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different form from the ĤDQC1 in Eq. (4.14) . . . . . . . . . . . . . 49

Figure 4.8: Combination of spin echo and the DQC1 model. . . . . . . . . . . 51
Figure 4.9: Quantum circuit for a single estimation of the hyperfine interaction

strength A in the NV center. The nuclear spin is initially in a par-
tially polarized sate ρ̂n
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ABSTRACT OF THE DISSERTATION

State Preparation and Metrology of Nitrogen Nuclear Spin in Diamond

by

Kilhyun Bang

Doctor of Philosophy in Physics

University of California, San Diego, 2012

Professor Lu Jeu Sham, Chair

A negatively-charged nitrogen-vacancy (NV) center in diamond is a promising

system for quantum computation and quantum information. It has the diamond structure

with a substitutional nitrogen atom and a neighboring vacancy. An electron spin in the

NV center has an exceptionally long coherence time at room temperature. Thus the NV

center has a potential to realize a room-temperature quantum computer which is more

efficient than a classical computer.

In this dissertation, we focus on the nitrogen nuclear spin as well as the electron

spin in the NV center. Every NV center has the nitrogen nuclear spin. Because of the

long coherence time of the nitrogen nuclear spin, it is a good candidate for a quantum

memory. Thus it is important to prepare the nitrogen nuclear spin qubit in a given pure

state for quantum computation. We provide a theoretical understanding of the popular
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nuclear spin initialization technique. Furthermore, we propose an optimal condition for

the initialization of the nitrogen nuclear spin by including the local strain in the NV

center. We expect that this optimal condition can improve the purity of the nuclear spin

initialization.

We also propose an efficient quantum measurement protocol for the hyperfine

interaction between the electron spin and the 15N nuclear spin in the NV center. A pre-

cise knowledge of the hyperfine interaction is important to reduce an error in a coherent

control of the 15N nuclear spin. In this protocol, a sequence of quantum operations with

successively increasing duration is utilized to estimate the hyperfine interaction with

successively higher precision approaching the quantum metrology limit. Unlike com-

mon quantum metrological methods, this protocol does not need the preparation of the

nuclear spin in a pure state. In the presence of realistic operation errors and electron spin

decoherence, we show the overall precision of our protocol still surpasses the standard

quantum limit.
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Chapter 1

Introduction

Quantum computation is a field of study based on quantum mechanics. Quantum

computation utilizes quantum mechanical properties such as superposition and entangle-

ment to accomplish a given task more efficient than classical computers. For example,

a quantum computer can estimate a physical parameter more precisely than classical

computers with spending the same amount of resources.

The realization of a quantum computer begins from building the smallest unit

of quantum computation (quantum bit or qubit) and manipulating it individually. Like

a classical bit, which is the unit of classical computation, a qubit consists of two dif-

ferent states. Thus, in principle, any system with two distinguishable quantum states

can become a qubit. So far, the construction and coherent control of qubits have been

demonstrated in different physical systems including trapped ions [11], superconductors

[10], semiconductor quantum dots [53], and diamond defects [39].

The information in a qubit is expected to be protected against errors during

quantum operations. However, qubits in solid-state systems interact with environments,

which diminishes or erases the information. This deleterious effect due to the interac-

tions with environments is called decoherence. As a result, most of solid-state qubits

such as electron and nuclear spins require low temperatures to surpress decoherence

and perform quantum operations. This is one of the main challenges in implementing

quantum computers in a real life.

An electron spin of the negatively charged nitrogen-vacancy (NV) center in di-

amond, however, has a long coherence time (> 350 µs) at room temperature. This long

1
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coherence time enables to achieve a coherent control of the electron spin at room tem-

perature since its coherent control in the NV center takes several nanoseconds [39, 67].

Moreover, the NV center has more than one qubit it a unit cell. In addition to the electron

spin, it has an intrinsic nitrogen nuclear spin and it can have up to three carbon-13 (13C)

nuclear spins. These nuclear spins can also be utilized as qubits. In particular, they can

be entangled with the electron spin or to each other at room temperature [22, 51, 50].

Because of these properties of the NV center, the NV center has been a prominent candi-

date for several applications such as quantum communication [9] and magnetic sensing

[46, 63].

Other than the room-temperature controllability of the spins in the NV center,

the NV center is a good source of a single photon [40]. This photon can be used as a

messenger to transfer information from one NV center to other centers. Recently, the

entanglement between the electron spin in the NV center and the emitted photon has

been created at low temperature [64]. While a room-temperature entanglement has not

been achieved yet, the NV center has a potential to bring a scalable quantum computer

to a real life [60].

In this dissertation, we focus on the electron spin and the nitrogen nuclear spin

in a single NV center. Nuclear spins are promising applicants for a quantum memory

because of their long coherence time. The 13C nuclear spin is easier to access directly

by a microwave because of its relatively strong coupling to the electron spin and to the

external fields. However, the 13C nuclear spin is also strongly coupled to the environ-

ments, which results in its short coherence time as a quantum memory. Also increasing

the concentration of 13C in diamond produces a stronger decoherence effect to the elec-

tron spin since the 13C nuclear spins in the environment interact with the electron spin in

the center. Moreover, the initialization of the 13C nuclear spin is probabilistic rather than

deterministic [51]. On the other hand, every NV center has the nitrogen nuclear spin.

The nitrogen spin can be initialized deterministically in a given state [38]. Because of its

weak coupling to the environments, it is an ideal candidate for a quantum memory. The

direct control of the nitrogen nuclear spin with a radio frequency is possible [65], but

the indirect methods in manipulating and detecting the nitrogen nuclear spin have been

also introduced by means of the hyperfine interaction with the electron spin to increase
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the speed of computation [25, 49].

In particular, we are interested in the initialization of the nitrogen nuclear spin.

As pointed out by DiVincenzo, the ability to initialize the qubit in a given pure state

is one of the most important criteria for the implementation of quantum computation

[17]. However, it is very difficult to prepare a spin qubit in a pure state. The impurity

of the prepared qubit may cause an error of quantum computers. Therefore, it is crucial

to prepare a qubit as pure as possible. The nitrogen nuclear spin in the NV center can

be deterministically initialized by optical pumping with 98% of success rate [38], but

the current theoretical understanding of the initialization mechanism is not complete.

Moreover, the current experiments with the nitrogen nuclear spins do not consider the

effect of the local strain in initializing the nitrogen nuclear spins. In chapter 3, we first

numerically solve the dynamics of the initialization process, then suggest that a better

initialization is possible by considering the local strain of the NV center into account.

The other topic in this dissertation is an application of the NV center to quantum

metrology. Quantum metrology seeks a quantum measurement method which is more

efficient than classical measurement. A efficient method means more precise than clas-

sical methods with the same amount of resources. The resources include the number

of particles in the measurements, the number of repeated measurements, or time spent

during the measurements. Most quantum measurement methods require the qubits in a

pure state and the entanglement between them to surpass the classical limit. However,

because of the difficulty in initializing qubits and in creating a large-scale entanglement,

a quantum measurement protocol with mixed-state qubits is also desired.

In chapter 4, we propose an efficient mixed-state quantum measurement proto-

col which estimates the hyperfine interaction between the electron spin and 15N nuclear

spin. In addition to the reasons why mixed-state quantum metrology is necessary as

discussed above, the precise estimation of the hyperfine interaction is also important for

the coherent control of the 15N nuclear spin. Since the coupling between the 15N nu-

clear spin and the external field is weak, its coherent control requires a relatively long

duration of the pulse. Thus the detuning (energy mismatch) of the pulse may cause an

error in the control of the nuclear spin qubit. By estimating the hyperfine interaction

precisely, the accuracy of the control and the fidelity of the qubit can be improved. Our
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protocol has several advantages over common quantum estimation methods. First, the

protocol does not need a preparation of the nitrogen nuclear spin, which removes the

difficulty of its initialization. Even if we have an impure qubit at the beginning, our

protocol can estimate the hyperfine interaction more precise than the classical limit by

the benefit of quantum mechanics. Next, the protocol does not need an entanglement,

which is a common source in quantum metrology. The model utilizes the time τ of a

sequence of quantum operations as well as the number N of repeated sequences to in-

crease the precision of the estimation. While in the classical limit the standard deviation

of the estimation is proportional to 1/
√

N, the quantum operations in time τ enables the

standard deviation to decrease faster as 1/τ instead of the equivalent classical limit of

1/
√
τ. Thus, total estimation result is more precise than the classical limit. Finally, by

taking a basic operation error and decoherence into account, we prove that the proposed

protocol is feasible at room temperature.



Chapter 2

Electron spin qubit in diamond and its

control

2.1 Qubit

The bit is the smallest unit of classical computation. It has either 0 or 1 as its

value. In quantum computation, the smallest unit is the quantum bit or qubit. A qubit

has two quantum mechanical states |0〉 and |1〉, which correspond to 0 and 1 of a bit.

The difference between bits and qubits is that a qubit can be in both |0〉 and |1〉 states at

the same time. One example of such a state is

|+〉 =
1
√

2
(|0〉 + |1〉) .

This is a pure quantum state which is different from |0〉 and |1〉. It is a linear combination

of |0〉 and |1〉. A linear combination is one of the most important property of a qubit.

Most quantum algorithms require a linear combination of a single qubit or multiple

qubits to outperform classical algorithms [52].

A general state of a qubit is written as

|ψ〉 = α |0〉 + β |1〉 , (2.1)

where α, β ∈ C and |α|2 + |β|2 = 1. Eq. (2.1) is also expressed as

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 (2.2)

5
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0
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φ

Figure 2.1: Bloch sphere representation of a qubit.

where θ, φ ∈ R. Thus |ψ〉 can be represented by a radial vector pointing on the unit

sphere. This sphere is called the Bloch sphere (Fig. 2.1). The Bloch sphere is useful to

understand quantum operations on a qubit.

2.2 Nitrogen-vacancy center in diamond: Overview

The electron spin of a negatively charged nitrogen-vacancy (NV) center in dia-

mond has fascinating properties as a qubit. The NV center consists of a substitutional

nitrogen impurity and a neighboring vacancy with an excess electron in diamond struc-

ture (Fig. 2.2). The electron spin has well-separated energy levels under an external

magnetic field. It is initialized in a given pure state by optical pumping [36]. It can be

coherently controlled by a microwave [39]. Its state can be detected optically [35, 40].

Moreover, the electron spin in the NV center has an exceptionally long coherence time

T e
2 ≥ 350 µs at room temperature [3, 29]. This long coherence time makes the initial-
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a
b

c

d

Figure 2.2: A negatively charged nitrogen-vacancy center in diamond.

ization, control, and readout of the electron spin possible at room temperature.

In addition to the electron spin, the NV center can have up to four nuclear spins

in a unit cell: one nitrogen nuclear spin (either 14N or 15N) and up to three carbon nuclear

spins (13C). These nuclear spins are coupled to the electron spin by the hyperfine inter-

action and show distinguishable energy levels. Thus a coherent control of the nuclear

spins are possible at room temperature directly or indirectly [8, 22, 25]. Furthermore,

the entanglement between the electron spin and the carbon nuclear spins can be created

in the NV center [51].

