

C. THE FORCED MOTION 
(Stable Equilibrium Orbit) 

The solution of equation (1) which describes the forced motion, or 

stable equilibrium orbit, may be sought by harmonic balance or by application 

of a variational procedure similar to that employed to find the periodic (un-

stable) solution to the equations of references 1 et seq. We thus replace Eq. (1) 

by the variational statement 

~ [<<dv/ds)2)- (2 V/N)2L..v2) + (b/3)<:v 3 cos 2s) + 2/\~vcos 23s>] = 0; 
(2) 

in which the symbol <) denotes that the average value of the embraced 

quantity is to be taken. For the present purpose a trial function of the form 

v = A 1 cos 2 s /3 + A 2 cos 2 s + · A 3 cos 10 s /3 (3) 
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is substituted into Eq. (2) to obtain 

~ t H~ -(2%/] At
2 

+ i [4 -c:J J Af + i[ 1 ~0 - c:J 1 A: 
b 3 b 2 b b 2 

+ 24 A1 + 4 Al A2 + 4 A1 A2 A3 + B A1 A3 

+ ~ A i + ~ A 2 A; t /1 A 1 J = 0, ( 4) 

or 

[~{!/J b 2 b b b 
A+-A +-AA+-AA+ AA = 
181212 413 4 23 -IL (5a) 

[ 
(_Z "Vf] b 2 3 b 2 b b 2 

4- \N) A2 + 4 A1 + -8-· A2 + 4 A1 A3 + 4 A3 = o (5b) 

[ 
1 oo (2 7J\2J b 2 b b 9 - N} A3 + 8 A1 + 4 A1 A2 + 2 A2 A3 = 0 (5c) 

Equations (5a-c) admit, of course, the solution A 1 = A 2 = A
3 

= 0 when 

.?\ = 0, corresponding to the equilibrium orbit v ~ 0 which applies in that 

case; with /\ not necessarily zero, the corresponding solution is such that 

4/9- (2 -d!N>2 
(6a) 

with 

N b 1 
A 2 ...,. - ------,--~ 

4 4 - (2 V/N) 2 
(6b) 

and 

1 
(6c) 

1 o o I 9 - ( 2 vi! N) 2 

Somewhat more satisfactory results than can be ob_tained conveniently from 

Eqs. (5a-c) by algebraic means are obtainable numerically--in the particular 

case that 

-z1N = 0. 3 (7a) 

b =· 1.15 (7b) 

A. = 0.006 (7c) 
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wefindvaluesof A 1, A 2, A 3 suchthat 

v =- 0. 083.1620 cos 2 s/3- 0. 0005469 cos 2 s- 0. 0000937 cos 10 s/3, (Sa) 

while a computer investigation6 leads to the result 

v =- 0. 083160 4 cos 2 s/3- 0. 000546 7 cos 2 s- 0. 000093 7 cos 10 s/3. (Sb) 

The corresponding location of the stable fixed point, for s = 0 (mod. 3 7[), 

is at 

v = -. OS3S026 from Eq. (Sa) 

and at 

v = -. OS3S02
3 

from direct computer studies. 

The results of the numerical solution of Eqs. (5a-c) are thus found to be in 

excellent agreement with the computer results, while the stable fixed point 

computed from the simple forms (6a-c) would be -. 07105 -. 00040 -. 00007 = 

-. 07152, or about S5% of the correct value .. 

D. LIMITING-AMPLITUDE SOLUTIONS 
(Unstable Periodic Orbits) 

1. 
In addition to the solution of Eqs. (5a-c) discussed in the previous 

section, these equations admit a second solution- -a solution with which the 

unstable fixed point lying on the symmetry axis of the phase plot (for s = 0, 

mod. 3 7[") is associated. The coefficients given by this second solution 

have values given roughly by 

A1 ~-B [~- (~/J 
b 

+ <9a) 

(in which the first term should represent the value of A 1 for /\ = 0), and 
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"-' b 1 2 
A2 =- 4 (2 ...rJ/N) 2 Al 

4 -
(9b) 

A -v b 1 2 
- Al 3 8 100/9 - (2 tJ/N) 2 

(9c) 

(as in (6b, c>]. 

A numerical solution of Eqs. (5a-c), for the parameters taken previously 

[Eqs. (7a-c)], leads to the solution (unstable periodic orbit) 

v =- 0. 4262.94 cos 2 s/3- 0. 014466 cos 2 s- 0. 002597 cos 10 s/3, (lOa) 

whereas a computer investigation leads to the result 

v =- 0. 426274 cos 2 s/3 - 0. 014468 cos 2 s - 0. OOZ598 cos 10 s/3 

-0.000098 cos 14 s/3- 0.000010 cos 18 s/3- · · · . (lOb) 

The corresponding fixed-point location (for s = 0, mod. 3 1[) is 

v = - 0. 443357 from Eq. (1 Oa) 

and 

v = - 0. 443449 from direct computer studies. 

With a stronger perturbation (larger ?-. ) this unstable fixed point and the 

stable fixed point will approach one another:. 
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U.S. F. P, 

_4, - 0 mod. 31t 

)\-0.006 

l\IURA-497 

2. 

To determine in this same \vay the locations of the other unstable 

P. 

U .. S. F. P. 

fixed points--those situated above and below the symmetry axis of the s _: 0, 

mod.31T .. phase plot-- a trial function more general than that shown in 
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Eq (3) must be 2mploye.:l For :-:1i::o p~:rpose ' .. e may emp~oy the periodic 

trL:d function 

.A.
1 

cos 2 s/3.,. A- cos 2 s ... A.~ cos 10 s/3 
L. .) 

~ (E 1 sia2 s/3 + B.2. sii1 2 s + :s 3 sin 10 s/3) (11) 

v'vhich, upon introduction into che variational statement (2) leads to 

b [ H~-et/J ti'. B12) • ± [4-c:fJ~:. Bnd p~o -c ~](A~. Bn 
b 3 b 2 l:l 2 b b 3 b 2 

+ 24 Al +4 Al Az+aAl A3+4A1A2A3+SA2 +4A2A3 

0 (12) 

or 

b 2 b ~ 
- B B 1 + 4 Bl B3 -;- 4 Bz B3 (13aJ 

(13b) 

';'It may be noted tli.at. in contrast to cases discassed in previous reports 

(e. g., ref l), the basic perioC: of t~e coefficients in tr.e different1al equation 

is 3 7T vvhen the pertur~:;ation is prcsc;-1t and the locations of the various fixed 

points ar.: no loLlgcr obtaii1able iro.-:1 a s:a;;;le periodic solution by substitution. 

in turn of val:.:es of the i11d2pei1cient ':ariz.ol2 dff~ring b,\- 7T from one another 
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(13e) 

Possible solutions of Eqs. (13a-f) are of course given by B1 = B 2 = B 3 = 0 

with A 1, A 2, A 3 then being solutions of Eqs. (5a-c); the new results which 

are obtained by admitting the case in which not all the coefficients B. 
l 

vanish 

will have, very roughly, 

A1~ 
4[~ -(2;)2] ( 14a) 

b 

4 13[4 -(2:/JI. B1~ 
bA (14b) 

[~ + (2/)2] 2. 
b 6 

.... 

- (2 :'t] ,j 4 f3l~ 1 :A I = + 
[~ - (2/)2] 

(14b ) 
b i3 

A numerical solution of Eqs. (13a-f). again for the parameters specified by 

Eqs. (7a-c), suggests a solution 

v = 0. 244637 cos 2 s/3- 0. 022431 cos 2 s + 0. 002307 cos 10 s/3 

+ (0.470329 sin 2 s/3- 0.000021 sin 2 s- 0.003362 sin 10 s/3), (15a) 

while a computer investigation gives the correspond~ng result 
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v = 0. 2.44624 cos 2 s/3- 0. 022434 cos 2 s + 0. 002309 cos 10 s/3 

+ 0. 000087 cos 14 s/3- 0. 000020 cos 6 s + 

+ (0. 0470300 sin 2. s/3- 0. 000021 sin 2 s- 0. 003365 sin 10 s/3 

+ 0. 000168 sin 14 s/3- 0. 000002 sin 6 s + · · ·) (15b) 

The corresponding fixed-point coordinates (for s = 0. mod. 3 7T) are 

v = 0,224513 } from Eq. (15a) 
p = + 0.3023 

and 

v = 0.224566 } from direct computer studies. 
p = + 0.3030 

The methods described in this section evidently are able to give a good 

representation of the unstable periodic solutions for the differential equation 

(l). For the present, however, we shall regard this section as a diversion 

and proceed with the results of Section C to effect a removal of the forcing 

term from (1) and so per mit a continuation of .the analysis in the manner out-

lined in Section B. 

E. REMOVAL OF FORCING TERM AND DETERMINATION OF ,4 (s) 

l. 

If we denote by v s the stable periodic orbit resulting from the forcing 

term - /\ cos !:..f in Eq. (1), with Vs taken as well given by expressions 

presented in Section C (eJ. I Eq. (3), ...vith coefficients as illustrated in 

Eqs. (8a, b)) 1 we may ...vrite 

v = v + q s 
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and transform Eq. (1) to the form 

d
2

q + tf2 ?))2 
- b (cos 2 s) v s] q - !?. (cos 2 s) q 2 -- 0 

ds 2 L\ N 2 
(17a) 

or, making use of (3), 

d2q [(lV~ bA2 A1 + A3 ~ A1 8 s A2 A3 16 s] -- + -- - -- - b cos - b -2 cos - 3-- b T cos 4 s - b-2 cos - 3- q 
ds2 N 2 2 3 

b . 
- - (co~ 2 s) q 2 = 0 

2 
(17b) 

in .vhich the terms of primary importance in the coefficient of q would normally be 

c:f- b:z . - b A1 cos~ 
2 3 

b A1 8 s 
and - --cos 

2 3 

With the coefficients of v found in Section C by numerical methods 
s 

[ cf. Eq. (8a)], for the parameters specified by Eqs. (7a-c), the differential 

equation (17b) for q becomes 

d2q [ 4 s • 8 s 
- + 0. 3603 145 + 0. 0478 720 cos -3- + 0. 0478 182 cos-
ds2 3 

+ 0. 0003 145 cos 4 s + 0. 0000 539 cos 
1 ~ s] 

·- 0. 575 (cos 2 s) q 2 "' 0. 

2. 

q 

( 18) 

It is of some interest to estimate the small-amplitude oscillation 

frequency z1,... for Eq. (18). and it is necessary for .vhat follows to describe 

the variation of the function / which characterizes the solutions of the 

linearized equation. To this end it is convenient to introduce a change of 

scale for the independent variable, 

2 
~ = 3 s 

and consider the linearized equation 
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+ (a + b cos 2?::; + c cos 4 'C ) q -· 0 (20) 

-.vith, in the case corresponding to Eq. (18), 

a = 0. 810 708 (21a) 

b = 0.107 712 (21b) 

c = 0. 107 591 (21 c) 

(the coefficients of the higher-order terms, cos 6 "C and cos 8 7:: , being 

ignored). 

(i) It is tempting to attempt to estimate the oscillation frequency for 

Eq. (20) by means of the "smooth approximation"--since the value of -z,{ 

for Eq. ~ ~'' (18) is not very far from - and hence the corresponding value v , 3 . 
, 

(20) not far from unity ( o- near 7'C). however, this method would for Eq 

be inappropriate A possible, relatively quick, estimate may be obtained · 

by reference to available ILLIAC tables 7 from which one finds 

cos v1r~ cos ra 'lC- 0. 36 b 2 - 0. 022 c 2 (22) 

for b and c small, ra in the neighborhood of 0. 9, and with tJ' denoting 

{ z{.... in the present application. With the particular coefficients of interest 

here [Eqs. (Zla-c)], the expression (22) gives z)' = 0. 9051, or ~ ~ 0. 6034, 

in complete agreement with the value found by direct computation 4 6a for 

A = 0. 006. Alternatively a somewhat less arbitrary estimate may be made 

in connection with an examination of the range of variation of / , to be dis

cussed below. 

(ii) The differential equation (20) is of the fb rm 

d2 
~ + (a + b cos N r;' + c cos 2 N 1:) q = 0, 
d"Z; 
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with N = 2. As has been noted previously, 8 a rather accurate solution may 

be found by use of the trial function 

q = g0 cos V1:+ f 1 cos (N- V'>1: + g 1 cos (N + V
1
)7:: 

+ f 2 cos (2 N - 7/') 7.; ~ + g 2 cos (2 N + V 1

)"C (23) 
' _, 

and use of harmonic balance.;~ There results in this way the algebraic 

equations 

.. Jla. b c 
a- v + 2 (f1 + g1) + 2 (f2 + g2) 

[a- (N- V'>2] f1 + 1 ( 1 + f2) +I g1 

[a- (N + v'>2] g1 +% (1 + g2) +% f1 

[ a - ( 2 N - V~ 2] f 2 + ~ f 1 + ~ 
[a- (2 N + z)')~ g2 + ~ g1 + 1 

= 0 

= 0 

= 0 

- 0 

- 0 . 

- J' .· a Guided by prior knowledge of at least an approximate value of -v 

(24a) 

(24b) 

(24c) 

(24d) 

(24e) 

numerical solution of Eqs. (24a-e) is readily obtained. leading in the present 

case [coefficients given by Eqs. (2la-c) J to 

fl = 0. 1408 59 

g1 ..• 0. 0080 69 

f2 = 0.0070 01 

. 
g2 = 0. 0023 33 

and z)':;; 0. 9051 (~ ~ 0.6034). 

The extreme values of Vj1 ('Z;'), ~nd hence of the quantity ~~(s) 

for Eq. (18), are given by8 

(25a) 

(25b) 

(25c) 

(25d) 

(25e) 

[~!]= 1 ~ (f1 + g1) + (f2 + gz) (26) 

1 +[ ( ~ -9 f 1 - ( fp + 0 g 1] - [ ( ~ - 0 f 2 - c;, + 1) g z1 ' 
*we here omit, for simplicity, the phase shift (denoted by €.. in ref. 8) which 

permits one to form in this way a general solution. 
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the upper and lower signs referring respectively to s 0 { T 0) and 

s = 3 7r./4 ('t" ---= 7L/2)--the range of values for ~~suggested by~- -: ~; l .. ~- r-

ical values of f1 etc given in Eqs. (25a-e) is, then 

(27a) 

These limits. (27a), are .vithin a few tenths of a percent of the computational 

values. 

0. 7578~ -z{ji~ 1. 3755 0 (27b) 

It appears to be quite tedious to derive -zJj1 (l:'> as a function of t: from 

the solution q ('{;") as expressed by Eq. (23)--on the supposition that the 

variation is a pure cosine function, however, one might v1rite roughly 

~~ ~ 1. 066 + 0. 306 cos 4 s/3. (28a) 

b 
A corresponding very approximate formula, based on taking f1 ~ .-----::-;-8 ( 1 - z,J") 

and ignoring g 1. · .'might be written 

zi../c.t. 1 + 4 (1 ~""i)') cos 4 s/3 or 1 + 2 (1b_ a) cos 4~:;/3 (28b) 

.;hich, in the present example. ·.-;oulci lea-::: to 

~;)'~ 1 + 0 Zi34 cos 4 s/j (23b') 

A more satisfactory evaluation of ~-:~'2 funct.'onal ·;':' :e;1dei1c...:· of 

may be sot1ght by reference to the differentia:~ ec.i\.lation . 1-:_j_ch L::: satisJ"i .'· ... 

by ,s :':' 
2. 

.L d 2
tf _ ..!.(~)+(a+ b cos 2 'C + _c cos 47:) /? 2 1. (29) 

z d'Z'z 4 d<...- r 
A functional dependence 

j/ -= A + B cos 2. 1:; + C cos 41:" (30) 

':'Cf. Eq. (8) of reference 3 
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may be inserted into Eq (2.9) and the coefficients adjusted by harmonic 

balance to obtain the set of simultaneous equations 

aAz._6-2.a-c 
4 

2. a "> b 
B - (6 - z) c- + b A B + l B C + c A C = 1 · (31a) 

- 2. (1 - a - ~) A B - (7 - a - c) B C + b (A 2 + ~ B 2 + _!. c 2 + A C) :: 0 (31b) 
2. 4 2 

1-a-c 2 2 3 2. 
- 2 (4- a) A C - . B + b (A B + BC) + c A +- c C = 0 . (31c) 

2. 4 

For the parameters a, b, c as given by Eqs. (21a-c), a numerical solution 

of Eqs. (31a-c) leads to 

A::.: 1.1536 

B- 0.3365 

. 
c = 0.0247; 

substitution of these values into the expression (30) and multiplication by 

-zJ'<= 0. 9051)~-. leads to the result 

"W = 1. 044 + 0. 305 cos 4 s/3 + 0. 022 cos 8 s/3 

The results of a computer analysis of this case leads to 

~~ = 1. 045 01 + 0. 307 35 cos 4 s/3 + 0. 02.1 56 cos 8 s/3 

+ 0. 001 51 cos 4 s + 0. 000 06 6 cos 16 s/3, 

with which the numerical result (33a) is in reasonable agreement. 

F. ELIMINATION OF THE A-G COEFFICIENT FROM THE 

LINEAR TERM AND CONTINUATION OF THE MOSER METHOD 

1. 

(32a) 

( 3 2.b) 

(32c) 

(33a) 

(33b) 

For continuation of the analysis of Eq. (18), it is convenient to intro-

duce the independent variable 

~·By use of the values (32a-c) in connection with Eq. (30) a value of z,/"'could 
be estimated from this solution for ;1 by forming -z)".:: ~)I ;1>. 
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t = Z:/2 = s/3 (34) 

to obtain 

dtl 
+ 4 (a + b cos 4 t + c cos 8 t + · · ·) q- 5. 175 {cos 6 t) q2 = 0. ( 3 5) 

As in an example presented previously (sect. B of ref. 3], the transformation9 

Q = q/f.Y;S {36a) 

T = Jt dt 

0 11,4 
(36b) 

enables one to eliminate the A-G aspect of the coefficient of the linear term 

in Eq. (34), to obtain: 

d2Q 

dT
2 + 

_JnZ . 5/2 2 
V Q - 5. 175 ( V ,..6' ) (cos 6 t) Q = 0 (37) 

in which 
... ,, - h 
v = l -v = l (0. 9051) = 1. 810l. The variables t and T become 

equal at t = 0, rr[/4, 'lr/2, 3 'IL /4, 7T, etc. The quantity { ]/_,4 )5 / 2 cos 6 t, 

if expressed6b, 10 in terms of T {Fig. 1), permits Eq. (37) to be written 

d2Q [ -- + 3. 2768 Q- 1. 03504 cos 2 T + 5. 41441 cos 6 T + 3. 05511 cos 10 T 
dT

2 

+ 1. 26600 cos 14 T + 0. 46114 cos 18 T + 0. 15573 cos 22 T 

+ 0. 04940 cos 26 T + 0. 0144i cos 30 T + · · J 0 2 = 0 (38) 

-lN It may be helpful to note that, with -v near l, the oscillations will 

have a phase change of about l rf in one period of the term 1. 03504 cos 2 T 

(as for an integral resonance) and a phase change near l Tl/3 in one period 

of the {larger) term 5. 41441 cos 6 T (third-integral resonance). Accordingly, 

as we shall indicate in the work to follow, in undertaking to remove by the 

Moser methodS the T-dependence from the Hamiltonian associated with Eq. (38) 

special attention must be given both to terms stemming from the cos 2 T term 

above and to those stemming from cos 6 T, in order to avoid potentially-

resonant denominators. 
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Solutions for the unstable equilibrium orbits associated with Eq. (38) 

could, of course, be sought by harmonic balance, although this procedure 

would be of value only as a check of the preceding Nork since the original 

equation [ Eqc (1 >] was already treated satisfactorily by this method in earlier 

sections (Sects. C and D). Thus one solution of Eq. (38) may be sought in 

the form 

Q = C 1 cos.2 T + C 2 cos 6 T + c 3 cos 10 T, 

in which, approximately, 

A 1 =- o. 29519, A 2 = - o. 01036, and A3 = - o. 00303; 

accordingly the corresponding fixed point for Q (at T = 0) is at Q = - 0. 30858, 

q = ~Q == 1.17282•(- 0. 30858) =- 0. 36191, and v = vs + q =- 0.08380- 0. 36191 

= - 0. 44571 which is in error by about one- half of one percent of the computer 

fixed point. As a further check. a direct computational determination of the 

unstable fixed points for Eq. (38) was made: retaining just the first four cosine ) 

terms in the coefficient of o2; the values of (G. P) found in this Nay Nere 

(- 0. 307 29 , 0) and (0. 263, :t, 1. 064), which correspond to values of (v p) which 

are (- 0. 44420 , 0) and (0. 22465 , :t, 0. 302405 ) and thus are in good agreement 

with the results (- 0. 44345, 0) and (0. 2246, :t, 0. 3030) reported previously 

(Sect. D) from direct computer studies of Eq. (1 ). 

In the subsection to follow we continue with the Moser procedure. which 

is ofgreater versatility than the harmonic-balance methods of Sects. C and D, 

applying the Moser method to Eq. (38) and then deducing in particular the fixed 

points in this way. 
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2, 

The Hamiltonian associated with Eq. (38) is 

H =.!. p2 + ..!:. V~Q2 - ...!-. (b1 cos 2 T + b2 cos 6 T + ... + b. cos 2 (2 j - 1) T + ... )Q3 . 
2 2 3 J (39) 

- )II 
where P denotes dQidT, V = 1. 8102, b 1 = 1. 03504, b 2 = 5. 41441, etc. 

As in previous reports, 1- 3 we now employ the generating function 

to effect the transformation 

thus 

P = ;;J G'ol d Q = V 1
Q ctn 'fo 

J = 0 

ctn Yo = 

Jo = 

Q = 
p = 

"'!!oG I "'l v = ( v""12) Q 2 csc2 Y.: 
Cl o u 4o ., 

1 p 

17" -
Q 

1 p2 + t.l" Q2 
2 :z;n 2 
(21'1)")1/2 J112 sin Yo 0 . 
(2 t/~)11 2 J 1 12 cos 

0 
x;, 

and the new Hamiltonian is 

K 0 = H + J G 0 I;) T 

= H 

-lit 1 ( 2 jl2 312 3\/ "\" 
= V J 0 - 3 tJ77 J 0 sin 1

0 
jL: 

1 
bj cos 2 (2 j - 1) T 

(40) . 

(41a) 

(41b) 

(42a) 

(42b) 

(42c) 

(42d) 

=V" __ l ( 2 ~312 312~ ~3sin["(,+2(2j-l)Tj+ 3sin['fo-2(2J-1)T]J 
3o 24 .., Jll Jo _L bJ . . . . . 

v J=1 · -sm[3'fo+2(2J-l}T]-sm[3Yo-2(2J-1)T] 

(43) 
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As a second generating function we next employ 

3 ~~+l(tJ~I)T] f 3(/-&.') txJ ['1; -Z(2-J- QTj 
v'+ z (2.1 -I) :1 v"- z ( ;.j- 1) 

_ ~[3'J;,r2(z.j -vrJ-{-S/") ~{3fo-Z(Zj-irr) 
3t)'}2(~j-1) ~ 31)''-Z(zJ-/) , (-19-) 

in which the Kronecker delta, s~ or &~ ' serves to eliminate terms 
J 'J 

which, with j = 1 or j = 2, would lead to terms with potentially-resonant 

denominators. The transformation equations which result from the generat-

ing function G 1 ( 'fo, J 1) are 

J o = a G 1 ta y;, 

'( = 'JG,/JJi 

=Yo-76~~~1-; f:;J 

~[',r-Z(Zj-i)T)+(J-i·') ~[Yc,-Z(Zj-!)T) 
iJ~~(~j-1) :.J V''- 2.. (Zj-1) 

_ Ahvqfc+Z(Zj-!Jr]_(t-$~) ~[3Yc;-?..{ZJ-1)1J 
31/ + 2.(~j -I) ."J 311"-Z(Zj-1) 

3 ~{fa+ Z(l.j -1)7'] +3(t-S·') tkP{'io-Z(2j -1)T) 
-z)"-t-Z(~j-1) J V"-Z(Zj-1) (4-SI-) 

_ ~[3'fc -r-Z(Zj-1)7'] -(1-£.~ ~@'!: -2.(2J -I)T] 
3 z)".,. IZ{Zj-1) J 3V- Z(:Zj-P , 

with the new Hamiltonian 
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( 3 40v[Yarl-(Zj-I)T} +34.->V[Y, -z{ZJ-1)7') 1 
X Ir'-L-~ [3 )';, +Z{Zj-t)T] _ .amu r;, -zrz.i -1)1'] J 

,u:,.., ['( + Z( <-j -1)r] + (t- .r} <>hv IX,-z (z;- 1)7']) 
7,P•,_ z (z-; -I) j v-·:.. z(zJ -1) / 

_ .;.,., [;J (, + z(z. -- /J7' J _ (i _ ,r>-l ...,..,& i. - Z(<i-; _, )"] { 

3v;, ? c., ' I} I ./ :2"" F•· ., {. . ) j i-N Nj ·-/./ " .v ._.. - .,<,.. 2.J_f- I ../ 

. S.w.vL~'forlJ<-j-l)T:_+ 3~ ~y:·Z(ZJ -~r] l 
- ~[3 fo r~(;?..j --')I 'J - .cWn-·[1 lc- Z(2J -;_;T] l 

..J , 
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To continue the w·ork beyond this point, K1 . as expressed by Eq. (46) 

should be written in terms of 'f, and a final transformation then made l- 3 

to new variables, ¥z :: ~ - 2 T and J 2 :-: J 1 with the aim of obtaining a 

new Hamiltonian which is substantially independent of T It would be the 

intention to keep in the J J term, which is in a sense regaFded as a correc

tion term only terms which are constant or possibly functions of 'fz (i.e., 

circular functions with arguments which are multiples of ~ ='I; - 2 T and 

hence are T-independent). Since by Eq. (45b). the difference between ~ 

y_ 1/2 
and 

0 
is of order J 1 , Yo may simply be replaced by " in the J 1

2 
terms 

of Eq. (46). The distinction between '{, and Yo in the term involving 

J 1
312 

[ b
2 

sin 3 (Yo- 2 T) - 3 b 1 sin (Yo - 2 T)J does not appear to introduce 

into the J 
1
2 term any terms of the form which we elect to retain. Consider-

able complexity arises, however, in evaluating in this same sense the pro-

duct of the two sums which appear in the J 1
2 term of Eq. (46), since numerous 

cross products occur which involve circular functions with arguments that 

are multiples of '{ = Y, - 2 T. 

2 
The J

1 
term of Eq. (46) includes, thenfirstly the constant terms 

ct./ b 2 
---2__,_ J 2 where d-1 denotes 

- ,,,l 1' 
192 v 

= + 1. 7 5516 (in our example). 
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There are, in addition, cross terms ·::hich involve circular functions of 

arguments that are multiples of ~ == Y, - 2 T, of which we write those 

b2 
depending on bz_ in combination with b

1 

with. 

or b
3 

as 2 J 1
2 

F ( ~ ), 
192 1./"" 3 

3 3 3 3 

10- 3 z)"- 6 +1.J" + 10- z.jN 6 + 37/"" 

b1 [ 3 
- b2 2 + v" - 3 3 1 J -J" + + 

6 - -v 2 + 3 t)" 6 + -z)',. 

6 _
1 
V" 1 cos 4 YtJ 

cos 2 ~ 

1 
leas 2} 

10 +V1 

(48a) 

=- 1. 10355 cos 2 Yz - 0. 72926 cos 41'i, ( in our example). (48b) 

We accordingly take 

_ 1, 1 ( 2 _\ 3 I 2 3/2 [ . J 
K 1 = V J 1 + 

24 
7J") J 1 b 2 sin 3 ((, - 2 T) - 3 b

1 
sin ( '(- 2 T) 

+ 
bf [ ~1 

+ F ( Y, - 2 T)] 

(49) 

For the final transformation we now, of course, employ the simple 

generating function 

G 2 ( ~ , J 2) = J 2 . ( ){ - 2 T), (50) 

so that 

3 1 = ~G2/JY; - 3z (51 a) 

'fz == "dGz' ~J2 -= '/,- 2 T (Slb) 

and 
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1 ( 2 _ )3 I 2 3 I 2 =("VIi- 2) J
2 

+ TI V") J 2 (b 2 sin 3~- 3b1 sin Yz.> (52a) 

+ 
bJ [at.' + F ( h ) ] . 2 

.3 J 2 
192. v 0 

Since K2, as expressed by Eq. (52a), is so written as to be T-independent, 

we take K2 to be a constant of the motion. In our present example this 

invariant is 

K2 =- 0.1898 J2 + 0.048389 (5.41441 sin 3 Yz- 3.10512 sin~) J{12 

+ [o.o45179- o.o28406 cos 2~- 0,018772 cos 4 -r;.] J: (52b) 

G. THE FIXED POINTS 
[In Particular For T = 0) 

1. 

The fixed points associated with the Hamiltonian K2 of Eq. (52a) are 

given by points which simultaneously satisfy 

and (53a, b) 

so that K2 is sta:ionary. If it were not for the presence of the function 

F( ~ ), the first condition would be met when 

cos~= 0 or when (54a, b) 

The two roots in addition to the root "Y;, = 270° appear to be shifted by about 

5 I 3 degree by inclusion of the function F ( ~ ) in the calculation, and the 

· 1 I 2 . 
value of J 2 which corresponds to these latter roots increased by about 

.... 
3 percent. Estimates of these solutions to Eqs. (53a, b) are given in Table I, -~ 

':'The roots chosen here are selected so that, with -z)'~ 2, J l/ 2 will be positive. 

At T = 0 the values of Y, will be identical with ~ [Eq. (51 b)]. 
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together with the associated values of Kl, .. hich are now necessarily not 

all the same. 

Values of '4, J 2 for .vhich the H.J.miltonian K
2 

can be Stationary 
(b1/b2 1 03504/5 41441) 

Root Yz. j~ J 1 I 2 
l J2 K2 

1 - 90° - 270° 0.29184 0.0851 68 -0.0055 21 

2, 3 l8~ 41 85° 23 
0. 579 58 0 335915 -0.0226 50 

151° 59 454° 77 

I 

It will be recalled that J 1 ~ J 2 and. for T - 0. )j ·' Y~ . In the 

following subsection we make the inverse transformations necessary to 

express these results in terms of the original variables, specifically for 

T == 0 (s -= 0). 

2 

For the assumed value of T namely T -' 0 in the present case. the 

values of Y, (-" 'r; ) and J {·- J ) may be transformed to corresponding 
,., 2 1 

values of Yc; , J by means of Eqs. (45a, b). This transformation is least 
0 

laborious in the case designated as "Root 1" in Table I, since, for that case. 

~ = Y, (::.- 270°). Once the desired values of Yo, J
0 

are obtained, Q and 

P (.:; dQ/dT) follow immediately from Eqs (42c, d) Since, at T ::. 0, 

V ,8 :.:. 1. 3755 and d( -zJji) /dt .:: 0. one next may evaluate 

q - -iiJff Q :.: 1 17 282 Q 
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dq/dt (1/YiJ;J')dQ/dT.= P/~=: P/1 17282 (55b) 

Finally of course 

v ._. v s + q . . - 0 0 8 3 8 0 2 + . q [from Eq (16) J 56a) 

and 

dv 
(56b) p;: 

ds 3 dt 

since t:! s/3 [Eq. (34)]and.dvs/ds == 0 at s = 0. In this way we estimate 

the values listed in Table II. 

Root Yo 
1 i-::,1)0 

2, 3 25?11 
154?89 

TABLE II 

Values Leading to Fixed- Point Coordinates 
(T "' 0. s .:.: 0) 

1/2 
Q p dq/dt Jo q 

0.29265 -0. 30761 0 -0. 36077 0 

0 5665 0.2527 +0.9761 0. 2964 + 0. 8323 - -

v r>=dv/ds 

-0 4445 0 

0. 2126 + 0. 2771J -

The true values for the coordinates v, p of the unstable fixed points, 

as given by the computer, are (Sect D) 

v .. - 0. 44345, p - 0 J 

v - 0.2245, p - + 0. 3030 ; 

it is seen, accordingly, that the present "analytic'' method gives (as Root 1) 

the location of the unstable fixed point which lies on the v-axis with an accuracy 

considerably better than 1 o/o, but that the values of v and p for the other un-

1 
stable fixed points are reE>pectively smaller than the correct values by 5- and 

2 

'~cf. Eqs (1 7a. b) of reL 3 
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8 4 o/o. These analytic results were not materially affected by a refinement 

of the function F ( Yz ) [Eq. (48b)], which enters in Eqs. (52a, b), through 

inclusion of terms involving b 3b 
4 

in the coefficient of cos 2 ~ and te'rms 

involving b 
1 

b 
3 

and b 2 b 
4 

in the coefficient of cos 4 Yz . 

H. ALTERNATIVE, SIMPLIFIED, ANALYTIC METHOD 

The analytic method of the previ~us sections, in which it was attempted 

to follow the Moser procedure in an orderly fashion, clearly involved consider-

able complexity in the details of the calculations. It was necessary, firstly, 

to undertake some numerical work in order to estimate adequately the stable 

solution for the forced motion. Subsequently, once the forcing term was re-

, moved from the equation of motion, additional labor was required because the 

new differential equation then contained an A-G coefficient for the linear term. 

Because of these complications, it would seem difficult to arrive at useful 

formulas by follo-.ving the methodology on which our numerical work was based 

and, accordingly, it is of interest to explore a somewhat less straightforward, 

but simplified, analytical procedure. 

In this second method the effect of the forcing term will only be eliminated 

immediately by subtraction of that part which would result from consideration 

of the linear terms of Eq. (1). In the subsequent work, terms of order 
....,. 3/2 
/'9 J 1 

2 
and ?\ J 

1 
in the Hamiltonian will be neglected, in comparison to the 

3/2 
J1 

2 
term and the constant part of J 

1 
term, since ?- may in a sense be regarded 

as a perturbation. Information concerning the stable equilibrium orbit, as well 

as pertaining to the unstable equilibrium orbits and other features of the motion, 

should then result from the analysis. 
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1. 

We commence, therefore, -.vith the differential equation (1 ), for which 

the Hamiltonian has the form 

h=.!.p2 +.!.(~~)2 v 2 -(b/6)(cos2s)v3- 7\. 2 s 
2 2 

N j (cos-
3
-) v. (57) 

For the initial transformation, to quantities akin to angle-action variables, 

we employ the generating function 

-v[ /\ 
F 0 (v, Y. ) = N v + ~ _ (~f 

]

2 
2. s 

cos -
3
- ctn Yo (sin~) v + f {s) , 

3 
{58) 

where f (s) would be selected to obviate the need to include in the new 

Hamiltonian terms which only involve the independent variable and hence 

play no significant role. The resultant transformation is 

p = 0 F I 'J v = -- v + 2 cos-- ctn 10 + -3 
2 -z) [ 7\ 2 sl ..J 2 

o N 4 (2 z}_\ 3 
9-N} 

so that 
2 

p-"3" 

ctn ~ = N 
217 

v + 
4 
9 

7) 

2 .f cos-fj 

2 s 

~ -(~)2 
sin -3-

7\. 2 s 

-(2~)2 
cos-

3 

.D.. J1. 
sin 3 J + N v + 2 [ 
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/'1 . 2s 
--'--~Sln--

ig _/2N7Jt 3 
\ J (59a) 

(59b) 

(60a) 

2 s t 

cos -3- ' 

]

2 

(60b) 



2 s 
cos -3-

. 2 s 
sm--

3 

:\T CR.-\ - 4 9 7 

(60c) 

(60d) 

and the new Hamiltonian is found to be (after some intermediate algebraic 

work) 

H0 = h + d F 0 I d s 

312 [sin (36c + 2 s) +sin (3~- 2 s) J 
-z) b ~-~) 3/2 

= 2 N" 3
o + 48 ~ iJ; 3

o - 3 sin ( Yo + 2 s) - 3 sin ( ¥o - 2 s) 

b N 7) 
+ - -::;"7 J 0 

1 6 1/ ~ - (_2 7Jt 
9 \ N J 

8 s 4 s 
2. cos -3- + 2. cos -3-

- cos (2 i + ~) - cos (2 Yo -~) 0 3 3 

- cos (2 Yo + ~) - cos (2 Yo 
3 

.1.2. 
3 

- 2 sin ( Yo + 2 s) - 2. sin ( Yc, - 2 s) 

-s
1
.n

1
._.v

0 
lOs, . (v lOs) 

~"' + -
3
-J - sm lo - - 3-

. (v 2s. V 2s) 
- sm 1o + -

3
-> - sin ( 4o - -

3
-

(61) 

[The nature of the transformation and its effectiveness in removing completely 

the coupling term from the linearized differential equation (1) may be evident 

from Eqs. (60a) and (61). The general character of the Hamiltonian H
0 

of 

(61) is seen to correspond to that given for K
0 

by Eq. (50) of ref. l(p. 2J), 

noting that, in ref. L b = 1 and that for our present - cos 2 s the function 

sin 2 t is employed in the v 2 term of the differential equation.] 
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Paralleling previous work, 1 we now make the next transformation by 

use of the generating function 

so that 

and 

+ 

cos (3fc, + 2 s) 

1 + 3 1/ IN 

/ 

cos ( Yo + 2 s) cos ( Yo - 2 s 
3 + 3 --·-~;---1 

1 + iJ IN 1 - /N 

sin ( ~ + 2 s) 
1 + 7/IN 

cos(3Yo+2.s) 

1 + 3 7//N 

sin ( ~ - 2 s) 

1 - iJIN 

(62) 

(63a) 

' 
cos ( Yo + 2. s) cos ("Yo - 2 s) 

- 3 + 3 -.:.....----:..,.----1 
1 + 1/IN 1 - z/IN 

(63b) 

- b {B_~I2 3/2 
-Ho+4aW) 31 

sin ( 3 Yo + 2 s) 

1 + 3 7//N 
sin (Yo + 2 s) 

~ 2 7J J 
N 1 

+ 3 iJI + 1 + N 

Gin ( Yo - 2 s) 
3 -----r.---

1 - t/IN 

b (N_\3 I 2 3 I 2 
+ 48 VJ J 1 sin (3 )j" - 2 s) 

b2 (N_\
3 

J 2 [ 6 -zJIN 
+ 2048 1}) 1 1 7)2 IN2 

b N 7\ v 4: 
- - -;:-r 2 J 1 cos (2 ,,, - _s ) 

1 6 v 4 _ el'\J7)) 3 

_ b ( N y f2 71 '- 1 I 2 Y, 2 s 

Tb V/ [~ -(;'fr Jl sin ( I - -3-> 
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in which the last result follows after some algebraic simplification and as 

a result of neglecting terms of the order ?\ z J 
1 

and terms 

which do not involve circular functions .vhich are multiples of ( ); - 2 s/.3)--

"\ 

[.0.. Eq. (54) of ref. 1 (p. 22)j 

For the final transformation we employ. as in previous -vork the 

generating function 

v ( '/ - ~). F 2. ( It . J 2) - J 2 . It 3 ' 

so that 

and 

"dFz!~)j ; 3z 

)Fz I J J 2 -'- "¥; 2 s 

3 

[.0_ Eq (57) of ref. 1 (p 23)] where 

6 V/N 

1 - -vz /Nz 

ref Eq. (2S)ofref. 1 (pp. 13 
L-

1 

1 + 3 

23)] 

v'!N 

The Hamiltonian 

1/Z ,.-
J 2 sin}~ 

H2 . in the form 

vVritten, is independent of s and will be taken as a constant of the motion 
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l. 

To obtain the fixed points, in particular, we may take the Hamiltonian 

Hz to be stationary, as given by setting the partial derivatives () H 2 }) >;, 
and (7Hz!;;) J 2 each equal to zero; specifically, 

312 3IZ ~fiZ 2'2. 
M;j) J 2 cos 3'17_ • ~W ~-~H J2 sin 2~-~ [~-t~f 

112 v 
J 2 cos~~ = 0 

(69a) 

and 

(
v 1, b ( -f I 2 1 I 2 v 2 /. 3 

2 N - 3) + 3z ~/ J 2 sin 3 12. + t 0 ~ \ ~) J 2 

b N 7'- b ~.J. I 2 71Z -1/2 
=-r cos 2 }i - 32 .. 1 J sin ~ = 0. 

- 16 v : -efl , ~ -o;T 2 (69b) 

Two roots of interest for Eq. (69a, b), corresponding to the stable and 

unstable fixed points which lie on the v-axis of the phase plot for s = 0 (mod. 31T ), 

are obtained by taking ):;_ = - 90° and J 
2 

as satisfying 

2 (-:K-- ~ \+ _E_(N_')312 J 112 + b24X, (N_f 
l" .) J 3 2 -v; z 1 o 2 4 vJ 3 z 

+ J:_ N 
16 17 

b ( N .. \1 I 2 7\ z 

+ 32 VJ [~ f ;'}] 2 

-1/2 
J 2 = 0 J (70) 

in which the term of order J 2 is comparatively small--for small /\. one root, 

in fact, may be estimated roughly by consideration of just the constant term 

and that involving J; 1 I 2 , while the other is given roughly by use of just the 

constant,term and that which involves J~ 12 
Numerically, for 

v1N = 0. 3, b = 1.15, and )\ ::= 0. 006, 

1-542 



MCRA--!97 

Eq. {70) becomes 

112 ·-1/2 
0. 06944 J 2 + 0. 21871 J 2 - 0. 04964 + 0. 00033124 J 2. :: 0 ' (70

1
) 

with roots for J~ I 2 
given by 0. 006881 5 and 0. 2.061 5 . The remaining roots 

of interest similarly involve simultaneous solution of Eqs. (69a, b) for values 

of '(z, near 30° or the supplementary angle 150°. To obtain the corresponding 

v, p coordinates of the fixed points, at s = 0 {mod. 31r), one must next trans-

form '1i, {= '(, for s = 0) and J 2 {= J 1) to J";; , J
0 

and thence to v, p by 

use of Eqs. {63a, b) and {60c, d). 

It may be noted in passing that the two roots of Eq. {70) become coincident 

for a critical value of /\ given approximately by 

1- ~ 64 c~ --z))2(.! + ~) -z) 
b 3 N 3 Nj N 

'= 0.01175' 

for VIN = 0. 3 and b = 1. 15; a more accurate numerical estimate, again 

based on Eq. (70), gives 

1 =0.01168, 

with 

J 
1 I 2 = o 0740 2 • 4' 

from which one finds, by Eq. (63a), 

112 
J = 0.07412 

0 

and, by Eqs. {60c, d), 

v = _ (.!.Q)1 I 2 
c . 3 

0.01168 
{0.07412)- 4 36 

= - 0. 13532- 0. 13832 

= - 0. 27364) 

PC = 0 . 

9 100 
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Stable 

1 

2, 3 
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The correct values for this confluent situation, as obtained by direct digital 

. 4 computat1on, are 

~ =0.01136, 

vc = - 0. 2650 

Pc = 0 

so that our estimates for 1 and v c are evidently some 3o/o larger, in 

relative magnitude, than the correct values. 
11 

Returning to our example with 7\ = 0. 006, the fixed-point coordinates 

found by the present method of analysis are as summarized in Table III. 

TABLE III 

Estimated Fixed- Point Coordinates at s = 0, mod. 37t 

~N = 0. 3 b = 1. 15 ~ = 0. 006 

Calculated values Computer Relative 
·~PC::It)tc:: Errnr 

~ J2 "' J v p v p ev eF 0 

-90° 0.006881~ -goo 0.0068822 -0. 08361f 0 -0.083802 0 -0. 22.o/o --

-90° 0.20615 -90° 0.20676 -0.44855 0 0.44345 0 +1.15o/o --

34?20 31?24 
:0.3033 0.2161 1:!:_0.284] 0.2246 +0. 3030 -4 o/o -6 

I 145°7~ t 0.31269 148?76 -
: . '4 

The results obtained by the present simplified method not only are far more 

easily obtainable but appear to be of as good accuracy as those previously 

summarized in Table II (Sect. G). 
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Second CERN Symposium on High Energy Accelerators, Gen~ve, 1959]. In 

this method we note from Eqs. (6a) [sect. c] and (9a) [sect. D] that, for small 
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(7 2a) 
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A parabolic fit, tangent to the lines (lla_ b) at /\ ,., 0, may be obtained by 

writing 

)\ ~ v ' ( v- vz ( ~ :-: O)] . [ 4/9 - (2 V /N) 2) 
v 2 ( /\ = O) 

for which the maximum value of 71 , 

1 = ~ · [ 4/9 - (2 r/ /N)
2
] · [- v 2 ( 7l = 0) J , 

is attained at 

1 v = - v ( /) = 0) . 
c 2 2 

(7 3) 

(74a) 

(74b) 

Witp 2 -z/ IN = 0. 6 and - v 2 ( ?! = 0) = 0. 5238 [from computational results 

cited in ref. 1, after division by b = 1.15], Eqs. (74a,b) suggest 

~ = 0. 01106 

vc = - 0. 2619 ' 

which may be compared .vith the computational results cited in the text, namely 

~ = 0.01136 

v = - 0. 2650 
c 
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* ON THE PASSAGE OF A BEAM THROUGH A CAVITY, 

INCLUDING ANALYTIC NOTES OF A.M. SESSLER 

L. Jackson Laslett 

Lawrence Radiation Laboratory 
University of. California 

Berkeley, California 

April 20, 1970 

I. Introduction and General Principles 

ERAN-72-B 
pp 1-8, 55 only 

A particle beam may be sent through an R.F. cavity with the object of 

attaining a time-varying deflection or, alternatively, of obtaining an 

energy spread. It can be shown that these two effects are related, and one 

may be distressed to obtain one of the effects when interested only in ob

taining the other. 

As an example of the relationship mentioned above, one may consider 

three trajectories that pass through a cavity that extends from za to ~· 

All three rays will be taken to enter with the same energy and to be 

parallel(~·~·' normal incidence). The first ray (#l) will be regarded 

as the reference ray. The second ray will be supposed to emerge at the same 

time as #1, but with a transverse displacement ox and an energy that 

differs by 5E from the emergent energy of the reference ray. The 

* 

z a 

Work supported by the u.s. Atomic Energy Commission. 
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third ray will be supposed to emerge at the ~rune point as #1, but later 

by a time interval dt. For this to occur, in the presence of time

varying forces within the cavity, the third ray may follow a trajectory 

that differs from that of the reference ray and the emergent transverse 

momenta accordingly may differ by dp • It then can be shown that, 
X 

provided only that the particle motion within the cavity is governed 

by Hamiltonian dynamics, 

( 1) 

i.e., the scanning-rate and the energy-dispersion are directly related 

in the manner indicated by Eqn. (1). 

The reasoning leading to Eqn. (1) has been outlined by Fowler and 

Good1* in connection with a beam sweeper, and was based on application 

of the bilinear covariant of Whittaker. 2 In this type of application 

it is useful to consider the motion as governed by a "space Hamiltonian," 

in which a distance coordinate (~·~·, z) plays the role of independent 

variable and the negative of the momentum conjugate to this coordinate 

then serves as the Hamiltonian function. In such a formulation the time 

t acts as a generalized coordinate, and the conjugate "momentum" then 

is the negative of the usual Hamiltonian or, in this instance, the neg

ative of the particle energy. One then notes that the evolution of a 

Hamiltonian system**effects a canonical transformation of the dynamical 

variables, so that the invariants of a canonical transformation can 

be applied to these variables. 

Because the derivation of Eqn. (l) through use of the bilinear 
l covariant has been treated elsewhere, it may be of interest here 

to indicate how this result might alternatively have been demonstrated 

by appeal to the Fundamental Poisson-Bracket Relations. 3 ·Thus, sup

posing a space Hamiltonian to be employed, we may in the present appli

cation consider x,px and t,-E to constitute two conjugate coordinate

momentum pairs. Suppose we now pass to differential quantities about 

some possible trajectory (but omit, for brevity, the differential symbol) 

* References are listed in Sect. IV. 

**I.e., the evolution from one definite value of the independent variable 
to-a second definite value of this quantity. 
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and linearize the transformation that carries a particle from z = z to 
a 

z = z ; we then may write 
b 

X 

px 
= 

t 

-E 
~ 

Tl 1 
' T2 1 
' 

T3,1 

T4 l 
' 

or, for the inverse transformation, 

""' X Tl 1 
""' ' 

Px T2 1 
= ' ""' t T3 l 

""' ' -E T4 l za ' 

Tl 2 
' 

Tl,3 

T2 2 
' 

T2,3 

T3,2 T3,3 

T4 2 
' 

T4,3 

Tl 2 
,.... ' Tl 3 

""' ' T2 2 
' 

T2,3 
""' ""' 
T3 2 
,... ' T3 3 

,... ' 
T4 2 

' 
T4,3 

Tl 4 
' T2 4 
' 

T3,4 

T4 4 
' 

Tl 4 
,.... ' 
T2 4 

' ""' 
T3 4 
,.... ' 
T4 4 

' 

X 

t 

-E 

X 

t 

-E 

' 

0 

(2a) 

(2b) 

The fundamental Poisson-Bracket relations are (in Goldstein's3 notation) 

where oi . ,J 
ditions for 

[<t, q.] = o, 
1. J 

[p.' p.] = o, 1. J 
and [a . , pj ] = o . . , ( 3 ) 

J_ 1., J 

is the Kronecker a-symbol; these necessary and sufficient con-

a canonical transformation impose six conditions on the matrix 
* ,.... elements T. . of the transformation (2a) -- or on the coefficients T .. l,J l,J 

of the inverse transformation (2b). Thus, in particular, the condition 

[p -E ] = 0 imposes the relation 
xa' a 

* With 6 significant relations imposed on the 16 coefficients Ti,j' 

the number of free parameters for the linear (homogeneous) transformations 

(2a) becomes 10. It may be noted that if such a transformation were to 

be considered as arising from a homogeneous quadratic generating function 

of 4 variables, the number of terms (with arbitrarily assignable coef-

. 4(4 +1) ficients) in such a generating funct1.on would be 2 = 10 

in agreement with the above. 
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With reference now to the specific problem considered initially, the 

fact that the incident rays are taken to have the same direction and the 

same energy requires that 

(5a) 

and 

(5b) 

For ray #2 it is understood that there is to be no time differential 

(with respect to #1), so from Eqns. (5a,b) we have for this ray 
~ ~ 

( -~) T2 1 ~ + T2 2 p~ + T2 4 
' ' ' 

0 (6a) 

and 
~ ~ ~ 

( -~) T4,1 ~ + T4 2 p~ + T4 4 
' ' 

o, ( 6b) 

from which elimination of p 
xb 

yields 

or, recalling that the variables ~ and ~ are actually differentials, 

I""J ,...., J"'oJ -

T2,1 T4,2 - T2,2 T4,1 
(7b) 

Likewise, for "~ay #1, the (differential) transverse coordinate is to 

vanish, so for this ray Eqns. (5a,b) become 

(Sa) 

and 

T4 2 P + T4 3 tb + T4 4 (-Eb) = o, 
' ~ ' ' 

(8b) 

so that, on elimination of -Eb' 

or 
~ ~ 

T2,3 T4,4 
...., ...., (9b) 

- T2 4 T4 2 
' ' 
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The expressions on the right-hand sides of Eqns. (7b) and (9b) are seen to 

have identical denominators, and the numerators are equal by virtue of 

Eqn. (4)o We thus in this way have verified the correctness of there

lation oEjox = -dpxfdt that was cited as Eqn. (1). A similar approach, 

again making reference to the fundamental Poisson-bracket relations, might 

prove useful for establishing other relationships that could be of interest 

for·a dynamical system. 

II. Example of a Specific Transformation 

to Represent Passage through an R-F Cavity 

We present here a specific Hamiltonian transformation intended to de

scribe the essential features of particle motion through an R-F cavity 

whose thickness s is sufficiently small that transit-time effects can 

be neglected. 

energy (total 

Energy will be measured in terms of a nominal injection 

energy) mc
2 = ;.m c

2
, time will be measured as ~ = ct, 

0 

and the motion will be treated as ultra-relativistic (v ~ c). With a 

simple standing-wave mode in a two-dimensional cavity of half-width a, 

the fields may be taken to be of the form 

E (x,t) z 
E cos ~ cos ..! 

0 '}.. 'A 

:s ( t) E . X . ~ 
y x, = -

0 
Sln ~ sln ~ 

where a= A/4, 3Aj4, 5Aj4, or etc. (with A= 2rt~), 

and we may consider use of the transformation 

px+ px 2 
0 .9L_ B (x , t ) X= X+ 2 s -

0 2mc2 Y 0 0 

2 
= X+ px s - qs 

(x , t ) 0 -B 
0 mc2 Y 0 0 

X ~ 

+ F s 0 0 = X+ Px s sin- sin --,:: ' 0 0 'A 
0 

2 

Px = p - qs B 
(x ' t ) X mc2 y 0 0 

0 

X ~ 

+ F i 0 . 0 = px s n- Sln-
0 'A 'A 

0 
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t = t + sjc or 'T = 'T + s, 
0 0 

(llc) 

and 

Energy increment = qs E (x , t ) z 0 0 

or 
X 1" 

W=W +F 
0 0 cos- cos T ' 0 0 ;.._ (lid) 

where 
qEos Energy 

F 
0 

= - 2- and W = 2 With x,p and -r,-W regarded as con
x me me 

jugate coordinate-momentum pairs, the transformation equations (lla-d) will 

be found to fulfill all the required Poisson-bracket relationships (3) 

and hence may be adequate for revealing the salient features in the motion 
. * of fast particles through such a cav~ty. 

As a numerical example, it may be of interest to consider a situation 

of the type just described in which all particles enter with the nominal 

energy (W = l) and the center of the incident beam falls at the point x= "A/4 

(where the spatial gradient of the ·electric field component Ez has its 

maximum magnitude and where the magnetic field then perforce will attain 

its maximum value). The distribution of transverse displacement (x ) and 
0 

slope (p ) about such a central ray will be taken to be that contained 
X 

0 

within an ellipse in x,p -phase space of widths ox = ± 0.5 em, 
X 0 

op = 
X 

0 

± 0.05 radian [emittance area, rt(ox )(op ) = 0.07854 cm•radian = 78.54 o x0 

.milliradian•cm]. The wave-length associated with the electrical excitation 

of the cavity will be chosen to be 1\ = 10.8 em (~ = 1.71887 em), so that 

the incident beam is centered at x = 2.7 em, F is taken to be o.o4, and 
0 0 

s = 2.0 em. 

Under the conditions just specified, one expects that the particles 

would gain or lose energy up to the maximum amount of 0. 0115 (me 2) -- i • e., 
,± 1.15% [since 0. o4 sin ( 0. 5 em/~) ~ 0. o4 sin ( 16.7 deg. ) = 0. o4 x 0. 287 = 
0.0115] and other particles could experience deflections of as much as ± 40 
milliradian. The initial conditions for eight representative particles are 

* Direct differentiation of Eqns. (llb) and (lld) will be seen immediately 
to lead to a result that is consistent with the general relation expres
sed by Eqn. (l). 
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shown on the first of the following figures. This is followed by a se

* quence of similar diagrams Showing the emergent values of X and p When 
X 

transit of the cavity is considered to occur, in turn, at the following 

times (30-degree intervals of electrical phase): 

T
0

: 0, 0.9 = A/12, ••• 9·9 = llA/12. 

Adjacent to the points plotted on these latter diagrams are given, in pa

rentheses, the values of W on emergence ko that one thereby obtains the 

factor by which the initial total energy is modified in each case by tra

versal of the cavity. 

It is seen that, as expected, values of W that cover the 

to 1.0115 are produced on traversing the cavity at T = 0 and at 
0 

Extreme slopes of ± 0.09 are found to occur at T = A/4 and T = 
0 0 

spectively -- a change of ±O.o4 from the limiting values of p 
X 

range 0. 9885 

T
0
= Aj2. 

