Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title

CALCULATIONS OF THE ELECTRON DAMPING FORCE ON MOVING EDGE
DISLOCATIONS

Permalink

https://escholarship.org/uc/item/889810g8

Author
Mohri, T.

Publication Date
1982-11-01

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/88q810g8
https://escholarship.org
http://www.cdlib.org/

-i- LBL--12223

DE83 011744

CALCULATIONS OF THE ELECTRON-DAMPING FORCE ON

HOVING-EDGE DISLOCATIONS

Tetsua ohri

Materials and Molecular Research Division,
Lawrence Berkeley Laboratory
and
Department aof Materials Science and Mineral Engineering,

University of California, Berkeley, California 94720

NOTICE
FORTIONS OF YHIS REPORT ARE ILLERIBLE,
1t has heen reproducecs (rom the hest
ABSTRACT avaiishle copy to permit the broadest
possible availability.

Dynamic effect of a moving dislocation has been recognized as .
one of essential features of delormation behavior at very low tem-
peratures. Damping mechanisms are the central probiems in this
fleld. Based on the free-electron-gas model, the electron-damping
force (friction force) on a moving-edge dislocation in a normal
state is estirnated. By applying classical Mackenzie-Sondheimer's
procedures, the electrical resistivity caused by a moving disloca-
tion is first estimated, and the damping force iz calculated as a
Joule-heat-energy dissipation. The calculated values are 3.63x107%,
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7.62%x10°7 and 1.00x107® [dyn sec /cm~?] for Al, Cu and Pb, respec-
tively. These values show fairly good agresements as compared
with experimental results. Also, numerical calculations are car-
ried out to estimate magnetic effects caused by a moving disloca-
tion. The results are negative and any magnetic effects are not
expected.

In order to treat deformation behavior at very low tempera-
tures, a unification of three important deformation problems is

attempted and a fundamental equation is derived.
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1. INTRODUCTION

F1. General Characterization of Theoretical Problems of Dislocation Behavior
Various properties of materials, optical, electrical, chemical, mechanical,
etc., are more or less influenced by dislocations. Especially, the mechanical
properties of metals and alloys which are central concerns of physical metal-
lurgy are largely determined by dislocation behavior. Although significant pro-
gress in dislocation theory has been made, the basic understanding of physical
properties of dislocations is still insufficient to supply a useful guide lines for
alloy design. A general characterization of the important problems in disloca-

tion theory based on the author's point of view is summarized below.

It is well known that the dislocation density of a well annealed metal is
approximately 10%m 2 and that of a deformed metal is approximately 10'%cm =2
which is 250 times as long as our equator length. These tremendous amounts of
dislocations are citen observed to interact in a very complicated manner and to
tangle one another. However complicated their configurations and interactions
might be, since plastic deformation is a natural phenomena the group behavior
of these dislocations must be strictly obeyed by certain physical principles or
natural laws. The search [or such a physical principle known as the “collective
behavior of dislocations” or "multiple behavior of dislocations” is considered to
be an extremely important probiem in a analysis of macroscopic mechanical
behavior. Although the theory has been mostly devoted to single dislecation
oehavior no one can really understand and predict macroscopic crystal plasti-
city without the imnwledge of the collective behavior of dislocations. A Key fac-
tar of this problem is the development of a suitable thermodynamical treat-

ment.

Apart from the many body problems of dislocation theory mentioned



above, the behavior of single dislocations is of fundamental importance. This
problem can be split into two sub-categories.

One is the "elementary interaction process” which deals with interaction
process between single dislocations and various types ol obstacles such as
solute atoms, 2nd phase, other dislocations and so on. This problem, the main
concern of this thesis, is discussed in detail in the next section.

The other category is characterized as a statistical aspect of a dislocation
behavior. Critical resolved shear stress {c.r.s.s.) can not be uniquely deter-
mined even if the elementary interaction process between a dislocation and a
obstacle is well established. This is because c.r.s.s. is not a simple sum of each
resistance force caused by obstacles but complicated function of the distribu-
tions, concentrations and strength spectrums etc. of obstacles which are scat-
tered on a slip plane and of the line tension of a dislocation. Direct computer
simulation technigues have been most successtully applied to this statistical
problem and analytical calculations based on geometrical consideration or
functional analysis were examined. '

Attentions should be paid equally to these three categories in order Lo fully
understand dislocation behavior and to develop a dislocation theory of power
sufficient to provide realistic criteria for the design of new alloys. This study is,
however, focussed on the elementary interaction process and the details of this

problem are introduced in the next section.

1-2. Elementary Interaction Procesa

Since the first theoretical prediction of the existence of a dislocation line
by Ewing et.al. in 1899 [1] most theoretical efforts have been concentrated on
the problem of how to explain macrescopically observed strength in terms of

microscopic dislocation interactions with various types of obstacies. Typical

n



examples are found in studies of solid solution hardening and dispersion har-
dening effects. These calculations are based on continuurn elasticity theory and
a static equilibrium configuration between a dislocation and a obstacle is
assurned. Purthermore, rate processes have been described within a frame of
absolute rate theory of Eyring.

However, with the progress of low temperature measurement techniques in
this filteen years, various types of abnormal deformation behavior which can
not be explained by simple extrapo.ation olf high temperature deformation
mechanisms have been reported. The sudden change of How stress ol a lead
polycrystal due to the transition between the normal and superconducting
states measured by Suzuki ec.al[2] and Pustovalov et.al (3] in 1968, or the
abrupt drop in the temperature dependence of the yield stress of Cu and iis
dilute alloys below 50° K found by Kamata et.al.{4] are typical examples of those
anomalies. Since, at present, it is still difficuit to extend the in-situ TEM tech-
nique to low temperatures and to observe a dislocation behavior directly, one
should neither jump at the conclusion nor ascribe these anomalies to 4 single
cause. But, by comparing the results of different experimental approaches, the
dynamic interaction of dislocations with "microscopic obstacles” such as pho-
nons, electrons etc. has been recognized as most plausible source of these
anomalies. Especially, in [.c.c. metals of which Peierls potential is relatively
small, the dominant mods of dislocation motion is free Right motion (spurt-like
motion) and dislocation velocities of up to 10%*? em/sec [5] have been meas-
ured in Cu even at room temperature. These facts might quite naturally iead
one to the idea of a dynamic effect.

Mathematically the anomalies mentioned above can be re-explained in the
following way. According to the string model of a dislocation which was origi-

nally introduced by Koehler [6] the motion equation can be written as



m‘%%""ﬂ%%"’l‘?}"’f.{,b =0 (1-1)

where my is the mass of a dislocation per unit length, 5 is a dJamping constant
caused by electrons or phonons ete., [ is the line tension, b is the magnitude of
the Burgers vector, {z.y) is the courdinate system on the active slip plane, ¢ is
time and Tesp is the effective stress on the dislocation line. This effective stress

is explicitly given by

Tery = Togp = Tz ¥) {1-2)
where Top is the applied stress and 7y(z.y) is the internal stress caused by

obstacles.

Therefore eq.1-1 is the force balance condition among inertia lorce. damping
force, line tension and effective applied stress on a dislocation. In earlier treat-
ments, the last two terms were sufficient enough to describe the static equili-
brium condition, and primary interest was the functional form of the internal
stress, 7¢(z.y), including its spatiai distribution, strength spectrum etc.. How-
ever, abnormal plasticity of low temperatures implies two additional dynamic
terms, namely inertia force and damping force. These additional terms will
force one to reexamine the statistical problem mentioned in the lormer section
and will not permit the rate process to be described by simple absolute rate
theory of Eyring. Especially, the latter problem, how to combine thermally
activated processes with kinetics, poses tremendous difficulties and can not be
resolved without returning the fundamental physics.

The main object of this study is the investigation of the physical origin of
the "microscopic interaction”, namely damping, and the estimation of the mag-

nitude of this damping force.



3. Damping Force

There are many damping mechanisms for a disiocation. Among them, the
tollowing three mechanisms are important. They are phonon damping, electron
damping and reradiation dampinj. Therefore the damping censtant, B, in the

eq. 1-1 is rewritten as

B=B, + B, +5. (1-3)

Phonon damping can be further divided into two mechanisms. One is phonon
scattering of which the main process is the scattering oi saonons by the dislo-
cation strain field, and the other is phonon viscosity which involves the separa-
tion of the eflective temperatures of different phonon modes produced by the
shear stress fleld of the moving dislocation and its relaxation to equilibrium,
which was proposed by Mason [7]. Phenen damping has been revealed to be
monotlonically increasing with temperature, and in the case of very low tem-
peratures where the lattice vibration is suppressed. phonen daraping is virtually
negligible. Since this study is limited to very low temperatures deformation the
phonon mechanism is not considered here.

For sufficiently low temperatures, the remaijning mechanisms are electron
damping and reradiation. Although the reradiation of elastic waves of vibrating
dislocation is significant in insuiators and superconductors, this mechanism is
less effective than electron damping for normal metals. And the main object of

this study is confined to electron damping mechanismm,

As pointed out in the last section, the existence of the electron damping
was first indicated in the tensile test of Pb crystai as the abnormal enhance-
ment of plasticity due te the transition from the normal to superconducting
states [2]. Creep and stress relaxation tests also confirmed the anomalies which

could be ascribed to the electran damping force (8, 9, 10]. These facts are apt



to give the impression that electron damping is assuciated with only the
oormal-superconducting trensition. However, effect is universal and is merely
emphesized by the transition. Moreover, one should nctize that it is not an
easy task to extract pure component of electron damping force from the meas-
ured stress change associated with the normal-superconducting transition. For
exarnple, all the measurements were performed below the critical temperature
and an external magnetic fleld was applied to bring the sample back to the nor-
mal stat:. The magr.atic fleld niight influence the dislocation bebavior, either
directly or indirectly through the change of elzctronic structuré of the saraple.
In realic;, rocent experiment of Galligan [11] implies this effect. Probably only
a measurement under continuous coolirig through the transition temperature
could resolve this point. At any rate, without overcoming these experimental
difficulties, the observed difference due to the normal-superconducting transi~
tion can not be fully ascribed to the electron damping ftrce. This point is dis-
cussed in chapter [V-4.

By the way, dislocation behavior in the superconditcting state is expected
to be much different from that in the normal state. Anomalous strain rate sen-
sitivity of Alow stress measured in superconducting Al and Al-Mg alloys is one of
the typical examples (12],and this phenomenon is explained as the destruction
of the Cooper pairs to create extra-quasi particles which is caused by dislocu-
tions moving with greater velocity than certain critical level. Vartous other
types of quantum natures are more or less expacted in the deformation proper-
ties of this state, a:s well Then, as was calculated on a straight dislocation by
Huflman et.al. [ 13] and extended to loop dislocation by Bar'yakhtar et.al. [14]. it
ig certawniy of great importance to investigate damping mechanism i super-
conductors utilizing a rigorous quantum mechanical treatment. However, the

main scope of the present study is peither to investigate the dislocation



behavior of superconductors nor to predict new phenomencn by performing
rigorous treatment. This study is confined to the electron damping mechanism
in the normal state and to the discussion of possibility of the extension to many

dislocations problem.

J-4. Research Problem

The previous theoretical studies of electron damping mechanism in the
norral state are reviewed. The Arst theoretical calculation may be attributed
to the classical viscosity theory of Mascn [15, 18]. A dislocation is surrounded
oy strain fleld that moves with the dislocation, and free electrons in the solid
exert a viscous effect on an ultrasonic wave propagated in the crystal with
viscosity . In other words a lattice vibration caused by dislocation motion can
comrmunicate energy Lo the free electron gas by a viccous reaction {i.e. transfer
of momentum) and is damped by the viscosity of the gas. Accarding to the clas~
sical viscosity theory of gas, the viscosity, 7, is given by .

n=Nmil (1-4)

Qe

where N is the number of particle, m the mass, { the mean free path, and ¥ is
the mean velocity. Mason applied the free electron gas medel to the eq.1-4 and

substituted the following particular quantities of free electron gas.

~_omy .

I==7 (1-5)
3 R g

vi= ey (3m2N)3 (1-8)

where ¢ is the electrical conductivity. And as a final form, he obtained

2
11 2A0 3
9x101'%%(3n2N) (-7

Me = Sa%p



where p is the electrical resistivity. By equating the energy dissipation associ-
ated with the viscosity 7, with the rate of change of the strain fleld ag the dislo-
cation moves through the crystal, the damping force and therefore the damping

constant 5, was calculated for the edge dislocation

3
Ib 277'
5 ——— 1-8
& 8n (1-0)? e (1-8)
where ag is the cut-off radius. Although this treatment is simpie and the phy-
sics is clear, a severe inconsistency should be noticed. As was criticized by

Tittmann et.al. [17], the classical viscosity theory is valid only in the case of

gl «< 1 (1-9)
where g is the typical Fourier component of the strain fleld, However, the typi-
cal value of q is about the order of the reciprocal of atomic dimension and Tis
about 107! cm at lig. He temperature. Then gi is always far bigger than one for

the electron-lattice system.

gl > {1-10)
Therefore we should conclude that a proper electron damping can not be
obtained by classical viscosity theorem.