2.3 Electronic structure of NV center

The electronic structure of the NV center has been intensively studied with group

theory and with first-principle calculation [18, 19, 30, 43, 44, 45]. In this section, we

follow the reference [44, 45] and briefly explain the electronic structure of the NV center
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up to orbital level.

The NV center has six electrons and four sp3 orbitals (a, b, c, and d in Fig. 2.2).

These four orbitals are not orthonormal, but they can be normalized by considering the

symmetry of the NV center. For convenience, we take the symmetry axis of the NV

center as ẑ-axis. From a three-fold rotational symmetry (C3v) of the NV center with

respect to the ẑ-axis, two basis orbitals with C3v symmetry can be constructed by

v = (a + b + c)/
√

3 + 6S ,

u = (d − λv)/
√

1 − λ2,

where S = 〈a|b〉 and λ = 〈d|v〉 are overlap integrals. Other two basis orbitals, which are

orthonormal to u and v,

eX = (2c − a − b)
√

6 − 6S ,

eY = (a − b)
√

2 − 2S ,

have a directional property. u is mostly localized on the nitrogen and thus has the lowest

energy. The energy of v is lower than eX and eY since v has a higher symmetry.

2.3.1 Ground state

The ground-state electron spin configuration is u2v2eXeY , depicted in Fig 2.3. We

consider only the lone-pair electrons to build the wave functions for the NV center. It is

u

v

e
Y

e
X

u

v

e
Y

e
X

ground state excited state

Figure 2.3: Electron spin configuration of the ground state and the lowest excited state
in the NV center.
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known from experiments and first-principle calculation that the ground state of the NV

center is spin triplet. Thus the orbital state of the ground state is given by∣∣∣ΦA2

〉
=

1
√

2
|eXeY − eYeX〉 .

The subscript A2 denotes that ΦA2 transforms as A2 symmetry (+1 under the C3v rotation

and -1 under the reflection σ). The total wave functions for the ground state can be

obtained by a product of the orbital wave function and the spin triplet states,

|Ψ+〉 =
∣∣∣ΦA2

〉
⊗ |↑↑〉 ,

|Ψ0〉 =
∣∣∣ΦA2

〉
⊗

1
√

2
(|↑↓〉 + |↓↑〉) ,

|Ψ−〉 =
∣∣∣ΦA2

〉
⊗ |↓↓〉 .

The spin-orbit coupling

Ĥso =
1

2m2
ec2

∑
j

[
~∇V̂e(~r j) × ~p j

]
· ~s j

and the spin-spin coupling

Ĥss =
1
2
µ0g2

eµ
2
B

4π~2

∑
i, j

[
~si · ~s j

|ri j|
3 −

3(~si · ~ri)(~s j · ~r j)
|ri j|

5

]
give the perturbation to the NV center and lift degeneracy. Reference [44] has shown

that the diagonal matrix elements of Ĥso vanish in the ground state . On the other hand,

Ĥss brings the energy splitting to the ground state

DGS = 〈Ψ±| Ĥss |Ψ±〉 − 〈Ψ0| Ĥss |Ψ0〉 .

Therefore, along with the Zeeman interaction, the ground-state Hamiltonian of the elec-

tron spin is effectively written as

Ĥe
GS = DGSŜ z + geµB~B · ~S . (2.3)

Under the external magnetic field along the ẑ-axis, the energy levels of |ms〉 are well-

separated. Thus, two of three states can be chosen as a qubit.
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There is also a spin singlet state in the u2v2eXeY configuration. From group

theory, the total wave functions of the singlet state are written as∣∣∣ΨA1

〉
=

1
√

2
|eXeX + eYeY〉 ⊗

1
√

2
(|↑↓〉 − |↓↑〉) ,∣∣∣ΨEX

〉
=

1
√

2
|eXeY + eYeX〉 ⊗

1
√

2
(|↑↓〉 − |↓↑〉) ,∣∣∣ΨEY

〉
=

1
√

2
|eXeX − eYeY〉 ⊗

1
√

2
(|↑↓〉 − |↓↑〉) .

These levels are located between the ground state and the optical excited state. The

singlet states are not used as a qubit, but they have an important role in the initialization

of the electron spin. Several studies have discussed the energy levels and properties of

the singlet states [2, 16, 43, 45, 56].

2.3.2 Excited state

The electron configuration of the lowest excited state is u2ve2
XeY or u2veXe2

Y

(Fig. 2.3). Since the excited state is also known as a spin triplet, the orbital wave function

of the excited state can be written as∣∣∣Φ′X〉 =
1
√

2
|veX − eXv〉 ,∣∣∣Φ′Y〉 =

1
√

2
|veY − eYv〉 .

The corresponding total wave functions are∣∣∣Ψ′X(Y)+

〉
=

∣∣∣Φ′X(Y)

〉
⊗ |↑↑〉 ,∣∣∣Ψ′X(Y)0

〉
=

∣∣∣Φ′X(Y)

〉
⊗

1
√

2
(|↑↓〉 + |↓↑〉) ,∣∣∣Ψ′X(Y)−

〉
=

∣∣∣Φ′X(Y)

〉
⊗ |↓↓〉 .

The symmetrized eigenstates can be obtained by taking a linear combination of the

above primitive wave functions.

In the excited state, the spin-orbit coupling Ĥso gives nonzero energy shifts in the

first order perturbation [5, 44]. At room temperature, however, the spin-orbit splitting is

quenched by time averaging of the two orbital branches [19, 58]. Since we are interested
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in the room-temperature properties and applications of the NV center, we do not include

the spin-orbit coupling in our studies.

The resemblance between the ground-state wave functions and the excited-state

wave functions implies that the spins-spin interaction Ĥss lifts degeneracy of the excited

state and produces a zero-field splitting

DES =
〈
ΨX(Y)±

∣∣∣ Ĥss

∣∣∣ΨX(Y)±
〉
−

〈
ΨX(Y)0

∣∣∣ Ĥss

∣∣∣ΨX(Y)0
〉
.

Hence the excited-state Hamiltonian of the electron spin under the external magnetic

field is given by

Ĥe
ES = DESŜ z + geµB~B · ~S . (2.4)

Under the magnetic field ~B = Bẑ, |ms〉 is an eigenstate of Ĥe
ES with an orbital doublet,

and their energies are well-separated. Thus two of these states can be selected as the

excited-state electron qubit.

2.4 Initialization of the electron spin qubit

Fig. 2.4 illustrates the electronic structure of the NV center discussed in the

previous section. The excited state is located 1.945 eV (637 nm) higher than the ground

state [40]. As mentioned above, the electron spin of the NV center in the ground state

and the optically excited state has a spin triplet (S = 1). The excited state is also

an orbital doublet, but this doublet is averaged at room temperature [58]. Thus the

electron spin in both the ground state and the excited state can be described with the

basis {|ms = 0〉 , |ms = ±1〉} under the external magnetic field aligned along the ẑ-axis

[19, 26, 58].

The most popular technique for the initialization of the electron spin in the NV

center is optical pumping. The 532 nm laser pumps the electron spin to the phonon-

sideband of the excited state, and the electron spin quickly sits onto the excited state [8].

The electron spin ms is conserved during optical pumping.

The electron spin in the excited state experiences two different decay process.

First, the electron spin in both |ms = 0〉ES and |ms = ±1〉ES optically decays to the ground

state with emitting a photon, and the electron spin is conserved during the decay. At the
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Figure 2.4: Electronic structure of the NV center under an external magnetic field ~B =

Bẑ. Both the ground state and the excited state have S = 1. While optical transitions are
spin conserving, the decay from |ms = ±1〉ES to |ms = 0〉GS via |s〉 is nonradiative.

same time, the electron spin in |ms = ±1〉ES experiences the nonradiative intersystem de-

cay to the singlet state |s〉, and the electron spin in the singlet state relaxes to the ground

state |ms = 0〉GS. Since the intersystem decay is a spin-selective process, the unpolarized

electron spin is initialized in |ms = 0〉GS with several cycles of optical pumping and the

intersystem decay. The timescale of the initialization process is a few microseconds [8].

2.5 Coherent control of the electron spin

The coherent control of the qubit is an essential technique in quantum computa-

tion. For the NV center, the electron spin can be coherently controlled by a classical mi-

crowave. To illustrate the coherent control of the electron spin, we take |0〉 ≡ |ms = 0〉GS

and |1〉 ≡ |ms = −1〉GS as the qubit states. We assume that the external magnetic field
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~B = Bẑ is strong enough to move the |ms = +1〉GS state away from the other states.

The interaction between the electron spin and the classical microwave with the

frequency ω is, after rotating wave approximation [47], written as

V̂(t) =
iΩ
2

(
e−iωt |1〉 〈0| − eiωt |0〉 〈1|

)
. (2.5)

Here Ω denotes the coupling strength between the electron spin and the microwave,

which is called the Rabi frequency. The Hamiltonian of the electron spin within the

{|0〉 , |1〉} subspace is given by

Ĥ0 = −
ω0

2
|0〉 〈0| +

ω0

2
|1〉 〈1| , (2.6)

where ω0 = DGS − geµBB is the energy difference between |0〉 and |1〉. The total Hamil-

tonian of the system is then Ĥ = Ĥ0 + V̂(t).

The state of the qubit |ψ〉 is governed by the Schrödinger equation (~ = 1)

i
d
dt
|ψ(t)〉 =

(
Ĥ0 + V̂(t)

)
|ψ(t)〉 . (2.7)

The qubit in an arbitrary state can be written as

|ψ(t)〉 = α(t) |0〉 + β(t) |1〉 .

With α̃(t) = α(t)e−iωt and β̃(t) = β(t)eiωt, the Schrödinger equation becomes

i
d
dt

α̃(t)

β̃(t)

 =
1
2

 δ −iΩ

iΩ −δ


α̃(t)

β̃(t)

 = V̂I

α̃(t)

β̃(t)

 (2.8)

with the basis {|0〉 , |1〉}, where δ = ω − ω0 is the detuning of the microwave.

If the frequency of the microwave is resonant with the energy splitting of the

qubit (i.e. δ = 0), the solution of Eq. (2.8) isα̃(t)

β̃(t)

 =

cos θ
2 − sin θ

2

sin θ
2 cos θ

2


α̃(t0)

β̃(t0)

 , (2.9)

where θ = Ω(t − t0). This is simply a rotation of the qubit along the y-axis on the Bloch

sphere (Fig. 2.5). The rotation angle can be controlled by the duration t − t0 of the

microwave. For example, if |ψ(t0)〉 = |0〉, we have |ψ(t)〉 = |1〉 by choosing t such that

t − t0 = π/Ω. The resonant microwave pulse with the duration of t0 + π/Ω is called a
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Figure 2.5: Coherent control of a qubit on the Bloch sphere for δ = 0 and δ , 0
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Figure 2.6: Probability |β(t)|2 for the qubit to be found in |1〉. In the calculation, β(0) = 0
and Ω = 1 GHz.
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π-pulse. In this way, the qubit can be coherently controlled from one state to another

state. For the NV center, it takes a few nanoseconds to rotate the qubit from |0〉 to |1〉

with Ω = 1 GHz as depicted in Fig. 2.6.

