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Mechanistic Dissection of RNA-Binding Proteins in Regulated 
Gene Expression at Chromatin Levels

Jia-Yu Chen, Do-Hwan Lim, Xiang-Dong Fu
Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of 
California, San Diego, La Jolla, California 92093, USA

Abstract

Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of 

which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory 

functions in gene expression, suggesting that RNAs are both the products and the regulators of 

gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute 

their regulatory activities, and recent evidence suggests that nearly all biochemically defined 

chromatin regions in the human genome, whether defined for gene activation or silencing, have the 

involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding 

proteins is also melting, as many DNA-binding proteins traditionally studied in the context of 

transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA 

to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on 

RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in 

regulated gene expression, which is intended to facilitate future functional and mechanistic 

dissection of chromatin-associated RBPs.

The traditional view of transcription is to produce either structural RNAs or protein-coding 

mRNAs. Specific structural RNAs are assembled into various RNA machines to catalyze 

specific biochemical reactions, and protein-coding RNAs are processed in the nucleus (such 

as capping, splicing, and polyadenylation) and then exported to the cytoplasm to translate 

into proteins. The advent of deepsequencing technologies has now revealed that mammalian 

genomes are far more active in transcription (Djebali et al. 2012), generating a large 

repertoire of regulatory RNAs, including long noncoding RNAs (lncRNAs) (Long et al. 

2017), repeat-derived RNAs (Johnson and Straight 2017), and enhancer RNAs (eRNAs) (Li 

et al. 2016). Even protein-coding genes are producing various smaller RNA species that are 

either cause or consequence of regulated gene expression as a result of divergent or 

convergent transcription and transcription pausing and pause release (Wissink et al. 2019). 

Most regulatory RNAs are predominantly retained in the nucleus (Li and Fu 2019), where 

they may modulate gene expression at different steps of transcription on specific 

transcription units or genomic loci (Skalska et al. 2017), remodel chromatin structures and 

dynamics (Bohmdorfer and Wierzbicki 2015), and mediate long-distance genomic 
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interactions (Schoenfelder and Fraser 2019), together contributing to the organization of the 

three-dimensional (3D) genome.

RNA molecules contain a series of single- and double-stranded regions that enable them to 

interact with DNA, RNA, and protein, thus providing versatile structural modules that are 

distinct from those in proteins to mediate network interactions. Through functional 

dissection of specific RNA metabolism pathways, a large number of RNA-binding proteins 

(RBPs) have been characterized, which often process unique structural motifs for direct 

contact with RNA sequences, base compositions and modifications, polynucleotide 

backbone, double-stranded regions, or RNA tertiary structures. However, recent global 

surveys of RBPs reveal ~ 1500 RBPs encoded by mammalian genomes, many of which do 

not carry canonical RNA-binding domains (Hentze et al. 2018). It is particularly interesting 

to note that many DNA-binding proteins are also able to directly bind RNA through either 

the same or distinct nucleic acid recognition motif(s), which are collectively termed DNA/

RNA-binding proteins (DRBPs) (Hudson and Ortlund 2014). Consequently, many traditional 

DNA-binding transcription factors (TFs) may also function as RBPs in mammalian cells. 

These DRBPs are exemplified by many zinc-finger proteins, which often contain multiple 

fingers in the same polypeptides with divided tasks in interacting with DNA, RNA, and/or 

protein.

Given prevalent transcription activities in mammalian genomes, our recent large-scale 

chromatin immunoprecipitation sequencing (ChIP-seq) analysis of RBPs reveals that nearly 

all biochemically defined chromatin regions (based on RNA production, chromatin marks, 

and accessible chromatin regions) in the human genome involve specific RBPs, and a 

significant fraction of these nuclear RBPs appear to directly participate in transcriptional 

control (Xiao et al. 2019). In this review, we focus on RBPs that function at chromatin 

levels. We highlight recent advances in detecting RBP-chromatin interactions and in 

dissecting their mechanisms in transcriptional control and co-transcription RNA processing 

through acting on selective “hotspots” on chromatin to aid in future research to (i) 

understand a suspected function of an RBP on chromatin, (ii) probe the regulatory activity of 

a chromatin-associated RNA through identifying and characterizing its associated RBPs, 

(iii) dissect a specific chromatin activity that may involve both regulatory RNAs and RBPs, 

or (iv) deduce global DNA–RNA–protein networks in 3D genome critical for specific 

biological processes. Because of limited space, we select specific examples to illustrate how 

to experimentally approach the function and mechanism of chromatin-associated RBPs, 

rather than trying to be comprehensive in covering all related literature on regulatory RNAs 

and RBPs. Readers are directed to the outstanding reviews on such topics cited above.