3Aj4, re-

in the 

incident be~~. In addition to this additional deflection, some increased 

displacements of course may be expected when s f 0 • From the complete 

set of graphs it is seen that in this example there is an approximate 

doubling of the area of x,p phase-space required to contain the beam. 
X 

The transformations introduced here have been employed in work as

sociated with A.M. Sessler and G.R. Lambertson for an analytic exami

nation of the cavity effects -- see below. The results seem to be con

sistent with the work reported here and suggest that the mode of operation 

just considered may be unattractive unless a beam of large emittance (but 

suitable brightness) is available, or unless cavity operation at consider

ably shorter wave-lengths is feasible. For this reason it has been sug

gested that some attention should be devoted to the possibility of passing 

the beam through the cavity in the neighborhood of x = 0, where the 
0 

electric field is strong but the magnetic field is zero. Since in this 

case all particles traversing the cavity at the same moment would experience 

virtually the same change of energy, special attention should then be 

directed to the possible subsequent ''bunching" of such a beam in the trans

port line or, more likely, in the compressor itself. Such a continuation 

* Numerical values obtained by aid of the BRF teletype program ESPCY, a 
modification of ENSPR that automatically generated the sequential initial 
values employed in this series. 
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of the work possibly would be aided, or at least illustrated, by numerical 

work that could be performed with teletype program£ similar to that used 

for the numerical work reported in this Section. 
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Abstract 

In an electron ring accelerator electrons are often injected into 

a magnetic field with index n ~- (r/Bz)(dB)dr) of about 0.5. For 

extraction and axial acceleration of the ring, n must approach zero 

and several betatron resonances are crossed. Following particles on a 

computer through simulated fields (which approximate measured exper-

imental fields) has elucidated which resonances are important and 

which magnetic field perturbations cause large growth for a particular 

geometry and coil-energizing sequence. Analytical formulas for reso-

nance growth also have been derived and checked against the computer 

calculations. These equations indicate the important driving terms of 

the field and· are convenient for estimating the expected growth on 

traversing a resonance. Resonances at n ~ 0.5, 0.36, 0.25, and 0.20 

have been investigated. 

l. lntroduct ion 

Betatron amplitude growth has been observed under certain condi

tions during the compression cycle of an electron ring accelerator l, 2) 

t Work supported by the u.s. Atomic Energy Commission. 
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To better understand this phenomenon, and to be able to predict beta-

tron-amplitude growth in future experiments, we undertook computer and 

analytical calculations pertaining to the device of ref, 2). In pre

vious work with betatron resonances analytic3-5) and some limited com

puter calculations6 ) have been performed for other geometries. For 

an electron ring accelerator, the electrons typically are injected 

with a magnetic field index n = (-r/Bz)(dB/dr) of about 0.5, and 

then during the compression cycle n decreases to ~ 0.1. 

Betatron resonant growth can occur when the radial oscillation 

frequency of an electron divided by its gyrofrequency, v , or the 
r 

axial oscillation frequency, divided by its gyrofrequency, vz' is a 

simple fraction, or when the vr and vz values are connected by simple 

integral relations. The quantities vr and vz are also called the rad

ial and axial betatron tunes, and they are approximately related to 

the field gradient index n by 
2 

vr = 1 - n, 

y 
z 

2 
n. 

A particular resonance is designated by an equation of the form 

kv + .tv r z m, 

(l) 

( 2) 

where k, .t, and m are positive or negative integers. In eq. (2) m 

indicates the harmonic order of the magnetic field's azimuthal varia-

tion that drives the resonance (see section 4). Important resonances 

arise when k, .t, and m are small, and if the magnetic field has 

median-plane symmetry, only resonances with even £ can occur. 

We have investigated the following potentially dangerous reso-

nances: 
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2vr - 2vz = 0, at n = 0.5; 

vr + 2v z = 2, at n = 0.36; 

2vz = 1, at n = 0.25; 

v - 2v z = 0, at n = 0.20. r (3) 

Presumably less important, and hence not included in eqs. (3), 

are higher-order resonances and those occurring in fields with non-

median-plane symmetry. Unless the magnetic field has large higher 

harmonic components, the growth will be greatest on the lower-order 

resonances. With regard to resonances that arise only in the absence 

of median-plane symmetry, electron ring compressors are designed with 

due consideration to median-plane symmetry, and magnetic measurements 

indicate that deviation from this symmetry is small. 

In sections 2 and 3 we discuss the computer method of calculating 

betatron growth by simulating the experimental magnetic fields. Then, 

in section 4 the analytic method is discussed, in which growth is cal-

culated from certain parameters that characterize the radial and (pos-

sible) azimuthal variations of the magnetic field and can be deter-

mined from the magnetic measurements. (Often these field parameters 

can be estimated from simple calculations.) After determining these 

field variations, one can use the convenient analytic formulas given 
I 

in section 4 to predict the growth for each resonance. The growth 

rates calculated from these formulas when compared with the computer 

calculations have agreed typically within 3~ and in the worst case 

within a factor of 2. 

2. Computer Simulation of the Experimental Magnetic Field 

1'o compute the effect of a betatron resonance on a particle, one 

must simulate closely the driving terms of the actual magnetic field. 

- 4 -

It is convenient to separate the magnetic field into two parts: (a) 

an azimuthally symmetric field and (b) an azimuthally varying (pertur

bation) field (if it is of significant magnitude). Note that a non

symmetric field is not required to actuate a homogeneous (m = 0) 

resonance. For each particular calculation two arrays are stored in 

the computer. One array contains the axial and radial magnetic field com-

ponents (B , B ) for the symmetric field and the other array is used 
z r 

to calculate the nonsymmetric field (Bz' Br' B8 ). 

The computational results reported in this paper were obtained 

for fields intended to simulate those present in the compression exper-

iments reported in ref. 2). 

2.1 Symmetric Field 

The experimental apparatus for forming rings usually contains 

three or four sets of compression coils (see fig. l of ref .2). Tlie 

coils of ref.2) have many turns of copper windings. If the particle 

is 20 em or further from the coil, the windings can be accurately aim

ulated by 

loops can 

infinitesimal circular current loops. The fields from thP~P 

then be calculated by integration of the Biot-Savart law1 ). 

If the particle is closer than about 20 em to the coil, however, the 

helical nature and crossover region of the windings can alter the mag-

netic field; see section 2.2. 

The coils in the apparatus of ref. 2) were pulse~ so that the 

currents used in the program could be taken from those measured exyer

imentally with Rogowski belts. Alternatively they could b~ calculated 

I 
from knowledge of• the voltages and capacity of the capacitor banks, 

and the inductance, mutual inductance, and resistances of the coil sys

tem. Both methods gave essentially the same result, so the latter 

method usually was used. 
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Because of the pulsed nature of the fields, the magnetic field 

from one coil could induce eddy currents in the copper turns (whether 

shorted or unshorted) of another coil. For a shorted loop, the cur-

rent induced in the complete circuit can be calculated in a rather 

direct manner. However, the induced eddy currents due to the physical 

presence of the copper even when the coil is open must also be in

cluded. This was taken into account in computation of the symmetric 

field by means of simulation circuits comprised of two adjacent cur-

rent loops with current in opposite directions. The currents in these 

loop pairs (which were driven by the active coils) were calculated in 

the program after parameters, such as the mutual inductances to the 

main coils, were adjusted so that the resulting magnetic field gra-

dients were in agreement with measured values. 

The calculated symmetric magnetic field agreed very well with 

measured field, the difference being less than 2%. 

2.2 Azimuthally Varying Fields 

Azimuthal variations of magnetic fields arise from two sources: 

(a) asymmetric coil construction or location, (b) eddy currents in 

metal that is nona.zimuthally symmetric and in spatialiy localized 

ferromaenetic material. 

The coils were placed very accurately wi.th regard to center and 

tilt, anu the possible field perturbation from this effect was esti

mated to be small. The effect of coil leads was also calculated. 

This introduced a field asymmetry of only 0.1\(, in the midplane B . z 

Coil Sets lB, 2, and 3 (see fig. 1 of ref. 2) were wound with a 

threefold symmetry in their crossovers (inner radius to outer radius). 

This minimized first and second harmonic perturbations but introduced 

- 6 -

a third harmonic variation. The magnitude of this effect was calcu-

lated for a current element with the geometry of the crossover con-

ductor, and the resultant axial field was 0.5 to 1\(, of the total sym-

metric field. During the first stage of compression only Coil Sets lA 

and lB were energized, but eddy currents in the unshorted copper cross-

overs of Coil Sets 2 and 3 produced field perturbations of the same 

magnitude as those arising from the normal currents in the crossovers 

in Coil Set lB. 

Eddy currents in the copper-iron injection snout2 l, the stainless, 

steel flanges, probe housing, etc. gave rise to large peripheral bumps 

in the magnetic field. Fig. l shows the azimuthal variation of the 

axial field component in the median plane for two radii at the time of 

injection. Similar data were obtained as a function of time for sev-

eral radii from ll em to 19 em. Also direct midplane measurements of 

(6Bz/6r) were made. 

The third harmonic component was described by the calculated field 

contribution from the crossovers. In addition, four circular current 

loops (and a bias field) were used to simulate the peripheral bumps. 

The radius and location of each loop were chosen to fit the width and 

radial variation of the measured bump. The currents in the four simu-

lation loops were determined as a function of time by a least-squares 

fit of the calculated fields Bz(r, 9, z 0, t) to the measured mid-

plane fields. A typical example of such a calculated field at injec-

tion time for R = 19 em is shown in fig. 2. At injection time the 

guide field was typically 700 G. 

The compressor was designed to have median-plane symmetry in its 

magnetic field during the compression cycle. Although Coil Set 3 was 

mechanically unsymmetric, the turn-to-turn spacing in the short coil 
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of t·he pair was made larger so that the total field had reasonably 

good median-plane symmetry. Measurement of B indicated that the 
r 

deviations from median-plane symmetry were small. Therefore, in the 

calculations it was assumed that Br and B
9 

ar~ zero on the median 

plane. For convenience, a midplane ~r~ of Bz(r, e, z = O, t 1) was 

stored in the computer for the orbit code to calculate resonant growth 

near a time t
1

. If Bz on the midplane is known,~ can be calcu

lated for small (z/r) by the expansion equations 

Bz(z) = Bz L=o 

Br(z) 

B
9
(z) 

OBZ 
z dr 

oB z z 
= r- d6 

2 
z 

- z/ 

L=O 

I ~=0 

L ~ I + r2 L z=O 

o2Bz 

or
2 

z=O 

o2
B z 

+ -z~ 
oe .J 

(4) 

Most of the calculations were done neglecting the higher-order 

second term of Bz' as this simplification was found not to affect 

the results for those cases that were compared. 

Another method of handling the azimuthally asymmetric field was 

to make a least-squares fit of the data (Bz and 6B /6r) to Fourier 
z 

series. For a particular time (when the resonance is crossed) arrays 

(C B, S B, C P, s p) of Fourier coefficients (vs. r) are stored in 
m m m m · 

the computer for use by the orbit code. The components of the asym-

metry field are calculated from the arrays as follows: 

- 8 

Bz(r,z,e) = ~ ~l 
2 2 

m z ) 
+ ---r-

2r 
~mB(r) co!! me + smB(r) sin m 1} 

2 
!.... I: 

- 2r m [{~ cmp(r~ cos m 9 + {~ smp(r~ sin m e] 

Br(r,z,e) 

B
9
(r,z,e) 

• !. t 
r m ~m:(r) cos m a + smp(r) sin m a] 

z 
=-

r 
I: mrS B(r) cos m 9- C B(r) sin me] m [m · m (5) 

where C B and 
m 

S B are the Fourier coef! ~cient s determined from the 

midplane 

m . 

B measurements. z The coefficients C P and 
m 

C' p 
'"'m represent 

respectively o B 
r dr em and 

o B 
r dr sm ' and are determined directly 

from tte midpla~e 6Bz/6r measurements. 

3· Computer and Some Experimental Results for Betatron Amplitude Growth 

A typical calculated compression cycle is plotted in fig. 3 to 

indicate how the radius R, magnetic field B, kinetic energy T, and 

magnetic field index n vary with time. The variation with time of 

n at the location of the closed orbit (as on fig. 3) we will call the · 

"n trajectory." Trajectories similar to this could be calculated for 

any set of parameters used in the experiment. 

The n value at the location of the closed orbit could be shifted 

experimentally by putting a small current through a coil set which by 

itself would cause a large value of n at that location. For examr.-le, 

a small capacitor (of ann-shifter circuit) could be discharged through 

Coil Set lB (see fig. l of ref. 2) to shift the n trajectory at large 

radius. 



~ 
I 

(Jl 
0\ 
~ 

- 9 -

BY use of the exact relativistic equations of motion and a simu-

latcd masnetic field for which the characteristics were adjusted to 

fit the experimental conditions, the resulting particle motion was 

dct.enni.ned by nuinerical integration. To obtain a scan of the total 

interestins region of h, particles were injected with different ener

sles at various appropriate radii into a magnetic fieid that was con

stant with time. They were injected with art axial amplitude of 0.1 em 

and a radial amplitude of roughly 2 em. The resulting axial amplitude 

growth rate for the particles is plotted in fig. 4. The computer 

·results thus demonstra.te directlY that there are regions of growth 

near n = 0.20, 0.25, 0.36, and 0 .. 50. The peaks are not exactly cen~ 

tered about these n values, because the axial motion is lilodified by 

radial motion of appreciable amplitude. If the same calculations are 

J•crformed for an azi·muthally symmetric field, the n = 0.25 and n = 

0, 36 peaks disappear, but the n = 0. 20 and n = 0. 5 peaks remain. 

That these results have physical significance is dembnstrated in 

fir,. 5, which depicts the experimental results for a compression cycle 

during which n was rapidly swept over a large range. (This result 

was obtained with an experimental appa,atus similar to that of ref. 1 .) 

The X-ray signal is due to electrons striking an obstacle at 1.7 em 

from the median plane and so is indicative of the acquisition of coh• 

si.derable axial amplitude. The value of n versus time was determined 

by a computer calculation and is accurate only to about 0.03. Thus, 

experimentally, there appear to be axiai losses near n = 0.5, 0.25, 

and 0.20, in qualitative agreement with the computer calculations. 

(Axial growth near n = 0.36 has been observed for other conditions, 

but apparently it was too Small to be observed in this case.) 

~ 10 -

The phenomenon of interest here in each case evidently is basi-

cally that which was treated in ref. 4)· Briefiy, in arty resonant 

region an initially small axial amplitude exhibits ari exponential 

growth, at ieast until quite large amplitudes are attained. The rate 

of thiS growth is dependent upon the proximity of n to the resonant 

value, and, in the case of coupling resonances, is dependent upon the 

amount by which the initial radial amplitude exceeds a certain thresh-

old value. 

To determine the totai growth that would be expected in the oper-

ation of a compressor, it is necessary to traverse the resonance in 

the course of the computation. To simplify the calculation, the ar-

rays for the symmetric and azimuthally asynimetric fields are stored 

in the computer for approximately the time at which a particular res• 

onartce is crossed. Then the syrometric magnetic field and the particle 

energy are varied with tim~ at the same rate as they change during 

compression. 

3.1 2v - 2v = 0 (n = 0.50) Resonance 
r z .. 

This resonance occurs in the absence of azimUthal bumps, and iS 

driven by nonlinearities of the fieid (o2B jor2 ), (o3B ;ar3), etc. z z 

This was shown in the computer calculations by rur.s with and Without 

. . . 2 ~ 2 azimuthal bumps and with several different values of (o Bz/ r ) and 

(o3B jor3 ). z 
Art example of crossing this resonance during the experiment

2) is 

shown in fig. 6. The x-ray signal is due to an axial loss of electrons 

when the n trajectory crossed n = 0.5. By moving the ting into a 

probe at smaller radius it.was determined that about 1/3 of the elec• 

trans were lost on this resonance. 
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A computer simulation of traversing this resonance is shown in 

fig. 7. The particle is followed for only the few microseconds during 

which the resonance is traversed. The variation of n with number 

of revolutions (or time) is shown at the top of fig. 7. The time for 

one revolution is about 3.5 nsec. 

Since the particle's position is not always printed out for its 

maximum axial or radial excursion, it is convenient to take for the 

axial and radial amplitudes the quantities 

and 

Az 

A 
r 

[(pzfmo1ruce)2/n + z2]l/2 

[(prlmo"~ruce)2/(l-n) + (r - R)2]l/2, 

(6) 

('t) 

where Pz and pr are the momentum components, m0 is the electron 

rest mass, "/ is the ratio of total mass to rest mass, IDee is the 

gyrofrequency, and R is the radius of the closed orbit. By tracking 

particles in a constant magnetic field, R can be determined for a 

given electron energy. However, in traversing a resonance, R chang--

es with time. Since R ~ r and r is easier to obtain in the 
ave ave 

computer calculation, rave was used for roost of the calculations of 

Ar· The initial radial and axial betatron amplitudes were chosen, 

for this calculation, to be 1.5 em and 0.1 em, respectively (see fig. 

7)· As one can see, the axial amplitude grows while the radial ampli-

tude decreases. Several different initial phases were tried with sim-

ilar results. Also the initial radial amplitude was varied, and in 

each case the axial amplitude grew to equal the initial radial ampli-

tude. Because of the multiturn injection process, the initial radial 

amplitudes are 2 to 3 em, and particles strike the walls if the axial 
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amplitudes grow to greater than about 2 em. Thus this resonance 

growth at n = 0.5 explains theX-ray signals of fig. 6. 

If a particle is injected into a constant magnetic field in the 

middle of the resonance, the axial and radial amplitudes continuously 

exchange maxima and minima, as shown in fig. C. From these and other 

computer calculations an approximate rule for the relationship be-

tween axial and radial amplitudes was obtained, 

A 
2 

+ A 
2 ~ const . z r 

(8) 

This rule seems to. fit very well for small and rooderate amplitudes. 

However, if the amplitudes become extreme, the rule breaks down. The 

maximum growth rate was shown to be approximately proportional to A 2 
r 

3.2 vr- 2vz = 0 (n = 0.20) Resonance 

This resonance at n = 0.2 is often referred to as the Walkin

shaw resonance3 >. It has many similarities to the (2vr - 2vz = 0) 

resonance discussed in 3.1. This resonance also can be driven by non-

linearities of the magnetic field in the absence of azimuthal varia-

tions. 

The relationship between axial and radial amplitudes for this 

resonance is5) 

A 
2 

+ 4A 
2 

z r const, (9) 

for small and moderate amplitudes. This i.s demonstrated by the comp-

utational results, plotted in fig. 9, for particle motion in a con-

stant magnetic field for which n has the resonant value 0.2. The 

maximum growth rate is approximately proportional to 

3.3 2vz = l (n = 0.25) Resonance 

A • 
r 

This resonance was shown to be driven by azimuthal asymmetries 
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of the magnetic field. Tt was further shown by decomposing the field 

inio its Fourier component::; that just first harmonic variations drive 

ih.is resonance. Calculations were done for several initial values of 

Ar with no indication that the growth rate depends on 

3 .4 vr + 2vz ~ 2 (n ~ 0.36) Resonance 

A . 
r 

This resonance was shown to be driven by azimuthal asymmetries of 

the magnetic field. It was further shown by decomposing the field into 

its Fourier components that second harmonic variations account for more 

than 80h of the observed growth rate in typical cases. Also, the 

growth rate was shown to be roughly proportional to Ar 

[n determining the total growth developed in traversing this reso-

nance it was particular1y important to start particles with several 

different phases. The sensitivity of the accumulated growth to the 

initial phase of the axial motion may be attributed to the fact that 

this resonance is inhomogeneous (m I 0) and involves a coupling effect 

from the radial motion. (The choice of the otherwise arbitrary origin 

of the angular coordinate 9 cannot be used effectively in such cases 

to eliminate the apparent significance of phase differences between 

radial motion, axial motion, and the field perturbations.) Some par-

ticles have an increase in betatron amplitude, whereas other particles 

have a decrease. In fig. 10 the axial momentum pz and position z 

are plotted for 24 particles (with different initial phases) for dif-

ferent times as the resonance is traversed. "T" refers to the number 

of. revolutions (gyroperiods). One notes from fig. 10 that the elong-

ation of the phase-space ellipses means that, after the resonance has 

been traversed, most particles have a larger axial betatron amplitude 

whereas some particles have a smaller axial amplitude. 
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4. Analytical Formulas for Four Resonances 

The derivations of the analytical expressions for the growth rate, 

total growth, and width are given in Appendix A for the resonances de-

scribed in section 3. The results of these calculations are given be-

low. For the 2vz + vr = 2 (n = 0.36) resonance and the 2vz l (n 

0.25) resonance it was assumed that the midplane magnetic field had 

the form 

B ~ B (r) + L [C (r,t) cos m 9 + S (r,t) sin m 9]. 
z o m m m ( 10) 

The resonances do not always occur exactly at the expected value 

of n (see fig. 4) because of the modification of the axial equation by 

radial motion of appreciable amplitude. 

4 .1 2v - 2v r z 

Let 

b" 

b"t 

0 (n = 0.50) Resonance 

R2 

Bo 

R3 
Bo 

2 · .• o B (r,t) z 

a/ 

o3B (r,t) z 

or3 

r R 

r R 
( 11) 

where R and t are the radius and time at which the resonance is 

crossed. Then the maximum growth rate, total growth, growth factor, 

and full width of the resonance are given by 

M Maximum Growth Rate 
0.020 A 

2 
r 

R2 
3 + 20b" - 56b"2 

- 12b'" 

(decades/rev), ( 12) 
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[3 + 20b" - 56b"
2 

- l2b"' )
2 

Pn/d(rev)l 

(decades), 

Growth Factor • lOG, 

aod 

6o = 0.52 M, 

where· Ar is the radial betatron amplitude given by eq. (7), and 

dn/d(rev) (the change in n per revolution) measures the rate at 

( 13) 

( 14) 

( 15) 

which the resonance is crossed. Thus for a given initial axial beta-

tron amplitude, the predicted axial betatron amplitude after traversing 

the resonance is given by 

Az(final) = 10G Az (initial). ( 16) 

If the value for the final Az [calculated by eq. ( 16)] is greater 

than Ar' then, in general, the limitations on growth given in eq. (8) 

will apply. 

To minimize the growth caused by traversing this resonance one 

wishes to minimize the quantity ( 3 + 20b" - 56b"
2 

- l2b'"). Fig. ll 

shows the curve of the equation 

3 + 20b" .. 56b"2 - l2b'" o. ( 17) 

This relation between b" and b'" for minimum growth was checked 

with a computer code using approximate equations of motion, and the 

four points obtained by minimizing growth for a given b" are also 

plotted in fig. ll. Results with exact particle trajectories were 

also consistent with this curve·. 
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4.2 yr- 2vz = 0 (n 0.20) Resonance 

Here one has 

M = Maximum Growth Rate = 
l.5Ar 
-R-- (decades/rev), ( 18) I b" I 

o.~ G = Total Growth= lin~(rev)l ( 
A b" )

2 

--]:- (decades), ( 19) 

Growth Factor = lOG, (20) 

and 

t::n = 0.52 M· (21) 

If the value for the final Az [calculated by eq. ( 16)] is greater 

than 2Ar' then, in general, the limitations on growth given in eq. (9) 

will apply~ 

4.3 2vz = l (n = 0.25) Resonance 

Let 0c (r,t) 
c• (rt):r m 

m ' . ~ 

" ils (r, t) m 
s• (r,t) = r ~ m (22) 

and 1 fr 2 2} l/2 K"' Bo tzc1(r,t) - Ci (r,t)] - [2s1(r,t) - si (r,t)] 

123) 
where em' Sm' and B 0 are defined by eq. (10). 

M = Maximum Growth Rate = 1.4 K (decades/rev), 

2 
l.lK 

G = Total Growth = ·ldn/ d( rev )I 

Growth Factor = lOG 

and 

t::n = 0.73 M. 

(decades), 

Then, 

( 24) 

( 25) 

(26) 

( 27) 
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4 .lt v + 2v 
r z 2 (n 0. 36) Resonance 

Let. 

c 
,) 

t2 m - Jr 

s () 
t2 

::lsm(r,t )J 
m 0r c\r 

and 

L = 
1 [ "2 ] 2B 

(c
2 

) + (s
2
")2 1/2 

0 

where c,, Sm and Ib are defined by eq. (10). Then 

r.1 ~ ~laximwn Growth Rate 1.1 ;r JLj (decades/rev), 

G ~ Total Growth 

and 

l.lf A 
2

L2 
r 

R
2 

Jdn/ d( rev ll (decades), 

Growth Factor = lOG 

1\n - 1.4 M. 

( 28) 

(29) 

(30) 

(31) 

(32) 

(33) 

rt should be noted that the formulas above apply for the particle 

with the max~mwn growth on the )Jhase-s.,ace ellipse (see fig. 10). 

5. Discussion 

To understand the resonant growth behavior observed in experiments 

during the compression phase of an electron ring accelerator, computer 

and analytical calculations have been performed for conditions similar 

to those in the experiment of ref. 2 ). At low intensity, when only 

sinr;le-particle effects should be important, the calculations agree 

- 18 

qualitatively with the experimental results. At hieh intensity some 

energy spreading occurs that broadens the time at which different par-

ticles cross the resonance. This makes it more difficult to compare 

the experimental and computer results, but even in these cases they 

seem to be consistent. 

The calculations have also elucidated the driving terms for each 

resonance. Thus, if a pa.rticular resonance causes large growth one 

can try to reduce the field variation driving that resonance. For the 

n ~ 0.5 and n = 0.2 resonances one could add extra coils to adjust 

b" and b'" at the time the resonance is crossed. Changing the coil 

spacing or energizing the coils in a different sequence also can affect 

b" and b'". For the n = 0.36 and n = 0.25 resonances the signif-

icant perturbations are greatest near the periphery of the chamber. 

By use of an n-shifter circuit these resonances can be crossed at smal-

ler radii where the perturbations are smaller .. rf the magnetic-field 

bumps are still too large, one can remove various components from or 

add them to .the simulated field in a computational program until sat is-

factory growth is obtained. Then one could remove these same compo-

nents from (or add them to) the real experimental apparatus. 

Looking at the formulas for "total growth" one .notes that the 

total growth is proportional to the factor 1/ ldn/d(rev) I· Thus. if a 

resonance can be crossed more rapidly this, in.general, will .reduce 

the growth, particularly since it appears in the exponent of the 

"growth factor." This will work well if the growth is not too large. 

For the n =.0.5 and n = 0.2 resonances, if the growth is so large 

that it is already limited only by the initial radial betatron a.mpli-

tude, a small change in the speed of crossing the resonance may not 
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reduce the final axial amplitudes. 
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APPENDIX A 

Derivation of Analytical Formulas of Section 4 

These calculations are directed to the occurrence of a substantial 

exponential growth of axial amplitude when the radial amplitude is 

sufficiently great. The axial amplitude is aEsumed to be small 

initially, consequently the axial motion can be characterized by a 

linear differential equation in which the radial motion may be regarded 

as a prescribed function. 

The general procedure for deriving the analytical formulas is 

(a) Determine the radial and axial equations of motion for a 

particle in the magnetic field. 

(b) Determine an appropriate EXpression for the magnetic field 

which contains the relevant driving terms for the particular 

resonance under consideration. Then put this magnetic field ;nto 

the equations of motion of (a). 

(c) Make reasonable approximations to obtain a simple expression 

for the radial coordinate with the axial coordinate ignored. 

Then insert this expression into the axial equation of motion. 

(d) After confirming that the axial equation has the form of a 

Hill or Mathieu equation, obtain a simple approximate solution. 

(e) Using this solution, determine the width of the stop band of 

the resonance, the maximum growth rate, and the total growth. 

We obtain the equations of motion from the Principle of Least 

Action, 

0 J (,e - ~) . d~. = o, (Al) 

where £ is the mechanical momentum and ~ L the vector potential. 
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Since ds = (r'~ + z'e + re8 )d8 (where the primes indicate differ-- r z 

entiation with respect to ~), eq. (Al) can be expressed as 

_ Jr r 2 2 2 1. 
0 p r + r' + z' ]2 - errA8 + r'Ar + z'Az]) d8 0 (A2) 

In the meaiao1 plane, the radial variation of (A2) gives the familiar 

trajectory equation, 

:.;r 

d 
dO [~ ( r + r•2)JJ 

d [ pr' J 
d8 ( 2 2 )-1

, r + r' ~ 

pr 

( 
2 2' + 

r + r' )2 

pr 

(r~2)1-

(

o(rA 9 ) oAr) 
e ~-do 

erBz. 

o, 

F~r r' << r this can be written as the simplified approximate 

equation 

2 
r" - r + er Bz/P = 0. 

Considering the axial variation of (A2) results in 

cto 2 2 " 1 - er - - 9 + ~ [ pz' ] (l 0
Az OA) 

(r + r' + z'L)2 r do ~ 

or 

d 
dO [ 

pz' ] 
2 2 2:1: 

(r + r' + z • )2 
erBr - er'Be , 

which similarly may be approximated as 

(

dA oA) 
er' rz- df 

~ 

(A3) 

(A4) 

o, 

(A5) 

l. v - 2v r z 
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z" - er
2 B /P = 0, 

r 

0 (n = 0.20) Resonance 

Because the relation between the oscillation frequencies is 

(A6)' 

homogenous [it has the form of eq .· (2) with m = OJ, azimuthal field 

variations are not required for excitation of this resonance, and it 

therefore is appropriate to focus attention instead on the effect of 

nonlinearity in the magnetic field. 

Let 

x _ r-R 
-"R 

and (A7) · 

z 
y = R 

Expanding the magnetic field about r = R and z = 0, with Bz 

symmetric with respect to the median plane, and using Maxwell's equa-

tion, we obtain 

Bz Jb [l - nx + ~b" ( x
2 

- /)] (A8) 

Br B0 r- ny + b"xyJ (A9) 

where b" is given by eq. (ll). Curvature effects have been 

neglected in (A8) and (A9), and these field components satisfy the 
dB oB 

curl condition ~ = ~ and the divergence condition 

[ 

oB ...,x ] Y l r oBz 
V-I!"' 'R 'dX + cy- = 0 · 

Subfitituting (A8) aud (A9) into (A4) and (A6) and neglecting higher-

order terms results in 
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x" + (1-n)x- ~" <i-i) 0 (AlO) 

and 

y" + ny - b"xy = 0 , (All) 

where we have used eq. (A7) and p = eRB0 • 

We adopt the viewpo.int of Walkinsbaw3) and treat the x motion as 

a prescribed motion unaffected by coupling effects. This non-Hamilton-

ian approach appears to be entirely justified when one is examining the 

onset of y growth from initial amplitudes that are quite small. 

In this spirit one writes eq. (All) as 

y" + (v 2 - b"x)y = 0 y 

and introducest x = A cos v e 
X X 

to obtain the Mathieu equation 

y" + (v 2 - b"A cos v e)y = 0 
y X X 1 

where Yx2 l-n and 2 Yy = n. 

(Al2) 

(Al3) 

The relevant "stop band" for this equation, within which growth ulti-

mately will occur for all non zero initial conditions (save for a set 

of measure zero) is defined by the inequalitiestt 

t An additional phase constant in the expression for x would clearly 
be inconsequential in this case, as it would correspond to no more 
than a traDslation of the origin of e. 

tt See ref. 4), esp. eqs. (2.7) and (2.9), p. 1237. These expressions 
are, of course, merely the leading terms of well-known series develop
ments for the eigenvalues associated with the eigenfunctions ce1 and 
sel of the Mathieu equation [cf. Whittaker and Watson, Modern 
Analysis (Cambridge University-press, London and New York, 1927), 
Sect. 19.3]. The phase shift of these solutions, per period of the 
coefficient of y, is n (and hence yy ~ vx/2). ---------
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y 2 I b"A I . y 
2 I b"A I X X 2 X X 

T-- <v <-r;- + -2 y . 2 (Al4) 

i.e., by t I Yx2 - (2vy)21 < 21b"Ax I (Al5) 

or 

IAxl > Athr = lvx2 ~ (Al6) 

The quantity Athr defined by eq. (Al6) thus constitutes a threshold 

amplitude of radial moti~n above which axial growth will be expected to 

occur. 

Within the stop-band just defined one expects a lapse rate ll• 1'~r 

the amplitude of the exponentially growing solution of the Mathieu 

equation (Al3), given bytt 

ll ~) k_J;r- ~ b"AJ[{;~ 
2

- ~ b"Ax 

\ 4 < -sc• > < cs' > 

"}l/2 v 2 < c2 > < s2 > ~------- (Al7) 

For the eigenfunctions c(e) and s(e), it is convenient merely to 

take 

Then, 

cos v e 
y 

and sin v e 
y 

respectively, resulting in 

(c2) ~2) - l 

(-Sci>~-~ 
y 

~ 2 2 l/2 
ll = (A - Ath ) neper per radian of 

Yy X r 
e. 

t Cf. section ~IIA of ref2 4, especially eqs. (3.~) and (3.5), pp. 
1241-1242, w1th a= Yy, b = c ~ 0, and d = -b Ax·. 

tt Ref. 4, section liD, especially eq. (2.58), p. 1240. 

(Al8) 

(Al9) 

:t; 
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Writine Ax= A/Rand vy ""v0.2, \lith Athr 0, "e obtain the maximum 

srowth rate 

M = __ n Ar ;--:::- -I b"l 
J0.8 lnlO R 

decades/rev . (A20) 

In passage through the resonance there is an accumulated gro\lth that can 

be estimated by use of eq. (Al7), which is conveniently re\lritten as 

p = [(2b"A - 1 + 5n)(2b"A + 1- 5n)) 1
/
2j(8 J0.2). 

X X 

In passage through the resonance, n increases from its value 

nl 
1 - 2jb;,IAx 

5 

at one edge of the stop band to 

1 + 2jb"IAx 
n2 ~ --.,...,.-

(A21) 

(A22) 

(A23) 

at the other. On the assumption that the gro\lth is not so great that 

turnover has occurred. ·:Jr is approached, the y amplitude is expected to 
n=~ 

crow by the facte>r exp J pdG. If .the resonance- is traversed at a 
n=n1 

constant rate of change of [ 
dn dn 1 dn 

n dli=const.;or de= 2nd(rev)'"here 

dn 
~ 

is the rate of. ,change of n per revolution and is treated as a 

constant] , one has 

f
O=n2 

pdG = 
n=nl 

l L n2 

1 ~:'~ wtn ~ 
tJil nl 

2n r ~ 
I JT~':'.-~}.Jn p<ltl 

u\rev) 
1
1 
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_ 2n in2 

I d(~:v)l ill 

5 .J(n-n1 )(n2-n) 

8.{0.2 

1!2 b"2A ,2 
- X 2.[5 fc!O/-rd~(-re-v -JI nepers, 

or _the total gro\lth is 

dn 

2 

( ,//4) ( 5/4 )3/2 ( n2- "l,? 

ldn/d(rev Jl 

::/124; 

2 
G ~ 

1( l (A{') 
2/5 ln lO Jdnjd(reVl 

decades. ,A25) 

The \lidth of the resonance is 

6n /n2 - 0 11 
4A 

5/ lb"l 

2. :?vr - 2vz 0 (n = 0.50) Resonance 

8{Qi ln 10 1.1 , 0.52 r.f. 
5n 

Here also the relation bet\leen the oscillation frequencies is 

homogeneous, and it again is appropriate t:J focus attention on the 

effect of nonlinearity in the magnetic field. 

(A26) 

The resonance 2vr - 2vz = 0 is of higher order than most of the 

coupling resonances to \lhich attention has been given, leading, for 

example, to a predicted "stop-band \lidth" that is proportional to the 

square rather than to the first power of the radial amplitude. S~ecial 

care must be taken, therefore, not to omit effects whose consequences 

would be of the uame orJer an thone treated in the analysis, and the 
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algebraic work correspondingly is tedious. The analysis presented 

below has, h::>wever, been subjected to some computational checks and is 

believed to constitute an adequate semiquantitative description of the 

axial growth that can arise from the 2vr = 2vz resonance. 

The magnetic field can be adequately described by means of an 

azimuthally directed vector-potential function that is developed in 

terms of the coordinates x and y ast 

rAe 

K 
0 

2 2 3 3 4 4 5 
2x + x 3x + 2x 4x + 3x b"' 5x + 4x b"' = --2-- - 6 n + 24 + 120 

1 + X ( b" 1 2b"') 2 + - 2- n-x - 2x y . (A27) 

Here n is the field index, and b", b"' are constants that have been 

evaluated at the (circular) equilibrium orbit of radius R (see eqs. 

(11)]. The differential equation for unc::>upled radial motion (A3) with 

use of this vector potential is 

d [ x' ] l+X [ 1 2 1 ] de f( )2 2 - J 2 + (l+x) l-nx+ 2 b"x + 7 b"'x3 
l+X +X' (l+X) +X'2 0 

o, 

(A28) 

where x' denotes ctxjde and we have set p = eRB0 . 

To provide in full measure the required alternating terms in the 

equation for axial motion, it is necessary to abtain a solution for x 

t·The expression given for rAe/R2B0 can be extended to a more consistent 
fur~ by the addition of the term 

l ( b" 2 + 24{T+Xl n + + 

sucil a term is not required for 
only linear forces are included 
moti~n used here. 

6x + 3x2 b"' ) 4. 2 y , 

the present analysis, however, since 
in the differential equation for axial 

-28- . 

that is valid through terms prop::>rti J~Jal to the square of the radial

oscillation amplitude. Terms pr:lp:.>rt.A,al to x• 2 in the differential 

equation thus properly should not be ign::>red. A suitable soluti::>n, 

obtainable by harmonic balance, is of the form8 

X = Po + P1 cos vx9 + P2 cos 2vx9 

(an inconsequential arbitrary phase constant being ignored), with 

1 2 
PO= (3C2 + "J+)Ax ' pl =Ax' p2 - (C - _.!:_)A 2 

2 12 X 

and 

;> 

"x 2 5 3 ll ) A2. 1 - n- (15 c2 + 1+ c2 + 1+ c3 - 9b x' 

here c2 = - (2-4n + b" )/6 and c3 = ( 6n - 6b" 

coefficients are approximately equal to - i b" 

respectively, for l 
n"'2 

- b"')/6, and these 

and l b" 1 t"' 2 - - b 

(A29) 

(A30) 

(A3l) 

The linearized differential equation that describes small-amplitude 

axial excursions is obtained from eq. (A5): 

d [ y' ] 
de J(l+x)2 + x 2 

with y' = dyjdB. The quantity 

through terms of order 2 
X or 

(1 ) ( II 1 Ill 2) + +X n-b x- 2 b x y o, (A32) 

l 

[(l+X)2 + x•2r2 may now be expanded 

x' 2 and the solution previously given 

for x :;ubstituted into this equation to ::>btain a result of the form 

d 
de[ (lKt2+f32cos vxe+;r2cos 2vx8 )y') + (ua+f3ocos vx'l+/0 ~os 2vxo )yo.O, (A33) 

where 
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)'2 

~ ( l b" l b"2 l b"' )A2 'O - n + E - + 2 - 4 x' 

( 
l L , L ,2 l,_ 

) 0 0' ?II - ~ - I}' - 1i" )A2 
X 

(~3 _ ~" )A2 
21f b X ' 

t3o = (n-b")A , 
X 

(A34) 

The differential equation (A33) can be regarded as a generalized Hill 

equation, for which we may seek eigenvalues a 0 that permit periodic 

~elutions with a basic frequency (v ) equal to v . It wili be recognized 
y X 

that with regard to the coefficient ~ such solutions would be analogous 

to the solutions se
1 

and ce
1 

that occur at the boundaries of the first 

stop band for the Mathieu equation, whereas with respect to the co-

efficient t' 0 they are analogous to the~ functions se2 and ce2 

associated with the second stop band of the Mathieu equation. Because 

(10 is directly prop'->rtional to Ax and )' 
0 

is proportional to 2 
Ax' 

one thus may expect that the influenc€ of each of these terms will be 

to generate a stop band whose width is proportional to A2. 
X 

By the use, in turn, of trial functions of the form 

D1 sin vxe + D2 sin 2vx8 and E0 + E1 cos vxe + E2 cos 2vxe' the pro

cedure of harmonic balance leads respectively to the following estimates 

for the corresponding eigenvalues: 

2 ! 5 ll ~b~" l b"2 l b"'l 0 0,1 = vx - ~ - 24 + 4 + E Ax 

)' - 2 ( 7 l b" ll b"2 l b"' I A2 
' 0,2 - vx - ~ - 24 - TI - E X ' 

Jr, after the expression given in Eq. (A3l) for 2 
vx is inserted, 

(A35) 
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aO,l l - o - 1_2 - ~?b" + ~b"2 )A2 12 12 3 X ' 

a0,2 l 1
23 b" :~, ,2 L '") A2 

- n - Ii8 - - 2u - Jib X • 
(A36) 

Finally, noting that 

a 0 = n + ~~ - b" + ~"2 
_ ~"') A~ , (A37) 

we obtain the estimated stability boundaries 

l 13 - 58b" + 28b"2 - 6b"' 2 
nl = 2 - Ax ·(A38) 

l 29 - 96b" - 24b"1 2 
n2 = 2 - 96 Ax 

(A39) 

with a central value 

l 55 - 212b" + 56b"
2 

- 36b'" 2 
nc = 2 - 192 Ax 

(A40) 

and a width 

M 

'"2 - "l' 
b + 20b" - 56b"

2 
- 12b"' I 2 

96 Ax· (A4l) 

Within the stop band bounded by the eigenvalues a 0 , 1 and (r0 , 2 

one expectst that the growth rate of an exponentially increasing 

solution (formed approximately as e~a times a linear combination Jf 

t See ref. 4, especially Sect. IID, p. 1240. 
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the periodic eigenfunctions associated with the boundaries of this stop 

band) will be g;v.,;n appr~>.;.r,ately by 

) I 

- (('lo-ao, l ){tlo,2--lo))·" = ( o. 5(cto·ixo, l )(ao,2-ao) ]2 
~ - 4 nepers/radian. 

vx 
(A42) 

By use of the expressions previously given for a0 , a
0 1 , and n

0 2, 
' ' 

this characteristic exponent becomes 

~ (2(n-n1 )(n2-n)]~ nepers/radian, (A43) 

with a maximum growth rate of 

M = 96~nn 10 13 + 20b" - 56b"
2 

- .l2b"'lrRr) 

2 

decades/rev. (A44) 

The total growth in traversing the resonance is 

4 

G = l~~~d9 
J{2 !2 2 2 {A ) (3+20b"- 56b" -l2b'") _E decades. (A45) 

f dn/P.(rev. lJ R 3086liln1b 

The proportionality of this result to A 4 , being characteristic of 
r 

traversal of a second-order resonance, is noteworthy. 

3. 2vz ~ l(n = 0.25) Resonance 

We represent the magnetic field components by expressions that 

contain azimuthal variations but are carried only through first-order 

terms in x, y. The radial motion in this case contains a flutter that 

arises from closed-orbit distortions produced by the azimuthal variation 
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of Bz' and this flutter is introduced into the axial e~uation through 

the factor 2 2 
r [= R (l+2x + ···)) of eq. (A4). In principle a term of 

similar order would arise from the J.tlclusion of the second-order term 

B0b" ·xy in Br' but normally the contribution of this additional term 

is relatively small. We accordingly write 

Bz B0(l-nx) + CB cosmo+ sB sin mo + (CP cos m 9 + sp 3in m1) x m m m m · 

and 

B =- n B0y + (cp cos m a + sp sin m8)y, r m m 

where 

cp = [r dc~(r)] 
m dr I 5P ~ [r dS~(r)] 

m dr 

with the coefficients B 
Cm I 

sB cP sP 
m ' m' m 

evaluated at r = H. 

The resonance 2v = l .z 
has the form of eq. (2) with m ~ 1, 

(A46) 

(A47) 

(A48) 

indicating that first harmonic variations in the azimuthal field are 

important. Substituting the magnetic field of eqs. (A46) and (A47), 

with m = 1, into eqs. (A4) and (A6) and neglecting higher-order terms 

in x and y results in 

P B P B 
x" + (l-n)x + x[(c

1 
+ 2C1 ) cos9 + (s

1 
+ 2s

1 
) sinO]/B

0 
= (A 50) 

-(c1B cos9 + s1B sin9)/B0 , 

y" + (l+2x)ny - ( c 1P coso+ s/ sinO) (Y/fb) " 0. (fl5l) 
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In a low :Jrdcr ·f approximation, we write the solution tC> (A50) as 

c
1

B coso + s
1

B sinO 
X nB 0 

Substitutinlj (A52) into (A5l), we obtain 

y" + ny +l(::c
1
B- c/) coso + (2s1B- s1P) sinO] J/lb- 0 

where 

Thu:; we may con. ider the Hill equation 

y" + (n + K cosO)y = 0, 

K c ; [ (2C
1
B- c/)2 + (2s

1
B- s/)2 ]±. 

0 

From (A 54) we obtain a lapse rate+ 

[ 

2 2 J 1 
(n-n1 )(n2-n)< c > < s > 2 

4 <-sc' > < cs' > 

within the 1 
vz = ~ stC>p band. Alsott 

n1 = 0.25 - K/2, 

[ (n-n1 )(n2-n
1

)]1/2 

(A 52) 

(A 53) 

(A 54) 

(A 55) 

(A 56) 
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Thus the maximum growth rate is 

M = K/2 u<.cp~rs/radian (A 58) 

or 

nK 
M = T0I0 decades/rev, (A 59) 

and the width of the stop band is 

t\n K= ln_10 M ~ 0.73 M. 
I! 

(A60) n2-nl 

The total growth upon traversing this resonance is 

Jn2 
G = ~dO 

n=nl 

n2 K2 
decades. (A61) 

4-lnTOfa-o~l 

4. vr + 2vz = 2(n-0.36) Resonance 

This resonance has the form of eq. (2) with m = 2, indicating 

that second harmonic azimuthal variations in the field are impC>rtant for 

its excitation. In order to allow fully for coupling of free radial 

oscillations into the axial equation as a first-order perturbation, it 

is appropriate to develop the Br component of magnetic field to such 

an order that eq. (A47) is 8Upplemented by a term proportional to xy. 

(A57 Accordingly, if the Br component is taken to be given as in eq. (A47) 

n2 ~ 0.25 + K/2. to lowest order by (1/z)Br(r,e) (1/r)~(r,e) [where ~(r,o) 

r dBz/or =- n(r,O)Bz(r,e) for z =OJ, one writes 
t Hef. 4, section IID, especially eq. (2.58), p. 1240. 

+~ See ref. 4, especially eq. (2.6o), p. 1241. 
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B ( r,o) _r __ 

z 
of::~, o )) 

(A62) ~, + 
r r=R 

(r-R) 

r=R 

or 

r'•r(r,el, •'<'•'x•··l {1-'"a, c,PI. ,., '' • s2PI. ''" ''l, 
p I p I } 2 d(C2 /r) d(s2 jr) 

+ [b"Bo + R { dr R cos 29 + --;rr-- R sin 29) 1 xy 

- •2 {[-ruso • c,'l. ,., 2B • s,' L ''" 2e] ' 

[ 
d(re/) I d(rs/) I ] } + (b" - 2n)B-? + __ d_r_ R cos 29 + __ d_r_ R sin 29 xy . (A63) 

Insertion of this expression (A63) for r 2B into the differential 
r2B r 

equation for axial motion, y" - ~_.E = 0 [ cf. (A6)], then yields 
R Bo -

y" + [ n - ;~ ( c2P IR cos 2e + s/IR sin 2e)]Y 

+ [2n - b" _ 1:_ 
Eo 

d(rC2 ) d(rs2 ) 
p I p I (~ R cos 29 + dr R siri 2e)] xy = 0. 

(A64) 

For the coupling resonance 2vz + vr = 2 of present interest we now may 

ignore the constant term 2n- b" in the coefficient of xy in (A64); 

likewise the alternating component in the coefficient of y does not 

play a direct role in exciting this resonance, and recognition of this 

alternating component can be given through use of a v 2 whose value is 
y 

slightly displaced from. n. 

-36-

Recognizing that the absolute phase of tc·,-.; perturbation is of no 

importance, the equation for axial motion [eq. (A64)] therefore can be 

taken to be of the form 

y" +(v/ - 2 L x sin 29) y = 0, (A65) 

where 

L = _l {rd(rC~)/ J 2 [d(rS~) IJ 2 

}l/2 2B
0 

dr + ~ (A66) 
R R 

With the radial oscillations written simply as x ~ Ax sin vx8, eq, 

(A65) then becomes 

2 y" + ( v + A L( cos(2+v )e - cos(2-v )0]] y = 0. (A67) y X X . X 

Equation (A67) may be regarded as a Hill equation [especially if 

we artificially suppose vx and m(=2) to be commensurate in some, possibly 

large, interval]. Noting that eq. (A67) has the form of eq. (2.45) of 

ref. 4 (taking the lower sign) with 

2 
a = vy "' n, 

c ,= - 2A}--, 

vo = 2-vx' 

q = 2/v0 , 

b = d = o, 

we conclude the estimated width of the resonance indicated by the 

stability boundaries ist 

t Ref. 4, ~specially eq. (2.50), p. 1240. 

(A68) 
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1(2v, { - (2-vx;21 :oj r_.AJ . 

If the threshold amplitude is taken to be 

lv/ -(~n 
ILl Athr 2 

then the lapse rate is expected to bet 

{ 

2 2 rrlo/ , " ['/ -r;',l + ~h' w-;,J +~'LAx~- ,/JI /''y 

or 

~ w vy 
(A 2_A2 )l/2 

x thr nepers per radian of P. 

The maximwn growth rate is thus 

M _ 5nL!J_ (Ar) - bln 10 R decades/rev, 

and the total growth·iS 

2 (LA )2 G - n r 
- 3(ln lO)ldn/d(rev)l ~ decades 

with a resonance width of 

6n ~ §_~~ (A;) 48 ln 10 M , l .4 M. 
2) n 

t Ref. 4, section liD, especially cq. (2.58), p. 1240. 

(A69) 

(A70) 

(A7l) 

(A72) 

(1173) 

(A74) 

(A75) 
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FIGURE CAPTIONS 

The variation of the z component of magnetic field as a func
tion of the azimuthal angle for radii of 18.5 em and 13 em at 
the time of injection. 

Fig. 2. Comparison of measured and simulated azimuthally varying 
fields for a radius of 19 em at the time of injection. 

Fig. ). The radius of the closed orbit (R), the kinetic energy (T) of 
the electrons, the magnetic field (B), and the magnetic field 
index (n) at the location of the closed orbit, as functions 
of time during the compression of the electron ring for a typ
ical compression cycle. 

Fig. 4. Growth rate of axial betatron amplitude for particles injected 
into a magnetic field that iS constant in time, for different 
values of n (different radii and kinetic energies). 

Fig. 5- X-ray signal (due to electrons striking an axial obstacle 
1.7 em from the median plane) as a function of time during a 
compression cycle in which n at the location of the ring is 
swept rapidly with the aid of n-shifter circuits; n is deter
mined by calculation and is accurate only to about 0.03. 

Fig. 6. X- ray signal showing electron loss on traversal of n = 0. 5 
resonance. 

Fig. 7- Radial and axial betatron amplitudes versus time (number of 
revolutions) as the n = 0.5 resonance is traversed by a par
ticle in the computer calculation. The initial radial and 
axial betatron amplitudes are 1.5 em and 0.1 em respectively. 
The upper graph shows how n is varying during this time. 

Fig. 8. Radial and axial betatron amplitudeS versus time (number of 
revolutions) for a particle in a constant magnetic field in 
the middle of the n = 0.5 resonance. 

Fig. 9· Radial and axial betatron amplitudes versus time (number of 
revolutions) for a particle in a constant magnetic field in 
the middle of the n = 0.2 resonance. 

Fig. 10. P -z phase-space ellipse as the n = 0.36 resonance is tra
v~rsed. T refers to the number of revolutions. 

Fig. 11. Helation between b" and b'" for vanishing growth rate from 
eq. (17). The circled points represent a computer check of 
the analytical formula. 
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SOME ASPECTS OF SEARCH COIL DESIGN 

L. J. ~aslett * 
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* On le~ve from the Ames Laboratory of the AEC, Iowa State College, 

to represent the Hid-Western University Research Association. 

The preparation ,of the present notes has been motivated 

by the importance of magnetic field measurements in the design 

of a high-energy alternate-gradient proton synchrotron at the 

Brookhaven NationRl Laboratory. The·report consists of five 

parts, 

I, Review of Garrett's Theory for Axially-Symmetric 

Search Coils 

II. Theory for Two-Dimensional Search Coils 

III. Estimate of Some Errors in Seo.rch Coil Heasurements 

IV. Measurement of Field-"Gradients" with Axially-symmetric 

Search Coils 

V. Measurement of Field- 11 Gradients 11 with Two-Dimensional 

Search Coils 

VI. Reference and Notes 
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A summary of this material was presented to the ADD Magnet Group 

on July 2, 1954 and is reported here for convenient reference 

by those participating in the magnet program. 

PART I 

Review· of Garrett'' s Theory for Axially-Symmetric Search Coils 

l, Introd.uct ion 

The design of flux-coils for measurement of magnetic fields 

is materially aided by the use of theoretical results contained 
1,2 -

in a series of two papers by Garrett. Since we shall make 

frequent use of the results of Garrett's work, it is convenient 

to make available here a summary of that portion of Garrett's 
2 

theory which pertains to search-coil design. We shall endeavor 

to adhere to Gerrett's notation throughout. 

2. ~thad of Approach 

We shall be concerned with coil systems possessing an 

axis of symmetry, but which may be used for measurements of 

magnetic fields free of any special symmetry restrictions. 

Spherical polar coordinates are used, with x designating distance 

along the polar axis and e, ..._ the colatitude angles of field 
~ 

points or points on the coil system. 

It is found useful to note that the response of a se~rch 

coil to axial derivatives of an external applied field is re-

lated to the nature of the exterior field vhich would be 

2-2 
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generated by current in the search coil. The scalar magnetic 

potential generated externally by a current i (e.s.u.) in the 

coil is Wl'itten 

p 

vcoil = 27T (i/c) -~ m n + 1 
Pn (cos G), 

where r 0 is a constant length introduced for dimensional con-
3 

venience. It may then be shown that the response of the search 

coil, when situated in an applied external magnetic field 

characterized by a scalar potential V0 , is given by the flux 

linkages 

where 

and 

v 
0 

n + l (n) 
= -27Tpn r 0 V 

0 
/ ( n + 1 ) ! 

(n) 
- dnv0 /dxn evaluated at the origin. 

For a coil intended to measure flux-density at a point 

it is thus desirable that p3 shall vanish (the coefficients 

2-3 
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p
11 

norrrally vanishing automa"tically for n even, due to symrn0try 

in thb <'!Oil construction), and th0 vanishing of addi tion:ll 

c0~ff.icients p , ••• would be o. b<;neficial refin.:.nvmt. [ ·,b 
5 

notg that in the special c~se of a two-dimensional fiold V0 

(x, t ), thb derivative associated with p
3 

!lli.1Y be written 

V0 (
3

) ~ d \ /dx
3 = -(d2 

/dt-
2

) (dV0/dx) = d2
H . 

