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Dynamic effect of a moving dislocation has been recognized as 

one of essential features of deformation behavior at very low tem­

peratures. Damping mechanisms are the central problems in this 

field. Based on the free-electron-gas model, the electron-damping 

force (friction force) on a moving-edge dislocation in a normal 

state is estimated. By applying classical Mackenzie-Sondheimer's 

procedures, the electrical resistivity caused by a moving disloca­

tion is first estimated, and the damping force is calculated as a 

Joule-heat-energy dissipation. The calculated values are 3.63x10-*, 
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7.62x10"* and 1.00x10""' [dyn sic /cm'*] for Al. Cu and Pb, respec­

tively. These values show fairly good agreements as compared 

with experimental results. Also, numerical calculations are car­

ried out to estimate magnetic effects caused by a moving disloca­

tion. The results are negative and any magnetic efleets are not 

expected. 

In order to treat deformation behavior at very low tempera­

tures, a unification of three important deformation problems is 

attempted and a fundamental equation is derived. 
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I. INTRODUCTION 

M . General Characterization of Theoretical Problema of Dislocation Behavior 

Various properties of materials, optical, electrical, chemical, mechanical, 

etc., are more or less influenced by dislocations. Especially, the mechanical 

properties of metals and alloys which are central concerns of physical metal­

lurgy are largely determined by dislocation behavior. Although significant pro­

gress in dislocation theory has been made, the basic understanding of physical 

properties of dislocations is still insufficient to supply a useful guide lines for 

alloy design. A general characterization of the important problems in disloca­

tion theory based on the author 's point of view is summarized below. 

It is well known that the dislocation density of a well annealed metal is 

approximately 10 8 cm" 2 and that of a deformed metal is approximately 1 0 1 2 c m " 3 

which is 250 times as long as our equator length. These tremendous amounts of 

dislocations are often observed to interact in a very complicated manner and to 

tangle one another. However complicated their configurations and interactions 

might be. since plastic deformation is a na tura l phenomena the group behavior 

of these dislocations must be strictly obeyed by certain physical principles or 

natural laws. The search for such a physical principle known as the "collective 

behavior of dislocations" or "multiple behavior of dislocations" is considered to 

be an extremely important problem in a analysis of macroscopic mechanical 

behavior. Although the theory has been mostly devoted to single dislocation 

behavior no one can really understand and predict macroscopic crystal plasti­

city without the knowledge of the collective behavior of dislocations. A key fac­

tor of this problem is the development ol a suitable thermodynamical t reat­

ment. 

Apart from the many body problems of dislocation theory mentioned 



above, the behavior of single dislocations is of fundamental importance. This 

problem can be split into two sub-categories. 

One is the "elementary interaction process" which deals with interaction 

process between single dislocations and various types of obstacles such as 

solute atoms, 2nd phase, other dislocations and so on. This problem, the main 

concern of this thesis, is discussed in detail in the next section. 

The other category is characterized as a statistical aspect of a dislocation 

behavior. Critical resolved shear stress (c.r.s.s.) can not be uniquely deter­

mined even if the elementary interaction process between a dislocation and a 

obstacle is well established. This is because c.r.s.s. is not a simple sum of each 

resistance force caused by obstacles but complicated function of the distribu­

tions, concentrations and strength spectrums etc. of obstacles which are scat­

tered on a slip plane and of the line tension of a dislocation. Direct computer 

simulation techniques have been most successfully applied to this statistical 

problem and analytical calculations based on geometrical consideration or 

functional analysis were examined. 

Attentions should be paid equally to these three categories in order to fully 

understand dislocation behavior and to develop a dislocation theory of power 

sufficient to provide realistic criteria for the design of new alloys. This study is, 

however, focussed on the elementary interaction process and the details of this 

problem are introduced in the next section. 

1-3. Elementary Interaction Process 

Since the first theoretical prediction of the existence of a dislocation line 

by Ewing et.al. in 1899 [ l] most theoretical efforts have been concentrated on 

the problem of how to explain macrcscopically observed strength in terms of 

microscopic dislocation interactions with various types of obstacles. Typical 



examples are found in studies of solid solution hardening and dispersion har­

dening effects. These calculations are based on continuum elasticity theory and 

a static equilibrium configuration between a dislocation and a obstacle is 

assumed. Furthermore, rate processes have been described within a frame of 

absolute rate theory of Eyring. 

However, with the progress of low temperature measurement techniques in 

this fifteen years, various types of abnormal deformation behavior which can 

not be explained by simple extrapolation of high temperature deformation 

mechanisms have been reported. The sudden change of Dow stress of a lead 

polycrystal due to the transition between the normal and superconducting 

states measured by Suzuki ei.al.[2] and Pustovalov et.al [3] in 1968, or the 

abrupt drop in the temperature dependence of the yield stress of Cu and its 

dilute alloys below 50° IC found by Kamata et.al.[4] are typical examples of those 

anomalies. Since, at present, it is still difficult to extend the in-situ TEM tech­

nique to low temperatures and to observe a dislocation behavior directly, one 

should ne'ther jump at the conclusion nor ascribe these anomalies to .1 single 

cause. But, by comparing the results of different experimental approaches, the 

dynamic interaction of dislocations with "microscopic obstacles" such as pho-

non3, electrons etc. has been recognized as most plausible source of these 

anomalies. Especially, in f.c.c. metals of which Peierls potential is relatively 

small, the dominant mods of dislocation motion is free flight motion (spurt-like 

motion) and dislocation velocities of up to 102~3 cm/sec [5] have been meas­

ured in Cu even at room temperature. These facts might quite naturally lead 

one to the idea of a dynamic effect. 

Mathematically the anomalies mentioned above can be re-explained in the 

following way. According to the string model of a dislocation which was origi­

nally introduced by Koehler [6] the motion equation can be written as 



where m* is the mass of a dislocation per unit length, B is a damping constant 

caused by electrons or phonons etc., V is the line tension, 6 is the magnitude of 

the Burgers vector, (x ,y) is the coordinate system on the active slip plane, t is 

time and r,ff is the effective stress on the dislocation line. This effective stress 

is explicitly given by 

r't! = T w -*i(x,y) (1-3) 
where T ^ is the applied stress and Tt(x,y) is the internal stress caused by 

obstacles. 

Therefore eq.1-1 is the force balance condition among inertia force, damping 

force, line tension and effective applied stress on a dislocation. In earlier treat­

ments, the last two terms were sufficient enough to describe the static equili­

brium condition, and primary interest was the functional form of the internal 

stress, Ti(s,y), including its spatial distribution, strength spectrum etc.. How­

ever, abnormal plasticity of low temperatures implies two additional dynamic 

terms, namely inertia force and damping force. These additional terms will 

force one to reexamine the statistical problem mentioned in the former section 

and will not permit the rate process to be described by simple absolute rate 

theory of Eyring. Especially, the latter problem, how to combine thermally 

activated processes with kinetics, poses tremendous difficulties and can not be 

resolved without returning the fundamental physics. 

The main object of this study is the investigation of the physical origin of 

the "microscopic interaction", namely damping, and the estimation of the mag­

nitude of this damping force. 



1-3. Damping Force 

There are many damping mechanisms for a dislocation. Among them, the 

following three mechanisms are important. They are phonon damping, electron 

damping and reradiation dampinj. Therefore the damping constant, B. in the 

eq. 1-1 is rewritten as 

B=Bp +B.+Br (1-3) 

Phonon damping can be further divided into two mechanisms. One is phonon 

scattering of which the main process is the scattering oi pnonons by the dislo­

cation strain field, and the other is phonon viscosity which Involves the separa­

tion of the effective temperatures of different phonon modes produced by tb.*.' 

shear stress Held of the moving dislocation and its relaxation to equilibrium, 

which was proposed by Mason [7], Phonon damping has been revealed to be 

monotonically increasing with temperature, and in the case oi very low tem­

peratures where the lattice vibration is suppressed, phonon damping is virtually 

negligible. Since this study is limited to very low temperatures deformation tha 

phonon mechanism is not considered here. 

For sufficiently low temperatures, the remaining mechanisms are electron 

damping and reradiation. Although the reradiation of elastic waves of vibrating 

dislocation is significant in insulators and superconductors, this mechanism is 

less effective than electron damping for normal metals. And the main object of 

this study is confined to electron damping mechanism. 

As pointed out in the last section, the existence ot the electron damping 

was first indicated in the tensile test of Pb crystal as the abnormal enhance­

ment of plasticity due to the transition from the normal to superconducting 

states [2]. Creep and stress relaxation tests also confirmed the anomalies which 

could be ascribed to the electron damping force [6, 9, 10], These facts are ipl 



to give the impression that electron damping is associated with only the 

normal-superconducting transition. However, effect is universal and is merely 

emphasized by the transition. Moreover, one should nctieo that it is not an 

easy task to extract pure component of electron damping force from the meas­

ured stress change associated with the normal-superconducting transition. For 

example, all the measurements were performed below the critical temperature 

and an external magnetic field was applied to bring the sample back to the nor­

mal stati. The magcstic field alight influence the dislocation behavior, either 

directly or indirectly through the change of eisctronic structure of the sample. 

In realii,', recent experiment of Galligan [11] implies this effect. Probably only 

a measurement under continuous cooling through the transition temperature 

cnuld resolve this point. At any rate, without overcoming these experimental 

difficulties, the observed difference due to the normal-superconducting transi­

tion can not be fully ascribed to the electron damping fi rce. This point is dis­

cussed in chapter IV-4. 

By the way, dislocation behavior in the superconducting state is expected 

to be much different from that in the normal state. Anomalous strain rate sen­

sitivity of flow stress measured in superconducting Al and A!-Mg alloys is one of 

the typical examples {13].and this phenomenon is explained as the destruction 

of the Cooper fairs to create extra-quasi particlesi y/hicu is caused by disloca­

tions moving with greater velocity than certain critical level. Various other 

types of quantum natures are more or less expected in the deformation proper­

ties of this state, as well Then, as was calculated on a straight dislocation by 

Huffman et.al. [13] and extended to loop dislocation by Bar'yakhtar et.al. [1*]. it 

is certainly of great importance to investigate damping mechanism ii_ super­

conductors utilizing a rigorous quantum mechanical treatment. However, the 

main scope oi the present study is neither to investigate the dislocation 
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behavior of superconductors nor to predict new phenomenon by performing 

rigorous treatment. This study is confined to the electron damping mechanism 

in the normal state and to the discussion of possibility of the extension to many 

dislocations problem. 

1-4. Research Problem 

The previous theoretical studies o{ electron damping mechanism in the 

normal state are reviewed. The first theoretical calculation may be attributed 

to the classical viscosity theory of Mason [IS, 16]. A dislocation is surrounded 

by strain field that moves irith the dislocation, and free electrons in the solid 

exert a viscous effect on an ultrasonic wave propagated in the crystal with 

viscosity TJ. In other words a lattice vibration caused by dislocation motion can 

communicate energy to the free electron gas by a viscous reaction (i.e. transfer 

of momentum) and is damped by the viscosity of the gas. According to the clas­

sical viscosity theory of gas. the viscosity, 7], is given by . 

T]=N m I | (1-4) 

where N is the number of particle, m the mass, T the mean free path, and v is 

the mean velocity. Mason applied the free electron gas model to the eq.1-4 and 

substituted the following particular quantities of free electron gas. 

t-^f ( 1. 5 ) 

"*= i - - 5 T ( 3 n a M r (1-6) 
o m 

where a is the electrical conductivity. And as a final form, he obtained 



where p is the electrical resistivity. By equating the energy dissipation associ­

ated with the viscosity 17, with the rate of change of the strain field as the dislo­

cation moves through the crystal, the damping force and therefore the damping 

constant B, was calculated for the edge dislocation 

ft = 6ir<l-a)»B." ( 1 " 8 ) 

where a 0 is the cut-off radius. Although this treatment is simple and the phy­

sics is clear, a severe inconsistency should be noticed. As was criticized by 

Tittmann. et.al. [17], the classical viscosity theory is valid only in the case of 

tjl « 1 (1-9) 

where q is the typical Fourier component of the strain field. However, the typi­

cal value of q is about the order of the reciprocal of atomic dimension and F is 

about 10"1 cm at liq. He temperature. Then gf is always far bigger than one for 

the electron-lattice system. 

g r » l (1-10) 

Therefore we should conclude that a proper electron damping can not be 

obtained by classical viscosity theorem. 

Holstain [16J calculated the electron damping force based on perturbation 

metaod in the following way. The displacement field, u(r-TDf}. around a moving 

dislocation with velocity vD is expanded into Fourier series. 

o(r-Vflt) = J!u,exp[iq-(r-Tjj')] + Complexconjugata (1-11) 
« 

Each u, is corresponding to lattice wave or lattice vibration of wave vector q 

and gives rise to a deformation potential. The total deformation potential. 