STRATEGIES TO DETECT CHROMATIN-ASSOCIATED RBPs

Chromatin-associated RBPs can be detected either on an individual basis or at the genome-

wide scale. If the experimental goal is to explore a suspected function of a specific RBP on 

chromatin (Fig. 1A), the first step is to perform ChIP-seq if specific antibody is available or 

through genomic tagging using the CRISPR technology to determine the binding pattern of 

the RBP of interest on chromatin, essentially treating the RBP under investigation as a 

candidate TF. Options for genomic tagging include in-frame insertion of a GFP, FLAG, or 
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SPY tag to the endogenous gene (Zakeri et al. 2012; Kimple et al. 2013). Multiple variations 

of ChIP-seq may be chosen, including ChIP-exonuclease (ChIP-exo) to increase the 

resolution (Rhee and Pugh 2011) or ChIPmentation to improve the robustness in library 

construction (Schmidl et al. 2015). More sophisticated variations include CUT&RUN and 

CUT&Tag, which use a Protein A-Micrococcal Nuclease or a Protein-A-Tn5 fusion protein 

to recognize chromatin-bound antibody (Skene and Henikoff 2017; Kaya-Okur et al. 2019). 

These techniques would avoid cross-linking and the harsh sonication step as in standard 

ChIP-seq. Deduced RBP-binding peaks can lead to functional and mechanistic studies 

through motif identification (Landt et al. 2012), Gene Ontology (GO)-term and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses (Kanehisa and Goto 

2000; The Gene Ontology Consortium 2019), and cobinding analyses by using existing 

ChIP-seq data for known TFs and other RBPs (Xiao et al. 2019).

Before mechanistic dissection, two important questions may be addressed. The first is to 

determine whether the RBP of interest binds chromatin in an RNA-dependent manner. This 

can be addressed by using RNase A to treat permeabilized cells before ChIP-seq or using a 

drug, such as α-amanitin, to block transcription to determine the dependence on nascent 

RNA production. The second question is to identify specific RNAs that might mediate the 

interaction of the RBP with chromatin, which may not be as straightforward as it might 

sound. One approach is to sequence RNA, rather than DNA, in the IPed sample by RNA 

immunoprecipitation (RIP) (Gilbert and Svejstrup 2006) or formaldehyde RIP (fRIP) 

(Hendrickson et al. 2016). As these techniques do not differentiate direct from indirect 

binding, a better choice would be cross-linking immunoprecipitation (CLIP) (Lee and Ule 

2018). Still, the problem is twofold: RBPs may bind RNAs both on and beyond chromatin 

and the RNA-binding profiles for most RBPs rarely match with those detected by ChIP-seq 

(Ji et al. 2013; Van Nostrand et al. 2018). One potential solution to this problem is to 

perform CLIP on biochemically enriched chromatin fractions, which may provide critical 

insights into RNA-guided interactions with DNA. This may be amenable with cis-acting 

RNAs, but it is quite challenging to link RBP–chromatin interactions mediated by trans-

acting RNAs. However, this is readily approachable if a study begins with a specific 

chromatin-associated noncoding RNA and the goal is to understand the function and 

mechanism of such potential regulatory RNA on chromatin by identifying its interaction 

with DNA and then searching for potential RBPs involved (Fig. 1B). For this experimental 

goal, established RNA capture strategies could be used to identify the associated DNA and 

proteins, as exemplified by a set of related methods, such as ChIRP (Chu et al. 2011; Quinn 

et al. 2014), CHART (Simon et al. 2011), RAP (Engreitz et al. 2013), R3C (Zhang et al. 

2014), and a potential dCas13-based approach similar to that using a dCas9-based strategy 

to target a specific genomic loci (Tsui et al. 2018). Additionally, RNA-linked chromatin 

architecture could be approached with HiChIRP (Mumbach et al. 2019), and RNA–RNA 

interactions with hiCLIP (Sugimoto et al. 2015). These technologies enable the elucidation 

of potential DNA-, RNA-, and protein-mediated network interactions in 3D genome.

