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ABSTRACT
A new reinforcement-learning approach is introduced to improve

the performance of the slotted ALOHA protocol. Nodes use known

periodic schedules as base policies with which they can collabora-

tively learn how to transmit periodically in different time slots to

limit packet collisions. The Adaptive Tree (AT) algorithm is intro-

duced for this purpose, which results in AT-ALOHA. It is shown

that nodes using AT-ALOHA quickly converge to transmission

schedules that are virtually collision-free, and that the through-

put of AT-ALOHA resembles that of TDMA, but without the need

to define transmission frames with a given number of time slots.

AT-ALOHA is shown to attain better throughput and fairness than

slotted ALOHA with exponential back offs and ALOHA-Q (framed

slotted ALOHA with Q learning).

CCS CONCEPTS
•Networks→Networkprotocol design; •Computingmethod-
ologies → Reinforcement learning.
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1 INTRODUCTION
The ALOHA protocol [1] was the first medium access control (MAC)

protocol for packet switching over wireless networks. Its inherent

simplicity makes ALOHA and its variants very attractive in var-

ious types of untethered networks today. Of particular interest

are underwater acoustic networks, satellite networks, space net-

works, wireless networks in which hidden-terminal interference is

prevalent, and IoT deployments consisting of very simple devices.

However, this simplicity comes at the price of performance, with a

maximum throughput of only 18% of the available bandwidth.

As a result, as Section 2 summarizes, many attempts have been

made to improve the performance of ALOHA by using time slots

and transmission frames consisting of a fixed number of time slots.

Machine learning has been used more recently in the selection of
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time slots by nodes with packets to send in a way that reduces

the likelihood of packet collisions and hence attains much higher

throughput.

The limitations of this prior work include: requiring network

nodes to agree on the number of slots per transmission frame a

priori (frame slotted ALOHA), requiring the use of transmission

frames and slow learning in quickly changing channel conditions.

This paper introduces a new reinforcement-learning approach

to improve the performance of slotted ALOHA without the need

for transmission frames. Nodes use known periodic schedules as

base policies used for reinforcement learning. Nodes carry out

collaboratively learning using the policies to determine how to

transmit periodically in a way that packet collisions are minimized.

The Adaptive Tree (AT) algorithm is introduced for this purpose,

which results in AT-ALOHA. The intuition behind the design of

AT-ALOHA is to requires nodes to learn how to take turns by

using simple policies. Node with a packet to send decided to either

transmit or wait according to their policy, and node adopts and

changes its transmission policy according to the AT algorithm

described in Section 3.

Section 4 compares the performance of AT-ALOHA against the

performance of the traditional approach used in framed slotted

ALOHA, which consists of having nodes that experience colli-

sions back off exponentially in order to reduce congestion, as well

ALOHA-Q [6, 7], which uses Q-learning in the context of framed

slotted ALOHA. The results of simulation experiments illustrate

the fact that AT-ALOHA attains very high throughput and fairness,

compared to ALOHA-Q or slotted ALOHA with exponential back-

offs. AT-ALOHA also learns much faster than ALOHA-Q on which

time slots to use to avoid collisions, without the need to define

transmission schedules consisting of a fixed number of time slots.

2 RELATEDWORK
Several variants of ALOHA have evolved over the years to allow

more efficient sharing of common channels in untethered networks.

Slotted ALOHA [20] forces transmissions to occur at the beginning

of time slots defined at the physical layer and reduces the time

during which transmissions are vulnerable to multiple-access inter-

ference (MAI) by half and hence doubles the maximum throughput

attainable with pure ALOHA. Framed slotted ALOHA [17], based

on slotted ALOHA, organizes the channel into transmission frames

consisting of a fixed number of time slots and lets each user select

which time slots to use for its transmissions. A few more schemes

based on framed slotted ALOHA consist of using repetition strate-

gies with which each node transmits the same packet multiple

times, and relying on physical-layer techniques (e.g., code division

multiple access and successive interference cancellation) to improve

throughput [14, 15, 18, 21].

https://doi.org/10.1145/3405671.3405817
https://doi.org/10.1145/3405671.3405817
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The ALOHA protocol and its time-slotted variants achieve band-

width sharing by transmitting greedily, and then adopting a backoff

policy in case of collisions. This, however, leads to poor channel

utilization. To address this limitation, a deeper level of coordination

is needed in which nodes adapt to each other’s behavior so that

most transmission slots can be utilized without collisions or only a

few.