Vp(,r), is, then, given as the sum of the contributions of each q mode. 

Vp(r) = 2*<ln<exp[iq(r-Tflf)] + Complsxconjugate (1-12) 

Due to this deformation potential conduction electrons are scattered accom­

panied with the absorption or emission of phonon, tiqvo Holstein calculated the 

scattering probability matrix of this process by perturbation method and 

obtained the energy changing rate, -r—, in the following equation. 

% = ZZfa^/W-fM}%C*\^\>Jfi' i-+q-k]-rtq-vfl 

(1-13) 

where ffq-T^ is the phonon energy and the remaining term expresses the transi­

tion probability of electron. / (lc) is the electron distribution function. By not­

icing the fact that 

|q-u,j = |i(q) | (1-14) 

where a(q) is the Fourier transform of the dilatation, i(r), followed by several 

mathematical manipulations, the sum in the eq. 1-13 can be transformed into 

integral and the following equation is obtained. 

where Lo is the dislocation line length, q m is the maximum q-vector correspond­

ing to the minimum possible wave length and ic is approximately 1/4. Holstein 

equated this energy changing rate with power loss due to the friction force 

between electron and a moving dislocation of velocity Tip. 
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^ = BLBvl (1-16) 

A Anal expression of the electron damping constant, B, is obtained in the fol­

lowing equation. 

l-dZ.l^.'lSsAk^mb^ (1-17) 
8 32 K [Er *'J 

On the contrary to the above perturbational approach based on quantum 

mechanics of Holstein, Huffman and Louat method [19. 20] described below is 

semi classical treatment. They calculated the electric current and electric Held 

produced by deformation potential and moving dislocation by solving Maxwell's 

equation and Soltzman transport equation self-consistently. Then they 

obtained the friction force as a Ohm power loss which is the product of the 

electric current and electric field. Later, this procedure was slightly corrected 

by Brailsford[21 ] within a frame of the same physics. Their treatments are, 

however, straight application of the theory of ultrasonic attenuation which is 

traced back to the pioneer work of Cohen et.al.[32]. Essential procedures of 

Bradford's are reviewed below. 

Ths local lattice velocity, u(r,i}, is expanded into the Fourier series. 

u(r.t) = Eu^xp^r-v,,*)] (1-18) 

where fa ' ' the dislocation velocity and Fourier coefficient u , can be considered 

as the phonon of wave vector q given by 

u , = 2-iq»o«,Ai«,A (1-19) 

Here X is an index specifying the normal mode with polarization vector e,*, aud 

u f t is the Fourier amplitude of the displacement associated with that mode. 
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Each phonon (longitudinal phonon) is associated with the dilatation field which 

changes the electron density. The self-consistent electric deld produced by the 

moving dislocation change the electron density as well. This process is 

described by the method of distribution function /(r.v.S). eq. 1-20, and Boltz-

man Transport Equation. 1-21 [23]. 

/ ( r .T , i )= /° (» )+ / i (r ,» .0 

°Li.ir2L+s£.BLs-L=£l 
dt 3r m 3 T T 

(1-20) 

(1-21) 

where / " is the equilibrium electron distribution function, / , is the deviation 

from / " due to the electric Held E, dilatation Held and collision with impurities 

of which relaxation time is T. Substitution of eq.1-20 into the eq. 1-21 followed 

by several mathematical manipulations yields 

a/i at" 

-£- + T v r / 1 + s E T < £ -
,LHl.Ji£L 

3 I n at 
(1-22) 

where n 0 is the equilibrium electron density and n , is the deviation from na due 

to the dilatation field of the longitudinal phonon. The solution, f,. of the eq. 1-

22 is given by 

/ • = • 

where a is 

Tev- K + [ T T M%\ 'f 
1 - l U T M •iqrr dc 

(1-23) 

u = 3 b _ 2 2 m } 

T T 

and n is an integer. Then, the electron current density, I, can be calculated by 



12' 

1 = ~0fff ildk' *» *** (1"25) 

and the total electric current density if is given by the sum of i and positive 

ion current density, -en u. 

J r = J - 7 i e u (1-26) 

On the other hand, electric field E, can be correlated with i by the following 

Maxwell's equation. 

tiivS=-1:WdiuIT (1-37) 

By solving eqs. 1-23, 1-25, 1-26 and 1-27 in a self-consistent manner, the elec­

tron current density J and electric field E can be obtained. And the product of 

I and E immediately gives the ohm energy loss. According to more complete 

calculations of Brail3ford, the energy absorption rate P , of a longitudinal pho-

non of q is approximated to 

_ Vn,m 1+. 
IT, 

j^ql.\u^f (1-28) 

where qrr is the reciprocal of Thomas-Fermi screening length. Since the 

transversal phonon contribution is found to be negligibly small the total energy 

loss rate, dW/dt, is given by the sum of P , 

The final step to obtain the damping constant B, is quite the same with that of 

Holstein's procedure, eq. 1-16. And the final expression for B, is given by 



where 
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*(s)= | - [ ( l+i z ) - l +s- ' tan- 'x] (1-31) 

and qs is the radius of Debye sphere. 

Both the perturbational approach of Holstein and the self-consistent Boltz-

man Transport Equation method of Brailsford are very elegant method, how­

ever, the following two points are open to question. 

In general, by introducing a N+l dimensional coordinate system which con­

sists of N coordinate for atomic displacements of each N atoms and the other 

coordinate for a potential energy of the system, the dislocation motion in a cry­

stal of N atoms can be characterized as a trace along a one dimensionally 

extended saddle points configuration in the space. And the displacement of 

each atom caused by the motion of a dislocation can be given by the sum of a 

displacement corresponding to the saddle points and the deviation. The first 

component (saddle points) is so-called dislocation coordinate and the latter one 

(dc/iation) is regarded as phonon. Although, both Holstein and Brailsford 

treated a moving dislocation essentially as a wave packet of phonon, as dis­

cussed by Ninomiya [60], the dislocation coordinate given within an approxima­

tion of linear continuum elasticity theory does not always coincide with the 

saddle points but deviates. Then, in order to treat a dislocation motion as a 

phonon, one should be careful about not only allowable limit of the wavelength 

of phonon but also the width of the dislocation core which gives a measure of 

the applicability of continuum approximation. 

Secondly, the right-hand side of eq. 1-21 is a scattering term but the 

mechanism is not specified clearly. If it is caused by impurities as was assumed 

by Cohen et.al. [22], the final result must be modified by the concentration 

term. 



The theoretical calculation carried out in this study may not provide sell-

consistent solution but demonstrates different approach to the electron damp­

ing problem. 

This study proceeds in the following order. In chapter II, general formula­

tion based on the special theory of relativity is carried out. Beginning with a 

brief review of Lorentz transformation, two essential coordinate systems are 

introduced to characterize the dislocation motion, and finally Maxwell's equa­

tions appropriate to this problem is established. The chapter in is devoted to 

the calculation procedures. In the first section, calculations of electrostatic 

potential and electron density are performed by introducing Ccttrell et.al's 

traditional work. The second section is the heart of this calculation and 

mathematically elegant Mackenzie and Sondhsimer's procedures are intro­

duced to set up and to solve Boltzman Transport Equation. The final product is 

expressed as the electrical resistivity. The third section is the calculation of 

the friction force using the electric resistivity obtained in the former section. 

And in the last section, numerical calculations of magnetic induction are intro­

duced. In the chapter IV, the results obtained in the chapter 111 are discussed. 

The first three sections discuss the applicaoility of the Born approximation and 

the intrinsic inconsistency of Mackenzie-Sondheimer's method. The fourth sec­

tion is the main discussion of the friction force. The method of the experimen­

tal analysis is examined, and in order to compare the calculated results more 

reliably, electric resistivity data are also introduced. The discrepancy is dis­

cussed by referring to Matthiesen's rule. In the fifth section, the calculated 

magnetic induction value is shown to be negligible. The last section is unclosed 

work. The possibility of the extension of present study to many body problem ( 

collective behavior of dislocations) is discussed. 
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H. ELBXTTRODYNAIOCALFORUULAMON OF AN EDGE DISLOCATION MOTION 

n-1. Harwell's Equations and Lorentz Transformation 

Although dislocation velocities have never been observed to exceed -10° 

cm/sec and any relativistic effects are hardly expected, the basic idea posed in 

the model, namely motion of charged particles associated with moving disloca­

tion, essentially belongs to electrodynamics. Therefore it is of basic interest to 

formulate this problem in a strict manner based on the special theory of rela­

tivity of Einstein. 

The tensor expression of Maxwell's Equations in Lorentz gauge are given 

by the following sets of equations [34]. 

_ dA„ dA» . 
F<»-IZ;T£; ( 2 1 ) 

and 

^ - 0 (2-3) 

where "is the Lorentz invariant four dimensional Laplacian more explicitly 

expressed as 

. = o2_J_j f_ (2-4) 
e* dt* K ' 

A*. F^ and j ^ are the 4-vector potential, field-strength tensor, and charge 

-current 4-vector, respectively, and are concise notation of the following 

matrix. 
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(AJ = (cA,ip) 

( 0 : 

WM) = 

0 off, -oJ^ -itf, 
-off, 0 o^t - i£^ 
o^, -cB, 0 —ii1, 
t £ , iEy iff, 0 

tcp 

(3-5) 

(2-6) 

(2-7) 

where c is the velocity of light, A is the vector potential, <p, is the scalar poten­

tial, &,Ez.Etl,EI) is the electronic field, fl(BI.Bv.B,') is the magnetic flux density, 

i(t, .iy.i.) is the current density and p is the charge density. 

The Lcrentz transformation is characterized as an invariant transforma­

tion which conserves the distance between two points in 4-dimensional Min­

kowski Space. The transformation law between the coordinates i „ and 

z'p{v,ii\\.2,ZA) in two inertia systems, K and K', are given by 

: aw*v (2-8) 

Xpconsists OL three dimensional space coordinates, x,y,z and one dimensional 

time coordinate, t. 

(2-9) 

In the special case where system K' has its coordinate axes parallel to those of 

K and is moving with a constant relative velocity v in the s direction, the 

transformation matrix a^, in the eq. 2-8 can be simplified and is given by the 

following matrix. 
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(a,J) • (2-10) 

V l ^ S vi-rJ 
where 

^=7 (2-11) 

Covariance of the Maxwell's equations with respect to Lorentz transformation 

between two inertia system is an important consequence of the theory of rela­

tivity, and 4-veetor potentials, J4„ and A'^, defined in the two systems are related 

by the following transformation law with the same transformation matrix 3-10. 

« j i — & p^pAy (3-12) 

H-2. Representation of a Moving Edge Dislocation in Two Inertia Coordinate Sys­

tems 

Physical phenomena associated with a dislocation moving in a positive x 

direction with constant velocity v can be described in various coordinate sys­

tems. Among them, the following two orthogonal coordinate systems, K and K', 

are of specific interest in this study. 

In the K-system. the coordinate is fixed to the lattice and the dislocation 

moves, in the positive x direction with a constant velocity, v. with respect to 

this lattice. On the other hand, in the K'-system whose origin is fixed on the 

core of the dislocation, the coordinate moves with the dislocation. Therstore, in 

the K'-system. media surrounding the dislocation moves in the negative x' 

direction with velocity v. The conflgurational relation among the K-system, 

K'-system and the dislocation is shown in Fig. 1. 



Due to the introduction of an edge dislocation, a displacement fleld is 

induced. In the K-system. components of the displacement fleld, u/i u£ uf in 

the x.y ,z direction, respectively, are given by [25] 

i(5£)L n- 1^_ a* t i m-.j&d 
Zv{ vz \\ s-vt x-vtj 

•r-ifflr toi(x-vt)a+(7y)2!*-|~ ia|(s-wO*+(ftf)2J*i 

(2-13) 

(8-14) 

and 

u*= 0 (2-15) 

where superscript K stands for the K-system, «, is the transversa velocity of 

sound, and a,0.y are given by the following relations with longitudinal sound 

velocity vt. 

Zv* 
1H 

(2-16) 

P = 

•m 
(2-17) 

(8-18) 

and superscript K stands for the K-system. 

In the IC-system, however, these components are modified according to the 

Lorentz transformation in the following way. 