The analytic solution of Eq. (2.8) is also available for δ , 0. The interaction V̂I

is decomposed as

V̂I =
1

N2

 iΩ −δ −ΩR

δ + ΩR −iΩ


−ΩR 0

0 ΩR


 −iΩ δ + ΩR

−δ −ΩR iΩ

 . (2.10)

where ΩR =
√

Ω2 + δ2 and N =
√

2ΩR(ΩR + δ). Since V̂I is time independent, the

solution of Eq. (2.8) is given byα̃(t)

β̃(t)

 = exp
(
−iV̂I

t − t0

2

) α̃(t0)

β̃(t0)

 . (2.11)

Using Eq. (2.10), the solution becomesα̃(t)

β̃(t)

 =

cos
(

ΩR(t−t0)
2

)
− i δ

ΩR
sin

(
ΩR(t−t0)

2

)
− Ω

ΩR
sin

(
ΩR(t−t0)

2

)
Ω
ΩR

sin
(

ΩR(t−t0)
2

)
cos

(
ΩR(t−t0)

2

)
+ i δ

ΩR
sin

(
ΩR(t−t0)

2

)
α̃(t0)

β̃(t0)


=

cos
(
θ
2

)
− inz sin

(
θ
2

)
−ny sin

(
θ
2

)
ny sin

(
θ
2

)
cos

(
θ
2

)
+ inz sin

(
θ
2

)
α̃(t0)

β̃(t0)

 (2.12)

The geometrical meaning of Eq. (2.12) is a rotation of the qubit along a rotational axis

n̂ = nyŷ + nzẑ with an angle θ on the Bloch sphere (Fig. 2.5) [59]. The detuning δ causes

a deviation of the rotational axis from ŷ to n̂ and changes the rotational frequency to

ΩR. As a result, a complete electron spin-flip |0〉 ↔ |1〉 cannot be achieved with an off-

resonant microwave (Fig. 2.6). It is important to tune the pulse at the resonant frequency

to reduce an error in a coherent rotation.

2.6 Readout of the electron spin state

At room temperature, a readout of the electron spin in the NV center can be

achieved by measuring a fluorescence signal from the NV center. First, the 532 nm laser

is used to pump the electron spin to the excited state (Fig. 2.7). Then the electron spin

emits a photon when it decays optically, while it does not when it experiences the in-

tersystem decay through the singlet state. The laser is applied for several microseconds



16

duration

532 nm laser

microwave

initialization measurement

Figure 2.7: Pulse sequence for the initialization, operation, and measurement of the
electron spin qubit in the NV center.

to make the electron spin cycle, and a photon detector counts the number of photons

during this procedure. The fluorescence signal F (or the number of photons) is propor-

tional to the population of |ms = 0〉 in the ground state. Therefore, if the fluorescence

signal is measured as a function of the duration of the resonant microwave pulse, the

result becomes a sinusoidal function like the δ = 0 graph in Fig. 2.6. By renormalizing

the fluorescence signal as max(F) → 0 and min(F) → 1, it is possible to estimate the

average value of the population in |ms = 0〉.

The fluorescence measurement is not a single-shot readout of the qubit state −

it provides the average value of the population. A single-shot readout of the electron

spin state at room temperature has not been accomplished yet. However, a single-shot

readout of the electron spin has been done at low temperature with the resonant 637 nm

laser [7, 57]. A room-temperature single-shot readout of the electron spin state in the

NV center is a challenging problem.



Chapter 3

Optical Initialization of Nitrogen

Nuclear Spins in Nitrogen-Vacancy

Center

The nitrogen nuclear spin of the nitrogen-vacancy center in the diamond is a

good candidate for quantum memory because of its long lifetime at room temperature

(∼ 1 s) [49]. However, it is hard to directly access due to its weak coupling to the

external fields. For this reason, techniques of indirect control and readout of the nitrogen

nuclear spin through its hyperfine interaction with the NV center electron spin have been

developed recently [25, 49]. The first step in this development is dynamic nuclear spin

polarization, in which the nitrogen nuclear spin is prepared into a given Zeeman sublevel

in an external magnetic field. This has been achieved by optical pumping of the electron

spin at the level anticrossing point of the orbital excited state [26, 38, 61, 62]. In a

typical NV center, the local strain is unavoidable. It leads to additional electron energy

level splitting and has a strong influence on the optical pumping and hence dynamic

polarization of the nitrogen nuclear spin. However, this issue remains unexplored so far.

In this chapter, we provide a theory (based on the Lindblad equation of motion

of the electron-nuclear spin system) for the dynamic polarization of the 15N nuclear spin

in the NV center. Our theory shows that in the presence of local strain, the maximal

degree of 15N polarization is achieved away from the electron spin level anticrossing

point, in contrast to previous understanding. We further show that the same conclusion

17
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is true for the dynamic polarization of the 14N nuclear spin in the NV center.

3.1 Initialization mechanism of 15N nuclear spin

The initialization mechanism of the electron spin is explained in chapter 2. We

use |0〉 ≡ |ms = 0〉 and |±1〉 ≡ |ms = ±1〉 as a basis of the electron spin qubit. In this

section, we explain the physics of the optical pumping induced dynamic polarization of

the electron spin and the 15N nuclear spin as outlined in Ref. [38].

The 15N nuclear spin-1/2 (with two Zeeman sublevels |↑〉 and |↓〉 in the exter-

nal magnetic field) is coupled to the electron spin through the hyperfine interaction

and provides an additional energy splitting to |±1〉GS and |±1〉ES. The hyperfine in-

teraction strength AES = 61 MHz in the excited state (ES) is much stronger than that

(AGS = 3.0 MHz) in the ground state (GS) [26]. This feature is the key for the dynamic

polarization of the 15N nuclear spin [38]. The external magnetic field shifts |+1〉ES away

from other two ESs, so that the spin-flip transition |+1, ↓〉ES ↔ |0, ↑〉ES induced by the

hyperfine interaction is negligible compared to the transition |0, ↓〉ES ↔ |−1, ↑〉ES. Thus,

in this section, we focus on the {|0〉ES , |−1〉ES} subspace to explain the dynamic polar-

ization of the 15N nuclear spin.

Under an external magnetic field along the N-V axis (defined as the z axis), the

ES Hamiltonian of the NV center is given by

ĤES = Ĥ0 + Ĥ⊥ (3.1)

H0 = DESŜ 2
z + geµBBŜ z + AESŜ z Îz

Ĥ⊥ = A′ES
Ŝ + Î− + Ŝ − Î+

2

where DES = 1.43 GHz is the zero-field splitting, ge = 2.01 is the electron g-factor [26],

and A′ES = 41 MHz is the transverse hyperfine interaction strength [31], which differs

from the longitudinal hyperfine interaction strength AES = 61 MHz. In the absence

of Ĥ⊥, the energy difference between |0, ↓〉ES and |−1, ↑〉ES is δ0(B) ≡ DES − geµBB −

AES/2. They cross each other at the critical magnetic field BLAC ≈ 500 G determined by

δ0(BLAC) = 0. Within the subspace {|0〉ES , |−1〉ES}, the presence of Ĥ⊥ mixes |0, ↓〉ES and
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Figure 3.2: 15N nuclear spin polarization mechanism near the level anticrossing B ≈
500 G under optical pumping. Only relevant states to the mechanism are depicted.
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|−1, ↑〉ES into two eigenstates

|+〉ES = α |0, ↓〉ES + β |−1, ↑〉ES ,

|−〉ES = −β |0, ↓〉ES + α |−1, ↑〉ES ,

with eigenenergies

λ± =
δ0 ±

√
δ2

0 + 2A′2ES

2
,

respectively, where α and β are given by

α =
A′ES/

√
2√

λ2
+ + A′2ES/2

,

β =
λ+√

λ2
+ + A′2ES/2

.

Correspondingly, the level crossing at BLAC becomes a level anti-crossing. Far from

the anti-crossing point (|δ0(B)| � A′ES), the mixing is negligible |+〉ES ≈ |−1, ↑〉ES and

|−〉ES ≈ |0, ↓〉ES. Near the anti-crossing point (|δ0(B)| � A′ES), the |0, ↓〉ES and |−1, ↑〉ES

states are equally mixed into the new eigenstates |±〉ES ≈ (± |0, ↓〉ES + |−1, ↑〉ES)/
√

2.

At this point, the optical pumping excites the electron spin from |0, ↓〉GS to |0, ↓〉ES =

(|+〉ES − |−〉ES)/
√

2, followed by the Rabi oscillation between |0, ↓〉ES and |−1, ↑〉ES in-

duced by the hyperfine interaction Ĥ⊥. During the Rabi oscillation, the electron spin

may go from |−1, ↑〉ES to |0, ↑〉GS through the intersystem crossing process (Fig. 3.2).

Thus optical pumping transfers the population from |0, ↓〉GS to |0, ↑〉GS. Similarly, op-

tical pumping also transfers the population from |±1〉GS into |0〉GS. Therefore, optical

pumping of the electron spin can polarize both the electron spin and the 15N nuclear

spin at the same time. The complete picture of dynamic polarization of both the elec-

tron spin and the 15N nuclear spin is illustrated in Fig. 3.3.

The dynamic polarization of the 15N nuclear spin is sensitive to the magnetic field

alignment [38]. If the magnetic field alignment deviates from the N-V axis by θ, near the

excite-state level anticrossing, all the four states are mixed. Even for a small angle θ (e.g.

θ = 1◦), the strength geµBB sin θ ∼ 24 MHz of the mixing Hamiltonian by the magnetic

field misalignment would be comparable to A′ES. This mixing Hamiltonian induces the

precession |0, ↑〉ES ↔ |−1, ↑〉ES which, together with the optical pumping |0, ↑〉GS →
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Figure 3.3: Polarization mechanism of the electron spin and the 15N nuclear spin in the
NV center. Black arrows represent the polarization of the electron spin by the intersys-
tem crossing decay. Red arrows denote the precession between |0, ↓〉 and |−1, ↑〉 in the
excited state due to the hyperfine interaction. The spins are polarized in |0, ↑〉 near the
level anticrossing.

|0, ↑〉ES, transfers the population back from |0, ↑〉GS to |−1, ↑〉ES. This process competes

with the the dynamic nuclear polarization process |−1, ↑〉ES → |s, ↑〉 → |0, ↑〉GS and

hence partially depolarizes the 15N nuclear spin.

In reference [38], Jacques et. al. measured the polarization of the 15N nuclear

spin after optical pumping of duration of several µs and found finite polarization over a

broad range of the external magnetic field strength. They attribute the experimental data

to the steady-state nuclear spin polarization determined by the competition between the

dynamic nuclear spin polarization and the nuclear spin depolarization. To fit the data,

they use a nuclear spin depolarization time ∼ 10 µs that is two orders of magnitude

shorter than the reported value (longer than 1 ms under optical pumping [49]). A solu-

tion to this discrepancy is desirable.