Many shcedule-based MAC protocols have been proposed in the

past in which distributed algorithms are used assuming transmis-

sion frames consisting of a fixed number of time slots such that

nodes select time slots in a way that eliminates multiple-access in-

terference. The algorithms that have been proposed in this context

include distributed elections of time slots for broadcast or unicast

transmissions [2, 3, 16, 19], and the reservation of time slots based

on voting and signaling similar to collision avoidance handshakes

[23–25].

Some approaches allow the use of variable-length transmission

frames by using lexicographic ordering of the identifiers of trans-

mitting nodes, geographical or virtual coordinates related to the

connectivity of nodes [8, 9, 16], or a common tree of periodic sched-

ules of variable periods that are powers of two [13].

The disadvantage of all these approahes is the added signaling

complexity required to establsh internodal coordination in order to

attain TDMA scheudles in a distributed manner. An alternative to

achieving the desired coordination without complex signaling is

to apply reinforcement learning (RL). A well-known family of RL

methods is called the expert method and involves choosing which

of a small number of policies (experts) to follow [5, 10]. The ad-

vantage of expert-based learning lies in its relative simplicity, and

fast adaptation. This is the approach followed in the ALOHA-Q

protocol (framed slotted ALOHA with Q-learnjng) by Chu et al.

[6, 7].

In ALOHA-Q, the time-slots are grouped in frames of fixed length

𝑁 . Each node has𝑁 policies, where policy 𝑘 ∈ [1, . . . , 𝑁 ] prescribes
to transmit in the 𝑘-th time slot of a frame. The nodes continually

tune a quality value associated with each policy, and at every frame,

each node transmits according to its highest-quality policy. When

the number of active nodes approaches 𝑁 , the overall network

throughput after adaptation can approach 1. Unfortunately, when

the number of active nodes is below 𝑁 , some bandwidth goes

unused. Furthermore, when the number of active nodes exceeds

𝑁 , collisions are bound to occur, and ALOHA-Q reverts to backoff

strategies that ultimately degrade the performance to the 1/𝑒 limit

as the number of active nodes grows.

The limitations of ALOHA-Q stem from relying on a small, fixed

set of policies. To overcome this limitation, the use of deep reinforce-
ment learning (deep RL, in sort) has been recently proposed by Yu

el al. [26]. The difficulty in applying deep reinforcement learning

to network protocols is that the state-space can be very large. In a

network with 𝑛 nodes, the history of the past𝑚 transmission slots

gives rise to a state space of size at least 𝑛𝑚 ; large values of𝑚 are

needed to enable nodes to base their decisions on the transmission

schedules of other nodes. The limitations of deep RL approach in-

cludes lengthy adaptation time, the complexity and computational

requirements of each node, and the lack of guarantees. In [26], only

networks with at most two deep RL nodes have been demonstrated,

and even so, the adaptation time is to the order of 10,000 time slots.

AT-ALOHA is similar to ALOHA-Q in being rooted in expert-

based RL. Unlike ALOHA-Q, AT-ALOHA eliminates the use of the

fixed-length transmission frames that are assumed in all prior ap-

proaches aimed at improving slotted ALOHA. Rather, the “experts”

of AT-ALOHA consist in a tree of periodic schedules. The schedules

have periods that are powers of two: the root schedule transmits

always (period 1), and the two children of a schedule each transmit

with double period, and half of the transmissions, as the parent

schedule. By foregoing a fixed frame, and by being able to transmit

according tomultiple schedules simultaneously, AT-ALOHA ismore

flexible in the use of bandwidth than ALOHA-Q, and achieves high

network utilization under a wide range on network loads. Differ-

ently however from classical expert-based RL, and from ALOHA-Q,

AT-ALOHA does not associate a quantitative value to each schedule:

rather, it just remembers which schedules are good enough to be

played. This considerably reduces the memory requirements of the

protocol, and simplifies its implementation.

The schedule trees used in AT-ALOHA directly recall the conflict

resolution scheme of Capetanakis et al. [4]. However, while the

scheme of Capetanakis et al. aimed at resolving each conflict as it

arose, our tree schedule is used to let nodes learn tranmission poli-

cies that avoid conflicts to begin with. Similar schedule trees have

also been used in akllari et al. [13], where however the allocation

of schedules to nodes is performed via a central authority to which

the nodes need to send bandwidth requests.