1
/d t 2 .J 

o S ax~a f;, 

3. Evnlun.tion of the Coofficicmts Pn 

(i) For a current l0op ----The exterior magncltic potential 

from a current loop (fj) is readily shown to be given on the 

l.XiS by 

Field Point 

0 ---) 
X 

V • (fJ.) = :JJ. (i/c) (solid angle subtended by the coil) 
1"1.X:.1. s 

= 2TrN. (i/c)[l- r- r; cos~ j --~ 
J jrn-rJj _ 

= 2rrN- (i/c) 2: (:it_+ 1 (cos d- j pn - Pn + 1) J n r 

;;:: 2rrN :; 
~ n + 1 sin2 cj.. j 

(i/c) (:...i) I 
(cosO..;) J n r n + 1 

pn .., 

2-4 



hence, generally, 

V (fJ.) = 2rrN (i/c) 
j 

-5-

(ii) For a solenoid ----For a solenoid which is thin 
I 

radially (cylindrical current sheet) and is formed of Nk 

turns/em, the exterior magnetic potential and the associated 

coefficients pn(s) may be obtained by integration of the 

result for a current loop. 

g_ r:.n 
dx L: 

+ 2 2 I 
sin ~pn + 1 

and obtain 

I 

We note that 
• "+ 

(cos~~ - (n + 2) n +1 2 1 ( ) r sin d-Pn cosd-

Nk being given opposite sign at the two ends of the solenoid. 

X > 

2-5 
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(iii) for a cqll ----The exterior magnetic potential 
2 

from an extended coil, ui th N'_t turns per em , is obtained by 

an additional integration. 

Garrett 2 discusses a systematic procedure for this integration, 

which we may check directly for the coefficient p3(c) in the 

case of a winding with rectangular cross-section: 

from (ii) ( ) (1K:ro')
5 

cos~ 

• ~ , (x Q)5sin2d-k (? la 1 ) = r0~Nk XC 5 ~ coso-k - z cosd-k ; 
cos ~k 

_ Nn s -NT 

r2~ x 6 3 5 
= -Jn L ~· (~) [20 tan~ 0 - 9 tan d-0], 

fl. R_ 0 A A 

2-6 
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or, in Garrett's form, 

Garrett (Tnble I, Ref. 2) bives th9 coefficients An, Bn0 , 

Bu2, • • • (for n ' 11) in t:le JPn3:;:·s.l expr13ssion 

this table is given below :or co~venient reference. The sign 

of ~ altcrnateo as one p:r-oc9eds with the summation around the 

boundary of the rectangular winding. 

TABLE I 

~FICIENTS FOR TiHCK-SOLEt"'ID CONS1'ANI'S .2n' 
2 

APPEARING IN THE EXPRESSION 
r 0 2 -.-. ~ n ~ 3 Bno-Bn2 tan2 J.i g.+ ••• 

Pn (c) = (n + 2) ln + 3J .2.. N" (r
0

) (r
0

) ~::..-..:;;.;;...-;A:-n-~~--
9.. 

n An 

0 1. 

1 1 

2 2 

3 1 

Bno 
+ -

(1)* 

4 

20 

20 

(3) it 

9 

2~7 

l:ln6 
~ --- c 

2* 
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Table I {continued) 

An B~w Bn2 B:j!+ Bn6 Bn~ Bn1o c n 

4 8 280 252 (15)* 4* 

5 1 56 84 15 

6 16 1344 3024 1080 (35) * 24* 

7 8 960 3024 1800. 175 

8 128 21120 8S704 ';'9200 15400 (315) * 88* 

9 32 7040 38016 47520 15400 945 

10 256 73216 494208 823680 400400 49140 (693) * 52* 

11 128 46592 384384 823680 560560 114660 4851 

*Coefficients of terms free from powers of x. Omit in most 

cases, i.e., when the sources occur in pairs of c~posite sign 

for each value of 11a "· In such cases, simplify by isolating 

the factor C, common to tbe remaining coefficients, 

-. -
Thus 

.:::-=.-:::::::.:.::=.:=·.::~.·::·_-·-::_:_--..=-.;·======= 

4. Applications 

(i) Expanded Solenoidal Coil§ ----The result indicated 

for p3 (c) serves to guid8 the design of "fourth-order" solenoidal 

2-8 
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coils intended for field measurements, and evidently forms 

the basis whereby the relative dimensions of the various 

"expanded dipole" solenoidal coils listed in Garrett 1s 
2 

Table IX are obtained. 

t=:;~;J 
~2{4x)-) 

We require specifically in this case that; for PJ· (c) to 

vunish, 

Explicitly, 

or 

2-9 
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We give in Table II some numerical results, which include 

the values tabulated by Garrett. 2 

TABLE II 

RELATIVE DIMENSIONS OF EXPANDED DIPOLE SOLENOIDS 

al/a2 .0.x/a2 al/a2 ~x/a2 al/a2 .c::.x/a2 

0 0.67082 0.4 0.68982 0.8 0.78738 

0.1 0.67115 0.5 0.70584 0.9 0.82462 

0.2 0.67341 o.~ 0.72756 1.0 0.86603 

0.) 0.6?924 0.7 0.75486 

(ii) Expanded Helmholtz Pairs ----The vanishing of p3 (c) 

similarly forms the basis of determining the relative dimensions 
2 

of the expanded Helmholtz coil-pairs listed in Garrett's Table IX. 

In this case the condition to be met has the form 

0 0 
I 

) 

2-10 



-11-

;:= o, 

which may be rewritten 

or in the equivalent forms 

~The result of the preceding subsection thus constitutes a special 

case of this result, with x1 = ~ 
(iii) Ouadrupole Pair ----If the members of the coil-pair 

above are connected in opposition, a quadrupole coil results, 

for wh~ch the relative dimensions should be selected so that 

p4 = 0. Thus 

42p4r~ 
N" 

+ x2a3 
1 1 

= 8 a~ (?~ -63a~ )~~ai (?Ox~~63a~) 
(70x2-63a2 )-x2a3 (70x2-63a2 )-j 

1 1 •12 1 2-

;:= 70, (x~- xl) (a~ - al) - 63 (x~ - xf) (a~ - a1) = O, 

2-11 
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or 

(iv) Higher Order Coils ----The coefficients of section 

3 (iii) are also convenient in the design of dipole coils of 

higher order accuracy. Thus Garrett has exhibited 2 the rela-

tive dimensions of a coil for which both p3 and p5 vanish, and 

for which p7 is very small, 

_ _,a) 
[ ____ j L ____ .

1 
a2 

'---.,.....------- ··- al 

so that P9 and p11 represent the dominant coefficients beyond 

PI: 

5. Definition of Theoretical Error Coefficients, Sensitivity, 

g.nd Efficiency 

We swmnarize here, for completeness, the definitions of 

~ntities introduced by Garrett 2 to characterize the comparative 

~rit of various coil designs. The quantities defined are listed 

2-12 
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in Table III at the end of this section. 

(i) Ertor Coefficients,Ee ----For dipole coils, intended 

for the measurement of "x• the desired signal is proportional 

to p
1 

arrl, with an ideal winding, the extraneous signal may 

be expected to arise from the first subsequent non-vanishing 

coefficient, Pe+l (e being even). The error coefficient for 

such coils is defined as f 9 .: Pe+l/PJ.. Similarly for quadru

pole coils, the coefficient€ e is taken as Pe+2/!J2, again with 

e even. The importance of an error coefficient of given mag-

nitude will, of course, depend upon the character of the mag-

netic field under study, in that (see section 2) 

~ ~· = ro n'-n 
(n') 

( n + 1 )! ~ -=V_,o'-r-~ 
(n' + l)J Pn V (n) .• 

0 

For the dipole coils discussed in sections 4 (i) and 4 (ii) 

the error coefficient of interest is thus f 4 = P5/p
1

• For the 

expanded solenoids one readily finds 

Nt 
~ (c) =~ 3 

,and (with the aid of Garrett's table, reproduced as Table I 

above) 

2-13 
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r2 -.:::_-~ xo 5 ao ) G 2 4 J 
p5 (c) - 0 .Z. N" (~) (r::.6) 56-84 tan d.. + 15 tan d--0 - 7x8 1 9.. r o 0 Jt A 

N
11 1 ~X \ 5 

[ 3 rY 2 ~ =- U:r"- a 56-84 (a /.6x) + 15 (a /~x) 
28 r 0 2 · 2 2 

0 • 

-af 1}6-84 (ajL>x/ + 15 (a/6x~ , 

By way of example 1 one thus finds for coil 1'H11 (Table IX, 

ref. 2). 

= 0.4406 (a~ /r~) N11 and 

hence, in this case, 

E. 4 = - 0.664 (a1/xi) 

2-14 



9.nd 0.664 2.1. 
5! 

- - 0.011 

-15-

a~ v,.,<5) 

;m--
0 

(ii) Alternnte Specificntion of Error ---- The error in 

measurement aasnciated with a given error coefficient is, as 

Garrett 2 has emphasized, dependent upon the type of field in 

which the search coil is situated •. It is therefore considered 

of interest to specify the performance of a dipole search coil 

by stating how large the dimensions of a standard field coil 

must be if the search coil is to measure the resulting field 

with an accuracy taken (arbitrarily) as 1 percent. 

The standard field coil is taken to be a single circular 

luop concentric with the search coil and its radius designated 

1 
o r- Field Coil 

t><J ~ Search Coil 

It is then required that 
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+1 

Since it is readily shown that the central field of the 

search coil is such that 

dnHx I = 2rr (i/c) 
dxn 

0 

we have the condition 

rtm = (ro)e 2J 
{e +2H 

2 
f el = m 

or 

(n + 1)~ Pn (0) 

aol n ' 

P e + 1 lvo (e + 1) 

pl v (1) 
0 

e 
Pe (O) (a:~~) , 

An analogous expression may be employed for quadrupole 

coils: 

= 600 I r I p (O) (e + 2) (e + 3) ~ e e • 

As an example, we have for the dipole coil 11 H11 considered 

previously, 
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or 

and 

(a0 1/a2) = 1.70, as stated by Garrett. 

(iii) §oecific&tion of Sensitivity ----The sensitivity 

of any particular dipole coil arrangement is defined with reference 

to an ideal standard spherical winding. .The standard consists 

of harmonic windings, of the same maximum turn density N11 as 

the coil, situated within a radius rf. The value of the co-

5 efficient p1 for this standard is: 

and a measure of sensitivity is the value of r for which the 
f 

coefficient p1 of the standard and of the coil are equal. 

Similarly, for quadrupole coils, a theoretical standard 

winding is conceived for which 

. 8 5 3 
P2 (std.) = 25 (r5/r0 )N". 

Normqlized sensitivities, which take account of the 

magnitude of the error coefficient of a given coil may also 

be introduced: 
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sl (t: ) r (r f) 
4 1 ' for dipole coils ; 

~ c- r o jl e 14/e 

for quadrupole coils. 

Returning, by way of example, to coil 11 H11
, 

p1 = 0.4406 (a~ /r~ ) N", so 

= 1.13. 

Since, as shown previously, the error coefficient for this coil is 

- ~ 4 £ 
4 

- - 0.664 a /ro, 

or, with the constant of proportionality arbitrarily selected 
2 

as 0.37 (as was done by Garrett for convenience in the com-

parison of the coils listed in his Table IX), 
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(iv~ Efficienc~ ----In addition, the efficiency or 

economy in the utilization of turns is considered to be of 

interest. This feature is evaluated for dipole coils by deter

mining first the radius, ~' of a single-turn loop with current 

Ni having the same moment (or same p1 i) as the search coil in 
"' 2 "" 2 "2 Pl r; 

question. Accordingly, p1 = Nf (r';) = N"A (~) , or a = N"A 

where A is the area occupied by the search coil winding. 

An analogous dimension ~ is introduced for quadrupole coils: 

Normalized efficiencies, involving the error coefficients, 

are also introduced: 

A 2 
El ((e) ~- <;

0
) lE: i 2/e , for dipole coils; 

1\ 3 
E2 ([e)~ <;

0
) / ( e( )/e , for quadrupole coils. 

Again for coil "H", with 

Jt 4j = 0.664 (a2/r0 )
4 

, one finds 

(~Jir0 ) 2 = 0.463 (n2/r0 )
2 
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with a constant of proportionality taken as 1.44, 

( v) Summary ---The quantities defined in this section 

are summarized in Table III. The- normalized coefficients are 

useful for comparing different designs of coils of the same order. 

TABLE III 

S!JMtvfARY OF DEFP11IIONS OF THE!03ETIQAL EfiROR COEFEICIENTS, 
\ 

SENSITIVITY, AND EFFICIENCY 

Dipole Coils 

Error Coefficient: €.e = Pe + 1 /Pl 
(aol/ro)e = e2~02 j eel Pe(o) Radius of Standard Source: ~ 

Sensitivity 

Radius of Standard Coil: 

Normalized Sensitivity 

Efficiency 

Radius of Standard 'vlinding: 

Normalized Efficiency: 

Alternative 

Figure-of-M:lrit: 
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Tu.ble III ( conU.nued) 

Quadrupole Qoils _ 

Error Coefficient: P' - p · jr'-.e- e+2 1"'2 

( I )e _ 60Q 1 . ( 0) 
Radius of Standard Source: a01 r 0 - (o + 2J {e + J)f£8jP9 

Sensitivity 

Radius of Starrlard Coil: (r8 /r0 / = ~ N~2~ 
Normalized Sensitivity: S2 (~e)./. (~)5 1 ( el - 5/e · 

. p2 ,- P2 -5/e 
r:X. iF r~ _Pe + 2J 

----------~· 
. Efficiency 

Radius of StQndar.d Winding: 

Normalized Efficiency: 

Alternative 

Figure-of-t-hrit: 
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PART II 

Theo~y For Two-D~~ensional Search Coils 

The anal:rsj s of the 'tehav1or of long coils, as may be 

used for measurement of two-dimensi~~l magnet!~ fields is 

notably simpler than the Hnalyds of axially-sym_'!letric coil 
6 

systems. From the standpoint cf convcnicnco it appeurs 

desirable, however, to trol\t the t\,''J-::limensional case in a 

manner analoeous to that employed in Part I. 

We select· the normal to the plane of the coil as the axis 

of plane polar coordin~tes, with x designating distance measured 

along this axis. Coordinates r, e designate a field point and 

r.,~ the location of a coil. 
J j 

We express the exterior magnetic scalar potential generated 

by a current of i e.s.u. in the coil by 

- . ~'Pn 
Vcoil- 2 (i/o)~!l 

n 
(r O) cos nQ , 

r 

the constant r 0 again being introduced solely for reasons of 
I 

dimensional convenience. A reciprocity relation then permits 

7 us to write the flux linkages per unit length between the 

coil and an external applied field characterized by the potential 

V0 as 
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£n n (n) 
t =- ' ro Vo :t'n n. . 

V (n) : dny
0
/dxn evaluated at the origin. 

0 

Evaluation of the coefficients Pn 

For a two-dimension&! current loop ----The exterior 

Field Point .• 

. ~ 
potent.ial produced by a current loop may be written 

( ) _ (-'' )~sin n ~ j (:.J.)n V f j - 4N j J/ c ..:::, n ·- r cos ne ; 

hence 

n 
( ) (r~). pn fj = 2N. sin n J... -.1. 

J , J ro 

(ii) For a lnyer-coil ----For a coil of finite extent 

in the x-direction, and which contains Nk turns/em, the exterior 

potential and the associated coefficients pn (s) may be found 
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by integrating the preceding result, to obtain 

' 

Nk being given opposite sign at the ends of the layer. 

(iii) Fpr a goU ---For a coil 'With 'Windings occupying 
2 a rectangular cross-section and 'With N11 turns/em one similarly 

finds by a second integration 

2 
Pn (c) = -2 ~-r....;o:::--:~-~ 

(n + 1) (n + 2) 

~ 

The summation again extends over the corners of the 'Winding, 

'With ~ alternating in sign. 

For convenience in computation, this last result is re-

written. 

~ r: n+2 
X 1' N'~ L:"X~ + {n + 2) (n +' 1) n 2 

2 ! x.Q. a9.. -

... ( n,___+---.2.._) _.("""n~+-=1,....)-=n _.(-.:.:n:-----=1:..6.) n - 2 4 J 
4~ X~ : ~ •• • ' 

the first term "Within the brackets normally dropping out 'When 

the summation is taken. 
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4. Application~ 

(i) For an "Exp.cmded Dioole ~beet" ----For a coil with 

windings or rectangular cross-section (half-width in direction 

normal to plane,~ x; half-widths in plane, a1 and a2), 

intended for field-strength measurements, the dominant coefficient 

is 

and we seek to make the coefficient 

N11 vanish. 

This latter condition requires that 

( ii) For a Quadrupole Coil -For a quadrupole pair 

2-25 
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L 
one finds the value of the dominant coefficient to be 

The dimensions should be so selected that 

2 2 2 2 (x~ - xi) 4 4) 
p = 2 

(a2 - al) - (x2 - xl) (a6 - al Nn 
4 

and 

r~ 

2 2 2 2 [ 2 2 2 + af)] 
=2 (xz - xl) (az - al) - (xz + XJ) - (az 

N'1 will vanish. 
r4 

0 

This latter condition requires that 

X : ~2 + a.2 _ ..,2 • 
2 'J a2 1 l. 

5. Definitions of Theoretical Error Coefficients, 

Normalized Sensitivity, and Normalized Efficiencl 

(1) Error Coefficients ----As in Part I, we may define 

( 9 = Pe + 1/Pl 

Le = Pe + 2/P2 

2-26 
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(ii) Sensitivity ----We likewise def'ine the normalized 

sensitivity as 

and for quadrupole coils. 

These normalized sensitivities may pe of interest for comparing 

the performance of proposed coils of various relative dimensions. 

Save for higher order coils, one has normally e = 4. 

(iii) Efficiency ----Similarly, as a measure of economy 

in the utilization of turns, one defines the normalized efficiences 

El (( )ocEL 1-Ljl/e = pl [ P:l J l/e for dipole coila 
e N11A E:.e N11A Pe + 1 

and E2 (( ) .,P2 Jr.\ 2/0 
= P2 ~ 1'2 ~ 21

• for quadrupole coila, 
e ex. N"A N"A p e + 2 

with A representing the cross-sectional area occupied by the 

windings. 
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PART III 

Estimate of Some Errors in Search Coil Measurements 

1. Introduction 

For field measurements, as in magnet model work, dipole. search 

coils are employed and, if ''fourth order, 11 are designed so that 

P; vanishes. It is of interest to estimate in a particular case 

the actual magnitude of the errors to be expected, with fields 

of the type under investigation, (i) from the theoretical contri

bution ~5 and (ii) from a possible 1) term arising from ~perfect 

coil construction. · 

2. Estimate of the Value of the Coefficient P) which may nrise 

from ConstructionDl Errors 

(i) From errors ip the overall dimensions ----For an expanded 

solenoid, as discussed in Part I, 4 (i), the coefficient P3 has 

the form 

-~ ~ 

= N11 
( 3 l 3 2 5 5 20 x a2 - 20 x a1 - 9xa2 + 9xal), · 

15 r4 
0 

where, for simplicity, x is used in place of ox to designate 

the half-width of the coil. We now assign errors to the dimensions 

xR, aR, such as might arise from inaccuracy in machining, in

correct allowance for wire diameter, or looseness in winding. 
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If we assuine the dimensions of the coil corners to be ·in error 

symmetrically, but otherwise independent, by an RMS vnlue b, 

(ii) From errors in individunl looPs ----It may also be 

of interest to inquire concerning the error which would arise 

to generate a non-vanishing coefficient p
3 

if a coil of the in

tended dimensions were formed by winding N single-turn loops, 

each subject to an independent statistica.l error in "x" and 11 a 11 

{again with nn llilS .. error designated as b). 

For this case we may begin with the expression for the 

coefficient associated with a single turn and write 

. 2 _\ 
Sl.Il o-

j 
r . 4 

P' (cosrd..,) (:.l) 
3 J ro 

, 
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2 2 2 '3 . 2 ' 1/2 
6P

3
=:t:.:J ~ ,<{12.x.y) +(12x y-6y-)_~ .b 

ro 

1/2 

:3. Nrunericn,l ~~ 

In the case of a coil for which x = 0.67924a2 and al = 0.3 a2, 

so that ideally PJ = 0 (see Table I), our first estimate gives 

and the second estimate gives 

from section 3 (i), with , 
A = 2x0.67924xQ.7a~, 

3 
~p3 = :t: 3.2 -.JN a2 .b , from section 3 (ii). 

r4 
0 

It is noted that the first estimate exceeds the second for 

multi-turn coils (N)5), the same value of b being considered 

in each cuse, and we shall therefore employ the first estimate 

in what follows. 

For the type of coil considered here we also have (see 

section I, 5 (i) ): 
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= 0.4406 N'1 a2 
~ 0 
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and 

The flux contributions of interest are, in a two-dimensional 

field V (x,~ ): 

1
3 

:= -27Tp r4 V (3) /24 .r 3 0 0 

where ll,.; (n) :: ~r nt X =t = o I 

thus the relevant possible errors are 

(flx (2 ) ) and 
Hx 

If we consider that within the region of interest in the 

(2) 2 magnet model, Hx /Hx may become as lQrge as 0.2 in - and 
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Hx (4 ) /Hx .po9sibly a.s large as 0.2 in -4 in magnitc!de, ,.,-:·,ile t>e 

dimension a2 of the search coil is taken as 0.25 inch and b esti

mated as 0.003 inch, 

-2 ..l.... 0.004 x 10 · = 250 of 1 percent and 

,.....1 0.000145 x 10-2 = ~ of one percent. 

It is suggested, therefore, that the error introduced by incom

plete attairunent of the ideal coil configuration may in practice 

be the greater of the two errors considered. 
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PART r.J 

M3asurement of Field-"Gradients" 

with Axially-Symmetric Search Coils 

1. Introduction 

We consider here the measurement of field gradients in two-

dimensional magnetic fields by use of coil systems possessing 

an axis of symmetry. The two dimensional field_will be regarded 

as having a plane of symmetry, so that it may be represented 

by the scalar magnetic potential vo: 

-V =Hz 
0 0 

+ ••• , 

where z designates the coordinate normal to the median plane, 
. . n 

· (n) ,) Hz 
y is orthogonal to z, and He represents ;-n- evaluated at 

dY 
y = z = o, []0 (l) = DoHoiR]. 

We examine in what follows two methods for measuring 

Ho (l): the use of a qUildrupole ·coil system with its axis inclined 

8 nt an angle of 45° to the median plane nnd, secondly, the use 

of a pair of parallel dipole coils connected in opposition. 

2. Use of ~n Oblique Quqdrupole Coil 

For a coil whose axis of symmetry is inclined at an angle 

~Jrwith respec~ to the z direction it is convenient to introduce_ 

the transformation 

. ' 2-33 
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y =X sin ~r+ ~ 
z = x cosp- ~ 

It than follows that 

v (2) 
0 

-34-

cos 11" 
sin 1f 

X = o, ~ = 0 

=-¥sin 2'f 

The inclined coil-pair thus affords a means for measuring 

the desired gradient and, for f= 45; the flux-linkages assume 

the stationary value 

The total flux ~hange will be twice this value if the coil is 

rotated from this position through an angle (b1r) of 90 degrees. 

The design of such coils has been mentioned in section I, 5 (iii). 
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3. Use of a Pair of DiW Coils 

As an alternative, more obviously direct, means of measuring 

field gradient, a pair of axially symmetric search coils has 

been used, 
9 

oriented with their axies coinciding with the di-

rection of the field or perpendicular to the median plane of 

the magnet, If each coil is regarded as measuring the value 

of the field at its center, the difference of the readings, divided 

by their axial separation, affords a measure of the field-gradient 

at the mid-point. As Haworth has pointed out, however, an error 

proportional to H
0

(3) could thereby be introduced 
10 

with the 

coils individually measuring accurately the flux-densities at 

their respective centers. It is therefore appropriate to re-

examine this arrangement to determine whether a suitable value, 

different from zero, can be found for the coefficient p3 of the 

individual coils to compensate this error. It will be found 

that the coils can be so proportioned that in the two-dimensional 

field each responds sufficiently to the axial derivative V
0 

(3) 

that the error from H
0

(3) is cancelled. 

To investigate this possibility we locate the axies of the 

two coils at y = :t;b and note that the net flux to which the }:air 

responds is 

n + 1 
I - 2rr ' _P.;.;n":"r_o_---:-_ 
I' ~ (n + 1)! 

s .[- ~] -[ l ~zn + b 
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in which only the p with n odd enter for dipole coils •. We 
n . . . 

next note, from the series of section 1, that, with z = o, 

[-

and 

Hence r- d v o1 
L dZ Jff> 

so that 

. . . . . (2) 

= Ho + n H llU +H _.,;0~-
o o R . 2 

+ Ho ( 3) ( :t:b )3 + Ho (4) 
6. 24 

••• 

= - H (2) 
. ( ) H (4) 2 

- H~ 3 • ( :t:b ) - -%-- b - ••• 0 

From the results of the preceding paragraph, the effect 

of Ho (3) on the men:surement ·can be removed if one designs the 

coils, 'ng1 so that p
3 

~anishes, but in accord with the relation 

• 

(It may be noted in passing that with such a set of coils connected 

in series-aidihg, the condition for them to·measure the field at 
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the midpoint--the ·effect of H {2)being eliminated--would require 
0 

p3/pl = o b2/r~ .] 

We consider,· thEm, the effect of the condi.tion just derived 

on the relative dimensions .of coils of the expanded solenoid 

type. The coefficients for such coils are {section I, 3, asp. 

Table I): 

and 

• 

The requirement that p
3
/p

1 
= 2 ~?/r~ then reduces to the simple 

condition 

or 

which reduces when b = o to the result of section I, 4 (1). 

In Table rJ below we give, for comparative purposes, sets 

of dimensions .which satisfy the foregoing relation • 
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TABlE TV 

DIMENSIONS OF AX:ffiLLY-SYl'1METRIC SEABQH COILS, TO BE USED IN PAJRJ! 

!Q.J2.ETERHINE THE GRADIENI' OF A TWO-DIMENSIONAL MAGNETIC FIET..D 

Inner Radius, a1 • 0.075 0.075 • 

Outer Radius, a2 
. 0.250 0.125 • 

Semi-axial Separation, b : 0 0.500 0.250 

--
Overall Length, 2 (ox) : 0.33962 1.05610 0.53206 

. -
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PART V 

}i}asurement of Field- 11 G7'adients 11 with Two-Dimensional Search Coils 

1. Introduction 

We consider here the measurement of two-dimensional mag-

netic fields through the use of long coils, by means analogous 

to those described in Part IV. The potential describing the 

magnetic field may be used in the form give~ in sections IV, 1 

and rv, 2. 

2. Use of a Quadrupole Coil 

For a long quadrupole coil-pair, centered on the median 

plane and oriented with it3 normal inclined at an angle lf' 
with respect to the field direction, we have as before 

v0 <
2 > - - noi' sin 2 y. 

Since f2 =- ~ r~ V0 (
2 ) (section II, 2), the flux to which 

the coil resoonds is substantially 

I = P2 r~ n_ H_ i 2 )f/ it 1 th l2 
2 
~ s n .r , per un eng • 

The inclined coil-pair thus affords a means for measuring 

0 
the desired gradient and, forlf = 45 , the flux-linkages per 

unit length assume the stationary value 

• 
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The design of a coil of this type has been mentioned in section 

II, 4 (ii). 

3. Use of a Pp.ir of Long Dipole Coils 

We consider here the use of a pair of long dipole coils 

connected in series opposition. The normals to the planes of 

the coils are directed along the magnetic field, at right angles 

to the median plane, and the centers taken to be at y = ~. 

The measured net flux, per unit length, is 

and, with the values used previously for the differences of the 

derivatives (section IV, 3), 

~ ~ H (3) 3 -, !2 3 (3) 
...l... = P:l. ro '(!loHo R + o 6 2b +. •...:J - t ro Ho 2b + • • • • 3. . 

To remove the effect of Ha (3) on the measurement we therefore 

require 

[rt i:nay also be noted in passing that with 'such a .set of 

coils connected series-aiding, the ~oridition for them best to 

measure the field midway between them is that p.3/p1 = 3t~2/r~ ,3 

2-40 



-41-

The coefficients p1 and p
3

, for coils whose windings occupy 

a rectangular cross-section, have been given in section II, 4 (i): 

2 The requ~rement that p
3
/p

1 
= b /r~ then reduces to the simple 

condition 

A possible set of values would be: 

.· Inner Half -width, 

Outer Half-width~ 

al = 0.075 · 

a2 = 0.125 

Semi~Separation of centers, b = 0.250 

Overall Height, 2 ( ~ X) = 0 • 5408) • 

Since~x is, by the equation oited, necessarily granter than b, 

the rotation (individually) of the membors of such a pair of 

coils for the measurement of a static magnetic field would in

volve mechanical ·interference. The use of the quadrupole pair 

may be preferred, therefore, in such cases. 
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PART VI 

References and Notes 

1. M. W. Garrett, "Axially Symmetric Systems for Generating 

and Measuring M:l.gnetic Fields, Part I, 11 Appl. Physics 22,, No. 9, 

1091-1107 (September 1951). 

____ , sequel, Part II, a.va.ila.ble as a photostated 

manuscript. 

3. cr. ref. 2, eq. 2.27. One makes use of the exterior 

magnetic potential produced by a current i in the coil 

V coil = 2:rr ( i/ c) 2 n ~n I 
n + 1 

(ro) P ( ) r n cos Q • 

In addition, one considers as an elementary source a magnetic 

pole of strength ~ situated at r, e. The flux from the pole 

is designated as j and one has the relationship 

- ( i/ c ) "f = ~ v coil 

by use of energy considerations. Accordingly f may be written 

with 
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For the particular special source assumed here, the potential 

at rj, dlj, in the neighborhood of the coil is, however, 

At points x5 on the axis of the coil 

and the axial derivatives at the origin are given by 

n + 1 
= !J. n l (1/r) Pn(cos Q). 

Accordingly, Jn may be identified as 

Ji = _ 27r P n n + 1 V ( n) 
rn (n + 1) l ro 0 , 

for this particular field or for any general applied field which 

may be regarded as established by the superposition of such 
2 

monopole contributions. This is the result of Garrett, cited 

in section r, 2. 

4. This.follows from the identity 
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p~ - 2 u P 'n + 1 + P'n + 2 ; p n + 1' 

where u =cos~ represents the argument of the functions P, P'. 

5. The standard ·coil has wirxlings with ~ density 

proportional to P' (= sin~) and thus an actual density propor-
1 

tional to sin2 c}... Hence Nj = (N11 r d .J.. dr) sir? & and 

. ~fJ 2 2 5rf( rr 3 5 PI. = _)) Nj sin3 ~ (r /r0 ) dcr = :~ ) r sin d.- dr d~ 
= _lz. (r4/r2) w•. 0 0 

15 f 0 

6. Certain aspects of the measurement of two-dimensional 

magnetic fields are treated by W. C. Elmore and M. W. Garrett, 

Report of Princeton University Accelerator Design Group, WCE-MWG-1-53 

(JuneS, 1953); Rev. Sci. Instruments £1, No.5, 480-4B5· 

(May 1954). It is there pointed out that any potential or 

field-component satisfying Laplace's equation in three dimensions 

will have a z-average which satisfies laplace's two-dimensional 

equation, if the average is taken between two points where the 

z-derivative of the quantity in question has equal values (for 

example, points where the z-derivative vanishes). 

7. The reciprocity argument for long coils in a two-dimen-

sional situation parallels that given for the axially-symmetric 

coils. 3 In this ·case we write the external magnetic potential 

arising. from e. current 1n the coil as 

n 
v = 2 (i/c):2Pn (E.c.) cos n e. 

coil n r 
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We consider a line-pole source, of strength ~ per unit length, 

situated at r, 9 and let 1 designate the consequent flux per 

unit length at the coil. We again write 

- (1/c) ~ = ~ vcoil' 

so that f=~~ 
with ~ = -2~ En -(r /r)n cos n e. '!n n o 

The potential of the specidl line source assumed here is, however, 

V0 = -~ ln R
2 

and on the axis assumes the form 

VJ' 0 
axis 

- - ~ ln (r2 - 2xj r cos Q + xj 2) 

= 2~ [- ln r + 2~ (xj/r )n cos n e:J 

The axial derivatives of V0 at the origin are hence given by 

n = 2~ (n- 1}! (1/r) cos n e 

and, accordingly, }n may be identified as 

! ·= ... ~ n V (n) ln n. ro o 
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for this field or for a general composite field. This is 

the result stated in section II, 2. 

8. The use of an oblique q~~drup~le coil has been suggested 

by Garrett and Elmore -- £f· ref. 6. 

9. See reports of the Magnet Group, ADD. 

10. L. J. Haworth, meeting of ADD (June )0, 1954). The 
Ho(3) 

relative error involved would be of the order---~ 
6%\.l.J 

LJL:mt 
8/25/54 

1)istribution 
ADD-Bl 
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SUMMARY OF RESULTS 

CONCEmUNG 

DESIGlf OF AXIALLY-SYl1MET1UC SEARCH COILS 

~ationalized e.m.u~ Ref.: M. V. Garrett 

la. ~e potential representing the field produced by a current 1 in the 
coil is expressed 

vco11 = zrux:;.nl (ro/r)n+l pn(coee) • 

where r
0 

is a constant length introduced for dimensional convenience. 

b. The nux-linkage when this coil is inserted in an external magnetic 
field characterized by the potential V 

0 
is 

¢ ::: :E ¢n • 

where -l 'Pn 

and V (n) 
0 

= -2TTpn r:+1 v
0 

(n) /(n+lH 
dnv = ~0 evaluated at the origin. 

c. For a coil intended to measure flux-density at .-·point it i• thus 
desirable tha.t p~ shall vanish. the coefficients Pn normally va.nishing 
automatically for' n even in such cases due to symmetry in the coil 
construction. 

2a. For a current loop 
2 'c ) < 1 )n+l Pn = Uj sin a.j P n cos a.j r j r 

0 
• 

b. For a solenoid 
ro "' 2 1 / n+2 

P"n = n+ 2 .c... Nksin~Pn+l(coselk)(rkr0 ) • 
k 

' the linear tum-density Nk being given opposite sign at the two ends 
of the solenoid. 

c. For a coil 

ro2 ~ n )3 13no- Bn2ta.n~ + • • • 
Pn = {n+2Hn+3J 1_,,N£(xi/ro) (B;i/ro .· An 

" the turn-density N £ being given a.l terna.te signs as one proceeds with the 
amrmation around the boundary of the rectangular winding. 
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TABLE 

COEFFICIEHTS FOR THICK-SOLE!!TOID CONSTANTS Pn 

APPEARllfG IU THE EXPRESSION 
' 2 ... 

( ) = rJ?- ~N"(:x/ro)n(a/ro)3 Bno - :Bn2 'tan a. '+ •·· 
Pn c .<n+2}Xn+3) ~ . Au 

I 
A :B :Bn2 :Bn4 .:sn6 :BnS :Bn 10 n' n no 

~II 
1 (1) ' 

1 4 

211 2 20 (3) 

3 1 20 9 

4 g 2SO 252 (15) 

5 1 56 84 15 

6 16 1344 3024 lOSO (35) 

7 g 960 30~ lSOO 175 
g 128 21120 887~ 79200 15400 (315) 

9 32 7o40 38016 47520 15400 945 
10 256 73216 494208 823680 4od+oo 49140 ' (693) 

11 128 46592 384384 823680 56056o ll466o 4851 

c 

2 

4 

24 

gg 

52 

~e values in parentheses represent coefficients of terms J.ndependent of x 
and hence will normally drop out of the summation. In such cases the quan
tity C may conveniently be factored out of the remaining coefficients. 

Thus p = 0 . 
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CERTAIN RELATIONS AMONG LEGEllDRE JOllC!t'IOllS 

l. The following five recurrence formulae are cited b7 Whittaker and Watson 
(Sect. 15.31): 

I P I p1 • n+l - z n a (n+ l) P n 

II . (n + 1) P n+l (2n+l)£Pn + nPn-l =- 0 

III. 

IV. 

v. 

2. The following two identities were ~ited in connection with the discussion 
of search.coil design: 

A. Subtracting equation V from equation II, 

(1 -dz2 ) P~ = (n+l) z Pn . - {n+l) Pn+l , 

or sin2 a. 
n+l P~(cosa.) = coea.Pn(cosa.) - Pn+l(cosa.) 

:B. ::Sy I, (n+ 2) pn+l · = p~+2 
by I II , ( n + 1) P n+l a z P ~+l 

hence • .ubtracting, 

pn+l 

3. We also wish to establish 

' = Pn+2 

d ,- n+2 2 ' · >] 
dx L r sin a. Pn+l (cos a. = 

' z Pn+l 

P' n 

- 2z P 1 

n+l 

. 
• 

• 
I 

+ pI 
n 

(n + 2) rn+l sin2a. P 1 (cos a.) • 
n 

where r = a/sina., x = a/tana., and "a" is constant. 

To this end we note that 

.!. = d/l • - ! sin2a. ~ = 
dx dx da. a da. 

and in parti cula.r, of course, 

: = cosa. • 

sinct d 
r da. 
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d r n+2 2 t ] Then di _ r sin a. P n+l 

= (n + 2) s1n2a. cos a. rn+l P ~+l 
sin a. n+l ( 1 3 n ) - -r r 2 sin a. cos a. P n+l - sin a. P n+l . 

n+l 2 C< ) ' 1 2 11 ] = r .. sin a, n+2 cos a, P n+l - 2 coa a. P n+l + sin e P n+l 

= rn+l sin2a. [(n+2) cos a. P~+l (n+l) (n+2) P n+l] 

by Legendre's differential equation 

= (n+ 2) rn+l s1n2
a; Coosa.P~+l - (n+l) Pn+lJ 

4. We also cite, with respect to the Associated Legendre function• 

Ccf. Jahnke u. Emde, J'unktionenta!eln, esp. p.ll4] • 
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MEMO 2 July 1954 

To: K. Green 

Fm: L. Jackson Laslett 

Re: Use of reciprocity Relation in Garrett's Method of Analysis of Search-Coil 
Response. 

Ref: M. W. Garrett, "Axially Symmetric Systems for Generating and Measuring Magnetic 
Fields, Part I", Jour. Appl. Physics 22, #9, 1091-1107 (September, 1951); 
sequel, Part II, available as a photostated manuscript. 

1. At the 2 July 1954 meeting of the ADD Magnet Group you expressed an interest in 
the generality of the results inferred from a reciprocity principle in Garrett's 
analysis of search coil behavior. The following proof may therefore be of interest. 

2. We consider a coil with axial symmetry, carrying a current of i (e.s.u.), and 
producing an exterior magnetic potential 

·.. ( ... ) .. +' <"' r _ P. (c.cs6} 
V .

1 
:2.. 1l' (i/c) 4J -;;:;+; r" .,.. 

COl. 

We now consider, as an elemental source, a magnetic pole of strength~ situated at 
r,O; the flux from this pole threading the coil is designated as ~ and we have the 
relationship 

-(i/c)~ = u v r- coil 

by use of energy considerations. 

with 

Accordingly ~ may be written as ~ 

~n (r /r)n+l P (cos9) 
o n 

For the particular special source assumed in this case, the potential at 1e.i1 OCj 
produced in the neighborhood of the coil by this point source is, however, 

Vo :: AIR 

~ ~ ~ (7f) .. p'" ( ~ o s { e -0( j) ) , 
/t. .. 

[Smythe (Ed. II), Sect. 5.153]. At points Xj along the axis of the coil, 

v 1 . 0 aXl.S 
= ~ ~ (x./r)n P (cos9) 

A £...t J n 

and the axial derivatives 

V ( n) - .5:1..-:..A ...... y 1 
o = (} x{ u = 

at the origin are given by 

p. n~ (1/r)n+l Pn (cos-9) 

Accordingly, ~n may be identified as 
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~n 
21\ P..... r n+l v(n) 

(.~~ 0 0 

for this particular applied field or for any general applied field which may be 
regarded as established by the superposition of such •ulHpole contributions. This 
is the result stated by Garrett. 

3. A parallel argument may be advanced for long coils in a two-dimensional situa
tion. 

In this case we write the external magnetic potential as 

v '1 co~ 
2(i/c)~ ~.,{;:}"'cos -.,6). 

We consider a line-pole source, of strength~ per unit length, situated at r,Q and 
let ~ designate the flux per unit length through the source. The reciprocity 
relation then is again 

-(1/c)~ = ft. v '1 
co~ 

and we may write 

with 

~n -2 ft pl!.. (r /r)n cos ne 
'h 0 

The potential of the special line source assumed here is, however, 

v 
0 

2 
-~lnR 

and on the axis assumes the form 

vl . 
oJax~s 

. 2 
- ,uln(r 

2 
2x.r COS8 +X. ) 

J J 

2}-f. [-ln r .r Z (1/n)(xj/r)n cos n@J. 

The axial derivatives at the origin are henc~ given by 

V (n) = ,.,"• n 
0 v. 2~(n-l)!(l/r) cos ne 

0 1J )(·"' 
J 

and, accordingly, ~n may be identified as 

~n 
Pr r n V(n) 
n! o o 

for this field or for a general composite field. 

4. It is noted that in the foregoing derivations the location of the source remains 
general. 
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LJL-2 

COIL SYSTEMS FO::t ME.A2URH1E}I"T OF FIELD AND FJELD-GRADIENT 

IN TWO D I~NS IONAL MAGNETIC FIELDS 

L. Jackson Iaslett * 

July 16, 1954 

* On leave from the Ames Laboratory of the AEC, Iowa State College. 

to represer.t the Mid-Western University Research Association. 

I. INTRODUCTION 

In ~onnection with the design and development of a 

high-energy alternate-gradient proton synchrotron at the 

Brookhaven National Laboratory, it is desired to measure 

in a pulsed model (and prototype) the ratio of field gradi-

ent to field intensity throughout the excitation cycle. It 

is hoped in these measurements to include a measurement of 

this ratio L~ the D.C. residual fields prevailing at the 

start of the cycle, prefe:-ably employing the same instrumen-

tation. For purposes of computation it is presumed that the 

initial field and its time derivative will be of the order of 

20 gauss and 104 gauss/sec, respectively, while the corres-

pending values for the gradient in a full-scale model will 

be 2 gauss/inch and 103 (gauss/inch)/see. 
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It is the P'Jrpose of the p:-esont. report to exhibit 

the characteristbs of a fe\v coil s:~·s·~~ms which have been 

given consideration for this \Iork. 

(i) Response: The re~pon~e of dipole and quadrupole 

search coils has been discus~ed i~ ~!earlier report (LJL-1); 

we list here for convenience t.he applicable specific formulas: 

(a) ~~ially-Symmetric Dipole Coil LSolenoi~/, of half-height 

6.X, turn density N'1, and tot_fl.l t:::r:1s N: 

i a, a" I 
e.1 a2 _j_ 

X I ~\,. I>.,. 

~· [12 rJ .,-, -- t\.x 
I t/, ~X I xl ---rr 

~ I 
·. I ~ or 

I 
I ]-

I ~ ~~ ' 
..._. 

I 

rf = 27TN11 o.x (e_23 - al3) H cos l.!t 
1 3 

1 

rr ~23 - a, 3 
H cos tf = JN a2 - al 

(b) Axiell;~·-S:-mmetric Quadrupole Pair, with N turns !2§.!: QOiJ~: 

I 

I 
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7r 2 2 3 3 ,, dH . I 

~2 = 3 N" (x2 - x1 )(a2 - a1 dy s~n2 'f 

(c) Long Dipole-Layer, of length s, with turn density N" 

or total turns N: 

¢1 = 2N" 6X {a2 
2 

- a1
2

) seff H cos~ 

= N (a
2 

+ a
1

) s H cos tj; , where 
eff 

seff = \a Ls + 2(a - aJ17~ 
<a> 

(ii) Theoretically Optimum Dimensions: 
d3v 

(a) Axially-Symmetric Dipole Coil, if response to ---3 vanishes: 
dx 

d3V (b) Long Dipole-Layer, if response to --- vanishes: 
dx3 

d4v . 
(c) Long Quadrupole-Combination, if response to d;4 van~shes: 
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(iii) Modified Dimensions for Separated Difference eons: 

(a) Separated Axially-Symmetric Dipole Coils, .of semi-axial 

spacing ~ ~ 

(b) Separated Dipole-Layer Coils, in opposition: 

(iv) Inductance Coefficients: 

/J..ef.: J. Hak, 11Eisenlose Drosselspulen" -- K. F. Koehler 

Verlag, Leipzig (1938); Edwards Brothers, Inc., Ann Arbor, 

Michigan (1944)J 

(a) Self-Inductance of Solenoidal Coil: It is convenient 

to use the expression L =~·(mean diam.)·¢ e.m.u., where 

0 is plotted in Figs. 20-22 by Ha.k, as a function of the 

parameters 

a = axial dimension 
mean diameter and f 

= radial thicknes2 • 
mean diameter 

(b) Mutual-Inductance of Coaxial Identical Solenoidal Coils: 

The mutual inductance of interest being comparatively small, 

it may be estimated roughly as 2~~(a)4/(sep'n)3 e.m.u. 

or approximately by Hak's form M = (Diam. )¢, where (with 

the diameter ratio b = 1) ¢ may be found from Hak 1 s Figs. 5-7 

as a function of the parameter S = (sep 'n) / (diam.) • 
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(c) Self-Inductance of Single Long Coil, of Rectangular Form: 

. _2 [ 2cd · c I 2 2 
L = ~ ( c + d ) _ln a-=iT - c +d ln ( c + -y c + d ) 

+ 2~ +d - 0.5 + 0.447a+r 1'2'":3. ~ 
c + d c+d , 

with a = x2 - x1 

r = a2 - a1 . 

II: SYSTEM INVOLVING LONG COILS 

The system designed here consists of a quadrupole coil 

pair, whose maximum transYerse dimensions fall within a circle 

of 0.94011 diameter, and a small coaxial dipole coil, each wound 

on forms whose length is taken as 4 inches. It is supposed 

that these coils may be rotated, about their longitudinal axis, 

to measure the ratio of magnitude and gradient in a static 

residual field and then used to investigate similarly the 

time-varying magnetic field of a dynamic model. If it is 

desired that the field measurements themselves be made at a 

fixed location, while the gradient measurements are taken at 

a series of other locations, _the dipole coil (or a replica) 

may be divorced from the-quadrupole pair and located as desired. 

The dimensions selected for the coils are the following 

Lsee Drg. J:7: . 
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Dipole Coil: a
1 

= 0.05011 

a = 0.080 11 

2 

x = 0.066711 (half length); 

Quadrupole Coils: a1 = 0.13011 

a2 = 0.300" 

x1 = ±0.170" 

x
2 

= ±0. 27911 

It will be observed that the dimensions of the dipole 

coil are such as to satisfy the relation of section I.2(ii-b) 

--,namely, (0.0667)
2 

= ~L(0.080)2 + (0.050)2J -- so as to 

render the coil response insensitive to d3V and thus give a 
dx3 

theoretically p.~ecise measuTement of the field strength at 

its center. Similarly the dimensions of the quadrupole pair 

are in accord with section I.2(ii-c) -- namely, 

(0.279)2 + (0.170)
2 

= (0.300) 2 + (0.130) 2 -- so that the 

d4v 
response to I. is removed and an accurate measurement is 

2 dx---- ) 
made of d V and hence of the field-gradient H(l in the 

dx2 
median plane • 

For estimation of coil response, the effective lengths 

of the coils are: 

Dipole Coil: 4.000 + 0.030 + 0.0023 = 4.0323 inches; 

Quadrupole Coil: 4.000 + 0.170 + 0.0224 = 4.1924 inches. 

2. Turn-Density: 

Based on the use of 1/40 B.&S. enameled wire, for 

which the Anaconda nominal diameter (over insulation) is 
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0.0034 inches and which is here taken (conservatively) as 

0.0035 inches, we assign the following numbers of turns to 

the respective coils: 

Dipole coil: N = 0.80 Q.030 Y. 0.1134. ; 260 ; 
(0.0035)2 

Each member of quadrupole pair: 

8 
Q.,l?O X O.l.Q2. :... 1200 

N = 0. 0 ~ - • 
(0.0035) 

The factor 0.80 is introduced as an empirical factor to allow 

for tma.voi<.lab2.e 2.oosenoss in ''v!inding. 

The re~ictar.ce of the wire is taken as 1049 ohms }:er 

thousand feet or C.0874 o~s psr inch. 

The properties of these coils and their expected 

pe~formance in the fields specified in the introduction 

will be found listed in Table I below~ 

LNote: The I'lutual inductance between the two parallel long 

re('.tangular coils, of similar form and size, ie relatively 

small in the preseLt instaBce and might be estimated as 

M ~ af(Ler.gth)(~.tll~ .. -)
2

; a more com?lete expression 
. separatlon 

is given by Hak, which suggests tha:t for the dimensions of 

interest here a reasonable approximation would be 

• 2( ) r , \-Jidth · )2J .. -· · · J 
M = 2N Lengt.h lnL 1 + tser~;~tion e .m. u. 
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TABLE I 

EXPECTED CHARACTERISTICS 4NO PERFORMANCE OF LONG COILS 
--=s: 

Dipole Coil 

Resistance, R 260(2 x 4.13 )(O.OS74) = 188 ohms 

Approximate 
Inductance, L 

4.98(260)2 (4.16x2.54)lo~9 = 3.56 x 10-3 henry 

Response in 
Static Field* 

Response in 
Dynamic Field 

. 2 ' . -8 
260(0.130 x4.0323)(2.54) 2.0 x 10 

= (879 x 10-8) x20 = 0.176 x 10-3 vo1t-se~ 

879 x 10-8 x 104 = 87.9 x 10-3 volts 

Quadrupole Pair 

Resistance, R 2 xl200(2x4.43)(0.0874) = 1860 ohms 

Approximate 2L'7.32(1200)2 (4.6x2.54)10-~ 
Inductance, -2L;2(120o)2(4.17x2.54) 1n(1 + <g:zx~)2 ) x 10-9 

L = L1+L1r2M = 0.25 - 0.04 = 0.21 henry 

Response in 1200(0.449 x O.f+-30)(2.54)2 (4.1924) 2 x 10-8 

Static Field* = 0.125 x lo-3 volt sec 

Response in 1200(0.449x0.430)(2 .54)2 (4.1924) 103 x 10-e 
Dynamic Field = 62.6 x lo-3 volts 

------------------------------------------------------* The dipol,e and quadrupole coils should preferably be flipped 

through. angles (a. 'V.) of 180° and 90° respectively, in order 

that the generated signals be insensitive to the angle of ro

tation; but the computed signals are taken to be one-half as 

great as tt:lose which would then .. result in order that they may 
... 

serve as appropriate initial values for ensuing dynamic meas-

urements. 
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III. SYSTEM EMPLOYING AXIALLY-SYMMETRIC COILS 

1. Description: 

We suggest here the use of five :rairs of dipole coils 

for the gradient measurements. The two members of each pair 

are connected in series opposition to provide. a measure ·Of the 

gradient and the five pair, arranged longitudinally, are con-

nected in series to augment the signal and to provide an av-

erage value for the gradient. For measurement of the field 

itself, a couple of additional dipole coils are used in a 

se:eies aiding co1me ction. 

The dimensions selected 

for the coils are as follows 

ffirg. I17: 

Dipole Coils: a1 = 0.18611 

a
2 

= 0.21011 

ax = o.l?2" 
(half length); 

Quadrupole Pair: al = 0.10011 

~ 

a2 = 0.250", x2 

V\ 0 0 -....._, 

d 0 0 
~0 

~ /~ 
·~) 0 .· 0 

'·. ..,_.., 0 
-~.-~1 

~ 0 0 
~~0 

= 0 • .320~' . b = 0.60011
' 

= 0.40011 , j 2+6\2 = 0 4?211 
' x2 2 • • 

It will 9e observed that the dimensions of the dipole 

coil are such as to satisfy the relation of section I.2(ii-a) 

-- namely, (0.1?2)2 = ~ (0.210)5 - (0.186)5 -- to remove 
20 (0.210)3 - (0.186)3 

d3v 
the dependence upon -

3 
• 

dx 
Likewise, for any of the quadrupole 

pair, the relation of section I.2 (iii-a) is satisfied --
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namely, 

. 5 5 
(0.400)2 + (0.400)(0.320) + (0.330)2 - 9 (.

250
) -( .lOOJ.:: + ( 600)2 

- 20( .250 )3-( .100)3 • 

- 1N'ith the result that the gradient at the mid-point may be 

determined by use of this coil combination, independent of 

the second derivative of the flux-density. 

2. TUTn-Densi ty: 

As in section II.2, we consider the use of enameled 

#40 wire and assign the following numbers of turns to the 

coils: 

_ o.024 x o.~ _ 
540

., 
Dipole coil: N - 0.80 (0.0035 ) - , 

One Member of Quadrupole Fair: 

N = O.SO 0.150 x 0.160 ; 1560 
(0.0035)2 

(i.e., 780 turns each on upper and on lower windings). 

3. Performance: 

The properties and expected performance of these coils 

are given in Table II below: 
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TABlE II 

EXPECTED CHARACTERISTICS AND FERFORMA.NCE 

OF COMBINED AXIALLY-SYMMETRIC COILS 

Total 
Resistance, R 

A pproxims. te 
Inductance , L 

Resp:mse in 
Static Field* 

Response in 
Dynamic Field 

Total 
Resistance, R 

Approximate 
Inductance, 
L = LrfLrr+2M 

Dipole Coils 

i 2L540(2nx0.198)(0.0874l7 
j = 117 ohms 

I 2[7.o5(540)
2

(0.396x2.54l7·1o-
9 

! = 4.13 x lo-3 henry 

I 
I 
I 

I 
I 
I 
I 

2 (1r/3) ( 540) ( 0.1178)(2 .54)2x 20x 10-s 
= 0.172 x 10-3 volt-sec 

2(7T/3H540)(0.ll78).(2.54)2 ·lo4 x 10-8 

= 86 x 10-3 volts 

• Set of Quadrupole Pairs 

lOLl560(2rrxO.l75)(0.0874l7 
= 1500 ohms 

10 ~ 2LS.6(7so)
2

<o.350x2.s4.17·lo-9 } 
' + 2LQ.l2(78o)2(0.350x2.54l7·lo-9 

= 10L{9.31 + 0.13) ·lo-~7 = 94.4 x 10-3 

Response in I 
Static Field>} j 

5(7T/3)(1560)(0.0975)(2.54)2 (2 x1.2) 10-8 

= 0.124 x lo-3 volt sec , 

5 (1r/3 )(1560 )(o. 0975) (2 .54)2 (103 x 1.2) 10-8 Response in I Dynamic Field = 62 x 10-3 volts 

henry 

*For rotation of coils, in effect, through 90°, so that 

signals shall provide suitable initial values for the dynamic 

measurements. 
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4. Supplementary Comment: 

Although the coil systems described in furts II and III 

appear, at least at this stage, to meet the requirements set 

down for measurement of the synamic nngnet model,. other possi:.:. 

ble coil systems should perhaps be considered. It may prove 

of advantage (in the sense of reducing self-inductance, sim

plifying the construction, etc.) to relax or withdraw the re

quirement of suppressing the effect of the· higher order deriv_. 

atives to which the coils might respond, if a more compact 

arrangement can thereby be achieved. Evaluation of the rel

ative merits of such schemes would then require, of course, 

knowledge of the relative m~gnitudes of the various derivatives 

of the magnetic field. In addition, careful balancing elec

trically of the final coils would be required in order to in

sure that their performance is that expected theoretically. 