3.2 Numerical calculation: Lindblad equations

In this section, we provide the numerical result for the nuclear spin polarization

by optical pumping. We use the Lindblad equation (~ = 1)

dρ̂
dt

= −i[Ĥ, ρ̂] +
∑

jk

Γ jk

L̂ jkρL̂†jk −
ρL̂†jkL̂ jk + L̂†jkL̂ jkρ

2

 , (3.2)
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where L̂ jk ≡ | j〉 〈k| is the transition operator from |k〉 to | j〉 with the transition rate Γ jk.

Recent studies provide the decay rates of the electron spin in the NV center at room

temperature: the optical decay rate γ0 = 0.0563 ns−1 from the ES to the GS, the in-

tersystem crossing decay rate γ1 = 0.0555 ns−1 from |±1〉ES to the intermediate singlet

state |s〉, and the decay rate γs = 0.0046 ns−1 from the singlet state to |0〉GS [2, 28]. (See

Fig. 3.6.) The dephasing rate of the ES is γ∗2 = 0.092 ns−1 [28]. We use W = 10γ0 as the

optical pumping rate. The coherent dynamics within the GS and the ES is governed by

the corresponding Hamiltonian

ĤGS = DGSŜ 2
z + geµBBŜ z + AGS~S · ~I, (3.3)

and ĤES in Eq. (3.1), respectively. Here DGS = 2.87 GHz is a zero-field splitting of the

GS. The electron g-factor of the GS is the same as the ES (ge = 2.01) [26]. We assume
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Figure 3.4: Polarization of the 15N nuclear spin in the NV center after optical pumping
as a function of the magnitude of the magnetic field with different durations of pumping
time. The circles with the error bars denote the experimental data in [38] with permis-
sion. The pumping rate is W = 10γ0.
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that the initial state of the electron and the nuclear spins is unpolarized. After a finite

duration of pumping, 2 µs of waiting time is included in the calculation to ensure that

the electron spin is relaxed to the GS. We define the polarization of the 15N nuclear spin

as

P ≡
p′
|0,↑〉GS

− p′
|0,↓〉GS

p′
|0,↑〉GS

+ p′
|0,↓〉GS

, (3.4)

where p′j is a population of j-state at 2 µs after pumping. This definition is in accordance

with the definition of the polarization in [38].

Fig. 3.4 depicts the polarization of the 15N nuclear spin after optical pumping as a

function of the magnetic field strength with various pumping times. The polarization of

the nuclear spin is saturated within a few µs near the level anticrossing B ≈ 500 G, while

it takes longer time for the nuclear spin to reach the steady state away from the level

anti-crossing point. We find that using the 2 µs pumping time as used in the experiment

[38] gives the best fit to the experimental data. Therefore, the experimental observation

in Ref. [38] may be the transient nuclear spin polarization after a finite pumping time
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Figure 3.5: Polarization of the 15N nuclear spin as a function of the magnetic field
alignment angle with its magnitude B = 472 G. The circles with the error bars denote
the experimental data in [38] with permission. The pumping rate is W = 10γ0.
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instead of the steady-state nuclear spin polarization. This provides a possible solution

to the discrepancy between the nuclear spin depolarization time ∼ 10 µs as used in

the theoretical fitting [38] and the reported nuclear spin depolarization time & 1 ms

[49]. With a longer pumping time, a significant amount of polarization can be achieved

even if the magnetic field is far away from the anticrossing point where the transition

probability between |0, ↓〉ES and |−1, ↑〉ES is small.

The validity of the Lindblad equations approach is further confirmed by the mag-

netic field angle dependence of the 15N nuclear spin polarization, which has not been

calculated before. The calculation result of the Lindblad equations with 2 µs pumping

time at B = 472 G well describes the experimental result in [38] (Fig.3.5).

3.3 Rate equations

The optical pumping used in polarizing the 15N nuclear spin is incoherent. The

initial state of the electron and the nuclear spin is also an incoherent mixture with no off-

diagonal elements. Thus the rate equations approach can capture the essential physics

in the Lindblad equations. In this approach, the Rabi oscillations between |−1, ↑〉ES and

|0, ↓〉ES due to the hyperfine interaction is treated as spin-flip transitions with rates Γ±

(Fig. 3.6). The rate equations are given by

ṗ|+1,↑〉ES = −(γ0 + γ1)p|+1,↑〉ES + W p|+1,↑〉GS

ṗ|+1,↓〉ES = −(γ0 + γ1 + Γ+)p|+1,↓〉ES + Γ+ p|0,↑〉ES + W p|+1,↓〉GS

ṗ|0,↑〉ES = Γ+ p|+1,↓〉ES − (γ0 + Γ+)p|0,↑〉ES + W p|0,↑〉GS

ṗ|0,↓〉ES = −(γ0 + Γ−)p|0,↓〉ES + Γ−p|−1,↑〉ES + W p|0,↓〉GS

ṗ|−1,↑〉ES = Γ−p|0,↓〉ES − (γ0 + γ1 + Γ−)p|−1,↑〉ES + W p|−1,↑〉GS

ṗ|−1,↓〉ES = −(γ0 + γ1)p|−1,↓〉ES + W p|−1,↓〉GS

ṗ|+1,↑〉GS = γ0 p|+1,↑〉ES −W p|+1,↑〉GS

ṗ|+1,↓〉GS = γ0 p|+1,↓〉ES −W p|+1,↓〉GS
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Figure 3.6: A level diagram for the electronic ground state and excited state of 15NV
center in diamond. The solid arrows are the nuclear spin conserving transitions, and
the dashed arrows are the nuclear spin-flip transitions through the hyperfine interaction.
W is an spin-conserving incoherent optical pumping rate from the ground state to the
excited state.
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ṗ|0,↑〉GS = γ0 p|0,↑〉ES −W p|0,↑〉GS + γs p|s,↑〉

ṗ|0,↓〉GS = γ0 p|0,↓〉ES −W p|0,↓〉GS + γs p|s,↓〉

ṗ|−1,↑〉GS = γ0 p|−1,↑〉ES −W p|−1,↑〉GS

ṗ|−1,↓〉GS = γ0 p|−1,↓〉ES −W p|−1,↓〉GS

ṗ|s,↑〉 = γ1(p|+1,↑〉ES + p|−1,↑〉ES) − γs p|s,↑〉

ṗ|s,↓〉 = γ1(p|+1,↓〉ES + p|−1,↓〉ES) − γs p|s,↓〉,

where the spin-flip transition rates

Γ± =
A′2ESγ2

γ2
2 + (Des ± geµBB − AES/2)2

(3.5)

are obtained from the Fermi’s golden rule. γ2 is the electron spin dephasing rate in the

ES and it is given by γ2 = (γ0 +2γ1)/2+γ∗2 = 0.17 ns−1. We use W = 10γ0 as the optical

pumping rate. The hyperfine interaction in the GS is not included in the rate equations.

We first compare the numerical solution to the rate equations with that to the

Lindblad equations. The initial electron-nuclear spin state is unpolarized, and 2 µs wait-

ing time is included after optical pumping. Figure 3.7 depicts the nuclear spin polariza-

tion as a function of the magnetic field strength. The near complete coincidence of the

rate equation result with the result of the Lindblad equations implies that the rate equa-

tion approach is sufficient to understand the dynamics of the nuclear spin polarization

under optical pumping.

From the structure of the rate equations, we see that the nuclear spin polariza-

tion mechanism can be understood as a competition between Γ+ and Γ−. All the other

transitions are nuclear spin-conserving. This is why a large amount of nuclear spin po-

larization is achieved not only near the anticrossing where Γ− has a Lorentzian peak but

also far away from the anticrossing where Γ− � Γ+ (e.g. B ≈ 800 G). The time needed

for the steady state to be established is determined by the slowest transition in the mech-

anism. Near the anticrossing, γs is the slowest transition and the characteristic time of

the mechanism is ∼ 1/γs = 0.22 µs. Thus 2 µs pumping time is enough to saturate the

nuclear spin polarization. However, Γ− becomes the slowest transition when the mag-

netic field is far from the anticrossing. At B = 800 G, for example, the corresponding

characteristic time of the mechanism is ∼ 1/Γ− ≈ 1 µs and longer than 2 µs of pumping
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Figure 3.7: Comparison between the solutions of the Lindblad equations and the so-
lutions of the rate equations with 2 µs of pumping time and at the steady state. The
pumping rate is W = 10γ0.

is necessary to establish the steady state.

An analytic expression for the 15N nuclear spin polarization at the steady state

is available from the rate equations. The population of each state does not change any

more at the steady state, i.e., ṗ j = 0 for all states. Once the pumping is turned off,

the electron spin in the ES decays to the GS. In particular, the electron spin in |±1〉ES

experiences either the spin-conserving optical decay or the intersystem crossing decay

through the single state with a 50% probability since γ0 ≈ γ1. Thus the final population

of |0, ↑ (↓)〉GS can be written as

p′|0,↑(↓)〉GS
= p|0,↑(↓)〉ES + p|0,↑(↓)〉GS + p|s,↑(↓)〉 +

p|+1,↑(↓)〉ES

2
+

p|−1,↑(↓)〉ES

2
. (3.6)

We take p|+1,↑〉ES = p|−1,↓〉ES = 0 because these states do not participate in the polarization

mechanism and their population rapidly goes to zero by the intersystem crossing decay

under optical pumping. In addition, it is easy to show from the rate equations that

p|+1,↓〉ES = p|−1,↑〉ES and p|s,↑〉 = p|s,↓〉 at the steady state. Then the steady-state nuclear spin
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polarization in Eq. (3.4) is given by

P =
1 − R+/R−

1 + R+/R− + R+C
, (3.7)

where R± ≡ Γ±/(Γ± + γ1) are normalized spin flip transition rates and C ≡ (1 + 2γ1/γ2 +

2γ1/W)/(1 + γ0/W) is a constant defined by the relaxation rates of the electron spin

and the pumping rate. From Eq. (3.7), it is confirmed that the steady-state nuclear spin

polarization is a result of the competition between R+ and R− (equivalent to Γ+ and Γ−).

Moreover, from the expression of C, we expect that a larger steady-state polarization

may be achieved when the pumping rate W is weaker. This point will be discussed in

the next section.

3.4 Effect of strain to 15N nuclear spin polarization

The electron spin in the ES is affected by a local strain due to the orbital doublet

of the ES. In the presence of the local strain at room temperature, the ES Hamiltonian

in Eq. (3.1) becomes

ĤES = DESŜ 2
z + geµB~Ḃ~S + AESŜ z Îz + A′ES

Ŝ + Î− + Ŝ − Î+

2
+ EES(Ŝ 2

x − Ŝ 2
y) (3.8)

= Ĥ0 + Ĥ⊥ + Ĥstr,

where EES is the magnitude of anisotropy induced by the transverse strain [5, 26]. The

typical value of EES is ∼ 50 − 100 MHz [26]. From the Lindblad equations with ĤES in

Eq. (3.8), we can calculate the 15N nuclear spin polarization at the steady state under the

local transverse strain (black solid line in Fig. 3.8). We can see that the polarization has

a dip near the ES level anticrossing. Therefore, maximal 15N nuclear spin polarization

is achieved slightly away from the level anti-crossing point.