3 AT-ALOHA
3.1 Overview
Adaptive Tree ALOHA (AT-ALOHA) is an approach that combines

the fast adaptation of ALOHA-Qwith the generality that stems from

using a very large set of policies. AT-ALOHA nodes share a time-

slotted transmission channel. Its operation is very much the same

as that of slotted ALOHA, except for the transmission strategy used

by a node with a packet to send during a given time slot. Policies in

AT-ALOHA consist of the union of simple periodic schedules. The

periodic schedules are chosen as base policies because a natural

way to achieve coordination is to take turns. The update mechanism

of AT-ALOHA policies is loosely based on regret learning, except

that rather than storing a quantitative measure of each policy’s

quality, the protocol just stores which schedules it is following at

any particular moment.

In AT-ALOHA a node has the choice of either transmitting or

waiting. We denote these two actions by 𝑇 and𝑊 , respectively. If

all nodes with packets to send wait, then the time slot is empty; if

exactly one node transmits, then the slot has a successful transmis-

sion; if more than one node transmits, then a collision occurs. We

denote these three outcomes by 𝐸, 𝑆 , and 𝐶 , respectively.

3.2 Schedules and Policies
We assume that every node has a clock 𝑡 that counts the number of

time slots. A (periodic) schedule (𝑖,𝑚) prescribes sending at all times

𝑡 such that 𝑡 mod 2
𝑚 = 𝑖; we let 𝑇 (𝑖,𝑚) = {𝑡 | 𝑡 mod 2

𝑚 = 𝑖} be
the set of transmission times of (𝑖,𝑚). Let 𝑆 = {(𝑖,𝑚) | 𝑚 > 0, 0 ≤
𝑖 < 2

𝑚} be the set of all such periodic schedules. The schedules in

𝑆 can be arranged in a tree, where the schedule (𝑖,𝑚) has (𝑖,𝑚 + 1)



AT-ALOHA NetAI’20, August 14, 2020, Virtual Event, NY, USA

and (𝑖 + 2
𝑚,𝑚 + 1) as children: a child schedule transmits in only

half the time slots as its parent.

Like [13], AT-ALOHA does not constrain nodes to transmit ac-

cording to a single schedule. Doing so would result in the bandwidth

of individual nodes assuming only values corresponding to the frac-

tional powers of 2: 1, 1/2, 1/4, 1/8, . . .. Rather, AT-ALOHA uses a

policy 𝜋 ⊆ 𝑆 consisting of a set of schedules; the transmit times of

𝜋 are the union of the transmit times of the individual schedules

in 𝜋 , or 𝑇 (𝜋) = ∪𝑠∈𝜋𝑇 (𝑠). Figure 1 depicts the schedule tree, along
with a policy consisting of two schedules.

(0, 0)

(0, 2) (2, 2) (1, 2) (3, 2)

(0, 1) (1, 1)

(2, 3) (6, 3)

Figure 1: A (partial) depiction of the schedule tree. The dark
nodes correspond to policy 𝜋 = {(1, 2), (6, 3)}.

AT-ALOHA policies are required to be in normal form:
• No descendants: if 𝑠, 𝑠 ′ ∈ 𝜋 , then 𝑠 ′ is not a descendant of 𝑠
in the policy tree.

• No siblings: for all𝑚 > 0, and 0 < 𝑖 < 2
𝑚
, it is never the case

that both (𝑖,𝑚 + 1) ∈ 𝜋 and (𝑖 + 2
𝑚,𝑚 + 1) ∈ 𝜋 .

The policy in Figure 1 is in normal form. Every policy can be put

in normal form without affecting its transmission times by first

eliminating descendant schedules, and then by merging all sibling

schedules (𝑖,𝑚 + 1) and (𝑖 + 2
𝑚,𝑚 + 1) into (𝑖,𝑚) (repeating the

merging until no siblings remain). The set of AT policies consists

of all finite sets of schedules that are in normal form; we denote it

by 𝑃 .