Holstzin [18] calculated the electron damping force based on perturbation
metnod in the following way. The displacement fleld, u{r~v;t), around a moving
dislocation with velocity vy is exi;anded into Fourier series.

u(r-vpt) = ¥ ugexp[iq(r-vpt)] + Complezconjugata (1-11)

q

Bach u, is corresponding to lattice wave or lattice vibration of wave vector q

and gives rise to a deformation potential. The total deformalion potantial,



¥, (r), is, then, given as the sum of the contributions of each q mode.

Vo (r) = Yiquexpliq(r-vpt)] + Complezconjugate (1-12)
Y

[Due to this deformation potential cenduction electrons are scattered accom-
panied with the absorption or emission of phonon, Zg'vp Holstein calculated the

scattering probability matrix of this process by perturbation method and

obtained the energy changing rate, % in the following equation.

I =TI ()7 0] Fctl gl 6(—[’-+qk]-nqvn]

(1-18)

where fiq v, is the phonon energy and the remaining term expresses the transi-
tion probability of electron. f (k) is the electron distribution function. By not-

icing the lact that

{q-u..[ = |A(q)| (1-14)

where 4(q) is the Fourier trans{orm of the dilatation, A(r), followed by several
mathematical manipulations, the sum in the eq. 1-13 can be transformed into

integral and the following equation is obtained.

/A
=

= Ip 2m € 9m .
- 2B LI e (1-15)

where Lp is the dislocation line length, qp is the maximum q-vector correspond-
ing to the minimum possible wave length and « is approximately 1/4. Holstein
equated this energy chapging rate with power loss due to the friction force

between electron and a moving dislocation of velocity vp.



ar
5= BLyu§ (1~18)
A flnal expression of the electron damping constant, B, is obtained in the Iol-

lowing equation.

g= —3—2?" & BNE M B (117)

32

Lﬂh
Ep) |kr

On the contrary to the above perturbational approach based on quantum
mechanics of Holstein, Huffman and Louat method [19, 20] described below is
semi classical treatment. They calculated the electric current and electric fleld
produced by deformation potential and moving dislocation by solving Maxwell's
equation and BHoltzman transport equation self-consistently. Then they
obtained the friction force as a Ohm power loss which is the product of the
electric current and electric fleld. Later, this procedure was slightly corrected
by Brailsford[21] within a frame of the same physics. Their treatments are,
however, straight application of the theory of ultrasonic attenuation which is
traced back to the pioneer work of Cohen et.al.[22]. Essential procedures of
Brailstord's are reviewed below.

The local lattice velocity, u(r.¢). is expanded into the Fourier series.

u{r.t) = Zu‘exp{iq-(r-v,,t)] {1-18)
a

where vy is the dislocation velocity and Fourier coefficient u, can be considered

as the phonon of wave vector q given by

= g—a’.q-vpe'an (1-19)

Here A is an index specifying the normal mode with polarization vector eg), and

w,, is the Fourier amplitude of the displacement associated with that mode.

10



Each phonon (longitudinal phonon) is associated with the dilatation fleld which
changes the eleciron density. The sell-consistent electric deld produced by the
moving dislocation change the electron density as well This process is
described by the method of distribution function f (r.wt), eq. 1-20, and Boltz-

man Trapsport Equation, 1-21{23].

I {ewt)= v +f (rvt) (1-20)
_L+._L+ eB3f _ _f-1° {(1-21)
ar m ov T

where f° is the equilibrium electron distribution function, f, is the deviation
from f° due to the electric field E, dilatation fleld and collision with impurities
of which relaxation time is 7. Substitution of eq.1-20 into the eq. 1-21 [ollowed

by several mathematical manipulations yields

a3 f [
?fti +v9f, + eEv—L = —i—l[mvlu %—:—::F] %,EL+I,] (1-22)

where Ny is the equilibrium electron density and m, is the deviation from nq due
to the dilatation field of the longitudinal phonon. The solution, f ;. of the eq. 1-

22 is given by

'rev~[E+[%T£ +%—e;[—:l o
DR 7 Ak
=~ -2
71 i=iwTiqer | 2 (1-23)
where @ is
= gb _2m (1-24)
T T

and n is an integer. Then, the electron current density, J, can be calculated by

1



i= fo)—:-ff,vdk,dk,dk, (1-25)

and the total electric current density Jr is given by the sum of J and positive

ion current density, —enu,

Jr =J-neu (1-28)

On the other hand, electric field E, can be correlated with J by the following

Maxwell’'s equation.

divE = —4wdivis (1-27)
By solving eqgs. 1-23, 1-25, 1-26 and 1-27 in a self-consistent manner, the elec-
tron current density J and electric field E can be obtained. And the product of
I and E immediately gives the ohm energy loss. According to more complete
calculations of Brailsford, the energy absorption rate P4 of a longitudinal pho-

non of q is approxirnated to

g (1-28)

_ ,m g %~
Py= - [1+[("’] -s-‘rrql.

where ¢z, is the reciprocal of Thomas-Fermi screeping lenath. Since the
transversal phonon contribution is fcund to be negligibly small the total energy

loss rate, dW/dt, is given by the sumof P,

- z7, ' (1-29)

The final step to obtain the damping constant 5, is quite the same with that of

Holstein's procedure, eq. 1-16. And the final expression for 5, is given by

- [1—2v,, ]zmmvrb294 ,,,[ 1] ] (1-30)

B“[1-V,J % |47,



where

#(z)= ;—[(1 +22)~14z-ltan 'z ] (1-31)

and gp is the radius of Debye sphere.

Both the perturbational approach of Holstein and the self-consistent Boltz-
mman Transport Equation method of Brailsford are very elegant metl:z.od. how-
ever, the following two polnts are open to question.

in general, by introducing a N+1 dimenvional coordinate system which con-
gists of N coordinate for atcmic displacements of each N atoms and the other
coordinate for a potential energy of the system, the dislocation motion in a ery-
stal of N atoms can be characterized as a trace along a one dimensionally
extended saddle points conflguration in the space. And the displacement of
each atom caused by the motion of a dislocation can be given by the sum of a
displacement corresponding to the saddle points and the deviation. The first
component {saddle points) is so-called dislocation coordinate and the .atter one
(deviation) is regarded as phonon. Although, both Holstein and Brailstord
treated a moving dislocation essentially as a wave packet of phonon, as dis-
cussed by Ninomiya [60], the dislocation coordinate given within an approxima-
tion of linear continuum elasticity theory does not always coincide with the
saddle points but deviates. Then, in order to treat a dislocation motion ag a
phonon, one should be careful about not only allowable limit of the wavelength
of phonon but also the width of the dislocation core which gives a rmeasure of
the applicability of continuum approximation,

Secondly, the right-hand side of eq. 1-21 is a scattering terrn but the

mechanism is not specified clearly. If it is caused by impurities as was assumed

by Cohen et.al. {22], the final result must be modifled by the concentration

term.

13



The theoretical calculation carried out in this study may not provide sslf-
consistent solution but demonstrates different approach to the electron damp-
ing problem,

This study proceeds in the following order. In chapter II, general formula-
tion based on the special theory of relativity is carried out. Beginning with a
brief review of lLorentz transformation, two essential coordinate systems are
introduced te characterize the dislocation motion, and fnally Maxwell's equa-
tions appropriate to this problem is established. The chapter III is devoted to
the calculation procedures. In the first section, calculations of electrostatic
potential and electron density are performed by introducing Ccttrell et.al's
traditional work. The second section is the heart of this calculation and
mathematically elegant Mackenzie and Sondhkzimer's procedures are intro-
duced to set up 2nd to solve Boitzman Transport Equation. The final product is
expressed as the electrical resistivity. The third section is the calculation of
the friction force using the electric resistivity obtained in the former section.
And in the last section. numerical calculations of magnetic induction are intro~
duced. In the chapter IV, the resuits obtained in the chapter 11l are discussed.
The fAirst three s:ctions discuss the applicanility of the Born approximation and
the intrinsic incousistency of Mackenzie-Sondheimner's method. The fourth sec-
tion is the main discussion of the friction force. The method of the experimen-
tal analysis 13 examined, and in order to compare the calculated results more
reliably, eléctrie resistivity data are also introduced. The discrepancy is dis-
cussed by referring to Matthiesen's rule. In the fifth section, the calculated
magnetic induction value is shown to be negligible. The last section is unclesed
work. The possibility of the extension of present study to many body problem (

collective behavior of dislocations) is discussed.

14



1. ELECTRODYNAMICAL FORNMULATION OF AN EDGE DISLOCATION MOTION

I-1. Maxwell's Equations and Lorentz Transformation

Although dislocation velocities have never been observed to exceed ~10°
cm/sec and any relativistic effects are hardly expected, the basic idea pesed in
the model, namely motion of charged particles associated with moving disl :ca-
tion. essentially belongs to electrodynamics. Therefore it is of basic interest te
formulate this problem in a strict manner based on the special theory of rela-
tivity of Einstein.

The tensor expression of Maxwell's Equations in Lorentz gauge are given

by the {oliowing sets of equations [24] .

24, 04 2-1)

W ez, oz,

", = ‘Ele—uj“ (2-2)
and

a4,

_B:: =0 (2-3)

where %s the Lorentz invariant four dimensional Laplacian more explicitly

expressed as
r:
L Lo s (2-4)

A, Fu and j, are the 4-vector potential, fleld-strength tensor, and charge

-current 4-vector, respectively, and are concise -.otation of the following

matrix.



(4u) = (cAig) (2-5)

0 cB, -cB -if
-cH; 0 cBy —if,

(Fw)=lcp, —-cB, 0 -if (2-6)
iE, iE, iE, 0
Ga =2 (2-7)

where ¢ is the velocity of light, A is the vector potential, g, is the scalar poten-
tal, E(£; .5, Fy) is the electronic fleld, B(5;,By.B;} is the magnetic flux density,
i(%, 4,1, ) is the current density and p is the charge density.

The Lerentz transformation is characterized as an invariant transfarma-
tion which conserves the distance between two points in 4-dimensional Min-
kowski Space. The transformation law between the cooruwnates z, and

z,(v,1;1,2,3,4) in two inertia systems, K and K', are given by

z, = 2,7, (2-8)

z, consists of three dimengional space coordinates, z,y,z and one dimensional

time coordinate, t.

1 z
£l z
A 3

In the special case where system K' has its coordinate axes parallel to those of

(2-9)

K and is moving with a constant relative velocity ¥ in the =z direction, the
transformation matrix @, in the eq. 2-8 can be simplified and is given by the

following matrix.

16



L_ g0 &
Vig? Vig?
b}
(aw)=| g é ? 3 (2-10)
—-ig’ 1
Vi-g Vi-g
where
- ¥ -
g = p (2-11)

Covariance of the Maxwell's equations with respect to Lorentz transformation
between two inertia system is an important consequence of the theory of rela-
tivity, and 4-vector potentials, 4, and A,". defined in the two systems are related

by the following transtormation law with the same transformation matrix 2-10.
A;t = Qudy (2-12)

I-2. Representation of a Noving Edge Dislocation in Two inertia Coordinate Sys-
tems

Physical phenomena associated with a dislocation moving in a positive z
direction with constant velocity v can be described in various coordinate sys-
tems. Among them, the following two orthogonal coordinate systems, K and X',
are of specific interest in this study.

[n the K-system, the coordinate is fixed to the lattice and the dislocation
moves, in the positive z direction with a constant velocity. ¥, with respect to
this lattice. On the other hand. in the K'-system whose origin is fixed on the
core of the dislocation, the coordinate rnoves with the dislocation. Ther<lore, in
the K'-system, media surrounding the dislocation moves in the negative =’
direction with velocity v. The conflgurational relation among the K-system,

K'-syatem and the disiocation is shown in Fig. 1.
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Due to the introduction of an edge dislocation, a displacement fleld is
induced. In the K-system, components of the displacement fleld, uf, % w¥ in

the 2,y .z direction, respectively, are given by [25]

2
uf= 2_";. %—]{tan";z_yﬁ—aztan" ;%] {2-13)
21} .
= é’;[%}pmuz—vt>=+m>2;*—[i;'-z-]'ns(= —ut 2+ (By A (2-14)
and
uf=0 (2-15)

where superscript K stands for the K-system, », is the transverse velocity of
sound, and a.8.7 are givea by the following relations with longitudinal sound

velocity ;.
I 22

a= ll-[-azz—]] {2-18)

22

I %
o= pf

]

and superscript K stacds for the K-system.