We use the rate equations approach to understand the dip near the level anti-

crossing in the presence of the local transverse strain. It is clear from Ŝ 2
x − Ŝ 2

y =

|+1〉 〈−1| + |−1〉 〈+1| that the transverse strain causes the mixing between |+1〉ES and

|1〉ES. Near the excite-state level anticrossing, we are allowed to treat the strain as a
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Figure 3.8: Polarization of the 15N nuclear spin after 2 µs of pumping and at the steady
state. The circles with the error bars denote the experimental data in [38] with permis-
sion. The pumping rate is W = 10γ0.

perturbation to H0 because EES � 2DES [26]. Then the eigenstates of Ĥ0 + Ĥstr are

˜|+1, ↑〉ES =
(
1 − η2

↑/2
)
|+1, ↑〉ES + η↑ |−1, ↑〉ES

˜|−1, ↑〉ES = −η↑ |+1, ↑〉ES +
(
1 − η2

↑/2
)
|−1, ↑〉ES

˜|+1, ↓〉ES =
(
1 − η2

↓/2
)
|+1, ↓〉ES + η↓ |−1, ↓〉ES

˜|−1, ↓〉ES = −η↓ |+1, ↓〉ES +
(
1 − η2

↓/2
)
|−1, ↓〉ES

with the eigenvalues

ε+1,↑ = DES + geµBB + AES/2 + η↑EES

ε−1,↑ = DES − geµBB − AES/2 − η↑EES

ε+1,↓ = DES + geµBB − AES/2 + η↓EES

ε−1,↓ = DES − geµBB + AES/2 − η↓EES,
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strain 
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|+1, ↓〉ES

|0, ↓〉ES |0, ↓〉ES

Figure 3.9: Origin of the dip in the 15N nuclear spin polarization graph. In the presence
of the local strain, the transition |0, ↓〉ES ↔

˜|−1, ↓〉ES is active and Γ+ has a Lorentzian
peak near the level anticrossing.

where η↑(↓) ≡ EES/(2geµBB ± AES) is the strength of the perturbation.

Now we consider how the hyperfine interaction induced spin-flip transition rates

Γ± change under the local strain. Note that both ˜|+1, ↓〉ES and ˜|−1, ↓〉ES contain |+1, ↓〉ES.

This implies the transition |0, ↑〉ES ↔
˜|−1, ↓〉ES is also allowed in addition to the transi-

tion |0, ↑〉ES ↔
˜|+1, ↓〉ES (Fig. 3.9). Then Γ+ can be written as

Γ+ =
(
1 − η2

↓

) A′2ESγ2

γ2
2 + ε2

+1,↓

+ η2
↓

A′2ESγ2

γ2
2 + ε2

−1,↓

. (3.9)
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Figure 3.10: Optimal magnetic field magnitude which produces the maximum steady-
state nuclear spin polarization as a function of the local strain.
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Γ+ has a Lorentzian peak at B′LAC ≈ 520 G because ˜|−1, ↓〉ES forms another anticrossing

with |0, ↑〉ES at B′LAC. As a result, Γ+ may not be negligible near B′LAC in the presence of

the strain while it is negligible in the absence of the strain. Γ− is also modified by the

strain to

Γ− = η2
↑

A′2ESγ2

γ2
2 + ε2

+1,↑

+
(
1 − η2

↑

) A′2ESγ2

γ2
2 + ε2

−1,↑

. (3.10)

Fig. 3.8 (red dashed line) depicts the steady-state nuclear spin polarization obtained by

plugging Γ± into Eq. (3.7). The agreement of the rate equation results with the results

from the Lindblad equation proves that the transition |0, ↑〉ES ↔
˜|+1, ↓〉ES is indeed the

origin of the dip near the level anticrossing.

The optimal point to achieve the largest polarization may be computable by tak-

ing the derivative of Eq. (3.7) with respect to B, but it is a tedious process. Instead

we provide a numerical result for the optimal choice of magnetic field magnitude as

a function of the transverse strain in Fig. 3.10. For a typical value of the local strain

EES ∼ 50 − 100 MHz, the maximum polarization is achieved at B ∼ 470 − 480 G both
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Figure 3.11: Polarization of the 15N nuclear spin polarization at B = 470 G as a function
of the duration of optical pumping. The polarization is calculated from the Lindblad
equations with EES = 70 MHz.
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with a weak pumping rate (W = 0.1γ0) and with a strong pumping rate (W = 10γ0).

As mentioned in Sec. 3.3, a larger steady-state polarization can be obtained when

the pumping rate W is weaker. We calculate the dynamics of the nuclear spin polar-

ization at B = 470 G by solving the Lindblad equations with different pumping rates

(Fig. 3.11). The x-axis denotes the duration of optical pumping. As expected, a weaker

pumping rate produces a larger nuclear spin polarization in compensation for a longer

pumping time.

In summary, in the presence of the local strain in the NV center, the maximum

nuclear spin polarization occurs not at the level anticrossing (B ≈ 500) G of the ES but

near B ∼ 470 G with a pumping rate weaker than γ0.

3.5 Initialization of 14N nuclear spin

Most nitrogen atom in nature is 14N (I = 1) with the natural abundance of 99.6%.

Since the nitrogen nuclear spin is intrinsic to the NV center, it is beneficial to make

use of the nitrogen nuclear spin for quantum computation in addition to the electron

spin. Several studies have been reported about the applications of the 14NV system

[25, 61, 62]. In these studies, the nuclear spin initialization has been done at the ES level

anticrossing. However, because of the local strain, tuning the magnetic field magnitude

at the anticrossing to initialize the 14N nuclear spin may not be the most productive. In

this section, we use the Lindblad equations to see the effect of the local strain to the

initialization of the 14N nuclear spin.

The GS and the ES Hamiltonians of the 14NV center are given by

ĤGS = DGSŜ 2
z + geµBBŜ z + AGS~S · ~I + QI2

z , (3.11a)

ĤES = DESŜ 2
z + geµBBŜ z + AES~S · ~I + QI2

z + EES(S 2
x − S 2

y), (3.11b)

where Q = −5.0 MHz is the quadrupole interaction of the nitrogen. The hyperfine

interactions of the 14N nuclear spin are AGS = −2.2 MHz and AES = 50 MHz [23, 61].

We assume that the ES hyperfine interaction for 14N is isotropic. We use |ms,mI〉 as a

basis of the 14NV system.

The initialization mechanism of 14N nuclear spin is the same with the mechanism

of the 15N nuclear spin. |0,mI〉ES and |−1,mI〉ES become degenerate near B ≈ 500 G, and
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Figure 3.12: Initialization mechanism of the electron spin and the 14N nuclear spin in the
NV center. Black arrows represent the initialization of the electron spin by the intersys-
tem crossing decay. Red arrows denote the precession due to the hyperfine interaction
in the excited state. The spins are initialized in |0,+1〉 after optical pumping.

the spin-flip transitions |0, 0〉ES ↔ |−1,+1〉ES and |0,−1〉ES ↔ |−1, 0〉ES are resonantly

active. Therefore, several cycles of optical pumping, spin-flip transitions by the hyper-

fine interaction, and the intersystem crossing decay initialize both the electron spin and
14N nuclear spin in |0, ↑〉GS. The complete initialization diagram for both the electron

spin and the 14N nuclear spin is depicted in Fig 3.12.

In the presence of the local strain, however, |+1,mI〉ES and |−1,mI〉ES are weakly

mixed near the anticrossing and form new eigenstates ˜|±1,mI〉ES. In particular, ˜|−1, 0〉ES

has a small portion of |+1, 0〉ES, and ˜|−1,−1〉ES has a small portion of |+1,−1〉ES. There-

fore, the transitions |0,+1〉ES ↔
˜|−1, 0〉ES and |0, 0〉ES ↔

˜|−1,−1〉ES depolarize the nu-

clear spin when the system is close to the level anticrossing.

We calculate p′
|0,+1〉GS

, the steady-state population of |0,+1〉GS after optical pump-

ing by plugging the Hamiltonians (Eqs. (3.11)) into the Lindblad equations (Fig. 3.13).

As expected, p′
|0,+1〉GS

has a dip near the level anticrossing in the presence of the local

transverse strain. A larger steady-state population of 14N nuclear spin can be achieve

with a weaker pumping rate and a longer pumping time. The optimal magnetic field for

the nuclear spin initialization is B ∼ 580 G. At this magnetic field, up to 98% of the

population is initialized in |0,+1〉GS with W = 0.1. We expect that the effect of the local

strain to the initialization mechanism can be confirmed by experiments [4, 26].
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Figure 3.13: Steady-state population p′
|0,+1〉GS

of the 14NV center after optical pumping.
(a) Population with and without the local strain. The pumping rate is W = 10γ0. (b)
Population with different pumping rates. The local strain is fixed at EES = 70 MHz. (c)
Population as a function of time with different pumping times. The local strain is fixed
at EES = 70 MHz.

3.6 Conclusions

We have studied the dynamic polarization of the nitrogen nuclear spin in the

NV center under optical pumping [38] through the Lindblad equation approach and the

rate equation approach. The results suggest that the experimentally observed nuclear

spin polarization might be the transient value after a finite pumping time instead of the

steady-state value [38]. This provides a possible solution to the discrepancy between

the nuclear spin depolarization time ∼ 10 µs as used in the theoretical fitting [38] and

the reported nuclear spin depolarization time & 1 ms [49] In the steady state, a large

nuclear spin polarization can be achieved by a longer pumping even far from the level

anticrossing. Our study also shows that the local strain of the NV center depolarizes the
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nuclear spin near the anticrossing, so that the maximal nuclear spin polarization occurs

slightly away from the anti-crossing point, in conrast to previous understanding that

the maximal polarization occurs at the anti-crossing point. We expect that our study is

useful to nitrogen nuclear-spin based quantum operations where a nearly pure nuclear

spin is required at room temperature.
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Chapter 4

Quantum measurement of hyperfine

interaction in nitrogen-vacancy center

The negatively charged nitrogen vacancy (NV) center is a candidate for the appli-

cation of quantum parameter estimation (also known as quantum metrology). Quantum

metrology seeks quantum measurement protocols to estimate physical parameters up to

a given precision defined as 1/∆2 (with ∆ being the standard deviation) using the least

amount R of resources, which include the number of measurements, the total duration

of the measurements, and the number of particles involved in the measurements. The

classical protocol utilizes the number R of repeated measurements as a resource and,

according to the central limit theorem, gives the classical limit (also known as standard

quantum limit or SQL) ∆SQL = O(1/
√

R). Quantum metrology aims to surpass the SQL

and, more ambitiously, reach the quantum metrology limit (QML) ∆QML = O(1/R), the

upper precision bound 1/∆2
QML = O(R2) set by quantum mechanics. The most pop-

ular quantum measurement technique is interferometry, in which the parameter to be

measured is recorded as a phase in the coherence of the system [20, 21, 32, 33]. The

exceptionally long coherence time of the NV center electron spin diminishes the detri-

mental effect of decoherence on such measurements and makes the NV center an ideal

system for quantum metrology [34]. Up to date, most of the measurement protocols

utilize pure quantum states and surpass the SQL by creating quantum entanglement in

the system. However, the thermal equilibrium state of the nuclear spins is highly mixed

at room temperature. To estimate reliably the hyperfine interaction in the NV center by

36
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a pure-state protocol, the nuclear spins must be prepared repeatedly into a given pure

state. Further, the number of spins as the resources of entanglement in a single NV cen-

ter is finite [51], so the advantage of quantum entanglement to parameter estimation is

also limited.