3.3 The AT Algorithm
Algorithm 1 specifies the AT algorithm. AT updates the time-slot

counter 𝑡 , the policy 𝜋 ∈ 𝑃 , and two probabilities 𝑝𝑏 and 𝑝𝑘 , known

as the barge-in and kindness probabilities, whose role we describe
in the following. The policy, time-slot counter, and probabilities

are local to each node; in particular, nodes do not need to agree

on the numbering of time slots, and simply start counting time

slots when joining the protocol. In fact, policy 𝜋 associated with a

time-slot counter 𝑡 is equivalent to a policy shift(𝜋,Δ) = {((𝑖 + Δ)
mod 2

𝑚,𝑚) | (𝑖,𝑚) ∈ 𝜋} associated with counter 𝑡 + Δ.
The algorithm can be in two states, active and inactive, depending

on whether the nodes has packets that need sending or not. A node

transmits at time 𝑡 if it is active and 𝑡 ∈ 𝑇 (𝜋). The node then

receives the channel state 𝑐{𝐸,𝐶, 𝑆}, and uses it to update 𝜋 , 𝑝𝑏 ,

and 𝑝𝑞 :

• If 𝑐 = 𝐶 , the schedule in 𝜋 that caused the collision is either

eliminated or replaced by one of its two children in the tree,

chosen at random, reducing its bandwidth by at least half.

This is implemented in the demote procedure.

• If 𝑐 = 𝑆 , with probability 𝑝𝑘 (the kindness probability) the

node demotes the policy responsible for a transmission, to

allow for the rotation of slot use among nodes.

• If 𝑐 = 𝐸, with probability 𝑝𝑏 the node adds a schedule to

the policy 𝜋 to make use of the free time slot. This is imple-

mented in the barge-in procedure.

After this update, the policy 𝜋 is pruned and brought back into

normal form via the normalize procedure, also described in detail

later.

Constants:
𝛼𝑘 = 0.98: kindness inertia;

𝛼𝑏 = 0.99: barge-in inertia;

𝑞𝑘 = 10
−2
: kindness probability lower bound;

𝑞𝑏 = 10
−3
: barge-in probability lower bound;

𝜅 = 0.05: target fraction of empty slots;

𝑒 : base of natural logarithm;

𝑀 = 10: maximum number of schedules in a policy;

Δ = 4: maximum schedule level difference;

Δnew = 2: schedule insertion delta;

State Variables:
active: True if the node is active; false otherwise;
𝑡 : time slot counter;

𝜋 : AT policy;

𝑝𝑏 , 𝑝𝑘 : burst-in and kindness probabilities;

Channel Variables:
𝑇 : transmit;𝑊 : wait;

𝑑 ∈ {𝑇,𝑊 }: decision;
𝑆 : successful time slot;

𝐸 : empty time slot;

𝐶 : time slot with collisions;

𝑐 ∈ {𝑆, 𝐸,𝐶 }: channel state;
Initialization:

𝑡 := 0; 𝑝𝑏 := 0.1; 𝑝𝑘 := 0.05;

𝜋 := choice{(0, 1), (1, 1) };
At every time slot:

𝑡 := 𝑡 + 1;

// Decision, and outcome

if 𝑡 ∈ 𝑇 (𝜋 ) and active then 𝑑 := 𝑇 else 𝑑 :=𝑊 ;

ℎ := channel outcome in {𝐸,𝐶, 𝑆 };
// Policy update

if 𝑑 = 𝑇 then
if ℎ = 𝑆 then

with probability 𝑝𝑘 :
𝜋 := demote(𝜋, 𝑡 )

if ℎ = 𝐶 then 𝜋 := demote(𝜋, 𝑡 ) ;
if 𝑑 =𝑊 and ℎ = 𝐸 then

with probability 𝑝𝑏 :
𝜋 = bargein(𝜋, 𝑡,Δnew)

𝜋 := normalize(𝜋,𝑀,Δ) ;
// Probability update

if ℎ = 𝐸 then 𝑝𝑘 := 𝑝𝑘 · 𝛼1/𝜅
𝑘

else 𝑝𝑘 := 𝑝𝑘/𝛼𝑘 ;

if ℎ = 𝐸 then 𝑝𝑏 := 𝑝𝑏/𝛼𝑏 ;

if ℎ = 𝐶 then 𝑝𝑏 := 𝑝𝑏 · 𝛼1/(𝑒−2)
𝑏

;

𝑝𝑘 := min(0.5,max(𝑞𝑘 , 𝑝𝑘 )) ; 𝑝𝑏 := min(0.5,max(𝑞𝑏 , 𝑝𝑏 ))

Algorithm 1: AT Algorithm.
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3.4 Policy Update
AT-ALOHA policies are updated via three operations: demote, barge-
in, and normalize.
demote(𝜋, 𝑡) (Figure 2). The procedure demote(𝜋, 𝑡) removes from