(2-17)

In the K'-system, however, these components are modified according to the

Lorentz transformation in the tollowing way.

b z,u= - . ~ .
uf = E;{v—z’- [taz ‘gr-azta.n ‘gz—} (2-18)
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. 2
uf = %{%‘JEﬂnuaz‘)=+(ry')=3*—Epim:(cm')%(ay')ﬂ*} (2-20)
and
2% =0 (2-21)
where
§=VIi-(g' R (2-22)

and the next relations derived from eqs. 2-8 and 2-10 were employed.

1, . .

- '6—(2 Tvt)

[El}: v {2-29)
g ';-(ﬁ'z'+ct'}J

The dilatation fleld, A, is calewsted from the components of the displacement

field obtainead above.

au"(
AA’ = -a—z‘—-
- _b_ﬁl 7 (Pb) , aPBlE=1)y’ y
" 2|3 {<s='>=+<7y‘)= * oz Yby eree)

where (z;.%2.23)=(2' ¥'.2’'). and (u; u;,23)=(%y %y %y ). Because of this dilata-
tion field the positive charge density (positive ionic density), pp becomes

heterogeneous and is given by
Py = Pap(l+ag)™!

_ bix -1 N
= T(1+Ax) . (2-25)



where pai and pJx are uniform posit.ve charge densities of the dislocation free
crystal represented in K- and K'-system, respectively, and the modification trom
the first equation to the second cne is a direct consequence of the Lorentz con-
traction. It should be noticed that the explicit time term can be noglected in

the K'-system representation eq. 2-24, while not in the K-system formulation.

1-3 Establishment of Maxwell's Equations {or a Moving Edge Luslocation
Further discussions are developed in the K'-system instead of K-systeuq,
because, as was recognized in the last section, the explicit time tery disappears
in the dilatation, eq. 2-24, and therefore the K'-system is easier to handle
mathematically. If need be, the covariant property of Maxwell’'s equations, eq.
2-12, allow the solution to ke easily transformed into that of K-system. ‘Ma‘m
interest is confined to the steady state, therefore the 4-dimensional Laplacian, ®
can be simplified to the 3-dimensional Laplacian, V%, and Maxwell’s equation can

be rewritten as

VO, = i (2-26)

Here, by maling use of the results obtained in the last section, components of

the charge-current 4-vector j, are given by

[ _pdx

Sy 0

(Ju) - 0 (2‘27)
i ipjr=Pa(1+84) 7

where p3 is the unknown electron density which plays an essential role in this

study. Suostitution of eqs. 2-5 and eq. 2-27 into eq. 2-26 establishes more expli-

cit form of Maxwell’'s equations in the following way.



1 _|pdk
O, = *[—a—v
VE()4, =0
VE()4, =0

V()p = —;‘;sp;—pgf(zm,()-’;

(2-28)

(2-28)

(2-30)

(2-31)



I CALCULATION PROCEDURES

1. Electrostatic Potential and Electron Density Around a Dislocation

A rigorous treatment based on special theory of relativity was demon-
strated in the last chapter. But as pointed out previously, dislocation velocities
are less than ~«10% cm/sec which is negligible as compared to the speed of light.
4Theretore. A*in the eq.2-11 and § in the eq.2-22 can be put to 0 and i, respec-
tively. This operation mathematically corresponds to the reduction of the

Lorentz transformation, eq. 2-23, to the following Galilei transformation

Fy vt
Yl =| v. (3-1)
{t

N

and physically means that every phenomena is observed at the same time in
both K- and K'- system. In particular, this study of dislocation motion can be
reduced to a treatment within a frame of electrostatics, and the frst task is to
obtain the electrostatic potential and electron density around a moving edge

dislocation by focusing on the last equation 2-31 of Maxwell's equation.

The dilatation fleld around a dislocation causes the Fermi energy to
change from place to place. Physical «rigins of this change are two-fold;
change of the kinetic energy of eiectrons due to the change of wave length and
change of ground level energy. both caused by lattice dilatation. However, in
the equilibrium state the electrochemical potential should be a constant
through the whole crystal, therefore electron redistribution takes place so that
the electrostatic potential produced by the redistributed electrons compen-
sates the Fermi energy change. This mechanism was originally developed by

Cottrell et.al.[26] in order to estimate the electric interaction energy between a
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static edge dislocation and a solute atom of different valencs.
Mathematically, these mechanisms are described in the folloring equa-
tions. The Fermi energy around an edge dislocation is given by

A
ep(r) = g4+ 2ml«':p

% sdrear ikﬁ(&*ﬁ)_g ' (3-2)
2m

where £¢d and ¢g are ground level energies of perfect aﬁd distorted crystals, kg
and kp are the Fermi vectors of those crystals, respectively. [n the above aqua-
tions a Taylor expansion with respect to dilatation, 4, is carried out on ground
level energy, £p, and the first two terms are considered. &, could be found by
the following fact; the equilibrium lattice parameter is determined by the con-
dition that the derivative of the total energy of the conduction electrons with

respect to A should vanish at A=0. Thus,
_ 2 A%F

&% 5 %m (3-3)
On the other hand, the condition of constant electrochemical potential is given

by
) =z}
= gp(r)-ep(r) (3-4)
where u(r) is the electrochemical potential at r{(z' ¥’ ,z') which is equivalent to
the Fermi energy of a perfect crystal (or Fermi epergy at the region infinitely

far away from a dislocation) and p(r) is the electrostatic potential after the

electron redistribution. Although, {rem eq.3-2, the change of the Fermi energy,

N



Szp(r), can be given by

Sep(r) = £p(r)—z}

AR -
=~ o kAAT) (3-5)

and this net amount was implied to be compensated by electron redistribution
ir. the Cottrell's treatment, because of the electric field produced by positive
ions, Szp(r) can not be directly equated to eg(r) in eq. 3-4. Proper solution
should be obtained by the simultaneous and self~consistent solutions of equa-
tions 2-31 and 3-4.

In order to proceed to actual computations the Thomas-Fermi approxima-
tion is performed on z&(r) and eq. 3-4 ig rewritten in terms of electron density.
pgr{r), in the next equation

3
Py = Pa_l([l —%-A+ ti":?] 2 (3-8)

where £2, ia the kinetic energy of electron in a perfect crystal and is given by

el = — 3-7)

RBep
em

Here, the simultaneous equations which give the equilibrium electron density

and electrostatic potential around an edge dislocation are set up in the follow-

ing way

e ptr_3,,3 8p . _2,, 89 _
-] —pu[l 5A+2£§m ( provided that 5A+82~..«1) (3-8)

Yy = -;%!p‘-po‘(lﬂ)“i (3-9)

24



P =4 = py (3-10)
where the subscript X' is neglected in order to aveid unnecessary complica-
tions.

Since it is quite tedious to demonstrate whole calculativns of these simul-
taneous equations essenptial steps of the procedures are briefly summarized
below.

Substitution of eq. 3-8 into eq. 3-9 yields the {ollowing partial differential

equation (P.D.E) in a infinite two dimensional space.

(V*=a)p(r) = DA(r) (3-11)

#€R; and ¢-+0 ot |r|-=

where a and 2 are given by

8 ma?p,
- 3-12
o (3-12)
and
8
D= 5P {3-13)

respectively, and instead ol the notation of Laplacian operator &, "vafia'
operator, V2, is used. The corresponding tundamental equation of P.D.E. 3-11 is

given by

(P-a)ga(rit) = —6(r—¢) (3-14)

and the Green's function is explicitly given by [27)
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g(r|é) = Ko( le—¢1) (3-15)

where Kj is the 0-th order modified Bessel function of the 2nd kind. Therefore,

with the aid of th= Green's function the solution of P.D.E., 3-11 is obtained as

gtr)=-f [:a(rlt)ﬂd(ﬂri#

= ~2(atr)-2cvaK,(va Ir)) S+ f [utrigrsae (3-16)
8 ) [v]
C= [—En]z[; (3-17)

where K is the 1st order modified Bessel function of the 2nd kind, ¥ was given
in the eq. 2-18 and ¥ is measured anticlockwise from positive x’ axis. in the eq.
3-16, the reduction of the upper integral into the lower equation is quite hard
and despite of the persistent attacks with various mathematical techniques p(f)
could not be fully expressed by well deflned functions. In order to evaluate the
contribution of the 3rd term the integration was numerically pert.ormed for
various physically meaningful values of @ and 7, and the results were compared
with lst and 2nd term. Several results are shown in Figs. 2, 3 and 4. Oune can
see that the 3rd term is negligibly small and can be safely neglected in the eq.

3-18. Therefore the final form of clectrostatic potential ¢(r) is well approxi-

mated to
w(r)=-2[A(r)-z~/Ecm(v-a |.-|)ﬂl’-] (3-18)
a y+l

snd substitution of the eq. 3-18 into eq. 3-8 yields

p(n) = Po[ 1-+ L CVEK,(VE lrl)s‘m’ , (3-19)



These nurmerical processes are discussed in the section IV-1 again but it is
noticeable that in the case of a static dislocation the 3rd term in the eq. 3-16
autornatically vanishes and @(r) is strictly expressed as

I

ote) = A L ) o k(Va I sino) (3209

which includes extra screening contribution, the 2nd term, as compared with

Szp(r) of the eq. 3-5,

IN-2. Establishment of Boltzman Transport Equation and Wackenzie-
Sundheimer’s Procedures

Various transport phenomena in a crystal can be well described by means
of Boltzman Transport Equation (B.T.E.). Since the general teatures of this
equation are discussed in detail in many articles, The essential points of this
equation are briefly reviewed in this section and the B.T.E appropriate for this
particular dislocation problem is established. In order to obtain the electrical
registivity by solving the B.T.E. analytically, classical Mackenzie-Sondheimer's

procedures are introduced.

I-2-1. Establishment of Boltzman Transport Equation

Let f(krt) be the electron distribution function in a pbase space. Under
the given circumstances which are specified in the B.T.E., the probability of
finding the electron of .state k (momentum), at time t, in the space r, iz
described by this function. And this function as the solution of the B.T.E. plays
the essential role in the study of transport phenomena. In the steady state the

distribution function should satisfy the following condition.

=0 (3'21)

4 3 +éf_] . 2L

af B g O |pug atlm
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The drift and field terms are more explicitly given by

%tL e T (3-22)
and
o ™" "?[2:4- i—n,xﬂ]#gf _ (3-23)

where Vy and Vg are the vector differential operators in a phase space with
respect to space coordinate r and momentum coordinate k, respectively; w is
the group velocity of electron; E is the external electric fleld and His the exter-
nal magnetic field. The scattering term is discussed later in detail. In the
equilibrium state, the distribution function is the familiar Fermi-Dirac distribu-
tion function, f % k), given by

1o = ——e (3-24)

expf(e(k)-¢)/ kT]+1

where ¢ is the energy of electron and ¢ is the electrochemical potential. By
tollowing Ziman {23], the steady state distribution function, f (k.r), is assumed
not to depart very far from equilibrium distribution function, f° and the func-

tion G(k,r) is assigned to describe this small deviation.

Gllr) = £ (kr)~f (k) (3-25)

Substitution of eqs. 3-22~3-25 into the eq. 3-21 yields
_arte | (ee-¢). L
[ 3ol 7 V. T+a|E 07,4,’

=-0L G R(nxH) TG (3-28)
ot goutiering r
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Interest here, however, is restricted to the case of homogeneous spatial tem-
perature distribution, T, with the absence of magnetic fleld, H, therefore, above

eq. 3-26 is greatly simplified to

[—%’]wzets- logy=-2L (a-27)

scaitering
Moreover, as was demonstrated it the last section, the spatial heterogeneity of
electrochemical potential due to the introduction of a dislocation is canceled

out by electron redistribution; therefore, eq.3-27 can be simplified further.

arel_ o a -
o .

Here the scattering term in the eq.3-21 1s discussed. Ir this study, two
scattering mechanisms are assumed. One is thermal sattering and the other is

disiocation scattering which is the particular feature of this model.

8L + oL (3-29)

- _L]
at jscutiering at therm. at distoc.

The actual mechanism of the thermal scattering is complicated, but without

going into the detail this effect can be expressed by

/4 N AL 44 (3-30)

at o T
where 7 ig the relaxation time and ail the complicated physical mechanisms of
thermal scattering are enclosed into tiis "parameter”. On the other hand, the
mechenism of dislocation scattering is well described in the following equa-

tion.

LI ot f f [ 1 )(1-1 )@ KK [ [J7 0017 D@
'3

8t disloc.
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(3-31)

where Cg is a constant and @{k X) is the transil:ion probability from k'-state to
k-state per unit time. Taerefore, the first integral describes the incoming rate
to k-state from all other states, the second integral describes the outgoing rate
from k-state to other states and hence the whole right hand side means the net
change of k-state. Since scattering causes merely the change of state, only k
or k' is explicitly written in the arguments of distribution function f. The phy-
sical mechanism of the dislocation scattering is directly reflected in the transi-

tion probability, @(k.k'), which is given by (APPENDIX A)

QkK) = F?e—' <k]AU|k>]26[AE‘] (3-32)

where Dirac's bra-ket notation is used for the matrix element and |k>

describes the [ree electron wave function. (ket is the complex conjugate.)