Given that all active chromatin regions are suspected to involve regulatory RNAs and RBPs, 

it would require strategies to identify specific RNAs and RBPs at a specific genomic locus 

or genome-wide that are linked to a specific epigenetic event or a regulated gene expression 

program (Fig. 1C). A specific nucleic acid probe (Dejardin and Kingston 2009) or a dCas9-
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based strategy (Tsui et al. 2018) have been developed to detect locus-specific interactions by 

capture followed by genomic or proteomic profiling. To identify potential regulatory RNAs 

and RBPs associated with an epigenetic event, IP-coupled chromatin proteomic profiling 

would provide a general approach. This strategy has been applied to specific histone-marked 

genomic regions, uncovering multiple RBPs in complex with specific histone modification 

events (Ji et al. 2015). Conversely, regulated gene expression may enlist proteins that interact 

with nascent RNAs from various genomic regions, which can be approached by ethynyl 

uridine (EU) labeling to enable nascent RNAs to react with azide-biotin for streptavidin 

enrichment, which has uncovered many noncanonical RBPs that are well-known TFs and 

chromatin remodelers (Bao et al. 2018). In fact, EU may be combined with 4-thiouridine 

(4sU) labeling to enhance protein–RNA cross-linking (Huang et al. 2018). We may also 

envision a general strategy to systematically identify chromatin-associated RBPs by loading 

a biotinlabeled adaptor to Tn5 (Lai et al. 2018) to access all open chromatin regions 

followed by streptavidin enrichment and proteomic profiling. This approach would enable 

unbiased survey of annotated RBPs on chromatin in different cell types.

DEFINING THE FUNCTIONAL IMPACT OF CHROMATIN-ASSOCIATED RBPs 

ON GENE EXPRESSION

Chromatin-associated RBPs may have direct roles in transcription or mediate 

cotranscriptional processing or both. It is thus critical to measure their functional impacts 

before investigating the mechanism of their actions. RNA-seq following knockdown has 

been typically used to quickly assess the functional consequence; however, the data do not 

necessarily reflect regulated gene expression at the level of transcription because steady state 

RNA is the collective consequence of transcription, RNA processing, and stability as well as 

indirect effects induced by knockdown of a specific RBP To determine potential impact on 

transcription, the most straightforward assay is global nuclear run-on (GRO-seq), which 

measures nascent RNA production (Core et al. 2008).

To help differentiate between direct versus indirect effects, one may determine whether 

RBP–chromatin interactions are linked to target genes the RBP binds, assuming that bound 

target genes are more affected than unbound genes. However, if the RBP under investigation 

preferentially binds intergenic regions, such as enhancers, it would be important to link 

individual binding events to likely target genes (Yao et al. 2015). Most studies infer the 

closest genes as targets for enhancers, which is reasonable for metagene analysis, but there 

are numerous exceptions to this assumption, as many enhancers may engage in long-

distance interactions with target gene promoters through DNA looping, thus skipping the 

nearest neighboring genes (Schoenfelder and Fraser 2019). As transcription is a multistep 

process from the assembly of preinitiation complex (PIC) to transcription pausing and pause 

release to productive elongation to termination; various high-throughput technologies for 

analyzing different portions of nascent RNAs have been developed for mechanistic 

dissection. Readers are referred to a recent thorough review on these technologies and their 

applications to addressing specific mechanistic questions (Wissink et al. 2019).
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If an RBP is suspected to play a direct role in transcription, it is often informative to survey 

its impact on the behavior of specific RNA polymerases. Using Pol II as an example, the 

carboxy-terminal domain (CTD) of the largest subunit is posttranslationally modified, and 

specific modification events have been linked to different steps in transcription according to 

the so-called CTD code (Hsin and Manley 2012). Therefore, quantifying those modification 

events and mapping them to chromatin by ChIP-seq in response to RBP knockdown are 

often informative to pinpoint a specific transcription step(s) being regulated (Takeuchi et al. 

2018). Moreover, altered transcription is frequently linked to modified histones according to 

the histone code hypothesis (Jenuwein and Allis 2001), which can also be used to 

characterize the regulation of the epigenetic landscape by a specific chromatin-associated 

RBP.