𝜋 the (unique) schedule (𝑖,𝑚) such that 𝑡 ∈ 𝑇 (𝑖,𝑚). Further, if
{( 𝑗, 𝑘) ∈ 𝜋 | 𝑘 ≤ 𝑚} = ∅, then the procedure adds to 𝜋 one of the

two children (𝑖,𝑚 + 1) or (𝑖 + 2
𝑚,𝑚 + 1) of the removed schedule,

chosen uniformly at random.

p = 0.5

p = 0.5

Demotion of non-top-level 
schedule

Demotion of top-level 
schedule

Figure 2: Effect of demoting the starred schedule in the pol-
icy, according to whether the demoted schedule is at top
level in the policy, or not.

bargein(𝜋, 𝑡,Δnew). The procedure bargein(𝜋, 𝑡,Δnew) adds to 𝜋 a

schedule (𝑖,𝑚) such that 𝑡 ∈ 𝑇 (𝑖,𝑚). Let 𝑏 =
∑

(𝑖,𝑘) ∈𝜋 2
−𝑘

be the

bandwidth of the node’s policy. We let

𝑚 =
⌈
log

2
(1/𝑝𝑏 ) + [log

2
(𝑏/𝑝𝑏 )]1−1 + Δnew

⌉
, (1)

and 𝑖 = 𝑡 mod 𝑚; the choice of𝑚 is justified in the following.

normalize(𝜋,𝑀,Δ): To normalize a policy 𝜋 , the following steps

are repeated until they can no longer be taken:

• Descendant elimination: If there are (𝑖,𝑚), ( 𝑗, 𝑘) ∈ 𝜋 with

𝑘 > 𝑚 and 𝑗 mod 2
𝑚 = 𝑖 , remove ( 𝑗, 𝑘) from 𝜋 .

• Siblings merging: If there are (𝑖,𝑚), ( 𝑗,𝑚) ∈ 𝜋 with 𝑗 = 𝑖 +
2
𝑚−1

, then replace both (𝑖,𝑚) and ( 𝑗,𝑚) in 𝜋 with (𝑖,𝑚 − 1).
Once 𝜋 is in normal form, we prune it in two steps, first limiting

the tree depth, then the number of selected schedule nodes in it.

These pruning operations, illustrated in Figure 3, are performed as

follows:

• Let 𝑘 = min{𝑚 | (𝑖,𝑚) ∈ 𝜋} be the minimum level of a

schedule in 𝜋 . AT prunes all schedules of level below 𝑘 + Δ,
letting 𝜋 := {(𝑖,𝑚) | (𝑖,𝑚) ∈ 𝜋 ∧𝑚 ≤ 𝑘 + Δ}.

• AT then prunes 𝜋 to ensure it contains at most𝑀 schedules.

If |𝜋 | ≤ 𝑀 , AT leaves 𝑝𝑖 unchanged. Otherwise, let 𝑛𝑘 =

|{(𝑖,𝑚) ∈ 𝜋 | 𝑚 ≤ 𝑘}|, and let 𝑘 be the largest integer

such that 𝑛𝑘 ≤ 𝑚. Then, AT removes from 𝜋 all schedules

(𝑖,𝑚) with𝑚 > 𝑘 + 1, and we randomly select𝑀 −𝑛𝑘 of the

schedules at level 𝑘 + 1, that is, of the form ( 𝑗, 𝑘 + 1) for some

𝑗 .

Pruning by max number of nodes = 2

Pruning by max depth = 3

p = 0.5

p = 0.5

Figure 3: Pruning a policy by limiting the depth (top), and
limiting the number of nodes (bottom).

3.5 Fairness, Kindness, and Barge-in
The kindness and barge-in probabilities 𝑝𝑘 and 𝑝𝑏 , together, ensure

that every active node receives a fair share of the total bandwidth.

The kindness probability ensures that a node has a non-zero proba-

bility of relinquishing any transmission slots it holds. Nodes that

transmit in more slots relinquish proportionately more bandwidth

than nodes using fewer slots, and every freed slot has the same

probability of being captured by any node. Together, this ensures

that the bandwidth tends to be uniformly distributed among the

nodes participating in the protocol. The probabilities 𝑝𝑘 and 𝑝𝑏 are

tuned dynamically as follows.