The use .of the axially-symmetric coils may be preferable to 

the use of long coils from the standpoint of distributed 

cap:tcity and, where applicable, the use of 11bank winding11 

would be desirable. 
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IV. MULTI-COIL LAMBDA-METER 

1. Purpose: 

The use of a two coil bridge circuit to measure 

has been proposed by Beth ffiAB-1 (June 30, 195417. 

desirable to modify this proposal in· such a way as to elimin-
. · d2H ~ d3H 

ate the dependence of · (H)Av on dy2 and of ~y on dyj 

and so provide a more precise measurement of ~ ~; • The 

following sections, although not necessarily employing opti

mum dimensions, incorporate a sugge~tion of Snyder lAGS lvhgnet 

Group meeting, July 9, 1954/ concerning the use of multiple 

coils and are intended to illustrate the possible use of the 

modified bridge method for measurement of l dH in a two-H dy 

dimensional magnetic field. 

2. Circuit: 

The proposed circuit is illustrated schematically 

below, each of the outside coils being connected (as shown) 

in opposition to their irmnediate neighbor. The condition of 

1-- 't>A 41 l ' 

R 

Servo-Fluxmeter 

f 
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balance for the bridge is that 

r 

R- r 

R + r 
== L¢A.(+bA) -¢A(-bAl7- L~ (+bB) -¢B(-bBV. 

£"0 A ( +bA)-+¢A ( -bA27 - L¢B (+bB) +¢B( -bBU 

). Basic Equations: 

We write the response of the individual coils as 

and 

d
2

H - - (at the center of the coil) and the coef-
== d·'2 o"' 

where IP' 

ficients b , c nay (for axially-symmetric coils) be identi-

fied with the coefficients p1 , p
3 

of LJL-1 (Part I): 

2 
b == 27T r 

0 
p
1 

/2 , 

We note, in addition, that the field in the median plane may 

be expanded 

+ •• •.' 

H" + H (3) + 
0 y •••• 
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The condition of balance for the bridge hence becomes 

R - r 

R + r 

It is seen, therefore, that it is desirable to arrange the 

constants of the coils so that 

whereupon 

!L::...r. 
R + r 

and 

, 

as is desired for a measurement of the relative gradient 

at a point. 

4. Num&·dcal Example: 

We exhibit here the dimensions of a set of coils, all 

of the same turn-density W', meeting the conditions of sec-

tion 3. Scaling of the dL1ensions would, of course, be per-

missible but no claim is laid to the relative dimensions be-

ing optimum in every respect .. 

We select 

and 

bA = 0.500 11 

bB = 1.250" 
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We then take ffirg. IIY 
For Coil "A": 

a = 0~ 81011 

1 

a
2 

= 0.90011 

~ = 0 

x = o.o80 11 

2 

(~x = 0.08011 ) ; 

-16-

For Coil "B": 

a = ,0.10011 

1. .. 

a2. =, o. 50011 

~ = 0.448" 

~ = 0.4~n 

(c.x = 0.039 11 
) 

The coil constants accordingly become (for W1 expressed in 

turns/inch 
2

) 

r 2p, (A) (n.:?3 - a1
3

) (6 x) 
b = 2 .... _o_::__.___ = 2rr -- ~ N" A II 2 ) 

= 2rr(2.54)2 Q..J..27S~9:'::0.0SQ N" = 2rr(2.54)2Lo.00525Q7N" cm2, 

. 2 2 
~ = 2rr(2.54)2 0.124 ~ 0.039 W' = 2rr(2.54) [c).0016lg7Nn em, 

r 0 4P3 (A) _ §o(~)~(n23~a.t3)-9(a25 -al5l7< .t. x) Nil 
eA = - 27f 24 - - 2

7f )60 
2 . 

= -2.rr( 2 •54 )2 §o(o.o8o) (O.l97559)-9(0.24181227(o.o8o) W' 

= 2rr(2.54)
2 

l6.00047i} N11 

360 

2 2 
em in (for use with H" ex

presses in gauss/in
2

), 

- . 2 2 3 3 . 5 5 7 . . 
_ L20(x2+x1x2+x1 )(a2-a1 ) - 9(o.2~'l11 (Ax) 

1 
CB - - 27f 360 . w 

. 2 ffio<o.6s6os) <0.124) - 9(o.o3124l7<o.o39) 
= -21f(2. 54) 360 Nl' 

2 - r-.7 2 2 = -2rr(2.54) L0.000145~ N" em in • 
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These.values will be seen to satisfy reasonably well the 

conditions of section 3, ·so that 

R- r 
R + r 

(1) 
(0.005250)(0.500)- (0.00~612)(1.250) ~ 

0.005250 - 0.001612 H 
. (1) 0 

= 0.0026gS - O.OQgg~~ ~ 
0.00525J - 0.001612 H0 

(1) 
= 0.000610 Ho = O.l6S 

0.003638 -~ 
0 

H (1) 
_o __ 

Ho 

the relative graoient 
(1 \ 

H 
1
/H being expressed in 

0 0 

reciprocal ~nches. lf.rpically H
0 
(l) /R

0 
for a full-scale 

1 -1 
model of an AG3 ms.gnet-sector wculd ·ne lO in so 

R-=-= : 0.0168 or ~ ; 0.9G7 R in this example~? 
R + r 

V. . EVALUAT IO~ OF POSSIBlE ERROR FROM INDUCTIVE EFFEGrS 

In the dynamic field measurements it is planned* first 

~~ £f. J, P. ~.lmer's p~esent~tion, ADD meeting, July 14, 1954. 

to combine the sirrn~ls from the gr~dient coils and field coils 

in such a way that these sign'lls nec:..rly bnJ.ance, then to intro-

duce the resultant signal to a high-performance integrator, 

and finally to display the output on an oscilloscope against 

a raster of radial lines representing variations of n in 

parts per thousand. Due to the time-varying character of the 

measurement, it is important that the signals from the two 
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sets of coils shall at every instant buck one another sub-

stantially as with steady state E~W's, regardless of indue-

tive or capacitative effects. 

In this section we shall undertake to analysize the 

role played by inductive effects alone and to estimate the 

mgnitude of the errors which could thereby arise through 

the use of coil systems with characteristics similar to those 

described in Parts II and III of the present report. E3am-

ination of the influence of capacitative effects is deferred 

until later; it appears from the present analysis, however, 

that the inductive effects (which will predominate) should 

alone not introduce a serious error, despite the fairly high 

values for the inductance of small coils constructed so as 

tc provide the desired induced signal strengths. 

Field-Coil Gradient-Pair Integrator-Ampl. Oscilloscope 

Rl,Ll 

-~o~ 
l~. ~l ~l\. 
R R_- ~~ (--::::.' 

a t -r, 'Q - I . .1 ~t-+--) ___, 
.. ?. l / L -

~----------------------- Sweep-
Signal 

(proportional 
to field-strength) 
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The basic loop equations for the circuit indicated are: 

Rather than solve these ~quations explicitly for ~ as 

a function of time, we find it convenient first to integrate 

r the equations and to solve for J 12 dt. The measured signal 

is proportional to 

RLJi2 dt = % { (~ -tf\p) fa2 dt - ~el dt + [I), 11 \ -{11_ +Rp)L2~) } , 

where D == (R1 +Rp){R2 +11. +~) - Rb 
2 

Lit will be found that the terms contained within the square 

brackets constitute the source of the error under investigation~ 

3. Interm-etation of M:ln.3ured §~: 

We note that the signals from the field and gradient 

coils may be written 

the prime disignating space differentiation. In addition 
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We now introduce the quantity 

which will be seen to represent the value of n ideally 

giving zero output signal for the potentiometer setting 

adopted; the measured signal then may be written 

If this output signal is interpreted in terms of an 

apparent napp as 

RL j i 2 dt = ~L {ca1 + RP)k2 (napp -nd) B} we have 

n - n = app 

%pp - n ._ 

~ 

RbLl i 1 - (R1 + Rp) 1:212 
(E1 + Rp) ~ B - or 

representing the error or relative error which inductive 

effects introduce into the measurement of n • 

4. Estimation of ~ Error: 

It is of interest to estimate the error contributions 

represented by the terms, involving i 1 and i 2 , in the 

last equation of the preceding section. By reference to the 

original circuit, one may readily set an upper:limit on 11 : 
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so 

The maximum value of . i 2 is considerably limited by the 

bucking feature of the potentiometer connection: 

i2 ~ 
(Rl + :EP12 )e2 . - Rbel 

D 

= ~ {(Rl + Rp)k:l [ d (nB )/dt - nd (dB/d t >J} 

l<J.Rb e(nB)/dt _ dB] = dt . D nd 

kJ.Rb [ dn/dt B n dB} 
= + (-- 1) dt . ' 

D ~ nd 

whereupon 

5. Numerical Values: 

·We consider that in a typical series of measurements 

we may establish the definite limits 

dn(dt < 500 X' 10-2 = 5 ' nd 

..!L - 1 < 10-
2 

' and 
no. 

dB/dt 104 
= 500 • 

B <20 
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We further consider circuit parameters, similar to the 

estimated values of Part III, as follows: 

12 ~ 0.094 henry, 

R1 = 117 ohms, R2 = 1500 ohms, 

Ra = 750 ohms, ~ = 2250 ohms, Rp = 3000 ohms, ~ = 5000 ohms. 

With these values, the relative error from the effects of 

self-inductance would not exceed the following estimate: 

llapp - n 4 13 x 10-3 0 094 
~ < · 3u ~ x 500 + 1500 + 5ooo + 626 (5 + 5) 

< 0.6625 X 10-3 + 0.1319 X 10-3 

-3 < 0.8 x 10 , or within one-tenth of one percent. 

Because of possible ringing effects, due to the presence of 

such inherent capacitances as are considered in Part VI, the 

currents i 1 and 12 may have instantaneous values greater 

than the foregoing estimates and, over a short time interval, 

the relative error of the apparent n might appear larger than 

estimated here. 
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VI. ESTIMATE OF POSSIBLE ERRORS FROM COJL CAPACITANCE 

As pointed out earlier, some error will be introduced 

in the dynamic field measurements by the self-capacitance of 

the several search o~ils. It is the purpose of the present 

sections to include this phenomenon in attempting to evalu-

ate the errors of the measurement procedure. 

The capacitative effects will, as is customary, be 

considered representable by an equivalent shunt capacitance 

across the combined inductance and resistance of the coil 

system. It is difficult accurately to estimate in advance 

the capacitance to be associated in this way with multi-layer 

coils such as are proposed here, although what may be regar-

ded as an adequate formula for single-layer coils has been 

given by Palermo.* 

* A. J. Pal Pr I R E 22 897 (Jul 1934) ermo, oc. • • • __ , y, • The re-

sult of this work has been quoted by J. Ha.k (.Ql2. cit.) and 

has been displayed in the for~ of an alignment chart by 

P. H. l-'fassant in "Electronics for Engineers 11 (J. M3.rkus and 

Vin Zeluff, Eds.), McGraw-Hill, Inc., N.Y., 1945. 

The system of axially-symmetric flux-coils suggested 

in Part III may be expected to have a somewhat less prominent 

capacitance than would long coils of otherwise similar perform-

ance, due to the smaller E.M.F. per turn and the distributed 
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character of the winding for the axial coils. Although the 

best estimates would undoubtedly result from measurements 

made on the coils themselves, we believe that the capacitance 

to be associated with the gradient coil system may be pri-

marily that d~e to stray- or lead-capacity, while that.for 

the field coils may run as high es a milli-microfarad. We 

propose, accordingly, to.take tho shunt capacity of the 

field-coil system as 

and that of the gradient coils as 

for which the nominal resonant frequencies would be,respectively, 

f
2 

= 160 KC • 

) .. 

' :"' 
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We w~ite the basic loop equations for the equivalent 

circuit illustrated a.s 

1
1 

(di:;_/dt) + (l/C1 )[fjl dt -fi
3 

dtJ + R1 i1 = e1 

L)di2/dt) + (!./C2 )[ji2 dt -fi4dtJ 

(l/C1 ) l Ji3 dt - fi1 dt J + i 3:tp + = 0 

By use of the last two equatic~s to elLminate the capacitance 

terms, the first two equs.tions ma.y be written 

(~+RP)J:.3dt +R.;)J\_dt =je1dt- L1 i1 - ~Ju1_-i3 )dt 
Rbji

3
dt + (R2 +R1 +Rbji,~ dt =je2dt - 1212 - R2J(i2-i4 )dt. 

The measured output will then be proportional to 

Pr, r r · r 
~';-l (~1 +3J:)je2 dt - R.d e1 dt 

;; 

+ [ RbLl ~ - (11_ + Rp)L2i 2 + RbRlf( i 1- i3 )dt 

- (IS_ +Rp)R2J(i2- i4 )d~}. 

3. Interpretation of thg Error: 

By t.he same methods as employed in Section V.), we find 
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where v1 , V 2 represent the potentials across the capacitors 

cl, c2 . 

4. Estimation Q! ~Error: 

The terms which explicitly involve L
1 

and L
2 

in the 

expression for error given in section 3 have been estimated 

in Part V it remains therefore to estimate the magnitudes 

of the terms which depend upon cl and c2 • 

We suppose that V1 < 2 e1 , so that for the first 

term of interest 

We similarly suppose that V 2 < 2 e2 , so that 

Rl + RP, R2C2V2 
~ k1 B 

5. Numerical Values: 

Considering, as stated in section 1, that 

"' 960 ~llfds, 

and the remaining constants are as stated in section V.5, we 
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find that the foregoing oo.ntributions to the relo:t..ivt: m-ror 

of the n-measurement are: 

From cl: 
-9 3 

2 X 117 X 0.96 X 10 X 500 = 0.112 X 1o- and 

From C
2

: 2 X 1500 X 10.5 X 10-l2 X 500 = 0.016 X 10-) • 

It thus appears that if the capacitative effects have not been 

gross~ underestimated the resultant errors ~ill be negligible 

in gradient measurements of the type proposed • 

It is hoped that more definitive information concerning 

the performance and errors of a coil system such as herein 

described will result from experimental tests no~ being under-

taken in this Laboratory. 

jl 
7/20/54 

Distribution 
.ADD-Bl 
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INTRODUCTION 

- 2 -

ON A BOUNDARY CONDITION 

ESCAR - 28 
INTERIM REPORT 

APPLICABLE TO MAGNETOSTATIC RELAXATION COMPUTATIONS* 

L. Jackson Laslett 

With the exception of methods that solve directly for the magnetization. 1 

magnetostatic problems that involve a prescribed current distribution and ferro

magnetic material customarily are solved by a relaxation procedure that ·employs 
I 

as the working variable a potential function (scalar, vector -- or, selectively, 

a potential of one type in some regions and a potential of the other type in the 

remaining regions) from which the field components can be derived. In such cases 

it commonly is necessary to provide an "exterior" region -- that in principle 

should extend to infinity -- within which the relaxation evaluations of potential 

must be performed, although the character of the field in such regions may be of 

little or no interest. 

Such exterior regions frequently (and perhaps usually) are processed on a 

coarse mesh -- which, although sometimes inconvenient, is both understandable 

and reasonable. A judgment then must be made whether to apply a Dirichlet or a 

Neumann type of boundary condition at the outer edge of this exterior region 

1 
E.g. • programs of the GFUN family, developed at the Rutherford Laboratory of the 

U.K. Atomic Energy Authority. 

* Work assisted by the U.S. Energy Research and Development Administration. 
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(or possibly a Dirichlet condition along a portion of this edge and a Neumann 

condition along the remainder). In any case, however, this technique must be 

recognized as only approximate and as one that introduces into the problem a 

substantial number of additional mesh points on which the potential function must 

be processed by iteration of the relaxation algorithm. 

It accordingly appears desirable to devise a boundary condition that could 

be applied on a boundary closely surrounding the region of physical significance 

and that would correctly describe the fact that no "sources" (current or magnet

ization) are present outside this boundary. In the following Section we propose 

a boundary condition of this type, that can be applied to process the values of 

potential on this boundary, while values in the interior are processed by a 

standard relaxation algorithm. In a subsequent Section we report briefly on 

tests that have been performed to check the performance of this proposed procedure 

in various two-dimensional situations. It will be immediately evident that the 

proposed procedure has an obvious analogue for application to electrostatic 

problems in which an exterior region can be taken to be free of charges2 and of 

polarized matter. 

2 The analogy to the magnetostatic problem will be the most illiTlediate if the 

total charge in the interior is zero -- since then, so to speak, there is no 

"cr~rge at infinity" and the tyoes of fun,tion a1missible for expressing 

the potential function in the exterior region will be similar in the electro

static and magnetostatic cases. 
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DERIVATION OF THE BOUNDARY CONDITION 

If U and V are harmonic functions of position (v2u = 0, v2v = 0) that tend 

toward zero sufficiently rapidly as the field point approaches infinity and if 

n denotes an outward-drawn unit normal vector directed into the exterior source-

free region from a closed inner boundary to this region, 

then by application of Green's theorem one may write 

I (V au - u av) ds = o an an 
(_

-···--- n -,_z. Source Free 
. \"Exterior" Region 

·-~~) 
in which the integration is taken over the boundary. 

In the work to follow we shall let V represent the potential function (such 

as the vector potential of a two-dimensional magnetostatic problem), for which 

v2v = 0 in the source-free exterior region, and we shall denote this function by 

A in the remainder of this work. 

In the case of a two-dimensional situation in which the inner boundary to 

the exterior region is taken to be a circle, a natural choice for U would be any 

of the harmonic functions 

-m r cos me , r-m sin me (with m positive), 

plane polar coordinates being employed. In this case the unit normal is 

simply n = er and the absence of exterior sources requires that 

i (rnA + a ~~ ) cos mo de = 0 

and 

, (rnA + a ~~ ) sin me de = 0 
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for every (positive} m,. with~ denoting the radius of the boundary circle. 

Conditions of similar form can be obtained for two-dimensional situations 

in which one wishes to employ a different type of boundary curve -- that may 

more suitably enclose the region of physical interest. Such curves, and functions 

U, in fact may be conveniently suggested through the use of conformal transfor

mations. Thus the transformation 

For which 

x + iy = c Cosh (u + iv}, 

x = c Cosh u cos v} 

y = c Sinh u sin v , 

results in the curves of constant u forming a set of (confocal) ellipses, concen-

tric with the origin, whose major semi-axes are c Cosh u (coincident with the x

axis) and c Sinh u (coincident with they-axis). The variable v is a distorted 

analogue to the polar coordinate angle 0 (tane = Tanh u tan v) and numerically 

covers the same range as e in transversing successive quadrants. Selection of 

(harmonic} functions U of the form 

-mu e cos mv, e-mu sin mv (with m positive} 

then leads to the condition for no external sources to be present to be expres-

sible as 

.:f(mA + Q-~-) cos mv dv = 0 
(lU 

and 

§(rnA+ a_f}_ ) sin mv dv = o, au 
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tor every positive m, with the integration taken along a curve of constant u. 

As another example, a quartic boundary curve may be formed through use of 

the transformation 3 

(x + iy) 2 = c2 Cosh (u + iv), 

leading to curves of constant u that in Cartesian form are given by 

r ~2 - i r + [ 2 2 xy ] 
2 

= 1 
l~ Cosh u] c Sinh u 

Again with the functions 

-mu e cos mv and e-mu sin mv 

chosen for U, one obtains conditions of the same form as written in the preceding 

paragraph. 

3 The transformation (x + iy) 2 = / Cosh (u + iv) leads to the explicit expres-

sions 

j lcosh 2 u - sin 2 v + Cosh u cos v 
x=c ""2 

j I Cosh2 u - sinTV- Cosh u cos v 
y = c 2 

for the Cartesian coordinates. 1T An octant is covered by 0 < v < 2 , 

with x = y when v 1T = 2• 
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For three-dimensional problems employing a scalar potential function V in 

the region near (and external to) a spherical boundary, the.suitable set of 

harmonic functions U would appear to be the spherical-hannonics 

-(m+l) (.Q.) r P (cos e) m 

and the integration would be over the surface of this spherical boundary. In. 

order that the conditions cited to describe the absence of external sources be 

not only necessary but also sufficient, it would appear that in any of the cases 

one merely must specify that the functions U constitute a complete set of har,.. 

monic functions suitable for describing the potential function in the exterior 

region. In many applications certain synnetry properties of the problem under 

consideration will be recognized in formulation of the relaxation procedure and 

in such cases only functions of U thatpossess the appropriate symmetry need be 

explicitly considered. 
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APPLICATION 

The detailed application of the principle ~tated to relaxation procedures 

on a finite mesh will, as has been noted, be influenced by the symmetry of the 

problems, and some spe'Cific choices with respect to procedure can result in some 

simplifications. We may best illustrate these points that arise in practice by 

considering a means of apply1ng the foregoing principle to a two-dimensional 

situation in which the vector potential A will have the quadrant symmetry charac-

teristic of a dipole magnet. The area of study in this case thus may be con-

fined to the first quadrant, with A to be maintained at a value zero at all 

points on the y-axis and the derivative aA/ay to vanish at all points on the x-

axis. 

In the situation just mentioned, values of A would be sought by a relaxation 

process applied on a mesh that should be terminated on a boundary arc, external 

to the sources and magnetic material present, that is of some convenient form 

such as a quarter-circle or quarter-ellipse. "Active" mesh points, on which the 

values of the vector potential will be subject to repeated revision, will be 

located on this arc. If N such points are present, it would be reasonable to 

employ only N suitable functions U in formulating the condition that no external 

sources are present and to construct a suitable finite-difference algorithm to 

describe the integral required for each of these functions. The values of 

aU/an that are required to construct the integrands similarly would be obtained 

from some finite difference algorithm that employs points on one or more nested 

arcs (also external to all sources) irrunediately inside the boundary, and it 
I 

clearly would be convenient for such arcs to be related in a simple geometrical 

manner to the outer boundary arc -- thus, in the first examples cited, the arcs 

to be employed might constitute portions of concentric circles or of confocal 
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ellipses with a separation Ar or Au equal to a constant h. It seems indeed 

highly approporiate to employ just two such nested arcs and to perform the 

integration along a similar arc midway between them. 

The integration algorithm and some of the subsequent work will be material

ly simplified if the points on the outer arc (and the points at which values 

of the integrand are estimated) are regularly spaced -- specifically, in these 

examples, taking e or vas given by (2k- 1) {N , with k = 1,2, ... N. Because 

of the quadrant symmetry assumed for the present discussion, appropriate forms 

for the function U would be 

r-(Zm-l) cos (2m-1)8 or 

e-(Zm-l)u cos (2m-l)v, 

with m = 1,2, ... N. The conditions to be applied then may be written 

or 

N 
l: 

k=l 
[ (2m-l)A + r ~'i] cos ((2m-1)(2k-l) ~}= 0 ar 4N 

r=a-h/2 
8= ( 2 k- l ) 4nN 

3
1 

[(2m-l)A + ~~ 1 cos ((2m-1)(2k-l) ;fu); 0 

u:.:u - h/2 . l 
v= (2k-1) _n.: __ 

2N 
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for the respective cases. 

Both the function and the derivdtive can be estimated on the midway 

arc (r = a - h/2 or u = u1 - h/2) by use of values of A on the two nested arcs 

mentioned earlier. Thus, if there an~ N such po·ints on eac!l_ of these arcs 

(disposed in the regular manner su~yested above), one can· simply write 

and, for the derivative, 

or 

(b) (i) -- where the superscripts and refer respectively to the outer 

(boundary) arc and to the neighboring nested arc inside it. The conditions to 

be applied then becor1e: 

or 

~ {[ _1_ + (m ~ l)]A(b)- [ 1 · (m- :
2
}-)] Ak(i)} cos ·((2m-1)(2k-l) 

4
1rr'"') = 0 

k= 1 h . 2 k h - - 1 

for the respective cases. 

The equations just written can be solved for the A~b), with the result 

a 
T1- - m _ {, ..., 1 ). ( ~ k 1 ) n ) . . ( (. ,, 1- ) ( ') " ~ ) ·1 i ) J A. ( i ) ·a····----.----- cos •Liil-· i.- -···· cos • {Ill- · <x-·1 --.--. ' 4N . · - ' 4N. • 'l ti + (111- l ) 

(for circular arcs), 

or 
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1: 

Q,=l 

tl 
ft r 

m=l 

- 11 -

k - ( m - ~) ( ) I -11 1 1· ( i ) 
-,-----·--)'- cos (2ru-1)(2k-1) dh cos l(2m-1)(2£-1) :fN-1 IAQ, 
- + (m - -) h 2 

(for elliptical arcs). 

Introducing a matrix C, evaluated at the start of a run, with elements 

a 
2Nh-m ) ) 

Dk,£ = -N J: cos [(2m-1)(2k-1) ~-- cos ((2m-1)(2£-l) _"!_ 
m"' 1 ~ + ( rn- 1 ) 4N 4N 

h 

or 
fl 

~· - 2 [ 
l--'k,£ - rr m"'l 

1 1 h - (m - 2) 
~----1- cos k + (m - 2) 

((2m-l) (2k-l) 4~h-) cos ( (2rn-l) {2£-l)) 4~r) , 

then the result for the A~b) is very simply expressed as 

The result last given can be used (possibly with an under-relaxation 

or over-relaxation factor) to revise from time to time the values of the vector 

potential on the outer (boundary) arc. The conventional relaxation procedure 

will be used to process values at the remaining (interior) points, and in the 

course of this process sometimes will make use of the values residing at the 

points on the boundary. 
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Modification for a TRIM-type mes_l~: In constructing a tri~~~!: mesh, of the 

type used in TRIM4 and similar· pr·wlt'dlW>, it ap!)arently is conven·ient to f.•mploy 

only N-2 mesh points on the inner arc immediately adjacent to the outer (boundary) 

arc if N points are present on the latter. As we indicate below for circular 

arcs, in the case with quadrupole symmetry with points at 8 = 8 = (2k-l) ~ 
k 4N 

on the outer arc, this special feature is found to introduce no serious compu-

tat ions. 

Again we may apply the condition expressing the· absence of all external 

sources on an arc of radius a - ~and express the integral condition as a sum 

over values of A and its radial derivative at points for which 8 = ek. A 

tr'igonometric development of the vector potential A(i) on the arc t' = a-h 

can be conveniently written in terms of values A~i) at 0 = A.Q, == (29,-1) 4 (tl~2 ) , 

with R- = 1, 2, ... U-2: 

2 N-2 
= r1-2 E 

s=l 
L: A cos (2s-l)(U-l) --ri~--rJT cos ((2s-l)e). fl-2 ( i) ( ) 

R-=l R- 4\ n-2, 

At polar angles identical 'to the ok' then, one may make use of the 

interpolated values 

(i) 2 N-2 
A = -- L: 

ek t4-2 s=l 

In these terms, the condition 

4 
See Jo~n S. Colon·ias, "Par~;icle !ic:Plerator Design: Compute1· Programs", 
Academ~c press, l~ew York, 1074; o;-- ~;ee the original paper A.M. Winslow, 
urJ~mencal Solut10n of the~ (/ua';ilir:i~,'lr Poisson Equation in a lion-uniform 
Tnangular Mesh••, ,.l. Cornr)llt. Pt:/'. ~It}() 17? (l%G). 
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k~l [ (2m-1 )A+r ~~ ta _ h cos ( (2m-1 )(2k-1) ]N) = 0 
2 

u=(2k-l) iN (ra=l,2, ... ) 

becomes 

or 

= 

N la l (b) I ·, 
l: j··-+ (m-l)i Ak cos l(2m-1)(2k-l) "4Njl 

k=l L h J \ 

x cos((2m-1)(2k-1) 4~)= 0, 

N _a J 2 r~-2 r~-2 (.) ( } ( ·n 
l: lh- m N.:.2- r. >~ A£ 1 cos (?s-1)(211,-l) .fOJ~-2) cos (2s-1)(2k-l) 4N 

k=l . · s=l £=1 

( 

TI i 
x cos ( 2m-l ) ( 2k-l) 4U ) • 

The summation over k may be explicitly performed in the expression on the· 

right-hand side of this last equation, with the result: 

N [ a -~ (b) { ·11 ) 
k~l K + (m-l)J Ak cos (2m-1)(2k-l) ~~-

r~-2 

r ( ~ - rn) A~ i) cos 
Q,=l 

(?Pl--1)(2Q.-l) ·4rr/.:.~2T)· or zero if m .> 11-2. 
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Finally, as a solution to this last equation, we wfite 

= U~2 [-2- U~2 _ __h-- ~--
1=1 N- 2 m=l ~ + (m-1) 

h 

--i-~·. 

where 
a 
11--m 

I TT ( TT \; (i 1 

cos \ ( 2m-1} ( 2k--l) llrr) cos ( 2m-l ) ( 2£-1) 4{lr:2f )_] A1 J 

N-2 ~'· ( i ) 
E '· A 

~- ~ .\!. 
1= 1 k. Q, 

c - 2 
k,9, - N-2 

N-2 
~1 --~---·--·--- cos((2m-1)(2k-l) t[N) cos((2rn-1)(2£-1} 4T;_ 2r). 

~ + (rn-1) 

[This result is seen to be closely similar to that obtained earlier for the case of 

nested arcs containing an equal number of mesh points.] 

Likewise, for revision of values of vector potential that may be required at 

r= a, 8=0, ~one may emp 1 oy 

(b) 
Ae=O = 

5 On a triangular mesh with aA;an = 0 at O= 0, values of A at r = a, 8 = 0 may 

be required for relaxation of the potential values at a smaller radius (e.g., at 

r = a - h). The relation proposed in the text ~or A~~~ constitutes, in effect,. 

the extension to 0 = 0 (k = l/2) of the tdi]Onometric expression given for the 

A~b)(L"' 1, ?, . ... N'. 
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E = 2 
( 0) , ~ "f:f-=-2 

N-2 
1.: 

m=l 
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a -- m h cos((2m-1)(22- 1) 4TN~l-). 
(m-1 ) ~- ·r 

h 

Results analogous to those just cited are clearly derivable for relaxation 

of a problem with quadrant sy!Jinetry on a triangular mesh with elliptical boundary 

arcs -- namely, with A(b) and A(i) respectively at u = u or u - h and at 
1 1 

v = (2k-1) ;N (k = 1,2,N) or (2£- 1) 41~_ 2) (£ = 1, 2, ... N-2), 

with 

and 

with 

G _ 2 
k,£ - N-2 

N-2 
E 

m=l 

A (b) = 
k 

N-2 

E 
£=1 

1 h- (m-1/2) rr rr 

1 cos((2m-1)(2k-l) 4· N) cos(2m-1)(2£-l) 4(N-2} 
- + (m-1/2) 
h 

(b) N-2 c A(i) A = ~- c v=O L. \'o),£ ~ 
£=1 

1 
,:::' , 2 N- 2 h - ( m- l/2) ( ( 2 1 ) ( 2£ 1 ) rr ) 
'-..J(o) ,n = N-2- E -,- - cos m- - 4(N-2) . 

}(, m= l -- + ( m- 1 I 2 ) 
h 
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Cases with Half-Plane Symmetry 

In a number of cases of practical interest (e.g., in the design of a combined

function magnet that serves both to bend and to focus or defocus particle traject

ories) a half-plane symmetry may be present that can be exploited to advantage. 

Typically, if a vector potential is employed in such cases, the vector potential for 

a two-dimensional problem will be even about a line that we may take to be the 

x-axis (e = O,n), and aA/an will be zero at all points on this line. To obtain a 

mathematically well-posed problem, whose solution is to be sought by relaxation 

methods, it will be desirable in such cases also to specify the value of the poten

tial itself at some point of the relaxation mesh. 

Given a circular or elliptical arc outside of which no sources are present, one 

then can assert under the circumstances just mentioned, that 6 

JTI aA 
[(m-l)A + r a-] cos (m-1)8 dO= 0 

o r 

or Jrn [(m-l)A +~~]cos (m-l)v dv = 0 
0 

on such an arc, for all m ~ 1. 

6 It will be recognized that we have here adopted for the functions U {first intro

duced in our application of Green's theorem) functions of appropriate symmetry 

of the form 
c c2 
- 1 cos e, 2 e, co' r r:z cos ... 

or co' c1 e -u cos v' 
-2u c2e cos 2v, 

that would be appropriate for development of the potential in the exterior region, 

while excluding such functions as 
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t n r, r cos 8 , · r2 cos 2 8, ... 

or 
u, eU cos v, e2u cos 2v, ... 

With N points on an outer arc and M (e.g., N-2) points on an adjacent inner 

arc, at 

8 = ( 2 k- l) ;N ( k = 1, 2 , ... N) and ( 2£- l) 2~ ( t = 1 , 2 , ... ~1) 

or 
n · n 

v = (2k-l) ZN (k = 1,2, ... N) and (2£-l) ZM (£ = 1,2, ... M) 

for a half circle or half ellipse, we accordingly write 

N 
a A ( 2k-l) ...'!_) 0 E [(m-l)A + r 'dr] cos({m-1) = 

k=l 2N 
h r = a - 2 

8=(2k-l) n 
2N or 

N 
[( m- 1 )A + ~~ ] E cos ((m-1)(2k-l) ~) = 0 

k=l h u = ul - 2 
v = (2k-l ) ;N 

form= 1, 2, ... 

Then, by algebraic work entirely similar to that indicated previously, we obtain 

where 

M 
)~ 

£=1 

2~- m 
f h cos ((m-1)(2k-l) 2~) cos((m-1)(2£-1) ;M) 
m 2~ + (m-2) 

h 
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k,~ M m=l 
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- 2 (m-1) 
fm ~-- cos ((m-1)(2k-l) 2TIN) cos((2m-1)(2~-1) ;M), 

£ + (m-2) 
h 

where fm = 0.5 for m=l and fm = 1.0 for m>l. 

(b) - - - - 1 Values of A at e=O and B=n could be obtained, if required, by respective y 

setting k = l/2 or k = N+l/2 into these formulas. 
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Absence of Symmetry 

In a two-dimensional problem in which no symmetry is present to be exploited, 

it would be appropriate to employ both cosine and sine functions in expressing the 

condition that no external sources are present beyond the boundary curves. We 

might employ p = 2N points on the outermost curve and Q (taken to be even) points on 

an adjacent inner curve, taking (for a circular or elliptical boundary, respectively) 

mesh points with coordinates 

r =a, ek = (2k-l)n/p; r = a-h, e£ = (2£-l)n/Q 

or 
u = u1, vk = (2k-l)n/p; u = u1 - h, v£ = (2£-l}n/Q. 

The condition of no external sources would then be expressed, in these respec-

tive cases, as 

or 

p 
E [(m-l)A + r ~Ar] cos (m-l)ok = 0 

k=l 0 

r = a-h/2 
e = o k 

and 

p 
l: 

m=l 
[ A aA J . 0 m + r ar s1n mek = 

r = a-h/2 

e = ek 

p 

E [(m- 1 )A + ~~ ] cos (m-1} v k = 0 
k = 1 u = u 1 - h/2 
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and 

for positive values of m. 

p 
E 

rn=l 

- 20 -

[rnA + aA ] sin m vk = 0 au 

As in the case of half-plane symmetry discussed previously, one again should 

also specify the value of~the potential itself at some point of the relaxation mesh. 

These specifications then lead (after some algebraic work of a character 

similar to that indicated previously) to a result of the form 

where Q/2 

ck,.ll. = Q}2 m~l 
T (c) 
m 

B {c) cos ((m-1)(2k-1} :!!.) cos((m-1)(2£-1) 1!_) p Q 
m 

T (s) J 
+ 

8

111 (sT sin (m(2k-l) *) sin(m(2.11.-l) ij J 
m 

with gm = 0.5 for m=l, gm = 1.0 for m>l, 

and, for a circular boundary 

T (c) = 2 ~- m 
m h 

while for an elliptical boundary 

T ( s) 
m 

2 =-- m 
h 

B (c) = 2 ~ + (m-2) 
m h 

B (s) = 2 ~ + (m-1) , 
m h 

B (c)=~+ (m-1) 
m h 

B (s)·= _g_ + m 
m h 
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Tests 

Several computational tests have been made of the principles discussed 

above, both with small special ,interactive programs executed through the LBL 

SESAME system and also by modification of the TRIM program for the CDC7600 

computer. The interactive programs all employed a two-dimensional polar

coordinate mesh with the same number of mesh points per angular interval at 

every radius, while TRIM employed the customary triangular mesh with the number 

of mesh points at the periphery decreasing by 2 as one moves inward from one 

arc to the next. In all the interactive runs and in some of the TRir1 runs 

the results obtained could be compared with known analytic results in order 

to verify that a good approximation was being obtained to the true solution. 7 

The tests with TRIM, which are continuing, so far have been confined to cases 

of quadrant symmetry. 

The early tests employed values of vector potential on three, rather than 

two, nested arcs (because of the choice of algorithm for estimating aA/an), 

but subsequently some of the work was repeated so as to involve values on only 

two such arcs in the manner outlined earlier in this report. In all cases 

convergent solutions appeared to represent good approximations to the correct 

solution of the problem under consideration. The use of potential values on 

two, rather than three, nested arcs appeared to lead to results of even some

what better accuracy and clearly represents a certain simplification. 

The cases for which interactive computational trials were made were of 

the following types: 

Quadrant symmetry, with circular boundary arcs, 

Half-Plane symmetry, with eliptical boundary arcs. 

Some attention was devoted to examining empirically, for these cases, the 

7 r~one of the interactive computatio-ns involved the presence of magnetic material. 
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advantages, with respect to rate of convergence, of over-relaxation. 8 It 

appeared that (as expected) over-relaxation was distinctly helpful when 

applied to the conventional relaxation pr.ocedure for the potential in the 

interior, but that then it was desirable to confine the over-relaxation 

parameter used for adjustment to the boundary values A(b) to moderate values 

(for example, to 1.5, or possibly less). A satisfactory procedure that may 

warrant adoption accordingly is one in which a common value is employed for 

the over-relaxation parameter used in each of these operations, but the boundary 

values are revised only on every ot~er passage through the mesh . 

. As with any relaxation procedure, it is a delicate question how best 

to adj~st the over-relaxation parameter, and further examination should be 

given to the suitability of the automatic adjustment procedure (now frequently 

employed with TRIM) when the boundary values are processed in the manner 

suggested in this note. 

8 In all the work, relaxa~tion was· of the Liebmann type, wherein new values 
are stored (over-writing old values) immediately, and are subsequently used. 
whenever required. By an over-relaxation parameter (n) we mean the following: 

New Value= a· {Recommended Value)+ (1-a)·(Old Value). 

Over-relaxation then consists in the use of values of this parameter that are 
greater than unity. [In some runs, after the relaxation had been considered 
to have progressed sufficiently far toward convergence, a few .additi ona 1 
relaxation sweeps through the mesh would be made with the over·-relaxation para

meters set to unity.] 
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CAPTI ow; FOH Fl CIJI<[S 

Fig. 1 - Typical TRIM mesh for stuqying one quadrant of a proposed 

ESCAR dipole magnet. Note the extensive air region external to 

the iron. 

Fig. 2- TRIM mesh for the example of Fig. 1, after introduction of 

circular boundary arcs (external to the iron) whereon one applies 

the boundary conditions presented in the text. 

Fig. 3- An example employing a "window-frame" current distribution, with 
' quadrant syllllletry, with no magnetic materia 1 present -- so that the 

correct vector potential can be~ calculated analyticany for test 

purposes. Circular bound~1ry arcs, clo':.ely surr·oundin~ this cunent 

distribution, are shown wtwr·eon one dpplies the bounditry conditions 

presented in the text. In this example the inner half-width and 

half-height of the window frane were ·each taken to be 31.0 units and 

the external half-width and half-height to be 41.0 units. 

Fig. 4- Detail of the,warm-iron dipole-magnet desit]n used to obtain tht~ 

data recorded in Table II. 
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TABLE I 

Comparison of Numerical and Analytic Results 

for the Problem illustrated in Fig. 3 

X y A, by relaxation A 
' analytic 

10. o. 249.7 250.2 
20. o. 493.1 493.9 
30. o. 730.6 731.6 
61.98276 0. 625.9 626.9 
61.25426 9.47511 6?.5.1 626.1 
58.91443 19.26013 622.2 622.9 
53.95623 30.50553 612.6 613.1 
43.828/+3 43.82843 561.7 562.1 
30.50553 53.95623 4u5.G 404.1 
19.26013 58.91443 257.3 256.1 
9.47511 61.?.5426 127.2 126.1 

5. 5. 125.9 126.1 

20. 20. 511.8 513.2-

25. 25. 631.5 633.2 

30. 30. 727.3 729.1 
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TABLE I I --

Comparison of Values for Vector Potential 

Obtained with conventional TRIM and modified TRIM for the 
dipole magnet of Figure 4. 

X y Conventional TRIM* 

10 0. 456684 
22.91 0. 401632 

41.52 0. 7113 
41.52 6.478 6381 
41.52 29.51 2515 
30.504 29.51 2631.5 
20.336 29.5l 3920 
10.168 29.51 3097 
0.847 29.51 218 

* A = 0 on outer boundary. 
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r.tldi fi ed TRIM 

456756 
401841 

8290 
7574 
3484 
3254.3 
4360 
3332 
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Field of a Linear Electrostatic Multipole 
L. ]ACKSON LASLETT 

Department of Physics and Inslilule for Alomic Research, 
Iowa Slate CoUege, Ames, Iowa 

A RFKENI has recently emphasized the desirability of 
bringing the multipole concept emphatically to the 

attention of physics students. A specific examination of 
certain features of the field from a linear multipole may be 
of value, both in lending definiteness to the multipole 
picture and in affording an illustration of useful analytic 
techniques. 

The generation of multipole potentials by differentiation2 

is a method of general utility. Thus, in terms of polar 
coordinates (r,ll), the electrostatic potential of a linear 
2•-pole is immediately seen1 •2 to be proportional _to 

(a• I az•)(11r) = ( -l)•n !P .(~)lr•+I, 

where P.~) is the Legendre polynominal of order nand 
argument ~=cosO. The field-components accordingly are 
in the ratio 

(1) 

and the equation describing the lines of force is determined 
by the condition 

dr: rd8 =E,:E9. (2) 

With the field-components (1), the differential Eq. (2) 
may be integrated easily to obtain the explicit equation for 
a line of force 

f dr f (n+1)P. d -;-+ (l-~2)P.' ~=const. 

lnr- (1ln) ln[(1-~2)P.']=const. 
r• = C sin29P .'(cosO), (3) 

the second integral being evaluated by subtituting for P. 
the expression 

P. = [2~P •'- (1- ~2)P ."]l[n(n+ 1)] (4) 

obtained from Legendre's equation. 
A direct derivation of the foregoing equation for a line of 

force may be obtained alternatively by application of 
Gauss's law in a manner indicated by Smythe. For an 
array of collinear charges q, arranged along the polar axis, 
Smythea shows that the lines of force are described by the 
equation 

~q, costl, =const. (5) 

For a linear 2•-pole of infinitesimal spatial extent the lines 

3-1 

FIG. I. Direction of lines of force from linear multipoles: 
(a) dipole, (b) quadrupole, (c) octupole. 

of force would then be given by 

or 

(a•loz•) cosO=const. 
(o•laz•)(zlr) =const. 

n(a•-I I az•-I) (1 lr) +z(o•l az•) (1lr) =const. 
( -1)•-1 (n!/r•)P •-I + ( -1)•(n!zlr•+1)P • =const. 

(1lr•)[P._ 1 -~P.] =const. 
(1-~2)P •' lr• =const.,4 

r• = C sin211r;.' (cosO) 

as before [Eq. (3)]. Figure 1 illustrates the direction 
of lines of force from linear dipoles, quadrupoles, and 
octupoles. 

It may be worthwhile to point out, however, that certain 
characteristics of the lines of force can be found without 
use of the equations for these curves in their integrated 
form. Thus, from Eqs. (1) and (2), the line of force will be 
perpendicular to the radius vector at polar angles for which 

P. (cosll) =0. (6) 

The radius-of-curvature p of the line of force can be 
found by differentiation of the unit-tangent with respect 
to arc-length. In particular, at a point such that the line of 



2 NOTES AND DISCUSSION 

force is perpendicular to the radius vector 

(1/p)&,=d~,jds 
= (1/r)d&,fd8, (7) 

where ~~ and &, denote unit vectors which at every point 
are, respectively, tangent and normal to the curve. The 
unit-tangent may be expressed in terms of the field
components, E. and EB, and the associated unit vectors, 
~. and ~8, taken, respectively, in the directions of increas
ing rand 8: 

~,=[Erer+EB~B]/[E.t+EBt]t 
""[(n+ 1)P ,.e.+sinBP ,.'e9]/[ (n+ 1)t(P ,.)' 

+sinte(P ,.')t]t. (8) 

The differentiation indicated by Eq. (7) is performed by 
the use of Eq. (8), noting that de,/d8 =eB and de9/d8= -e •. 
Following the differentiation one makes use of Eq. (6) to 
obtain the simple result 

3-2 

(1/p)~ .. =- [(n+2)/r]e., (9) 
or 

p=r/(n+2) (10) 

for the radius of curvature at points where the line of force 
is perpendicular to the radius vector. 

In summary, the generation of multipole potentials by 
differentiation appears as a useful basic concept which 
affords a .means of readily obtaining a simple equation 
describing the lines of force of a linear multipole. It is 
interesting to note, however, that certain features of the 
lines of force can be found without use of the equations for 
these curves in their integrated form. 

'G. Arfken, Am.]. Phys. 25, 481 (1957). 
• W. K. H. Panofsky and M. Phillips, Classical Electricity and 

Magnetism (Addison-Wesley Press, Cambridge. 1955). Sec; 1-7. 
a W. R. Smythe. Static and Dynamic Electricity (McGraw-Hill Book 

Company, Inc., New York. 1950). second edition, Sec. 1.101. 
• By the identity (1 -p.2)P.' +np.P. -nP._, =0· E. T. Whittaket:and 

G. N. Watson, A Course in Modern Analysis (Cambridge University 
Press, New York, 1927), Sec, 15.21, Eq. (V), or reference 3, Sec. 5.154. 
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An Equivalent Distribution of Surface Currents for the Generation of a 
Prescribed Static Magnetic Field within the Enclosed Volume* 
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It is shown how a specified static magnetic field within a given volume may be generated through use of a 
current distribution on the surface surrounding this volume. The surface distribution includes a distribution 
of magnetic moment (oriented tangential to the surface) that may be interpreted as a double-current layer, 
but no magnetic poles are introduced. No sources are required external to the surface and the exterior field 
will be ze'ro. 

I T is known1•2 that the external sources of an elec
trostatic field that is specified within a closed sur

faceS can be replaced by an equivalent distribution of 
charge and electric dipole moment on S (the so-called 
Green's equivalent stratum). With this replacement, 
the electric field external to S vanishes. It appears to 
be less well known whether an analogous distribution of 
surface currents may be found to replace the external 
sources of a static magnetic field, without employing 
magnetic poles or surface distributions for which no 
physical interpretation is evident.3 It is shown here 
that there exists a current distribution on S that will 
produce the same magnetic field interior to S as is 
produced by the external sources (whether the external 
sources are formed by a current system or are imagined 
to be magnetic poles), and an explicit prescription is 
given for determining this current distribution. 

closed surface S, together with an associated vector 
potential A so that V xA=H and V·A=O. Within S, 
V·H=O and V x H=41TJ,4 with J=O if no currents 
exist in the volume V interior to S. One may construct 
a new vector potential, 

A'=A+v<I>, (1) 

where <I> is specifically selected so that, at all points on S, 

(2) 

n being the outward-directed unit vector normal to the 
surface S. [Such a <I> may be assumed to exist. In 
particular, with the stipulation that V·A=O (so that 
f fsA·ndS=f f fvV·Adv=O), <I> may be taken as a 
solution of the Neumann problem in which V'24>=0 and 
boundary conditions of the second kind apply.] Ac
cordingly, V xA'=H, and A'·n=O on S. 

The magnetic field H is considered as given within a One now defines the vector 

III
J 1 II{" xn r x [A' xn]} A"= -dv+- --+ dS 
r 411' r r 

(3a) 

v s 

III
J 1 II{Hxn rx[A'xn] r } 

= ;dv+
4

11' -,-+ r + r (A'·n) dS (3b) 

v s 

that can serve as a suitable vector potential to give the field H within S. The vector r is to be understood as ex
tending from the field point P to the surface element dS (Fig. 1), and the two forms given for Eq. (3) are equivalent 
because the factor A' ·n that appears in the last term of Eq. (3b) is identically zero on all points of S. 

The three surface integrals in Eq. (3b) can be transformed to volume integrals as follows: 

I I (H/r) xndS= f f f (-[v xH]/r+[rxH]/r)dv 

s v 

= -411' J J J (J/r)dv+ J J J [(r/r) x (v xA')]dv; (4a) 

v v 

*Work assisted by the U. S. Atomic Energy Commission. 
1 Sir James Jeans, The Mathematical Theory of Electricity and Magnetism (Cambridge University Press, Cambridge, England, 1948), 

5th ed., Sees. 204--206. 
2 W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill Book Co., Inc., New York, 1939), 1st ed., Sec. 3.12. . 
3 See, J. A. Stratton, Electromagnetic Theory, (McGraw-Hill Book Co., Inc., New York, 1941), 1st ed., Sec. 4.15 [esp. Eq. (14), m 

which the last term is difficult to interpret in ph,ysical terms, and Eq. (23) in which the last term represents (in rationalized mks 
units) the field of a distribution of magnetic polesj. 

4 Vnrationalized electromagnetic units are employed. 
2361 
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f f [(r/r) X (A' xn)]dS= f f f {A'v· (r/r3)+[(r/r3)·v]A'-v[(r/r')·A']}dv 

s v 

=47rA'+ J J J {[(r/r1)·V]A'-V[(r/r')·A']}d<· (4b) 

y 

for P interior to S [since V · (r/r;;) may be identified with 41T times the>Dirac delta function]; and 

J J (r/r3)(A'·fi)d5= J J J [(r/r)(v·A')+(A'·v)(r/r)]dt·. (4c) 

s F 

By addition of Eqs. (4), expansion of V[(r;'r3)·A'], and 
use of V x (r/r3)=0, Eq. (3b) red~ces to 

A"=A'+_!__ fff~(v·A')d<·. (5) 
47r r3 

y 

The curl of the last term in Eq. (5), taken with respect 
to the coordinates of P, is found to vanish. It thus 
follows that 

v xA"= v xA'=H, (6) 

and A" will serve as a vector potential to describe the 
field H in the region interior to S. 

From Eq. (3a), which served to define A", it is seen 
that this potential would arise from such currents J as 
may exist in the region interior to S, supplemented by 
the following surface distributions: 

(i) a surface current 

i= (1/47r)[H xfi] abamp/cm (ia) 
and 

(ii) a double layer of current, visualized as formed of 
currents parallel and antiparallel to A' on the inner and 
outer surfaces of an infinitesimally thin shell, that is 
describable by a surface distribution of magnetic 
moment 

p= (1/471-)[A' xn] abamp. (7b) 

These surfac,e distributions therefore may be employed 
in place of sources external to S. The surface-current 
distribution of Eq. (7a), when supplemented by volume 
currents J that terminate on leaving the interior region, 
are such that the steady-state equation of continuity is 
satisfied. 

If the foregoing analysis is applied to evaluate A" at 
a point P external to S, subject to A' being character-

FIG. 1. The surface S to which 
the vector r is drawn from the field 
point P. 

istic of a field whose sources are confined to a finite 
region of space, Eqs. (4) still apply except that the 
term 47rA' will be absent from Eq. (4b). In this case 
the term A' will be absent from Eq. (5) and the curl of 
A" will vanish. The current distribution stipulated in 
the preceding paragraph therefore produces no external 
field. 

In examples for which the given vector potential is 
such that A·fi= 0 on the boundary S, the scalar function 
<1>, of course, need not be introduced. Thus one may 
characterize a uniform interior field 

H=Hoe,=Ho[cos Oe,-sin Oeo] 
= H 0[P1(cosO)e,- P11(cosO)eo] (8) 

with J = 0, by the vector potential 

A1 = !H o(- yex+xcy) = !H 0r sinOeq, 1 

=!H0rP11 (cosO)cq,, (9) 

in which the last forms shown in Eqs. (8) and (9) are 
expressed in spherical coordinates. If S is selected to 
be a sphere of radius a concentric \vith the origin of the 
coordinate system, the vector potential A1 is such that 
A1·n=O on this surface and A'=A1. Equations (7) then 
immediately give the surface distributions 

j= (H 0/h) sinOeq, and p= (Hoa/87r) sinOeo (10) 

that will produce the specified uniform internal field. 
The form of the surface current j is such that this current 
alone will produce a uniform interior field 5 ; the respec
tive contributions to the internal field, due to the current 
and magnetic moment distributions of Eqs. (10), are 
in the ratio 2: 1 and the individual contributions to the 
external field cancel. 

Alternatively, if the field of Eq. (8) were characterized 
by the vector potential 

A2= -H 0ye:= -H0r(sin28 sinq, cosq,e, 
+sinO cosO sinq, coscllee-sin8 sin24le.p); (11) 

6 W. R. Smythe, Ref. 2, Sec. i.051; ibi.d (1950), 2nd ed., Sec. 
i.12. 
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A2 ·lt = - H 0a sin20 sin!/> cos!jl and one may take <I> as 
the (harmonic) function 

(12) 

to satisfy Eq. (2). With this form for <1>, 

A/=A2+~<1>= ~Hor sinOcq>=A1 (13) 
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. 
and Eqs. (i) lead to the expressions for j and p given 
before by Eqs. (10). 

This work was begun as a result of stimulating con
versations with my colleague, Dr. A . .YL Sessler, con
cerning the possibility of realizing certain field con
figurations intended to reduce aberrations in beta-ray 
spectrometers. 
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* IH A."l ELECTRON -RING ACCELERATOR 
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A review of me-':hods for static-field compres
sion of an electron ring is show~ to Sl~gest ad
vantages for. a method in which there is no axial 
acceleration or deceleration of the ring. In the 
method proposed here the static magnetic field 
itself is of such a character that the electrons 
are neither focused nor defocused in the axial 
direction. The integrity and movement of the 
ring through the compressor is controlled ·"Y a 
small traveling magnetic well. The feasibility 
of creating such a traveling well is dio;c-- .,,o.-J.. 
and an example is presented of a current distri
bution capable of producing the static r,~gnetic 
field of the compressor. 

Introduction 

l 
In the original proposal of Veksler ,,t al., 

the electron ring of an electron-ring accelerator 
(ERA) is compressed by a pulsed field from a lari? 
to a small radius and with an associ;~ted increase 
of e1e3t~o§ ~nergy. As Christofilos~ and 
others ' ' ' r~ve noted, compression can be 
achieved (without an energy gain) in a static 
magnetic field. With acceleration divor:ce<ff'rom 
the compression function, the need for large 
supplies of pulsed power is avoided, and increased 
repetition rates become possible·--at the expense 
of a higher-energy injector. 

The met~od proposed (independently) in Refs. 
31 ~ 5, 6 is essentially the reverse of a normal 
magnetic expansion process.7 In contrast to the 
sitt~tion during normal expansion, the ring will 
not hold ions during the compression process and 
hence will not be self-focused; accordingly, there 
are critical ~uestions concerning the feasibility 
of achieving rings of. small minor dimensions in a 
static-field compressor--in the face of an inher
ent energy spread and transverse emittance of the 
electron beam from the injector. 

The method proposed by Christofilos (Ref. 2) 
has one or more alternating sections of axial 
acceleration and deceleration and therefore can 
provide focusing except within a short region 
between adjacent decelerating and subsequent accel
erating sections. Such defocusing regions ~y not 
be serious if_special methods are e~pgoyed, or if 
the crossing is sufficiently- rapid.. c., However, 
as in the other static compressor proposals, the 

* This work was done under the auspices of the 
U. S. Atomic 2nergy Co=ission .. 
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re~uirement of final rings with small minor di
mensions seems to impose an almost tmattainable 
demand on the energy spread of the injected beam 
(cf~ Ref. 5). 