Chromatin-bound RBPs are not necessarily involved in transcription, but rather in coupling 

transcription with downstream RNA processing events, which can affect RNA fates by 

multiple mechanisms. A battery of high-throughput technologies may be used to pinpoint 

changes in RNA fate. RNA-seq is again a powerful strategy to obtain the first approximation 

on differential gene expression. Resultant high-density reads can be aligned to the reference 

genome to deduce alternative splicing events by using rMATS (Shen et al. 2014). Various 

strategies to sequence the 3’ end of mRNAs can be used to quantify changes in steady state 

mRNAs as well as evaluate potential alternative polyadenylation (Zhou et al. 2014). 

Cotranscriptional RNA modifications can be determined by mapping specific modification 

events, such as m6A and ΨU, in mRNAs (Limbach and Paulines 2017). Functional impacts 

can be evaluated with 4sU-based methods in pulse-chase experiments for RNA stability 

(Tani and Akimitsu 2012), with subcellular fractionation and RNA sequencing (Frac-seq) for 

RNA export by performing separate RNA-seq analyses on cytoplasmic versus nuclear RNAs 

(Sterne-Weiler et al. 2013), and with ribosome profiling (Ribo-seq) for translational control 

(Ingolia et al. 2009). As an RBP may perform any of those functions independent of their 

association with chromatin, it has been a great challenge to determine whether their 

chromatin-binding activities contribute to specific functional impacts.

ACTIONS AND MECHANISMS OF RBPs ON CHROMATIN

Below, we discuss specific RBPs that have been characterized to some mechanistic details to 

illustrate how RBPs may be coupled with regulatory RNAs to control gene expression via 

their actions on chromatin.

RBPs as Part of RNA Polymerase Complexes

Multiple RBPs are known to be either part of the Pol II holoenzyme or PIC that contains Pol 

II. In fact, the active center cleft of Pol II has been found to be able to bind B2 noncoding 

RNA transcribed from a repeat (SINE) element (Kettenberger et al. 2006), which can 

potently inhibit transcription initiation (Espinoza et al. 2004). One of the Pol II subunit 

POLR2G (aka RPB7) contains a putative RNA-binding domain, which can bind DNA and 

RNA with similar affinity (Meka et al. 2005). As part of Pol II, this subunit sits close to the 

RNA exit channel and may play a critical role in transcription elongation. Interestingly, this 

Pol II subunit forms a heterodimer with POLR2D (aka RPB4), which has been recognized to 
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modulate 3’-end formation of a subset of mRNAs in yeast, suggesting that it may play a 

critical role in polyadenylation-coupled transcription termination (Runner et al. 2008). By 

coIP, the RBP SFPQ has been reported to tightly associate with Pol II and modulate its 

phosphorylation in the Ser2 positions to influence transcription elongation (Takeuchi et al. 

2018). Collectively, these findings illustrate that the Pol II complex has the capacity to bind 

RNA, either through its own active site or an RNA-binding subunit or a tightly associated 

RBP, thus rendering the Pol II machinery a direct target for modulation by regulatory RNAs.

Promoters as Hotspots for RBP Actions

Initiation of transcription requires the accessibility of gene promoters to DNA-binding TFs, 

and a recent large-scale survey of RBPs reveals that gene promoters are also the most 

predominant hotspots for RBPs (Xiao et al. 2019). Although it is entirely conceivable that 

various downstream RNA processing events may begin via promoter-associated RBPs (see 

below), increasing evidence suggests that RBPs may have direct roles in facilitating 

chromatin accessibility to aid in transcription initiation. The formation of non-B DNA 

structure, such as Z-DNA, is known to contribute to the formation of nucleosome-free 

chromatin regions (Liu et al. 2006; Mulholland et al. 2012) to license transcription activation 

(Fig. 2A; Shin et al. 2016). Interestingly, ADAR1, a double-stranded RBP functioning in 

RNA editing (Nishikura 2010), appears to have the capacity to bind Z-DNA to enhance gene 

expression (Oh et al. 2002). Many gene promoters contain CpG islands. G-rich sequences 

have been suggested to form G-quadruplex (G4), and the RBP HNRNPA1 appears to help 

unfold such G4 DNA, thus altering the chromatin accessibility (Fig. 2B; Paramasivam et al. 