~ Zir[vz t aa - ' ^L-a ' t an - 1 -ifltll 
Sx'l 

(2-18) 



uv = ^\^}^HS'rHry)'^-fm^rH?yW] 

and 

"where 

(2-20) 

(2-31) 

S = Vi - ( j sy (2-22) 

and the next relations derived from eqs. 2-8 and 2-10 were employed. 

fc! 

jke'+vt') 

i t f V * e O 

(2-23) 

The dilatation field, i^, is calculated from the components of the displacement 

field obtained above. 

i „ = du£_ 
dXi 

2n [v* (3-24) 

where {zl,xz,x,)-(x'.y1 ,z'), and (u,.u2,uj)=(ti I..'V•">•)• Because of this dilata­

tion field the positive charge density (positive ionic density), pp becomes 

heterogeneous and is given by 

= ^ ( 1 + v - (2-35) 



where p& a&d paK are uniform positive charge densities of the dislocation free 

crystal represented in K- and K'-system, respectively, and the modification from 

the first equation to the second one is a direct consequence of the Lorentz con­

traction. It should be noticed that the explicit time term can be neglected in 

the K'-system representation eq. 2-24, while not in the K-system formulation. 

n-3 Establishment of Maxwell's Equations for a Having Edge ^idocation 

Further discussions are developed in the K'-system instead of K-systeai, 

because, as was recognized in the last section, the explicit time tern disappears 

in the dilatation, eq. 2-24, and therefore the K'-system is easier to handle 

mathematically. If need be, the covariant property of Maxwell's equations, eq. 

2-12, allow the solution to be easily transformed into that of K-system. Main 

interest is confined to the steady state, therefore the 4-dimensional Laplac.an, • 

can be simplified to the 3-dimensional Laplacian, V2, and Maxwell's equation can 

be rewritten as 

•n*; = -&* (2-26) 

Here, by making use of the results obtained in the last section, components of 

the charge-current 4-vector ;'j, are given by 

w;> = 
- * • 

k'W#-
3 (2-27) 

where px is the unknown electron density which plays an essential role in this 

study. Substitution of eqs. 2-5 and eq. 2-27 into eq. 3-26 establishes more expli­

cit form of Maxwell's equations in the following way. 



v*c);J,. 
chB { 6 

1 P & . 

v 8(')-v = o 

V»(')A,- = 0 

v»o = -^-f^-PoVd+V-'! 
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(2-38) 

(2-29) 

(2-30) 

(2-31) 
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HL CALCULATION PROCEDURES 

HJ-1. Electrostatic Potential and Electron Density Around a Dislocation 

A rigorous treatment based on special theory of relativity was demon­

strated in the last chapter. But as pointed out previously, dislocation velocities 

are less than -10 ' cm/sec which is negligible as compared to the speed of light. 

Therefore, /J* in the eq.2-11 and <S in the eq.2-22 can be put to 0 and 1, respec­

tively. This operation mathematically corresponds to the reduction of the 

Lorentz transformation, eq. 2-23, to the following Galilei transformation 

1 x'+vt' 
y'. 
z 
'• J 

and physically means that every phenomena is observed at the same time in 

both K- and K'- system. In particular, this study of dislocation motion can be 

reduced to a treatment within a frame of electrostatics, and the first task is to 

obtain the electrostatic potential and electron density around a moving edge 

dislocation by focusing on the last equation 2-31 of Maxwell's equation. 

The dilatation field around a dislocation causes the Fermi energy to 

change from place to place. Physical origins of this change are two-fold; 

change of the kinetic energy of electrons due to the change of wave length and 

change of ground level energy, both caused by lattice dilatation. However, in 

the equilibrium state the electrochemical potential should be a constant 

through the whole crystal, therefore electron redistribution takes place so that 

the electrostatic potential produced by the redistributed electrons compen­

sates the Fermi energy change. This mechanism was originally developed by 

Cottrell et.al.[26] in order to estimate the electric interaction energy between a 



static edge dislocation and a solute atom of different valence. 

Mathematically, these mechanisms are described in the following equa­

tions. The Fermi energy around an edge dislocation is given by 

M r ) = £ i + ^ * f a 

asg+e^+^ - f c^ l+ i ) " 3 (3-2) 
am, 

where «jj and c'c are ground level energies of perfect and distorted crystals, k? 

and k'r are the Fermi vectors of those crystals, respectively. In the above equa­

tions a Taylor expansion with respect to dilatation, A. is carried out on ground 

level energy, c'c and the first two terms are considered. Si could be found by 

the following fact, the equilibrium lattice parameter is determined by the con­

dition that the derivative of the total energy of the conduction electrons with 

respect to A should vanish at A=0. Thus. 

» ^ ' (3-3, 

On the other hand, the condition of constant electrochemical potential is given 

by 

H(r) = t) 

= cr{r)-Bf[r) (3-4) 

where M M is the electrochemical potential at r(x' ,y' ,z') which is equivalent to 

the Fermi energy of a perfect crystal (or Fermi energy at the region infinitely 

far away from a dislocation) and jo(r) is the electrostatic potential after the 

electron redistribution. Although, from eq.3-2, the change of the Fermi energy, 



Scfir), can be given by 
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--&£**« (3-5) 

and this net amount was implied to be compensated by electron redistribution 

in the Cottrell's treatment, because of the electric field produced by positive 

ions. 4«f(r) can not be directly equated to 8f»(r) in eq. 3-4. Proper solution 

should be obtained by the simultaneous and sell-consistent solutions of equa­

tions 2-31 and 3-4. 

In order to proceed to actual computations the Thomas-Fermi approxima­

tion is performed on erfr) and eq. 3-4 is rewritten in terms of electron density. 

PK(T), in the next equation 

p^)=pk[-h+7i, 
, 3 . 

(3-6) 

where «&, is the kinetic energy of electron in a perfect crystal and is given by 

Here, the simultaneous equations which give the equilibrium electron density 

and electrostatic potential around an edge dislocation are set up in the follow­

ing way 

- I , 3 , . 3 *<f (provided that -§-A+ - ^ - « 1 ) (3-8) 

Tfiv = - i i p - - p 0 - ( l +4)-' i (3-9) 



and 
25 

Po=p<r = Pi) (3-10) 

where the subscript K' is neglected in order to avoid unnecessary complica­

tions. 

Since it is quite tedious to demonstrate whole calculations of these simul­

taneous equations essential steps of the procedures are briefly summarized 

below. 

Substitution of eq. 3-8 into eq. 3-9 yields the following partial differential 

equation (P.D.E) in a infinite two dimensional space. 

(V-o )p(r ) = 0A(r) (3-11) 

9)£R2 and </>-0 at |r|-»~ 

where a and D are given by 

_ 6 7 T 8 2 p 0 

(3-13) 

and 

D = jnepo (3-13) 

respectively, and instead of the notation of Laplacian operator 4, "va.@\a." 

operator. V2, is used. The corresponding fundamental equation of P.D.E. 3-11 is 

given by 

(v* -a ) f e <r | f ) = -<5(r--« (3-14) 

and the Green's function is explicitly given by [27] 



fe(r|«)=^0(Va|r-4|) (3-15) 

where Ka is the 0-th order modified Bessel function of the 2nd kind. Therefore, 

with the aid of ths Green's function the solution of P.D.E., 3-11 is obtained as 

= - f Wr)-2C-/aKd^ I r D ^ f + Z / a f r l f t ^ A d f ) (3-18) 

where Ki is the 1st order modified Bessel function of the 2nd kind, y was given 

in the eq. 2-18 and 1? is measured anticlockwise from positive x' axis. In the eq. 

3-16, the reduction of the upper integral into the lower equation is quite hard 

and despite of the persistent attacks with various mathematical techniques p(r) 

could not be fully expressed by well defined functions. In order to evaluate the 

contribution of the 3rd term the integration was numerically performed for 

various physically meaningful values of a and 7, and the results were compared 

with 1st and 2nd term. Several results are shown in Figs. 2, 3 and 4. One can 

see that the 3rd term is negligibly small and can be safely neglected in the eq. 

3-16. Therefore the final form of electrostatic potential p(r) is well approxi­

mated to 

p(r)=-^ji(r)-2V5-air 1 (Vo|r | )^Sf | (3-18) 

aad substitution of the eq. 3-18 into eq. 3-8 yields 

p-(r) = p „ | l - o + | - C V a ^ ( V 5 - | r | ) ^ - (3-19) 
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These numerical processes are discussed in the section IV-1 again but it is 

noticeable that in the case of a static dislocation the 3rd term in the eq. 3-16 

automatically vanishes and p(r) is strictly expressed as 

f»to = - ^ ^ • ( A ( r ) - C V n - A i ( V o |r|)sini» (3-20) 

which includes extra screening contribution, the 2nd term, as compared with 

isr(r) °f the eq. 3-5. 

m-2. Establishment of Boltzman Transport Equation and Mackenzie-

Sondheimer'3 Procedures 

Various transport phenomena in a crystal can be veil described by means 

of Boltzman Transport Equation (B.T.E.). Since the general features of this 

equation are discussed in detail in many articles. The essential points of this 

equation are briefly reviewed in this section and the B.T.E appropriate for this 

particular dislocation problem is established. In order to obtain the electrical 

resistivity by solving the B.T.E. analytically, classical Mackenzie-Sondheimer's 

procedures are introduced. 

ID-2-1. Establishment of Boltzman Transport Equation 

Let f{k.r,t) be the electron distribution function in a phase space. Under 

the given circumstances which are specified in the B.T.E., the probability of 

finding the electron of state k (momentum), at time t, in the space r. is 

described by this function. And this function as the solution of the B.T.E. plays 

the essential role in the study of transport phenomena. In the steady state the 

distribution function should satisfy the following condition. 

= 0 (3-31) £L = 2L + *J- + a-L 
dt dt *V< a t /<•« a t . 
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The drift and field terms are more explicitly given by 

C. =-™ (3-32) 

and 

dt 
= -jpjE+fn1xH|-Vk/' (3-23) 

where V, and Vk are the vector differential operators in a phase space with 

respect to space coordinate r and momentum coordinate k, respectively; v* is 

the group velocity of electron; E is the external electric field and H is the exter­

nal magnetic field. The scattering term is discussed later in detail. In the 

equilibrium state, the distribution function is the familiar Fermi-Dirac distribu­

tion function. / °(k), given by 

'°<*>=ei£fc(k)Vmi ( 3 ' 2 4 ) 

where c is the energy of electron and f is the electrochemical potential. By 

following Ziman [23], the steady state distribution function, /(k.r), is assumed 

not to depart very far from equilibrium distribution function, / °, and the func­

tion C(k,r) is assigned to describe this small deviation. 

C(k.r) = /<fcr)-/°(k) (3-25) 

Substitution of eqs. 3-22~3-25 into the eq. 3-21 yields 

(-%H^v- r +fH} 
= - • § £ • t \ V + j < V W (3-26) 
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Interest here, however, is restricted to the case of homogeneous spatial tem­

perature distribution, T, with the absence of magnetic Held, H. therefore, above 

eq. 3-26 is greatly simplified to 

Be *«'<*-7*rf»*-& (3-27) 
' Immitaring 

Moreover, as was demonstrated I I the last section, the spatial heterogeneity of 

electrochemical potential due to the introduction of a dislocation is canceled 

out by electron redistribution; therefore, eq.3-27 can be simplified further. 

a/° 
3E — If (3-3B) 

Here the scattering term in the eq.3-31 is discussed. Ir. this study, two 

scattering mechanisms are assumed. One is thermal sattering and the other is 

dislocation scattering which is the particular feature of this model. 

at 2L 
dt at (3-29) 

The actual mechanism of the thermal scattering is complicated, but without 

going into the detail this effect can be expressed by 

at ,-/W-/° (3-30) 

where r is the relaxation time and all the complicated physical mechanisms of 

thermal scattering are enclosed into tiis "parameter". On the other hand, the 

mechanism of dislocation scattering is well described in the following equa­

tion. 

at L = c°lffff W(i-/ WW**)**-//// (»(i-/ W)Q(kX)*iti 
k' * 



(3-31) 

where C0 is a constant and ?(k\k) is the transition probability from k-state to 

k-state per unit time. Therefore, the first integral describes the incoming rate 

to k-state from all other states, the second integral describes the outgoing rate 

from k-state to other states and hence the whole right hand side means the net 

change of k-state. Since scattering causes merely the change of state, only k 

or k is explicitly written in the arguments of distribution function / . The phy­

sical mechanism of the dislocation scattering is directly reflected in the transi­

tion probability, G(k.k'), which is given by (APPENDIX A) 

(3-32) <?(k,ic)= ^riotiwioMj^ 

where Dirac's bra-ket notation is used for the matrix element and |k> 

describes the free electron wave function, (ket is the complex conjugate.) 

| j t >~ .a *^ (3-33) 

The argument of the delta function appearing in the eq. 3-32 is the simple 

difference in energy between k and It states and is given by 

at = E(k)-e(lc) (3-34) 

Then any inelastic scattering processes are neglected in this study. As shown 

in APPENDDC A, this transition probability is derived within a trame of Born 

approximation [2B] as the elastic free electron scattering process due to the 

presence of perturbation (scattering) field, bit. As the perturbation potential, 

Atf. of an edge dislocation, the electrostatic potential field derived in the last 

section is employed. 

atf(r) = -ep(r) (3-35) 
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And the substitution of eqs. 3-39~3-32 and 3-35 into the eq. 3-38 immediately 

yields the B.T.E. for this study in the following form. 

