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Triangulations from Repeated Bisection

Bernd Hamann and Benjamin W. Jordan

Abstract. We present a method for the iterative refinement of triangu-
lations. Given a coarse triangulation of the compact domain of a bivariate
function, we present a refinement strategy based on approximation error.
The triangulation is used to compute a best linear spline approximation,
using the term best approximation in an integral least squares sense. We
improve an approximation by identifying the triangle with largest error
and refine the triangulation by bisecting this triangle.

§1. Introduction

In the context of visualizing very large data sets, it is imperative to use hi-
erarchical data representations that allow us to study physical phenomena
at multiple levels of detail. General, robust, and efficient methodologies are
needed to support hierarchical data representation and visualization.

Triangulations are a natural choice when complicated regions in two — or
three — dimensions must be represented. We present a construction of hierar-
chies of triangulations, constructed as best linear spline approximations. The
basic idea is repreated bisection. The coefficients associated with each vertex
in a triangulation are computed in a best approximation sense. Whenever one
bisects a triangle one needs to compute new spline coefficients for all vertices.
One can perform the matrix inversions efficiently due to the fact that the ma-
trices are very sparse. This sparseness allows us to reduce matrix bandwidth
significantly. The main principles of our approach become evident from the
discussion of the univariate case.

Three main objectives have influenced the design of our construction.
The construction should be simple. The number of special cases to be con-
sidered should be small; a refinement step should cause minimal topological
change; and the computation of a best linear spline approximation should be
robust. The construction should be general, The approach should be appli-
cable to multivariate and multi-valued functions as well; and the approach
should handle arbitrary, complex-shaped domains. The construction should
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be efficient. The computation of the triangulation hierarchy should be rea-
sonably efficient. The single steps of our construction are:

1) Initial approximation. Define an initial, coarse triangulation of the
function’s domain and, for all vertices, compute the spline coefficients
defining the initial best linear spline approximation.

2) Error estimation. Compute appropriate global error and local error
(=triangle-specific error) estimates,

3) Bisection. ldentify the triangle with largest local error and bisect it
by splitting its longest edge into two segments — thereby also bisecting
all triangles sharing this edge.

4) Computation of new approximation. Based on the new vertex set
and new triangulation, compute a new best linear spline approximation.
Iterate steps 2), 3) and 4) until a termination condition is met.

Remark 1.1. We assume that the function to be approximated is known
analytically. Should this not be the case, one needs to first determine such a

function, possibly from a finite set of scattered data.

From the set of all best linear spline approximations of F' we select a
subset consisting of those that we can associate with a particular level in an
approximation hierarchy. What does the notion of “level” mean? Given an
error tolerance tuple B = (€n, ..., Em—1), €5 > €41, we call an approximation
a level-j approximation when its global error (see below) lies in the inter-
val (ej41,€5]. A spline approximation associated with level j is called the
representative of level j if its number of knots is minimal among all level-j
approximations.

§2. The Univariate Case

Our construction of best approximations requires a few, simple notions from
linear algebra and approximation theory. We use an interval-weighted scalar
product {f, g} for two functions f(z) and g(z), defined over [a, b],

b
(1) = = [ 1@ (o) da, (1
and an interval-weighted L? norm to measure a function f(z),
y b 1/2
Il = 072 = (m f {ffz}fdm) : (2)

We include the factor ;- to eliminate the influence of interval length when
computing interval-specific error estimates for the approximation process.



Triangulations from Repeated Bisection 231

This ensures “normalization” — we are using error per unit to determine which
segment to bisect next.

The best approximation of a function F, when approximating it by a
linear combination .7, e f; of independent functions fy, ..., fa_1, is defined
by the solution of the normal equations

(fo. fo} ---  (fa-1,J0) €a (F, fo)
=. : bl e SEE RS
{ fo. ..il‘:-;-llr5 ':fu—iufn—l} Cn-1 {F, fa—1}

see, [4]. We will also write this linear system as M1~ teln—1 = Fi"-1], For an
arbitrary set of basis functions f; one has to investigate means for the efficient
solution of this system.

We are concerned with the construction of a hierarchy of best linear spline
approximations to a function F by increasing the number of basis functions
- or, in other words, the number of knots. We increase the number of knots,
generally one-by-one, until a best approximation is obtained whose associated
error is smaller than some threshold.

In general, the computation of a best linear spline approximation to a
given function F is an optimization problem, which, when allowing variable
knots, is quite involved, see [2]. Our current approach does not permit vari-
able knots, it is based on repeated bisection using the midpoints of intervals.
This approach is computationally less expensive than the general optimization
problem. In each step, we simply determine the interval with largest error and
bisect it. Bisection implies the insertion of the midpoint as a new new knot.