Recently, Boixo and Somma [6] proposed a model of mixed-state quantum metrol-

ogy by combining the mixed-state quantum computation (also known as deterministic

quantum computation with one quantum bit [41] or DQC1) with the adaptive Bayesian

inference. This DQC1 model utilizes the total duration T (instead of large-scale entan-

glement [34]) of the estimation process as a resource to approach the QML ∆QML =

O(1/T ) without creating any entanglement [14, 42]. However, its application to esti-

mate the hyperfine interaction in the NV center requires including the effects of noise

and unintended dynamics.

In this chapter, we construct an efficient quantum measurement protocol to es-

timate the hyperfine interaction between the electron spin and the 15N nuclear spin in

the NV center. This protocol is essentially a combination of the DQC1 model [6] and

the spin-echo technique [68], which decouples the dynamics driven by the hyperfine

interaction from the noise and unintended dynamics. It does not need the preparation of

the nuclear spin state and approaches the QML ∆QML = O(1/T ) in the ideal case. By

including realistic errors (such as the nuclear spin rotation error and the electron spin

decoherence) in our analysis, we show that our protocol still surpasses the SQL under

typical experimental conditions.

4.1 Quantum metrology

As mentioned above, quantum metrology pursues efficient quantum methods to

estimate a physical parameter beyond the SQL with a finite amount of resources. First,

we introduce a conceptual framework of quantum metrology and show that quantum

metrological methods can overcome the classical limit.
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Figure 4.1: n independent qubits with the phase operation Û(ϕ) and the detector.

4.1.1 Standard quantum limit

Suppose there are n identical qubits. Each qubit is separately prepared in |+〉 =

(|0〉 + |1〉) /
√

2 (Fig. 4.1). They are independent and do interact with each other. We

apply the identical phase operation to each qubit

Û(ϕ) = |0〉 〈0| + eiϕ |1〉 〈1| .

Then the total state of n qubits is the product of each qubit state

ρtot =

[
1
2

(
|0〉 〈0| + e−iϕ |0〉 〈1| + eiϕ |1〉 〈0| + |1〉 〈1|

)]⊗n

.

We also have n detectors attached to each qubit. Each detector measures the observable

X̂ = |0〉 〈0| + |1〉 〈1| of the qubit. If the measurements are made at the same time, the

average value of X̂⊗n is given by

〈X̂⊗n〉 = Tr
[
ρtotX̂⊗n

]
= cosn ϕ. (4.1)

The sequence of the qubit preparations, the phase operations, and the measurements are

repeated N times to obtain 〈X̂⊗n〉 with the standard deviation ∆(X⊗n) ∼ 1/
√

N. The

1/
√

N dependence comes from the central limit theorem.

ϕ is estimated from Eq. (4.1),

ϕ =
[
cos−1

(
〈X̂⊗n〉

)]1/n
. (4.2)
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The standard deviation of the estimation of ϕ is given by

∆ϕ =
∆(X⊗n)∣∣∣∂〈X̂⊗n〉/∂ϕ

∣∣∣ ≥ ∆(X⊗n)
√

n
∼

1
√

nN
. (4.3)

Eq. (4.3) shows that ∆ϕ decreases as 1/
√

n. This result is obvious since the N mea-

surements with n qubits are equivalent to the nN measurements with one qubit. Thus

increasing the number of independent qubits decreases the standard deviation in the clas-

sical way. The limit 1/
√

n of the estimation is called the standard quantum limit (SQL)

and denotes the lower bound of the standard deviation set by the classical mechanics. In

quantum optics, 1/
√

n limitation is also called the shot-noise limit (SNL).

4.1.2 Entanglement and quantum metrology limit

Here we demonstrate that the estimation with entangled qubits can exceed the

SQL. Suppose that the initial state of n qubits is maximally entangled state (Fig. 4.2)

|Ψ〉tot,0 =
1
√

2
[|0, 0, · · · , 0〉 + |1, 1, · · · , 1〉] .

After the phase operation Û(ϕ) is applied to each qubit, the total state of n qubit is

|Ψ〉tot =
1
√

2

[
|0, 0, · · · , 0〉 + einϕ |1, 1, · · · , 1〉

]
.

⋮

Û (ϕ )

Û (ϕ )
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⋮
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
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Figure 4.2: n maximally entangled qubits with the phase operation Û(ϕ) and the
detector.
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By measuring X̂ of each qubit N times, we can obtain 〈X̂⊗n〉 which is given by

〈X̂⊗n〉 = Tr
[
|Ψ〉 〈Ψ|tot X̂⊗n

]
= cos(nϕ). (4.4)

with the standard deviation ∆(X̂⊗n) ∼ 1/
√

N. Then the estimated value of ϕ is

ϕ =
1
n

cos−1
(
〈X̂⊗n〉

)
, (4.5)

with the standard deviation

∆ϕ =
∆(X⊗n)∣∣∣∂〈X̂⊗n〉/∂ϕ

∣∣∣ ≥ ∆(X⊗n)
n

∼
1

n
√

N
. (4.6)

It is clear from Eq. (4.6) that the maximal entanglement further decreases the standard

deviation of the estimation ∆ϕ by 1/
√

n with compared to the SQL in Eq. (4.3). The

estimation becomes more precise as more qubits are entangled. This is a pure quantum

mechanical effect. In the entangled state, the effect of the phase operation Û(ϕ) is accu-

mulated in the total state while it is independent when the qubits are not correlated. The

limit 1/n of the estimation is called the quantum metrology limit (QML) and denotes the

lower bound of the standard deviation set by quantum mechanics. In quantum optics,

1/n limitation is also called the Heisenberg limit.

4.1.3 Multiround protocol

In a real experiment, it is not easy to create a large-scale entanglement. However,

it is possible to surpass the SQL without entanglement. Instead of entanglement, such an

estimation method uses a sequence of identical quantum operations. Here we introduce

the multiround protocol proposed by Giovannetti et. al. [33].

Û (ϕ ) ⋯

! "########## $##########

n

+ Û (ϕ ) Û (ϕ )

Figure 4.3: Multiround protocol with one qubit.



41

The simplest multiround protocol consists of one qubit, n identical phase opera-

tions, and a detector on the qubit (Fig. 4.3). The qubit is prepared in the |+〉 state. After

application of n phase operations Û(ϕ), the state of the qubit |ψ〉 is

|ψ〉 =
(
Û(ϕ)

)n
|+〉 =

1
√

2

[
|0〉 + einϕ |1〉

]
.

The detector measures X̂ of the qubit. By repeating the measurement of X̂ N times, we

obtain the average of X̂

〈X̂〉 = cos(nϕ) (4.7)

with the standard deviation ∆(X) ∼ 1/
√

N. Therefore, the standard deviation of the

estimation of ϕ is given by

∆ϕ =
∆(X)∣∣∣∂〈X̂〉/∂ϕ∣∣∣ ≥ ∆(X)

n
∼

1

n
√

N
. (4.8)

We have a
√

n improvement in the standard deviation of the estimation with compared

to Eq. (4.3). In the classical method, the amount of resources spent in the estimation is

nN. The multiround protocol spends the same amount of resources with the classical

method without entanglement and exceeds the SQL. Like the entanglement protocol,

the phase operation is stacked in the coherence of the qubit. If the measurement is made

after each operation, the information of the phase is reset after the measurement and

the estimation result is limited by the SQL. Therefore, the essence of the multiround

protocol is to apply a sequence of the operations before the measurement is made.

We exploit the concept of the multiround protocol to estimate the hyperfine inter-

action in the NV center. However, since this method requires a coherence time enough

to apply several operations, it is limited by the decoherence of the NV center. At the end

of this chapter, we show that our protocol is indeed restricted by the decoherence but we

can still surpass the SQL within this limit.

4.2 Deterministic quantum computation with one quan-

tum bit (DQC1)

As seen in chapter 3, it is very difficult to completely initialize the 15N nitrogen

nuclear spin in a pure state. Thus it would be beneficial if we can use a mixed-state
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Figure 4.4: Deterministic quantum computation with one quantum bit (DQC1)

quantum algorithm in estimating the hyperfine interaction between the nitrogen nuclear

spin and the electron spin in the NV center. In this section, we introduce a mixed-state

quantum protocol used in this dissertation, the deterministic quantum computation with

one quantum bit (DQC1).

The DQC1 model was first proposed by Knill and Laflamme [41]. It utilizes one

pure control qubit (with states {|0〉 , |1〉}) and n unpolarized target qubits, and performs

certain operations more efficient than any classical algorithms [13, 15, 54]. Fig 4.4.

depicts the circuit diagram of the DQC1 model. The unitary operation applied on the

target qubits is a controlled operation. It is applied to the target qubits only if the state

of the control qubit is |1〉, i.e.,

Ũ = |1〉 〈1| ⊗ Û.

The control qubit is prepared in the |+〉 state to create the coherence. Then the initial

state of the total system is a product of the control qubit and the unpolarized target qubits

ρ̂i =
1

2n+1 [|0〉 〈0| + |0〉 〈1| + |1〉 〈0| + |1〉 〈1|] ⊗ Î.

After the controlled operation is applied to the target qubits, the output state is given by

ρ̂o =
1
4

[
(|0〉 〈0| + |1〉 〈1|) ⊗ Î + |0〉 〈1| ⊗ Û† + |1〉 〈0| ⊗ Û

]
. (4.9)

The reduced state of the control qubit can be obtained by taking a trace over the target

qubit,

ρ̂c
o =

1
2

[
|0〉 〈0| + |1〉 〈1| +

Tr[Û†]
2n |0〉 〈1| +

Tr[Û]
2n |1〉 〈0|

]
. (4.10)

The coherence of the control qubit contains the normalized trace of Û. This information
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can be extracted by measuring expectation values of X̂ and Ŷ on the control qubit,

〈X̂〉 = Re
(
Tr[Û]

2n

)
, 〈Ŷ〉 = −Im

(
Tr[Û]

2n

)
, (4.11)

where {X̂, Ŷ , Ẑ} are the three Pauli operators of the control qubit denoted by

X̂ ≡ |1〉 〈0| + |0〉 〈1| ,

Ŷ ≡ i(|1〉 〈0| − |0〉 〈1|),

Ẑ ≡ |0〉 〈0| − |1〉 〈1| .

The speed of the DQC1 model for the calculation of the normalized trace of Û is known

faster than existing classical algorithms [13].