[•#]*•* = ^^-Cofcffflf W-f «> |<v | -*, |k> \'«]$f* 
(3-36) 

where the reduction of the integrands in the eq.3-31 to the sq.3-36 is based on 

the principle of microscopic reversibility [29]. The construction of the B.T.E. is. 

in principle, completed by the above equation 3-36 and the remaining task is to 

solve this integral equation. Although the appearance of the eq. 3-38 is compli­

cated, mathematical techniques make it possible to reduce the triple integral to 

a single integral. The details of the whole procedure are quite tedious, and only 

the essential points are described here. 

The key role is played by ^-functions in the integrand. The first reduction 

from triple integral to double integral is rather a conventional technique often 

used in solid state physics [30]. The volume element in the f-space, dk\ is split 

into the product of Vvo terms dS-% and dK ±. 

dk = dSvdKl (3-37) 

where dS* is the surface element of the equi-energy surface in the t - space 

and dKj, is the normal element to this surface, which satisfies the following con­

dition 

Ate - •**<*> 

= 7 ^ " < 3 - 3 8 > 

here, from the first line to the second line, the definition of the group velocity, 
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VV, of electron is applied. By substituting the eqs. 3-37 and 3-38 into the eq. 3-

A C 38 followed by the operation of the 4-function. S{-~i, the volume integral is 
an 

reduced to a surface integral over the equt-energy surface S,QQ. 

/£/{/ (If)-/ <k))l<lf | - . <p | k> | s-*|^|<*If 

The coefficient term of the right hand side originates from both the denomina­

tor of the eq. 3-3B and the argument in the 4-functiot, but is written in terms 

of ic-vector instead of velocity, v, which are related to each other by the 

momentum equation of the free electron. 

mv = rtk (3-40) 

The second reduction, from double integral to single integral, requires 

more tedious variable transformations, but the essential point is a;ain ascribed 

to the delta function as is mentioned below. One will notice that the scattering 

probability matrix, 5**-, which is givsn by 

SW =<lf | i l / |k> (3-41) 

is mathematically equivalent to the Fourier transformation of the perturbation 

potential field in a real space into the 3-dimensional K-space. However, AC is 

essentially two dimensional function of x and y, because the dilatation A(r), 

given by eq. 2-34, which constitutes AC is constant in the z-direction. Then the 

delta function comes out in the Si-direction. 

Sw =<k'|A£/(x.y.z)|k> 



= 27T<J(A;)<k'|A£/(x.y)|It>a (3-42) 

where subscript 2 indicates the dimension and K, is the z -component of the 

vector K defined by 

K = * - k (3-43) 

Observing that the equi-energy surface for free electron is sphere surface, the 

Polar coordinate system is introduced (Fig. 5). 

*, = * -sinij-cosp (3-44) 

ky = fc-siniS-sin<» (3-45) 

* , = i-costf (3-48) 

The surface integral appearing in the • q. 3-39 is, therefore, transformed to dou­

ble integral with respect to •&' and <p for constant k-value. And the J-function 

singled out in the eq. 3-42 immediately reduces it to single integral along the <p 

for constant ij value, ie. i>'=ij, because 

Kg = kx— * , 

= *(cosi3'-cosiJ) (3-4?) 

Now the final form of the B.T.E. can be given by 

( " ' % ~ ) 8 * k ' E = ^ ^ r ^ - C / a f f W ^ I ^ I - s v l I ^ a l ^ S " ' (3-48) 

where C' represents material and physical constant. 

As is shown in the original work of Mackenzie and Sondheimer [56], the 

solution of this integral equation can be found by successive approximation 
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method (Neumann Series) [31] after the following variable transformation. 

G<k,r) = /(k,r)-/°(k) (3-25) 

= - i g f k ) - " ! ^ - (3-49) 
in as 

and 

-.k-E= ig(k)'k+c,y(e(k)'k-g(k)-k)|<k|AC/|k>!!|i!dy (3-so) 
»' 

where C" is again material and physical constant, and the integral equation is 

now posed for unknown function ff(k)k instead of the original distribution 

function / (k). The result is given by 

B(k)-k= -eTEk-CVe/EKKk'IAC/llOjl*!!?' (3-51) 

g(k)-k=-er&k 

where the performance of Fourier transformation on the two dimensional per­

turbation potential, AC/, leads the last equation 3-52. (APPENDIX. B) 

1II-2-2. Electrical Resistivity 

By making use of the solution of B.T.E. obtained above, electrical resistivity 

is calculated. The calculation is started with the following definition of electron 

flux, J. 



' - - T 3 - / / / * f W « * k 4ir> 
(3-53) 

ri = " ̂ rfffvif (k)<* k ( * = * * . * 4 = .«) (3-54) 

Substitution of the eq. 3-49 into the eq. 3-54 followed by the applications of the 

eq. 3-40 and the next properties of equilibrium distribution function 

fffevif"dk = Q 

and 

^U-6<.-„) 

yields 

(3-55) 

(3-56) 

f£flHgLlcykHc-tr)dk. 

4IT 3 
/ / ^ g ( k ) W S t | , (*=*.».*) (3-57) 

where the reduction of the integral is again baaed on the same procedures 

introduced previously in the eq. 3-39. It should be noticed that, in contrast to 

the universality of the condition 3-55, the eq. 3-56 is the approximate relation 

except for absolute zero Kelvin. This point is discussed in the next chapter IV-

3. 

Electrical resistivity (conductivity) is essentially expressed as a tensor and 

each component, J,,Jv,Jt, in the eq. 3-57 is responsible for those tensor com­

ponents. Mathematical extraction of the resistivity (conductivity) tensor com­

ponents from the electron flux J is demonstrated below for the case of i = x ie. 



J,. By substituting the eq. 3-40 into the eq. 3-57 and by making a coordinate 

transformation from the Cartesian system to the Polar system, the next equa­

tion is obtained. 

J* = ~ 4 „ ^ //g(k)ksin ai>cosydi}cty (3-58) 

where the geometrical relation among •&,<? and fcp are given in the Fig. 5. and n 0 

is the electron density of perfect crystal which is related with Fermi vector, fc^, 

by 

» • - £ 0-»> 
Substitution of the eq. 3-52 into the eq. 3-58 yields two integrals. 

J, = •4 ( ,W,< 2> 

it Zn 

o o 

n BIT 2n 

-ACeTif<i*fditfd<fExK,F(K,KY) sinai» cos? (3-60) 
0 0 0 

where A and F(IC^.K^) are given by 

and 
nX*.K>) - ^[(jiQZ+icS ~ 7 + 1 gt+Ki+o. (3-82) 

Since the conductivity tensor (inverse of the resistivity), Q, is defined as 
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J = DE (3-63) 

the tensor component 0-^' can be singled out from Jj 1 ' . 

n 3n 
oQ1 = -4e Tfd&fdtpkrsin?$cosip 

(3-84) 

In the same manner, although the calculation is complicated, a£) is obtained 

from 4 a ) -

* 2lf 2l» 

oil' = -A<reT*fdvfdpfdpK,F{TC)sm'i*-cos9 
0 0 *o 

IU _2^ r ° '*- 3 r °W._i 
11 —r0J i+P a ( i - r 0 ) 3 vp?T 

where C, p and T, are given by 

_ _ aq-r,)* 

P = g (3-67) 

and 

1+7 (3-68) 

From the Qrst line to the second one in the eq. 3-65, the following assumption 

was employed, 

7~1 (3-69) 

of which validity is discussed later. For the other components, y and », the 



same manipulations lead to the following results. 
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and 

o#> = «& (3-70) 

<$ ' = 3ag> (3-71) 

ffii' = "JJ> (3-72) 

ag> = 0 (3-73) 

The final step is an elegant applications of the Matthiesen's rule [32]. 

According to the Matthiesen's rule the resistivity is given as the sum of two con­

tributions. One is the contribution of lattice vibration which depends on tem­

perature and the other one Is caused by impurities, defects and so on which is 

generally independent of temperature. Thus, mathematically, this rule is 

described by 

- l - . i f i - (3-74) 

where the flrst term of the right hand side is the resistivity of lattice and the 

second one is that of the dislocation which is the final object of this calculation. 

at is easily derived from fundamental solid state electronics [33] and is given by 

°i = - £ - (3-75) 

One would notice that this is nothing more than ag,tj$ and aji' obtained 

above. Here the following assumption is introduced: the lattice contribution is 

much greater than that of the dislocation. 

ai<atM t«. - i - » - i - (3-76) 
fft a, 



Then, from eq. 3-74, « s is approximated to be 
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c^-at— (3-77) 

and by making use of the above eq.3-77 with 

<f„ = agl+ogl (3-78) 

and 

the dislocation resistivity, p , , can be extracted. 

Pi = 

= (< 
z§L = (< 4i>> 2 

Likewise 

P„ = 3p, 

and 

(3-79) 

(3-80) 

(3-81) 

p , = 0 (3-82) 

Although substitution of eqs.3-64 and 3-65 makes the above equation more real­

istic, this task is accomplished in the next chapter. 

m-3. Friction Force. 

In the previous section it was demonstrated that a moving edge dislocation 

line causes electrical resistivity as an intrinsic property. On the other hand, 
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during the motion with velocity v, the dislocation experiences the electric 

current, i, caused by positive ion charges. As a result Joule heat energy is 

expected to be dissipated. This energy should be supplied externally in order 

to keep the steady motion. The friction force on a moving edge dislocation ori­

ginates from this energy loss and is estimated in the following manner. 

The configuration in the Fig. 6 is considered. According to the well known 

Joule-Lenz Law, the heat energy dissipated by the current i, in an object of 

resistivity R, during time t, is given by 

= i*PT-t (3-83) 
• "0 

The electric current, i, experienced by the dislocation of velocity, v. is 

i = sit^dou (3-84) 

where A, is the transverse area of the model sample shown in the Fig. S, and is 

given by 

A„ = Wi (3-85) 

and time, t, is also easily calculated. 

t = is. (3-86) 

Substitution of the eqs. 3-84~3-B6 into the eq. 3-83 yields 

©^, = eZngvpLiAo (3-87) 

Let F' be the applied fores on a dislocation of unit length to keep the steady 

motion, which is equivalent to the friction force. Then the following relation is 



obtained. 
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flo = &.« (3-88) 

And from eqs. 3-87 and 3-88, the friction force per unit length is estimated to 

be 

F' = e2ngvp . (3-89) 

By substituting the previously obtained results of electrical resistivity and the 

appropriate physical constants into the eq. 3-89, the friction force is explicitly 

obtained as 

F'= 5.07xlOs\bsy^- v,\G'(p .7) (3-90) 

and 

G'if.r) = ^•^r (2a- ro) s

+ r 0 ^ r + P r 0 (4 -3r 0 ) s in - ' ^= r ] (3-91) 

wherep and V0 were given in the eqs. 3-67 and 3-68. 

Tn-4. Magnetic Induction 

Magnetic induction is the dynamic effect of moving charges. In a strict 

manner, it should be derived as the solution of the Maxwell's equations 2-28~2-

31. In this study, however, all the treatments so lar have been limited to the 

quasi-statical treatment in which the vector potential is ignored and the prob­

lem is posed as the affect of "moving electrostatic potential". Then, within the 

frame work of this model, the following resvUts are not expected to satisfy 

Maxwell's equations rigorously and the calculation itself may not be compatible 

with the model. In spite of this basic refutation, however, it is still considered 
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to be of consequence to estimate the magnetic induction because ot the follow­

ing two reasons. First of all, the results will provide the limitation of the quasi-

static treatment: if the estimated magnetic induction is not negligibly small, 

the spatial density of electrons which was given by the eq. 3-19 should be 

modified by returning to Maxwell's equations so that the vector potential is 

incorporated in the model. Secondly, the possibility of a new type of interac­

tion between the magnetic field around a moving dislocation and the magnetic 

moments of magnetic ion clusters in the crystal can be examined. 

The procedure adopted here is rather simple and straightforward. The 

basic origin of the magnetic induction is tbr motion of the electron cloud asso­

ciated with the moving dislocation line. Instead of applying the full expression 

of the electron density eq. 3-19, the limiting case of infinite screening constant, 

>/iT*=«>, is calculated. 

The magnetic induction caused by a moving charge, QdxK^,, is generally 

given by 

5 = | B | 
_ 00 gory." 