2009). Interestingly, the opposite C-rich strand has also been postulated to form a 

fourstranded DNA referred to as “i-motif,” a structure that a recent study suggests does form 

in the cell (Zeraati et al. 2018), and HNRNPLL and several other RBPs appear to bind and 

unfold this motif to activate transcription (Fig. 2B; Kang et al. 2014; Abou Assi et al. 2018). 

The exposed single-stranded DNA (ssDNA) region at promoters is a potential platform for 

RBPs to act on, especially by those RBPs containing a KHdomain or RRM motif that has 

been long recognized to also bind ssDNA (Fig. 2B; Maris et al. 2005; Valverde et al. 2008). 

These findings together suggest that RBPs may participate in the formation and resolution of 

various non-B DNA structures to modulate chromatin accessibility, thus modulating 

transcription.

Most gene promoters in mammalian genomes are now known to be regulated by 

transcription pausing and pause release in promoter-proximal regions (Core and Adelman 

2019). A large number of gene promoters contain CpG islands, which promote the formation 

of R-loop, a threestranded RNA/DNA structure in which nascent RNA anneals back to 

template DNA (Ginno et al. 2012). The ability of nascent RNA to invade into duplex DNA is 

greatly enhanced by the high propensity of nontemplate DNA to form G4-like structure, and, 

thus, R-loops are tightly associated with GC-skewed (G-rich sequence in nontemplate and 

C-rich sequence in template DNA) promoter regions (Chen et al. 2017b). R-loop formation 

is likely part of the mechanism for Pol II pausing (Chen et al. 2017b), which has been 

thought to repress gene expression and induce genome instability (Skourti-Stathaki and 

Proudfoot 2014). However, recent studies show that R-loop formation is also linked to gene 

activation, perhaps by facilitating the recruitment of chromatin remodeler, such as Tip60 
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(Fig. 2C; Chen et al. 2015), thereby enhancing TF binding (Boque-Sastre et al. 2015). 

Because RNA is a key participant in R-loop formation, various RBPs have been shown to 

modulate R-loop formation and/or resolution, which creates opportunities for RBPs to 

positively or negatively modulate transcription (Cristini et al. 2018; Wang et al. 2018). For 

example, the RNA helicases DDX21 and DDX5 have been suggested to help resolve R-loop 

to promote transcription (Fig. 2C; Argaud et al. 2019; Mersaoui et al. 2019). Pre-mRNA 

splicing and RNA export factors appear to help pull nascent RNAs out from R-loops to 

facilitate RNA processing and transport, thus preventing R-loop accumulation (Fig. 2C; 

Santos-Pereira and Aguilera 2015). Transient R-loop formation may also lead to sustainable 

changes in gene promoters by repulsing DNA methyltransferases DNMT1 (Grunseich et al. 

2018) and recruiting DNA demethylase TET1 (Arab et al. 2019), together converting them 

to the hypomethylated state for gene activation (Fig. 2C). On the other hand, a recent study 

(Alecki et al. 2019) suggests that Polycomb complex 2 (PRC2) can help RNA invade into 

DNA to enhance R-loop formation and that Polycomb complex 1 (PRC1) can bind R-loop, 

together facilitating H3K27me3 deposition to silence gene expression (Fig. 2C).

The release of paused Pol II is a major step in transcriptional control, which is regulated by 

the P-TEFb complex, consisting of cyclin T and CDK9 kinase, to phosphorylate NELF, 

DSIF, and Pol II Ser2 (Saunders et al. 2006). Interestingly, P-TEFb is part of an inhibitory 

complex containing the 7SK noncoding RNA, which is associated with gene promoters, and 

releasing and relocating P-TEFb from the 7SK complex to the Pol II complex has been 

recognized to play a key role in Pol II pause release (Fig. 2D; Core and Adelman 2019). An 

increasing number of RBPs have been shown to be involved in this process. The RBP 

HNRNPA1 appears to promote the disassociation of P-TEFb from 7SK complex, thus 

tripping the kinase in promoter-proximal regions (Barrandon et al. 2007; Van Herreweghe et 

al. 2007). SR proteins, which have been extensively characterized as splicing commitment 

factors, are also part of the 7SK complex, which help extract P-TEFb from the 7SK complex 

and relocate this critical Pol II CTD kinase to nascent RNA to activate transcription (Ji et al. 