Unlike other quantum algorithms, the output ρ̂0 in Eq. (4.9) is an unentangled

state. This can be seen in the following way. From the spectral theorem, an arbitrary Û

can be written as

Û =

2n∑
j=1

eiφ j
∣∣∣v j

〉 〈
v j

∣∣∣ , (4.12)

where
∣∣∣v j

〉
is an eigenstate of Û with a corresponding eigenvalue eiφ j . Plugging Eq. (4.12)

into Eq. (4.9), we have

ρ̂o =
1

2n+1

2n∑
j=1

[
|0〉 〈0| + |1〉 〈1| + e−iφ j |0〉 〈1| + eiφ j |1〉 〈0|

]
⊗

∣∣∣v j

〉 〈
v j

∣∣∣
=

1
2n

2n∑
j=1

∣∣∣φ j

〉 〈
φ j

∣∣∣ ⊗ ∣∣∣v j

〉 〈
v j

∣∣∣ , (4.13)

where
∣∣∣φ j

〉
=

(
|0〉 + eiφ j |1〉

)
/
√

2. Since ρ̂o can be written in a separable form, ρ̂0 is an

unentangled state [66, 37].

The correlation in charge of the exponential speedup of the DQC1 model is

known as quantum discord, but there is an argument about the role of quantum discord

in the DQC1 model. Detailed discussions about quantum discord and the DQC1 model

can be found in several literatures including [12, 14, 42].

4.3 Two-qubit parameter estimation

The application of the DQC1 model to parameter estimation was introduced by

Boixo and Somma [6]. They proposed a method to estimate an interaction between the
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Figure 4.5: (a) Two-qubit DQC1 model with one control qubit in the pure state |+〉 ≡
(|0〉 + |1〉)/

√
2 and one target qubit in the unpolarized state Î/2. (b) Interferometric

diagram of the DQC1 model

control qubit and n target qubits with the DQC1 model. Since we are interested in the

estimation of the hyperfine interaction between two spins in the NV center, we briefly

explain the two-qubit version of their model.

Two-qubit DQC1 model has one pure control qubit in the |+〉 state and one un-

polarized target qubit (with states {|↑〉 , |↓〉}). We use {σ̂x, σ̂y, σ̂z} as the Pauli operators

of the target qubit. We assume that the two qubits in the DQC1 model are coupled by

the interaction

ĤDQC1 = |1〉 〈1| ⊗ θσ̂z. (4.14)

θ is the parameter to be estimated. We use the evolution operator

Û = e−i(θτ)σ̂z (4.15)

as the unitary operator to estimate of θ, (Fig. 4.5(a)). We know from the previous section

that the coherence of the control qubit contains the parameter θ we are interested after
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the evolution with a duration τ. We measure X̂ to retrieve the information of θ. By

repeating the evolution followed by the measurement of X̂, we can obtain the average

value of X̂

〈X̂〉 = cos(θτ), (4.16)

which is a straightforward result from Eq. (4.11) and (4.15).

The DQC1 parameter estimation algorithm can be understood from the interfer-

ometric point of view (Fig. 4.5(b)). We assume that |0〉 and |1〉 are degenerate so that the

system is described only by Eq. (4.14). Then the interaction ĤDQC1 makes the energy

splittingωc of the control qubit dependent on the state of the target qubit: ωc,↑ = θ for the

target qubit in the spin-up state |↑〉 and ωc,↓ = −θ for the target qubit in the spin-down

state |↓〉. The DQC1 parameter estimation aims to estimate the interaction strength θ

with the standard deviation ∆θ = O(1/T ) approaching the QML, where T is the total

duration of the estimation process [6]. The procedures are simple: the application of the

two-qubit interaction ĤDQC1 for a duration τ, followed by a measurement of X̂:

• If the target qubit is in the spin-up state |↑〉, then ĤDQC1 drives the precession of

the control qubit with angular frequency ωc,↑,

|0〉 + |1〉
√

2
⊗ |↑〉 →

|0〉 + e−iωc,↑τ |1〉
√

2
⊗ |↑〉 .

Before the measurement, the interaction strength θ is encoded as a phase e−iωc,↑τ

of the control qubit. The repeated measurements of X̂ estimate the average value

〈X̂〉↑ = cos(ωc,↑τ) = cos(θτ), which yields the phase.

• If the target qubit is in the spin-down state |↓〉, then ĤDQC1 drives the precession

of the control qubit with angular frequency ωc,↓,

|0〉 + |1〉
√

2
⊗ |↓〉 →

|0〉 + e−iωc,↓τ |1〉
√

2
⊗ |↓〉 .

Before the measurement, the interaction strength θ is encoded as a phase e−iωc,↓τ

of the control qubit. The repeated measurements of X̂ estimate the average value

〈X̂〉↓ = cos(ωc,↓τ) = cos(θτ), which extracts the phase.
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• Now the target qubit is in the unpolarized state, i.e., an equal, incoherent mix-

ture of |↑〉 and |↓〉. Then the repeated measurements of X̂ estimates the equally

weighted average of 〈X̂〉↑ and 〈X̂〉↓:

〈X̂〉 =
1
2

(〈X̂〉↑ + 〈X̂〉↓) = cos(θτ).

A distinctive feature of the above parameter estimation process is the absence of

any two-qubit entanglement [42].

For a given standard deviation ∆X (� 1 under typical situations) in estimating

〈X̂〉, the DQC1 model gives an estimate to the interaction strength θ with a standard

deviation

∆θ =
∆X

|∂〈X̂〉/∂θ|
=

∆X

τ| sin(θτ)|
≥

∆X

τ
. (4.17)

By regarding the duration τ of the estimation as a resource, the QML scaling ∆θ =

O(1/τ) is achieved if τ could be chosen such that | sin(θτ)| ≈ 1. However, due to the

limited prior knowledge about θ (the parameter to be estimated), we cannot always

ensure | sin(θτ)| ≈ 1, especially when a small standard deviation ∆θ → 0 (corresponding

to large τ→ ∞) is required.

To address this issue, Boixo and Somma quantified the prior knowledge about

θ by a standard deviation ∆0 and utilized the adaptive Bayesian inference to reduce

the standard deviation successively [6]. The essential idea of this approach can be

understood qualitatively as follows. In order to ensure | sin(θτ)| ≈ 1 and hence the

QML, the largest τ is roughly 1/∆0. Under this restriction, the minimal standard devi-

ation for the estimation of θ is given by Eq. (4.17) as ∼ ∆X∆0 � ∆0. Therefore, the

DQC1 measurements with standard deviation ∆X refines our knowledge about the in-

teraction strength θ from a large standard deviation ∆0 to a much smaller one ∼ ∆X∆0.

By iterating this procedure, the standard deviation ∆θ would decrease successively as

∆0 → ∆X∆0 → ∆2
X∆0 → · · · . With the aid of the adaptive Bayesian inference, Boixo

and Somma performed a quantitative analysis about this iteration and concluded that the

QML ∆θ = O(1/T ) could be achieved for an arbitrary desired standard deviation, where

T =
∑
τ is the total duration of the estimation process [6].



47

4.4 DQC1 parameter estimation to NV center

4.4.1 Two-qubit DQC1 parameter estimation with an arbitrary tar-

get qubit state

While the original DQC1 model and Boixo’s method use the unpolarized target

qubit, we verify that the two-qubit DQC1 model in Fig. 4.5(a) can be extended to an

arbitrary polarized target qubit. This feature is very important since the nitrogen nuclear

spin acquires a partial polarization during the initialization of the electron spin.

We replace the initial state of the target qubit Î/2 in Fig. 4.5 with Î/2 + qzσ̂z/2,

where qz is the polarization of the target qubit. In this case, the third bullet in Sec. 4.3 is

revised as

• The target qubit is in an incoherent mixture of |↑〉 [with weight (1 + qz)/2] and

|↓〉 [with weight (1 − qz)/2]. Then the repeated measurements of X̂ estimate the

weighted average of 〈X̂〉↑ and 〈X̂〉↓:

〈X̂〉 =
1 + qz

2
〈X̂〉↑ +

1 − qz

2
〈X̂〉↓ = cos(θτ).

In other words, 〈X̂〉 is independent on the initial state of the target qubit. Thus the

estimation of θ is also independent on the target qubit state. The detailed proof of this

extended two-qubit DQC1 model can be found in Appendix.

4.4.2 Direct application of DQC1 parameter estimation to NV cen-

ter

We consider a negatively charged NV center in diamond consisting of a sub-

stitutional 15N atom and a neighboring carbon vacancy. Its electronic ground state is

a two-electron spin triplet described by a spin-1 operator Ŝ, with a zero-field splitting

D ≈ 2.87 GHz (described by the term DŜ 2
z ) between the |ms = 0〉 state and the |ms = ±1〉

states. Under an external magnetic field B along the N-V axis (defined as the z direc-

tion), the Zeeman term geµBBŜ z with ge = 2.0023 shifts the state |ms = +1〉 away from

the other two states under a moderate magnetic field B ∼ 0.2 T (see Fig. 4.6). Thus we

identify |0〉 ≡ |ms = 0〉 and |1〉 ≡ |ms = −1〉 as the two states of the control qubit of the
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DQC1 model and use X̂, Ŷ , Ẑ as the three Pauli matrices for this qubit. The electron spin

Ŝ is coupled to the neighboring 15N nuclear spin-1/2 Î (with the two-fold degeneracy

lifted by the Zeeman term gNµN BÎz, where gN = −0.5664 [23]) through the hyperfine

interaction AŜ z Îz + (A⊥/2)(Ŝ + Î− + Ŝ − Î+), where A ≈ 3.03 MHz and A⊥ ≈ 3.65 MHz

[23, 55]. We regard this nuclear spin-1/2 as the mixed-state target qubit of the DQC1

model and use σ̂x, σ̂y, σ̂z as the three Pauli matrices 2Îx, 2Îy, 2Îz for this qubit. The di-

agonal part AŜ z Îz of the hyperfine interaction makes the nuclear (electron) spin splitting

energy dependent on the state of the electron (the nucleus). Thus AŜ z Îz plays the cen-

tral role in coherent control and readout of the electron and nuclear spin states. The

hyperfine interaction strength A is the parameter to be estimated.

In the two-qubit subspace, the Hamiltonian Ĥ = Ĥ0 + Ĥmix consists of the diag-

onal part

Ĥ0 =
1
2

gNµN Bσ̂z + |1〉 〈1| ⊗ (D′ −
1
2

Aσ̂z)

E

B

m
s
= −1

m
s
= 0

m
s
= +1

2/1+=
I
m

2/1−=
I
m

m
I
= ±1/ 2

D

A

B = 0.2 T

Figure 4.6: Energy level diagram of the ground state of an NV center in diamond. The
hyperfine energy splitting at B = 0.2 T is sketched within the |ms = 0〉 and |ms = −1〉
manifold. D = 2.87 GHz is the zero field splitting of the electron spin, and A is the lon-
gitudinal hyperfine interaction to be estimated. The nuclear Zeeman splitting is omitted
in the diagram.
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Figure 4.7: Direct application of the DQC1 model to estimate the hyperfine interac-
tion strength A in NV center. Since the Hamiltonian Ĥ includes the spin-flip hyperfine
interaction Ĥmix, the evolution operator has a different form from the ĤDQC1 in Eq. (4.14)

and the off-diagonal part

Ĥmix = (A⊥/
√

2)(|0, ↓〉 〈1, ↑| + |1, ↑〉 〈0, ↓|).