4ff 
i - 4 

(3-92) 

where n, is the permeability constant and r is the distance between the charge 

Qamtt and an observing point. As mentioned before, the speed of a dislocation, 

v, is very much smaller than that of light, c. Therefore, the above equation can 

be approximated as 

B-ZS-^SSSlL (3-93) 

A more general vector description of the magnetic induction for the moving 

charge in the s-direction is given by 



B = fiS|ej> (i=x,y,z) 

= ^ T 7 r»l"y>+

 4 ^ r y | e , > ( 3 " 9 4 ) 

where i% and |BJ> are the component of the magnetic induction and the unit 

vector in the i-direction, respectively. For simplicity the present calculation is 

performed only on the z —y plane on which the By, component vanishes because 

of the symmetry of the charge distribution, and only the B, component 

B, = * ?*•?•%, (3-95) 
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By applying this elementary principle to the moving electron cloud associ­

ated with the edge dislocation, the following calculation is carried out. The 

induction. &8,, at the position P(x,y ,Q,t) caused by the electron clouds resid­

ing in the volume element {x,,+&x'i,y'j+&y'j,z'k+&z'k) is given by 

tB, (x,',Vj ,z*,t) 

= ^K.^+(£&+<«OT" K*S W i «** <3-96> 

where the second fraction term expresses the space term, Hg-, in the eq. 3-94, 

the third traction term is the electron density which is calculated in eq. 3-19 

and Ci is the physical constant given by 

C l Ti^rpFj [r^TfF ( 3 9 7 ) 

Then the final formula for the magnetic induction B[x,y,Q,t) is obtained by 

integrating the eq. 3-96 over the crystal in the following way. 
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B,(x.y.O,t)= lim ESEa^^ / . ^ .OAs t ' ^ ' t e* 

_ efJ,ev ~ r r r v ~ v ' y* J . j i j . 
- '• 4 j r >7J J J f ( x _ x ' ) 2 + ( y _ v ) J + ( i _ z ) a j 3 / 2 ( X _ „ f )* + ( 7 j , ' )3 " * "*» ' * " 

(3-98) 

The actual integration of the above eq. 3-98 was performed numerically 

after the reduction of the triple integral to the single integral. 
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IV. RESULTS AND DISCUSSION 

IY-1. Electron Density and Perturbation Potential 

In the former chapter, the electrostatic potential was obtained in eq. 3-16 

with the Green's function gj(r|£). and the third term could be neglected by the 

numerical evaluation. This numerical process is briefly examined be; ore the 

discussion of the physical significance of the calculated electron density and 

electrostatic potential. 

By excluding the common constant term from each term, the electrostatic 

potential, js(r), is given by the sum of three terms. 

(.Or) = -£wr)-2CJaK,(-Va \r\)2S2-+ffgt(r\t)1'tUit) (3-16) 

= -£c(/,+/ 2+/ a) (4-1) 

where 

2Vo7 . /*(*.*> = ^ . ( V o - V ? ^ ) ^ ^ . (4-3) 

«-#) = 2 U= j a/ ifir.(V5- M)hfBL0Ldt.dtw (4-4) 

Each contribution was plotted in Figs. 3. 3, and 4 for various points {x,y). The 

employed velocities are O.SSU) (7=0.968) and 0.5vj (7=0.865) which is the possible 

maximum velocity, and the screening constant, VaT, is fixed at 1.5x10°. (The 

validity of this adopted value of screening constant is demonstrated in the dis­

cussion, eq. 4-15.) It can be clearly seen that the essential contribution is 
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attributed to the first term both for the diagonal direction and on the circle, 

and the magnitude of the third term is significantly smaller than those of other 

terms. In the light of these numerical results the third term was neglected in 

the calculatioa procedures, ^though the physical meaning ?' this term is still 

open to question, it should be noticed that the dilatation, A, becomes a har­

monic function for a static dislocation and tiler store the third term spontane­

ously vanishes. This fact implies that the thitd term represents a dynamic 

effect. Probably strict solution of the Maxwell's equations will settle this ambi­

guity satisfactorily. 

Now attention is turned to the calculated electron density. The eq. 3-19 is 

split into two terms and the physical meaning of each term is considered. 

p t o = p 0 1-&+|-<*/o J r , ( v ^ | r | ) ^ t (3-19) 

= PiW+PsM (4-5) 

where 

PiM=Po(l-A) A«l (4-6) 

Bp0(l+A)-» (4-7) 

ft(r) = ft[f-CV5*i(Va W) f j f ] (4-8) 

Since (1+A)~l expresses the lattice dilatation the first term, Pt(r). indicates the 

electron density whose shift Is accompanied with positive ions on the lattice 

points. In this sense these electrons are tightly bound to the positive ions like 

and 
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an ionic crystal. The essential feature of a metal is reflected in the second 

term, pz(r), which is the contribution of the screening effect of free electrons. 

In order to show these two effects schematically, the fallowing modifications are 

performed, on the eq. 3-13. The dilatation. A, was given by 

i = c ^ F ( 4'9) 

where 

1 f I ' 

Vl 
(3-17) 

Then the eq. 3-19 is rewritten as 

P(r)-Po _ yy 4 l 
paC x2+(yy)2 5 7+1 " l > " i 2 + y 2 

where 

C' = -C (4-11) 

The eq. 4-10 describes the change of the density rather than density itself. The 

screening term ~^a was more explicitly given by eq. 3-12. 

a = 2 = k - (3-13) 

= 1 . 9 6 9 x « * ^ ) 0 ^ (4-12) 

and has the dimension [£"']• Substitution of appropriate physical constants 

into the above equation yields, 

a = 7.496x10V,' [c.o.s. ] (4-13) 



Since the electron density, />o(=7lo). of a typical metal resides in the range of 

lO^s p„ s2x l0 2 3 (4-14) 

the screening constant is confined to the following range. 

1.616X1018 [rni- ' ls a S4.386xl0 i e [cm"1] (4-15) 

The performance of the following scaling 

x [cm] = lO~aX [angstrom] 

y [cm] = lO" ay [angstrom] (4-16) 

•Ja [cm'1] = lO'Vo"* [angstrom-1] 

transforms eq. 4-10 into the final desired form. 

The contributions of the Qrst term, the second term and the whole term are 

schematically plotted in Figs. 7, 8, 9 and 10 for various values of y and Vo7. 

(Since the first term is independent of the screening constant, v'o-*, the contri­

bution of this term is shown as the function of three values of velocities. 

v/vt=0.0. 0.25 and 0.5 in the Fig. 7. The dependencies of the second term and 

whole term on three types of screening constant, VoT* = 1.0, 1.5, 2.0, are plotted 

in the Figs. 8, 9, and 10, respectively, for the three kinds of velocities. "GM" and 

"SCR" in each figures stand for y and Viz*. Scales are units of Burgers vector.) 

The dark part indicates a higher electron density than the light part. It is 

immediately understood that the screening contribution is a localized effect 

and that total electron density is determined primarily by the first term, which 

is nothing more than the equivalent consequence of the former calculations cf 



electrostatic potential given in the eqs. 4-2~4-4. One should notice that the 

electron density is antisymmetric with respect to s-axis and blows up at the 

origin. This explosion at the origin is observed in the electrostatic potential as 

well and theretore in the perturbation potential as is shown in the Figs. 11, 13 

and 13. The origin of this physical;;- unallowable phenomenon is the direct 

consequence of the application of linear elasticity argument to the core por­

tion, which was introduced in the section 11-3. It is well recognized that the 

atomic arrangement of the core can not be predicted by the linear elasticity 

theory. There might be some relaxation process in the core and there must be 

more suitable smooth function which describes the real strain or dilatation in 

the core portion. Since progress has been gradually made in the field of "core 

physics" mainly based on computer simulation study [34] and quantum 

mechanical approaches[35], the improvement and modification of the core por­

tion by applying non-elasticity arguments remains as indispensable task in the 

future. 

IV-2. Bom Approximation 

The Born approximation (APPENDIX A) adopted in this calculation is one of 

the typical classical treatments of perturbation theory, to this treatment. Urn 

wave function of the corresponding perturbed Hamiltonian is approximated to 

that ot the perfect system, and only "small" perturbation potentials can be well 

described by this theory. In the present study, magnitude of the perturbation 

potential given by eq. 3-35 is about B.4xl(r9e8 t a at (55, 56) for the case of 

kr=1.5xlOa,b =3.0A and 7=0.1. This value may be fairly small enough to satisfy 

the criterion of the Born Approximation. However, as shown in the Fig. 11, per­

turbation potential blows up approaching toward the origin. Therefore the 

direct application of the Born Approximation to a whole crystal must be open to 



objections. There could be a more suitable treatment for this type of strong 

scattering potential field. But the essential point is not the improvement or 

modification of the approximation method but to obtain the proper scattering 

potential field based on the proper atomic arrangement in the core portion. 

IV-3. Boltzman Transport Equation and Ilackenzie-Sondheiiner's procedures. 

The key procedure of the Mackenzie-Sondheimer's B.T.E. method is the 

dextrous application of the Matthiesen's rule in the final stage. It is not too 

much to say that the mathematical elegance of the whole method is amplified 

by this procedure. This powerful method, however, includes the following self-

contradiction. The final process to obtain the resistivity value was based on the 

assumption; 

Oi«a, i». —»— (3-76) 

which means the resistivity of the lattice is very much higher than that of the 

dislocation. Since the relaxation time T of lattice resistivity decreases inversely 

proportional to the temperature and according to Matthiesen's rule the resis­

tivity of dislocations is independent of temperature, the assumption eq. 3-76 

should describe the higher Temperature state. On the other hand, once 

returned to the reduction process from eq. 3-54 to eq. 3-57, one realizes that 

the mathematical property of the Fermi-Dirac distribution function, eq. 3-56, 

was an essential ingredient. But this functional property is, in a rigorous sense, 

limited to 0°K. This self-contradiction seems to violate the physical validity of 

this method. 

In order to extract the pure contribution of a dislocation at 0"K. the 

numerical calculation was carried out on the following integral equation 4-16 

which is obtained from eq. 3-46 in the limit of infinite relaxation time (The 



mathematical detail is shown in the APPENDIX C.) 
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-«lcE = crf(g(lc)•k-g(k•)•k:)\<ll:\-<!V^K>^\^d9>^ (4-18) 
r 

Comparison of the numerical results with analytical results is made in the Table 

1 for the case of a static dislocation, 7=1, and Va7*=1.5. (In Table 1, coefficient 

term is omitted and only independent values are listed.) It can be understood 

that, although the analytical values are slightly higher than the numerical 

values which give the real dislocation resistivity, the Mackenzie-Sondheimer's 

analytical procedures provides a fairly good estimation of dislocation resis­

tivity. The origin of this good agreement can be attributed to the following 

functional property of the Fermi-Dirac distribution function: The Fermi-Dirac 

distribution function is an exact step function at 0°K, and deviation from the 

step function is negligibly small even at the higher temperatures. This guaran­

tees the validity of the eq. 3-56 in the wide temperature range. 

1V-4. Friction Force and Electrical Resistivity 

The theoretical friction force was given by the eqs. 3-90 and 3-91. 

F' = 5.07xl08(ft2M- « ,5 ' ( p 7) 0-90) 

ff'fe-r) = : & ^ r k - r » ' i ! + r o ^ r + P r ^ 4 - 3 r » ) s l n " l ^ T (3-91) 

These results are plotted in the Fig. 14 as a function of velocity for various 

values of Fermi vector, k? [38]. It is understood that damping constants which 

can be calculated from the slope of the curve is, in general, a function of velo­

city. However, as shown in the Fig. IS. force is linearly related with velocities 

for their physically meaningful values. And damping constant is independent of 



velocity. In order to estimate the actual values predicted by this theoretical 

calculation, physical and materials constants which are tabulated in the Table 2 

are substituted into the above equations, and damping constants are estimated 

for Cu, Pb, and Al. The results are tabulated in the Table 3. It is needless to say 

that the accuracy of these values and the validity of the theory can be exam­

ined only by comparison with the experimental values. However, it is not an 

easy task to experimentally extract the friction force and damping constant 

with accuracy sufficient enough to allow comparison with theoretical values. A 

sample should not have high Peierls potential field so that the free flight dislo­

cation motion is a dominant mode, and the temperature should be low enough 

to avoid the phonon friction force. In the case of a tensile test, in addition to 

these requirements for the sample and experimental condition, a more essen­

tial difficulty arises in the following manner. 