2013). DDX21 has also been shown to release p-TEFb from the 7SK complex via its 

helicase activity (Calo et al. 2015), and more recently, another RBP WDR43 has been found 

to activate transcription by releasing P-TEFb from the 7SK complex (Bi et al. 2019). These 

findings suggest multiple mechanisms for releasing P-TEFb from the 7SK complex through 

coordinated actions of regulatory RNAs and RBPs. In fact, nascent RNA-induced P-TEFb 

release may also be part of the mechanism for eRNAs to activate transcription (Schröder et 

al. 2012; Chen et al. 2017a; Rahnamoun et al. 2018).

RBPs to Facilitate Heterochromatin Formation, Spreading, and Maintenance

Gene silencing results from the formation of heterochromatin, but, counterintuitively, both 

the formation and maintenance of heterochromatin appear to depend on ongoing 

transcription. Heterochromatin can be further classified into facultative or constitutive 

heterochromatin, which are respectively decorated with H3K27me3 and H3K9me2/3. 

Interestingly, both lncRNAs and small RNAs have been shown to play critical roles in 

establishing heterochromatin (Li and Fu 2019). Exemplary analysis of X inactivation has 

provided critical insights into facultative heterochromatin formation and spreading, which is 

mediated by the lncRNA Xist (Wutz 2011). Through RNA pull-down coupled with mass 
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spectrometric analysis, Xist has been shown to interact with multiple RBPs, particularly 

SPEN/SHARP, which appears to synergize with PRC2 in depositing H3K27me3 on targeted 

DNA regions (McHugh et al. 2015). Interestingly, all subunits of PRC2 have the capacity to 

directly bind RNA, thus contributing to both PRC2 recruitment and PRC2 spreading (Yan et 

al. 2019). PRC2 also interacts with nascent mRNAs; however, the functional consequence is 

still under active debate. The RBP RBFox2 has been shown to couple nascent RNA 

production with the recruitment of PRC2 as part of the feedback mechanism to maintain the 

bivalency for a subset of gene promoters (Wei et al. 2016), which are particularly prevalent 

in stem cells (Bernstein et al. 2006). The recently elucidated roles of Polycomb complexes in 

R-loop formation and recognition is consistent with RNA-guided H3K27me3 deposition in 

gene promoter regions (Alecki et al. 2019). On the other hand, when nascent RNAs are of 

sufficient abundance, they are able to evict PRC2 to prevent H3K27me3 deposition and thus 

help maintain genes in the highly active state (Kaneko et al. 2013; Beltran et al. 2016, 2019; 

Wang et al. 2017).

Repeat-derived small RNAs are well known to mediate the formation of constitutive 

heterochromatin (Matzke and Mosher 2014; Holoch and Moazed 2015; Johnson and Straight 

2017). Briefly, in fission yeast, repeat-derived transcripts from active retrotransposons are 

amplified by RNA-dependent RNA polymerase and processed by Dicer to generate endo-

siRNAs. In Drosophila germline cells, piRNAs are generated and amplified by the “ping-

pong” mechanism. These endo-siRNAs or piRNAs are loaded on RNA-induced 

transcriptional silencing complex to target nascent homologous transcripts on chromatin, 

which help recruit H3K9me2/3 methyltransferases (SUV39) to deposit the histone marks to 

establish constitutive heterochromatin. Importantly, this process involves numerous RNA-

mediated interactions, including direct interactions of the constitutive heterochromatin 

factors themselves with RNA to facilitate both the formation and spreading of 

heterochromatin (Muchardt et al. 2002; Johnson et al. 2017). It is thus conceivable that 

additional RBPs may be involved to fine-tune various steps, as illustrated by the role of the 

RBP Vigilin/HDLBP in binding hyperedited RNAs or other unstructured RNAs to enhance 

SUV39H1 recruitment (Zhou et al. 2008). Therefore, both RNAs and RBPs are instrumental 

to heterochromatin formation and maintenance, particularly in centromeric and 

pericentromeric regions, which is known to be critical for chromosome alignment during 

mitosis (Simon et al. 2015).