We start by approximating a function F using a single linear segment by
computing Meltl = FIY, We assume that F is defined over [0, 1] and that
the basis functions f; are hat functions, i.e., fi(z;) = §;; (see Fig. 1). The
initial error is ElM = ||F — (eafo + c1f1)||, and if this value is larger than
the given threshold we insert an additional knot at = 3. (Inserting this
additional knot changes the knot sequence, and, consequently, one obtains
three new hat basis functions.) Thus, the next best approximation, using the
updated knot sequence, is obtained h; solving Ml = FI¥ and the new
error value is given by B = ||[F - 3°_ e fi||. Since our method is based on
repeated bisection, we compute segment-specific, local errors for the intervals
[0,2] and [4,1] which determine the segment to be bisected next.

Assuming that an intermediate approximation is based on the knot se-
quence 0 = g < 21 < %3 < ++- < Xp—3 < Tp—1 = 1 and that its coefficient
vector is (€o, ..., €k—1)T, we define the global error as

k=1

F—E eifi

=il

Eie-1] ‘

r (4)

and local (segment-specific) errors as

i Tit1 1/2
el = (——— - f[F—[Eifi‘l‘ﬂHllenﬂdI) p =0, k=2. (5)
Tiyl — Ty
i
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We compute the local error values for each segment and bisect the segment
with largest local error value. If there are multiple segments with the same
maximal error value, we randomly pick one of them to be bisected. (It is
of course possible to bisect all segments with the same maximal error at the
same time, thus leading to a unique answer.)

When using hat functions as basis functions, the only non-zero elements of
MU=11 for a particular row i, are the elements {fi_1, fi} = 8i-1/6, (fi, fi) =
[:ﬂ.-_l = ﬂi}f-l and {_f,'.H.. f.,]l' = ﬂ-.-iflﬁ.. where ﬂj = T4l — Ty TIZI.IJ.EI.,. M[—"—ll
is the tridiagonal matrix

280 Hig
" Lo 2{D0+ L) 4y
M[k—l] > = AN A+ Da)  Aa . (6)

Lg-g 2052
It is necessary, due to the global nature of the problem, to re-compute all

components of the coefficient vectors (e, 1, €2, .JT whenever one inserts a
knot.

Remark 2.1. A drawback, when inserting knots one-by-one, is the fact that
the method is not local, i.e., inserting a single knot leads to a new system of
normal equations. One can significantly enhance the efficiency of the method
by hisecting multiple intervals in one step, thereby refining an approximation
in different regions in one step.

§3. The Bivariate Case

We proceed similarly in the bivariate case. Given an initial best linear spline
approximation based on a small number of triangles, we compute the global
approximation error of the associated best linear spline approximation and,
should this error be too large, insert the midpoint of the longest edge of the
triangle with largest local error as a new knot. Bisection leads to the split of
one or two triangles — depending on whether the bisected edge is shared by a
second triangle or not.

Bisection terminates when a certain global error condition is satisfied. If
the triangle with largest local error has more than one edge with maximal
length, we bisect one of the edges, chosen randomly, with maximal length.
(Alternatively, one could split multiple edges simultaneously to guarantee
uniqueness.) If multiple triangles share the same maximal local error value,
we choose, randomly, one of these triangles to be bisected. (One could choose
to bisect larger triangles first ~ or vice versa — or choose to simultaneously
split all triangles sharing the same maximal local error value. )

The union of the triangles in the initial triangulation defines the region
to which we apply our refinement scheme to obtain improved approximations
of a bivariate function F(z,y). We assume that the boundary of F's domain
is approximated well enough by the coarse, initial triangulation.
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Some definitions are required for the bivariate setting. Denoting the
vertex (knot) set of an intermediate approximation by {v; = (zi p)T|E =
0,...,&k — 1} and the coefficient vector associated with the hat basis functions
filz,u) by (ca, ..., ck—1)T; the global error is

k=1
B = Hp—z e l (7)
i=l

and the triangle-specific, local error for triangle T is

1/2
-1 _ 1 o 2 o \ s
el = (m—_nf_'l} f{F spline_over_T%}) :I:rdy) s =0 uynr—1,
T,

i
(8)
where ny is the number of triangles.

Considering the m vertices in the initial triangulation, the initial best
linear spline approximation is defined by M{™~lglm=1] = Fim=11, The initial
error is Bl = ||F — £  eifi||. 1f BI™11 is larger than a prescribed tol-
erance, we insert the midpoint of the longest edge of the triangle with largest
local error as a new knot. We continue to insert knots until an approxima-
tion is good enough. In the bivariate setting the local errors are determined
by the difference between F'(z,y) and an intermediate best linear approxima-
tion over each triangle. Fig. 1 illustrates F, hat basis functions, and a best
approximation for the univariate and the bivariate cases.