A tensile te.it is one of the most widely used experimental procedures for 

the mechanical testing of materials. In fact, as was mentioned previously, the 

existence of the electron friction force was first predicted by this type of 

experiment. But in order to obtain the friction force from the observed stress 

change due to the superconducting and normal transition, the following 

theoretical procedures are required. The strain rate of a sample, i, is generally 

given by 

s = Nmbv (4-19) 

where N„ is the mobile dislocation density, v Is the average velocity of those 

dislocations and b is the magnitude of the Burgers vector. When the rate con­

trolling process is assumed to be a thermally activated process the velocity can 

be rewritten as 

"k (4-20) 

http://te.it


•• L, v e x p Ml 
kT 
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(4-31) 

where AG' is the activation free energy; £»is the average distance among obsta­

cles; v is the trial frequency and t r is the waiting time for the thermal activa­

tion at an obstacle. The activation free energy can be more explicitly given by 

AG' = G„-(T, s p -T i )V« (4-32) 

where G„ is the interaction energy between a dislocation and an obstacle; r ^ , 

and TL are the applied force and long range internal back stress due to other 

dislocations, respectively, and Vg^ is the activation volume. Substitution of the 

eqs. 4-21 and 4-32 into the eq. 4-19 yields 

i = NmbL,vex?\- G.-(yapp-Tjl , „t 
kT 

From the above equation, the applied stress, T W , can be obtained as 

•TL + 
kT •In K* V*i [NmbL,u 

(4-33) 

(4-24) 

By performing this procedure on both the normal and superconducting 

states, and by assuming that the long range internal stress, activation volume 

and mobile dislocation density do not change with the transition, the observed 

stress change due to the transition can be described by the following quanti­

ties. 

= (r . )"-(r . )* 

(4-25) 

(4-26) 

where superscript n and s indicate the normal and superconducting states, 

respectively. Since the electron friction force r, can be related with the 



damping constant B, and the velocity v by 
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B.v (4-27) 

the eq. 4-26 can be rewritten as 

AT = f(B?-B!) 

= fsxi -r) 

where T is 

r= iSL 

i 
7c J 

(iti/o fluid iTiodel) 

(4-38) 

(4-29) 

(4-30) 

(4-31) 

H-exp(A,/*r) {B.C.S. theory) (4-32) 

Then, as the product of damping constant B and velocity v, the electron fric­

tion force in the normal state, Fen , can be obtained from the eq. 4-29, 

/ ? = Bfv 

_ _6_ 

" i-r 
•AT (4-33) 

or from eqs. 4-28 and 4-30. Fe' is 

Fi = B*v 



= -jrfoiT (4-34) 

In the above calculations, the interaction force is obtained as only a func­

tion of temperature and measured stress change. However, this procedure is 

much too roundabout a process and many unclarifled assumptions are piled up. 

In fact, there is no physical basis that can guarantee the assumption of invaria­

bility of the T .̂ffo or K„< between the two states. Estimation of the average dis­

tance L, appeared in the eq. 4-23 belongs to the statistical problem of harden­

ing which was introduced in chapter 1-1. But the extension of the statistical 

problem of a static dislocation to that of a dynamic dislocation has not yet been 

satisfactorily investigated. Also, as was mentioned in chapter 1-3, it is reported 

that, in the superconducting state, a dislocation which moves with a velocity 

higher than some critical velocity destroys the condensed electron pair and an 

additional friction force is exerted.[12] This microscopic physical property of 

the superconducting state is not taken into account in the above treatment. 

The effect of the magnetic field on the sample, which must be applied in order 

to pull the sample back to the normal state below critical temperature, is still 

open to question. Under tUe magnetic field, careless experimental alignment 

often does not make the testing machine behave as a mechanical reservoir. At 

any rate, even apart from these shortcomings, the mos: serious problem in the 

above treatment resides in the fact that raw data does not reflect the desired 

quantity directly and that the intervention of unclarifled theories into the data 

interpretation process can not be avoided. Therefore one should conclude that 

it is next to impossible to extract a reliable value of a microscopic quantity 

such as the electron friction force from macroscopic values determined from a 

tensile test. In order to obtain reliable values of the friction force other experi­

mental techniques must be sought. 



Essentially three different approaches have been taken towards measuring 

the damping constant. One is the direct measurement of dislocation velocity as 

a function of applied stress by means of etch-pit technique; another one is the 

impact shear stress test which requires an assumption of a value for the mobile 

dislocation density; the other one is the measurement of ultrasonic attenua­

tion. At this stage, it is recognised that the measurement of ultrasonic 

attenuation is the more reliable technique. The method proposed by Hikata et. 

al. [37] does not depend on a knowledge of the dislocation density and other 

inaccuracy resulting from dislocation networks. The details of their technique 

are not given here but their reported values of electron damping constant are 

tabulated in Table 3 with theoretical values including those obtained by present 

study. (Victoria et.al.'s measurement is based on impact shear tests. ) Agree­

ments between the values calculated in this work and the measured values are 

not excellent, but as a whole fairly good agreements are achieved. 

Although it was mentioned that ultrasonic attenuation measurement was 

the most reliable available method, the obtained data must still be manipulated 

by theoretical calculations based on unflrmed assumptions. In this respect, 

the ultrasonic attenuation method is also an indirect measurement. By the 

way. as was demonstrated in the previous chapter, the essential physical basts 

behind this calculation was attributed to the Joule heat energy dissipation due 

to the electrical resistivity of a dislocation. Then, by digressing from the final 

calculation of friction force for a while, it is considered to be of great impor­

tance to focus on a comparison of the theoretical electrical resistivity value of 

a static dislocation with experimental values which can be much more directly 

measured than the friction force and, therefore, more reliable. 

In order to select pertinent measured values of the resistivity for com­

parison, Matthiesen's rule is re-examined. This rule says that the electrical 



resistivity, p*(N,f), due to iV dislocations at temperature Tis given by 

P*(N.T) = p?{T)+Pi(N) (4-35) 

where pp(,T) is the resistivity of pure crystal due to the lattice vibration and 

P<(JV) is the contribution of N dislocations which does not depend on tempera­

ture. With the progress of measurement techniques, however, the existence of 

extra term, &pmai(.N,T). such as 

PiW.T) = Pr(T) + Pi(N) * &PDMRW.T) (4-36) 

has been reported [38,39] and &PBHR is named DMR (Deviation fromMatthiesen's 

Rule). Since the construction of the present study is fully based on the 

Hatthiesen's rule the experimental value which is compared with present 

theoretical results should not be affected by this uninvited DMR term. The main 

factors contributing to the DMR term are considered to be the development of 

cellular structures and the change of the phonon spectrum (vibration mode) 

due to the introduction of dislocations. Therefore, in order to eliminate DMR 

contributions, the experimental value should be selected from a sample which 

has a low dislocation density so that the lattice vibration mode is not very much 

perturbed, and has uniform distribution of dislocations without having sub­

structures. Moreover, a low temperature measurement is required to suppress 

the lattice contribution. pp{T). To the author's knowledge, there is only one 

available experimental result which satisfies the above condition. This experi­

ment was performed by Rider et. al. [40] on a poly Al crystal at liquid He tem­

perature. In the Al sample, through the whole range of their measurement up 

to 152 strain, they observed a proportional relationship between resistivity and 

dislocation density (determined by TEM). and concluded that the additional 

contribution arising from configuration or density was avoided. Their measured 
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pm =(1.8±0.1)xlQ-> 8 [o/wa-cm 3 ] (4-37) 

is adopted to compare with the present calculations whose general dependen­

cies on velocities and Fermi vectors are shown in Fig. 16. Substitution of the 

material constants into the eqs. 3-64, 3-65, 3-80 and 3-81 followed by the 

modification for the poly crystal (APPENDIX D) yields 

Pa, = 1.02X10- 2 1 [oAm-cm 3 ] (4-38) 

which is about two order lower than experimental valuo, p „ . eq. 4-37. This 

theoretical value is slightly modified by the following corrections. According to 

the measurements and calculations of electronic specific heat, the effective 

mass of a conduction electron, m', in Al crystal is estimated to be 

m ' = 1 . 4 8 m 0 (4-39) 

where m0 is the static mass. Substitution of this relation into the eqs. 3-84~3-

85 immediately makes small corrections on the calculated value. <=q. 4-38. 

p*=1.06p (4-40) 

This is, probably, the theoretically highest obtainable estimation in this model. 

Although even this correction is not sufficient to 0U the gap between the calcu­

lated and measured values this amount of discrepancy is not unexpected 

because of the following reason. Since the sample used was poly crystal there 

must be additional contributions of grain boundaries. The vacancies which are 

introduced during the deformation should add the extra contributions, as well. 

Then the experiment provides overestimated value as compared with the true 

contribution of dislocation itself. 



Therefore one can conclude that this simple model gives a fairly good esti­

mation of the resistivity. Moreover, as will be shown in the next section, the 

effect of the magnetic field — the dynamic effect — is negligibly small, then the 

model of friction force, which is simply extended as the quasi-static motion of 

charging cloud, can also provide the reliable estimation. And the result of eqs. 

3-90 and 3-91 may be understood to be fairly reliable. 

IV-5. Magnetic Induction and Magnetic Interaction 

By substituting appropriate material and physical constants into the eqs. 

3-97 and 3-9B, the magnetic induction S, \x ,y ,o ,1) is calculated as a function of 

dislocation velocity. In the Fig. 17. the spatial distribution of the integral part 

of the eq. 3-98 which depends only on the coordinates {x,y,z) , (x,y',z) and 

y{v) is shown for the case of v/vt=0.3. In the Fig. 18, the same quantities are 

plotted as the function of y coordinates for the constant x value, x =56, and 

three kinds of velocities. One can see that the magnetic induction blows up 

approaching to the origin: this has the same physical origin as the singularity 

observed for electron density or perturbation potential field. Substitution of 

the actual material constant into the above equation yields the magnitude of 

10~3'~10"3 8 (Tesla/10ao) tor both Ag and Au on the radius of 56. These values 

are small enough to conclude that the effect of magnetic induction is virtually 

negligible. 

As a very rough approximation, the magnitude of the magnetic interaction 

energy can be estimated, as well. The interaction energy between the magnetic 

induction, B, and the magnetic moment, ft, is given by [41] 

5 M . . = B'M (4-41) 

In the true sense, however, the magnetic induction B produced by the moving 



dislocation is not independent but is varying with the dislocation motion. Then 

the interaction process with the "static" magnetic moment caused by a single 

atom, atomic cluster, short range ordering etc. in a crystal should be treated 

more strictly. In this respect, the above equation can not be applied directly to 

this problem, but as a first approximation the maximum interaction energy, 

£££%:, is calculated by the following equation. 

e S g = | B | « j f l M t (4-«) 

where the magnetic moment is assumed to be parallel to the magnetic induc­

tion. Then by substituting the value of maximum induction on the radius of 5b 

and the Bohr magneton 10"ray/Tesla into the above equation 4-42, the "mag­

netic interaction energy" ~10~* ev/b is obtained. This value is very much 

smaller than those of elastic or electric interaction energy. 

The following two facts might be noticed in the above calculations. First of 

all, those calculations were carried out for the infinite screening constant 

which means non-screening effect. As was mentioned in the previous section, 

IV-1, the effect is not significant, and these estimations are expected not to be 

seriously modified. Secondly, the values of the magnetic induction on the 

radius of 5b were adopted for the above estimations. Within this radius, both 

the magnitude of induction and interaction energy are more magnified. How­

ever, without clear lmowledge of core, those values should not be allowed to 

come into the estimation. Than the values on the assumed core radius Sb 

should be viewed as a possib!. estimation provided that from the outside core 

to the inside core physical values such as electron density are smoothly chang­

ing and, at the core radius, a maximu a value appears. 

The above discussion criticizes several unclear physics behind thi i calcula­

tion. But, as the very rough first estimation, one can conclude that both the 



influence of the induced magnetic field (dynamic effect) on the previous calcu­

lation results and the possibility of magnetic interaction with a magnetic clus­

ter are hardly expected. 

IV-6. Possibility of The Extension to Many Body Problem (Collective Behavior of 

Dislocations) in Very Low Temperature Deformation 

The main subject of this study has been tne calculation of the interaction 

force between a single dislocation and the electrons. Most theoretical studies 

of very low temperature deformation behavior also have been concentrated on 

the single dislocation behavior. Even creep or stress relaxation phenomena, 

which can be observed even in the very low temperature region and should be 

essentially described by group behavior of dislocations, iave been approached 

based on single dislocation behavior. Although, to some extent, those analyses 

have revealed the essence of the phenomena by introducing new interactions 

such as the dynamic effect or quantum effect, all explanations and predictions 

remain qualitative arguments because of the lack of knowledge of many body 

effects. The study of the interaction force between two dislocations for various 

type ot configurations is certainly the important basic problem, but it is virtu­

ally impossible to apply the result to each single dislocation constituent and to 

analyze the macroscopic behavior even if a huge computer is available. Intro­

duction of a thermodynamic treatment is essential. In this section, as one of 

many body problems, the possibility of obtaining the mobile dislocation density 

as a function of given deformation conditions such as temperature strain rate, 

damping constant and so on is discussed. 