He propose a static-field compressor in 
which there is no axial ring deceleration (or 
acceleration) and hence no very stringent sensi
tivity to initial energy spread. Furthermore, 
the fields of the static compressor are neither 
focusing or defocusing in the axial direction so 
that, with the addition of a ~traveling 
::.:::.::-.~t i~ ~:rellJ t:ro.:-.:Jverse foc~3i:·.:3 -:::.:.. .. ·...,._ W2..l~i.-

tained throughout the compression process, and 
the integrity of the ring maintained. A trav
elin;; magnetic pulse, matched to the repetition 
rate of an electron i§jector, can easily be 
attained in prJ.ctice, and thus can preserve the 
high pulse-rate advantage conceived for a static
field compressor. In addition, the continuo~s 
control of the electron ring may prove advanta
geous for the proper phasing of a compressed and 
loaded ring into an acceleratir~ section. 

In this paper we first discuss general 
aspects of the compressor static field and the 
associated traveling well. Subsequently, we give 
an example of a possible field configuration and 
coil arrangement. An appendix is devoted to 
describing the computational procedures employed 
in seeking practical designs. A schematic gener
al view of the proposed compressor is given in 
Fig. l. 

The Static Field 

In the design of the static compressor we 
r~ve at our disposal the choice of the surface 
r = r(z) on which the electron ring moves. 
Because the fields are static, the energy of an 
electron does not change during the compression 
process, and with no axial acceleration, the 
orbital component of momentum remains substantial
ly constant for an electron on a circ1llar (eq_c;i
librium) orbit. With the re~uirement that this 
orbit lie on a specified surface r = r(z), it is 
necessary that 

co':lstant. (l) 

~:e also •..rish to impose the re~uiremer:t that riags 
not be accelerated (or decelerated) in the z
direction. Since the force in the z-di.J:ection i.;; 
proportional to 5 , we re~uire--for all z 
included in the co~pression process--tr~t 

o. 
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Fig. 1. Schematic view of the static compressor. Note the inner 
and outer coils. Injection is at the left, .loading takes 
place just after compression, and a magnetic expansion 
unit is shown on the right. The traveling magnetic well 
is supplied by a current pulse on the (slow-wave) helix. 

The specification of B and B on the 
surface r = r(z) can be s~en to be~ (1) con
sistent with Maxwell's e~uations, and hence a 
permis.,.::..,::.c .reL'ocedure; and (2) ade~uate to deter
mine completely the field for points near the 
surface r = r(z) (as an expansion in powers of 
the distance from the surface). Thus we find that, 
if R

0 
is the (arbitrary) injection radius at 

which the field B takes the (arbitrary) value 
130' then z 

B (r, z) 
z 

and 

[dr(z)/dzl
2
[r- r(z)l+••l 

r(z)(l -t- ldr(z)/dzl2 l ! 
)(3) 

B0R0 { [dr(z )/dz j [r - r(z)] .} 
B (r,z) - 2- 2 + ... ,(4) 

r r (z) (1 + [dr(z)/dz] l 

through first order in lr - r(z)J. It is easy to 
verify that these first-order expressionG satisfy 
(1) and (2), as well as the zero-order e~uations 
which follow from 
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2•.€ = 

namely 

[ dB"(c,,) 
cz 

and 

o, ;? X ;§ o, (5) 

dB,(c,,~ 
or 

r=r(z) 

o, (6) 

+ . r + z = o. 
ClB (r,z) dB (r,z~~· 
or oz I ( ) r=r ,z 

(7) 

Focusing Properties of the Static Field 

The focusing properties of the static field 
follow from the dynamical e~uations of n;otion for 
f:lectrons in the field of E~s. (3) and (4). At . 
first thought one might argue that, since B is 
zero along the trajectory r = r(z), the derlva
tive of Br in the z-directio~ is not zero, the 



field index n is nonvanishing, and the static 
field would necessarily have some focusing or de
focusing effect. One recalls, however, that the 
usual derivation of focusing is special to situa
tions with median-plane symmetry, which is not 
present in the static compressor. We have under
taken a detailed calculation (outlined below) of 
small-amplitude motion in the region of the equi
librium orbit r = r(z). The general result is 
that the focusing involves two field indices. 
When we employ the fields of Eqs. (3) and (4) to 
determine the indices, we find that the static 
field determined by Eqs. (1) and (2) has the same 
focusing frequencies as a uniform field (namely 
one mcde in neutral equilibrium). 

Proceeding as we have, this result i.o certain
ly nonobvious; we are aware that such a simple 
conclusion probably can be obtained by a general 
consideration of our original (simple) field 
specifications. In lieu of such an argument, we 
burden the reader, in the remainder of this sec
tion, with details of the straightforward argument. 

Starting from the principle of least action, 

51 (£mech - ,6)·d,e 0 (3) 

&rith the mechanical momentum measured iE ' .. \!uts of 
"magnetic rigidity"), one can conveniently derive 
the equations for a general particle trajectory. 
Keeping only first-order terms in the motion about 
the equilibrium orbit r = r(z), one obtains 

( r" -p + [r(z) + x]B (r,z) r z + x z 0 (9a) 

and 

z" 
r(z} + x- [r(z) + xlBr(r,z) = o, (9b) 

where p = r(z)B [r(z),zl, x = r - r(z), and the 
primes denote dirferentiation with respect to the 
azimutbal angle e. 

Expanding the fields about the equilibrium 
orbit, and employing ~~ell's equations to relate 
field derivatives, we may put the coupled equa
tions in the form 

x" + ( 1 - n )x + az 0 (lOa) 

and 

z" + nz + ax = 0, (lOb) 

where the field indices n and a are defined by 

n- -[B3,,) =,lr,,)l 
J r=r(z) 

-3-
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-[.,c~., I >Br{r,,)J 
(lla) n 

dz 
r=r(z) 

and 

[B, I~,, I a 
>B, {r, ')] 

-
dz 

r=r(z) 

a: -[.,~r,,l >Br(r,,~ 
(llb) ar , 

. r=r(z) 

with 

B (r, z) 0 • r 
r=r(z) 

The characteristic frequencies of the system 
(10) are g;i.ven by 

2 1 [(!-
(", ,._ 1/2 

v 2 !" n)"' -r a"' J , (12) 
2 

and correspond to eigenmodes in which the r and 
z motion is mixed. From (3) and (4), and the 
definition of n and a [Eqs. (lla,b)l, we find 

n 

2 
[dr(z)/dzl 

dr(z)/dz 

(13a) 

(13b) 

and consequently, from (12), v
2 = 0, 1. These 

frequencies are the same as would be obtained in 
a ~~iform field (but now with some coupling of r 
and z motion corresponding to the pure-r and 
pure-z modes of the uniform field). One mode is 
on an integral resonance, and the other is in 
neutral equilibrium. 

The Moving Magnetic Well 

In order to control ring position along the 
trajectory r = r(z), and also to supply axial 
focusing, a moving magnetic well must be added to 
the static field of the compressor. Because of' 
the neutral equilibrium of the axial mode in the 
~tatic field, only a modest strength is required 
~or the moving field. 

A number of possibilities have been su~~est
ed for creating the moving well; a particul~;ly 
interesting proposal is to send a current pulse 
down a slow-wave structure. Dombrowski has 



considered a design involving a helix with a 
surrounding dielectric layer and an outer con
ducting sheath.~ He finds that the dispersion of 
a current pulse can be made acceptably small, 
while the rather slow decrease of impedance with 
frequency is advantageous for matching into a 
modulated power supply: Details may be found in 
Ref. 9, but the conclusion is that a helix appears 
to be a practical solution to the problem of ring 
focusing and control. 

Numerical Example 

A practical compressor design consists of 
specifying coil radii, positions, and associated 
currents. The expansion of fields about the 
trajectory r r(z) (which was described above) 
could be used to generate fields at distances 
away from the trajectory; these fields could then 
be "terminated" by suitable current distributions 
in such a way as to require no further currents 
at greater distances. This procedure is not easy 
to follow·. Furthermore, it is not clear in ad
vance at what point singularities will appear in 
the expansion and thus dictate the location of 
currents. If these singularities are toe, close to 
the trajectory, r ~ r(z ), they would pre;::h;de 
adequate room for particle oscillations or ade
quate vacuum chamber width for pumping, and mjght 
force the windings to be inconveniently thin in 
order that intolerable field ripples be avoided. 

In order, then, to demonstrate the feasibility 
of the compressor in cases of practical L~terest, 
we have resorted to digital computation. The com
putational studies were undertaken by Steven 
Sackett, and the procedures employed are described 
in the Appendix. 

I~ Fig. 2 we present one numerical example 
which should suffice to show the practicality of 
the device, The compressor has a length of one 
meter; it accepts electrons at a radius of 57 em 
and compresses them, by a factor of 7,6, to a 
radius of 7. 3 em. The separation bet·,Teen inner 
and outer coil surfaces is 8,0 em. It can be seen 
that the required coil currents are smooth (the 
oscillations near the ends presumably can be 
removed by slight lengthening of the solenoid) and 
not excessive in ma~itude. 
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* Appendix: Determination of Coil Currents 

Practical designs have been investigated by 
choosi~ (1) a desired compression surface 
r = r(z), and (2) a desired set of coil locations. 
The currents which must be supplied to the coils 
to give the necessary compressor fields are then 
computed. Because of the linearity of Maxwell's 
equations, the problem reduces to solving the 
system of (linear) equations: 

i l, • • •m, (Al) 

j=l 

i 1, •. •r.:l ' (A2) 

(z) (r) 
where Bij and Bi. denote the z and 
components, respectivery, of the field at point 
due to unit current in coil j, and the field 
components desired at point i are denoted by 
3z.i ~'1d Bri · 

r 

i 

A practical solution for the currents I. 
my be obtained by taking 2m ~ n a;nd obtain~ng 
the best fit to (Al, A2) in a least-squared sense, 
with the possi.oility of a relative weighting of 
the B equations compared with the B equations. 
·l'his ptocess will, in general, lead to Eurrents 
that are not smoothly varying, or that are large 
in value. Conseque~tly we require that .the quan
tity to be minimized be supplemented by 

n-1 

+w3L (I. l- 2I. +I )
2 

J- J j+l (A3) 

j=2 

where the wi are weighting factors. 

The cooputational procedure consists of a 
reduction of the matrix equations, by orthogonal 
Householder transformations, followed by itera
tiony0which successively improve the least-sq~~res 
fit. The computer program first generates the 
fields to be fitted, B., and the matrix of coef
ficients, 3. . (employing the fields of infinite
ly thin •·ire1 ioops); it the:1 (using input values 
of weights and a convergence cri ter.i.on) determi:::es 
I.. Since machine lang-uage is L<sed, the speed is 
d.gll. Output is numericaJ e.:1d also c;raphical. 

* Trtis Appendix wd.S prepar<=d :Cy Ste';e:: Sackett. 



In the ellW.mple cited in the text, the orbit 
trajectory was taken to be a cosine curve with 
100 fitting points between z = 5 em and 95 em. 
There were 200 coils located between z = 0 and 
z = 100 em on two cosine curves separated by 8 em. 

The Br weighting factor was 5, w0 = l0-10, 

w1 = 0, w
2 

= 10-12, and w
3 

= 10-9. (Tnese 

values were seen, in some survey studies, to be 
effective.) 'I'he time to solve the problem was 
14.8 seconds on a CDC 6600, and the total sums of 
squares of the relative errors in B and in Br 

8 4 -6 z -6 
were respectively • X 10 and 7.3 X 10 • 
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Fig. 2. Static compressor having a compression 
ratio of 7.8:1. (a) Geometry of the coils 
and ring trajectory. (b) Currents required 
in each turn of two 100-turn so~enoids (or, 
equivalently, the turn densities required 
for series-wound coils). The current values 
correspond to a field Bz = 4.0 kg at 
r = 56.7 em; i.e. electron kinetic energy of 
68.3 MeV. (c) "Flux plot" showing lines of 
force (the density of lines does not reflect 
field strength). ---
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IN'lrRODUCTION 

The self' fields of a toroidal beam were discussed in the ERA _!'roceedings 

(UCRL-18103, Papers ERAN 7-8), wherei.n Dimple approximate formulas were 

presented to describe the bitUJ i'ieldu at the center of the beam, and com

putational resul ta ·were reported to confirm the mugni tude of these bias fields 

and to suggest values for the gradients of the self-field components. 

A recent Soviet paper [I. N. Ivanov et al., JIN1t Report P9-lH32 ( 1968.H 

has given identical formulas for the bias fields, together with similar 

formulas for the field gradients. The Soviet authors, moreover, indicate 

the effect of theae self-field effects on the betatron-oscillation frequencies 

of individual particles in the beam, and it is evident that these oscillation 

frequencies can be markedly affected by the toroidal self'-field effects when 

the paru.meters of the ring are similar to those that pertain to the Soviet 

electron-ring device (V. P. Surantsev, pri.va te communication, March 1969). 

Because of the potential interest ln these effects, we review here the 

considerations that can lead to the analytic results cited in the Soviet 

report. It will be noted that analysis of this problem is complicated by 

the presence of the bi.n.s fielclt1 1 K and B that aet to expand the ring and 
1' z' 

whose presence requireu that the applied gulde (und focussing) field be 

strengthened, or the purtlcle energy be reduced, ox· thu t uome comLicw.tion 

of these acti.ons be tal<:.en if' the major orbit rudlus of the ring is to be 

maintained. The ana.lys i.s also is compl.tea ted by the presence of electric, 

as well as magnetic self fields, whose dynamical effects must be evaluated. 

The present notes are divi.ded belou tato four sections, of which the 

first three in turn (I) derlve the self fields of u toroidal beam, (II) 

discuss the general dyna.mtcal problem of onw.ll-amplitLlde oscillations in 

* Wcrk supported by the U. s. Atomtc Energy Commission. 
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the presence of magnetic und electric field~:~, and (III) a1Jply tbe d.ya.amical 

results to obta.in the implications of' the self fields with respect to the 

incoherent oscillation frequencies of particles in the toroidal beam. This 

analysis does not talte explicitly into account the possible presence of 

stationary ions in the beam, nor does it include the inherent non-toroidal 

apace-charge forces that would be present with a straight beam. These 

latter effects, that r~ve been treated by.Teng for a uniform beam of 

elliptical cross-section [L. C. Teng, Argonne National Laboratory Report 

ANLAD-59 (1963)] , introduce no bias terms and so present no complication 
2 they moreover often will be small in practice because of the strong 1 - f3 

cancellation between the electric and magnetic forces of an unneutralized 

highly relativistic beam, A concluding section (IV) attempts to take 

into account partial neutralization of the beaxn by stationary ions, with 
~ 

the inclusion of direct self-field effects and of image terms that will 

arise from nearby conducting or dielectric cylinders. The present work 

will be concerned most specifically with a beam of' highly relativistic 

identical particles distributed uniformly throughout the cross-sectio~ of 
. esu 

a toroidal beam. F.'or the llmiting situation f3 == 1, we write I ""..:.._2 R • . emu n 

I. '!HE SELF FIELOO OF A TOROIDAL BEAM 

A. The Bias Fie.lds 

The scalar aJXl vector potential functions of a filamentary chal'ge-CUITQnt 

ring can be expressed directly in terms of complete elliptic integrals Gt. W. R. 
~the, "Static and Dynamic Electricity,• Sect. 7.H;jJ, and the corresponding poten

tials for a toroidal beam can then be expressed ae definite integrals. Differenti

ation of such expressions then gives the components of the electric and ma.gnetio 

tielde, and further differentiation gives the gradients of these field oomponenta. 

Thus, for a ring of major radius R and an elliptical cross-section with semi-axes 
a,ba 

Q :Lrr (R~r~G')-r~(l.-r~tt/)~ ] ·. R. + r'~e' 
E= K-( I ,. I ')2-E ~ ··-, 7C~a.hN.r "R-r+f".4.i.no') +(l-rCOL6 (R:+r-Tr~e~)':L.+(l-r'~~~)a. 

cLS
1 

c~..s' 
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whore tho parameter ot tho complete elliptic integrals E and X is 

. 2 4r (R + r• ain e•) 
m=k = 2 2 

(R + r + r• sin 9 1 ) + {z - r' ooa et) 

If we are interested in the bias fields at the center of the cross-section, 

where r = R and z = 0, we note tha. t 

Hence a critical term in each of the definite integrals is 

Accordingly the dominant terms in Er and B'- at r= R and z= 0 are reepectiVelJ, 

when the minor dimensions are small relative to R, 

E ~ r-

-= 

The integral JJ K- dS 1 over the cro sa -section of tbe beam is readily ev-.+uated 

(see the Appendix to thl.s Section) and yields, as a dominant term, 

!! )[ dS I = 1T ab 4 a~ R b = 1T ab tn ~ ' where b = "-P is the averase JCiimr 

radius of the beam. We thus obtain for the bias fields, 

E 
r B ~ !.tn.8! 

11 - R b • 

These results were checked reasonably well computat.1o~1• for a beam at 
circular cross-section 'With a ratio of major- to minor radius equal to Jl), al. though 
the result of numerical integration gave a result for the e.lectrig tield that w.a 
only 83 percent of the approximat~ analytic value. 

B, The Field Gruiant; 

For the "effect.ive field," Fr = ~ + Bz at the center of the beam, ve a1mH•rly 

filXl, to the same order of a:PIJroximation (vi th I = 2~ ), the gradient 
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1 
vhioh is - Ji times the total bias field F r = E,. + B .... at tho cantor of the bl().a:tn.. 

From the result just found, one can inunediately wite the corresponding 

derivative oF /Oz through uae of the divergence ani c.u.rl condi tiona, vhere F z 

denotes tbe effective axial field Ez - }\.. · 

~. ;~~ _ ;!r _ (v-"E- ~ -~~')-([-qx~J.~ ~·) 
_ -- ( E.r 2>Er "0"6.1) 

- V·E' -(<411"1)1
1 

- R: + b'(" ..,. ~(' 

- 41t ( f- J") - ( ~ ~ ::) 

a result that has half the magnitude ani tho oppoeite aig.n:When compared to aF~Or. 
Computationally, values of aF 'lf'Oz were found that were about 78 percent o~ 

the values expected from this simple analytic formula (for ratios of major to minpr 
radii equa.l to 40 or to 10) • The computational results far oF rfor vere somewhat leas 

clear, although the ~erage slopes of Fr across the beam were roughly in agreement 

with the formula given above for CF,/Dr at the center. 

c. St!l'lllD!':l 
With introduction of the notation employed b;r the Soviet workers, we have 

vhere 

F(!ectiye ~as Fi§lsla 2 m0 c 't_ 
eFr)o = R ~ 

e oF ;ez 

~ = Nt? Jn~ = 
na2 b 
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Hence the effeoti ve radial and axial forces on a particle of the beam are 

m o
2

r. ] ~ = ....DR ..! ( i.LP - j ~ and 

2 -
-t ~0 -r: ~ ~ , 

0"-l= R R2 vhere x = r - R • 

in agreement with Eqns. (J.l) ani (3.2) of tho Soviet report. 

APPENDIX 

To evaluate jj K J.S
1

-;;: !! ~r.. f~JS: -we may introduce the ooordinate1 

o~.5~1 

with 

and 

1hen 

Lsee, for example, I. s. Gradshteyn and I. M. Ryzhik, 11 1'&ble of Integrals, Series, 

and Produots, 11 Sect. 4.226(2), p. 52BJ, and finally 

JJ I< a.s' ~ '7C4.b ~ '' R. 
a.--~o.b 

na.b L IlL - ~ . 
where b = a ; ~ .• 
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II. DYNAMICAL CONSIDERATIOhB 

Ve are familiar vitb the foousoing c.baracteristice or a purely magnetoetatio 

field and recognize that analysis of such phenomena ia simplified by the f'aot that 
\ 

the magnetic field does no work on the particle. Tluls, in particular, the apeed 

am mass of a particle remain constant, and the dynamical behaviour is described in 

just the same \18¥ for a relativistic particle as .tor a classical (non-re1ativ1at1o) 

particle -- save that the relativistic maas m = 11\/v"l - v2/c2 is employed to relate 

mechanical momentmn to velocity. 

The situation is different, hoveve.r, for a charged particle in an electroatatio 

field -- or, more generally, for a partJ.cle acted upon by a conservative force 

derivable from a scalar potential function. In this case the focussing effect of 

the field will be distinctly different for :non·relativistic (H-B) am for ultra
relativistic (U-R) particles. If we restrict our attention to fields vi th axial 

symmetry and that possess a median plane, the striking differences arise in evalu

ating the radial, betatron-oscillation frequency, "r· 

The equations for small-amplitude oscilla t.ion about a circular equilibrium 

orbit oan be ~erivad with confidence from general principles of analytical mechanics 

-· for example using the Routhian or, perhaps more directly, by employing the 

Principle of Least Action. It may be more informative, however, to attempt a 

simple,. more physical treatment that proceeds directly from the force equation. 

Particle 1n a Pure Magnetosta tic Field 

In the case of a pure magnetosta tic field, one wri tea 
2 mr = qvB + mY-, z r 

in which m is the relativistic mass, and reca.lls that m and v
2 are constants 

or the motion. One rray then make an expansion about a circle of radiua r
0

, writing. 

r = r + x to obtain 
0 

mx = qvB (1 + [.!...&Balj· . ..!..) + mi_(l- ..!..). 
Z0 B Or] r 0 r r z 0 0 0 

Then to obtain a homogeneoUB differ.ential equation of motion, 

and makes the identification (r/B.)(oR/Or) = -n to obtain 
2 

a = m ~ (n - 1) •x , 
ro 

X + .} (1 - D) X = 0 t 

or, with primes denoting differentiation \11th respect to 9, 

whence 

x" + -(1 - n) x = 0 , 

v 2 =1-n. 
r 
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Particle in an ~ectrQ~Wtic fiolJI 

In the case of a ohargdd Jllrticlc& moving in an ~V2fftatis. tield, 1 t ia 

expedient to write the 11 centr1.fuga1 force" ao w(PQ/r), where p9 is the meahantoal 

angular momentum am oonst.ttutetJ a constant or the motion in this oaee. 

Lfn lowest order, moreover, we approximate ft<mr) by mr ..7 
. ~ In the l'lOn-relativiatio limit, w s r2 , · vh.Ue in the ultra-relativistic limit, 

w .~ c/r. Accordingly., one has in ~se limiting caaess 

and, on apanding, obtaina 

m;x = Q.E .(1+[~ ~~ fl + ~{1- 3!-l 
1 .ur o o 111or o 0 

or 

p2 
= 9 

(n. - 3) ·x 
m r 4 eleo 
00 

= m0 ~ (n8180 - 3) ·x 
ro 

x + w2 ( 3 - n ) ·x = 0 elec 

x" + (:3 - nelec) ·x = 0 

v 
2 = 3 - n r eleo. 

p c = ~(n - 2)•x . · r 3 elec 
0 

2 
= m ~ ( nelec - 2) • x 

ro 

x+.J(2-n 1 )•x=O e eo 

7:!1 + (2- n~, )·x = 0 
a.~. eo 

v 2 = 2- n r . elec. 

2 The non-relativistic result " :::: J- n 1 is fam.iliar trom celestial mecbanica r a eo 2 2 
-- apeoitically, in an inverse-square central-force field: (1) p8 / {2m0 r ) ie 

known to represent an equivalent cont.rifugal potential, .eo PQ2;('mor3) represents 

the radial force arising from this centrifugal pote!ltial, and (11) w1 th n = 2, 

the resul. t v/ = 3- 2 = 1 describes tho closed chi..t.racter ot elliptical otbita. 

A similar, but slightly moro tedious analysis leads to the general result tor the 

electrostatic case: 

v 2 = ( 3 - p2) r n"'"' -u..a..ec. 
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Electrostatic and Magnetoatatic Field 

An analysis may be made in a similar spirit for the ultra-relativistic 

case when l2.2,:t:Q magnotostatic arrl eleotrootatic fields are present. In this 

case the quantity p9 that we take to be a constant of the motion is the d,ynamical 

angular momentum :e!B! t rA. , where A is the (azimuthally directed) vector poten• 

t.1al trom vhich the magnetic field can be derived. Hence the centrifugal force 

is written _ ~A _ ~ rA 
Pe .. c P9 e (l) 

w r = r2 - o. 

We thus write, as the radial equation of motion, 

q p - ~rA mr :r: nK + -·o·B + 9 ° c 
~ o z r2 

On expansion one o bte.ins 

•• 'bEr I ~B~~ Ps - ;: (rAl ~ (1- .2 ~) ct. 'b(fA) I 
lY\1'' = 'l.Er., + ct_ "br oX + ct lr ""X. + r: r., - r:-~ o 'X, • 

The inhomogeneous terms on the right are removed by selecting 

Pe - i<rA)o (2) :2 o z: - q(E + B ) 
ro ro zo 

(which physically balances the 11 centrit"ugal force" at the equilibrium orbit by 

the force arising at that radius from the electric and magnetic fields), with 

the result 

mx =~~:;I x + ~ ~~1 \x + 2(Er .. +l3.z.)~ 
0 0 

4 Er o13l)] 
2 Er., + Bzo + [ r ( ~ + V o 

:x. 'l... r., 
The expression given by Eqn. (l) on thiB page is equal, however, simply to tho 

mechanical linear momentum (in the e dir6ction) times c/rJ 1,.~., to mc2/r. Our 

differential equation (3) thus, with the aid of (2), can be put into the form 

3-20 

(J) 



.. 
mx 

a.. 
m~ 

- 2 {;.2. 

- 9 -

= l+ Er + Bz 

Similarly, for the axial motion, we umertake an expansion of the force 

equation about the aoaumed median plane of oymmetrya 

.. 
nt;£. 

II 
~ + 

oBr\ z. 
- 'l "'bl 

• 

('bE~ - ~) r ~ ~'l-

Er + B~ .. 

The result found for ,_,2 will be seen to be consistent with the usual . r 
result (p. 6) for a purely m.agnetostatic field and with that given on p. 7 

for a pure electrostatic field in the ultra-relativistic limit. 

As shown on the f'ollowlng pages in the Appendix to this Section, an 

analysis based on more generul methods3 will aloo lead to these results 

for the frequencies of small.-u.mpU.tudt:: betatron oscillations. 
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APPENDIX 

Derivation from a Routhiao Function 

The equations of motion nay be derived tram a .Lagrangian i"Unotion that 

contains the scalar and vector potent:ieJ. tunction.s that respectively account for 

the electrostatic and magnetoatntic £ielda (A~ A{r,z)e8): 

The coordinate e is a "cyclic" variable (aut'/89 = 0)., so the conJugate momentum 

j.a a constant of the motion: 

I 
... ·::&.. • .a. ·A. • .a. 
r+.z +r8 

-c 

ttl'OIIl which 

• 
0 = 

I - Pa - f rA 

m r.2. 
0 

I + 
( p, - -i· rA ):L 

mo2- r:l-2' 

To benef'i t from the con stanoy or Pe it is ll.2i correct to replace A ill the 

Lagrangian by its expreaeion in terms of p9 am the.n to regard the result as 

a suitable Lagrangian fUnction from which to obtain the r and z equations ot 
motion. One can, however, f'orm the Routhian f:2!.· Goldstein, "Classical Mechanics," 

Sect. 7-2J for this purpose. The Routhian is found, after some intermediate 

al.gebra, to be 

·2. -a.]. f-+ E. . 
. £ . 

.c. . 

( 
b -c. ) ( .. 2. .• :.2.) fa r ... .z. · 

- . -:;:- - ct.A.· ... \- z.c.r .. · - q_V in tha U-R 11mi t .• 
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this tunction may be expanded about the circ.le of radiws ~, omitting derivatives 

that vanish because of the asslJJil.Eid median-pl.ane B,YlDIDetr,Y• 

rfJ A r + z r. ,c:. x x 
( 

b ) • .2,. • 2. b . ( .a.) 
-t:> ..v - - 1. " -:.----.1.- - J.L_ r - r5" + -ra: 
"- = r:, 2-.<; '= 0 0 

~ \ I ;l*'A I .2. +~I :;C 
'QA .z. 

Ao + f oi':J.. " + :i (11.£ l.. 
~r . " • " 

+ tt· ?}'V I .2. -tv \ z .. -~\x I I 

-\{. ---::"5. % - i a?-')r - :I or 
" 

0 0 

The radius r
0 

is to be chosen such that the first-order terms in x are 

absent from the Bouthian, and th1.s requires that 

Pa; + q ~~· - qfll = o' 
ro r o r o 

or, sinoe ~~ = B - > and 1;1 = -E:r , that P.i; - q} = -q(B11 + Ex- ) • 
r o Zo o r o o r 0 o o o 

~ ..\.. 1M DBI 
libplo,Ying this result, lX>ting that or2 • r2 - r ar + O.r • and dropping constant 

terms (that do not atteot the equat.tons or motion), the Routhian is e.xpreasibl.e as 

[ 
.:Bz.+ Er:. , (b. .._4A\) ~~ + ~l]x~ 

_jc 'l 2. --- - - . r )r + .... ~r ,.. z r r. o • • . . 

.! [·~ \ _ o13r\ ]. £2. 
+ z ~6.l.. ?J1. 

4 0 . 

• 2.. • :a. 
X.+ z 

- - q ( J3,.. + E ) :t: r. 
L "-., r . z ..c • 
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~ 

For convenience, the constant factor -q(llzo + lr
0
)/r

0 
may be divided out am 

the ratio r
0
/o identif.ied au 1/w to obtain tha equivalent Routhiana 

( o"B ~E)] .2. r ·(oE• ~\1 a. 
R_ __ 1 x.2.+ i:~. _ [~-.. ZEr + r ?r •iT' .x + (, a - <rJL/t :l. 

- u:!- .z :4 (B ·t- £ " z rJ.. 

The resulting differential eqUAtions of motion then are: 

I •• 
";;}-~ ::::0 

II 

" + 
2'' + [r ~- ;]·2- O \ 

~z-tEr 

• 

I+ 

From these resulta it is noted that 

[
, (oBz 'OEr) 
Er + f ~r -\- or + 

= 

V· E - (V•»l.] 
.B~-+ Er • 

in the limit ~ -1, 

since then J __. p (for an un-neutralized highly relativistic beam). emu esu 
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Alternativ,e~!-t ~~,;muJ.atiof! -- ~o~:,.!~!J?}-e of,I:,.~st Aoti~ 

The Princj.ple of Leaot Aotlon may be 'Writt&n, tor a charge q el!IU, as tbe 

variational statement: 

~j(f +! A)-cLJ: = o or sj[!cib +! (A-:Z)] = o 

where 7' = /(i. _ ~V y:J--<m.,.~G)a.. , 

p
0 

being a conata.nt (conoervntion of. eUtrgy-). 

Thus J £j[ /(t.- "'it- (m.~>"- Jr"'+ r/"'-+ :l, .. • + ~ rA dB == o. 

This formulation it; convenient, in thut J.t leuds directly to differential 

eql.l£l.tiona for the tro.jector..l, ruther Uu1n to eql.l£l.tions that describe the 

motion in tenns of time. 

J¥¥tia1 }:k)tion 

Considering r motion only, then 

d [ V' (1'., - Z;1 y-- (rno<-)
1 

d.tJ V ,.:L + r ,.:z. 

2- ~ /rA) - o. 
-:;:: J (' l' 

In a rdghly-relati vietio si tuat.ion, moreover, namely for p
0 

>> m
0
c, this 

last equation may be written 

r'' (to-~) ·-r-
or 

r" - r + 
2. .2 r 
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,, 
.X - r;, 

- ~ - ~,E,..I 'X - :B - '()!!_~ I X 
:L ~,... ,,.. 0 .lo ar 1 .. 

-+ ! ( r;, + X) --~;!!.-----:-1--=--V-(-,~-)--1----:g_::-_ -E-_ ---X-
'ro -c.· o c. ~ 

= o. 
Then 

-X 

For this equation to be satin.fied by x 3 0, we must set p0 - tv(r0 ) =-ir0(E,;.+Bz~' 
whereupon one obtains 

.2.. 

11-" -r: -X + 
(r.. +X) 

or, in first order, 

')t // -t-

Thus, 

E. + 'aErj x + 13z + ~Brz\ x 
r ~Jr o " (.J " 0 

:;;c 
£;._ -f .Bz - E, --;2 

a ~ ca o 

,..~.B:£) ] + ·a~ X 

• 

(
oEr _ ~oB,{'\ 

E r + r or t- <>r J 

Er+ B.l. 
0 

+ 

Ax1 ,, l1ot1.g,u 

Again from the variational statanent representing the application of the 

Principle of Least Action to the preeent problem, one obtains for the z-mot1o11 

(with X= Q)a 

ci r V(A - ~ )~- (.-., .. ~)~ z'] 
del J 12. -+ r':2. + ;e.~:~. 

or, to the order of accuracy required, 

1-~·· 

o v z'' 
(to - 7 ) r---- . -1-

,, 
Z:. + 

a .2. 
L r 

-av 

- 0 , 

0. 
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we next -write V = V(r ) - E • z - l2 (8B l()z)·z2 = V{r ) - !.2{6E /oz) • z
2 

0 z - z 0 0 z 0 
0 

oV/oz = - Ez - (aE/oz) 0 •z = - (8E/&z) 0 • z 
0 

and a!,/az = - Br
0 

- (CB/8z)
0

• z = - (avaz)0 • z , 

the last forms being wrltten by virt,ue of the ayrrmetry of the field 

with respect to the plane z = 0 "Where the ring· is aaallliled to be si tus.ted. 

Finally, we set p - .9:v ( r ) "' - .9: r ( E + B ) , as before ( p. 14 ) . 
o c o c o r zo 

Thus we obtain 

.c'/ + 
·~t=i£ ~.B,. 
~ '62 =0 

Er +Bz 
0 

and hence 
I(~~- ~r) 

Er + Bz 
0 

Llotea r
0 

denotes the t"&dial ooordinata of the actual conter ot the "bear4;J 
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III. APPLICATION TO THE ELiiCTRON RIW 

For a ring or total charge Q (Q < 0 for an electron ring), actual. mean major 

radius R, average minor radius b, ao:i composed of particles moving with relativistic 

speeds (~ = 1), the "bias tial.ds" are (for Q in eau and I=~ emu)' 

Ering = _s_ Jnafi 
r 2nfi2 ~ 

Bring = !_ )r.. @ ::: __'L ),. ~ 
z R b 2na2 b 

atd the .field 11gradients11 may be taken to be suoh that 

[o~ing ~ring] er·ing .t,. a!! 
R,;£ +-A = R--1: = _.JL -

Qr l'a" &r nR2 b 

R [Si~ ~ing] = R ~~ _g_ _t~. @ 
az Dz az 2wR2 b • 

It is noted that if we form t times the sum of Kqns (1), (.3), and (4), we 

obtain zero, in consistency with the condition 

..,. ~ DE. DE DB DB 
V•E -(9xB]e = <-;-+of+ -;;f> - cif- ef> ::: 4"P -4nJ9 = 0 

.for ~= 1. 

(1) 

(2) 

(J) 

r-/ 
(}({__, 

To compare with the Soviet work we introduce the notation of I. N. Ivarov ft!t. ~. 
@NR Report P9-41.3Y by ln'i ting 

~ = IQe I 1m. tm 
vRpo b 

l?l_ L~ 
-2 b ' wDg .tr 

where \ denotes the magnitude of the total effective guide field, inoluding self 

electric 8.00 magnetic fields as well aa the externally applied magnetic field. Thus 

the bias .fields may be witten 

r 1ng = +B ~ 
r - g 2 

:aX"ing =+a ~ 
z - g 2 
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and the field gradients as 

[a~ing aaring] 
R- + .:...:..i = ar ar 

tor positive or negative charges respectively. 

The guide field, and hence the appl1.ed field, will be negative for positive charges 

am currents, so 

+B
8 

= Ba :!: Bg ~P ani hence Ba == + B
8 

(1 + ~P) is the applied ti .. el.d. 

This applied field oontrl butas tbe gradients 

alf-PPl eiflPpl n n ( 1 + &1P) 
~ = --1': z: - B 'D :: + B - ll --Or az a .u - g 

that of course must be included in evaluating the toouasing action ot the total tield. 

Acoordingl,y, 

- I + 
+ :Bg 

I - ~-p -+ t--t:"P - '(\ (I + ~"P) 

- Y\ (1+ t'--r) (Sa) 

( l- n) (I + ~ "?) (5b) 
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=+ Jjs 

- - f! + n (l -t r"P) 
.2.. 

) 
fo-p 

- n ( r + f-p -· T (b) 

'lb.e results found for v; and v: agree with those given by the Soviet authors 

(sc.t. their Eqns. (4.?)). The results expressed by (5a) and by (6) appear reasonable, 

moreover, in that the effect of the focussing index n for the applied .field ia en
haooed by the factor 1 + ~, thereby taking account ot the tact that this applied 

field must be strengthened by this .factor (or the particle momentUill correspordingl.J' 

decreased) to compensate for the outwardly directed electric and magnetic forces 

that arise at the center of the b&eml. from tho self fields (bias fields) of the ring. 

The supplemental terms, ~ 1n (Sa) and -~ 1n (6) then describe the inherent 

focussing characteristics (focussing for radial motion and defocussing for axial 
motion) of these self fields. 

It is noted that, as expected (p. 12), v/ + v,.2 • l for the (bighlr relativiatio) 

beam considered here. 
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rv. EFFECT OF II nvtAGES 11 ON Tim INCOHERENT ( s nmLE- PARTICLE) "TUNE" 

Images, 1f present, can act to shift the betatron-oscillation 

f'requencies of' individual pu.rticles oscillating in a given toroidal beam, 

and such effects may prove useful in the operation of an electron-ring 

device. The images may arise because of the presence of material 

cylinders external or internal to the bemn (or from cylinders in both 

locations) - if the cylinders are ~nducting, they may be taken to impose 

the boundary conditionu Et::.: 0, Bn::::: 0 (A.C.-mugnetic boundary condition) 

on the fields, whereatJ u d:lelectric cylinder of high specii'ic inductive 

capacity may be regarded us essentially (although in principle only 

approximately) imposing on the electric i'ltJld u boundary condition 

similar to that which applies at a conducting surface. A dielectric 

cylinder thus appears to provide a means (similar to the conducting "comb 11 

employed by the Soviet workers) for separating the electric- and magnetic

image effects and so can result in avoiding the strong cancellation often 

occurri!lg between forces of electric and of mag!letic origin. 

The image fields may be present both as additional 11 bias fields" 

and as fields '\lhose 11 gradienttJ 11 are of' importance. They basically have 

the character of toroidal fields - just as for the direct self fields of 

the ring- but, with a separation of electric and magnetic boundary 

surfaces (or with ions present 1.n the beam), toroidal effects may be of 

secondary importance in some cases of interest. In many cases.J moreover, 

it may prove adequute to estimate the bias fields and gradients as if 

these q_u.antities resulted from the proximity of u otraight beam to a 

planar boundary. 

The image fields of a charge-current ring in a cylindrical surf'ace 

can be expressed in te:r'IIw of integralc over modified Bessel functions 

(of order 0 or l), and the relevant integrals evaluated numerically with 

the computer. Thus, for a conducting cylinder of radius T external to 

(but eo-axial with) a ring beam of' w.:~.jor radius r
0

, it was shown in 

paper EHAC- 38 of the 1968 EHA S,I'Tnposilun Proceedings that the electric 

field of the '' i1nages~' could be expressed by the scalar potential function 

""" 

v 2. q {Ko (SA:) 
-·1< r.) J. (S:x) :Z, (x) I{··f:x) ~ .. r .. / . 
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where S '" 'l'/r
0 

and a similar exiJression ( iavolvin.g the Bessel functi.ons 

r 1 1 K 1) can be wr:Ltten for the vector potential of the magneUc image-field, 

},rom such an analysis, the bias fields can be written 

Q 

- :l.7C R:l. K 

where approximately (for S near unity) the coefficients are such that 

f( /'.J I 
= s -/ , 

£ 
L "' I 

- S.- I 
M 

·as would be expected for u utruieht lleum nenl' u plunur boundury. [~1 
for an external cyltnder, and a positive beam, Er is radially outward and 

B is to the left (i.e., directed :Ln the negative·-Z direction), us 
z --

expectedJ 

with E,,c: und ti,M each upiJroxtrlliJ.tely ~ , llut vlith a strong cancellation 

avoided if tbe boundn.ry mu·fnceo for the electr.Lc: und magnetic fields ure 

such that Sa;+ Stn. 

To pull ull thil3 together vJe rooy vlrite (for a beam neutralized by 

. a fraction f of stationary l011B) 1 ineluding internal self fields that 

would .be present with a ntraight beam (un1form density, ro.cUal and axial 
- a + b 

semi-axes a and b reBpectively, b = 
2 

); 

3-32 



- 21 -

Bias Fields 

Bz f'_P -
- Ba ± B:~ + P L Bc.J )). z 

- Ba -t- Bs [~ - J3 L] F. 
Gradients* 

-

Where B is the (Z-dirt;!cted) applied mu.gnetic field and n 
a ---- ' 

is the field index of this applied field. 

*See Note on the laut puge of this section. 
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The net guide field, und hunc~:: lJu.' will bt~ rH:!t!:utive for pouitive 

chargee and currents - hence 

:;:: ,13 :B~ = pBQ + B, ( 1- f) [t + K] (1-

+ ,B }33 [ ~ - Jl L ]f , 
or, only retaining the factor f) as different from unity in the combination 

(t-f)K-l'I, 

Ba = + B, I I + ( (I - h J' -t- ( I-5) K - p' L] ,..} • 

(
oE.- oB~:\ 

Er + r .. V + f:\ ·vJ.. 
Then 

I+ :B.z., ~ Er. 

t B:J (i-f) [i -+ K] f t 11 IJ3 { t -t- [< 1-~) P -+ (1- f ) I< - If L ] fL} 
± B

3
{ 2 s:L ( ~2.- t) - < ,_n P _ <, _ n K -r +r~·-VE,.E _ ~a. E,'"' ]ll ~ 

Q.h .. . LesE-It r(s,..-lt ~I 

-t+ 

and 
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(
oE.t 'dBr\ 

r.. -=;i" - J3 ~ ~ 

:s~ -+ E(o 
11 H ... 
/'---------.. . . ... ···--· ·-... 

+ nB, + nB9 [(t- 1_)P +(I-f) I<- /CJ f 

+ B.{~(J--f'+<t-f)f-4f1!-fJ€,,f_fJs. ~,1<1 ]~ 
- j h b f:A. ) ~ ll5c-l)a. (!j,-l)a fL 

·--. __ · ·· I/ .. _,,~·· ···Jr, •. _,.·,_ ,,, .. ·c, ... ,-,,,_;. . ···~- .. --_ · ·· --

[
(1-i)f,E 2.- c,,., ) 

+ 4 (S.;-s)::4- f3 (S..,-1)~ 

( ~ - f) K - ~l. L ] 
n + 

where we recall b a + b 
2 

It is noted from these expressions that 

J - 2 t:~ (.~ ... ~ ) ( ~ J. -f) f 
.b 

~ r .. ~ ,.... ( .L. - f) 
(;};" I /'-

::::;. t- 3;. Q./{ab) (1-i- ~) 
'1\ Bg r , 

and so cUff'ers from unity only in the familiar wu.y from the effect of 
-+ -

the "direct" self fields u.cting tn the region ><here V·E and VJC B 

do not vanish. 

If the image terms are discE,rded awl i.f f is oet equal to zero, one obtains 

from the above formulus for ~a. & J~l.: 

4. 
:1. • u._P 2 u r 

- 1 I - n + '- - n ~P - -'-~-~ - 1 
Yr ::;; :l- I (). ·h "/ :J.. 

- (I- n)( 1 -t J.l. P) - [-.tf/4- r;.~ ~ + tt:], 
o.(o-t.b)V' 

n. -
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in agreement -with the results preBented by EllS. ( l1. 7) of the Soviet 

paper P9-l+l32 "by I. N. Ivanov ~ ~h· 

Note: The introducti.on of the fractional-neutralization coefficient f 

in -with the 1-lp terms is not entirely clear, since -with f' j 0, the 

strong cancellation bet-ween the effects of electric and magnetic field 

gradients ia lost and the logp.1·ithml.c term becomes dominated by the 

larger effects of a atrulght beam with f'!> -~ l "but f 4 0. 

to the 

.B )J-"P 

' ,2. 

and 

It is clear, however, that the factor ( 1.-1') nhould be appended 

.B'J ~ term in the "bias electric field Er and not to the 

term in the bias magnetic field B . z 

If -we no-w -write the 1-lp terms i.n the gradients as follows: 

( oEr ,., cB..E) ~- f) t:, c. r -+ ,.., ()t~ o . - B!l ( I - f p 

r: ( oE..l _ P ?~~)' = + ~ ( 1- f) tJ ,. 
.. 7J L Dl. " .J ~ 

-we find that this procedure is consistent to the extent that then (for 

these terms only) we have) wltl1 f.3 = l: 

f ( ~-E,· ;. A ""()~~) + r 
oc r ~.--

r ( v · E - J] [ vJ( » ]8) 
- Bs [ (' - f) ~'",_-r - < ' - f) t;_P] :::.: o. 

This resLll t for the i'ields of tt1c beam i t3elf' 1s correct (for r~ ,~ l), 

since then V•E- (VJOB]
8

- Jf7( (fesu- ~,..u.) :::c 0 \for jJ .=1). 

/ 
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On The Focussing Effects 
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Arising From The Self Fields of a •roroidal Beam 

-- Sequel to ERAN-30 

L. Jackson Laslett 

La"\-Trence Berkeley Laboratory 
University of California 

Berlceley, California 

October 26, 1972 

ERAN-200 

The present report indicates a revision of results given in earlier 

notes [ERAN-30) for the oscillation frequencien of an electron in a partially 

neutralized electron-ring beam subject to toroidal self-field gradients. 

The need for this revision arises from the observation by Professor M. 

Reiser that the toroidal contribution to dEz/dz is small in compari.son to 

the toroidal term in dBr/()z while the toroidal contributions to dErldr 

and dBz/dr are comparable. Some numerical computations are reported that 

appear to support this property of the toroidal field gradients. 

-x Work. supported by the U.s. A tomi.c Energy Comrrd.ssion 
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I. Notivution 

Stimulated by a Soviet report by Ivanov et al., 1 notes were prepared 

by the writer2 for a Seminar talk in April 1969 concerning the self fields 

and self-field gradients of a toroidal beam and the focussing effects that 

arise from the action of these field quantities. The analysis to some 

degree was an extension of an earlier examination of self fields and self-

field gradients as reported in the Proceedings of the 1968 LBL Symposium 

on Electron Ring Accelerators.3 

2 The 1969 notes attempted, in a final Section, to include the effect 

of partial neutralization of the electron ring beam by stationary ions 

having a similar (constant density) distribution throughout the cross-section 

of the beam. This adjustment of the equations for the betatron-oscillation 

frequencies admittedly was not done carefully, however, since at that stage 

of the analysis the electric and magnetic field gradients had been combined 

(for highly-relativistic electrons). 

M. Reiser recently has kindly forwarded to the writer an advanced 

copy of a report4 in which he re-examines separately the electric and magnetic 

bias fields and field gradi.ents of a toroidal beam and also evaluates the 

betatron-oscillation frequencies of electrons of arbitrary energy in a 

partially neutralized electron ring beam. Reiser's analytic esti.mates4 

of the field gradients at the center of the ring cross-section indicate that 

the neutralization factor f = Ni/Ne was incorrectly introduced into the 

~p terms of the equatl.ons given for 2 2 2 vr and Vz in the 1969 notes. We 

have undertaken, there!~ore, to re-examine these field gradients computationally, 

treating the electric- and magnetic-field gradients separately, in order to 

obtain some impression of the accuracy of the convenient simple analytic 
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forms gj.ven by Reiser for these quanti tes. 

It is the purpose of the present report to summarize the results 

of this recent computational Hork, to indicate the comparison betv1een 

these results and the simple analytic forms proposed by Reiser,
4 

and to 
\ 

note the correction that should be applied to certain terms in the equations 

2 4 of the 1969 notes if Reiser's forms for the self-field gradients are 

adopted. 

II. Equations for Fields and Field Gradients 

A. Formulas for Computational Evaluation 

The magnetic vector potential for a current-carrying loop has been 

given by Smythe5 and an amtlogous similar expression may be similarly 

derived6 for the electrostatic scalar potential of a ring charge of in-

finitesimal cross-section. The resultlng magnetic and electric fields can 

be obtained from these potentials by differentiation and the resulting 

expressions integrated numerically over the cross-section of the beam to 

find the required field components produced by a ring beam. Finally, the 

desired field gradients can be obtained from these latter quantities by 

numerical differentiation. 

Because considerable interest is attaehed to the difference between 

the fields and field gradients of a ring be£un in comparison to those that 

arise from a straight beam, and because the integrations 

involve integrands with an (integrable) singularity, it is expedient to 

perform the numerical evaluations not only for the field quantities arising 

from a ring beam but also directly for the difference between these quantities 

and those f'or a straight beam(_~ • .=., for the toroidal contributions). 

We consider here a ri!lg charge Q (e.s.u.) or ring current I (e.m.u.) 
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line passing through the center of the distribution, at r = R + xb, 

~:>\ 
\ j-yt? } 
' I ! 

of major radius R and a circular cros~-section of minor radius 

b = R/L. Field quantities will be evaluated either alor~ a radial 

·,, or along a line passing through the center of the distribution " '·· 

and parallel to the axis, at z = yb. A factor 6 present in the 

I L"~ I integrands will serve, if set e~ual to unity, to subtract off the 
R 

contribution that a straight beam would make in the integral in question. 

With ~ denotir~ the complementary parameter7 • 

(m1 = k' 2 = l - k2 = 1 - m) cf the complete elliptic integrals K 

and E, then if Axis 

1t~2 
--Q- - Er 

and 

~= 

2 , 2 
X -2XX1 COS 9 +X' 

412 +4L(X+X1 ~OS e' )-.;:- ~2+2~;COS -91 +x12 ' 

2 Jl J1t { L +x"cos e' 
= L (L+~) ~4L2+4L(x+x~c~s e')+x2+2~'cos e'+x1 2 

x'=O 9' =0 

_ A. x-x'cos 
w 2 

x -2xx"cos 
e' } 
91+XI2 

x' dx' de' 

[
K + 2L(x-x"cos 9.t)+x2-x"

2 E] 
x2-2xx'cos e+x 1 2 
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r:b 
2r·Bz 

1 1t t 1 

=2 ·J ~ 
x' [ e' =0 x-x' cos ;' ,

2

} 

e' +x'2 ~K _ 2L(x-x'cos e')+x2-x' 2 cos 2e' EJ 
2 I 1 12 :x -2xx cos e +x 

Also, if' 

ml = 

then 

1 2n 

+ 6• X2-2~x'cos 9 +X 

2 2 I . I ,2 y - yx s~n e +X 

4 2. 1. I I Z - I • - -,-- 12 
L ~Lx cos e +y -2yx sln e +x 

,.~2 1 r J [ L+x' cos e' 
-Q- Ez = L .) 2 ~4L7~Lx' cos e I +?-iix' sin e' +x'2 

x'=O 8'=0 

and 

x 1 dx'de'. 

' 

] 

I • I 
E - 6 • Y- x s ln e 

J~-2yx'sin e'+x'2 
• 

x'dx ,;de' 

nb !1 J2n { 1 
2I Br = L 

1 [ 2L2+2Lx' cos e' +.J2-2yx1 sin e' +x12 
., KJ 

~+4Lx'cos e'+Y2-2yx'~in e' +x'2 y2-2yx'sin e'+x12 ~-
x'=O 8'=0 

- 6 0 1 } Y2 -2yx1 sin e' +x'2 (y-x' sin e' )x' dx
1 

de'. 
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B. Approximate Analytic Estimates 

The approximate analytic eatimates for the bias fields at the center 

f h 3,2,4 o t e cross-section are, in the present :notation, 

and 

n: ln 81 
212 

nb n 
'2f Bz ~ ·2L ln BL, 

where L = R/b. Similarly, for the field gradients expressed in the present 

notation, Reiser4 proposes the expressions 

n2 b3 dE r 
~ 

--..-. 
or 

rc b2 ClBz 

-1tr --.--clr 

n:2b3 dE 
z 

-cr oz 

and 

dZ 

';:;! 

:! 

:: 

- ~- ln 81 
2L3 

- ~ ln 8L 
2L 

0 

rc ln 8L 
2L2 

for the toroidal contributions that rema:i.n after subtraetion of the values 

that would apply for a straight beam. 
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It may be noted that these last four expressions imply', for a highly 

relativistic beam "(I ~ )-. == 2~R)' 

n2b3 d 1( 

-Q- dr [ E + B ] ~ - - ln 8L r z 3 
L 

and 

n2b3 () 
[Ez- Br] 

c! 1'( ln 81, -Q tn - 213 

2 in agreement with results previously suggested for dFrj()r and oFzjoz. The self-

consistency of the expressions st~gested by Reiser4 with respect to the 
-+ -+ 

conditions 'J • E :::: 0 and [ 'V x B] ~ = 0 for the toroidal contributions 

moreover may be checked, for the forms written above, by forming 

and 

to obtain zero in each instance. 

oEr :n2b3 oEz 
-ar- + -Q (jZ 
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III. Computations 

A. Method 

associated derivatives at the center of' the cross-section were made for 

L = R/b = 40 and for L = 10. Tre numerical integrations vlere performed 

simply by summation of values at the centers of cells (usually of width 

6x' = l/200, 6.8' = rc/400, although some check runs were made with 

Lx-1 = l/2000 and with 68 1 = rc/4000 in the angular interval lying within 

rc/8 of the singularity of the integrand). Because of the singularity of 

the integrand, the field points were always chosen to be at the corners 

of' such cells, so that the singularity was not directly encountered. 

Field derivatives were estimated as the weighted average (weights 

+4/3 and -l/3) of slopes evaluated for points displaced by 

6x = ± 0.05 and ± 0.10 or by 6y = 0.05 and 0.10 

with respect to the center of the cross-section. Consistency checks on 

the accuracy of the work are provided by noting how well the following 

~ ~ 

identities, relating to div E and curl B, are satisfied: 

{ 2n/L for 6 = 0 

0 for 6 = l, 

{ 2rc for 6 = 0 

0 for 6. = l. 

B. The Bias Fields 

'rhe bias fields, as obtuined computationally at the center of the 

cross-section for L == 40 and for L = 10, are given in the following table. 
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Also shown are 

analytic forms 

the values suggested for these quantities by the simple 
112

b: E ~ __::__ ln 8L ·and r.b B ,w rc l 8L Q r 
21

2 2I z ;: -2E n • 

R L =b 

40 

10 

1l2b2 
-Q-- Er 

Computer 

0.001+681 

0.053065 

(a) 

Analytic(a) 

0.005663 

0.068833 

2.._ ln 8L 
2L2 

I nb 
Bz 2I 

Computer .Analytic (b) 

0.226518 0.226521 

0.68811 0.68833 

(b) 
1t 

21 ln 8L 

The analytic estimates for the magnetic bias field are thus seen to be 

in good agreement with the computational results, but the similar estimates 

for the bias electric field exceed the computational values by some 20 

or 30 percent in these cases. 