CONNECTING TRANSCRIPTION TO DOWNSTREAM RNA METABOLISM 

EVENTS

The primary purpose for RBPs to associate with chromatin has been thought to facilitate 

cotranscriptional processing events from RNA modification to intron removal to 

polyadenylation to RNA export (Proudfoot et al. 2002; Bentley 2014). Although 

cotranscriptional RNA processing has been well-documented, the mechanisms are still 

poorly understood. A popular idea is that specific RBPs or RNA processing machineries 

may ride with elongating Pol II to facilitate cotranscriptional RNA processing. The CTD of 

the largest Pol II subunit is thought to play a key role in this process by providing a docking 

platform for various RNA processing machineries. However, whereas depletion of CTD did 
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show profound impacts on capping, alternative splicing, and alternative polyadenylation 

(Fong and Bentley 2001), it remains to be determined whether the CTD is required for Pol II 

to interact with various RNA processing machineries. To our knowledge, this has only been 

documented with capping enzymes (McCracken et al. 1997).

Interestingly, promoters have been reported to dictate downstream events from splicing 

(Cramer et al. 1997; Moldón et al. 2008) to RNA stability (Bregman et al. 2011; Trcek et al. 

2011) to RNA export (Xiao et al. 2019), and even translation in the cytoplasm (Zid and 

O’Shea 2014). These promoter-dependent RNA metabolic steps have been convincingly 

shown by promoter swap in budding yeast genome, but such strategy has not been applied to 

mammals. It is conceivable that specific promoter-associated RBPs may be switched to 

nascent RNAs according to the so-called recruitment model (Naftelberg et al. 2015), but to 

date, specific RBPs critical for such promoter-dependent RNA processing events have not 

yet been identified. Alternatively, different promoters may equip the Pol II machinery with 

different factors to influence elongation speed, thereby creating different windows of 

opportunities for positive and negative regulators to recognize emerging RNA signals to 

facilitate specific RNA processing events (Bentley 2014; Fong et al. 2014). This has been 

referred to as the kinetic model (Naftelberg et al. 2015), but the mechanism for this attractive 

model has remained poorly understood, which requires the identification of specific RNA 

processing regulators that recognize specific nascent RNA elements in a Pol II elongation 

speed-dependent manner.

Another popular idea is for RBPs to interact with various modified histones, thereby 

coupling specific epigenetic features to the regulation of RNA processing. Indeed, many 

RBPs have been identified to associate with histone modification events (Ji et al. 2015), and 

some potential H3K36me3 readers have been reported to mediate alternative splicing (Luco 

et al. 2010; Guo et al. 2014). However, evidence has remained relatively thin to support 

modified histones as a widespread coupling mechanism between transcription and 

cotranscriptional RNA processing, and, therefore, the epigenetic control of cotranscriptional 

RNA processing still largely remains as an attractive hypothesis. Interestingly, the converse 

scenario has also been documented by which cotranscriptional splicing appears also to 

influence specific histone modification events, such as H3K4me3 in gene promoters 

(Bieberstein et al. 2012) and H3K36me3 in gene bodies (de Almeida et al. 2011; Kim et al. 

2011).

ORGANIZING 3D GENOME FOR REGULATED GENE EXPRESSION 

PROGRAMS

Chromatin-associated RBPs may play larger roles in 3D genome beyond their functions in 

modulating local transcriptional and cotranscriptional activities (Fig. 3), as regulatory RNAs 

have been increasingly recognized to provide multivalent interactions to coordinate 

chromosomal interactions (Li and Fu 2019). Chromosomes can be segregated into active A 

compartments and inactive B compartments (Lieberman-Aiden et al. 2009). Recent studies 

show that RNA-dependent oligomerization of the nuclear matrix–associated RBP HNRNPU 

plays key regulatory roles at the chromosome level (Nozawa et al. 2017; Fan et al. 2018). 
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Deletion of HNRNPU weakens the boundary between A and B compartments, leading to A-

to-B switches and overall chromosome condensation (Nozawa et al. 2017; Fan et al. 2018). 