1V-0-1. Sumino Hypothesis 

Historically, the many body problem was first discussed by Johnston and 
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Gilman [421, and they clearly clarified the dependency of the yielding behavior 

on various deformation factors. Haasen and Alexander's analysis [43] is also 

one of the typical examples of the many body Droblem. These treatments can 

reproduce the stress-strain curve under the given deformation condition. How­

ever, empirical equations are involved in the analysis. Moreover the physics 

bahind many body effects are not well discussed. In this respect, one should 

say that these trea.iaents are hybrid-theoretical treatments. On the other 

hand, Sumino et-al^M.-lS] recently proposed a potentially useful hypothesis in 

the following way. 

The strain rate t was given by 

i = Nmbv (>19) 

Mathematically, an infinite number of combinations of N„ and v are possible 

under a given strain rate i. However, this combination is not determined arbi­

trarily and there should be some physical principles which dominate the best 

combination of N„ and 17. Sumino et. al. proposed the following hypothesis to 

determine the con jination. The steady state of moving dislocations is deter­

mined so as to make the component of the flow stress associated with moving 

dislocations the minimum necessary to maintain a given strain rate. The 

mathematical expression of the above hypothesis is given in the next equation. 

^ T ^ = 0 (V43) 

where T,f} is the effective stress on a dislocation and T,0 is the interaction force 

among moving dislocations. The validity of this hypothesis has been reported to 

be proved for Ge and Si by their experiments [46]. And by applying the eq. 4-43. 

they successfully explained the dependency of the effective stress on strain 

rate and derived the equilibrium moving dislocation density as a function of 



deformation conditions such as strain rate etc.. Moreover, based on irreversi­

ble thermodynamics, Nishioka [47] theoretically proved that this hypothesis is 

identical with the condition of the minimum rate of entropy production associ­

ated with plastic deformatioa. 

Because of the simplicity of its mathematical statement, Sumino's analysis 

provides a great possibility of extension. However, there are two difficulties 

which should be overcome in its application to this study. One is the dynamic 

effects, ie. damping or inertia, which are not taken into account in their treat­

ment. The ether one is the difference of the mode of a dislocation motion. 

Their interest was focused on Ge and Si which have higher Peieris potential, and 

dislocation motion is characterized by the viscous mode. But in the iase of 

dilute f.c.c. alloys, the Peieris potential is not high and obstacles are scattered 

point-wise;, then the dislocation motion is characterized as fr. ' flight motion 

[48]. (It is not too much to say that the existence of dynamic effects is limited 

to free flight motion and except for some anomalies arising from quantum tun­

neling through the high Peieris potential, most of the deformatioa anomalies at 

very low temperature are centered on f.c.e. alloys.) 

IY-6-2. Extension to Free Right Thermally Activated Motion with the Aid of 

Dynamo Effect 

The above difficulties are overcome by the following modeling processes. 

The model.schematically shown in the Fig.19 is considered and the following 

deformation parameters are initially introduced. Nm is the mobile dislocation 

density: 6 is the Burgers vector on this slip plane; c is the concentration of 

point obstacles; r^ is the applied stress; T,1} is the effective stress on a dislo­

cation; 8 is the damping constant and the deformation temperature is T. In 

the case of viscous dislocation motion, the strain Ac during time it was given by 
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Ae = NmAXb (4-44) 

where AX was the average displacement of mobile dislocations during time At. 

Then the strain rate c was derived as 

u-a At 

AI-»0 Af 

= JV„i7b (4-19) 

This is quite a gentral and familiar formula for the strain rate. On the other 

hand, in the case of free flight motion, it should be modified in the following 

way. As the rate controlling process of a dislocation motion, thermally 

activated processes at an obstacle assisted by an inertia effect is assumed. This 

implies that the flight time between obstacles is negligible as compared with the 

captured time at an obst . the thermal activation is assumed to take 

place at AP obstacles per unit volume during time At. Then, the area, ATlmft, 

A^ft - AP(L,)* (4-46) 

is swept away by dislocations and the strain, Ae, per unit volume is given by 

Ae = AP(L,fb (4-47) 

therefore strain rate is derived as 

i = lim 4f (4-48) 
u-aAt 

= Um^rM'b u-a At *^ ' 



= P*{L.)*b (4-49) 

where L, is the average distance among obstacles, and (£,) 2 is the average area 

occupied by an obstacle. The most important assumption implied in eq. 4-46 is 

that, after overcoming an obstacle, a dislocation should be captured by the 

next obstacle it encounters. This assumption was originally made by Friedel 

[50] in his study of static dislocations and has been succeeded to following stu­

dies. 

Let £ be the average distance between obstacles along dislocations. Then 

the number of total points (obstacles) interacting with a dislocation is given by 

PT = Y~ (4-50) 

According tu Ihe thermal activation process developed by Suzuki [51] the wait­

ing (captured) time at an obstacle, t„, is 

Gv—bdLT,ff Ym 

kT 
(4-51) 

where v is the trial frequency. GQ is the interaction energy between an obstacle 

and a dislocation, d is the width of an obstacle, and ym is the parameter 

specifies the dynamic effect which is discussed later. The numerator of the 

exponent in the eq. 4-51 is the activation energy. Since P* in the eq. 4-49 

should be given by 

P* = %- (4-52) 
' r 

then substitution of eqs. 4-50 and 4-51 into the eq. 4-49 yields 
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This is the final expression of the strain rate extended to the free flight mode of 

a dislocation motion. 

The physical meaning of Ym is discussed. As is shown in the Fig.20, the 

components of the line tension in the direction of dislocation motion, Fm, was 

given by 

Fm = bT.frL?m. (4-54) 

FW = l+O.Se-*' (4-55) 

and 

st' = ity'/ o 0 (4-56) 

where y' and aa were 

7'*JL (4-57) 

and 

«o = T — ' /I (4-58) 

These quantities can be derived as the solution ot the dislocation motion equa­

tion 1-1 of a string model. And Ym which is multiplied by the static equilibrium 

force, bT,rfZ. can be viewed- as the modification factor which specifies the 

dynamic effect. Since the vibration ot dislocation is repeated many times, the 

dynamic effect due to the vibration should be incorporated to thermal activa­

tion process and the average value during the decay time - j - is inserted to the 
7 

equation. Ym in the eq. 4-54 is such an average T .iue calculated by the follow­

ing equation. 
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Ym - 1 + 7 7 - r / e "'"' eW (4-59) 

2 1+0.68"*' (4-55) 

This elaborate idea devised by Suzuki [12] seems to allow coexistence of the 

dynamic effect and the thermal activation process. However, thermal activation 

is essentially a statistical fluctuation phenomena, the deterministic dynamic 

term can not be accommodated in such a manner. The basic solution of this 

extremely hard problem might be settled by returning to basic physics [53]. In 

this study, Suzuki's method is adopted. 

The average distance between obstacles along dislocations, Z, is generally 

a function of stress, line tension etc. and the search for the proper functional 

form belongs to the statistical problem of hardening. In the case of a static 

dislocation this problem has been almost worked out [53,54]. However, to the 

author's knowledge, nobody has succeeded in obtaining such a function for the 

general dynamic problem. Instead of going deeply into this problem, Friedel's 

statistics is applied under suitable assumptions. The traditional Friedei statis­

tics tells that £ can be related with stress, line tension and concentration of 

obstacle by the following equation. 

8 & ) V * (4-60) 

This relation was derived from the static force balance condition at an 

infinitesimal portion of a bowing arc and geometrical condition on the assump­

tion that the area which is swept out by a dislocation between two obstacles is 

equal to the average area occupied by an obstacle. It should be noticed that 
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application or the Friedel's statistics immediately confine this problem to res­

tricted condition: the vibration amplitude o{ a bowing string should not be very 

much deviated from static equilibrium configuration and, once overcoming an 

obstacle, a dislocation loses all memories about its dynamic vibration. In other 

words, the current overcoming process should not be influenced by previous 

processes. Moreover, unzipping effects can not be included. Substitution of the 

eq. 4-60 into the eq. 4-53 immediately yields 

i = Nmi> 
ZTe' 

r J-
W/f-exp 

—fcr^ 
kT 

and therefore 

Q = lnr , , , + * ( 1 + 0 . 6 B - ' )r?tt 

where 

C) = 3 In-

«m»\ ZTc1 

kt 
* = 3 b d 2T a 

kT \bc\ 

(4-61) 

(4-63) 

(4-631) 

The final stage is the application of Sumino hypothesis to eq. 4-62. By 

assuming a suitable form of the interaction force between moving dislocations 

and the work hardening force, one would be able to describe the effective stress 

more concretely. 

V / =T<w>-Ti"-T-A (4-63) 

^ r m -A•VS£-i>(r-e,,) (4-64) 

where rf is the interaction force among moving dislocation and r h is caused by 



static dislocations, namely the work hardening effect. But eqs. 4-63 and 4-64 

are nothing more than assumptions. To obtain proper functional forms should 

be recognized as another important aspect of the many body problem. It will 

require very hard mathematical load to separate out T,ff from the eq. 4-62 and 

it may not be able to be performed analytically. But by substituting eq. 4-64 

into such a expression followed by an application of eq. 4-43, one will obtain the 

equilibrium (steady state) moving dislocation density, I ' C as a function of 

deformation condition. By substituting the electric damping constant obtained 

in the previous chapter eqs.3-90 and 3-91 into the. A^, one can discuss the low 

temperature deformation phenomena more reliably as a further unified treat­

ment. Those are possibilities and far future consideration. 
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As stated in the introduction, the primary goal of this study was to calcu­

late the electron damping force in a normal state for a moving edge dislocation. 

Based on the free electron gas model, an equation which describes the electron 

friction force on a dislocation was analytically derived as a function of the nor­

malized velocity of a dislocation and the Fermi vector. Damping constants 

which are determined from the force-velocity relations are generally a function 

of velocity. However, in the range of physically meaningful dislocation veloci­

ties, the force is linearly related to the velocity. Theoretical values of the 

damping constant obtained in this study shows fairly good agreements with 

experimental values. Electrical resistivity, as a middle product of this study, 

was compared with an experimental value for pure AI. The discrepancy is about 

an order of two. This discrepancy was ascribed to DHE sources of the sample. 

Also, direct numerical calculation was carried out to estimate the magnetic 

Qeld associated with a moving dislocation. And the possibility of a magnetic 

interaction between a moving dislocation and local magnetic moments in a cry­

stal was evaluated. The calculated magnetic field was negligibly small and any 

magnetic effects were hardly expected. Although ambiguity of core structure 

remains in the model, as a whole, this model provides fairly good estimations. 

A possibility for a unified treatment of the three main dislocation prob­

lems, elementary interaction manner, statistical problem of hardening and col­

lective behavior of dislocations, was discussed in the final section. And a funda­

mental equation, rb'.ch may describe the essential features of deformation 

phenomena at very tow temperatures, was derived. To solve the equation and to 

extend the model remain for future worlc. 
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Appendix A. Bora-Approximation and Cakoistion of Scattering (Transition) Probability < I > 

The time dependent Schrodinger equation can be given by 

i f f ^ - = ^ * ° (A-l) 

where <t* and H° are the wave function and unperturbed Hamiltonian. The 

solution r.f above equation is easily found to be 

K-nexp^J *» = ^ n e x p k ^ _ (A-2) 

where i>„ is space part of the wave function. Now, let us consider the perturbed 

system with perturbation potential, LU. The corresponding Schrodinger equa­

tion is given by 

* * f r = (fl°+Atf)+ (A-3) 
at 

The series expansion of *(k,i) with respect to unperturbed wave function, •in 

gives 

*(kO = 2X<M0cO (A-4) 
i t 

o„ -an be obtained by substituting (A-4) into (A-3). 

do. ft) 
**E 2 *»'**> = 4U*(kt) (A-5) 

n °* 

By multiplying the complex conjugate of +„, +'*. to the both sides of above 

equation, the following equation is obtained. 

i K ^ i * ™ = fk*°:W*<tl< = < * % - (A-6) 
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Here, the perturbation potential is assumed to be wsak so that *(k,i) in the eq. 

(A-6) can be approximated to be •"(fct) (Born Approximation). Then eq. (A-6) 

becomes 

.<*•>. m-£- = y>;T(ic.t)Atf*0(k,t)dk (A-7) 

In stead of the integral notation of the above equation, the following compact 

notation is introduced. 

U»o - /*nk.OAf/*°(k . t )< ik 

= < * . , A y | * 0 > 

= <n | A V10>-expp2^5h.. 

By using above notation, the solution of eq. (A-7) can be given by 

On M^^t E*-E* dt 

(A-a) 

(A-9) 

Since the nerturbation potential, AC/, of the present study is not time depen­

dent, (A-9) can be further more simplified and 

- * « r L g o-3» . 