C. '.rhe Field Gradients 

The field gradients, as obtained for the toroidal contributions 

(6 = 1 1 the gradients of a straight beam thus being removed) are si.milarly 

tabula ted below. 
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n2b3 

R ~ 

1 == b 
Cor:iputer 

-

40 -0.0001LJ17 

10 -0 .0063!1-

(a) 

1(2b3 

R 
-Q-

L =t 
Computer 

4o 0.000024-65 

10 0.0010307 

- ll -

oEr 
or 

Analytic(a) 

-0.00011~16 

-0.00688 

- _rr_ ln 81 
213 

dE z 
dZ 

Analytic 

0 

0 

2 ., 
nb dBz 
2r or-

Computer 

-0.003694 

-0.04276 

n:b2 
2I 

Computer 

-0.003695 

-0.042'16 

Analytic (b) 

-0.005663 

-0.06883 

(b) 1( 

-~ ln 81 
21 

dBr 
dz 

Analytic(c) 

-0.005663 

-0.06883 

(c) 

The field derivatives can be seen to satisfy the conditions 

and (Q x BJ~ == 0 acceptably well, the derivative dEz/dz is seen to be 

rather small, and dEr/dr is close to its analytic estimate. The magnitudes of 

I 

the analytic estbnates for the derivatives oBz/dr and dBr/Oz of' the 

magnetic field components, however, evidently exceed the computational 

values by some 50 to 6o percent in these examples. 
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IV. The Betatron Oscillation Frequencies for a 

Relativistic Electron Ring Beam 

If we accept the conclusion that ClE:)Clz = 0 for the toroidal component 

and also adopt the other convenient approximate analytic expressions cited 

above, we may proceed to estimate the betatron--oscillation frequencies for 

relativistic electrons (~ = vjc ~ 1) 1 neglecting any possible complications 

due to the 1lJolarizatiori• to which Reiser has called attention on p. 15 of 

his report. 4 As in our earlier work, 2 ue w:~.y make use of the Soviet notation1 

N r v e c 
IJ.=-==< ---/' 21(R)' 

for a highly relativistic electron of momentum p in a total 11 effective11 

(magnetic and electric) field Bg 1 und 

BR 
P = 2 ln-.::-

a+b 
b = --2-

b 

The toroidal terms in the fields and field gradients then are, as noted, 

E r 

Bz 

Q 8R 
= --2 lr1 --

2JtR b 

I 8H Q 
-- ln -- -- --- = 
R b- - 2 .. 2 

1ll{ 
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':'·;tl 
l oBz l ()~_JI' - Bg J.tP, Bg pP R~ R :::: - + '5 dr + 2 or ·-

clE aB l z o, and n""'-E Bg 1-lp R~- - - :::: ±2 dz dZ 

when no ions are present to effect some neutralization of the beam. 

A fraction f of ions will act to reduce the electric fields, by 

a factor (1-f), while causing no change in the toroidal magnetic fields 

of the beam. He thus replace the equations written innnediately above by 

E "' ± r 

aE 
R r 

dT 

oEz 
Rrz 

:::; 
l-f 

+ 2"- Bg 

= o, 

oBz - 1 J..lP, J..lP, Rrr = + 2 Bg 

oBr 
- R<Jz-== ± ~ Bg J..lP 1 

and also write (using these supplemental bias fields) for the externally 

applied Inagnetic field the relation 

that was given on p. 22 of Ref. 2 (where K and L characterize possible 

electric and magnetic image fields as might arise from an image cylinder 

co-axial with the ring beam).8,9 

We now proceed to re-do the analysis attempted in Ref. 2 to evaluate 
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and 

2 

where the expression Bz + Er that we have written in the denominator 

(f'or f3 ,;, l) is the quantity ~ Bg. He substitute8 

2H
2 

( l ·) ::= - nf3Ba ± Bg -=- 2 - f 1-1 
ab Y 

Applied Internal, for a straight beam 
F'ield 

[ 1-f' 1] 
~Bg 2+2 1-Lp 

toroidal terms . 

image term 
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Vle then obtain 

_ 1-n _ { 2H
2 (~;') 

::.ill 
1

c. 

- 15 -

-fl -p [(1-f)€1 E 
2 + 4 ~.L 

( s ,-1) 
E 

+ n [ (1 - ~)P + (1-f)K - ~2 t]} ~'' 

[ 
f' 

+ n (1 - ~)P + (1-f)K 2 -ll 
- f3 LjfJl' 

2 
- f3 

-where we have set f3 ; 1 throughout except in a f'ew selected terms -where 

a strong cancellation may occur -when f3 is close to unity. The expressions 

-written for and differ from those of Ref 2 in that the n-free 

1 terms ± 2 JlP in these expressions no longer contain the factor (1-f) 

as a result of our recognizing Reiser's 

ldEz dBrl contributions to R "dz - f3 rz arise 
0 

The results just written for v '- and 
r 

observation that the toroidal 

primarily from the magnetic term. 

2 vz thus agree, when image effects 

11 
are ignored, with the results gi.ven by Reiser when we set f3 "" l and 

neglect terms proportional to the sq~re of JlP j_n his expressions. 

\-lhen, in addition, f is set equal to zero the results can be seen then 

l to coincide with those given by Ivanov et al. It may be noted, finally, 

that the complete expressi.ons given for 2 2 vr and vz are such that, as 

expected, 

vr2 + vz2 __ 1-11 E~~ [-}:_- fl ab 2 
! 

3-51 



- 16 -

and so differ from unity only in the famil ia.r way from the effect of 

the 11 direct" self-fields acting in the region where they make non-
-) _ .. ., 

vanishing contributions to '7 • E and '7 x B. 

V. Acknowledgements 

It is a pleasure to express our appreciation to Professor Reiser 

for his kindness in sending us an advance copy of his report concerning 

toroidal space-charge effects and our thanks to Mrs. Barbara (Harold) 

Levine for assistance with the numerical work reported here. 

3-52 



- ]_ '( -

VI. References and Notes 

l. I.N. Ivanov et al., JIJim Report P9-L~l32 (1968). 

2. L. Jackson Laslett, EHAN-30 (Notes for a fJemina.r on Electron-Ring 

Accelerators, LBL, 15 April 1969). 

3. L. Jackson Laslett, in Symposiu~ ~ Electron Ring Accelerators (UCRL-

18103, LBL, February 1968), papers ERAN 7-8, pp. 275-290. 

.4. 
-x-

M. Heiser, "On the Eq_uilibritun Orbit and Linear Oscillations of' 

Charged Particles in Axisymmetric E x B li'ields and Application to 

the Electron Ring Accelerator", Heport IPP 0/14 (Max-Planck-Institut 

:fii.r Plasma Physik, t<1un1ch-Garching, July 1972). 

5. William R. Smythe, "Static and Dynamic Electricity", Ed. 2 {McGraw

Hill Book Co., New York, 1950), Sect. 7.10, pp. 270-271. 

6. With 

m= k2 ·-

or 

ml = k'2 

where 

4r . r b r1ng o s 

(rring 
2 

+ robs) + 

2 
(r - robs) + ring 

= 2 
(rring + robs) + 

(6z)2 

(,~z)2 

(6z )2 
' 

r . r1ng 

denotes the volume density of' charge. 

K, 

7. L.M. Milne-Thomsen, "Elliptic Integrals", in "Handbook of Mathematical 

Functions" (Milton Abr8Jil0witz and Irene A. Stegun, Eds.), Ch. 17, 

p. 590 (Dover Publications, New York, 1965). 

8. We take the electric and magnetic :fields arising from an image cylinder 

of radius S·R to be, respectively, 

Qnet 
E ·- -----,..; K - ± (1-f)K Bg II 

r 2nH.:::: ,... 

* Dr. Retser's report was written at Garchl.ng while he was on leave from 
the Univers1ty of Maryland. 
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and 

where approximately (for S near tmity) 2 

l and L 

The total electrostatic field that contributes to eq_ui.librium at 

the equilibrium radius thEm is2 

and the corresponding total m:1.gnetic field is 

The condition for equilibr:i.tun at the eq_uilibrium radius R 
2 8 

is written ' 

+ B Bg = f3 Ba ± Bg(l-f') [-~ + K] fl 

± f3 Bg [ ~ - f3 L] fl , 

whence, H' we retain the factor f3 as different from unity only in 

the combination (1-f)K - 132 1, 
. f 2-

Ba = + Bg (1 + ((1- 2 )P + (1-f)K- f3 L] f.l} • 

10. The image field gradients are written ln terms of coefficients 

and 

cE 
Er + R -.-:: = or 

f3 
dBz 

R 'Jr 

Normally El,E 

= 
cB € 

f3R d'zr :l: - 4ti-~~. 
((' 1)2 .::Jg-

and El,M will each be 

3-54 

Q 
4f32

B 
El,l;f ·--2 ;:: + g 

2nR (SM-1) 

approximately l 
n· 

2 fl• 



DECAY OF IMAGE CURRENTS IN A PLANE GEOMETRY* 

L. Jackson Laslett 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

July 28, 1969 

I. Introduction 
(Motivation) 

ERAN-37 

The effect of eddy currents induced in an infinite plane 

conducting sheet (infinitely thin, 
~ 

with a surface resistivity 

p ) has been elegantly emu per square 
2 

solved by Maxwell in terms 

of images that recede from the sheet with a speed ~n· Since problems 

may arise in which the conducting boundary is not a plane sheet, it 

may be instructive to attempt to find Maxwell's solution for the plane 

sheet by other methods, for some particular type of source. Such an 

exercise may then facilitate (illuminate) the solution of additional 

problems of interest. 

We consider belm; an example in which the magnetic field can 

be characterized by a vector potential with a single non-zero Cartesian 

component (A ). The problem will be taken to be one in which there is z 
no z dependence, and most specifically will be concerned with a case 

in which two long parallel \lires run parallel to the sheet at 

y ~ - (h + s/2) (with respect to the sheet at y ~ 0) and carry currents 

± I e respectively. emu z By taking the limit s -? o, while I-s -? P, 

1-1e simplify the source to a two-dimensional current loop of infinitesimal 

width. 
2 As is customary in this type of problem, displacement currents 

are regarded as ignorable. 
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II. Solution in the Spirit of lilaxwell' s Solution 

For the specific case considered the vector potential 

isolated sources ± I(t) at y = - (h + s/2) would be 

- P(t) ~ [ln / 
l 

h)2] 
2 P(t) y + h 

2 h)2 + (y + X + (y + 

P(t) L j'r(t)·s1,fors~o. Wewishtowrite 
s~ o ~ J 

A z 2 P(t) y + h 

x2 + (y + h)2 

I 
+A (x, yj t), 

, where 

of the 

I where A · denotes the vector potential of the eddy currents induced in 

the infinite plane conducting sheet (at y = o) and may be expected to 

be an~ function of y. 

Since the induced currents are of the amount (emu/em) 

I 

we req_uire 

dA l dA z z 
-cy- ++csy 

Y=O Y=O 

Since AI is even in y, this may be 1.;ri tten 

2JA
1 4:rc [2 P'(t) 

h dAI I l 2csy + p 2 h2 + dt 
Y=O X ·+ Y=O 

or 
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2rc [ h 
P 

2P"(t) 2 2 
X- + h 

dAI I ] 
+ dt Y=O ' 

or 

h 
- 2 p .. ( t ) -2::::----::-2 • 

X + h 

A solution for AI in the Maxwell form is readily seen to be 

t 
_ 2 J dP(•) h + IYI +v (t- -r) 

2 2 dT 
dT x +[h+ IYI+v(t- •)] 

-'XJ 

with v = ~rc , for which AI receives contributions only from values of 

~~that occur at times less than t. One thus may write: 

A z 

p 

2 P(t) y + h 
x2 + (y + h)2 

dP(•) h + IYI + 2r!(t- •) . dT 
~ 2 p 2 

= 2 P(t) 

L 

y + h 
2 

+ (y + h) 

-·::0 
x +[h + IYI+ 2rc(t-<)] 

IYI + h l 
i + (I Y I + h )2 j 

E_ 2 2 
[ 1 y 1 + h + 2n( t - -r) ] - x d, 

p 2 2 2 
[[[YI + h + 2 rc(t- -r)] + x} 

[by partial integration ] 
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2 P(t) [i y + h IYI + _h l = 
h )2 2 

h)2 J + (y + X + ( IYI + 

, 
E._ 

2 (~rt) f (I Yl ~)2 2 
+ h + 2rt - X 

P(t- :) d:. + 
n2 2]2 f(IYI + h +E._ + X 

0 2rt 

Thus for an abrupt step-function form of P(t), in which P 

changes suddenly from zero to unity at t = t - i.e., P' = o(t - t ) 
0 -- 0 

the first form shown for A becomes z 

( y + h 
Az = 2 t-x2,..-::+:.__(_y_+_h_)-=-2 

IYI + h + 2rr (t - t 0 ) E._ } (t ~ t ) 
0 

an expression _which permits interpretation in terms of Maxwell's 

general result. concerning images. In the present case we have images 

at + [h + ~rt (t - t
0

)]for supplementing the field at y z o, respectively, 

and hence each of these recedes from the sheet at the speed ~rt em/sec. 

The_ !'dipole" image at - [h + P2 ( t - t )] , which contributes to giving 
. rt 0 

the field in the-region y > ~, is of the opposite polarity to the·given 

source (and completely annuls the effect of the given source for 

t = t
0 

andy> o); while the dipole image at _f[h + ~rt (t- t
0

)] , that 

affectE the field in the region y < o (where the given source is 

situated), is of the same si_gri as the source (and results in Bn By =-0 

at the sheet woen t = t ). 
0 
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III. Solution in Terms of Harmonic Series 

As before, we write 

Az = 2 P(t) y + h 
x2 + (y + h)2 

I 
+ A (x, y t)' 

and recognize that the image contribution A1 to the vector potential 

will be even in y. Again we require that AI be a harmonic function 

(v2 AI = 0, for y f o) and that (p.3) 

.e._ dA I I = - 2 p , ( t) 2 h 2 . 
2rr dy · + h Y=O X + 

We now employ the harmonic-function representation 

AI= f F(k, t) e-kiYI cos kx dk 

k=O 

and note that3 

;:o 

h =1 -kh 
2 h2 

e cos kx dk. 
X + 

0 

vle thus require 

.:o "' "' 
,/ dF kp JF P'(t)j' cos kx dk + cos kx dk - 2 

dt 2rr 
. = 

0 

l·!:.., 1ve require 

dF .f kp F 
dt 2rr 

0 

- 2 P'(t) -kh e 
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As a solution of this last, first-order differential e~uation 
4 

in t, we take 

F(k,t) 
khft -~~(t-:) 

' - 2 e- P'(E) e dE. 

..r 

Then 

00 t 

AI == - 2 J dk J d~ P'(~) e-k[h + IYI + ~rr (t - ~)]cos kx 

k=O ~== -oo 

t 00 

21P'(~) d!; J dk e -k [h + IYI 
. p 

( t - s ) ] cos kx +-- 2rr 

-00 k~o 

t p 

== - 2JP'(s) 
IYI + h + 2rr (t - !;) d!; 2 

+ CIYI + h + ~rr (t - s)J2 
X 

-oo 

(ref. 3), 

and 

t E._ 

A == 2 P( t) z 
y + h 2 J p , ( ~ ) --:2~-'-'1 Y,_.__l _+_h_+_2_rr___,_( t_---"-'; )'--

x +[JyJ + h + ~rr (t- ;)J 2 
-oo 

in agreement with the result of the preceding section (p. lt). 

IV. Fre~uency Analysis 

Time dependent electrical prablems are fre~uently analyzed in 

terms of Fourier components (each with a time dependence characterized 

by ejmt). It is evident that such an approach may not be the most 

direct in the present example, but use of the techni~ue may provide a 

bridge to connect with results obtained by the use of the Fourier 
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time-spectrum method. 

Suppose we consider a unit step function for P(t), occuring at 
8 

t . 
0 

Then 

1 
P(t) = 2 

1 = 2 

+ 

+ l_J sin ro(t 
21( ().) 

-oo 

For each of the individual a.c. components of P(t) !:. ·~·' 

1 
2rc dro -- the vector potential will require a supplementary 

image contribution to account for the presence of the infinite plane con-

ducting sheet. One may seek, then, to refer to the solution of the steady-

state problem for an a.c. 2-D double line-current source situated a distance 

h below an infinite plane conductor (of d.c. surface resistance P emu 

per square). If, as assumed in the previous sections of this note, the 

sheet is infinitely thin, the sheet will exhibit this same surface resis

tance P emu per square for all finite a.c. frequencies. 

1 sin ro(t - t 0 ) 
For an a.c. source, P(ro,t) = 21( ro the equation for 

F (bottom of lst page of Section III), 

becomes 

+ kpF 
2rc 

. ko,.., + -ji 21( 

= - 2 p ~( t) -kh 
e 

= 
1 -kh 
l1 e cos ro(t - t 0 ) 
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with the steady-state solution 

F = l 
ro sin ro( t - t ) + k2p 

o rc --
rc 

Thus, for this Fourier component, 

I 
A (ro, t) = 

2 (kp) 2 
(!) + -

2rc 

-kh e 

cos ro( t - t ) 
0 

and, for the entire step-function wave-form, 

co co 

- k(lyt +h) 
e cos kx dk 

- t ) + kp 
AI(t) -jdk -k(IYI +h) kxf~ 

(!) sin ro(t cos ro(t - t ) 
0 21t 0 

= e · cos 
2 

+ (~~) 2 -(!) 

k=o -co 

Performing the integration over ro we obtain ? ' 3 

r -k . 
~-) e [!YI + h + ~rc (t - t 0 ) ] 

cos kx dk 

k=o 

in agreement with the previous results when interpreted for a unit step 

function for P(t) that occurs at t = t • 
0 
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v. Character of the Solution 

If one recalls the solution for AI when P(t) has the character of 

a step function (P ), namely (for a step at t = o): 
0 

I 
A :: - 2P 

0 

lyi+h+vt 
2 j ' 2 x + ( y I + h + v~ ) 

with v = .e_ 
211: ' 

it is evident that AI does not fall off exponentially with increasing 

time. 

I For large t, A ~ -
p 

2_.£ 
vt 

Also, for the image fields, 

Finally, 

while of course 

2P 
0 

4p 
0 

o, 

2 2 p __,_( ..... ! y'--'--1 _+_h_+_vt-'-) --=---x-=-~ ,.... ± 2 o 

[( IYI + h + vt)
2 

+ x
2

]
2 

(vt)
2 

X • (!yl+h+vt) 

I. I 2 2 2 [( y + h + vt) + x ] 

with each individual term 
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p X p X 
0 

asymptotically 12 ° ± 12 
+ ( vt )4 ' 4 

( i/t ) 
respectively. 

Specifically, at y = - h , 

I 
A (t = o) 

BI (t) 
X = I 

B (t = o) 
X 

2 ,. X \ 
-( _, 

\ 2h/ 

2 

(~h) + l 

2 
/X ) 2 

[l + \ 2h J 

,. 2 2 

BI ( t = o) 
y 

. ) I X) +1
1 

= (1 + ~ L<2h J 
[ Gh) 2 + ( 1 + ~ ) 2 ] 2 

[2lBxf2ly]t 

[ 2mXJ C§y J t=o 

. 2 ( '2 
~~) -1 +~) 

tx )2 
3\2h - l 

r·x)2 ~,3 
l ( + li ?h .J 

r 2 

i\~h) 
L 
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VI. Numerical Calculations 

By way of illustration, numerical values have been computed for the 

ratios listed on the preceding sheet (end of Section v). Values for these 

ratios are tabulated vs. W = x/h and R = vtjh. The attached program 

permits these computations to be performed readily by use of the LRL BRF 

facility. 

tEDI T 

OK 

L 

1 • 
2· 
3· 

18 

4· 20 

OK 

5· 
6· 
7· 
8· 
9· 

10· 
1 1 • 

12· 
1 3· 
1 4· 
15. 
1 6· 
1 7. 

1 9. 
20· 
21· 
22· 
23· 
24· 

30 

40 

Vi = 0 
PRI:--JT9.. \·i 

R = 0 
u = v.v 2 
s = R/2 
F = 1 + s 
(\) 1 = 1 + U*U 
01 - F*F + U*U 
,\J2 = F*F - u:;;u 
02 = 1 - U* U 
i-J3 = 3*U* U - F*F 
03 = 3*U*U - 1 
A = F*•>J 1 I 01 
g;·~ = C>J2/02)*< C.\Jl/OD**2) 
BY = F*<CN1/01)**2) 
DBXOY = "F*Ci'l3/D3Y*CCi\ll/01)**'3) 
PRINT9 .. R .. A .. ax .. BY .. OBXDY 
I F C R • G E • 5 • •n GO T 0 3 0 

GO TJ 20 
I F C U • G E • 2 • 9 ) GJ T 0 4 0 
tj = 1o'j + 0 •· 3 
GJ TJ 10 
STJ? 

Numerical results are given in the Appendix. 
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VII. References and Notes 

* Work supported by the u.s. Atomic Energy Commission. 
I 

1 The resistance p abohms per square is equal to 109 times the surface 

resistance expressed as ohms per square. The 
p 

1 't emu ve oc~ y 21( 

expressed in M.K.S. units as Thus v 
Mjsec 

2 Pohm.s 
= 

Pohms 10-9 Pemu 
----- = 
21( X 10-7 21( X 10-7 

= 
1 Pemu 

100 2"1! , or 
v Pemu 

em/sec = ~ 

2 
J .c. Maxwell, "Electricity and Magnetism", Sec. 654 ff. 

may be 

= 

See also 

Sir James Jeans, "Electricity and Magnetism", Sec. 538 ff; W.R. Smythe, 

11 Static and Dynamic Electricity" (Ed. 2), Sec. 11.10. 

3 B.O. Peirce, 11A Short Table of Integrals", #5cb, p. 64. 

4 
If one wishes, one may seek the solution to the differential equation 

for F, as a function of t, by the use of the Laplace transformation 

[ cf. J .c. Jaeger, "An Introduction to the Laplace Transformation" (Methuen, 

London; Wiley, New York); the Laplace transform is denoted by a bar, 

-=-r-pt 5 and is defined as f f (t) dt]. Since 

0 

00 
00 

rJ·-r-C§n r pt df 
,oo 

ptf( t) ! - dt -pt I 
'dtl -

I 
e 6t fe + dt 

1.. . lo ..., 
0 

0 
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= - f(o) + pf 

= pf if f(o) = 0 

then in application to our first-order differential equation for F: 

F kp F - 2-P, e-kh p + -- = 21( if F ~ 0 at t = 0. 

In this event 

F - 2 
p -kh 

= e 
p + kp 

2n 

-kh ( ~- ~~ ~ ~) ,. 
- 2 e .. 

7 
Hence 

. / 

t 

.-kbfp'(S) kp 
(t - s) - 2n 

F - 2 e 

0 

for cases in which F = 0 at t = o. 

More generally (removing the condition that 

t . k 

6 

ds 

1 -_2. (t - s) 
F =- 2e-kh p' (s) e 2n ds, 

(Sect. III of th~se notes). 

F = 0 at t = 0), then, 

as written in the text 

5 J, c. Jaeger, op. cit., Theorem III, p. 14. 

6 J. c. Jaeger, op. cit., Table I, p. 3. 
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7 
By use of the convolution theorem, as stated by Jaeger(~~ cit.), 

Theorem IX, P· 90. 

8 
B. o. Peirce, ££· cit., #484, p. 62 

9 I. s. Gradshteyn and I. N. Ryzhik, "Table of Integrals, Series, and 

Products" (Academic Press, New York, 1965), Sect. 3.723, #3 and #2, 

p. 4o6. 
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~j = 0. 00000 
i<= 0· 00000 
~-<= o.· 3:J000 
F<= 0 •. 60000 
j~ = 0 • 9 l) 0 0 Cl 
R= 1·20U00 
R= 1·50800 
R= 1 .(30800 
R= 2· 100fJ0 
R= 2·40000 
r<= 2. 70!J•ZJ0 
R= 3·00080 
~= 3·· 309100 
R= 3··60000 
F<='= 3.·90000 
R= 4··20000 
~<= 4··50000 
H= 4·80000 
R= 5.·10000 
i\= 5 .. 4000:J 

R= 5· 700vJ0 
R= 6.· 00000 

~~= 0 ~ 30000 
R= 0;00000 
f{= 0·'30000 
F;= 0-60000 
R= 0.90000 
R= 1 • 20000 
R= 1· 50000 
R= 1·30000 
~= 2·10000 
R: 2·40000 

. R:: 2;70000 
I< = 3 •· 0 0 0 G 0 
l~= 3·'38000 
R= 3;600:30 
1~ = 3; 9 c.~H3 J 0 
i\= 4··20000 
R= 4.·5 0000 
R= 4·30000 
!\= 5·1:J00J 

A= 1.00000 
A= 0·36757 
A= 0;76923 
A= '0."6,j766 
A= 0·62500 
A= 0.5 7143 
A= 0·52632 
A= 0 • 43 73 0 
A= 0·45Li55 
A= 0_-42553 
A= 0·40000 
A= 0~37736 
A= 0.35714 
A= 0.33.:39.:3 
A= 0·32258 
A= 0·30769 
A= CJ-27412 
A= 0·28169 
A=. 0·27027 

A= 0·25974 
A= 0·25000 

A= 1·00000 
A= 0-37426 
A= 0. 77620 
A= 0·69771 
A= 0 •· 6 3349 
A= 0·5301:12 
A: 0. 5 3482 
A= 0·49612 
A'= 0; 46262 
A: 0.43334 
A='= 0·40753 
A= 0·33462· 
A= 0·36413 
A= 0·34572 
A= o.-32907 
A= 0."3139,::> 
A= 0·3J81S 
A: 0."23751 

APPENDIX 

Numerical Results 

BX= 1· 880[00 
8X= 0·75614 
ax= o. S-7 1 72 

81( = 0. 4 7:5 62 
BX = 0 • 39 D 63 
8/\= 0-32653 
a;\= 0·277iJ1 
BX= G).23795 
8 ,\ = 2J • 2 >J 6 6 1 
a;<= 0. 1 o 1 os 
8.\ = 0 • 1 6 8 0 0 

ax= 0. 142 'J'J 
BX= 0·12755 
B,\ = 0. 1 l 49 1 
B/\= 0 .. 10486 
BX= 0·09467 
3X = 0 • 06 65 1 
BX= 0;0 79 35 
1:3.~ = 0 .. 0 7 3 <.J s 
BX= 0·06747 
BX= 0·06250 

8'( = 1. 00000 
BY= 0·65752 
1:3 '( = J • "•5 5 1 7 
:3 '( = 0 • 3 2 0 .J 2 
BY= ~:) • 2 4 41 4 
(3f = o. 10 657 
BY= 0-14579 
BY=0·116;J7 
BY= 0·093':11 
BY= 0·077~J5 
8{= 0.:il64:J~) 

BY= 0·0::>374 
Bf= 0·0455S 
BY= 0.03395 
BY= 0·03357 
BY= ;).02913 
BY= 0·02544 
BY= 0·02235 
BY= 0 • 0 19 7 4 

BY= 0·01752 
BY= 0·01563 

BX= 1·80000 BY= 1·00000 
BX= 0.76361 BY= 0·66463 
BX= 0·60816 BY= 0·46346 
BX= 0·49267 BY= 0·33572 
BX= 0·40694 BY= 0·25032 
BX= 0;34164 BY= 0·19224 
BX= 0."29080 BY= 0· 15055 
m<:: 0·25046 BY= '0· 12007 
BX= 0·21793 BY= 0~09723 
BX= 0;19132 gy=. 0;07991 
BX= 0·16929 BY= 0·06643 
Bi~= 0;15035 BY= 0·05532 
BX= 0;13526. BY= 0·04735 
BX= 0;12195 BY= 0;04852 
a:<= o. 1 1 0 52 a 'f = o. 0 3 LrJ 3 
BX= 0;10062 BY= 0."03033 
BX= 0;09198 BY= 0;02650 
BX= 0."06442 BY= J_-02329 

oax DY = 1. 00000 
Dt:r<DY= 0·65752 
DB;< 0 Y = l:J • 4 55 I 7 
0 iT\ i) ( = ~-J • 3 2 0 ~j 2 
l) 2.>\ 0 '( = u • 2 4 Lj 1 L! 
OR:\Df= v)·l36j9 
0 8>~ DY = 0 • 1 45 71 
U 3,\ OY = C~ • 1 1 68 7 
oa;-<or= u.u:t371 
DB.KUY= 0·87785 
l)[j;-(Jjf= 0·06LJ0J 
02..\0Y= Q.JS374 
Ot3:\0Y= ~)·~J4555 

DcL\D'f= 0·03.395 
OBi\OY= 8·D3357 
Di::iXOY= 0·02713 
Odi\Of= 0·025L!4 
08:\0Y= J. yJ2235 
OBXDY= 0·ill97L! 

DBX DY = U. 2J 1 75 2 
08/\ DY = 0 • Z 15 63 

DBXDY= 1·80000 
OBXOf= o. 63001 
oa;< DY = 0 • .:J:3 1 43 
OSXJ}f= 0·35253 
08/\iW= 0·26545 
OBXUf= 0·28465 
DBXDY= 0·16099 
DBXDY= 0·12385 
OBXOY= 0· 10478 
DBXDf= 8·03620 
OBX Dl = J • J 7 13 0 
OBXU(= D· 06043 
oa;<oY= 0·05133 
Oi:3:\0f= 1Jo0LJ3)'l 
1)8;\0Y = 8 • D3 79 4 
DBXDY= 0··03297 
o8;<of= 0·2J2,j:33 
0 Bt< D f = 0 • D 2 5 3 5 

R= 5;40000 A= 0·27590 Bt<~ 0;07774 BY= 0·02057 DBXDl= 0."02241 
R= s.-7oooJ A= u-26513 8~= o.-07133 aY= 0·01327 OB..\Ot= o.-01991 
R= 6;8J00J A= 8;25527 BX= J~J66S7 3Y= 0·01629 OBXOf= 0.01776 
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\•J = 0 • 6 0 0 0 0 
i<= ~r: 00000 
H= 0·3008i:J 
~= 0-60000 
R= 0;90000 
R= 1.20000 
R= 1.50000 
R= 1.80000 
R= 2·10000 
l~= 2 .. 48000 
R:i: 2 •· 70000 
R= 3.·00000 
R:i: 3~30000 
R= 3;60000 
R= 3·90000 
R: 4;20000 
R= 4;50000 
R: 4;80000 
R: 5·10000 
R= 5 •· 40000 
R= 5;70000 
R= 6.JJ000 

\·J = 0 .. 90000 
R= 0.·oo002l 
R= 0. 30000 
R= 0~ 602)00 
R= 0·90!2H:JJ 
R= 1 .. 20000 
R:i: 1 • 50000 
R: 1·'80;2)00 
R= 2 .. 10800 
R='= 2 ... 40000 

R= 2 .. 70000 
i~= 3· 00000 
R::: "' 30000 -:>• 

R: 3· 60G82J 
R:: 3~'90000 
R: Lj ... 20000 
R='= L!~50000 
R:i: L! .. 80000 
H::: s: 10000 
R: s. 40000 
H='= s. 7C00:J 
n-··- 6 .. 00000 

A= 1.00000 
A= 0·33743 
A= 0;79607 
A= 0·72037 
A= 0.65c311 
A= 0.60503 
A= 0·55973 
A;;; 0;52056 
~~= 0. 43 641 
A:i: 0·45639 
A= 0-42931 
A= 0 • 40 612 
A= 0 • 3:0 46 7 
A:::: o. 3 65 71 
A: 0• 3 43 35 
A:i: 0;33255 
A= 0;31811 
A :i: 0· 30 43 7 
A= 0;29267 
A= 0.-23141 
A= 0·27893 

A= 1·00000 
A= 0.90680 
A-. - 0-32602 
A= 0. 75 645 
A= 0 .. 69 647 
A= o. 6 4L!5 3 
A: 0 .. 59 9 28 
A= o;ss9 62 
A= 0~52L!64 
A: 0 .. L!9360 
A: o. Lj 659 0 
A= 0 .. L;4106 
A:= o. Lj 16 65 
A= 0· 39336 
A= 0. 3 799 0 
A= 0·3630L! 
A= 0 .. 3L!759 
,A= 0. 33333 
A: 

., . 
l'J • 32026 

A= s. 303 1 3 
A:i: 0 .. 29637 

B:-<= 1· 00000 
a:~= 0. 3 :1 65.3 
BX = 0 • 659 31 
BX= 0; 5 466;) 

BX= 0 • 459 22 
BX= 0·39.050 
sx = a. 335 7'/J 
s;.z= 0;29 1 4J 

Bi< ='= 0 • 2 5 5 1 6 
BX= k:lo2251o 
8X= 0·20\JJS 
a;<= 0. 1 7c392 
BX= 0. 1 6090 
Bk=' 8. 14545 
BX= 0;13210 
B ;\ :i: 0 • 1 2 0 4 9 
ax= 0. 1103 4 
8.>\ = 0 • 1 0 1 4 l 
s;<= 0-09351 
BX = 0 • :B 6L;7 
BX= 8;G3J24 

aX= 1 ·00008 
BX= 0. 3 7 321 
B/\= o. 75 305 
BX= 0· 643 L; 1 
BX= 0. 5 6013 
BX= 0· L!S 6 L!5 
ax= 0· 42507 
a:<= 0· 37377 
B;·<= 0~33i:l7:J 

ax= 0-29431 
ax= 0•'26337 
ax= 0. 23639 
BX= 0 .. 21 410 
8;\::i:: 0· 19 435 
BX= a. 1 7716 
BX= 0 .. 1 6210 
ax= 0· 1 43 3 Lj 

8?~ = 0· 1 3712 
BX= Go 12671 
B;~ = 

~ . 
~) . 1 1 7 Li~2 

8/\= ·:) .• 109 1 1 
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BY= 1 • 00000J 
BY= 0. 63 L!S ~2 
BY = 0 • 43 7 Ltd 
BY= t.'a-35333 
BY= 0·2707;j 
BY= 0·20921 
BY= 0·16L!39 
BY= 0·1321) 
BY= J. 1075il 
BY= 0 • 088 64 
BY= 0· 073:i9 
t3 y = 0 • 0 62 2 Lj 

BY= 0·::i529J 
BY= G· ;J4534 
i:3Y= U•03914 
BY= iJ • 0 3 :4(0 3 
B '{ = 0 • 0 2 7 .7 6 
BY= 0.\32613 
BY= 0; 0:2 31 S 
at= 0. :J2·.Js 1 
BY = 0 • G 1 ,3 3 6 

BY= 1 ·00000 
BY= a. 7150L! 
BY= '] .. 5243 6 
BY= 0-37 L!64 
Bi= 0·3031 7 
BY= 0 ... 23738 
BY= o; 13902 
gv-. - ~J. 15277 
BY= .·:- 1251 1 lOI• 

a·r ='= 0· 10363 
BY= 0· 0:3 6;3 3 
BY= o; 073L!1 
BY= o. 0 626•J 
BY='= 0 .. J5379 
BY= JoVJL!656 
BY= 0· 04055 
BY= a. 03553 
BY= 0 .. 03131 
BY= o. 02 772 
Bl= u. 02-466 
tJ''{ = 'J• 822U3 

DB~<DY= 1·8DULJCJ 
DBXDY= J. 76112 
0 8i\ IW = 0 • So,-) 6 'r 
oaxuY= vj·44725 
DBXiJY= o. 34923 
08/~ IJ(= ,j. 2 7 6.7 l 
D i3i\ 0 Y = 0 • 2 2 2 2 S 
0 BX IJ( = J • 1 .3 .:)o 2 
DGXDY= J. 1433 5 
DB,< D'( = 0. 1 2 Jo 6 
Di-3/Z IJY = 0 • l J 1.1~j 'I 
03i(iJl'= J•<Jtio23 
l) J i( 0 '( = ,) • t0 7 s 4 ;J 
D!3.<0Y= C·064:J:~ 

Dd.:\Oi= 0·05623 
Odi\01= u·:UilJG) 
0 B.< D Y = 8 • ;j -4 3 i) I 
DBi<DY= 0·03773 
08:\0i'= (;j. ~;J],-.6 

03.:\DY = 0 • 02';) 9 7 
DBkDY= (:).'J263cJ 

OBXDY = 1 ·00800 
OBX DY = 1 ·327!3'9 
DB.:< Of= 0·9 1 9 77 
OBXDY = g. 73 Lj 1 7 
DeL< DY = 8· 65 6-48 
DBXD(= 0. 5 46d 3 
DBl\OY = i,). 45 60 6 
OBXOY = ;j. 33 19 7 
DB:\ DY = 0·321 73 
03XDY= 0·2727C) 
oa:< D( = 0· 23262 
02.\DY= 0· 1) 7 68 
08!.; DY = 0· 1 72LJ6 
DB.<O·{ = J. 1 4;) 3 1 
OS.< Of= ~~ . 1303 6 
08.'\ OY = g. 1 1 L!3 :1 
08.< DY = 0· 10 1 37 
DB.~ DY = 0· IJ313 5 
DB.\ OY = 8 .. 07:1;)3 
DB;<ot= ,;; • :.j 7 1 -4:3 
o;,< t:Jt' = · .. ) . ~6L;l 3 



• .. J= 1~2ta00D 

i~= 0.-00000 
H= 0.30080 
R= 0~60000 
i~= 0-"90000 
R= 1~20000 

r<= 1 ;5 0000 
~~ = 1 •· 2i 0 0 u 8 
R= 2··1,JJ00 
R= 2;40300 
it= 2.· 78000 
R='= 3;0k:H2J00 
it='= .3 .. 32J008 
R= 3o600J0 
R= 3d0008 
~~= 4 ... 20\--JOO 
R= 4~50080 
R='= 4;30000 
R= 5; 10~J00 
R:::: 5;40000 
R= 5·; 7vJ000 
R::, 6~00000 

ltJ= 1. 5 0000 
R:::: 0~00000 
R='= 0.30000 
R= 0.-60000 
R:::: 0.·90000 
R:::: 1~20000 
R:: 1;50000 
R='= f.· 8 0000 
R:::: 2 ~ 10000 
R:::: 2;40000 
R='= 2·; 70000 
R:::: 3~·00000 

R:: 3;30000 
R:::: 3; 60000 
R= 3;90000 
l~= 4; 2J·J\2L) 
~~= 4;50000 
R= 4·· 3 0000 
it= 5dJ000 
R= 5;40000 

A= 1.00000 
A= 0.·92957 
A= 0 •a 62 44 
A= ;J.S0881 
A= 0·74521 
A= 0;69540 
A= vJ.-65033 
A= o-·61107 
A= 0·5 75 33 
A= 0 ;5 4331 
A= o.-51437 
A= 0·43318 
A:: 0;46439 
A= 0. 44270 
A= o.-42237 
A:: 0· 40467 
A:: 0 ~ 38 79 2 
A: 0. 3 724.6 
A:: 0··35815 
A:: 0; 3 443 7 
A= 0·33252 

A= 1 • 00000 
A:: 0;9 5325 
A= 0 • 9 01 73 
A= o.-s so 14 
A=. 0;80064 
A:: 0;75.iJ31 
A= rz/.-71150 
A= 0 •. 67222 
A: 0;63628 
A: 0;60343 
A='= 0 ;5 7339 
A= 0 ;5 45 9 0 
A= 0;52068 
A:: 0·49750 
A=. >:0~47616 
A= o.-45646 
A::: 0· 43823 
A= 0·.·42133 
A= (].40563 

BX= 1 • 00000 
BX= [iJ.93263 
BX = 0 • 9 1 4 62 
s,< = 0 • s 3 0 4 6 
ax= o. 74563 
Bi'\ = 8; 6 6 6 7 7 
BX = 0 •· 59 59 4 
ax= ·a .-5.3347 
a;<= 0· 47332 
BX= 0·Li3116 
BX= 0; 38959 
ax= cJ."35329 
Bi"\= 0;32149 
BX= 0·29356 

BY= 1·00000 
BY= 0· 7513':1 
BY= 0. 57 2 1 5 
BY= 0 • 4422:3 
BY= 0 • 3 4 7 i;j2J 

BY= 0·27633 
gy:::: 0 .. 222~7 
BY= 0·1··3215 
BY= 0. 15049 
BY= 0· 12561 
BY= 0·10533 
BY= 0. :03 9 9 3 
BY= 0·077vj2 
BY= o.·,~6644 

BX= 21·26394 BY= Q. 0576:3 
BX= 0;24715 BY~ 0·05833 
BX= 0;22731 BY= 0~04426 
ax= o.-21057 BY= 0;03908 
BX= 0;19515 .BY~ 0;03467 
ax= 0;1s132 BY= o.-03d89 
a;<= 0· 16:388 BY= 0·02764 

BX= 1 • 00000 
BX=1·19353 
BX= 1;24008 
8/\= 1·21001 
8/\= 1· 14326 
8/\ ~ 1 .. 8 61 6 6 
ax= o.-97682 
BX ~ 0 ;39 462 
BX= 0;81783 
ax= 0·74752 
ax~ o.- 63 33 6 
BX = zf; 62 659 
BX= 0 • 5 7521 
B)\= 0 •· 5 29 1 7 
sx= 0·48790 
BX= o.· 45083 
BX= 0·41761 
ax= 0·38766 
BX= 0· 36063 

BY= 1. 00000 
BY= 0. 79 01 6 
BY= 0•62554 
BY = 0 • 49 8 4 4 
8(= 0·40064 
BY= 0;_32513 
BY=:: 0·266.iJ4 
BY = 0 • 2 2 0 4 3 
BY:::: 0 • 1$ 402 
BY= 0 • 1 5 49 5 
BY= 0. 1 31 51 
BY= 0 • 1 1 2 45 
BY= 0;89632 
BY= 0. 03 39 0 
BY= 0 • J7 3 1 4 
BY:: 0; 0 641 1 
BY= o.·056·~9 

BY='= 0·:35001 
gy: 0·04447 

DBXDY= 1·00000 
DBXDY= -1.84107 
DB;\l)Y= -;2.39L~:27 

DBXIJY= -3-12197 
oa;'\oY= -2.:19861 
OBt'~ DY= ...:2. 72112 
DBi\DY= -2•41562 
OBXDY= -2· 11921 
DBXDY= -1 .·s 4931 
08)\i)'(= -1· 61264 
Da:-<or= -1. 40719 
lJB/~DY= -1· 2306'4 
D 8X D Y = ...: 1 • 0 7 9 .iJ 2 
08/\0Y= -0.9 499 5 
08:-'\0Y= -0.33898 
0 :~;{ D Y = ...: 0 • 7 -'l 3 6 5 
DBXDY= ...:0.66151 
DBXOY= -0.59L~52 

DBXDY= -0· 5289 5 
OF-J/(DY= -0.-47536 
Df3XDY= -QJ. 42355 

DB~<DY= 1·00000 
DBXDY= 0·34773 
OBXDY= -8dJ015i3 
DBXDl'= -0·1 7641 
DBXDY= -0·25443 
DBXOY= -0·23029 
DBXDY= ...:0;27901 
D8i\DY= ...:0.·26442 
os;<oY= ...:0·24405 
D 8l\ D '( = ..: 0 • 2 2 19 4 
08.:\DY:::: -·0·20018 
DBXDt= ...:0. 17976 
oa;<oY= ..:0·16113 
DB>\DY= -0·14433 
D 8 ;< D Y = - 0 -1 2 9 4 6 
DBX DY = -0 • 1 1 62 4 
DBXDY= ..,;0·10455 
DBi\DY= _.0·09423 
DB>\DY= -0.03511 

R= :J•70808 A= 0.39101 a;\= 0·33619 BY= 0·03971 DB>\DY= -0·C.i7705 
R= 6;00000 A= 0;37736 BX= 0·31404 BY= 0;03560 DBXDY= -8·06992 
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l·; = 1 .. 3 0 8 0 0 

R= 0: 00vJ00 
~= 0 .. 38008 
K= 0;60000 
IX = Cl ; 9 0 iJ J 0 
i~= 1 .·20000 
i~: 1 ;soOG0 
f~= 1 .·30008 
t< = 2 ... 1 0 0 0 0 
~-<= 2· LJ0000 
r~= 2·.- 700I::.H:J 
R: 3'."80080 
i~= 3 .. 30000 
R= 3·.· 60000 
R: 3~-9 0008 
l~= Lj ... 20008 
~~= 4'." 5 0080 
i<= 4.-3-:::JOCJu 
H= s.-1o0oo 
R= 5."40000 
R= 5; 70000 
R= 6;00000 

W= 2·10000 
R= 0;00000 
R= 0;30000 
R= 0.-60000 
R::: 0'."9 0800 
R: 1;20000 
R= 1;50000 
~~= 1.-80000 
R: 2.·10000 
R: 2;40000 
R: 2;70000 
i<= 3~'00000 
R= 3;30000 
R.::: 3·; 60000 
R= 3;90000 
R: 4; 20000 
R= 4;5G00t3 
R: 4·;30000 
R= s.-18080 

A= 1.00000 
A= 0.97608 
A= 0o9412S 
A= o;90112 
A= o.-:35935 
A= 0 .·s 1 79 5 
A: 0;77305 
A= k:Jo74025 
A= 0 •· 70 4 76 
A:: 0·67169 
A= o.-64093 
A= o.-61233 
A = ~r.-s 3 59 ~J 
A: 0;56131 
A= o.-53343 
A= 0 .-s 1 72 6 
A:: 0.49749 
A: 0; 4 79 0 7 
A=. 0;46136 
A= 0;44577 
A= 0;43070 

A= 1·00000 
A: 0."99 706 
A= o.-97378 
A: 0;95121 
A= 0;91350 
A= 0;33340 
A= o.-84769 
A'= ~:r.-c 1246 
A= o.-77333 
A:: 0;745 79 
A= 0 ."71 489 
A=. 0; 665 74 
A: 0·65332 
A= 0 • 6325 7 
A= o.-6JS42 
A= 0;53573 
A=. 0."56454 
A= 0."54461 

BK= 1· 0l::J000 
8/\ = 1 • 9 432 1 
8~{ = 2 .- Lj 2 7 7 6 
BX= 2.· 6272 6 
8,\ = 2. 65 6 '7 4 
BX= 2--533)1 
8/'\ = 2 .- 4 7125 
BX = 2; 320 1 7 
BX = 2. 1 7 6 77 
ax= 2-02630 
BX =. 1 :ss 1 SS 
ax= 1."74610 
Bi\ = 1 ; 62i:ji0 4 
BX = 1; 5039 3 
BX= 1; 39 750 
ax= 1~-30019 

BX =. 1:21 1 3 6 
Bi\::: 1;1302·:1 
BX= 1·05629 
BX= 0."93869 
BX= 0;92639 

BX= 1· 00000 
ax= -i·61342 
BK =. ...: 3 ; 2 4':1 1 S 
BX::::: - 4; 1 9 G 43 
BX = ._. LJ: 66 5 '3 9 
BX= _; 4;3 7275 
BX ='= _; 4; o 69 52 
ax= ..:4.-75050 
ax= :... 4; s 6443 
ax= ..:4.-3LJ389 
BX = _; 4; 10 65 2 
Bi<= ...:3;3 6744 
BX= -3· 63353 
ax= :..:3.-LiJ931 
BX = ...: 3; 1 9 71 :1 
a;< = -2 • 9 9 s 2 6 
8>1. = -2 .. s 12 79 
BX= -2.-64051 

BY= 1. 0000vJ 
BY= :a. 323 LJ7 
BY= 0 • 63 1 43 
BY= 0."56001 
BY= 0; Lt61 5 S 
BY= J • 33 23 1 
BY: 0 • 313 61 
BY= 0 • 26 730 
BY= 0 ;225 7;:J 
BY= 0;19199 
BY= 0.-16432 
BY= 0; 1 41 51 
BY= 0·12260 
BY= 0 _- 10 68 8 
BY= o.-o9 35 LJ 
BY= 0;03 232 
BY: o; 0 72 79 
BY= 0.-06465 
BY= 0;G5765 
BY= o. 05 1 61 
BY= 0·0Ll637 

BY= 1 • 00000 
BY= U·36446 
BY= 0."73693 
BY= Q. 62tH3S 
BY= 0; 52 7 2 7 
BY= 0·44594 
3Y= 0;37320 
BY= 0;32200 
BY= 0;27540 
BY='= 0 ."23663 
BY= 0·20LJ43 
BY= 0;177LJ5 
BY= g;15473 
BY= 0.13564 
,gy = 0. 1 1 9 41 
BY= 0 • 105 So 
BY= 0 • iJ9 3 7 4 
BY= !J • 03 3 55 

081\DY= 1.(J0~J~Jo 

08/~DY= Q.SLtLl6l::i 
DBXOY= 0·25SJ;J 
08,\DY= O·.u7-J 70 
OBXDY= -0. U2251~ 
DBXDY= -0·!079~)4 

oa;<oY= -tJ-18766 
DBXD'i'= -0·11964 
08/\DY= -0ol2190 
DSX DY = ..: 0. 1 1 S 6 7 
DBXoY:: -~J-11254 

DBi\OY= -:J.1Y:>~3 

DBXDY=. -0.:1)';1705 
Oi::L'\DY= _.0. 03914 
OBXDY= -0·Uo153 
DB/\Ol'= -o. 0 7451 
oa;(DY= -o.o6soo 
DBXDY= -'0.062\06 
C a:< OY = - G • ·J 5 6 6 7 
D BX 0 ( = -0 • 0 5 1 7':J 
OB:<DY= -0· CiJ4733 

DBXOY= 1·00300 
oa>\DY= 0· 64475 
OB>~DY= 0·33393 
08:\IJY= C·213'i7 
08!\DY= 0·09385 
03XOY= 0·02398 
08>\DY= -0·Ll2212 
08,\DY= -0. 0LJ9 5:0 
03XDY:. -0·06~71 
DBX OY = -8; vJ 72 1 J 
08~\DY= -0.07L!S<'i 
08~\DY= -J.J7393 
D8X Dr= -8 • .J 71 4.3 
Di3 .. < 0( = - :J. ,:; 63 :~1:] 
Or3,-\Dl'= -•;j • .J6.i;;J1 
08>\DY= -J.iJS'J33 
02:\oY= -0 • \JS Si~6 
o;.::-;ot= -;J.G5IG3 

R = 5 ; L! 0 0 G 0 IC:; = 0 • 5 2 53 9 8 X = - 2 • 48 0 a 7 BY = 0 • 9 7 4 7 5 DEi~< 0 Y = - J • U L; 7 3 G 
R= 5;7~000 A= 0·50830 BX= -2.-33315 2Y= 0.06711 OSXDY= -0·34421 
~= 6;00000 A= 0;49174 BX= -2.-19~6 BY= J.J6J45 08XDt= -G.~4835 
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L·j= 2· 400Cj8 
i~= 0 .. 00000 
R:: o·.· 30000 
i~= 0·68u:D0 
K: 0 .. 90000 
R= 1 .28000 
R::: 1.-50000 
R= 1.-30u01a 
R:: 2· 10U00 
R: 2·~ 4CH000 
R= 2'.- 70000 
R: 3· 00000 
R::: 3 .. 30000 
l~= 3 .. 60800 
R= 3 .. 90000 
i~= 4.-20000 
R= 4 ... 5 000(-] 
R= .q;s0o0o 
l~= 5.- 10J00 
R= 5·; LJ0000 
R='= 5·.- 70000 
R:: 6 .. 00000 

hi= 2.-70000 
R= ~r.- 00000 
R= 0·; 30000 
R= o·.- 60000 
R::: 0.'90000 
R= 1;20000 
j~= 1' .. 5 0000 
R= r.-s2l000 
R: 2~·10000 
R: 2;48000 
~~::::: 2·: 70000 
R= 3;.·ooo08 
t~= 3 ... 3008 0 
R= 3;6vJJ00 
R= 3;90000 
R= .q;20000 
R= 4·.-souoo 
R= .q;soo0o 
R= 5;10ooo 
i~= 5~LJ0000 
R= s~-7JCJ00 

A= 1 ·00000 
A= 1 • 015 75 
A: 1 ·01342 
A: 8.998 73 
A= 0.-9 7680 
A: ~. 9 LJ8 3 6 
A= 0.9 1302 
A= 0.-38 649 
A:: o.-3 54 73 
A:: 0' .. 8 2355 
A: o·.-79324 
A= o.·76403 
A= 0~ 73621 
A= 0 .. 709 69 
A= o. 63 452 
A: g. 660 70 
A= o.- 633 15 
A= 0·61 63 Lj 

A= 0·59670 
A= 0.-57765 
A= o.-559 63 

A= 1·00000 
A: 1;03207 
A = 1 .• , 0 LJ 4 6 3 

A: 1 •' 0 42 71 
A= 1;030LJ6 
A=. ldJ1113 
A='= 0~93716 
A: LiJ';9 6035 
A: 0;93201 
A: ~j'; 9 0 3 2i 5 
A= o.-87411 
A: i:J.84563 
A: 0 ~,3 1 79 0 
A='= 8 ;79 1 10 
A='= &) • 7 65 3 4 
A= 0; 7 LJ 0 66 
A= 0 ~ 71 709 
A= 0;69462 
A::: 0·67322 
A= 0. 65 23 5 

BX= 1 . 0000Z 
BX = o.-20333 
BX= 

·I 

3LJ529 - U• 

BX= - 0 .. 71 LJ32 
ax= -G.-9471 / 

0 

BX= - 1 . 03 29 Lj 

a;\= - 1 . 15 134 
ax= - 1 . 1 7405 
BX= 

.. 
1 1 665 1 - . 

ax= - 1 . 13952 
sx= - 1 . 1005 7 
8''..:. 1\- - 1 . us 477 
8'/-1\- - 1 ;,:,H;J557 
BX= ..:a.-95526 
B~\ = ...:o.-9US37 
a;<= ~8.-3563 Lj 

BX= - o. - -~ 1025 0 

BX= _. 0.- 7659 5 
BX= -·o.- 72403 
BX= :... 0. 68 Lj 63 
BX= ~0··' 6LJ773 

BX= 1 • 00000 
BX ='= 0 • LJ8 9 62 
ax= 0."IOLJ02 
ax= - 0. 1 7 60 LJ 
BX:: ..: 0 • 3 7 1 9 2 
ax= :...·o. S2J33~J 
ax= ~o.-53665 
sx= :.:o; 63503 
ax= -;3. 65SLJ2 
ax= ~0.- 66LJ2:3 
BX:: ...: 0; 658 D 7 
ax= ..:o.6LJ37o 
sx= ..:a. 62427 
BX::: ~ 0 ·' 60 15 6 
BX :: - C • 5 7 7 1 J 
BX = - J • 55 1 3 9 
BX= -0.52663 
BX = -0 • 50 1 79 
BX = - 8. Lj 7 7 6 7 
BX= ..:a. LJSLJ-<;7 
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8Y = 1 . 00800 
BY= J. 39 71 7 

BY= c. 7h.LJ1 
BY= 1]. 63 79tJ 
BY= o.- 59 536 
gv-. - 0·5 1 39 Lj 

BY= 0· 4LJJ56 
BY= 0-33335 
BY='= 0· 3321 1 
BY= o.-23361 
BY= 0· 251 69 
BY= 0;22L:J31 
BY= 13 .. 19 35 7 
BY= 0· 1 7073 
BY=, 0· 15 1 15 
BY= o. 13LJ31 
BY= 0· 1 19 73 
BY= '0. 10 71.:3 
BY= 0. 09 623 
BY= 0• ij3 667 
BY= 0.-0 7330 

BY= 1 • 00000 
BY= 0; 9 2 62 LJ 
BY= o.-a39LJ2 

BY= 8 • 7 4932 
a-r= vJ. 66366 
BY= 0·5i3LJ22 
BY= 8;51239 
8 '( = 0 .. 4 LJ9 8 9 
B'r' = 0 • 39 LJ3 LJ 
BY= 0;3LJ702 
BY:::: kf.- 305 63 
I3Y::: 0;2693 5 
BY= 8.-2339 2 
BY= 0;21215 
BY= :J-13395 
8 {= u. 163 79 
BY= 0 • 1 5 1 2 LJ 
BY= 8ol3591 
BY= 0· 12249 
BY= G·11J7~J 

oa;< DY = 1 ·0000l::J 
08/\ OY = 8. 71 s 45 

DeL\ DY = 0• LJd 73 6 
DB.-\ D'( = j. 3 1 6L;7 
OBi\ o·y = L:.i. 1:7'252 
oa:<oY= a. 185 49 
Dt3i\ UY = j. 0 453 3 
DBXOY= O·JOSJ7 
DB;( DY = -0. 02821 
DBXDY= - ~ij. iJ3663 
DBXDY= ..: 0. 04642 
Di3XDY= -0. 051 7 1 
OBi\ DY= -Cj.;Jj396 
OBi\ DY = -J.i:JSLJ22 
DB?~DY= -0.~)5313 

DBXDY= -0.05 13LJ 
oa;<oY= -0·'tJ49\:)3 
DBXDY= -0·L:.i46Li6 
DBi\DY= -0. ~)LJ330 
D3XDY= ..:0.041 1 4 
DBX DY = -0. 033 5 Lj 

D8XDY= 1· 00000 
DBXDY::: 0·77125 
DBXDY: 0 • 5 7034 

DBXD'r= o. 4061 LJ 
DBXDY= 0;27817 
DBXDY= J. ld 172 
DBi\DY= Q. 11038 
DB/\DY= 0;05963 
DBXDY= 0;02349 
DBXDY= -0.0016/J 
DBXDY= ...:0.01872 
DBXDY::: ..:o.02997 
DB:'~DY= ...:0 •. 83786 
Di:MDf= -O.D4120 
Di3>(0Y= -J.04326 
Di3:\0Y= -0· 0-::38 7 
DBXDY= -D· OLJ35~J 
DBXDY= -8·042LJ7 
08/\DY= -'0• ~0Ltl02 
DBX Ol = - ~:; • \:J 39 3 1 



~·i= 3·.· 00.000 
R: 0·.·o0000 A= 1-00000 BX= 1 ·000~30 BY= 1 . 08000 Di3X DY= 1 • 'J 0 .J c; G 

R= 0'."30000 A: 1 ."04619 8/\ = (3. 61 403 BY=" 0 .. 7 51 74 OBX DY = 0 •. .:; 1 72 7 

R= 0 .. '60000 A= 1 • :J 72 3 4 8/~ = 8· 304o 3 BY::: 0."33 45 Lj DBXDY= 0· 6 42 'j.j 

R= lif."90000 A: 1 ."08 271 ax= 0."065 79 BY= o-·30346 .DB>\OY= 0· 43 79 3 
j~= 1 -20000 A= 1. 03 10:3 BX= - o. 1 1322 BY= 0· 73046 DE>\OY= o. 359 65 
R.c.. ·- 1 .. 50000 A= 1·;a 7059 sx= :..:0."24327 .. BY= 0. 6549 5 Di3XDY= 0· 2569 s 
R=" 1 .. 30000 A= 1 ;o5 3 75 B~<:: ...;0 •. 33LJ66 gy: 0 .. 58442 DBXDY= 0· 1 7 7CJ'Z; 
R= 2'."1 0080 A=. 1."03255 B>\ = :..:o; 39 62 7 BY= 0."52007 DBXDY= !,.:J• 1 1 606 
R: 2'." 40000 A= 1 .. 00346 BX= .... 0. Ll35 33 BY= o. 46227 DBXDY= 0. 07039 
R= 2'."70000 A=" 0."93263 ax= ..;8; Ll5 774 f3Y= 0." 41833 ' DBi\ DY= 0. 03 66d 
R= 3."00000 A= [)."9 5583 r,v'...:. 