{k>~at*T (3-33)

The argument of the delta function appearing in the eq. 3-32 is the simple

difference in energy between k and k' states and is giver by

Az = e(k)=~£(k) (3-34)

Then any inelastic scattering processes are neglected in this study. As shown
in APPENDIX A, this transition probability is derived within a frame of Born
approximation [28] as the elastic free electron scattering process due to the
presence of perturbation (scattering) fleld, AU. As the perturbation potential,
AU, of an edge dislocation, the electrostatic potential field derived in the last

section is employed.

AU(r) = -ep(r) {3-35)



And the substitution of eqs. 3-29~3-32 and 3-35 into the eq. 3-28 immediately

yields the B.T.E. for this study in the following form.

[—26[;}7}-33 = LML g T [ [ [0 (e)-1 (9) 1< ek %5 3—;}“
(3-36)

where the reduction of the integrands in the €q.3-31 to the £q.3-38 is based on
the principle of microscopic reversibility [29]. The construction of the B.T.E. is,
in principle, completed by the above equation 3-36 and the remaining task is to
solve this integral equation. Although the appearance of the eq. 3-38 is compli-
cated, mathematical techniques make it possible to reduce the triple integral to
a single integral. The details of the whole procedure are quite tedious, and only
the essential points are described here.

The Key role is played by d-functions in the integrand. The first reduction
Irom triple integral to double integral is rather a conventional technique often
used in solid state physics {30]. The volume element in the k'-space, dXk' is split

into the product of two terms dSy and d&' .

dic = dSydk | (3-37)

where dSy is the surface element of the equi-energy surface in the k-space
and dX', is the normal element to this surface, which satisfies the f{ollowing con-

ditien

- de(k)
L= )]

= 2g(k) (3-38)

- [”'g[

_here. from the first line to the second line, the definition of the group velocity,



32
W, of electron is applied. By substituting the eqs. 3-37 and 3-38 into the eq. 3-

38 foliowed by the operation of the é-lunction, G(Aﬁt). the volume integral is

reduced to a surface integral over the equi-energy surface S.qq.

f[f(f(lr)-f(k))kk]-w]b,z.a-[éﬁ_’%}dk

= B [ eneerymargac ] (E)=1 () <K e 1> Sy (3-39)

The coefficient term of the right hand side originates from both the denomina-
tor of the eq. 3-38 and the argument in the é-functior, but is written in terms
of k-vector instead of velocity, v, which are related to each other by the

momentum equation of the free electron.

mv =Nk (3-40)

The second reduction, Irom double integral to single integral, requires
more tedious variable transformations, but the essential point ig 27ain ascribed
to the delta function as is mentioned below. One will natice that the scattering

probability matrix, S, , which is given by

S = <K|AUIR> (3-41)
is mathematically equivalent to the Fourier transformatiot: of the perturbation
potential fleld in a real space into the 3-dimensional K-space. However, AU ig
essentially two dimensional function of z and y, because the dilatation A(r),
given by eq. 2-24, which constitutes AL is constaat in the z-direction. Then the

delta function comes out in the K;-direction,

Sw = <K[AU(z.y.z)|k>



= 2n8 (K )<k | AU (z .y ) k> (3-42)
where subscript 2 indicates the dimension and X, is the z-component of the

vector K defined by

K=k-k (3-43)

Qbserving that the equi-energy surface lor Iree electron is sphere surface, the

Polar coordinate system is introduced (Fig. 5).

k. = k sind-cosp (3-44)
k, = k-sing-sing (3-45)
k, = k-cos? (3-48)

The surface integral appearing in the : 7. 3-39 is, therelore, transformed to dou-
ble integral with respect to ¥ and ¢ for constant k-value. And the é-function
singled out in the eq. 3-42 immediately reduces it to single integral along the ¢’

for constant @ value, ie. =%, because

&K = k;_k:
= k(cos¥'—cosd) ) (3-47)

Now the final form of the B.T.E. can be given by
o —70 .
(-2 ewr= LT ¢ f(s (e)-f () | <k |-eplioalPdy  (3-48)
L]
where C’ represents material and physical constant.

As is shown in the original work of Mackenzie and Sondheimer [56], the

solution of this integral equation can be found by successive approximation

A
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method (Neumann Series) [31] after the following variable transformaticn.

G} = £ (kr)-f (k) (3-25)
= -%;(k)k%%g- (3-49)
and
~ekB = Jg(l)ic+ " [ (0 k-g(K) ) | <K | AU |10, | d ¢ (3-50)
[ ]

where € is again material and physical constant, and the integral equation is
now posed for unknown function g(k)k instead of the original distribution

funetion f {k). The result is given by

gk)}k = ~arEk—Cr%e [EK|<K|AU k>, 2 (a-51)
-
or
gk = —eTEk
2 E .
-C #nfEK& (7&)2”92 Pre) [g.,.;('zm] 4 (5-52)

where the performance of Fourier transformation on the two dimensional per-

turbation potential, AU, leads the last equation 3-52. (APPENDIX. B)

M1-2-2. Electrical Resistivity
By making use of the solution of B.T.E. obtained above, electrical resistivity
is calculated. The calculation is started with the iollowing definition of electron

fux, .



=-S5 { ws 0k (3-53)
or
%= —#f{fvtf (0dk (i =zy.z) (3-54)

Substitution of the eq. 3-49 into the eq. 3-54 followed by the applications of the

eq. 3-40 and the next properties of equilibrium distribution function

S fewrtde=0 : ) (3-55) .
and

UL g(e-tp) (3-56)
yields

2
4= ‘fn? ﬁ] S/ { [ kug()k{z—ep)ik

F]
4

where the reduction of the integral is again based on the same procedures
introduced previously in the eq. 3-39. It should be noticed that, in contrast to
the universality of the condition 3-55, the eq. 3-56 is the approximate relation
except for absolute zero Kelvin. This point is discussed in the next chapter IV-
3.

Electrical resistivity {conductivity) is essentially expressed as a tensor and
each component, J;.J,.J;, in the eq. 3-57 is responsible for these tensor com-
ponents. Mathematical extraction of the resistivity (conductivity) tensor com-

ponents from the electron flux J is demonstrated below for the case of i=z ie.



J%. By substituting the eq. 3-40 into the eq. 3-57 and by making a coordinate
transformation from the Cartesian system to the Polar system, the next equa-

tion is obtained.

F AR 4 f f (k) ksin®S-cosp-dSdp (3-58)

where the geometrical relation among 3,9 and kp are given in the Fig. 5, and ng

is the electron density of perfect crystal which i3 related with Fermi vector, kg,

by

k3
ey (3-59)

ng=

Substitution of the eq. 3-52 into the eq. 3-58 yields two integrals.
4 = i+
L4 2n
= ~der[d9 [dgE, k,sin*s cosp
° [

n n 2
—AC a1 [d$ [dy [dy By Ky F(K, Ky) sin®8 cosy (3-60)
[} [} [}]

where A and F(&;.K,) are given by

_ 3eng
A= (3-61)
and
2
FUR, 5,) = R 2 L] (3-62)

(7.'(,)24-[‘;,2 T+l KE+ K +u.J

Since the conductivity tensor (inverse of the registivity), Q, is defined as

\N
o



I=0E (3-83)

the tensor component o{¥ can be singled out from JS!.

] 2x
ofd) = ~de7 [dv [dpkpsin®Icosp
s 0

- Moe’r '
= — (3-84)

In the same manner, although the calculation is complicated, crg) is obtained

from Ji?.

L) 2n 2n

a2 = ~AC"e [ 49 fdg fdg'K, F(K)sin®S cosp
o T

- a4 - ro fF p2 lo(4~3Ta) . _, 1 | g
AC e Tk pC "2[‘2+[1—r'.,] _L_..sz D EAD sin Ve e (3-85)
where C”, p and I', are given by
- _20-To)? -
Ty (e-68)
_ Va
p= Ek—; (3-67)

and

To= Tty , (3-88)
From the first line to the second one in the eq. 3-65, the following assumption

was employed,

yl (3-69)

of which validity is discussed later. For the other components, ¥ and z, the



same rmanipulations lead to the following results.

ofl) = o (3-70)

afp) = 30 (3-71)

ol = ald) (3-72)
and

e =0 (3-73)

The final step is an elegant applications of the Matthiesen's rule [32].
According to the Matthiesen's rule the resistivity is given as the sum of twe con-
tributions. One is the contribution of lattice vibration which depends on tem-
perature and Lhe other one is caused by impurities, defects and so on which is
generally independent of temperature. Thus, mathematically, this rule is
described by

S S {3-74)
Oa O O

wiiere the first term of the right hand side is the resistivity of lattice and the

second one is that of the dislocation which is the final object of this calculation.

gy is easily derived from fundamental solid state electronics [33] and is given by

2.
o= 20T (3-75)

One would notice that this is nothing more than ofl.of)) and ¢’ obtained
above. Here the following assumption is Intreduced; the lattice contribution is
much greater than that of the dislocation.

1 1

q ke, e }-‘-»?.- (3-78)



Then, from eq. 3-74, 0x is approximated to be

[
i
and by making use of the above eq.3-77 with

Ore = 4o

o = o,

the dislocation resistivity, p.. can be extracted.

Likewise

Py = 32

and

pse =0

(3-77)

(3-78)

(3-79)

(3-80)

(3-81)

(3-82)

Although substitution of eqs.3-64 and 3-65 makes the above equation more real-

istie, this task is accomplished in the next chapter.

II-3. Friction Force.

In the previous section it was demonstrated that a moving edge dislocation

line causes electrical resistivity as an intrinsic property. On the other hand,

39



during the motion with velocity v, the dislocation experiences the electric
current, i, caused by positive ion charges. As a result Joule heat energy is
expected to be dissipated. This energy should be supplied externally in order
to keep the steady motion. The [friction fcrce on a moving edge dislocation ori-
ginates from this energy loss and is estimated in the following manner.

The configuration in the Fig. 6 i3 considered. According to the well known
Joule-Lenz Law, the heat energy dissipated by the current i, in an object of

resistivity R, during time ¢, is given by

Qroas = L2RE
L
=42 =2t (3-83)
Ao
The electric current, i, experienced by the dislocation of velocity, v, is
i=gngdgv (3-84)

where 4, is the transverse area of the model sample shown in the Fig. 8, and is

given by

Ag=Ph (3-85)
and time. ¢, is also easily calculated.

t=to (3-86)
Substitution of the eqs. 3-84~3-86 into the eq. 3-83 yields

Qreas = 82n&upL3Ag (3-87)

Let #° be the applied forcz on a dislocation of unit length to keep the steady

metion, which is equivalent to the Iriction force. Then the lollowing relation is
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obtained.

F°Lo = Ghaus (3-88)
And from eqs. 3-87 and 3-88, the friction force per unit length is estimated to

be

F*=e?ndvp . (3-89)

By substituting the previously obtained results of electrical resistivity and the
appropriate physical ¢c_astants inte the eq. 3-89, the {riction force is explicitly

obtained as

4
= 5.07x10°{bz[z—:-] u,}o’(p B2} (3-90)

G'(p,y) = ﬂ

- _-B_. - P T, -
R (2(1 o) +r\, +p[‘o(4- 3lg)sin v e {3-91)

where p and [", were given in the eqs. 3-67 and 3-68.

0-4. Magnetic lnduction

Magnetic induction is the dypamic effect of moving charges. In a strict
mannper, it should be derived as the solution of the Maxwell's equations 2-28~2-
31. In this study, however, all the treatments so far have been limited to the
quasi-statical treatment in which the vector potential is ignored and the prob-
lem is posed as the effect of "moving electrostatic notential”. Then, within the
trame work of this model, the following resuits are not expected to satisfy
Maxwell’s equations rigorously and the calculation itself may not be compatible

with the model, In spite of this basic refutation, however, it is still considered
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to be af consequence to estimate the magnetic induction because of the tollow-
ing two reasons. First of all, the results will provide the limitation of the quasi-
static treatment: if the estimated magnetic induction is not negligibly small,
the spatial density of electrons which was given by the eq. 3-19 should be
modifleq by returning to Maxwell's equations so that the vector potential is
incorporated in the model. Secondly, the possibility of a new Lype of interac-
tion between the magnetic fleld around a moving dislocation and the magnetic
moments of magnetic ion clusters in the crystal can be examined. '

The praocedure adopted here is rather simple and straightforward. The
basic origin of the magretic induction is the .otion of the electron cloud asso~
ciated with the moving dislocation line. Instead of applying the tull expression
of the electron density eq. 3-19, the limiting case of infinite sereening constant,

Va =w , i5 calculated.