-Sh^-u 

dt 

(A-10) 

where 

AT = Eo-E* (A-10') 

At time t, the probability, P„, of finding the system at state, n , is given by 
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P„ = IMOI a (A-11) 

Then the substitution of (A-10) into (A-11) yields 

fl, = |a»(0l a 

->^7n^W (A"12) 

The third term of (A-12) is known as Fejer kernel [55] which provides the follow­

ing 5-sequence. 

"^^—m\ (A-i3) 
irt{AE/3ft)* [aff 

Therefore the scattering probability per unit time, Q(Q, a), can be given by 

fl(O.n) = 3 L 

= ^ | < n | A t f | 0 > | s 5 § § (A-14) 

Appendix B. Calculation of Scattering Probability <n> — Fourier Transforma­

tion or Perturbation Potential — 

Scattering probability matrix, S^, was given by 

Sue =<K|A[/|k> (3-41) 

| k> was tree electron wave function and is explicitly expressed as [56] 

| k > = ^ o j c + i y 2 ( B - 1 ) 
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where A is the volume of the unit cell and (2C+1)3 is the number of atoms in the 

crystal. Since constant term of AC can be separated as 

Atf = -ep(r) (3-35) 

= ~eCU, (B-2) 

where 

a'm-??tor**K^rn%t • tB-3) 

attention is confined to the Fourier transformation of Ug. Let T and S be the 

Courier transformation of the first term and the second term, respectively. 

Then, 

= fdx a" i ( "' 4 , "7' 1 (i) + fdx i-^'T^x) (B-4) 
0 0 

where 

X = tf-k (B-5) 

and 

r ' W a £*^3fo (B-6) 

By putting yy to Y, above equation is transformed to 
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r , ( x > = i - / d y 8 ^ l - j ^ g . ( B - 7 ) 

By the ".-.'ay according to Campbell [57], 

f—E-—eiz«/3df = t i e - / > ! » ! (B-B) 

where 

p =S»ri/ . j9>0 and ±g>0 (B-9) 

Then comparison of eq. (B-7) with eq.(B-S) immediately gives 

r . o = ^(±fit • »»» ') 

7 (0>*J^) . (B-10) - i S t , " * 1 * 1 ( Q > t 

and substitution of the eq. (B-10) into the eq. (B-4) yields 

T = ±Z-i[fdXe' ' % H < - ^ * + ? d x 8 " ' e - ^ * l (B-U) 
7 o o 

By making use of the No. 438 of the same reference [57], 

r B - « n / » g- t tdg = —i— 

1 (3>0) (B-12) i2?r/ + j 

comparison of eq. (B-ll) with eq. (B-12) yields the following result. 

\K,\ r ' a * , J X , i 0 > ± A v < B " 1 3 > 
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On the other hand, S is given by 

S = //.-*^r«- l(V«|r|)^f 

= Ifdy e-^-'+f-y e^lfdx e^'S,(x .y) (B-3") 

= (-jdy e ̂ 'W+fdy e^" j- "fdx e^S^x*) (B-14) 

o o - -

irhere coefficient 2 in the eq. (B-3) is neglected and S^x.y) is given by 

SI(*.v) = V5* 1<^|r|)|ff 

= _L—^_^(V5-V?TP) (B-15) 
According to No. 867 of the reference [57], 

fdg <^M^X^f, = . x r f - . ^ " ) " " ] fc-16) 
- - Trf^-nr)" 3 

where 

p = 2jri/ , pa and a>0 (B-17) 

Direct comparison between the last term of eq. (B-14) and eq. (B-16) leads the 

following Fourier transformation of Si(x,y). 

fdx . - * " 5 , ( - . » ) = ^ f r > ^ V * ^ (B-18) 

Then, S becomes 

S = -£-{-?</"' 8 - < t - 1 " ' e - » , / * ^ ? + ?d» 8 - ^ * a - » V 7 r ^ j (B-19) 
7 + l "4 o 
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Again by making use of the No. 438 of the reference [57] given by (B-13), 

Fourier transformation of each term is immediately calculated. 

7+1 -U l _ _ + „ 1~—1 
[ -i^+Va+Aj t^+Va+AjJ 

7+1 £?+*«+<» ( B 2 0 > 

The final form of scattering probability matrix is given by 

" " (7^) 2+A? T ^ T ^ + ^ + a ( B 2 1 ) 

Appendix C. Numerical Evaluation of Dislocation Resistivity at 0°X 

C-1. Mathematical Basis 

Mathematical basis'of the numerical evaluation for a single integral equa­

tion of F'redholm type is provided in the reference [31]. Here, essential points 

are summarized. The following Fredholm inhomogeneous integral equation is 

considered. 

> 
fk{z.(yu(()<ii-im(z) = / ( * ) (C-1) 

In order to solve above equation numerically, interval [a,b] is divided into n-

equal steps, and integral is replaced by summation. 

/«(x,£)u'(0<if = S A d . S j M * , ) ^ (C-3) 
« j * i ™ 

The integral equation (C-1) is attempted to be satisfied only at i ^ i a x„. By 

introducing the following notations 
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HxtXj) =kij (C-3) 

u(xi) = ui (C-4) 

and 

/ ( * i ) = A (C-S) 

eq. (C-l) is transformed to n sets of linear algebraic equations. 

2>.-u$-2- = ,«*,+/, (C-6J 

After solving these n linear inhomogeneous equations for unknown u t , u 2 l . 

u» , a functional representation of u(z) can be obtained as 

C-2. Numerical Calculation of Resistivity 

By applying the following relation (C-8) to the eq. 4-18 

= (**£,.ly^E,) (C-8) 

the B.T.E. can be split into three equations I o n , 7 and z components. 

t 
etc. (C-9) 

etc. Since procedures are same for each component, this argument is confined 

to only .' component. By performing the coordinate transformation given by 

the eqs. 3-44~3-46, above eq. (C-9) can be rerritten as 
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-eaastp = C"i/"(/iIcos(i>-hj(')cos(»').F"(iJ,(fl,(Oo:(»' (C-10) 
f 

where F'{$,tp.p) is the polar coordinate representation of scattering probability 

matrix \SM \z given by (B-21). On the other hand, by using (C-8), the conduc­

tivity. a„, can be singled out from the eq. 3-58. 

aa = Akrf4Vfdvhx{il,<p)smaM<p (C-U) 

where A was given in the eq. 3-61. Above double integral can be replaced by 

summation ir the following way. 

o_ = 

- /l*^£i;A„sin3iJ(COS2^ (C-12) 

where compact notation hq is introduced for ft,(i9i.(»j). And substitution of h. 

the solution of (C-10), into the eq. (C-12) yields numerical value of conductivity. 

This is the essential procedure. 

From F'(-&,f,tp'), one can single out l/sin ai> term. Then (c-10) is slightly 

modified to be 

- e sinatJoosjo = C"_/*(A»cos(j-AJ(')cosp').P(-*\fi>,j»)rfj» (C-13) 

On the tfi-p* space, above eq. (C-13) can be rewritten as 

—greasy* = C"J"(k(tcos^t-M')coS(o')F(iSi,(»n.js)d(a' 
o 

(i = 1.2 M+l * = :.3 2M+1) (C-14) 

where 
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5 = sin'tft (C-15) 

By applying the Trapezoidal rule to the eq. (C-14), integral can be replace by 

summation in the following form. 

2 (ftrtC0S((Pt-%C0Si9;)/i gjf 

+ jj-P'a.cos?,, -fttjeos^O^l £ j 

+ jC"* cosj» t -Ai aat^os^si,, . ,)/^** 1 £ ^ 

(i = 1.2 # + l ; * j = l,2 , 2 # + l ) (C-16) 

where /& is the compact notatio. :t F^.f,,.^). Then, for each (i,k), 2M+1 

sets of linear algebraic equations for unknown hy is set up. Now. let us define 

new tensor, Hy. 

Hii=hijcos(fj (C-17) 

Then eq. (C-16) is transformed to 

S ( ^ - ^ ) 4 4 M 1 - * W + r ( « . 2 i ( . 1 - ^ ) f J " , = 4r5icos(»* (C-1B) 

By making use of the next relations (C-19)~(C-2i) which are easily verified, 

^M- hizu+i (C-19) 

/?, = tfu,*, (C-20) 

^il = Ft '. (C-21) 

2AJ+1 sets of equations can be reduced to 21J sets of equations. And the follow­

ing matrix notation of (C-1S) is introduced. 
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-ift+ft* +fta) ftx ft 
f& -(^4+^1 + +fil") F& 

-(f<k+ft+f&+ +r&) 

1'** ^iaj 

fta 

F&" 

-Wui+ftzll+ + *?&') 

fff. 

F* 
COSf»i 
CO3(0 2 

COSpg# 

(C-22) 

Then for each 1J4, 2Af sets of fl^, value, i.e. hy,. is numerically evaluated. This 

procedure is repeated M times for •fli.-flj -St tfjj. and by substituting the 

results into the eq. (C-12), one can obtain conductivity <r„. and therefore, dislo­

cation resistivity p, 

Pi" ' 1 
a{tmm) 

Akr 

SEVinVcos 2 ?,^ 

(C-23) 

Appendix D. Modification for a Poly Crystal 

Although the final product of the modification of electrical resistivity for a 

poly crystal is given in the reference [56], the derivation is not provided. In this 

appendix, the gen .ral derivation of the average resistivity of a poly crystal is 

carried out. Components of the resistivity tensor. !)«, and unit vector nt in a 
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certain direction shown in the Fig.31 are given, by 

JO«i = 
D, 0 0 
0 p„ 0 
0 0 0 

(D-l) 

and 

|sina'COS(3l 
(«j) = sinasin^ 

I cosa J 
(D-2) 

Then the components of the resistivity, p°f, in the x, y and z direction is 

obtained as 

p f = 0«n< 

3» sinacos/J 
0y smasin/J 

0 
(D-3) 

Since the measurement is carried out on a normal plane to ft. the component of 

resistivity along A should be calculated. 

(D-4) 

By considering the tact that the solid angle at 1>a.p) is given by 

do = sina-dadp 

the average resistivity is calculated in the following integral. 

(D-5) 

ir/2 a» w/3 aw 
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FIGURE CAPTIONS 

Figure 1. Definition ol two types of coordinate systems for the description of 

edge dislocation motion. 

Figure 2. Numerical evaluation of the third term appearing in eq. 3-16 and 

comparisons of its magnitude with the other two terms. Comparisons are car­

ried out aloi g the diagonal direction in a coordinate. 5j=0.25U[ and 

Va 1.5x10° [cm"1] 

Figure 3. Same as Figure 2, but employed velocity is I/=0.5T>I and v'a7 = l.5J<10fl 

[cm-] 

Figure 4. Same as Figures 2 and 3, but comparisons are carried out aLng a cir­

cle of radius, 3b. 

Figure 5. Configurational relations between Cartesian and Polar coordinates in 

k-space. 

Figure 6. A model crysta, '•» which an edge dislocation motion with constant 

velocity is characterized. 

Figur» 7. Deviations of electron densities from those in a dislocation free state, 

contributions of the first term in the eq. 4-10 are compared in terms of disloca­

tion velocity. CM and SCR stands for y= — and >/a*, respectively. The darker 

colors indicate higher electron densities. The first term is independent of the 

screening constant. 

Figure 8. Contributions of the second term and whole term in eq. 4-10 are com­

pared in terms of dislocation velocity for a constant screening constant, 

V£"*=i.O. 

Figure 9. Comparisons for a constant screening constant, >/a~*=l.5. 

Figure 10. Comparisons for a constant screening constant, '^az=2.0. 
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Figure 11. Schematic picture of the employed perturbation potential eq. 3-18 

for the case of —=0.5 and Va"=i.0xl0a [cm''] 

Figure 12. Contribution of the first term in the eq. 3-18. 

Figure 13. Contributions of the second term, the screening term 

Figure 14. Dependencies of the force factor F' in the cq. 3-90 on the normal­

ized velocities for four kinds of Fermi vector, unit is arbitrary. 

Figure 15. Magnified graph of Figure 14 for normalized velocities less than 

0.01. Unit is same as Figure 14. 

Figure 16. Dependencies of Resistivities on normalized velocities tor nine kinds 

of Fermi vector. 

Figure 17. Geometrical distribution of magnetic induction calculated numeri­

cally for the case of —=0.3. Values in the figure are normalized by constant 

terms in the eq. 3-98. 

Figure 18. Dependencies of magnetic induction on y-coordiaates at fixed x 

coordinate, r =56 for three types of velocities. 

Figure 19. A model which describes collective behavior of dislocations. 

Figure SO. Magnified view of force balance condition on a dislocation interact­

ing with point obstacles. 

Figure 81. Relations among coordinates appearing in APPENDIX D. 
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