Fig. 1. Basis functions f;, function F, and F's best approximation.

Considering & knots, the solution of the normal equations requires the
inversion of a matrix M ¥, where the number of non-zero entries per column
in this matrix is defined by the valences of the vertices in the triangulation.
A vertex v; with valence v; causes v; + 1 non-zero entries in column i. These
valence values are not limited, and it is possible to obtain large numbers of
non-zero elements in certain columns of M*~, Thus, the computation of the
coefficients in the bivariate case is much more expensive than in the univariate

CHaSE.
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Fig. 2. Platelets of v; and vy and associated hat basis functions.

Remark 3.1. Arbitrarily skinny triangles can result from repeated bisec-
tion. Therefore, one should incorporate a constraint into the algorithm that
prohibits the generation of triangles whose shapes are not acceptable.

The change-of-variables theorem allows us to effectively compute scalar
products of hat functions in the bivariate case. A hat function fi(z,y) asso-
ciated with vertex v, is the spline basis function whose function value is one
at v; and zero at all other vertices. The function f; varies linearly between
zero and one over the triangles defining v;'s platelet, see Fig. 2. (The platelet
of v, is the set of triangles sharing v; as a common vertex.)

Applying the change-of-variables theorem, the scalar product (f;, f;) is
given by

=1 mi=1
ot = Y, [nfiaw =5 Y 5 (9)
=0 7 j=0

where n; is the number of platelet triangles associated with vertex vy, T is
the j-th platelet triangle, and J; is the Jacobian of the j-th platelet triangle,

o - % ﬂ—%)
i-n B-w/)

Here, {zﬂ,ﬁ}T. {m{.y{]r, and {rﬁ,yﬁ]r are the coordinate vectors of T;'s
counterclockwise-oriented vertices. (The platelet of vy is the set of triangles
T = {Tj]-}";;i,] The scalar product (f;, fi) of two basis functions whose
associated vertices v; and vy are connected by an edge is

Jy = dﬂt( (10)

H,,i—l Fll,.i-—l.
Gt = 3 [fitedsdy = 5 3 & (11)
i={} T, i=0

(The set Tip = {T.-]-?;',;_i is the union of the triangles in v;’s and wy's
platelets. )
Remark 3.2. The matrices M¥-1 are sparse, i.e., relatively few matrix

entries are different from zero, and we utilize the Cuthil-McKee algorithm to
reduce the bandwidths of the matrices before inverting them, see [3]. A lower
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Fig. 3. F=10z(z— 3)(r - 3); 4, 6, 8, 14-, and 19-knot approximations.

bound for the bandwidth that one can achieve when applying a bandwidth-
reducing strategy is given by the vertex with maximal valence. One might
therefore consider imposing a threshold on maximal vertex valence. Efficiency
is a concern when performing bisection for a triangulation consisting of a large
number of vertices, since each bisection step requires the re-computation of
all coefficients. The Cuthill-McKee algorithm, a graph-based vertex indexing
scheme, allows one to efficiently insert a new vertex; since the insertion of a
vertex is a “local” graph operation one can also efficiently determine the new
vertex indices leading to a new small-bandwidth matrix.

t4. Examples

We have tested our approach for univariate and bivariate test functions, using
Romberg integration for the computation of the scalar products (F, f;} and
the errors, see [1]. We have inserted knots one-by-one.

Figs. 3 and 4 show a univariate and a bivariate example. The upper-left
corner image in both figures is an “exact” rendering of the original function.
Univariate functions are rendered as graphs (z, f {,-r]}r, where the squares in
Fig. 3 indicate the region [0,1] x [-1,1]. Bivariate functions are rendered
as graphs (r,y, f(z, yj}T using flat-shaded surface triangulations, where the
cubes in Fig. 4 indicate the region [0, 1] x [0,1] = [0,1]. (The initial triangula-
tion is defined by splitting the unit square into the two triangles obtained by
connecting (0,0)7 and (1, 1)7. Global approximation errors are based on equa-
tions (4) and (7). Using a vector notation, the global errors of the five approxi-
mations shown in Fig. 3 are given by (0.816, 0.241, 0.073, 0.022, 0.010), and the
errors for the three approximations shown in Fig. 4 are (0.062, 0.009, 0.001).

£5. Conclusions

We have presented a method for the refinement of best linear spline approxi-
mations for univariate and bivariate functions. The spline basis functions are
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Fig. 4. F = z? + yi: 4-, 11-, and 41-knot approximations.

defined over collections of triangles. The approach is sound, robust, general,
and fairly efficient. We are extending the scheme to trivariate functions in the
context of hierarchical volume visualization. We plan to improve the efficiency
of our approach and generalize it to allow more general knot placement. We
will extend the approach to multi-valued functions, in particular to vector

fields,
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