The rmagnetic induction caused by a moving charge, @erge. iS generally

given by

B = |B|
= Ko _Qerar? (3-92)

T 4w »2 i
-
[
where u, is the permeability constant and 7 is the distance between the charge
Qrerge 20d an observing point. As mentioned before, the speed of a dislocation,
v, is very much smaller than that of iight, ¢. Therefore, the above equation can
be approximated as

] )]
B~ %Lﬂ;z-__ {3-93)

A more general vector description of the magnetic induction for the moving

charge in the z-direction is given by
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B=EBle> (i=zy,2)

where B, and |e;> are the component of the miagnetic induction and the unit
vector in the i-direction, respectively. For simplicity the present calculation is
pertormed only on the z~y plane on which the B, component vanishes because

of the symmetry of the charge distribution, and only the 5; component

(] v
B = “‘T_,. ;"::' 3 (3-95)
remains.

By applying this elementary principle to the moving electron cloud associ-
ated with the edge dislocation. the following calculation is carried out. The
induction, AF,, at the gositisn P(z,y.0,t) caused by the electron clouds resid-

ing ip the volumne element (&', +Az;y'; +AY'; 2 +A2',) is given by

AL, (2 y5.2.t)

_ BV ¥~y (=e)CY) o p ]
S e Ty P et o Gy Sttt (3796)

7
where the second fraction term expresses the space term, ;%. in the eq. 3-94,

the third traction term is the electron demsity which is calculated in eq. 3-19

and €, is the physical constant given by

372
ST .Y il P78 PP '
o = 15“_,[52] [1—u, [oF {3-97)

Then the final formula for the magnetic induction B(z.y,0.t) is obtained by

integrating the eq. 3-96 over the crystal in the following way.



B(zy.0t)= | lim =TI YAB(x vzt )Azby bz,
Asg My A0 &

— 4
ﬂfff {z~= )z*'(y -y )2*‘(2 -2 PE (2t Pr{ry)?

'ty de
(3-98)

The actual integration of the above eq. 3-98 was performed numerically

after the reduction of the triple integral to the single integral.
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IV. RESULTS AND DISCUSSION

IV-1. Electron Density and Perturbation Potential

In the former chapter, the electrostatic potential was obtained in eq, 3-18
with the Green's function go(r|£). and the third term could be neglected by the
numerical evaluation. This numerical process is briefly examined be.ore the
discussion of the physical significance of the calculated electron density and
electrostatic potential.

By excluding the common constant term from each term, the electrostatic

potential, p(r), is given by the sum of three terms.

o(p) = ——(A(r) ~2CVEK,(VE I} ’““’ +f E/"5,2(1-;;)vwe) (3-16)
= -gc(.r.uzu,) (a-1)
where
e -
hizy) = (g ) (4-2)
sz+y2)\/—_zy—_2— (4-3)

& (3e2P¢h

(@)’ £xdéy (4-4)

Izy)= K= g [x e

Each contribution wes plotted in Figs. 2, 3, and 4 for various pecints (z',y"). The
employed velocities are 0.25v; (y=0.968) and 0.5v; (y=0.665) which i3 the possible
maximum veloeity, and the screening constant, Va , is fixed at 1.5%x10% (The
velidity of this adopted value of screening constant is demonstrated in the dis-

cussion, eq. 4-15.) It can be clearly seen that the essential contribution is
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attributed to the first term both for the diagonal direction and on the circle,
and the magnitude of the third term is significantly smaller than those of other
terms. In the light of these numerical results the third term was neglected in
the calculation prucedures. :though the physical meaning ! this term is still
open to question, it should be noticed that the dilatation, A, becomes a har-
monic function for a static dislocation and ther:iore the third term spontane-
ously vanishes. This fact implies that the third term represents a dynamic
effect. Probably strict solution of the Maxwell's equations will settle this ambi-

guity satisfactorily.

Now attention is turned to the calculated electron density. The eq. 3-19 is

split into two terms and the physical meaning of each term is considered.

o0 = pu[l ~a+ %avzx.(ﬁ ) ;’%‘1’ (3-19)
= py(e)+pe(r) (4-5)

where
Pi(T) = po(1-4) A1 {4-8)
Zpo(1+4)7t (4-7)

sind
y+1 (4-8)

pale) = pol S-CVEK,(VE Ir])

Since (1+A)™" expresses the lattice dilatation the first term, p(r). indicates the
electron density whose shift is accompanied with positive ions on the lattice

points. In this sense these ¢lectrons are tightily bound to the positive ions like
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an ionic crystal. The essential leature of a metal is reflected in the second
term, pz(r), which is the contribution of the screening effect of free alectrons.
In order to show these t»o eflects schematically, the following modifications are

performed on the eq. 3-13. The dilatation, 4, was given by

=24 -
8=Crim (4-9)
where
-] r'ua 2
C= [—?]:!I] (3'17)

Then the eq. 3-19 is rewritten as

p(r)-p Y ¥
e~ TP ‘%Til_ﬁﬁw’(‘(ﬁw) (#10)

where

C'=~C (4-11)

The eq. 4-10 describes the change of the density rather than density itself. The

screening term Ve was more explicitly given by eq. 3-12.

a= G_"Zi (5-12)
Eixin
= 1.959xe=%‘—p§ (4-12)

and has the dimension [Z~!']. Substitution of appropriate physical cohstants

into the above equation yields,

L .
2 =7.498x10%; [cg.s. ] (4+~13)
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Since the electron density, po{=no). of a typical metal resides in the range ot

10%< g, =2x10%3 {4-14)

the screening constant is confined to the following range.

1.818x10'% [em ™= ¢ £4.386x10'% [cm™}] (4-15)
The performance of the following scaling

z [em] = 1072 [angsirom]

y [om] = 107%Y [angstrom) (4-186)

va [em™] = 10°Va" [engstrom~!]

transforms eq. 4-10 into the final desired form.

PP Y 2 1 vyEiR VBT —Y— 4
P.C°10°% = XRi(y¥) 57+1\/'? YRRV VI )X~’+}4 (&17)

The contributions of the first term, the second terin and the wholc term are
schematically plotted in Figs. 7, 8, 9 and 10 for variaus values of ¥ and va©.
(Since the first term is independent of the screening constant, va’, the contri-
bution of this term is shown as the tunction of three values of velocities,
v /v =0.0, 0.25 and 0.5 in the Fig. 7. The dependencies of the second termn and
whole term on three types of screening constant, Va ' = 1.0, 1.5, 2.0, are plotted
in the Figs. 8, 8, and 10, respectively, for the three kinds of velocities. "GM" and
"SCR" in each figures stand for y and Va'. Scales are units of Burgers vector.)
The dark part indicates a higher electron density than the light part. 1t is
immediately understaod that the screening contribution is a localized effect
and that total electron density is determined primarily by the first term, which

is nothing more than the equivalent consequence of the former calculations cf



electrostatic potential giver in the egs. 4-2~4-4. One should notice that the
electron density is antisymmetric with respect to xz-axis and blows up at the
origin. This explosion at the origin is observed in the electrostatic petential as
well and therelore in the perturbation potential as is shown in the Figs. 11,12
and 13. The origin of this physicaly unallowable phenomenon is the direct
consequence cl the application of linear elasticity argument to the core por-
tion, which was introduced in the section {I-2. It is well recognized that the
atomic arrangement of the core can not be predicted by the linear elasticity
theory. There might be some relaxation process in the core and there must be
more suitable smooth function which describes the real strain or dilatation in
the core portion. Since progress has been gradually made in the fleld of "core
physics” mainly based on computer simuiation study [34] and quantum
mechanical approaches[35], the improvement and modification of the core por-
tion by applying non-elasticity arguments remains as indispensable task in the

future.

IV-2. Born Approximation

The Born approximation {(APPENDIX A) adopted in this calculation is one of
the typical clagsical treatments of perturbation theory. In this treatment. the
wave function of the corresponding perturbed Hamiltonian is approximated to
that of the perfect system, and only “small" perturbation potentials can be well
described by this theory. In the present study, magnitude of the perturbation
potential given by eq. 3-35 is about B.4x1073el, at (5b, 5b) lor the case of
kp=1.5x10%5=3.04 and 7=0.1. This value may be lairly small enough to satisty
the criterion of the Born Approximation. However, as shown in the Fig. 11, per-
turbation potential blows up approaching toward the origin. Therefore the

direct application of the Born Approximation to a whole crystal must be open to
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objections. There could be a more suitable treatment for this type of strong
scattering potential fleld. But the essential point is not the improvement or
modification of the approxirmation method but to obtain the proper scattering

potential Geld based on the proper atomic arrangement in the core portion.

IV-3. Boltzman Transport Equation and Mackenzie-Sondheimer's procedures.

The key procedure ol the Mackenzie-Sondheimer's B.T.E. method is the
dextrous application of the Matthiesen's rule in the flnal stage. It is not too
much to say that the mathematical elegance of the whole methed is amplified
by this procedure. This powertul method, however, includes the following self-
contradiction. The final process to obtain the resistivity value was based on the
assumption;

o1 1
0, Kos 14 P > . (3-78)

which means the resistivity ol the lattice is very much higher than that of the
dislocation. Since the relaxation time T of lattice resistivity decreases inversely
proportional to the temperature and according to Matthiesen's rule the resis-
tvity of dislocations is independent of temperature, the assumption eq. 3-78
should describe the higher t-mperature state. On the other hand, once
returned to the reduction process Irom eq. 3-54 to eq. 3-57, one realizes that
the mathematical property of the Fermi-Dirac distribution tunction, eq. 3-586,
was an essential ingrediem'.._ But this tunctional property is, in a rigorous sense,
limited to 0°K. This seil'-conr.radiction seems to violate the physical validity of
this method.

In order to extract the pure contribution of a disiocation at 0K, the
numerical calculation was carried out on the {ollowing integral equation 4-18

which is obtained from eq. 3-4B in the limit of infinite relaxation time (The
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mathematical detail is shown in the APPENDIX C.)

—ekE= C"_[(s(k)'k—z(k)'lr') I<k|=ey|lo>z|?dy’ (+-18)
v

Comparison of the numerical results with analytical results is made in the Table
1 for the case of a static disiccation, =1, and Va’=15. (In Table 1, coefficient
term is omitted and only kr-dependent values are listed.) It cen be understood
that, although the analytical values are slightly higher than the. numerical
values which give the real dislocation resistivity, the Mackenzie-Sondheimer's
analytical procedures provides a fairly good estimation of dislocation resis-
tivity. The origin of this good agreement can be attributed to the following
functional property of the Fermi-Dirac distribution function: The Fermi-Dirac
distribution function is an exact step function at 0°K, and deviation from the
step function is negligibly small even at the higher temperatures. This guaran-

tees the validity of the eq. 3-56 in the wide temperature range.

IV-4. Friction Force and Electrical Resistivity

The theoretical friction force was given by the egs. 3-90 and 3-81.

F*= 5.07x10’{bz[:—:} u,]c’(p 7 (3-90)

. 2 -
G o) = :%-’%n—[zu—Fu)=+F05;L+T+ng(4—SFQ)sm l\rp_lz-l-—l (3-91)

These results are plotted in the Fig.14 as a function of velocity for various
values of Fermi vector, ¥y [36]. It is understoed that damping constants which
can be calculated from the slope of the curve is, in general, a function of velo-
city. However, as shown in the Fig. 15, force ig linearly related with velocities

tor their physically meaningful values. And damping constant is independent of
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velocity. In order to estimate the actual values predicted by this theoretical
calculation, physical and materials constants which are tabulated in the Table 2
are substituted into the above equations, and damping constants are estimated
for Cu, Pb, and Al. The results are tabulated in the Table 3. It is needless to say
that the accuracy of these values and the validity of the theory can be exam-
ined only by comparison with the experimental values. However, it is not an
easy task to experimentally extract the [riction force and damping constant
with accuracy sufficient enough to allow comparison with theoretical values. A
sample should not have high Peierls potential fleld so that the free flight dislo-
cation melion is 2 dominant mode, and the temperature should be low enough
to avoid the phonon friction force. In the case of a tensile test, in addition to
these requirements for the sample and experimental condition, a more essen-
tial difficuity arises in the following manner.