HNRNPU appears to work with various chromatin-associated RNAs to help organize 3D 

genome, including some lncRNAs, such as FIRRE (Hacisuleyman et al. 2014), Xist 

(Hasegawa et al. 2010), and double-stranded viral RNAs (Cao et al. 2019). As 3D genome 

involves numerous long-range interactions, chromatin-associated RNAs and RBPs may 

bridge such interactions (Kim and Shendure 2019). CTCF, one of the best-known high-order 

chromatin organizers, is able to bind DNA and RNA (Sun et al. 2013; Saldaña-Meyer et al. 

2014), which has recently been shown to be mediated by distinct zinc fingers (Hansen et al. 

2019; Saldaña-Meyer et al. 2019). As zinc fingers are also involved in protein–protein 

interactions, CTCF appears to form oligomers through the same zinc finger for RNA 

binding, and disruption of this domain greatly impairs specific long-range genomic 

interactions (Hansen et al. 2019; Saldaña-Meyer et al. 2019), suggesting that CTCF may 

mediate critical RNA–protein–DNA interaction networks in 3D genome.

More recently, another zinc-finger-containing TF YY1 is recognized to also play a broad 

role in mediating long-distance genomic interactions between promoters and enhancers 

(Weintraub et al. 2017). Interestingly, YY1 is also able to bind RNA, which appears to be 

required for its efficient targeting to specific promoters and enhancers (Sigova et al. 2015). 

A recent large-scale cobinding analysis between TFs and RBPs on chromatin reveals that 

YY1 colocalizes with the RBP RBM25 on chromatin in which RBM25 appears to direct 

YY1 to target genomic loci (Xiao et al. 2019). Thus, unlike CTCF, which can bind both 

DNA and RNA, the genome organization function of YY1 is mediated through its 

partnership with a specific RBP. It is attempting to speculate that various TFs may 

functionally interact with specific RBPs to increase the specificity and/or efficiency in 

genomic targeting, which is in line with the emerging concept for the formation of 

transcription hubs that result from multivalent interactions to induce liquid–liquid phase 

transition for gene activation in the nucleus (Hnisz et al. 2017; Boija et al. 2018; Sabari et al. 

2018; Cramer 2019). RBPs may play critical roles in this process (Saha et al. 2016; 

Maharana et al. 2018), as RBPs are highly enriched with intrinsically disordered regions 

(Castello et al. 2012), which have been shown to be key driving forces for phase separation 

(Molliex et al. 2015; Lin et al. 2017). Therefore, 3D genome is likely orchestrated by 

network interactions among DNA, RNA, TFs, and RBPs to drive cell type–specific gene 

expression programs (Guo et al. 2019).

CONCLUSION

We have particularly focused in this review on diverse functions and mechanisms of 

chromatin-associated RBPs in regulated gene expression. An important message is that 

RNAs are no longer just products, but are also regulators of gene expression. Their 

regulatory functions are executed by specific RBPs, together contributing to network 

interactions in 3D genome. Such RNA and RBP-mediated interactions are critical for both 

gene activation and silencing, which calls for future research in this direction to understand 

how functional genome is organized and dynamically regulated by RNAs and RBPs in 

development and disease.
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Figure 1. 
Strategies to detect chromatin-associated RNA-binding proteins (RBPs). (A) Protein-centric 

approaches to explore whether a specific RBP directly acts on chromatin. (B) RNA-centric 

approaches to identify both RBPs and associated DNA regions. (C) Regioncentric 

approaches to profile associated RBPs.

Chen et al. Page 19

Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2020 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Mechanisms for RNA-binding proteins (RBPs) acting on promoters. (A) Mutual influence of 

Z-DNA formation and transcription, and regulation by the RNA editing enzyme ADAR1. 

(B) Recognition of G4, i-motif, or single-stranded DNA (ssDNA) by RBPs to regulate 

transcription. (C) The formation and resolution of R-loops, which can play positive roles in 

the recruitment of chromatin remodelers and DNA modification enzymes. (D) Multiple 

mechanisms for transcriptional pause release by relocating p-TEFb from 7SK complex to 

paused Pol II.
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Figure 3. 
RNAs and RNA-binding proteins (RBPs) in 3D genome organization. Depicted are RNA-

mediated dimerization (i.e., YY1), oligomerization (i.e., CTCF and HNRNPU), and 

genomic targeting (i.e., RBM25) for different TFs, together contributing to multivalent 

interactions to drive phase separation and formation of transcription hubs.
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