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Introduction Methodology
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upstream inflows to the reservoirs and the controlled outflows from the tree-like graph model to classify, and predict continuous target variable based | | predictions (red) for 2009/12/31-2013/12/31, and compare with the “real” (black)
reservoirs. The outflows are the most important water input to the downstream on the selected dependent variables or decision variables. ,o U
users for multiple purposes. d Advantages: the transparency of modelling framework, the simplicity for| | <. el e I Tt =l - =L

understanding and interpreting, and the computational efficiency i ‘
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S I . . O Cross Validation: is a model validation technique for evaluating predictive e N W N AT N &
w Reservoirs/Dam performance of a statistical model on an independent or unseen data set. :
il . YW (41 P P L - O Purpose of Outer Loop : To create enough unseen data , which is being o o | oo = | | i —Em g ity s
wf N Outflow tested for selecting proper model parameter against the “over-fitting” i - |~ |
f Outflow  \ "/ " phenomena. (1-50,000 in the experiment) » i
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Figure(1) Inflow and outflow for Shasta Lake Inflow # Outflow in the possibility density distribution. (2-15 in the experiment) Figure (7) : Predicted vs. observed outflows Figure (8) : Predicted vs. observed storage changes
Data | dThe statistical test (Nash-Sutcliffe Coefficient and Standard Deviation)
Motivation ""TORO | FOL | SHA | NVL | DNP | EXC | MIL | PNF | TR | GLE | SCC | 158

v' Use the patterns derived from data mining technique to predict medium to long Nash 0.517 0.511 0.534 0.568 0.628 0.557 0.611 0.851 0.634 0.347 0.351 0.764

term (1-3 years), high temporal resolution (daily) reservoir outflows. Std for

v Utilize the shuffled validation to improve the model reliability and accuracy in Build Statistical Model Calibrate the Verification 30 0.159 0.119 0.198 0.137 0.059 0.096 0.025 0.052 0.037 0.161 0.034 0.018

predicting the future reservoir operation scenarios. (Decision Classification Model to runs

v Take the advantage of CAfRT to efficiently extract the |Ir?portance factors in the And Regression Tree ) find the best dThe Predictors and importance factors (I=Inflow, SA=SWP Alloc, ID=River Index)
decision making process for 12 major reservoirs in California. parameters

v Provide the downstream users with confident the water availability reference ? SHA _ PNF | ORO | EXC | DNP | TRM | SCC__ MIL
for better water planning and management. To overcome the over-fitting disadvantage: 1 | SA - M ] | | | | 1 |

1. Hold on % data out for verification (Set 3) (%) (56%) (56%) (86%) (74%)1(69%) (39%) (68%) (75%) (57%) (61%)](89%) (90%)

. 2¢ D8 M SA M | M SA M M M M | M M
pata 2. Shuffle the rest data points (et 1+ Set 2 ) (310%) (28%) (%) (21%)\(29%) (34%) (119%) (179%) (399%) (2136)) (6%) (5%)
3. Build a decision tree with depth= k (Set 1) rd
> Source: California Data Exchange | Reservoir Name (Elevation in Feet) | 4. Teston the model performance (Set 2) 3 M D4 ID1 SA | SA M SA ID2 |ID8 SA | SA SA
' Outer nner | g (%) (10%) (4%) (5%) (3%)  (1%) (19%) (10%) (4%) (2%) (3%)  (4%) (3%)
Center (CDEC) ORO (900) Loop 5. k=k+1, repeatstep3and4 Elev : :
A FOL (466) Loop 6. Terminateif k > max depth f 370 2370 1135 10675 970 900 879 830 752 692 | 581 466
> Stations: California’s 12 Major SHA 7 N | 7. Findthe best performance and store the associated depth
reservoirs with varying elevations (1067) & ',, 2 NML (1135) 8. Repeatstep 2- 7 for large number of time (say 5000) _
CLE &% - Alavs DNP (830) 9. Use the possibility density function to find the best depth
> Types of inputs: (2370) AV M 10. Test on Set 3 . L . .
A Natural Indicators: T 7 EXC (879) dThe proposed data-driven, statistical model is able to provide accurate,
' | s o | efficient and reliable the long term (1-3 years), daily outflow simulation.
Inflow IMIL = NML ! TRM CLE | DNP _ . .
Precipitation o - dThe 12 reservoir’s outflow decision making patterns and rules are analyzed
- SCC(692) ) based on the predictability of natural/climate/policy indicators.
Evaporation | “
B. Climate Indicator: MIL 1l II.. - - Qd The method is universally flexible to other reservoirs in the world.
8 River Indexes from DWR River (581) oo o~ R e e
| 0RO | PNF | EXC

Forecast Branch

C. Policy Indicator:

State Water Project (SWP)
Planned Allocation Amount from
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