A tensile tesi is one of the most widely used experimental procedures for
the mechanical testing of materials. In fact, as was mentioned previously. the
existence of the electron friction force was first predicted by this type of
experiment. But in order to obtain the friction force from the observed stress
change due to the superconducting and normal transition, the following
theoretical procedures are required. The strain rate of a sample, £, is generally

given by

& = NmbT {4-19)

where N, is the mobile dislocation density, ¥ is the average velocity of those
dislocations and b is the magnitude of the Burgers vector. When the rate con-
trolling process i3 assumed to be a thermally activated process the velocity can

be rewritten as

g=5 (4-20)
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= Z,uexp[—-Ak—GT- {4-21)

where AG" is the activation free energy: Liis the average distance among obsta-
cles; v is the trial frequency and ty is the waiting time for the thermal activa-

tion at an obstacle. The activation free energy can be more explicitly given by

AG" = Gy —~(Tapp ~T1) Vact (4-22)
where G, is the interaction energy between a dislocation and an obstacle; Tapp
and 7; are the applied force and long range internal back stress due to other
dislocations, respectively, and Vg is the activation volume. Substitution of the
eqs. 4-21 and 4-22 into the eq. 4-19 yields

&= Npblyv exp[—--G"—-(’—.EE:—;—TL)—V'“— (4-23)

From the above equation, the applied stress, T, can be obtained as

- G, kT g
Topp =TL + T m[N,,.bZ,u (4-24)

By performing this procedure on both the normal and superconducting
states, and by assuming that the long range internal stress, activation volume
and mobile dislocation density do not change with the transition, the observed
stress change due to the transition can be described by the following quanti-

ties.

AT = (Tgp )" —(Tﬂﬂ?). (4-25)

= (re )" —{1a)? (4-26)

where superscript » and s indicate the normal and superconducting states,

respectively. Since the electron friction force 7, can be related with the
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damping constant 5, and the velocity v by
Te = __E;‘ll (4"27)

the eq. 4-26 can be rewritten as

or = E(ap-) (+-28)
= Fap(i-T) (e-29)
where I is
r= gﬁ. (4-30)
+
= [.7'_.] (two fhid tnadel) (4-31)
(]

or

(4-32)

2
m (B.C.5. theory)

Then, as the prodlict of damping constant F and velocity v, the electron frie-

tion force in the normal state, Fe™ , can be obtained from the eq. 4-29,

=t 4y (4-33)

or from eqs. 4-28 and 4-30, fe? is

R =g
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=L
= TopodT {4-34)

In the above calculations. the interaction force is obtained as only a func-
tion of temperature and measured stress change. However, this procedure ig
rmuch too roundabout a process and many unclarified assumptions are piied up.
In fact, there is no physical basis that can guarantee the assurnption of invaria-
bility of the 7;,5p or Va between the two states. Estimation of the average dis-
tance L, appeared in the eq. 4-23 belongs to the statistical problem of harden-
ing which was introduced in chapter 1-1. But the extension of Lhe statistical
problem of a static dislacation to that of a dynamic dislocation has not yet been
satisfactorily investigated. Also, as was mentioned in chapter {-3, it is reported
that, in the superconducting state, a dislocation which moves with a velocity
higher than some critical velocity destroys the condensed electron pair and an
additional friction force is exerted.[12] This microscopic physical property of
the superconducting state is not taken into account in the above treatment.
The effect of the magnetic field on the sample, which must be applied in order
to pull the sample back to the normal state below critical temperature, is still
open to question. Under tLe magnetic field, careless experimental alignment
often does not make the testing machine behave as a mechanical reservoir. At
any rate, even apart from these shortcomings, the mos: serious problem in the
above treatment resides in the fact that raw data does not reflect the desired
quantity directly and that_the intervention of unclarifiecl theories into the data
interpretation process can not be avaided. Therefore one should conclude that
it i3 next to impossible to extract a reliable value of a microscopic quantity
such as the electron friction force from macroscopic values determined from a
tensile test. [n order Lo obtain reliable values of the friction force other experi-

mental techniques must be sought.



Essentially three different approaches have been taken towards measuring
the damping constant. One is the direct measurement of dislocation velocity as
a function of applied stress by means of etch-pit technique; another one is the
impact shear stress test which requires an agsumption of a value for the mobile
dislocation density; the other one is the measurement of ultrasopic attenua-
tion. At this stage, it iz recognized that the measurement of ultrasonic
attenuation is the more reliable technique. The method proposed by Hikata et.
al. [37] does not depend on a knowledge of the dislocation density and other
inaccuracy resulting from dislocation networks. The details of their technique
are not given here but their reported values of electron damping constant are
tabulated in Table 3 with theoretical values including those obtained by present
study. (Victoria et.al.'s measurement is based on impact shear tests. ) Agree-
ments between the values calculated in this work and the measured values are

not excellent, but as a whole fairly good agreements are achieved.

Although it was mentioned that ultrasonic attenuation measurement was
the most reliable available method, the obtained data must still be manipulated
by theoretical calculations based on unfirmed assumptions. ln this respect,
the uitrasonic attentiation method is also an indirect measurement. By the
way, as was demonstrated in the previous chapter, the essential physical basis
behind this calculation was attributed to the Joule heat energy dissipation due
to the electrical resistivity of a dislocation. Then, by digressing from the final
calculation of friction force for a while, it is considered to be of great inpor-
tance to focus on a comparison of the theoretical electrical resistivity value of
a static dislocation with experimental values which can be much meore directly

measured than the friction force and, therefore, more reliable.

In order to select pertinent measured values of the resistivity for com-

partson, Matthiesen's rule is re-examined. This rule says that the electrical
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resistivity, pq{N,T). due to ¥ dislocations at temperature T is given by

Pa(N.T) = pp(T) + pa(N) {4-35)

where p,(T) is the resistivity of pure crystal due to the lattice vibration and
pe(N) is the contribution of N dislocations which does not depend on tempera-

ture. With the progress of measurement techniques, however, the existence of

extra term, Appup(N.T), such as

Pa(N.T) = po(T) + pa(N) + Bopur(N.T) (4-36)

has been reported [38,39] and Appup is named DMR (Deviation from Matthiesen's
Rule). Since the construction of the present study is fully based on the
Matthiesen's rule the experimental value which is compared with present
theoretical results should not be affected by this uninvited DMR term. The main
factors contributing to the DMR term are considered to be the development of
cellylar structures and the change of the phonon spectrum (vibration mode)
due to the Introduction of dislocations. Therefore, in order to eliminate DMR
contributions, the experimental value should be selected from a sample which
has a low dislocation density so that the lattice vibration mede is not very much
perturbed, and has uniform distribution of dislocations without having sub-
structures. Moreover, a low temperature measurement is required to suppress
the lattice contribution, p,(T). To the author's knowledge, there is only one
available experimental resuit which satisfles the above condition. This experi-
ment was performed by Rider et. al. {40) on a poly Al crystal at liquid He tem-
perature. In the Al sample, through the whole range of their measurement up
to 15% strain, they observed a proportional relationship between resistivity and
dislocation density (determined by TEM), and concluded that the additional

contribution arising from configuration or density was avoided. Their measured
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resistivity

Pe =(1.8£0.1)x10°1 [ghm—cm3] (4-37)

is adopted to compare with the present calculations whose general dependen-
cies on velocities and Fermi vectors are shown in Fig. 16. Substitution of the
material constants into the eqs. 3-64, 3-65, 3-80 and 3-81 followed by the

mpdification for the poly crystal (APPENDIX D) yields

Pen = 1.02x107%!  [ghm ~cm®] (4-38)

which is about two order lower than experimental valus, pes, eq. 4-37. This
theoretical value is slightly modifled by the following corrections. According to
the measurements and calculations of electronic specific heat, the effective

mass of a conduction electron, m”, in Al crystal is estimated to be

m° = 1.48m, (4-39)

where mg is the static mass. Substitution of this relation into the eqs. 3-84~3-

85 immediately makes small corrections on the calculated value, =q. 4-38.

p°=1.08p (4-40)

This is, probably, the theoretically highest obtainable estimation in this model.
Although even this correction is not sufficient to All the gap between the calcu-
lated and weasured values this amount of digcrepancy is not unexpected
because of the following reason. Since the sample used was poly crystal there
must be additional contributions of grain boundaries. The vacancies which are
introduced during the deformation should add the extra contributions, as well.
Then the experiment provides overestimated value as compared with the true

contribution of dislocation itseilf.

58



Therefore one can canclude that this simple model gives a fairly good esti-
mation of the resistivity. Moreover, as will be shown in the next section, the
effect of the magnetic fleld -~ the dynamic effect -- is negligibly small, then the
model of friction force, which is simply extended as the quasi-static motion of
chargiug eloud, can also provide the reliable estimation. And the result of eqs.

3-90 and 3-91 may be understood to be fairly reliable.

Iv-56. Magnetic Induction and Magnetic Interaction

Ry substitutiog appropriate material and physical constants into the egs.
3-97 and 3-98, the magnetic induction B {z.y.0.2) is calculated as a function of
dislocation velocity. In the Fig. 17, the spatial distribution of the integral part
of the eq, 3-98 which depends only on the coordinates {z.y,2) , (z'y'z) and
y(u) is shown for the case of » /v;=0.3. lu the Fig. 18, the same quantities are
plotted as the function of y coordinates tor the constant z value, z=5b, and
three kinds of velocities. One can see that the magnetic induction blows up
approaching to the origin: this has the same physical origin as the singularity
observed for electron density or perturbation potential fleld. Substitution of
the actual material constant into the above equation yields the magnitude of
107%*~107% (Tesla/10%) for both Ag and Au on the radius of 54. These values
are small enough to conclude that the eflect of magnetic induction is virtually
negligible.

As a very rough approximation, the magnitude of the magnetic interaction
epnergy can be estimated, as well. The interaction energy between the magnetic

induction, B, and the magnetic momeant, x4, is given by [41]

Frnag. = B {4-41)

In the true sense, however, the magnetic induction B produced by the moving
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dislocation is not independent but is varying with the dislocation motion. Then
the interaction process with the “static” magnetic moment caused by a single
atom, atomic cluster, short range ordering etc. in a crystal should be treated
more strictly. In this respect, the above equation can not be applied directly to
this problem, but as a first approximation the maximum interaction energy,

frags is calculated by the following equation.

ENST = |Blgax | (4-42)

where the magnetic moment is assumed to be parallel to the magnetic induc-
tion. Then by substituting the value of maximum induction on the radius of 5b
and the Bohr magneton 107%3//Tesla into the above equation 4-42, the “mag-
netic interaction energy" ~107° ev/b is obtained. This value is very much
smaller than those ol elastic or electric interaction energy.

The following two facts might be noticed in the above calculations. First of
all, those caiculations were carried out for the infinite screening constant
which means non-screening effect. As was mentioned in the previous section,
V-1, the effect is not significant, and these estimations are expected not to be
seriously modified. Secondly, the values of the magnetic induction on the
radius of 5b were adopted for the above estimations. Within this radius, both
the magnitude of induction and interaction energy are more magnified. How-
ever, without clear kmowiedge of core, those values should not be allowed to
come into the estimation. Then the vaiues on the assumed core radius Sb
should be viewed as a possib! . estimation provided that from the outside core
to the inside core physical values suck as electron density are smoothly chang-
ing and, at the core radius, a maximu n value appears.

The above discussion criticizes several unclear physics behind this calcula-

tion. But, as the very rough first estimation, one can conclude that both the
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influence of the induced magnetic feld (dynamic effect) on the previcus calcu~
lation results and the possibility of magnetic interaction with a magnetic clus-

ter are hardly expected,

IV-8. Posuibility of The Extension to Many Bady Problem (Collective Behavior of
Dislocations) in Yery Low Temperature Deformation

The main subject of this study has been tne calculation of the interaction
torce between a single dislocation and the electrons. Most theoretical studies
of very low temperature deformation 2havior also have been concentrated on
the single dislocation behavior. Even creep or stress relaxation phenomena,
which can be observed even in the very low temperature region and should be
essentially described by group behavior of dislocations, aave been approached
based on single dislocation behavior. Although, to some extent, those analyses
have revealed the essence of the phenomena by introducing new interactions
such as the dynamic effect or quantum effect, all explanations and predictions
remain qualitative arguments because of the lack of knowledge of many body
eflects. The study of the interaction force between two dislocations for various
type of :onﬂguratin;ns 1S certainly the important basic problem, but it is virtu-
ally impossible to apply the result to each single dislocation constituent and te
analyze the macroscopic behavior even if a huge computer is available. Intro-
duction of a thermodynamic treatment is essential. In this section, as one of
many body problems, the possibility of obtaining the mobile dislocation density
as a function of given deformation conditions such as temperature strain rate,

damping constant and so on is discussed.

IV-8-1. Sumino Hypothesis

Historically, the many body problem was flrst discussed by Johnston and
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Gilman [42], and they clearly clarified the dependency of the yielding behavior
on various deformation factors. Haasen and Alexander's analysis [43] is also
one of the typical examples of the many body problem. These treatments can
reproduce the stress-strain curve under the given deformation condition. How-
ever, eppirical equations are involved in the analysis. Moreover the physics
behind many body effects are not well discussed. In this respect, one should
say that these trea..aents are hybrid-theoretical treatments. Ou the other
hand, Samino et.al.[44,45] recently proposed a potentially useful hypothesis in
the following way.

The strain rate £ was given by

i= N bT (4 19)

Mathematically, an infinite number of combinations of N, and ¥ are possible
under a given strain rate £, However, this combination is not determined arbi-
trarily and there should be some physiea; principles which dominate the best
combination of N, and 7. Sumino et. al. proposed the following hypothesis to
determine the con sination. The steady state of rmoving dislocations is deter-
mined so as to make the componen). of the flow stress associated with moving
dislocations the minimum necessary to maintain a given strain rate. The

mathematical expression of the above hypothesis is given in the next equation.