Tuning of Kindness Probability. The kindness probability 𝑝𝑘 is

tuned so that for each 𝑛 successful slots, we have 𝜅𝑛 of free slots;

we choose 𝜅 = 0.05 or 5%. Initially we arbitrarily set 𝑝𝑘 = 0.05.

Thereupon, nodes update 𝑝𝑘 according to the channel outcomes 𝐸,

𝑆 , 𝐶:

𝐸 : 𝑝𝑘 := 𝑝𝑘 · 𝛼1/𝜅
𝑘

𝑆,𝐶 : 𝑝𝑘 := 𝑝𝑘/𝛼𝑘
where 𝛼𝑘 = 0.98 is a coefficient determining the adaptation speed.

Thus, 𝛼𝑘 increases at each success slot, and decreases at each empty

slot. Equilibrium is reached when these updates balance, that is,

when there are 𝜅 empty slots for every successful one, so that

(𝛼1/𝜅
𝑘

)𝜅 = 𝛼𝑘 .

Tuning of Barge-in Probability. The barge-in probability is tuned

to optimize the probability that when a slot is empty, one node,

and only one node, will add a schedule to use the empty slot in the

future. The analysis follows the lines of the slotted ALOHA analysis

in [22]. If there are 𝑛 active nodes and each of them barges-in
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with probability 𝑞, then a time slot remains empty with probability

(1 − 𝑞)𝑛 , it is used successfully with probability 𝑛𝑞(1 − 𝑞)𝑛−1, and
collision happens with probability 1 − (1 − 𝑞)𝑛 − 𝑛𝑞(1 − 𝑞)𝑛−1.
The probability of successful transmission is maximized for 𝑞 =

1/𝑛 when 𝑛 nodes are active. Under this optimal choice of 𝑞, as

𝑛 → ∞, the probability of the slot remaining free tends to 1/𝑒 , and
the collision probability tends to 2/𝑒 , where 𝑒 is the basis of the

natural logarithm. The optimal ratio of free to collision slots is then

(1/𝑒)/(1 − 2/𝑒) = 1/(𝑒 − 2). Thus, the nodes tune 𝑝𝑏 so that the

ratio of free to collision slots is 1/(𝑒 − 2), updating 𝑝𝑏 according to

channel outcomes:

𝐸 : 𝑝𝑏 := 𝑝𝑏/𝛼𝑏 𝐶 : 𝑝𝑏 := 𝑝𝑏 · 𝛼1/(𝑒−2)
𝑏

.

For the adaptation coefficient, we take 𝛼𝑏 = 0.99.

We have seen that the barge-in probability 𝑝𝑏 provides an es-

timate 𝑛̃ = 1/𝑝𝑏 of the number of active nodes in the protocol.

After experimentation, we choose to insert new schedules at level

𝑚 = log
2
(𝑛̃) + Δnew with Δnew = 2.

4 PERFORMANCE EVALUATION
We compare AT-ALOHA with framed slotted ALOHA and ALOHA-

Q via simulations of a fully-connected single-channel time-slotted

wireless network. The three protocols are compared in terms of

their bandwidth utilization and fairness.

Network utilization. The network utilization is the fraction of

successful transmission slots; we measure this fraction by aggregat-

ing time slots in blocks of 100. Similarly, we measure the fraction of

empty and collision time slots in each block. Using 100-slots blocks

offers a compromise between measuring with fine time resolution,

and computing meaningful statistics on each block.

Fairness. We measure the fairness of the protocols via Jain’s
index [11, 12]. For a block in which 𝑛 nodes are active, let 𝑏𝑖 be the

number of successful transmission by node 𝑖 , for 𝑖 ≤ 𝑖 ≤ 𝑛. Jain’s

index is computed as

𝐽 =
(∑𝑛

𝑖=1 𝑏𝑖
)
2/
(
𝑛
∑𝑛
𝑖=1 𝑏

2

𝑖

)
.

We have 1/𝑛 ≤ 𝐽 ≤ 1; 𝐽 = 1 for a perfectly fair distribution of the

channel, and 𝐽 = 1/𝑛 if only one node gets to use the channel.

4.1 Comparison Protocols
We compare the performance of AT-ALOHA with that of two ver-

sions of exponential-backoff ALOHA, and with the performance of

the ALOHA-Q protocol proposed by Chu et al. [6, 7].