01\- -·o.· 46732 BY=' o. 365 43 os;< DY = .o. Jl215 
R= 3'." 30000 A= 0."92:332 BX= ..:0."46904 ;3y: 0."32555 DSXDY= -j.(:);JSLJl 

R= 3. 60000 A= 8."90133 BX= -·a. 4639 7 BY= 0 ."29 :05iJ DB>~DY= - ~J • a 1 7/4 
R= 3·.·9 0000 A: o.s 75 37 BX= ~0. 45 453 BY= 0."25975 DB>\ OY = -(J.;-0261 7 
R= 4·'20000 A= 0·349 49 BX= -.~-0 •· 442 1 5 BY= '9 .. 232 79 DB;\ t)Y = -Q.[031 73 
R: 4'·'50000 A= 0 .. 8 2439 BX= -0· 42 TOo BY= 0·209 1 1 DL3;'<DY= :-0-03:>1 7 
R: Lj' .. 80000 A= 0.":3001Lt s;<= ._. 0. 41250 BY= 0 .. 163 30 DBi\OY= -;J.037D7 
R= 5' .. 10000 A: 0. 7 763 1 ax= ._. 0. 39 655 BY= 0. 1 6993 OBi\ DY= _.0·0373 6 

R= s~· 40000 f-1= 0. 75 439 BX= ._.0 .. 33046 gy: 0 .. 1533 1 OBI< DY= '-~j--03735 

R= 5 ·.- 70J00 A: o.-73290 ax= :.:o; 364Ll9 BY= 0 ... 139 52 D8XDY= ._0 .. tJ37!?.9 
r~= 6."00000 A: 0'."71233 sx= . ·- ) gy: 0.- DB>\Df= -·:].03634 :..0. 3403 5 1268 5 

END xr o. 

.3-74 



ERAN-38 

DECAY OF IMAGE CURRENTS 

INDUCED IN A THIN CONDUCTING CIRCULAR CYLINDER 

BY A CO-AXIAL LINE-CURRENT PAIR* 

L. Jackson Laslett 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

July 29, 1969 

If the wall is absent: The vector potential of a single line current is 

2 2 
-I(t) ln _r ___ + __ s __ ~~-2_r_s __ c_o_s __ 9 

r 

and for s small (infinitesimal) the potential of a line-current 

with L I(t) ; s = P(t), becomes 
S--t 0 

A z = - p ( t ) { t lln (.::..r_2 _:+__::-s_ 2-:-:::-2....:2 r=-s~c o;;_s:;.._::_e) l L 
2 P( t) 

2 
:: cos e 1· 

r + s~ - 2rs cos e 
S=O 

2 P( t) cos 8 
r 

We no~ write, so as to take into account the effect of eddy currents 

induced in the thin conducting circular cylinder, 

A = 2 P(t) cos e 
z r 

I 
+A . 

As is custo~ary, displacement currents vlill be neglected. 

* Wr)rk supc)rted by the u. S. At.)mic Energy C::m1missicm. For previ::Jus 
·,.;ork, see L. Jackson Laslett, "Decay of I~age Currents in a Plane 
Geometry", LRL ReprJrt ERAN-37 (July 28, 1969). 
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Now B = - dAz = 
8 dr 

8 ~AI 
2 P(t) cos 2 o - dr' 

r 

while the induced current density in the wall at r R is 

I 
J = z 

~ dAzl 
p ct r == R 

The condition B
8 

\ + - B
8 

r=R r=R 
I 

= 4~J then becomes 
z 

r=R 

== ~~ r2 p '( t) co~ 8 + t I I l· r r=R 

We also req_uire continuity of AI and req_uire that AI (a Cartesian 

component of a divergenceless vector AI) be harmonic (V
2
A1 

= o, 
for r f. R): 

Suppose, then, that AI is of the form 

F(t) 
r cos 8 for r ,:S R, 

R 
AI == 

F(t) R cos 8 for r ~ R. 
r 

Then the inhomogeneous differential eq_uation for AI becomes 

~ F(t) cos 8 =; [ 2 P'(t) co~ 8 + F'(t) cos 8 ], 

or 

F , + P F 
2:n:R = ~ P'(t). 
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We take the solution of this first.-order equation to be 

2 
F =- R J 

-co 

t 
- _..2_ (t - ~) 

P"'(~) e 2
1rR d~. 

The vector potential of the induced eddy currents then becomes 

I 
A ?:: 

_ 2 r cos 8 
R2 

- 2 

-co 

t 

j' 
-co 

2~R ( t - ~) 
P'(;) e d~ 

- _e_ (t - ;) 
21rR 

d~ 

for r .:::; R, 

for r >,. R; 

the total vector potential correspondingly can be written: 

A (r,8;t) 
z 

2P(t) cos 8 
r 

2 f -21rR 

[ 

t . p 

- R -co P'(~) e 
(t- ~) l [~/RJ d;1· or cos 8, 

R/r {

r ~ R 

for r ~ R 
~ 

In the particular case that P(t) is a step function, of magnitude 

P
0 

occuring at t = t 0 [P' = P
0

8 (t- t
0

)] and with no changes prior 

to that time, the above solution for AI becomes: 

- 2 p 
0 

- 2 p 
0 

r cos 8 
R2 

cos 8 
r 

e 

- 2~R ( t - to) 
e for r ~ R, 

for r :;:::. R. 

3-77 



- 4 -

In this case of a "dipole" line current centered in a thin conducting 

circular cylinder, we appear to have, in contrast to the case of a 

plane conducting sheet, an exponential decrease of AI with time. The 
R p 

characteristic time is 't' = v' where v = 2:rr (for p in emu per square). 

Interpretation 

Interpretation of the Field Modification resulting from the 

Eddy Currents generated when P(t) is a Step Function: 

l. For r > R: 

AI has the form of the vector potential for a 2-D current 

"dipole" - similar to the actual "dipole source" P and similarly 
0 

situated, but of opposite polarity to the latter- whose strength 

- _P_ (t - t ) 
PI(t) = - p e 2:rrR o 

0 

an initial strength - P at t 
0 

build up form a value that is 

2. For r < R: 

decreases exponentially with time from 

= t
0

• [The external fields (r > R) thus 

zero at the initial time t
0

.] 

The vector potential AI that characterizes the field produced 

by the induced eddy currents is of the form that describes a uniform 

field (as is characteristic of the field produced within a circular 

cylinder by a current distribution J
1 

oc cos 8 on the bcundary h and z 
this field has the exponentially-decreasing value 

~I 2 Po 
H = -- e 

R2 

r 
lSuch a uniform "image field" is 

encountered in magnetosta tics (steady-state current problems) when a 

source approaches the axis and the external images in consequence 

recede to infinity .J 
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Appendix: Check of the solution given for A (r 1 9; t): z 

With 

A (r, 9; t) . z 

Also, then, 

2 P(t) cos 
r 

-OJ 

p 
- 2rcR ( t - n J [ r/R J {r ~ R ~ d~ • ~~r · cos e, for r ~ R, 

[ 

t - .....E._ ( t- t ) ] 
- ~p P'(t) cos 8 + ~ · P'(t) - ~1 P'(5) e 

2
rcR d~ ·cos 9 

-oo 

[ 

t -.....E._ (t- f.) ] 
rc~2 f P'(n e 

2
rcR df ·cos e. 

-oo 

I 
~ 4rcJ , as re~uired. z 
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DECAY OF IMAGE CURRENTS 

INDUCED IN A THIN CONDUCTING CIRCULAR CYLINDER 

BY A LINE-CURRENT PAIR 

THAT IS PARALLEL TO, BUT NOT NECESSARILY COINCIDENT WITH, 

THE CYLINDER AXIS * 

L. Jackson Laslett 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

31 July 1969 

1. Vector Potential With The Wall Absent 

We consider a 2-dimensional "current dipole", formed f'rom anti-parallel 

currents ± I (t) at 9 = o and r = h + s or h, in the limit s ~ o with 

P(t) = I(t) • s. Then the vector potential of' this isolated "current dipole" 
1 

is given by Y 

I() l 
= -P(t) l ds lln [2 2 

~ + (h + s) - 2r (h + a) cos ~} J 

= 2 P( t) r cos 8 - h 
2 2 

r + h - 2rh cos 8 

2 
By use of' the identity v 

ln (r
2 + r 

2 
- 2rr cos e) = 

0 0 
2 L: 
n=l 

2 
cos n8 - ln r 

s = 0 

(r < r), 
0 

this A (o) can be written in an alternative f'orm as an expansion in terms of' 
z 

familiar plane-polar harmonic functions: 
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2 P(t) {}. [il I ·r cosn~} e A (o) 1 ih + 
:z \ z n r 

\ = 0 

2 
(X) 

( ~Jn = P(t) L: cos ne (h < r). h n=l 

2. Introduction of a Vector Potential to Account for Induced Eddy Currents 

We consider now the presence of 

a thin circular cylinder, with its axis 

coincident with the polar-coordinate 

origin. The surface resistance of this 

cylinder is taken to be pemu per square 

and the radius of the cylinder is de-

noted by R. The vector potential of 

the induced eddy currents will be 

I written A , so that the total vector 

potential is (with ~AI = o, for 

r f: R): 

--4 
--4 oA 

With E oA 
J 

1 z = -dt , or = dt z p 

CJAI 

I + 
.6139 4nJ becomes = dr z 

r:::R r=R 

3-82 

I 

kl 
·---~----
0 'P 
-lr-

\ 

CJA 
and Be 

z , = - dr , the condition 

oAr 4n oA z 
- dr = dt p -r=R r=R 



or, equivalently, 

3· 

+ r:::.R 

I Solution for A 

r=R 

r::R-

- 3 -

~ ~n ~2P'(t) R
2 

R c~s 9 - h 
L:: + h - 2Rh cos e 

; \n 
p J'( t) ; ( ~) 

IR 
n=l \ / 

d.A I 
cos ne + dt 

r::rR 
] . 

I To precede directly to obtain a solution for A , it is convenient to 

employ the series expansion for A ( 
0

) that led to the last of the equations 

in Section 2. We then assume .A I to be of the form 

n 

; F (t)IB.\ 
1 

n I r i 
n= \ / 

that is manifestly harmonic. 

Then we require 

2 
R 

00 

2:: 
n=l 

cos n9 

(r ~ R) 

(r ~ R), 

cos n9 +; Fn'(t) cos ne] , 
n=l 

so that we obtain the first-order differential equations for the F (t): 
n 

F , + 
n = -

n-1 
2 _h_ 

Rn 
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An appropriate solution for F is 
n 

n-1 t -n:::!. . ( F 2-h- P' (e) e R 
= n Rn I 

~ 
-oo 

(t-e) 
de, 

v - .e_ (dimensions of velocity). 21r 

r t ' tf) (t-e) I I R2 
2 CIO I fP'(t) -n ::1. 

AI ~ L: R d, ll r;r . co. 
- h e 

n=l 
l. 

-oo 

J r ~ R 
I 

ne, for L r ~ R. 

When P(t) in particular has the form of a single step function, of magnitude 

P
0 

and occuring at t ~ t
0 

[so that P'(t) = P
0 

• o(t - t
0

)], this solution 

becomes 

AI= 2 CIO (!1f v 
p L: (cos ne) -n-

h (;y e R 
0 n=l 

4. Interpretation of the Step-Function Result 

(a) Interpretation of the result for t = t 0 ------- -- -- ---

(t-t ) 
0 , 

At t = t the last result in Section 3 may be written 
0 

(;if 1 
I 

00 \ 
A I(t ) 2 (. cos = -- p L: or ne 

0 h 0 n=l ~)n J 

3-84 

for t > t 
0 • 

{
r~R 

r~R 



- 5 -

R2 rd 2 2 
2rD cos 9] ) ] 

2 
- h2 

p 
L® (ln [D + r - R2 +- p 

0 h 0 D =-h 

r~ R 

= or 

[%. 2 2 
J J J. p (ln [r + (h + s) - 2r (h + s) cos e 

0 = 0 
r ~R. 

Thus, at the instant of' creation of' the "2-dimensional dipole current" 

P , we have the following image system that will serve to describe the ef'f'ects 
0 

of' the eddy currents induced in the cylinder: 

To account f'or fields outside the conducting cylinder (r ~ R), one 

provides within the cylinder, at the location of' the true source (r = h), an 

image that replicates this source but has the opposite sign. The combination 

then serves, of' course, to give zero total field in the region under consid-

eration -- namely in the region outside the cylinder. 

To account f'or magnetic fields inside the cylinder (r ~ R), one places 

a 2-dimensional dipole-current image at the familiar image position (outside 

the cylinder) whose radial coordinate is D = R2jh. This image has the same 

dipole polarity as the actual source P
0

, and a magnitude that is (R/h)2P
0 

[due, one might say, to the "magnification" in imaging a pair of' line filaments 

at hand h + s to radii R
2jh and R

2j(h + s) ]. The term~ P
0 

that appears 

in AI(t ) does not contribute to the magnetic field. 
0 

(b) Interpretation of' the result f'or t ~t0 ------- --- ---
The expression (Section 3) shown f'or t > t

0 
(in the case of' a step 

function that occurs at t = t ) is of' the form given f'or t = t , save that 
0 0 

h is replaced by h = he 
- Y... (t - t ) - Y. (t - t ) R o and P

0 
by P

0 
: P

0 
e R o • 
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These substitutions then suggest-the following interpretation: 

To describe the field outside the cylinder (r ~ R), one imagines 

supplementing the true source by a 2-dimensional current dipole of opposite 
v 

sign and exponentially decreasing strength, - P e - R (t-to); this image 
0 

imitially is situated at the location (r = h) of the true source but moves 

inward so as to decrease exponentially its distance h from the axis 

[ . - i (t - to)l • 
h =he j 

To describe the field inside the cylinder.(r ~ R), we introduce an external 

current-pair at a distance 
R2 
h and that 

increases exponentially as 

moment of this source is 

increase of strength associable with the magnifiqation that would result from 

imaging a pair of internal line currents situated near r = h ). 

5. Step-Function Solution in Closed Form 

Aided by the interpretation of the preceding section (Section 4), one 

may write the solution for a step-function P(t) in closed form:- Thus for r~ R, 

v (t - t ) 
R o 
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2 :!. (t - t ) 
= - 2 R2 p eR o 

h 0 D2 

1 -

Likewise, for r :;? R, 

v 
- - (t - t

0
) 

e R 

- 7 -

D - r cos 9 
2 

- 2rD + r cos 9 

"" h - r cos 9 

2 
R2 

v (t - t ) +-
R h 

D 0 
=he 

e 

v 
,... R 
h = he 

(t - t ) 
0 

2 ':"' 2 
r + h - 2rh cos e 

2 
=--P h 0 

v 
r - R (t - to) 
h cos 9 - e 

e 

We thus write, for the case in which P(t) is a step function, 

r 

R2 

-r 

1 -

hr . 
cos e - ~ E (t,t ) 

R o 

hr 2 ~ E(t,t ) cos e + 
R o 

. h . 
cos e - - E (t,t ) . r . o 
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- - (t - t ) R o 

·E (t,t ), 
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- '!... (t - t ) 
where E(t,t ) denotes 

0 

R o e while the upper and lower forms shown 

within the curley brackets refer respectively tor~ R orr ?R· 

The total vector potential is then 

A = 2 P z 0 

r cos 9 - h (t ? t ), 
0 r

2 
- 2rh cos 9 + h

2 

and the induced surface current in this case is 

R
2 

cos 9 - 2 RhE(t,t ) + [h·E(t,t )]
2 

cos 9 p 
0 = 1( 

0 0 

(R
2 - 2RhE(t,t ) cos 9 + [h · E(t,t )] 2}2 · E(t,t ) 

0 

for t ~ t • 
0 

0 0 

6. General Solution in Closed Form 

The results of the preceding section (Section 5) of course can be 

immediately generalized to describe the results for an arbitrary P(t): 

r cos 9 - h A = 2 P ( t ) --::::-=--::..;:..,;.:___:___;c~____,:::-

r2 - 2rh cos 9 + h2 

hr 
E(t,s) cos 9 -2 

t 
r .R 
2 hr 

/ R 1 - 22E(t,s) I 

abam.pjcm 

4 
v 

cos 8 + [(~) E(t,s) ]
2 

{ I R . 

- 2 I p '< s) ~ E(t,s )ds 

i l h E(t,s) 
1 

cos 9 - -
'-'" r j 

- 00 r h [(~)E(t,s)J 2 
1 - 2- E(t,;) cos e + r 

For r~ R orr ~R, respectively; 
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2 2 
R cos e- 2Rh E(t,~) + [h • E(t,~)] cos e 

•E(t,~)dE, 
(R

2
- 2Rh E(t,E) cos e + [h E(t,~)] 2 } 2 

- 00 

with E(t,~) = e 

field are given by 

= e 
oA z 

Be = - dr ' 

- 2~R (t - ~) 

dA 
1 z 

B =-~e r r o 

The components of magnetic 

7• Asymptotic Character of the Effects of Eddy Currents That are Induced 

by a Step-Function P(t) 

The solution for A\ as obtained in Section 3, was (for r ~ R or r ~ R) 

AI= 2 p - h 0 

so that 

2 
Az = h Po 

and 

Also, 

p 

B ""' e 
2___2. 

hr 

and 
p 

B = - 2---.2. 
r hr 

00 

00 

L: 
n=l 

n=l 

00 

00 

L: 
n=l 

00 

L: 
n=l 

r (~) n} 
l (~) n 

(cos n e) e 

(cos n e) 

- n y_ (t - t ) 
R o 

0 
• cos n e (t - t ) ] 

v r(~r + 

(~ n1 - n -R (t - t ) 
0 • cos n e n 

-(~r J 
e 

L 
r {(;f} v t )l 

t~r 
- n R (t -

0 • sin n e , n e 

, (~)n I 

J 
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so that the discontinuity of Be at r = R, namely 

p 00 

n(~r 
v (t- t ) - 4 ..2. I: (cos n e) e - n- at all times is !:::. B ::: R 

0 ' e hR n=l 

equal to 4n: J (as required), and initially (t = t ) the external field van-
z 0 

ishes [with B = o at t = t ] • r o . 

When expressed in this form, the results indicate that the various 

order spatial harmonics decay at increasingly great exponential rates as the 

harmonic order n under consideration becomes larger fdecay proportional 

- n * (t - t 0 ) t ~ to l . J 
to e or to e "L n where "L = B._ = ~ . 2n:R 

n nv n p • 

In consequence, the induced eddy currents that remain assume more and more 
5 

the character of a pure cos e distribution; correspondingly, the external 

magnetic field becomes more and more that characteristic of a "2-dimensional 

- Y.. (t - t ) current dipole", with the numerical factor 1 - e R o , and the eddy-

current modification to the internal field becomes essentially the expon

entiall,y decaying uniform field ::0 e- ~ ( t - to) ~y These results 

correspond to those obtained in an earlier report (29 July 1969) for the 

special case h = Oo 

The asymptotic character of the solution, as just described here 

(for t - t large in comparison to ~ ), also follows immediately from the 
0 v . 

closed-form results presented in Section 5• The results of Sections 5 and 

6 also become identical, when h is set equal to zero, to results presented 

in the previous report that considered only the special case of a source 

situated on the axis of the cylinder. 
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8. Numerical Computations 

(a) Numerical values of the induced current density have been computed 

at various times, for 10 - degree intervals of the polar-coordinate angle, 

for cases in which h ~ G • R, with G = O, 0.1, 0.2, 0.3, and 0.4; these 

values of G are denoted by G0, G1 , • · • ~ • 

current density, for a step-fUnction source 

The corresponding values ~f 
R J 

(P
0

), are given by Ji = T 
0 

(i = o, 1, ••· 4), as a function of the angle A (equals 8, in degrees) and 

f L - v ( t - to ) . 
o - R • 

-L cos 8 - 2 • G • E 
i With E - e , 1 

J =
i lt 2 

[l+(G •E)
i 

E. 
']2 2 • G • E • cos 8 

i 

Appendix A presents the results of this computation, with each table 

corresponding to a particular time (L = O, 0.5, ••• 3.0), and lists the Ji 

vs. Gi and A. 

(b) Similarly, for the image field and its gradient at the location 

(r = h, 8 = 0) of the source, we have 

By IL = h = 
y = 0 

p E 
2 0 

R2[1 _(~) 2 
\R. 

and 
oB I y 
~ 

R2BI R
4

[oB1 /ox] 
Thus, defining Bi = p y and Pi - ~ 

0 0 

at the points x = h = Gi • R, y = o, we have 

and 
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X= h 
y = 0 

= 

oB I 
X 

= --sy 
x=h 
y = 0 

R4 ~B!/oa 
hP 
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Tables are given in Appendices B and C respectively of the quantities Bi 

and Pi vs. G1 (o, 0.1, ••• o.4) and L. 
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see L. Jackson Laslett, ~Decay of Image Currents in a Plane Geometry" 

ERAN-37 (28 July 1969) and "Decay of Image currents Induced in a Thin Con-

ducting Circular Cylinder by a Co-Axial Line-Current Pair" ERAN-38 

( 29 July 1969) • 

1 The result A = 2P ( t ) -~-r---::c,..;;o...;.s_e.:.__-~h __ _ 
z r 2 + h2 - 2rh cos 9 

which would be obtained by employing the 

expression A = 2P(t) cos <I> for a 2-dimen-
z r

1 
sional current dipole on the polar-coordinate 

axis and then shifting the origin by a 

distance h. 

will be recognized as that 

2 CL W.R. Smythe, "Static and Dynamic Electricity'' (McGraw-Hill, New York, 

1950) Ed. 2, Sect. 4.02, Eqn. (1), P• 65. 

3 R2 i (t - t
0

) 2 
It is noted that ~ e = B_ , so that the external and internal 

h 
images (used to assist in determination of the magnetic field in the regions 

r < R and r > R, respectively) are images of one another. 

4 It can be confirmed directly that the results presented here in Section 6 

do constitute a solution to the problem as it was formulated by the next to 

last equation of Section 2. 

5 The fact that the current J becomes progressively more smoothly distributed 
z 

is reminiscent of a similar situation f:Jr currents induced in an infinite plane 
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conducting sheet (report of 28 July 1969). The initial eddy-current dis-

tribution in the present case is 

J (t ) = -z 0 

p 
0 

1( 

form if h = o. 

2 2 
(R + h ) cos e - 2 Rh 

2 2 2 
[R - 2 Rh cos e + h J 

3-94 . 
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APPENDIX B 

IMAGE FIELD AT SOURCE LOCATION 

DIMENSION G(5) 
DIMENSION 8<5> 
DO 1 0 I: l , 5 
GCI> : CI - 1)/10 
CONTINUE 
GO : G ( 1 > 
Gl : G(2) 
G2 : G ( 3) 
G3 : G ( 4 > 
G4 : GC5) 
A : 0 
PRINT7, A, GO, G1, G2, G3, G4 
L : 0 
E : EXP<<-L>> 
DO 30 I:l,5 
D : <1 - GCI)*G<I>*E>**2 
8(1> : 2*E/D 
IF CCA8SC8<I>>> .GT. (5.0E-4)) GO TO 25 
8(1) : 0 
CONTINUE 
CONTINUE 
80 - 8 < l > 
81 = 8(2) 
82 = 8(3) 
83 = 8(4) 
84 . = 8 ( 5) 
PRINT7, L, 30, 81, 82, 83, 84 
IF (L .GT. 4.95) GO TO 40 
L : L + 0.1 
GO TO 20 
STOP 

3-99 

B-1 



B-2 

A: o.ooo GO: o.ooo G1: 0. 100 G2: 0. 200 G3: 0.300 G4: 0.400 
L= o.ooo so= 2--:-ooo B1= 2 .(r.rr---d2--=---2~-1 1o · -Ef3:2·:-.n-5--B4 = 2:834 
L: 0.100 80: 1 .810 81: 1 .843 82: 1 • 948 83: 2.1 45 84= 2.474 
L= 0.200 80: 1 .63 7 81: 1. 665 82: 1. 750 83= 1 .908 84: 2.1 68 
L= 0.300 80: 1.482 81: 1.504 82: 1. 57 4 83: 1 • 701 84= 1 .90 7 
L= 0.400 80: 1 .3 41 81: 1.359 82: 1.416 83: 1.518 84= 1. 682 
L= 0.500 80: 1 .21 3 81: 1.228 82: 1.274 83= 1 .3 57 84= 1 • 488 
L= 0.600 80= 1 .098 81: 1 • 1 1 0 82: 1 • 1 4 7 83= 1 .21 5 84= 1 • 319 
L: 0. 700 80: 0.993 81: 1 .003 82: 1.034 83= 1.088 84= 1. -l 72 
L= 0.800 80: 0.899 81: 0.907 82: 0.932 83: 0.976 84= 1 .043 
L= 0.900 80: 0.813 81: 0.820 82: 0.840 83: 0.876 84= 0.930 
L= 1 .ooo 80: 0.736 81: 0.741 82: 0.758 83= 0.787 84= 0.831 
L= 1 .1 00 80: 0.666 81: 0.670 82: 0. 684 83: 0.707 84= 0.743 
L= 1 .200 80: 0.602 81: 0. 606 82: 0.617 83= 0.636 84= 0.665 
L= 1 .300 80: 0.545 81: 0. 548 82: 0.557 83= 0.573 84= 0. 59 6 
L= 1.400 80: 0.493 81: 0. 496 82= 0. 503 83= 0.516 84= 0. 535 
L= 1. 500 80= 0.446 81= 0.448 82: 0.454 83= 0.465 84= 0.480 
L= 1.600 80= 0.404 81: 0.405 82: 0. 410 83= 0.419 84= 0.431 
L= 1 • 700 80= 0.365 81= 0.367 82: 0.371 83= 0.378 84= 0.388 
L= 1.800 80= 0.331 81: 0.332 82= 0.335 83= 0.341 84= 0.349 
L= 1 .900 80: 0.299 81= 0.300 82: 0.303 83: 0.307 84= 0.314 
L= 2.000 80= 0.271 81: 0.271 82= 0.274 83: 0.277 84= 0.283 
-L= 2.100 80: 0.245 81= 0.246 82: 0.247 83: 0.250 84= 0.255 
L= 2.200 80: 0.222 81: 0.222 82: 0.224 83= 0.226 84= 0.230 
L= 2.300 80= 0.201 81= 0.201 82= 0.202 83: 0.204 84= 0.207 
L= 2.400 80= 0. 181 81: 0.182 82= 0.183 83: 0.184 84= 0.18 7 
L= 2.500 80= 0.164 81 = 0. 164 82: 0.165 83= 0.167 84= 0.169 
L= 2.600 80: 0.149 81= 0. 149 82= 0.149 83= 0 .1 51 84= 0.152 
L= 2.700 80: 0.134 81 = 0. 135 82= 0.135 83= 0.136 84= 0. 13 7 
L= 2.800 80= 0.122 81 = 0.122 82: 0.122 83= 0.123 84= 0.124 
L= 2.900 80: 0. 110 81 = 0. 110 82: 0. 11 1 83: 0 • 1 1 1 84= 0 .112 
L= 3.000 80: 0.100 81 = 0.100 82: 0.100 83= 0.100 84= 0. 101 
L= 3.100 80: 0.090 81: 0.090 82: 0.090 83= 0.091 84= 0.091 
L= 3.200 80: 0.082 81: 0.082 82: 0.082 83= 0.082 84= 0.083 
L= 3.300 80: 0.074 81: 0.074 82= 0 .• 07 4 83: 0.074 84= 0.075 
L= 3.400 80= 0.067 81 = 0.067 82: 0.067 83: 0.067 84: 0.067 
L= 3.500 80: 0.060 81 = 0.060 82: 0.061 83= 0.061 84= 0.061 
L= 3.600 80: 0.055 81: 0.055 82: 0.055 83= 0.055 84= 0.055 
L= 3.700 80: 0.049 81 = 0.049 82= 0.050 83= 0.050 84= o.oso 
L= 3.800 80: 0 .. 045 81 = 0.045 82: 0.045 83= 0.045 84= 0.045 
L= 3.900 80= 0.040 81: 0 .o 41 82: 0.041 83= 0 .o 41 84= 0.041 
L= 4.000 80: 0.037 ·81: 0.037 82= 0.037 83= 0.037 84= 0.037 
L= 4.100 80= 0.033 81: 0.033 82= 0.03-3 83= 0.033 84= 0.033 
L= 4.200 80= 0.030 81= 0.030 82= 0.030 83= 0.030 84= 0.030 
L= 4.300 80: 0.027 81= 0.027 82: 0.027 83= 0.027 84: 0.027 
L= 4.400 80= 0.025 81 = 0.025 82= 0.025 83= 0.025 84= 0.025 
L= 4.500 80: 0.022 81= 0.022 82= 0.022 83= 0.022 84= 0.022 
L= 4.600 80= 0.020 81= 0.020 82= 0.020 83= 0.020 84= 0.020 
L= 4.700 80: 0.018 81: 0.018 82= 0.018 83= 0.018 84 = 0.018 
L= 4.800 80= 0.016 81= 0.016 82: 0.016 83= 0.016 84= 0.017 
L= 4.900 80= 0.015 81= 0.015 82= 0.015 83= 0.015 84= 0.015 
L= 5.000 80= 0.013 81= 0.013 82: 0.013 83= 0.013 84= 0.014 

END XEQ. 
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APPENDIX C C-1 

GRADIENT OF IMAGE FIELD, AT SOURCE LOCATION 

1 • DIMENSION G<5> 
2. DIMENSION PC5) 
3. DO 10 I= 1 , 5 
4. G (I> - (! - 1)/10 -
5. 10 CONTINUE 
6. GO = GC 1> 
7. G1 = GC2> 
8. G2 : G<3> 
9. G3 : G(4) 

10. G4 : G(5) 
1 1 • A = 0 
12. PRINT7, A, GO, G 1 , G2, G3, G4 
13. L : 0 
14. 20 E : EXPCC-L>> 
1 5. DO 30 I= 1 , 5 
1 6 • D = ( 1 - G<I>*G<I>*E>**3 
1 7 • P< I> : 4*E*E/D 
18. IF <<ABSCP<I>>> .GT. <5.0E-4)) GO TO 25' 
19. P<I> = 0 
20. 25 CONTINUE 
21 • 30 CONTINUE 
22. PO = P<l> 
23. P1 - PC2> -
24. P2 : PC3> 
25. P3 : P<4> 
26. P4 : PC5) 
27. PRINT7, L, PO, P 1 , P2, P3, P4 
28. IF <L .GT. 4.95) GO TO 40 
29. L : L + 0.1 
30. GO TO 20 
31 • 40 STOP 
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C-2 

A: 0.000 GO: 0.000 G1: 0.100 G2: 0.200 G3: 0.300 G4: 0.400 
. L= o • oocf?cf=--~r:-o-oo-P 1 = 4:T_2_2_ -p·2:: ·C52f- P3: s:·3o8 P4 :-· 6-.-149 

L= 0.100 PO: 3.275 P1: 3.365 P2: 3.658 P3: 4.225 P4= 5.236 
L= 0.200 PO: 2.681 P1: 2.748 P2= 2.963 P3: 3.373 P4: 4.086 
L= 0.300 PO: 2.19 5 P1= 2.245 P2: 2. 403 P3: 2.700 P4: 3.205 
L= 0.400 PO: 1 • 79 7 P1: 1 .834 P2: 1. 950 ?3: 2.166 P4: 2.526 
L= 0.500 PO: 1 .4 72 P1: 1.499 P2: 1.584 P3: 1 • 741 P4: 1 .999 
L= 0.600 PO: 1.205 P1: 1 .22 5 P2: 1.288 P3: 1 • 403 P4: 1 • 58 7 
L= 0.700 PO: 0.986 P1: 1 • 001 P2: 1.048 P3: 1 • 1 31 P4= 1 .264 
L: 0.800 PO: 0.808 P1< 0.819 P2: 0.853 P3: 0.914 P4: 1 • 0 l 0 
L= 0.900 PO: 0.661 P1: 0.669 P2: 0.695 P3: 0. 739 P4= 0.809 
L= 1.000 PO: 0.541 P1= 0.547 P2= 0.566 P3: 0. 599 P4: o. 649 
L= 1 • 100 PO: 0.443 P1: 0.448 P2: 0. 461 P3: 0. 486 P4: 0.522 
L= 1.200 PO: 0.363 P1: 0.366 P2: 0.376 P3: 0.39 4 P4: 0.421 
L= 1 .300 PO: 0.297 P1: 0.300 P2: 0.307 P3: 0.320 P4: 0.340 
L= 1 .400 PO: 0.243 P1= 0.245 P2: 0.251 P3: 0.260 P4= 0.274 
L= 1. 500 PO: 0. 199 ' P1: 0.200 P2: 0.205 P3: 0.212 P4: 0.222 
L: 1 .600 PO: 0.163 p 1 = 0.164 P2: 0.167 P3: 0.172 P4= 0.180 
L= 1. 700 PO: 0. 133 PI= 0. 134 P2: 0.136 P3: 0 .140 P4: 0.146 
L= 1.800 PO: 0.109 P1: 0.110 P2= 0 • 1 11 P3: 0 .11 4 P4: 0.118 
L= 1 .900 PO: 0.089 P1: 0.090 P2: 0.091 P3= 0.093 P4= 0.09 6 
L= 2.000 PO: 0.073 P1: 0.074 P2: 0.074 P3: 0.076 P4= 0.078 
L= 2.100 PO: 0.060 p 1 : 0.060 P2: 0.061 P3: 0.062 P4: 0.064 
L= 2.200 PO: 0.049 Pl: 0.049 P2: 0.050 P3: 0.051 P4= 0.052 
L= 2.300 PO: 0.040 P1: 0.040 .P2= 0.041 . P3: 0.041 P4= 0.042 
L: 2.400 PO: 0.033 p 1 = 0.033 P2: 0.033 P3: 0.034 P4: 0.034 
L= 2. 500 PO: 0.027 P1: 0.027 P2: 0.027 P3: 0.028 P4= 0.028 
L= 2.600 PO: 0.022 P1: 0.022 P2: 0.022 P3: 0.023 P4: 0.023 
L= 2.700 PO: 0.018 P1: 0.018 P2: 0.018 P3: 0.018 P4: 0.019 
L= 2.800 PO: 0.015 PI: 0.015 P2= 0.015 P3: 0.015 P4: 0.015 
L= 2.900 PO: 0.012 PI: 0.012 P2: 0.012 P3: 0.012 P4: 0.012 
L= 3.000 PO: 0.010 P1= 0.010 P2: 0.010 P3: 0.010 P4= 0.010 
L= 3.100 PO: o.oos p 1 : 0.008 P2: 0.008 ?3: 0.008 P4: 0.008 
L= 3.200 PO: 0.007 p 1 : 0.007 P2: 0.007 P3: 0.007 P4= 0.007 
L= 3.300 PO: 0.005 P1: 0.005 P2= 0.005 P3: 0.005 P4= 0.006 
L= 3.400 PO: 0.004 P1= 0.004 P2: 0.004 P3: 0.004 P4: o.bo5 
L= 3.500 PO: 0.004 P1: 0.004 P2: 0.004 P3: 0.004 P4: 0.004 
L= 3.600 PO: 0.003 p 1 = 0.003 P2: 0.003 P3: 0.003 P4= 0.003 
L= 3.700 PO: 0.002 P1= 0.002 P2: 0.002 P3: 0.002 P4= 0.002 
L= 3.800 PO: 0.002 P1: 0.002 P2: 0.002 P3: 0.002 P4: 0.002 
L= 3.900 PO: 0.002 P1= 0.002 P2: 0.002 P3: 0.002 P4= 0.002 
L= 4.000 PO: 0.001 P1= 0.001 P2: 0.001 P3: 0.001 P4= 0.001 
L= 4.100 PO: 0.001 p 1 = 0.001 P2= 0.001 P3< 0.001 P4: 0.001 
L= 4.200 PO: 8.99E-04 P1: s.ooE-04 P2: 9.01E-04 P3: 9.03E-04 
P4: 9.06E-04 
L= 4.300 PO: 7.36E-04 P1: 7.37E-04 P2= 7.38E-04 P3: 7.39E-04 
P4: 7.41E-04 
L= 4.400 PO: 6.03E-04 P1: 6.03E-04 P2= 6 .04E-O 4 P3= 6.05E-04 
P4: 6.06E-04 
L= 4. 500 PO: o.ooo p 1 : o.ooo P2: o.ooo P3: o.ooo P4: o.ooo 
L= 4.600 PO= o.ooo p 1 = o.ooo P2: o.ooo P3: o.ooo P4= o.ooo 
L= 4.700 PO: o.ooo Pt: o.ooo P2: o.ooo P3: o.ooo P4= o.ooo 
L= 4.800 PO: o.ooo PI= o.ooo P2: o.ooo P3: o.ooo P4= o.ooo 
L= 4.900 PO: o.ooo Pl: o.ooo P2= o.ooo P3: o.ooo P4: o.ooo 
L: 5.000 PO: o.ooo Pl: o.ooo P2: o.ooo P3: o.ooo P4= o.ooo 

END XEQ. 
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I. Introduction 

The action of self-fields has been mentioned (Kerst, Judd, Lambertson, 

Hartwig, Faltens) as a. possible mechanism for self-inflection. It appears 

that, even overlooking image effects, there may be several phenomena of this 

type: 

( i) There are radial self forces from bias fields ( Laslett; 

Ivanov et al.) that act in a sense to expand the ring (Kegel). 

(ii) The increasing flux through the ring produces a back-EMF 

that acts to retard the particles, with the result that the orbits gradually 

would contract in radius from this effect alone. 

(iii) The increasing charge on the ring produces an-electrostatic 

potential that acts to retard the particles on injection, and this effect 

also acts to decrease the radius of the path described in the magnetic 

field (Faltens). 

We attempt to treat .these effects, in turn, below. We suppose that 

at any time n ( t) particles have been injected to form a ring, so that we 

consider the steady injection of n highly-relativistic particles (of charge 

e esu) per second, at an injection moment~~ p . For simplicity, we take the 
0 

applied magnetic field to be spatially constant ("uniform"), and let R denote 
0 

the trajectory radius for particles of moment~~ p in this field. 
0 

We employ r to denote the classical particle radius, 
0 

(i) 

r = 
0 

2 
e 

2 
m c 

0 

( = 2.82 x 10-l3 em for electrons). 

II. Estimates of 6R/R 
0 

The effect of the radial self-forces: 

The electric and magnetic "bias fieldsrr lead to an effective 

radial bias force (Laslett; Ivanov et al.) 

eF ) = e ( E + B ) = r o r z o 

2 
m c y 

0 
--- !-LP, 

R 

to employ the notation of Ivanov et al. in· which 
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• 

f!P = 

= 

- 2 -

(Particles per unit length) x r 
0 

nr 
0 

1r'J'R 
ln 8R 

b 

[2 ln ~1 

Then, for particles of momentum p in a magnetic field 
0 

B (emu) = 
0 (e/c)R 

0 

we have (treating ~ ~ l): 

or 

[cf. Kegel]. 

[~ B - mo C'J' f!P] R = ~ B R = m 'J'~C 
c o R c o o o 

~ B R- (m q )(f!P) 
c 0 0 

B R -
0 

2 
m c 7 
......:;..o __ JJ.P 

e = B R 
0 0 

B R - (B R )f!P = B R 
0 0 0 0 0 

m 'J'C 
0 

2 
m c 

0 =--r e 

B R = B R ( l + f!P) 
0 0 0 

R 
R 

0 

(2) 

(3) 

This result contrasts the orbit radii of electrons of a specified kinetic 

energy under circumstances of high vs. vanishing intensity. 

( ii) The effect of the back electromotance: 

With n particles of charge e esu in the ring, the circulating 

current in emu is (for ~ ~ l) 

I 
ne 

2rtR 
emu 

and the rate of increase of this current is 

• ne 
I = 2rtR abamp/ sec. 
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The induced electromotance (per turn) is most readily obtained from the 

self-inductance of the ring, which is given roughly by 

L ~ l~rcR ln SR 
b 

emu. 

The induced electromotance per turn then is 

E - LI 

= - 2ne ln 8_R 
b 

emu, 

the negative sign indicating that the induced electric field acts to 

decrease the particle energy when n > o (Lenz's Law). 

(6) 

(7) 

All particles, once they are in the ring, will individually lose 

momentum at the following rate as a result of the induced electric field 

associated with the electromotance given by Eqn. (7): 

~ l dE = = dt c dt 

or 

Thus, for an early 

intensity, 

~ 

Ee 
2 
c 

(l) 

= 2rc 

dp/dt 

Po 

-

particle 

nr 
0 = ) Po early rc')'R 

2 
8R . 2 8R ne m ln ne ln --2 = -
b rccR b 1(C 

= ne 
2 

8R ln 
2 b rc')'m Rc 

0 . 
nr 8R 0 ln 
rc')'R b 

= 

that is injected when the ring has zero 

8R ln 
b 

while one injected when n = n. experiences a momentum change given by 
1. 

(n- n. )r 
1. 0 ln 8R 

b 

(8) 

(9) 

( 10) 

Accordingly, at any given time when the number of particles in the ring 

is n, the average particle momentu.'!l. will differ from p by an a'Ilount 
0 
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.6.p = <p> -p given by 
0 

n J (n- ni) dn. 
~ r 8R ~ 0 ln 

Po n rc )'R b J dni 
0 

nr 8R 0 ln ( ll) = - 2rc)'R b 

With the ring acting as-a-whole with regard to its curvature in a uni

form applied magnetic field, this change of average momentum will imply 

a corresponding radius change given by 

.6.R 
nr 8R 0 ln { 12) - =- 2rc)'R -R -

0 b 

Alternative Derivation: As Faltens has pointed out, the ring 

contraction derived above for the effect of induced electromotance 

[effect (ii)] should be readily derivable by consideration of the energy 

in the magnetic field. 

The relevant quantity of interest here is the magnetic energy 

term that is proportional to the square of the circulating current: 

= 
2 2 

E_!__ ln 8R 
2rcR b 

(13) 

If this energy is provided by the incoming particles, the departure of the 

average particle momentutn from p will be given, for this cause, by 
0 

and hence 

lip = l. 6E = 
c 

I 

2 
ne 

2 
2rc)'m c R 

0 ' 
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2 
ne 

- 21rcR ln 

8R 
ln -

b 

8R 

b 



= 
nr 

0 

2rcyR 

- 5 -

8R 
ln 

b 

a result that is identical to Eqn. (ll) on p. 4. Accordingly:we 

obtain, as before (p. 4), 

or 

6R 
R 

0 

R 
R 

0 

= 
nr 

8R 0 ln - 2rcrR --
b 

l - -n 1-1P, 
G 

l 
l - 2 J-lP. 

(iii) The effect of the electrostatic potential of the ring: 

( 14) 

( 15) 

( 16) 

We may take the electrostatic potential of the ring as essen-

tially 

v 2"A ln· ~R = ~ ln 8R = ne 
b rcR b rcR 

8R ln esu. 

8R 
[This suggests V /"A "' 2 ln - = 2 ln( 320) = 11.54 at the center of a 

b 

( 17) 

ring with~= 40; compare L.J. Laslett, ERAN-7 in the ERA 1968 Proceedings 
b 

(UCRL-18103).] 

A particle injected a.t a. moment when the ring contains n. particles thus 
]._ 

would be expected to experience a. loss of moment~~, because of the electro-

static field, given by 
2 

]:LE 
n.e 

ln ~R 6P = 
]._ -c rccR b 

( 18) 

(for ~ 
~ 

l) or = 
2 

L.p =-
n.e 

ln 8R ]._ 

Po 2 
rcrm c R b 

0 

n.r 
ln 8_R ]._ 0 

-
rcrR b 

( 19) 
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Accordingly, when the number of particles in the ring has become n, the 

average particle momentum will differ from p by a.n amount 6p == < p >- p 
0 0 

such that 

Jnn.dn. 
~ ~ 

0 

nr 8 0 ln ~ 
2rcyR b 

ln ~R 
b 

As in sub-section (ii), this effect similarly will itself contribute 

a radius change given by a similar expression 

6R 
R 

0 

== 

nr 
0 

2rcyR 
ln ~R 

b 

(20) 

(21) 

Alternative Derivation: Analogously to the work on p. 4-5, the 

ring contraction derived above for the effect of electrostatic fields in 

reducing the particle kinetic energy can alternatively be derived by fol

lowing Faltens 1 suggestion that this effect will follow from consideration 

of the electrostatic field energy. 

We employ the electrostatic field energy term that is proportional 

to the square of the number of charged particles present: 

w == 
E 

1: QV 
2 

2 2 
= ~ ln 8R 

2rc R -b 
(22) 

If this energy is provided by the incoming particles, the departure of 

the average particle momentum from the injector value will be given, for 

this effect, by 

lop::: 

and hence 

l:[',E::: 
c 

2 
ne 

2 
2rcym c R 

0 

ln ~R 
b 
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nr 
0 

=- 2n)'R 

- 7 -

ln ~R 
b 

( 23) 

a result that agrees with that given as Eqn. (20) on p. 6. Accordingly 

we obtain, as before (p. 6), 

DR 
nr o 8R = 2n)'R ln b R 

0 

1 = 2 iJ.P, ( 24) 

or 

R 1 1 = - 2 iJ.P· R ( 25) 
0 

III. Summary 

Neglecting image-field effects and the influence of trapped ions 

(that in practice may gradually accumulate in the ring beam, we find the 

following terms for contributions to ~ in a uniform applied field: 

From Radial Self Forces: 

From Back Electromotance: 

0 

+ iJ.P 

1 
- 2 iJ.P 

l 
From Electrostatic Potential: - 2 iJ.P 

Sect. II(i), Eqn. (3), p.2; 

Sect. II(ii), Eqn. (16), p.5; 

Sect. II(iii), Eqn. (25), p.7. 

The total result of these three effects thus appears to be zero -- at least 

to the accuracy justified by the foregoing rough calculations. 

It undoubtedly will be recognized that, in many situations met in practice, 

image effects can, however, be of considerable importance. Such effects 

would, of course, deserve specific study and one can scarcely anticipate 

that in the end their results will vanish. 

IV. Comments (22 December 1969) 

The above notes have been circulated to serv€ as a basis of discussion. 

There is a continuing interest in these possible effects that may influence 
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the equilibrium-orbit radius at injection, and also in the following 

allied features: energy change, dispersion of radius, and dispersion of 

energy. It will be recognized that the model used as a basis for the pre

sent treatment is incomplete -- it may be appropriate to attempt careful 

attention to the following additional aspects (amongst others): 

1. Inacuracy of the simple (logarithmic) formulas for the 

''bias fields". 

2. Effect of electric and magnetic images, and the possible 

decay of the latter (if present). 

3. Azimuthal variations 

(a) From the plural-form character of the injection 

process; 

(b) From localized features of the structure (~·~·' the 

injection snout). 
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ERAN-4l.~ 
November 4, 1969 

POTENTIAL OF A UNIFORMLY CHARGED BEAM 'IHTH AN ELLIPTICAL SHAPE t 

Charge 
Density 

=p 

L. Jackson Laslett 

1 
b 

1 

cJ) Write x = I} a 2- b:::: 

y=Va
2
-b

2 

sin u Cosh v 

cos u Sinh v. 

Introducing the complex n~~bers 

Z = X + iy, W = U + i V, 

..... I 2 2 
this transformation may be 1-1ritten z = V a - b 

~ 

sin w and hence is conformal. 

(a) It may be noted that, for this transformation, 

(b) 

d~ = Va2
- b

2 
cos w =-J a 2

- b
2 

(cos u Cosh v- i sin u Sinh v), dw 
so that 

·2 

r:~1 
2 2 2 2 2 2 = (a - b ) (cos u Cosh v + sin u Sinh 'v) 

= (a2- b2)· cos 2u +Cosh 2v 
2 

Also, curves of constant v are given by 

(J.2_ b2 x Cosh) 

2 
+ 

( -Ja2-b2y Sinh) 
2 

so that when Cosh v 
a 

= 
\Ja.2-b2 

= 1, 

Sinh v 
b 

-
\)a2-b2 

we have the ellipse (;) 
2 

+ ( t) 2 
= L 

-1 b 
v = Tanh 

a. 

t Work supported by the u.s. Atomic Energy Com.~ission. 
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For this value of v we also 

Cosh 2v 

2v 

have 
2 

a 
= 2 

a 

-2-

e = a + b 
a - b 

-2v 
€ = a - b 

a + b 

* Write the electrostatic potential as 

= + ~0 (a- b) {[(a -b)+(a +b) cos 2u]- [(a+b)+(a- b) cos 2uJ} Cosh 2v 

for points inside the elliptical 
boundary, 

< -l b ( v _ Tanh a). 

The potential as written in the Cartesian form is clearly such that 

if <l'> = -4rcp, as required. x,y 

If one wishes to check the <l>(u,v) in this regard, one may form 

2 2 . 
2rcp(a - b ')(cos 2u +Cosh 2v) __ 4 = --'-"---=--=-"'-"------:::.------,----:,-- - rc p, as before . 

(a2- b2). cos 2u; Cosh 2v 

Write the external potential (for the region outside the elliptical boundary 

of the beam-- J:·~·, where the charge density is~) as of the form 

-2v 
·('{> = A + B ·v + C · (cos 2u )e · . 

This form is clearly harmonic (~ <l'> 
u,v 

* Cf. L. C. Teng, ANLAD-59 ( 1963) · 
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dence on u has the same cos 2u for~ that is employed inside the elliptical 

boundary, and the e-
2
v factor is such that the major dependence on distance 

when v = ln r is large is ~ B ln r. One might, in fact, expect that v1ith 

this for~ for the exterior potential one must have B = -2A = -2:n:abp. 

It remains to adjust the constants so that the potential and the fields are 

continuous at the beam boundary -- l·!·, so that ~-and ~are continuous 
-1 b 

at v = Tanh -. a 

~~ To match the b d d't' ~ oun ary con l lons, we require, as identities in u, 

and 

:n:f(a-b) {[(a-b)+(a +b)cos 2u]- [(a +b)+(a -b)cos 2u] a:+ b:} 
a - b 

-1 b a - b = A + B · Tanh - + C • (cos 2u) --b a. a.+ 

-:n:p(a-b)[(a+b)+ (a-b)cos 2u] ~ab 2 
. .- a -b 

- :n:abp 

:n:ab :: ~ p 

- 2:n:abp 

_ B- 2C(cos 2u) a- bb 
a+ 

= A + B · Tanh-l E 
a 

a- b 
= c a+b 

= B 

a- b a-b -2:n:ab -- p = - 2C a+b a+b 

These relations are all satisfied by taking 

A :n:ab [2 -1 b 
::: Tanh - -l]o a 

B ::: - 2:n:abp 

c = :n:abp. 

Thus we may write: 

inside the bea~ 
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and 

-l b -2v 
!f) = -trabp [l- 2 · Tanh - + 2v - e cos 2u] outside. a 

@ Along they-axis (x = 0), IYI =Va
2

- b
2 

Sinh v, so that 

and 

-l y 
v = Sinh 

-2v 
e 

-.12 2 
Va - b 

(~I 2 2 2 
=Vy+a-b 

a2- b2 

2 
- lyl) while cos 2u = l. 

Thus we may write for the .potential along this axis 

and 

a 2 
~ = - 2trp a+ b y , for 

~ = - trabp [1 -2 • Tanh -l ~ 
' b 

= - trabo [ l - ln 8 + b + ln 
· a- b 

-l y 
+ 2 Sinh 

-Ja.2-b2 

2 

[ 
( .... 1y 2 + a 2 - b 2 I I ) 

b V - Y + 2 ln na p l-
2 2 

a - b 
( 
I} y2 + a 2 _ b 2 

a + b 

At the boundary points on this axis (x = 0, y =~b), 

2 
ab 

t!> = -2trp
a +b from either formula. 
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Similarly, (p = 0 at the origin, and (p ~ - 21!abp ln [ y [ = - 2 A ln [ y I at 

great distances along this axis. 

The interior field is Ey = l~1!p _a_ y = 4 A y inside, with the value 
a+ b b( a +b) 

l~1rp ~ = 4 A at the edge (y = b)·, 
a+b a+b 

The exterior field** is E = l~1!p 
2
ab 

2 
[ -J y 2 ~ a 2 - b 2 -yJ 

y a - b 
for y > b, 

becoming 41!p a:bb 

(or for b -j a). 

at y 2npab 2/\ = b and tending toward ----- = --
Y y 

as y -t oo 

In the special ~ b = a, the expressions for (p become, after evaluating 

the limit of the indeterminate form for the exterior potential, 

2 
- 1!py J I Y I < a; 

- 1! o a 
2 

[ l + 2 ln [ ~ j J 

In application to the Action-Integral programme, 

we replace 1rabp by 

and scale (p by 

A = (Nef) lei 
2nR 

= 1.5288 X l0-10 (Nef) 
2R 

l 
~ = (FP) = -J P 

2 + ( 17 ol~ • 9) 2 

p 

for b = a. 