A Typp +78) _
f’HMT__ =0 (+43)

where T,,, is the effective stress on a dislocation and 70 is the interaction force
among moving dislocations. The validity of this hypothesis has been reported to
be provea tor Ge and Si by their experiments [48]. And by applying the eq. 4-43.
they successfully explained the dependency of the effective stress on strain

rate and derived the equilibrium moving dislocation density as a function of
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deformation conditions such as strain rate etc.. Moreover, based on irreversi-
ble thermodynarrics, Nishicka [47] theoretically proved that this hypothesis is
dentical with the condition of the minimum rate of entropy production associ-

ated with plastic deformation.

Because of the simplicity of its mathematical statement, Sumine's analysis
provides a great possibility of extension. However, there are two difficulties
which should be gvercome in its application to this study. One is the dynamic
effects, ie. damping or inertia, which are not taken into account in their treat-
ment. The cther one is the difference of the mode of a dislocation motion.
Their interest was focused on Ge and Si which have higher Peierls potential, and
dislocation motion is characterized by the viscous mode. But in the nase of
dilute L.c.c. alloys, the Peierls potential is not high and obstacles are scattered
point-wise;, then the dislocation motion is characterized as fr. * flight motion
[48]. (It is not too much to say that the existence of dynamic effects is limited
to free flight motion and except for some anomalies arising [rom quantum tun-
neling through the high Peieris potential, most of the deformation anomalies at

very low temperature are centered on f.c.c. alloys.)

Iv-8-2. Extension to Free Flight Thermally Activated Motion with the Aid of

Dynarzic Effect

The above difficulties are overcome by the following modeling processes.
The model schematically shown in the Fig.19 is considered and the following
deformation parameters are initially introduced. N, is the mobile dislocation
density: b is the Burgers vector on this slip plane; ¢ is the concentration of
point obstacles; T4y is the applied stress; 7,;, is the eflective stress on a dislo-
catien: B is the damping constant and the deformaticn temperature is 7. In

the case of viscous dislocation motion, the strain Az during time A¢ was given by
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Ae = Np-AX 0 (4-44)
where AX was the average displacement of mobile dislocations during time Aé.

Then the strain rate & was derivec as

= jim 2%
e=lm
= 1. &% .
= Ea%lvm Azl (4-45)
= NpUb . (4-19)

This is quite a gencral and familiar tormula for the strain rate. On the other
hand, in the case of free flight motion, it should be modified in the following
way. As the rate controliing process ol « dislocation motion, thermally
activated processes at an obstacle assisted by an inertia effect is assumed. This
implies that the flight time between obstacles is negligible as compared with the
captured time at an obst . the thermal activation is assu_med to take

place at AP obstacles per unit volume during time A¢. Then, the area, Apue.

Aruept = 8P(L2)° (4-46)

is swept away by dislocations and the strain, Az, per unit volume is given by

Ae = AP(L)?b (4-47)

therefore strain rate is derived as

(4-48)

R[z

m
~0

8

u

4P
at

Um (L)%



= PH{L, )% (4-49)

where I, is the average distance among obstacles, and (Z,)? is the average area
occupied by an obstacle. The most important assumption implied in eq. 4-46 is
that, after overcoming an obstacle, a dislocation should be captured by the
next obstacle it encounters. This assumption was originally made by Friedel
[50] in his study of static dislocations and has been succeeded to following stu-
dies,

Let L be the average distance between obstacles along dislocations. Then
the number of total points (obstacles) interacting with a dislocation is given by

Pr= (4-50)

SE

According to ihe thermal activation process developed by Suzuki [51] the wait-

ing (captured) time at an obstacle, ¢, is

Go—bdLT,rr Y

y 7 GXP[- T (4-51)

'r-'

™

where v is the trial frequency, Gy is the interaction energy between an obstacie
and a dislocation, d is the width of an obstacle, and y,, is the parameter
specifies the dynamic effect which is discussed later. The numerator cf the
exponent in the eq. 4-51 is the activation energy. Since P* in the eq. 4-49

should be given by

P = t’;’— (4-52)
r

then substitution of eqs. 4-50 and 4-51 into the eq. 4-49 yields

i= (%‘—)v exp(———i—au_bdﬁ;' Y;}i.zb (4-58)



This is the final expression of the strain rate extended to the Iree flight mode of
a dislocation motion.
The physical meaning of ¥, is discussed. As is shown in the Fig.20, the

components of the line tension in the direction of dislocation motion, Fp,, was

given by
Fm =874y [¥ . (4~s4§
Yo = 1+08e7%" (4-55)
and
*=ay'/ug (4-56)

where ¥° and wp were

. 8
7 3, (4-57)
and
r l./2 _
=m—| /L 4-58
wo "[m.,] (4-58)

These quantities can be derived as the solution of the dislocation motion equa-
tion 1-1 of a string model. And ¥, which is multiplied by the static equilibrium
force, bty [, can be viewed as the modification factor which specifies the
dynamic effect. Since the vibration of dislocaticn is repeated many times, the
dynamic effect due to the vibration should be incorporated to thermal activa-

tion process and the average value during the decay time ;1.- is inserted to the

equation. ¥,, in the eq. 4-54 is such an average v .lue calculated by the {ollow-

ing equation.



L

=Z* Lt
Fm =1+ % 4-59
m 7 ,[ et (4-59)
= 1+0.8¢~2" (4-55)

This elaborate idea devised by Suzuki [12] seems to allow coexistence of the
dynamic effect and the thermal activation process. However, thermal activation
is essentially a statistical Auctuation phenomena, the deterministic dynamic
term can not be accommodated in such a manner. The basic solution of this
extremely hard problem might be settled by returning to basic physies [52]. In
this study, Suzuki's method is adopted.

The average distance between obstacles along dislocations, Z, is generally
a function of stress, line tension etc. and the search for the proper functional
form belongs to the statistical problem of hardening. In the case of a static
dislocation this problem has been almost worked out {53,54]. However, to the
author's knowledge, nobody has succeeded in obtaining such a function for the
general dynamic problem. Instead of going deeply into this problem, Friedel's
statistics is applied under suitable assumptions. The traditional Friedel statis-
tics tells that [ can be related with stress, line tension and concentration of
obstacle by the following equation.

+ -5

L= [ s (+-80)
This relation was derived from the static force balance condition at an
infinitesimal portion of a bowing arc and geometrical condition on the assump-
tion that the area which is swept out by a dislocation between two obstacles is

equal to the average area occupied by an. obstacle. It should be noticed that
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application of the Friedel's statistics irumediately confine this problem to res-
tricted condition: the vibration amplitude of a bowing string should not be very
much deviated from static equilibrium configuration and, once overcoming an
obstacle, a dislocation loses all memories about its dynamic vibration. In other
words, the current overcoming process should not be influenced by previous
Processes. Moreover, unzipping effects can not be included. Substitution of the

eq. 4-60 into the eq. 4-53 immediately yields

1
er)s® §o—
' b 1E : Gy bd[ac] 37,
&= Npv| el Teys €XP|= T (4-61)
and therefore
. 2
Q2 =Int,,, + $(1+0.6e7* )13, (4-82)
where
G, i H
_ & Go) o_3ba|2r|s o
f1=3|n ol ——kT[bc] (4-627)

ot |5
¥|are?

The flnal stage is the application of Sumino hypothesis to eq. 4-62. By
assuming a suitable form of the interaction force between moving dislocations
and the work hardening force, one would be able to describe the effective stress

more coneretely.

Tej? = Tapp ~T{—Ta (4-63)

= Tapp =4 VN —8(£~254) (4-64)

where 70 is the interaction {orce among moving dislocation and T, is caused by
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static dislocations, namely the work hardening effect. But eqs. 4-83 and 4-84
are nothing more than assumptions. To obtain proper functional forms should
be recognized as another important aspect of the many body problem. It will
require very hard mathematical load to separate out 7., from the eq. 4-82 and
it may not be able to be performed analytically. But by substituting eq. 4¢-84
into such a expression followed by an application of eq. 4-43, one will obtain the
equilibrium (steady state) moving dislocation density, Nm, as a function of
deformation condition. By substituting the electric damping constant obtained
in the previous chapter eqs.3-90 and 3-81 into the, Nq, one can discuss the low
temperature deformation phenomena more reliably as a further unifled treat-

ment. Those are possibilities and tor tuture consideration.
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V. CONCLUSIONS

As stated in the introduction, the primary goal of this study was to calcu-
late the electron damping force in a normal state for a moving edge dislocation.
Based on the free electron gas model, an equation which describes the electron
friction Iorce on a dislocation was analytically derived as a function of the nor-
malized velocity of a dislocation and the Fermi vector. Damping constants
which are determined from the force-velocity relations are generally a function
of velocity. However, in the range of physically meaningtul dislocation veloci-
ties, the force is lineariy related to the velocity. Theoretical values of the
damping constant obtained in this study shows fairly good agreernents with
experimental values. Electrical resistivity, as a mddle product of this study,
was compared with ap experimental value [or pure Al. The discrepancy is about
an order of two. This discrepancy was ascribed to DMR scurces of the sample.
Also, direct numerical calculation was carried out to estimate the magnetic
field associated with a moving dislocation. And the possibility of a magnetic
interaction between a moving dislocation and local magnstic moments in a ery-
stal was evaluated. The calculated magnetic fleld was negligibly small and any
magnetic effects were hardly expected. Although ambiguity of core structure
remains in the model, as a whole, this model provides fairly good estimations.

A possibility for ‘a unified treatment of the three main dislocation prob-
lems, elementary interaction manner, statistical problem of hardening and col-
lective behavior o dislocations, was discussed in the final section. And a funda-
mental equation, s'hich may describe the essential features of deformation
phenomena at very low temperatures, was derived. To solve the equation and to

extend the model remain for fucure work.
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Appendix A. Born-Approximation and Caleuiation of Scattering (Transition) Probability < 1>

The time dependent Schrédinger equation can be given by

lﬁ—-— HOYS (A-1)

where ¥° and H° are the wave function and unperturbed Hamiltonian. The

solution rf above equation is easily found to be

Eat
¥ = v..expP——,, ] (a-2)
where ¥, is space part of the wave function. Now, let us consider the perturbed
system with perturbation potential, AU. The corresponding Schrédinger equa-
tion is given by
uz— (HO+AU)¥ (A-3)
The series expansion of ¥(k.t) with respect to unperturbed wave function, ¥
gives
(k) = Pan ¥R (kL) (a-4)
n

a, ~an be obtained by substituting (A-4) into (A-3).

iy 2o lt) ){f.euu) ) (A-5)

By multiplying the complex conjugate of ¥5, ¥ to the both sides of above

equation, the following equation is obtainead.

dan (t) .
m f YEAUYQY = i (A-8)
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Hers, the perturbation potential is assumed to be weak so that ¥(k¢) in the eq.
(A-6) can be approximated to be ¥°(k,£) (Born Approximaticn). Then eg. (A-6)

becomes

di
i = [E AUk )dk (a7
k

In stead of the integral notation of the above equation, the following compact

notation is introduced.

Uno = [¥81kt)AU¥ ket )d K

= ¥, AU ¥

=<n }AUN)ﬂxp[iEu;E' t] (A-8)

By using above notation, the solution of eq. (A-7) can be given by

s B
Gn = #_{U,.o‘exp{i °h_£;' t]dt (a-9)

Since the perturbation potential, AU, of the present study is not time depen-

dent, (A-9) can be further more simplified and

A [ go=
Ty = %{expli—of&—'t}dt

YR ]
==3F e 1 (A-10)
where
AE = Eg~Ey (A-10%)

At time £, the probability, P,, of finding the system at state, o, is given by
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Py = laa(8)]? (A-11)

Then the substitution of (A-10) intc (A-11) yields

Pa = |aa(t)|?

8in* —¢
2 (a-12)

= it __en
= U s e

The third term of {A-12) is known as Fejer kernel [55] which provides the follow-

ing d-sequence.

+in?BE
3in 2Et " AE (a13)
nt(AE/ 2R)? 2K

Therelore the scattering probability per unit tirne, Q{0, n), can be given by
P
Q) = 22

- 24505 .
= Zi<nlavios| a[zﬁ (a-14)

Appendix B. Calculation of Scattering Probability <II> — Fourier Transforma-

tion of Perturbation Potential —

Scattering probability matrix, Sy, was given by

Swe = <K|AU K> (3-41)

| k> was free electron wave function and is explicitly expressed as [56]

gikr

= N ISVE (B-1)

g
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where A is the volume of the unit cell and (26+1)% is the number of atoms in the

crystal. Since constant term of AU can be separated as

AU = ~ep(r) {3-35)
2]
= —ZeCl, (B-2)
where
= b« B sing
U = Zog e emMVEITh T . (B-3)

attention is confined to the Fourier transformation of Ug. Let T and S be the
Ffourier transformation of the first term and the second term, respectively.