EB-ALOHA and EB-ALL-ALOHA. EB-ALOHA is the standard

slotted ALOHA with exponential-backoff. In EB-ALOHA, every

node, when becoming active, has an initial transmission probability

𝑝 = 1/2. Whenever the node transmits, it updates the transmission

probability, setting 𝑝 := 𝛼𝑝 in case of collision, and 𝑝 := min(1, 𝑝/𝛼)
in case of success, where 𝛼 is a constant that determines adaptation

speed; in our simulations we use 𝛼 = 0.9. The EB-ALL-ALOHA

protocol is similar to EB-ALOHA, except that nodes update their

transmission probabilities following all successful transmissions or

collisions, rather than only those in which they took part.

ALOHA-Q. ALOHA-Q is the Q-learning version of ALOHA pro-

posed in [6, 7]. The ALOHA-Q is based on a periodic frame of fixed

length 𝑛. Each node stores 𝑞-values 𝑞1, 𝑞2, . . . , 𝑞𝑛 , where 𝑞𝑖 repre-
sents the quality of the decision of transmitting in the 𝑖-th slot of

the frame. At every frame, the protocol transmits in a slot 𝑖 with

maximal 𝑞𝑖 ; if the transmission is successful, it increases 𝑞𝑖 ; if a

collision occurs, it decreases 𝑞𝑖 and it follows a randomized backoff

before retrying. The bandwidth utilization of ALOHA-Q increases

with the number𝑚 of active nodes, approaching𝑚/𝑛, as long as

𝑚 ≤ 𝑛; when 𝑚 ≫ 𝑛, the protocol behaves in a similar fashion

to EB-ALOHA. In our simulations, we consider frames of 𝑛 = 64

time slots; as our maximum value for𝑚 is 50, this ensures that the

protocol works close to optimality.

4.2 Results
Figure 4 compares the performance of AT-ALOHA, EB-ALOHA,

EB-ALL-ALOHA, and ALOHA-Q when the number of active nodes

is initially 10, then ramps up to 50, and finally ramps down to 30.

For AT-ALOHA, the throughput remains in the 85% to 90% range

in the steady-state periods when nodes neither join nor leave; dur-

ing the transients, the utilization is still above 75% when ramping

up, and above 60% when ramping down. The Jain fairness index of

AT-ALOHA is also close to 1.

The only protocol that is competitive with AT-ALOHA in terms

of utilization is EB-ALOHA. The problem is that EB-ALOHAachieves

its high network utilization via an extremely unfair allocation of

bandwidth, leading to a Jain index close to 0. In EB-ALOHA, nodes

that are successful in transmitting will increase their transmission

probability, while nodes whose transmissions are unsuccessful due

to collisions will reduce their transmission probability. This ampli-

fies any initial random difference in transmission success, leading

to a winner-takes-all situation in which one node uses most of the

bandwidth, transmitting with very high probability, while other

nodes are mostly silent.

The EB-ALL-ALOHA protocol manages to achieve the optimal

network utilization of 1/𝑒 ≈ 0.37 that is the maximum attainable

under symmetrical transmission probability (and thus fairness) for

ALOHA. Its fairness is uniformly very high, since all nodes transmit

with the same probability.

Finally, the bandwidth utilization of ALOHA-Q is dependent on

the number of active nodes, increasing as the number of active

nodes approaches the frame length of 64. Even when the number

of active nodes is 50, as around time block 150 of Figure 4, the

utilization is below 0.6. This is well below the theoretical maximum

of 50/64 ≈ 0.78, likely because the active nodes have not had

time to adapt to the network conditions. ALOHA-Q also allocates

bandwidth fairly, as each node can transmit at most once per frame.

5 CONCLUSIONS
We introduced a new collaborative learning algorithm, the Adaptive

Tree (AT) algorithm, to enable nodes sharing a common channel to

quickly approach collision-free transmissions while maintaining

fairness. In contrast to prior approaches that use machine learning

to improve the performance of slotted ALOHA, the resulting pro-

tocol, AT-ALOHA, only requires nodes to agree on the beginning

of time slots, and does not require the definition of transmission
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Figure 4: Protocol comparison when the number of active
nodes is fist 10, then ramps up to 50, and finally ramps down
to 30.

frames with a fixed number of time slots per frame or the number-

ing of time slots. Simulation experiments were used to illustrate

that AT-ALOHA attains better throughput and fairness than slotted

ALOHA with exponential backoffs and ALOHA-Q, which is framed

slotted ALOHA with Q learning.
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