(with P in em) to make A + (-<1>) an effective npotential!T. gauss · · scaled 

We thus obtain the 1vorking formulas (writing z in place of Y) 

For I z I ::: b : 

_tt 
scaled 

= 1.5288 X l0-10 
(FP) (Nef) 2 

Rb(a +b) z 

** This expression for the exterior field along the y-axis agrees with 
the result given as Eqn. (23) in the cited report of Teng (ANLAD-59). The 
present report has the merit of giving the potential, ~(u,v), not only along 
principal axes but also at an arbitrarily situated point in the neighborhood 
of the beam. 
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For z >b:, 

(FP) (N f) 
- ~ = 1.5288 X 10-lO R e 

scaled 

[
...:...1 z=-:...:.1 ( \/--=z::....

2
....:..+...:a::....

2
....,.' -...:b::....

2
_-__:.l..::.z ...:..!.:.....) + ln V z 

2 
+ a 

2 
- b 

2 
+ I zl] 

2 b2 a + b a -

if b I a, or · 

- IT> scaled 

-lO (FP)(N f) 
= 1.5288 X 10 R e [~ + ln ~~~ ] 

if b = a.. 

For the preparation of nQ~erical tables to illustrate the character of 

~' as a function of z and of the parameters a, b, one may find the following 

LRL BRF TTY program convenient. 

We let 

We define 

Then 

U=~! 
s = jzsj 

1 
U=-

1l Q + 1 

zs = ~ 
b 

for I zsj < 1 

~[ s(-J s2 + Q2- 1 -s) + ln 
\Js2+ Q2- 1 

Q2 - 1 Q + 1 

u for 
= 

and 

1 r 1 
+ ln s] 

1l l2 for 

and 
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!zsl::: 1 

Q I= 1 

jzsl~ 1 

Q = 1. 



1 • 
2· 10 
3· 
4· 20 
s. 
6· 
7· 
8. 30 
9· 

ua. 
1 1. 
12· 40 
13· 50 
14· 
15· 
16· 
1 7. 60 
18· 
19. 70 
2f2). 
21· 
22· 80 

OK 

-7-

LRL BKY BRF TTY Program for Tabulating 

Representative Values of -¢ 

Q = 1/4 
PRINT6.r Q 
LS = -6· 0 
s = ABS( lS> 
IF cs • GT· 1) GO TO 30 
u = .S*:SI<PI*< Q+l> > 
c-o TO 50 
IF (Q ·EQ. 1> GO TO 40 
D = SQRTC S* S + Q*Q -I> 
u = < .S* < D-S> IC Q*Q-1 > + ALOGCCD+S>ICQ+1>>>1PI 
GO TO 50 
u = ((1/2) + ALOGC S> )/PI 
PRINT12.r zs .. u 
IF czs • G T· 5. 9 5) GO TO 70 
IF <ezs·.Gr. (-2.05>"> • AND· CLS • L T• <1·95>» 
zs = zs + 0-1 
zs = zs + 0-l 
GO TO 20 
IF (Q • GT • 4· 90> GJ TO 80 
Q = Q + 1/4 

-
GO TO 10 
STOP 
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IMAGE FIELD OF A STRAIGHT BEAM OF ELLIPTICAL CROSS-SECTION* 

L. Jackson Laslett 

13 January 1970 

I. Introduction 

l 
Image-field coefficients (!:_·~·, E

1
) are no.rmally calculated on the 

supposition that the .image field can be taken to be that of a line charge 

(or line current ) 1 and frequently are eve.luated for a si:nple tlvo-dimensional 

boundary. In this spirit the image field of an electron ring close to a co

axial cylinder .may be approximated by "straightening-out" the ring and cylinder 

into a line source and an infinite plane boundary, respectively, and the image-
1 2 

.field coefficient El then a.ssu:nes the value B 

The use of a line source appears justified fo.r computing image fields 

when the boundary surface is some1-rhat remote in comparison to the transverse 

di.:nensions of the beam. Straightening out the source and L'llage surfac'e t.') 

a tvro-dimensionsl configuration appears suitab~_e in cases for :which the trans

ve.rse dimensions and cJ.ea.ra..nce are each small co:n.pared to the :n.ajor dL'llensions. 

Dr. Perkins has pointed out3 that the first of these assu:r1ptions may not 

be appl'opriate for describing some of the experiments perf'or:ned in the LRL 

Compressor-III device. In the following .report we therefore investigate the 

image fields of an elliptical bea:n, taken to be straight and parallel to a 

.conducting plane sheet, ·within which the charge density is asswned to be 

constant. 

II. notation 

We take the linear charge density to be - A (-e. s. u. per c:n.) and denote 

the semi-axes of the bea~-n by "a." (x-direction) and "b" (y-direction) ·v~ith 

the center of the been loca.tec1 at the origin of the coordinate system. P..n. 
. ·~ ~-. . 4 infinite _plane COnducting Sh~et J,S Sl uU9..ved at y = -h. TtJe vliSh to CO:npute the 

image-field contribution to the :f"ollo'ding quCJntities: 

POT - ~/A 
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Gx 
E 

h2 .()(POT) 
= h2 X = )\ C X 

and 

EPS = 
h2 Ex h2 C~POT~ 

El = n-x = 4 ex 

at points along the x axis (in particular for !xl~a). 

III. Derivation 

Since each fil&~ent of the assQ~ed elliptical be&~ will give rise to a 

mirror-image file~~ent of opposite sign, the image field of the entire el

liptical be&'n will be that which >·lould arise from a similar positive beam 

centered at y = - 2h. The field of such an image (+A e.s.u. per em.) is 

characterized by an exterior potential5 such that 

<l> -2v 
POT = - ~ = 2v - e cos 2u 

(if >·le drop an arbitrary additive constant), where 

x = F sin u Cosh v 
and 

y = F cos u Sinh v - 2h 

with 

(for our present choice 
of origin), 

The x-axis, along which we wish to evaluate the image effects, then ip given 

by the relation 

F cos u Sinh v = 2h. 

To obtain u in terms of x, vle el:L'llinate v to obtain the quadratic 
. 2 

equation for sin u: 

(sl.n2 u)2 ( 2 2) . 2 2 - 1 + M + Z Sln U + Z = 0 (for y 0)) 

where we have written 

L = 2h, N = L/F, and Z = -z:jF. 

From this equation, sin u and related quantities can be determined. 

The curvilinear coordinate v is then given by 

Sinh v = M/ cos u 

3-124 



and 

Cosh v 

Tanh v 

±v e 

- 3 -

2 2 1.. = (cos u + M ) 2 /cos u 

. 2 2 1.. = M/(cos u + M ) 2 

= ~h + ( M/ cos u ) 2 ± Mj cos u 

v = .en[ .J l + (M/cos u)2 + Mjcos u] • 

From the quantities given above, one can im.'nediately evaluate 

<I> 2v - -2v POT = - - = e ·cos 2u 
"A 

2v - (e-y)2 ( l - 2 sin 
2 

u). = 

To evaluate 2J(POT)/2Jx, we note that 

2J(POT) [ -2v ) dv -2v l du 
= 2 (l + e cos 2u du + e sin 2uj d.x • 

2lx 

The derivative dvjdu [with y held constant (y = 0)] -is obtained from 

cos u Sinh v constant. 

cos u Cosh v dv - sin u Sinh v du = 0 

dv 
du = tan u Ta~h v. 

Similarly, from 

x = F sin u Cosh v 

) 

one obtains the derivative 

du l 
dx = dxjdu = 

[ 2 . I 3 J F sin u cos u + M Sln u cos u 

X = 
F2 

3 I . cos u sln u 
l~ 2 

cos u + J.f 

Accordingly, 

= h
2 

Cl(POT) 
4x 2Jx 
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and 

= 

= 

= 

h2 
[(l + 

-2v 

2F
2 e cos 

g (L/F )
2 

'2 
cos u 

coi~ u+M 

l M
2 

cos
2 

u 
8 l~ 2 

·COS u + M 
[c1 

E -
h2 ~ = h2 

)\ 

O(POT) 
' CJX 

= 4 • x ·• EPS. 

- 4 -

-2v 
2u] 2u)tan u Tanh v sin 

cos 
+ e 

·cos 

,[c1 + 
-2v 

2u) 2 e cos Tanh v + 

-2v . -~ + e cos 2u) Tanh ·v + 2e 

2e 
-2v 

2 
cos 

rv. Computational .Progra.'1l!Tle 

3 u[sin u 
4 + M2 u 

2 u] cos 

A short programrne has been written, for the LRL BRF .system:, to eval-

uate the quantities POT, f-.x_, and EPS for which expressions have been presented 

above in Section III. 
6 

The listing of this progra.'!L."!le is given below ( ne:>..'t 

page ).7 

v. Tests 

When h is large, we expect that a line image will represent a good ap

proximation and hence that 

E 
C,x h2 ~ ~ 

= )\ 

Correspondingly, 

EPS = 

"h2 ·c. 
2 

x [l + ( 2hjx) ] 

E :::::; 
l 

l 

8 

2h
2 

for x large 
X 

:::::; 

X 

2 for x small 

for x large 

for x small 1 

. t'h th 1 1 f . 1 . f . k 2 
w~ · e va ue E 

1 
~ 8 · ·am~· ~ar rom prev~ous wor . 

. 

These features are illu-strated in the following test runs, 7 wherein 

one also can check (by numerical differentiation) that 

-C: X 

4x 
C_ = h2 d(POT) 

x dx 
and 

h
2 

d(POT) 
li-X dX 
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T 
01/ 1 3/70 I 3 • 5 IJ• 1 1 

.} . 
2·; 
3 ... 
4'~ 

s~· 

6·.· 
1··· 
s·: 
9·: 

to: 
1 1 ~. 
12; 
I 3. 
1 4; 
15· 
16 .. 
1 7-· 
18: 
19·: 
20 .. 
21 ... 
22 .. 
23 .. 
24 ... 
2s:· 
26.' 
~7·; 

~o~· 

~9: 
w·; 

10 

20 

30 

40 

READ .. A .. 8 
F ~ SORT<A*A- B*Bl 
READ .. H 
L = ~-*H 
t·1 :::: L/ F 
P Rl N T:3, A... s.. F 
PHI NTS .. H 
READ .. o .. Xi'lAX 
X = D 
Z ='= X/F 
SS = CM*M + Z*Z + 1l/2 
SS = SS - SORTCSS*SS - Z*Z> 
SU = SORT< SS.) 
U = ASI i'-IC SUl 
cs··= I - ss 
cu = sor-nc csl 
C2U·= 1 -·2:-i'SS 
SO = . SO FH C l + Ul/ C W * < ,·.y C U l l 
E MV . = S 0 ..: ~i/ C U 
V ::.: ALOG< SO + 1-'J/CUl 

Trl ::. L\1/ S8i~T< cs + i''i*L''l) 

POT = 2*V - EM2V*C2U 
EPS ::: C l/8)*i·1*i'i.H C I + E.·i2V=:-C2Ul *Td + 2*1::.·12\i::CS) 
EPS ::: EPS*CS/CM*~ + CS*CS> 
EX =- 4:i:X*EPS 
PRINTII, X, POT .. EX, EPS 
l F C X .• · GE.. C X [•ii\X - 0/3 > > GO TO 20 
X = X + 0 
GJ- TO 40 

- 6 -

TEST RUNS 

a = 5.0 

b = 4.0 

J-127 



> T 
01/13//0 18·56·59 

t XE~o) 

BEGI.'•J XEO 

ENTER· • • A, B .. 
5 • o .. 4· () 

tNTER· •• H .. 
2 0Q. 

-7-

A= 5·0008 8= 4·0000 F= 3·0800 
H=' 200-00 

ENTER·. • o .. Xi·1AX .. 

0-1,1·0 

X= 0· 1080000 POT= 
x= 0~'2000000 POT= 
X= 0 ... 3:'501::}0/J•J POT: 
x= o·; 4~:JGOoJo PuT::: 
x= 0~·5 oooooo Por= 
x= ~)': 60 000;:i0 POT=' 
x= ~y; 7800000 POT= 
x= o;t>o·oGO;J0 PoT= 
x= 0'."9 000000 POT::: 
x= 1' .. 0000000 POT::: 

E i'-l TE ;.; • . . H .. 
2 00· 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 . 1 72013 EX= 0. 049 99 79 
1 . i 72013 Ex= 0. 89999 53 
1 ~. 1 72'<-i 1 4 El:=' 0· 1 L'i:J9936 
1 ... 1 72(j 1 4 EX= o·.· 19:.199 1 Lj 

1 . 1 72015 E>:= 0:2 49939 1 
1 • 1 72015 D\:::: o.·2999S 67 

.. 
1 . 1 72016 L\: 0. JLJ':/98 Lt2 
1 .. 1 72~J I 7 E;<= 8· 39993 15 
1 ... 1 720 lo EX::: c.- 4499 7s 7 
1 ~- 1 72019 EX= t:r.- .t6' 9 9 753 

A= 5·0000 B= 4·0000 f:::: 3·0000 
H=':200.00 

EN TE ~~ ••• : o.. Xt-1AX .. 
1 • f2), 25. 0 

X= 1· 0000000 
x= 2·;oso0000 
X::: 3·;0000000 
X::: 4·; 0000000 
x= 5·:o00ZJooo 
X::: 6·;0000880 

PA LiS IN G 
t G:J, 5 

x= 7·02!00090 
X= c;;; 0800880 
X.:: 9·; 0000U00 
x= 10.00oo~o 
x= i r;o0oooo 
X=' 12; G:JGG00 
x= 1 3·.- uG~~ooo 
x= 1 Lt~·ooso:Jo 
x= 15~-JJ•;juCJo 

x::: 16.-0SOOOO 
X~ 1 7; tiJOGGG~:l 
X= 18-;080oJiJ0 
x= 19.ooo0o0 

POT= 11-172019 
POT= 11 ;1 7203;3 
POT= 11.-172869 
POT::: 1 1 ·; 1 72 1 1 3 
POT::: 1 1 : 1 72 I 69 
POT:: 1i.-17223;3 

POT= 1 1 • 1 7 2 3 1 9 
POT:: 11~·172Ltl3 

POT=' i i".-172519 
PoT=. 11; 172633 
P:JT::: i 1 ."1 72769 
POT=' 1 1 • 1 729 1 2 
POT::: 11.-173C69 
POT=' 1 1 ~. 1 7 3 2 3 7 
PO T::: I I ·; 1 7 3 .t! 1 3 
POT::: 1 1 • 1 73 61 2 
POT= 11.-173317 
PO T = 1 1 • 1 7 4 0 3 6 
POT= 11·-174267 

3-128 

EX= (). /.J999 758 
E.K=' 0;9999 32•3 
Ex= 1·4998524 
Ex= 1;9997157 
Ex= 2.-L:9950Nj 
EX:: 2·9991987 

EX= 3· L:93 7.3 I 0 
E ;.; ::: 3 .- 9 9 3 2 3 2 I 
EX:: 4;.1~775335 
E>(= LJ-9966665 
El'~ =' 5 • 49 56 I 2 3 
E>~= 5:991~3525 

Ei'~ = 6 • .tO 23 6.3 L! 
E ~\ ::: 6 ~ 9 9 I 1 4 1 L: 
E.<= 7·-4391532 
U~= 7;9363343 
EX = o _- LJ3 4 3 1 3 1 
E?~= 8 .·98 14347 
EX = 9 • Lt 7;3 2 1 6 1 

EPS= 0· 1 2-47 9 4 7 
EPS= o. 124:]947 
EPS= (). 12 .:,') 9 4 7 
EPS= 0· 1 2 Lt9) /16 
E?S:::: 0 •· 1 2 47 9 4 s 
E?s= 0· 1 2 L;9 9 4/.J 
EPS= 0· 12Lt99 LJ3 
EPS: 0· 12 IJ9 ') 42 
E.Ps= 0· 1 2 49 9 L; 1 
EPS= o. 1249939 

EPS= 0.J2L:9939 
EP S= 0: 1 2 49 9 1 6 
EPS=' 2!·1249877 
EPS,:, 0· 1249322 
E P S = 0 ; 1 2 .t-19 7 5 2 
EPS=' 0·12LJ':)666 

E P S = 0 • 1 2 4;) 5 6 5 
E P S::: 0 • 1 2 49 L! -";3 
E P S::: 0 • 1 2 Lt9 3 1 5 
EPS= 0· 12Lt9 167 
E?S::: 0."12LJ:1003 
EPS::': 0· 1243323 
E?S= 0-12<5629 
E? S= (:j. 1 2 L;3 4 i 3 
E? s= o. 1 2 L'J3 1 9 2 
EPS= Q. 12L;T) 51 
EP S::: 0 • 1 2 4 7 69 /.J 
EPS= 0·12.'J-fL<21 
EPS= 0·12L:713Lt 



- 8 -
X= 20 .. 000000 POT.:: 1 1 • 1 1 ~is 10 EX= 9 .. 9 "/ L;6L; 40 
X= 21 .. 000[000 POT:: 1 1 ... 1 7/J.765 El\ = HJ. Lj 70 780 
X= 22 ... 000808 POT=' 

.. 
11 . l 7':5033 EX::: 1 J .·.:; 66366 

x= 23.-00CJ08U POT::: 1 1 ~. 1 75 31 4 Ei> 1 l . 1!61 624 
x= 2 4·; GO W:JCJ0 POT::: 1 1 ; 1 75606 EX::: 1 1 ;9 5 6Lr55 
x= 2s·.·ocso0~~ POT:: 1 1 1 759 1 1 .-.·./....:. 12 .. L45Cr:3Ltl . t,_/\-

EN lEi-;. • • H .. 
200. 

A= 5·0000 8= 4·0000 F= 3·0000 
H::: 200.f:l0 

E;-.JTE::r; ••• o .. XI·'IAX .. 

25-0 .. :350· 

X= 25· 0000CHJ 
x= 50:os0o0s 
x= 1s·: o0ooo 0 
x = tor::i. 08D00 
X= 125.-J0000 
x= 15o.-ooooo 
x= 1 7s~·ou:Jo•.a 
X='= 200;0C•COO 
x= 22s.-souuo 
x= 25£J':oouoo 
x= 27s~·ooooo 
x= 30o:oooo0 
x= 325.-ooooo 
x= 35l:r.-soo0o 
x= 375".-(!.iOOoo 
x= Ljoo:G8ooo 
x:: 425-;CJOGDD 
x>~, 45 0; oo0o0 
X='= 475 ·;00000 
x::: 500."00000 
x= 525·;o0os0 
x= 55o.-ooooo 
X= 575;0300;J 
X= 600 •. 0l"JOG0 
x= 625.-GG00o 
x= 65o~·0oooo 

x= 6 75·.-uoooo 
X='= 700·; 00000 
x= 725.-ooozo 
X ::: 7 5 0 ·; G 0 8 0 0 
X= 775.00002 
x= ooo-.·ooouo 
x= 825.-ooosu 
X ="= 8 5 0 : C 0 ;.J 0 :J 

POT= 1 1 • 1 759 1 1 
POT='= 11·187516 
PoT= 11.-286564 
POT= 11.-232635 
POT='= 1 1 ; 2 65 1 S 7 
POT::: 11·303535 
POT='= 11."3471Lil 
PDT='= 1 i · 39 S 1 4:/ 
POT='= 11·Lt.46910 
POT='= 11.'5Cd 757 
POT::: 11.-559070 
PoT= 1 r: 6 1s 28 :~ 
POT=': 11-.-673912 
P 0 T:::: 1 i"." 7 4 '0 5 CJ 5 
POT:: 11-;:38263') 
POT::: 1 1·;-3 65 1 -~-S 
POT::: 11."9276CJ7 
POT::: ii-;939049 
POT::: 12.-851639 
POT='= 12~-112981 
POT='= 1 2 ; 1 7 3 60 5 
POT:O: 12.-233470 
POT:':: 12.-292504 
POT= 12~-350652 

POT= 12.-407377 
POT::: 1 2 • L16 4 1 53 
POT='= 12.-519-461 
POT='= 12.-573796 
POT=': 12 . ."627154 
POT::: 12.-6795141 
POT::: 12·;-/30964 
PO T = . 1 2 .- 7 3 1 LjJ 5 
POT="= 12-.-3 3·219 69 
POT='= 12:379532 

EX= 1 2 • 45 08 LJ 1 
EX= 24.-614333 
E>\ = 3 6; 2 2 5 Cl0 6 
EX:::: 4 7; 05 7102 
EX= 56.937573 
EX:: 65·"/513'.13 
EX= 73·; Li/.10579 
E:< =' 79 ."9 9G 020 
E:< = 8 s: L;5G030 
EX:: <39;335935 
D~ = 9 3 ." 3 6 7 1 7 ;J 
EX::: 95-;993652 
E>\:0: 97~-8311<34 

EX::: 99; 11 LJCJLJ5 
E>~ = 9 9 .- 79 1 2 57 
E>\ = 9 9 .- 9 9 ) 2-) -, 
Ei\::: 99.-81593/.J 
E~<:: 9 9 ·; 3 09.3 7 3 
EX::: 93 ;5409 50 
EX= 97.-560675 
E>~= 96·412966 
L< ='= 9 5; 1 3 /!9 53 
Ex= 9 3;757331 
EX= 92· 3076J8 
EX:: 90.-S053L;2 
EX= 89."270352 
E:<= 8 7· 715 72.t; 
EX='= 86·153351 
EX::: 3 4: 59 43 6 6 
E~\='= 33.-0/.JS:J12 
EX='= S I: 51 19 53 
E>\::: oO· !J0C:~045 
E 1\ = 7 if; 5 1 3 0 6 1 
c:x= 77. os.Js 73 

3-129 

EPS= 0· l2LJ6330 
EPS= 0· !246512 
EPS= 0 •· 12 -'; 61 7"' :) 

EPS= D· 12 -~53 29 
EPS= G.· 12 Lj5-''i 6<~ 
EI) S= 0· 12 LjSCJ:; 4'~ 

EPS= 0·12LI50oLI 
EPS= 0· 1230-/19 
EPS= 0·12075(00 
Ei-~S= 0·1176423 
E?S= D· 113•3751 
EPS= 0·1075357 
EP S=' 0 • 18 49 151 
Ei~s= o."o999'77S 
EPS='= 0;0949534 
EPS= 0;03932i 59 
EP S= 0; 0-S -43 /9 2 
EPS:::: 0."07999<:39 
EPS= 0;0752932 
EP S ='= 0; 0 78 79 5 -, 
EPS=' 0."066527S 
EPS= G. U62!i)'J 6 
EPS::: 0·853 7153 
EPS= C::J.-0551722 
EPS= 0;8518637 
E P S ~ 0 ; 8 LiS 73 0 3 
E P S = 0 ; 0 4 59 1 G 9 
E?S= 0·0432/•32 
EP ;3= 8 ;o ·~J 7 6-'13 
E P S= 0 ; 0 3.3 4 6 I 5 
EPS= 0;0363223 
E P S = 0 ; 0 3 /.; 3 3 L1S 
EPS= 0; 032 43 73 
EPS::: 0;03G7692 
EPS=' 0."02917US 
EPS= fJ."02 768 17 
EPS= 0·026291!2 
E? S= 0; C258:::H:.JO 
E P S = 0 • 0 2 3 7'J I 8 
EPS::: 8."0226627 



- 9 -
ENTER ••• H .. 

1 0· 

A= s.oooo s= 4.~ooo F= 3.0000 
H= 1B.ooo 

0•1.>1•.0 

X= 0.100GG00 
x= .o·."200GOGO 
x= {J-.· 30000oo 
x= o~· 40000vJo 
x= ~r:soo00210 
x= ff." 60o0ooo 
x= o ·; 700oooo 
x= 0 ·;s oooosa 
X:: 0 ."9 0000-lJ0 
x = 1 ~·oooooos 

PO T = 5 • 1 S 6 J 52 6 
POT='= 5."1862263 
POT:: '5 • lS 63 L1':1 2 
POT::: 5 • ;1 8 65 2 1 3 
POT= 5· 1867424 
POT:: 5; 18 7012 7 
POT::: s:;f S 73320 
POT:: s.·ts T/003 
PoT= 5·;t..:;s117s 
POT=' s·."1Eii35S36 

EX = 0 • 0 A9 1 7 0 6 
EX = 8 ." 0 :l S 3 3 L!l 
Ek:: 0 • 1 LJ7 Li3 3 4 
EX=' 0; 1 9 6 61 1 4 
EX=' 0 •· 2 .t45 7 1 1 1 
DC:: 0."294775L; 
EX ='= 0 • 3 LJ 3 79 7 3 
EX='= '(J ." 39 2 7 69 7 
L<='= O."A416S56 
Ei\= 0·4905331 

A= 5·0000 B= 4~0000 F= 3·0008 
H= LO· 000 

El'lTEf~. • • Q., Xi'IAX .. 
1 • o .. 25. 0 

X= '1·0000000 
x= 2·;o.oo0o0o 
x= 3~·0oozooo 

x= 4:;o00oo,.:;o 
X:: 5 ·; 0000008 
x= 6·;o00ooo0 
X='= 7·; 0000800 
x= s·.-~J000ooo 

x= 9;000oooo 
X:: }"(j. 000000 
x= i1·;ooooo0 
Xi:: 12."008080 
X:: f 3~·0000.00 
X::: 1 4·: 000080 
x= is·.-oo0000 
X:: i 6~· 00008~) 
x= 1 1-.· c•02.1ooo 
x= is·;oooooo 
x= 19·:oooo00 
X='= 2 C;~· OO:~GDO 
x:: 21·; SO~J000 
X='= 22-:DIJJ00D 
X = 2 3 ." 0 ~:J 0 0 CHJ 
x= 24."080000 
x= 25."080000 

POT= 5· 1.335336 
PO T =' 5 : 19 59 1 5 3 
Por= 5."2030192 
POT: 5."2247271 
POT='= 5 . ."2LJ53146 
POT=' 5:2 710f:.J9 3 
POT::: 5."30-000LJLJ 
PO r= 5 : 3 3 2 .tj 6 4 5 
ror= 5 . ."36SD4IB 
PoT= 5." zr063334 
POT::: 5; 4Li7l LJJ3 
PoT= 5."A399 7Ao 
POT::: 5."531l566D 
Po r= s~·ss 86135 
POT:: 5 ." 62 7;3 LJ'J3 
POT:: 5·67599Al 
Por= 5."72434.72 
P 0 T ::: 5 :; Tl "11 9 63 
PoT= s·;s2336.34 
POT:: 5 ." 3 7 3 b 3 9 4 
POT::: 5·:9 235331 
POT:: 5."9732'/14 
POT:: 6:022SLi79 
POT= 6."8721216 
POT::: 6 . ."12104:32 

EX= 0 • 49 D5 33 1 
EX= 0·9 7L;.Q645 
EX.::: l."LJ43.390S 
EX= 1 ; S 9 .3 9 4 L! 5 
L~= 2."3190065 
EX= 2· 71A3 756 
E-.-_: 

A- 3."0 73/:523 
EX=' 3 : L10 7 7 43 2 
L<= 3·; 701S 205 
.Ex= 3."9606661 
E:<= 4.' 135 0 7 LiS 
E:\ = Lj. 3 7 6 11 7 {j 3 
E;\ =' 4 ." 5 3 6 7 Li) 11 

E >~ ::: A • 6 63 1 3 2 2 
D~='= 4· 773029 3 
E~'~= 4."8539316 
Ex= 4:913321s 
EX= 4."9 53603 C 
E!~='= /~."9 77G76i2i 
o;= 4.935359s 
EX.::: L;."9$1919~i 

E X = 4 ; 9 6 7 D "' 'J ,:i 
EX= 4 ."9 L;23 2·~ 3 
EX= L:."9 1 vJ 71 h:i 
EX:: LJ."S 7195 33 

3-130 

EPS= 0· 1229265 
EPS= 0."1229176 
EPS::: 0:·1229026 
EPS= .001223321 
EPS= .0 • 1223 55 6 
EP S= 0 • 12262 31 
EPS= 0."12273LJ7 
E?S= 0.".1227405 
EP S= ,0 ." 1 2 2 69 8 4 
EPS= G· 12263L!5 

EP S= 0 • 1 22 6.3 ,::s 
EPS= Q. 1.21 7531 
EPS= 0~·12G.32-"i~~ 

EP;;= D·ll33-n5 
EPS= D· 1159503 
E?S= 8·11311}8 
E?.S= 0."J097LJLJ7 
EPS~ D·186L!921 
EPS= 0~·1023263 

E ps::: .o ~- C9 9 o 1 6 7 
EPS= 8· 0951153 
EF'S= G."~l911.765 

EPS= s:\J372.i:52 
E?S= Q."03335:JS 
E?S= 0·0775505 
E?S='= 0 :o 75S L;2 7 
EPS= G."07225L'I7 
E?S= 0."G6830C1 
EPS= o~·G651;3 78 
E?S= 8."8623232 
t:?.S.-= ;J-."059 3:J3 6 
EP S= D. 05 6/;113.6 
E?S= 0·0SJ"i2c.l.i 
EPS= .0·8511533 
EPS= (:·0Z.371'J8 



ENTEf\ ••• H3 
s.o 

- 10 -

A= 5.0000 8= 4·0080 F= 3·8000 
H= s.C:OStJ 

ENTER· • • 03 Xt'-lAX3 

X= G •. 10!?)8000 
x= 121" .. 2000008 
x-- 0 ... 3(:)00000 
x= o·.' 4CJCJozo0 
x.:. . - o·;sooGcJa0 
x= (}.: 60 8000D 
x= [f.; 7000000 

PALJSI NC~ 
G03 10 
X= 0-8000000 
x= ~r.- 9 coaooc; 
x= l; OG8~:iSDO 

E0J-TEH· •• H3 
s.o 

POT= 
POT:: 
POT:: 
POTi: 
Par= 
POT= 
POT;: 

POT= 
Por= 
POT:: 

3-8 163456 E/~= (.j. 0 /t68 55 7 
3·.-s 166267 E;\.: 0 .. 09 3 63 71 
3~·c; i 789 50 EX:: 0 ~-I Lt0 /1703 
3:8 1 77503 EX.:: o.- 13 71S 1 1 
3~:8 18 59 23 Ex= 0 .. 2 33 79 55 
3 .. 3 19 6205 Ek:: 0 .. 23 82099 
3' .. 8208 34lJ El~= 0 .. 3266-485 

I 

3·3222334 EX= o. 37232/40 
3 .. 823:3 l6S EX:: 0' .. 41331 "/2 
3 ... 8255337 EX:: o; Lt6itS9 73 

A= 5·0088 B= 4-0000 F= 3-8000 
H:: 5.0000 

Ei\!TE R· • • 03 X t'lAX3 

l • 0 325 • G 

X= l· GvJOOOvjO 
x= 2~·oooo0c;o 

x= 3·.: oooocs D 
x= Li:o0oGo00 
x= s~·ooooooo 
x= 6_. occ:ooooo 
x= 7;u0GOGG8 
x= 3·;ooooooo 
x= 9·;oooo0oo 
X- }(j.QOJO:JG 
X :: 1 1 ~· 0 0 0 0 0 CJ 
x::: 12:oou000 
X ::: 1 3·; 0 0 C J C :5 
x::: 14· OOJDOCJ 
x::: l5._.DGOOCHJ 
X::: 16; GOMJ00 
X = l 7·; 0 2 D G 8 0 
X= 1S~·0CjS::.i~J:::. 

x:: l9;CCjGS0D 
X = 2 J ; S 8 J 0 ~J 0 
X = 2 1 ~. G 1:.; 0 3 0l:J 
X::: 2;2; C00GGO 
X::: 2 3·; 0S·0G·OO 
x= 2..,·,·.-ooc;ccw 

POT= 3· 8255837 
POT= 3;852.1079 
PClT = 3 .. 3 9 7 Lj;j 1 0 
P 0 T::: 3 ·; 9 56 6 7 9 9 
Por= .q·;o2S2655 
POT= 4; Hi965S2 
POT:: !.t·;19S35Lt·~ 
PO'f:::: 4·;2921152 
POT:: 4·;3390218 
PO T::: L(.· Lto 7S 1 3 7 
ror= 4._.5:363673 
POT:::: 4·;61:3 /!655 3 
POT:: L;.-7316971 
POT:: Lt;S Ti01 02 
PoT= IJ.-97C,266s 
POT:: 5·0612560 
POT= s;1LJ9o569 
PO T = 5 •· 2 3 6 0 1 2 LJ 
PO T = 5, • 3 1 9 7 1 3 3 
PO T = 5 ; Li C J 9 ;3 3 7 
PO T = 5 ;. Ill 9 8 71 3 
POT:: S ~55 6 LJ 39 5 
PO T::: 5 ~. 6 3 S 7 6 2 3 
POT::: 5; 78 29 1 9 3 

EX= 0 • Li 6 L; 5;' 7 3 
L\:: 0;9 059 389 
Ex= 1·3GL:1o20 
EX = 1 ·•· 6 L; 5 -43 I,S 

Ex= i ;9·229337 
EX::: 2 • 1 3 609 2 7 
Ex= 2·;2.39 4653 
E;<:: 2;3905333 
EX ::: 2 ; L; /;3 2 5 3 5 

EiC::: 2 • 4 7 1 2 6G 5 
EX= 2·; 4675 73 6 
EX::: 2. L:Lt4GG 66 
E:<:: 2. LJG6:':/9U3 

E>> 2 ··<~ 53 2 1 1 1 
E:< = 2 .. 3 0 3 7 L~.2 Lt 

E.:\= 2·2Lt5234~3 

EX= 2··1845JS·3 
E:;'(. = 2 • 1 2 3 1 6 5 :J 
E;<= 2·8619336 
LC = 2 • ~Y01 7 J. 7 !; 
D~ = 1 ; 9 LJ29 0 3 2 
E i\ = 1; 3 o 53 1 /17 

EX:: 1·;83']6:159 
EX:: 1;-1775Li32 

3-131 

EPS= ~:. 1 I 7139 1 
EPS= 0· 1 r 71089 
EPS::: o. ., I I 7050 6 
E?S= v.- 1 16)33 2 
EPS= ,-. 

;:) . 1 163'7 7o 
EPS= 0 .. 1 1 676 7-4 
E u c--'._)- 0: 1 16 65 73 

EPS= 0· 1 1 650 75 
EPS= [J. 11 6333 1 
EPS= 0· 1 16 1 LJ93 

E P S = 0 • l 1 6 I Li':l 3 
EPS::: 0· llJ2Lil L; 

E ? S = 0 • 1 G i3 63 1 3 
EPS;: 0·1G28LJ23 
EPS= 0-0961467 
Ers= o;0s?r~S39 
EPS= s;os 1 7666 
r::Ps= o;o7Lt"t057 
EPS= 0;06.3507i~' 
t:PS= 0;0617315 
EF'S= Q.SS6C313 
E?S= 0·85S9163 
EPS= o·.Cl!6271(J 
E?S= 0 • 0.L:21 1 D9 
EPS= C • 033 39 57 
EPS:: 0 • 03503 1 () 
E:PS~ 0·8:?21262 
EPS= G·C2-JI!J31i 
E?S::: Q.;:.-271J1L: 
EfJS= 0 ;c~·5.;'.~~ 1 7 

E:PS= 0·023129) 
EFS= 0 • 02 1 LJ29 7 
E?S= 0;8!939SL! 
E?S= 0;8135161 



EN T~i--::. • • H, 
4·0 

- 11 -

A= 5.0000 8= 4.0000 F= 3.0000 
H = 4· or~oo 

ENTER· . • o .. Xi·1AX, 

0 . 1 .. 1· 0 

X= (3. 1000008 POT= 3·3:320321 EX= D·045271 4 
x= 0~"2008000 POT: 3~·3625065 Ex= o·: s9 o 589 1 
x= o~· 300ooc0 POT: 3~"3832133 EX:: o. 135 679 Lj 
x= ~)"; L1D00000 POT: 3~· 33 42022 E/~.:: o. 1807L(39 
x= g;5oooooo POT=: 3 ... 335Ll724 

_ . ...,_ 
fJ" .. 22563L!2 C.. I\-

x= ff: 60 08000 PO r::: 3 ... 33 70230 EX::: o·:2 701;52Ll 
X= ~r: 1ooooso Por= 3·: 3383 52 7 r-- '•' =-

C....l\- 0;315S20S 
x= o:3800DGO Por= 3"." 39 09 602 EX::: o·: 359 35 72 
x= 0~·9 080000 POT:: 3." 39 33L;L;1 Ei\ = 0." /;~)3 429 s 
x= 1·-~ 00!:J0008 POT= 3"." 39 60025 E~-<;: 8." L;4720 76 

ENTEr~. • • . H .. 

A= 5.0000 R= 4·0000 F= 3.0000 
H= ,,·;osoo 

ENTER • • • o.. X l''l.L\X .. 
1 •. o .. 2s:··0 .. 

X= 1 • 0000000 
X= 2~· 0000000 
X::: 3·.· 0000000 
x= L;·;or-Joooo0 
X::: 5 ~- 0000000 
x= 6·; 0000000 
X:: 7·: 00G00G0 
x= 8 ~·o0ooo00 
X :: 9 ·: 0 0 0 0 0 0 0 
x= 1G·O~H30G0 
x= 11:ocoooo 
x:: 12~·0GOODO 

x= i 3·.-oDoooo 
x:: 14·;i:JDOWJG 
x::: i5.-~JOCJOOG 
X= 1 6·; 808900 
x= i7:oooooz 
x= 13·.-soocoo 
x= 19 .-oo2iC.iOO 
X ::: 2 ()"." 8 ~H0 G 0 0 
X ::0: 2 1 ~- 0 G 0 :'J 0 0 
x= 22:uJouoo 
x= 23·.-ooooCJrJ 
x= 24·.-oooooo 
X= 25 ·; 000000 

POT= 3· 39 60025 
POT; 3."4371705 
POT::: 3·:s0259o 7 
PO T::: 3 ." 5 8 3 1 6 0 0 
POT::: 3·:6391520 
POT: 3~·3009522 

POT::: 3;919 4776 
Por= 4~·0414037 
POT::: 4; 1 6 LJ220 L! 
PoT= L1·.-2s 6G9 73 
POT="= ,,; 405"3086 
PO T::: 4; 5 2 2 5 3 1 7 
PO T = ,,. 6 3 53 1 3 L; 

POT= 4 . ."7LJ53953 
POT:: 4;8511330 
PO T::: 4; 9 53 13 6 ;, 
PO T::: 5 ; ~; 5 1 L:3 3 1 
POT:: 5;1461929 
POT::: 5~-2374601 

POT= 5; 32541119 
POT="= 5~·LJHj2999 

POT::: s·:4:/2195it 
POT::: s;5712S56 
POT="= 5~·6477228 
P 0 T ="= 5 ~. 7 2 1 6 1-i3 7 

EX= Q. L;Li72D76 
Ei\= 0."3 621,263 
EX::: 1 ;22~J0 733 
E:;< ::: 1 ; 50 5 1 63 U 
EX: i~·71LI125'3 

EX::: 1."8525347 
EX:: l."931L:213 
EX= i ."9 6366Lt6 
EX="= 1 . ."9615053 
EX=' 1 ;9 35233 5 
EX='= 1~·3931197 

E;<::: 1;3LJ1C\239 
E~<= i·:7S3336?. 
E>(= 1 .. 72301!66 
E>( = 1 : 6 62 19 62 
L<= 1· 6J21266 
E>< = 1. 5 43 69 21 
EX= 1·'l374090 
E>:; ='= 1 • 1;335 632 
E>:= 1 .. 33220 51 
Ek:: 1 • 3336819 
EX::: 1;237LJ73S 
E~<:: i ·. 2 1; 33 I 3 3 . 
EX.::: 1· 2025299 
EX:: 1 ·; 1 6 3 4S 6 L'; 

3-132 

EPS= o. 1 1 3 1 73 5 
EPS= o. i 13136L; 
EPS= 0 .. 1 13!D662 
EPS::: o: 1 129 63 1 
EPS= 

.. 
G. 1 123 1!21 

EPS:::: g. 1 12 6'3 3 5 
EPS= o:1 12507Ll 
EPS::: 0· 1 12299 1 
rYS= 0· .1 120630 
E?s= o. 1 1 1 s c 19 

E?S= Ool 113019 
EP S::: CJ • 1 0 73 Z 3 3 
EPS= 0·10167:~8 

E P S = 0 • G 9 L: 2J 7 3 0 
EPs= o.-~Jo57C63 
E P s = o ·: 0 -n 1 s s 9 
EPs= o :o639 79 3 
EPS= 0."86136L;5 
E?S= 8;05LJL;;363 
EPS= 0."0L;33322 
EP S= 8 :o L'iJG?. 511 

EPS= 0·03835/;3 
E?S= o;oJt:29 L61 

E P .S = 0 • 8 3 C! 7 65 -; 
E: P S = Ci ; G 2 7 7l"J 3 3 

EPS= 0 • 022 -,:; 1 '~~ 
E?S= 0~82065:-:JS 

EPS= 0·C:J30627 
EPS= u•J172736 
EP s::: 0 • [1 I 53 7 S2 
EP s::: G." lJ 1 L; 63 :-; .q 

EPS= G.C:J135193 
EPS= O·G12526L; 
E? S= 0; 0 1 1 631;:? 
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VI. Results 

As an example of a physically realistic case, the prograJJ"J .. 'lle has been 

applied to a bea~ for which a = 1.0 (semi-axis in the transverse direction 

parallel to the conductor) normally the axial or z-direction)J b = 0.5 (semi

axis in the transverse direction normal to the conductor) normally the radial 

or r-direction)J and the clearance (h) was given the values 

h = 2.0) 1.5, 1.0, 0.75, and 0.50 

(the last case corresponding to no clearance for the edge of the beam). In 

each case of this series) the runs vlere carried to values of x no greater 

than "au) because of the interest in "incoherent" image focussing forces 

felt by some representative particle of the bea~. 

The values found for C:. provide a measure of the local image field at 
X 

the corresponding value of x -- the extent to which [ is not directly pro-x 
portional to x (in the range [x! ~ a) gives an indication of the non-linearity 

of this image field. The computed values of EPS ( = E1 ) are proportional 

(factor ~) to GJx and would be constant tbrougbout the range of x if the 

image field were exactly proportion~l to x. 

The computational results are given on the following sheets) and are 

follo-v;ed by graphs of 4 and EPS (= E
1

) vs. x. 
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RESULTS 

a= 1.0 

b = 0.5 
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t XEQ 

BE.GIN XEO 

ENTEf-(. • • A, g, 

1 • 0 .. D·· 5 

Ei\ITEf~ .• •. H .. 

2-08 
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A= 1·8G00 B= 0·5000 F= 0·8660 
H= 2-0008 

ENTER··· o, XMAX .. 
0 • 1.> 1· 0 

X= o. 1 000000 POT= 
x= o·: 2ooooo~j POT=· 
x== 0:3000000 po·r= 
X 

- 0 .. L:Q:J00CH} POT:: = 
x= 0' .. 5000088 POT:: 

x= 0·:60 0 GvJO 0 POT='= 
x= 0' .. 7000008 POT= 
x= 0' .. :3080080 POT:: 
x= 0'."9 0808.08 POT='= 
x= 1·; D00(J0SD POT:.:: 

EN TE F~· • • H .. 
1 • 50 

Lj. Lt53 7529 EV-,, -
Lj_.: 4·6GS 613 EX= 
L!·; LJ635 698 EX= 
Lj. 4677665 E>c= 
Lj ... LJ731 376 Ex= 
4··· 479 665 1 EX='= 
Lj~: 43 73'27 1 E>~::: 
Lj ... LiS) 6Q;98 6 E"-1'.-

Lj • "505951 3 t:>~. = 
.lt• 51 63 541 EX:: 

A= 1·0000 8= 0.5000 F= 0·3668 
H::: 1'.'50011 

ENTER· • • o.. X t'iAX, 
0.1 .. l·O 

X= o. 1000000 POT= 
x= 0' .. 2000000 POT='= 
x= ~r.- 3'.JOS000 POT:: 
V-- 0. L'J:J [') 0 (~ (j(j Por= 1\-

X= 0 .-s or0ooso POT= 
x= 0 .. 6(>'JG~JSDD PoJ= 

PAUSING 
t GJ.o 10 

X= 0· 78[JCJC!08 POT=: 
x= ~r.-8 o:?J0(:l80 POT='= 
x= o·;9000DOJ PuT:: 
x= 1·; GCJD8GJO PJTO: 

3· 8926604 EX= 
3'."89 579 1 3 oz= 
3~~9 GU9 .39 5 F'"..:. ... :\.-

3 _. 9 ~JS2252 EX= 
3 .. 9 1 7/676 El'\ = 
3: 9 2() 6353 "''-'-..... I·\-

')· ....,. 9 <'r 1 69 76 EX= 
3'.'0 5 6S 7 4 7 Ei\= 
3' .. 9 731.399 E>:. =" -·' 
3·:99 1 /J596 E ~'(~ ~ 
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o. 8Li82303 EPS= o. 12~7807 
0 .. 09 639 33 E?S'= 8· l2DLI')23 
o: l /~ LJ1 757 EPS= 0· 1 201 L:6 L! 

o. 19 14(,46 EPS= G· 1 }9· 6·65 Lt 

8 .. 23:3 1 o ~~s EPS= (J.' l 19 :)522 
0; 28 3:1 L163 EPS= 0.: I 16 31 1 0 
o. 3233 494 EPS= (-) .: 1 I 7 L:LJ62 
o. 372632 7 EPS= ~ .. 1 16LJ634 
0· L: 153259 Ei?S= g·. 1 1 5~~63 3 
0.'4566701 EPS= t~. 1 1 ·/i I 6 75 

0. 8 LJ70319 EPS= 0· 1 1 7577 6 
o.-c937'J20 EPS= g.·.· 1 1 72 LJ;:;c; 
o. 1 .1:00137 EPS= :j. 1 i 6 r. 7-:3 J 
0· lt\543)2 E?S= ()." 1 j 5399 5 

.. o .. 2298251 EPS.= ~-J. 1 1 1~.3 1 •,) t• 
..... J 

o. 2729451 E?S=. ;J. 1 1 ~3 /;?. '/1 

0· 3 1 459 L~(;', '"' EPS= 0· 1 1 2 3S 5,:; 

0· 35459 >J 1 E?S= ;j. 1 J:v: .)9 L'~ 

0· 3:}27TI5 E?S= ~· 1 :.1 ~~ 1J .1;.:;) 

o. Lt29 ~J2 66 EPS= 0-· 1 :0 7~~s s 6 



Ei..JTE:R· •• H ... 
1 • 08 
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A= 1· 0000 8= n,. 5COU F= 0·.0 660 
H= 1· OCHJO 

ENTER· • • o .. Xi-'l!~X .. 

0· bl-0 

X= o. 10080CG 
X 

.• 
0·: 200.0000 = 

x= 0~.- 300~}8Z,0 

x= 0" . . LjtJ008.00 
x= {f~· 5800000 
x= c:f: 6800000 
x= :o~·70S0000 

x= 0:;.8 GG00•JO 
X= 0 •· 9 0Ci000.8 
X= 1'."0000000 

ENT!::R ••• H ... 
0. 75 

POT= 
POT·~ 
POT:: 
POT:: 
POT:: 
POT:: 
POT='= 
POT:: 
POT= 
POT= 

3· 1 s 7290 6 EX= 0. 0 LJ.33 319 
3·~· 1 1.3:3 55 2 EX= 0;ss 71794 
3: i2Ll7;]27 EX:: :0 ... 129 572:3 
::f: 1 39 7232 L<: C' •• 

IJ• 1 705 710 
3·; 1.58 757J EX.:: 0'."209 7739 
3 ... 13 1 6065 E;<:: G ;2./!63 332 
3·; 20<3 0 LJ2 LJ Ei\:: 0 ;2;.3 1 LJ60LJ 
3 ... 2378 100 E->~= 0 ~- 313LJ321 
3 ... 2 70635 1 [;-;::: 0; 3 LJ25SI20 
3~ .. 396231 6 D<= o;36SSS07 

A= 1·0000 8= 0~5000 F= 0·8668 
H = G. 75 80 

X= (). 1002E~OO POT= 2·5 65 63 69 E>~= 0 •0 L!:303 LJ3 
x= 0' .. 2000008 POT:: 2'."5 7 63331 EX:: tf; 0 79 5252 
x= JJ; 30(00000 POT:: 2~'59 338 7 6 t:x= vj·; 1 1 77033 
x= 0" . LJ(100002J POT:: 2·; 613 0 7L!2 EX: ~~·; 15 -"i8Li64 
x= 0·; 5:G0(0000 POT: 2·; 6 LiS 5 2G9 EX:: o ... 10505 12 
x= IY." 6808G\J0 ror= ,.., .. 

.C·• 6S LJ773LJ EX:: o·:·2 19 30 1 1 
x= o·.: 7003800 POT::: .2·.: 726312LJ EX:: 0 ... 2 Lj 7 LJ3 0 1 
x= 0~'8000000 .POT='= 2'."7725719 E/~.:: 0 .. 2 7233 ] 1 
x= 0'."9 080000 POT:: 2~'8229 539 EX:: o: 2') 39 0 75 
X~ 1'."0008800 POT: 2···8763727 Ei<='= .0. 312ZJ676 

ENTEF~... H .. 

0 •5 (J 

A= 1·008J 8= 0.500D F= 0·366~ 
H:: 0· SU08 

Ei'li TE !\ • • • L)., X 1·1AX .. 
0.} .. ].() 

I<= O·IO.:JOUJ.0 
x = o; 20uoooo 
X='= o·.: 30J00D0 
x = 0~ .LtGt:;oooo 
x: Cf."5CL)UG~J0 
X='= 8~·6:'jCJUIJOG 

X= c·.:70:;ijGJ.0 
X:: 0 ;s 0GJGCJO 
X~ 0 ·; 9 0 J :J 3D J 
x::: 1 ~·!)Oi:iUSJS 

POT= h S -48 79 19 
PoT= r:s6U1332 
POT= r.: 39 18 3 18 
POT::. i·;9353.234 
PO T- 1·; 9 3 9 LJJ 2 0 
POT: 2·; 05 32 ,J 7 6 
POT: 2·: 12:J 1 2 73 
P 0 T ='= 2 ; 2 I-J3:; 1 2 5 
POT::: .2·:23 7795L! 
POT= 2·3756563 

El:= 0·032L:l:/6 
EX= S·0641iJLiJ 
D<=' o·;o9LJ3485 
~::x= 0·122A635 
Ex= o~·.l 47~;355 
EX::: 0 . ."] 7013G3 
EX:: 0._.1S3:J677' 
E;~= o:.-21..13'3 1:1s 
Ei~='= 0·2153733 
EX.:: 0 • 2 2 3 3 730 
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E?S= 0· 109 5 79 7 
E?s= .0 ~· 1G39 742 
EPS:: .o·: 10 79 77LJ 
EPS:: 0 .. 1066869 
EPS= 0·· .18 L!SS 69 
EPS= o: 1023 Lj 72 
EPS='= 

.. 
10J52 1 6 0· 

E?.S= 0 .. 89 79 -n5 
EPS::: ~, 

-~. 0951 645 
EPS= 0 ·.· 0922127 

EPS= 0· 1 0021 88 
EPS:: .0··· 099 L12J6S 
E?S~ z,·; 093 03 61 
EPS= 0;87 6277G 
E?S= 0 ;09 LJJ25 6 
EPS'= o;09 1 375LJ 
EPS= ()'; 033 3:3 57 
EPS: ~j·; 0351 19 1 
EPS:: o:oa 1 6LJ1 !~ 
EPS= o. 87301 69 

EPS= 0·03JtjL;39 
EPS= o:os013·JD 
E:Ps= 8;D7,~6l7J 

EPS='= 0·0765397 
E.:::>s= o ;u 7 39 L12 I' 
EPS= 8;0703:376 
EPS= o·;fi67·~1523 

.EPS= 8:;C637317 
EPS= 0."(:15:13273 
EPS:: 0;0553LJI;5 
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1, 30P 

000l·l:.lS::,jlJ 1D 
0 G82·:uooo 
0003 .. 0800 20 
0004"."000J 
000s~·ouco 

0 00 6·: 0000 
0 0 0 7 ... 080:J 
0 oos·: o eurJ 30 

0010."088(6 40 
001 1"."0080 
0012"..0000 
0013"."0000 
0014 .. 0080 
0015"."0088 
0 0 i.6 ... 8008 
0 0 i 7"."DG 80 
00if::'."0000 
00}9 ... 0000 
0020."0000 
fHJ21.~0800 

0022~·ouoo 

0023"."0000 
0 024"."8003 
0025 . ."080G 
0026"."0000 
002 7."0080 
0028·"0000 
0029 :ooo0 
0 03[J .. 0000 

>T 
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r;E:!~ c., A, a 
F = SOi\T<A*fl. - 8:!,8) 
RE:Ao, H 
L = 2:!:H 
;-1 = Llr 
Pf:li--JT3 .. A7 g., F 
Pf~I ~l T-.1 ~ H 
l~EAD7 07 Xi·1AX 
X = D 
Z = X/F 
SS = C-1* 1-1 + loi: Z + 1) I 2 
SS = SS - SQRTCSS*SS;- Z*Z>. 
SU ::: SORT< SS) 
U =-ASINC$U) 
CS-= 1 - SS 
CU ::: SOKT< CS) 
C2 U- = 1 - . 2'"'' S S 
so =- SOHT< 1 + (It;/ CU> '" ( i-1/CU)) 
Ei-1V-= SO ...; i'l/CU 
V = ALOCiC~Q + i-i/CU> 
E i··12 V = E ;·.; V:;; E: i·i V 
TH = (i/SUiH<CS + ;lj*l'l) 
POT-= ~*V - .EM2V*C~U 
E?S : < 1/S):;:i·i'''i'i*CC 1 + El·'l2V:!'C2U>*Trl + 2*E<·~2WCS) 
EPS: 2PS:i:CSIC<·i:~;-i + CS,~CS> 

Pl~Ii\JT1l .. x, POT .. EX7 EPS 
IF <X • GE:· <Xi·iAX - b/S)) GJ T•J 20 
X/= X+ D 
GO. TO 40 

01/13/78 19·46-05 

> oc. 
m~. 

E0 .. 72 RE!~DY 

01/13/70 19.1!6·15 
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VIII. References and Notes 

* Hark supported by the U.S. A to!l'li c Energy Commission. For previous 

work) see UCID-10162. 

l. BNL-7534) p. 325 ff. 

2. ERAN-30 

3. Private conversation (13 January 1970). 

l~. The notation adopted here follm·IS that of reference 5 belO'Iv. One 

should note that the transverse dimension parallel to the conquctor 

is x and that the se:ni-axis of the beam in this direction is denoted 

by "a" in the present 1wrk. He suppose) as is appropriate for the 

present application) that a~ b. Hith respect to notation) the direc

tion here designated by x is frequently termed the z-direction in 

electron-ring v1orkJ and the di!11.ension denoted here by "a" then is 

comm.only written "b". 

5. ERAN-1~4 

6. The quantity u is explicitly evaluated in line 11~ of the BRF pro

gra~~e) although with the present print statement no direct use is 

made of this quantity. By adding a suitable print instruction) 

hovlever) the curvilinear coordinates u and v could be printed. 

7· C: is typed as EX in the listing and on the output of the BRF 
X 

progra~:ne. 
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