Then,

T= Jj_e &L __r gy

PN

[—-k ¢ "fd-" o5 fdy e =2 (g P

= _zdz e L .zdx ¢ 37 (z) (B-4)
where
K=k-k (B-5)
and
Ty{z) = :/;dy 9%":—2%? (B-8)

By putting yy to Y, above equation is transformed to
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- iy
1 Y
Tifz) = ;idYe 1"' P

By the way according to Campbell [57],
TP itntags = 4 lo-lal
fpz—ﬂz e af =% 3 €

where

p=2mif . >0 and £g>0

Then comparisen of eq. (B-7) with eq.(B-8) immediately gives

e [~
Tuiz) = Ham o7
=t%e-$l‘m (0>£K,) .

and substitution of the eq. (B-10) into the eq, (B-4) yields

- _K,I_‘ _ig1
= eigfane 7 TR Tan o7 oy
Y e

By making use of the No. 438 of the same reference [57],

i

g~1enfg g—Pg g,
/ Y7 pE

* Ty 00

comparison of eq. (B-11) with eq. (B-12) yields the tollowing result.

T =x2m

(7Kl.)‘i!qf 0>=k,

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)

(8-12)

(B-13)
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On the other hand, S is given by

5= [ e mara @ rl) 227

o - -
= !fdy e-_«'"+f"y suq'"j~fd.': 2_«'2.5',(:.3;)
e () lm

=t-faye _"(‘K')"tfdy e-%"j-fd.r e-iK".S'l(:.y)
Q L] —-
where coefficient 2 in the eq. (B-3) is neglected and §,(z.y) is given by
Suey) = varva s 2T
= L _MBY_x vz vETry?)

T T

According to No. B67 of the referencs [57],

- 2 v
T ""——————’Z‘f"ﬂ;{’l Lot = oxpl-ats-5917]

where

P =2mf , p= and a>0

(B-3)

(B-14)

(B-15)

(B-16)

(B-17)

Direct comparison between the last term of eq. (B-14) and eq. {(B-16) leads the

following Fourier transformation of §j{z.y).
- —
:/-d.‘:c S (zy) = — +1 o VYIS

Then. S becomes

- - r—f
5= _’—:1 !-fd-o PR Pl (L fd'y e_‘q”s_ﬂ\/“x’i
[} [}

(B-18)

{B-19)
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Again by making use of the Nc, 438 of the reference [57] given by (B-12),

Fourier transformation of each term is immediately calculated.

1 1
r+1] ik +ariE * "1'.1(,+\/u+!(,2

1 (—i)2n
T 3T K ifra (B-20)
The final form of scattering probability matrix is given by
o = sm 1Bl am K (B-21)

™ (/P4 KE " 7+1 KP+KE+a

Appendix C. Numerical Evaluation of Dislocation Resistivity at 0°X

C-1. Mathematical Basis

Mathematical basis’of the numerical evaluation for a single integral equa-
tion of Fredholm type is provided in the reference [31]. Here, essential points
are summarized. The following Fredholm inhomogeneous integral equation is

considered.

[ ]
SE(z u@)dt~uu(z) = £ (z) (c-1)

In arder to solve above equation numerically, interval {a,b] is divided into n-

equal steps, and integral is replaced by summation.

b n _
fl'c (z.6)ule)de = 121k (z.z5)u(z;) b—_nl {C-2)

The .ategral equation (C-1) is attempted to be satisfled only at z;,xz....2n. By

introducing the following notations
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k(zyz;) =ky; (Cc-3)

u(zy) =y (C-4)
and

f@)=1 (c-5)

eq. (C-1) is transformed to n sets of linear algebraic equations.

b -
gy 225 = e (c-6)

After solving these n linear inhomogeneous equations for unknown u;xz,......,

4, , a functional representation of u{z) can be obtained as

u(z) = -L‘(.._’?_L &jﬁ::)k(z,z,)u, -b—;i (c-7)

C-2. Numerical Calcnlation of Resistivity

By applying the following relation (C-8) to the eq. 4-18

£=(9: Jy 9a)

= (he By by By Ay By) (c-8)

the B.T.E. can be split into three equations for z, ¥y and z ccmr.onents.

—tky = € [ (haks ~hs (ks ) 3K | ~e 9| k2 |y’
’ etc. (C-9)
ete. Since procedures are same for each component, this argument is confined
to only : component. By performing the coordinate transformation given by

the eqs. 3-44~3-48, above eq. (C-9) can be revritten as
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—ecosp = C"j:(h,cosp—h.,(')coscp')F'(d.w.w)dcp' (Cc-10)
v

where F°(9.9.¢") is the polar coordinate representation of scattering probability
matrix | Sy |2 given by (B-21). On the other hand, by using (C-8), the conduc-

tivity, 0, can be singled out from the eq. 3-58.

L] 2
O = kg [d8 [d gk, (8.9)sin?od g (C-11)
] [}
where 4 was given in the eq. 3-61. Above double integral can be replaced by
summation ir the following way.

M+ 2H
= 3-gin%5, -cos?p, & 20
[- = Akp‘gjg’h,(ﬂi_%) sin*8; 'cog Pi T oH

2
= Akp 3 Y by sind; cosy, {%} {C-12)
[}

where compact notation Ay is introduced for he(8y.95). And substitution of k,
the solution of {C-10), into the eq. (C-1R) yields numerical value of conductivity.
This is the essential procedure.

From F°(d.p.9), one can single out 1/sin®3 term. Then (c-10) is slightly

modified ta be
~a sin*B-cosg = C [ (hycosp—hy{')cosp ) (8,0.9)d ¢’ (C-13)
5

On the ¥y —ypx space, above eq. (C-13) can be rewritten as

2%
—eS;cosg, = C",af {hacospr ~h (Yeosp) (S .px.p)d ¢

(i=1.2.... . M+1:k=12,...28+1) (C-14)

where

79



5 = Sinz‘l" (C'15)

By applying the Trapezoidal rule to the eq. (C-14), integral can be replace by

summation in the following form.
] 2” .
—eS,cosgy = C Lz;é(h.-,,cosp, —hycosgy ) Fe %

1 2r
+ E(huc‘)ﬁ(’): ~hyyc088,) Fik 27
+ L (hy cosgy ~hy oy, cosp VFgu1 2L
2 k 2 +1 20+ 15 Y7
G=12,... M lk =12, .2H+1) {C-18)

where Fj, is the compact notatio. -f F(d.¢x.9s). Then, for each (i.k), 2H+1
sets of linear algebraic equations for unknown ky is set up. Now, let us define

new tensor, &;,

Hj = hycosgy (C-17)

Then eq. (C-186} is transformed to

w "
Ly~ H) Pt Gl H=Ha) Pt 3wy ~Hu) PP = FrSicospy (C-10)

By making use of the next relations {C-19)~{C-21) which are easily verifled,

hyy = Byoyer (C-19)
= f?un : (C-20)
FAREN S (C-21)

2M+1 sets of equations can be reduced to 24 sets of equations. And the follow-

ing matrix notation of (C-18) is introduced.
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(PR R+t FEY) F& R . 8
F (B P+ 4+ FRY) F& . FR¥
—(FA+FR+ Y+ +FEY)
Flau Flau Fou o (ot Pyt + FRAEY)
H,
Hiz
5, 2a
cosp;
g cospe c-22)
= 5 : (c-
.COS@ay

Then for each ¥y, 2M sets of M, value, ie. hy, is numerically evaluated. This
procedure is repeated M times for 8;8z,......%........%z. and by substituting the
results into the eq. {C-12), one can obtain conductivity a.,. and therefore, dislo-
cation resistinty p;

1
P £M) (mm)

L L — (c-23)
A'k’ byl i3, 2 T
3 T hyain®3, -cos?p; i
LI}
Appendix D. Modification for a Poly Crystal
Although the final product of the modification of electrical registivity for a
poly crystal is given in the reference [56], the derivation is not provided. In this

appendix, the gen.ral derivation of the average resistivity of a poly crystal is

carried out. Components of the resistivity tensor, {;, and unit vector »; in a



certain direction shown in the Fig.21 are given by

[~}
= =-~]

@-1)

(Qki‘ = Pv

o o g
[=]

sina-cosf
fny = [sina-sinﬂ] (D-2)
cosa

Then the components of the resistivity, pf% in the x, y and z direction is

obtained as

o8 = Quny

y Sina-sing

F,-simz-cosﬂ
= (D'a)
a

Since the measurement is carried out on a normal plane to 11, the component of
resistivity along # should be calculated.
pR* = pifn,
= sina(p, cos?a+p, sin?f) (D-4)
By considering the fact that the solid angle at (a,8) is given by
do = sina-dadf (D-5)
the average resistivity is calculated in the following integral.

w2 2= d luz n
J2afd8Z2oy = o [dafda o
[} (] L] [} .
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FIGURE CAPTIONS

Figure 1. Definition of two types of coordinate systems for the description of
edge dislocation rnotion.

Figure 2. Numerical evaluation of the third term appearing in eq. 3-18 and
comparisons of its magnitude with the other two terms. Comparisons are car-
ried out alorg the diagonal direction in a coordinate. »=025v, and
V@ 1.5x108 [em ™)

Figure 3. Same as Figure 2, but employed velocity is v=0.5v, and va =1.5%10°
[em™]

Figure 4. Same as Figures 2 and 3, but comparisons are carried out al:ng a cir-
cle of radius, 3b.

Figure 5. Configurationel relations between Cartesian and Polar coordinates in
k-space.

Figure 6. A model crysta. ‘n which an edge dislocation motion with constant
veloclty is characterized.

Figurs 7. Deviations of electron densities from those in a dislocation free state.

contributions of the first term in the eq. 4-10 are compared in terms of disloca-

tion velocity. GM and SCR stands for 7=!—7- and Va°, respectively. The darker
(

colors indicate higher electron densities. The first term is independent of the

screening constant.

Figure 8. Contributions of the second term and whele term in eq. 4-10 are com-

pared in terms of dislocation velocity for a constant screening coostant,

va'=1.0.

Figure 9. Comparisons for a constant screening constant, Va *=1.5.

Figure 10. Comparisons for a constant screening constant, Ya '=2.0.



Figure 11. Schematic picture of the employed perturbation potential eq. 3-18

tor the case of ul=0.5 and Ve =1.0x10% [em 1]
s

Figure 12. Contribution of the first term in the eq. 3-18.

Figure 13. Contributions of the second term, the screening term

Figure 14. Dependencies of the force factor F° in the ¢g. 3-90 on the normal-
ized velocities for four kinds of Fermi vector. uiit is arbitrary.

Figure 15. Magnifled graph of Figure 14 for normalized velocities less than
0.01. Unit is same as Figure 14.

Figure 18. Dependencies of Resistivities on normalized velocities for nine kinds
of Fermi vector.

Figure 17. Geometrical distribution of magnetic induction calculated numeri-

cally for the case of ul=0.3, Values in the figure are normalized by constaat
T

terms in the eq. 3-98.

Figure 18. Dependencies of magnetic induction on y-coordinates at fixed x
coordinate, z =5b for three types of velocities.

Figure 19. A model which describes collective behavior of dislacations.

Figure 20. Magnified view of force balance condition on a dislacation interact-
ing with point obstacles.

Figure 21, Relations among coordinates appearing in APPENDIX D.
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geometrical distribution of magnetic induction
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TABLE 3. Measured and calculated electron damping constants



Numerical Analytical
P, 0.615%* 010 0.648
R, 1.36 £ 0.0 1.943
p, |(LOLE 0.43) 10-10 0
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Al Cu Pb
b 2.86 2.56 3.50
burgers °
vegc‘tor (al
Kg . .75 1.36 1.57
Fermi x10° x108 x108
vector [em™]
Vs/‘V'g 0.474 0.453 0.352
m
mass of 9.1210"28 [g]
electron
ﬁ 27
Bl K - -
co::fgnfs 1.i x107%" [erg-sec]
e
elementary 4.8x1079 fesu]
charge

x8L 8z2!1-6814

Table 2
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Author Al Cu Pb Ref.
Hikata -5
= | Eibgum \ 8.65%0°5 | 58
s 3
g Vvictoria, 2.45x10°
‘= |Dharan, Hauser ] 59
8 Dorn 362104
w Hikata,
Johnson, 1.37x10°5 37
Elbgum
Mason ~10"2 1S
S | Hoistein | 2.72x10*| g.78x0°5 | 2.8%074) 18
®
& | Brailsford | 6.59x0°S | 1.59x10°% | 16721076 | 21
@ . i I
[
Present Study | 3.63x10°€ | 762x107 | 1.00x10°S

Table 3

unit; dyn-sec/cm2
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