The diagonal part Ĥ0 accounts for the free nuclear spin precession with angular fre-

quency gNµN B, the free electron spin precession with angular frequency D′ ≡ D−geµBB,

and the projection |1〉 〈1| ⊗ (−Aσ̂z/2) of the diagonal hyperfine interaction AŜ z Îz in the

two-qubit subspace. The off-diagonal part Ĥmix is the projection of the off-diagonal

hyperfine interaction (A⊥/2)(Ŝ + Î− + Ŝ − Î+) in the two-qubit subspace. The diagonal hy-

perfine interaction term |1〉 〈1|⊗ (−Aσ̂z/2) in Ĥ0 corresponds to ĤDQC1 in Eq. (4.14) with

θ ↔ (−A/2). It makes the precession frequency ωe of the electron spin dependent on

the hyperfine interaction strength A and the nuclear spin state: ωe,↑ = D′ − A/2 for the

nuclear spin state being |↑〉 and ωe,↓ = D′ + A/2 for the nuclear spin state being |↓〉.

Therefore, following the procedure in Fig. 4.5(a), the interaction strength A is encoded

as a phase of the electron spin and subsequently extracted by estimating 〈X̂〉.

As schematically shown in Fig. 4.7, the electron spin needs to be prepared in

the superposition (|0〉 + |1〉)/
√

2. This can be achieved by optical pumping followed

by a coherent rotation [36]. However, this preparation process inevitably influences

the nuclear spin and changes its state from the unpolarized thermal equilibrium state

ρ̂n
eq = Î/2 to a state ρ̂n

neq = Î/2 + qzσ̂z/2 with a finite polarization qz = Tr[ρ̂n
neqσ̂z]

[38]. Then the two qubits evolve under the Hamiltonian Ĥ for a duration τ, followed

by a measurement of 〈X̂〉. Below we calculate 〈X̂〉 without Ĥmix and then taking it into

account by perturbation theory.

Without Ĥmix, the two qubits are driven by Ĥ0, which has four eigenstates |0, ↑〉,
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|0, ↓〉 , |1, ↑〉 , |1, ↓〉. The physics is similar to the DQC1 model described in the previous

subsection:

• If the nuclear spin is in the spin-up state |↑〉, then Ĥ0 drives the precession of the

electron spin qubit with angular frequency ωe,↑ and the repeated measurements of

X̂ estimate 〈X̂〉↑ = cos(ωe,↑τ).

• If the nuclear spin is in the spin-down state |↓〉, then Ĥ0 drives the precession of

the electron spin qubit with angular frequencyωe,↓ and the repeated measurements

of X̂ estimate 〈X̂〉↓ = cos(ωe,↓τ).

• Now the nuclear spin is in an incoherent mixture of |↑〉 [with weight (1 + qz)/2]

and |↓〉 [with weight (1 − qz)/2]. Then the repeated measurements of X̂ estimate

the weighted average of 〈X̂〉↑ and 〈X̂〉↓:

〈X̂〉 =
1 + qz

2
〈X̂〉↑ +

1 − qz

2
〈X̂〉↓

=
1 + qz

2
cos

[(
D′ −

A
2

)
τ
]

+
1 − qz

2
cos

[(
D′ +

A
2

)
τ
]

= cos(D′τ) cos
(Aτ

2

)
+ qz sin(D′τ) sin

(Aτ
2

)
(4.18)

Then we consider the complications caused by the off-diagonal part Ĥmix. To

reduce its detrimental effect on the parameter estimation, we consider a suitable mag-

netic field strength (e.g., B = 0.2 T, as indicated in Fig. 4.6 and used in our estimation,

see Sec. 4.6.2) so that |D′| � |A⊥|. In this case, we can use perturbation theory to treat

Ĥmix, which modifies the eigenstates and eigenenergies of the two-qubit Hamiltonian

Ĥ = Ĥ0 + Ĥmix:

1. Ĥmix changes the eigenstates of Ĥ from [|0, ↑〉, |0, ↓〉, |1, ↑〉, |1, ↓〉] to [|0, ↑〉, ˜|0, ↓〉,˜|1, ↑〉, |1, ↓〉], where

˜|0, ↓〉 = [1 − O(η2)] |0, ↓〉 + O(η) |1, ↑〉 ,˜|1, ↑〉 = [1 − O(η2)] |1, ↑〉 + O(η) |0, ↓〉 ,

and η ≡ A⊥/(D′ + gNµN B − A/2) ∼ 10−3 for B = 0.2 T. In other words, Ĥmix

introduces new O(η) components into the eigenstates. It can be readily verified

that this changes 〈X̂〉 by O(η2).
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Figure 4.8: Combination of spin echo and the DQC1 model.

2. Ĥmix changes the eigenenergy of |0, ↓〉 (|1, ↑〉) by a small amount −δ (+δ), where

δ = ηA⊥/2 + O(η2A⊥). This in turn changes the precession frequencies of the

electron spin from ωe,µ to ω̃e,µ = ωe,µ + δ (µ =↑, ↓). Therefore, the average value

〈X̂〉 is obtained from Eq. (4.18) by renormalizing ωe,µ with ω̃e,µ (µ =↑, ↓).

A detailed calculation about the above process is included in Appendix. Collect-

ing both corrections discussed above, we obtain

〈X̂〉 = cos[(D′ + δ)τ] cos(
A
2
τ) + qz sin[(D′ + δ)τ] sin(

A
2
τ) + O(η2). (4.19)

It contains not only A but also undesired parameters such as D′ (free electron spin pre-

cession frequency), δ (energy shift by Ĥmix), and qz (partial nuclear spin polarization).

For an accurate estimation of A, it is desirable to eliminate these undesired parameters

from 〈X̂〉 by modifying the DQC1 protocol.

4.5 Quantum estimation circuit of hyperfine interaction

4.5.1 Eliminating undesired parameters by spin echo

To remove the dependence on the undesired parameters in 〈X̂〉, we combine

the DQC1 model with the spin-echo technique by replacing the free evolution e−iĤτ in

Fig. 4.7 with the composite evolution [see Fig. 4.8]

Ûcom = e−iĤτR̂n
y(π)R̂e

y(π)e−iĤτ,

which consists of an electron spin π rotation R̂e
y(π) = e−iπŶ/2 = −iŶ and a nuclear spin

π rotation R̂n
y(π) = e−iπσ̂y/2 = −iσ̂y sandwiched by the free evolution e−iĤτ. Using the
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relation e−iĤτŶ = Ŷe−i(Ŷ ĤŶ)τ (and e−iĤτσ̂y = σ̂ye−i(σ̂yĤσ̂y)τ), Ûcom is rewritten as

Ûcom = R̂e
y(π)R̂n

y(π)
(
e−i(σ̂yŶ ĤŶσ̂y)τe−iĤτ

)
. (4.20)

This composite evolution contains a spin echo (the part inside the parenthesis) for the

electron and the nucleus, which eliminates the free precession of the electron spin and

the nuclear spin. To analyze Ûcom in more detail, we first ignore the off-diagonal part

Ĥmix and then take it into account by perturbation theory.

Without Ĥmix, the Hamiltonian Ĥ′0 ≡ σ̂yŶ Ĥ0Ŷσ̂y is given by

Ĥ′0 = σ̂yŶ
[
1
2

gNµN Bσ̂z + |1〉 〈1| ⊗ (D′ −
A
2
σ̂z)

]
Ŷσ̂y

= −
1
2

gNµN Bσ̂z + |0〉 〈0| ⊗ (D′ +
A
2
σ̂z)

= −
1
2

gNµN Bσ̂z +
A
2
σ̂z − |1〉 〈1| ⊗ (D′ +

A
2
σ̂z) + D′. (4.21)

D′ in the last line is a constant and can be dropped since it does not contribute to the

dynamics of the system. Then Ĥ′0 commutes with Ĥ0 and Ûcom reduces to

Û (0)
com = Re

y(π)Rn
y(π)e−i(Ĥ′0+Ĥ0)τ = Re

y(π)Rn
y(π)e−iAτσ̂z/2e−iĤechoτ,

where Ĥecho = |1〉 〈1| ⊗ (−Aσ̂z) corresponds to ĤDQC1 in Eq. (4.14) with θ ↔ −A. The

operation Rn
y(π)e−iAτσ̂z/2 on the nuclear spin alone can be dropped since it does not influ-

ence our measurement on the electron spin. Therefore, the composite evolution becomes

Û (0)
com = Re

y(π)e−iĤechoτ, in which all the undesired parameters have been eliminated.

In the presence of Ĥmix, Ĥ′ consists of the diagonal part Ĥ0 and the off-diagonal

part Ĥmix. Note that we have σ̂yŶ ĤmixŶσ̂y = Ĥmix. Similar to the two-step analysis

leading to Eq. (4.42), Ĥmix modifies the eigenstates and eigenenergies of Ĥ = Ĥ0 + Ĥmix

and Ĥ′ = Ĥ′0 + Ĥmix:

1. Ĥmix introduces new O(η) components into the eigenstates of Ĥ and Ĥ′. This

changes 〈X̂〉 by O(η2).

2. For the Hamiltonian Ĥ, the presence of Ĥmix changes the eigenenergy of |0, ↓〉

(|1, ↑〉) by −δ (+δ). For the Hamiltonian Ĥ′, the presence of Ĥmix changes the

eigenenergy of |0, ↓〉 (|1, ↑〉) by +δ (−δ). In other words, the opposite energy shifts

for Ĥ and Ĥ′ induced by Ĥmix cancel each other in the evolution Ûcom.
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Figure 4.9: Quantum circuit for a single estimation of the hyperfine interaction strength
A in the NV center. The nuclear spin is initially in a partially polarized sate ρ̂n

neq =

(Î + qzσ̂z)/2.

For 〈X̂〉, the composite evolution including both corrections discussed above is

equivalent to

Ûcom = R̂e
y(π)e−iĤechoτ + O(η2),

i.e., the spin echo eliminates all the named undesired parameters and the effective evolu-

tion Ûcom for the NV center recovers the DQC1 evolution e−iĤDQC1τ up to a trivial electron

spin π rotation R̂e
y(π). A detailed calculation of 〈X̂〉 is found in Appendix.

4.5.2 Quantum estimation circuit

Fig. 4.9 gives the sequence of quantum operations for a single estimation of the

hyperfine interaction strength A in the NV center:

1. The electron spin is prepared into the pure state |0〉 by optical pumping [36]. A

subsequent π/2 rotation R̂e
y(π/2) initializes the electron spin into the superposition

|+〉 = (|0〉 + |1〉)/
√

2. The nuclear spin is a partially polarized state ρ̂n = Î/2 +

qzσ̂z/2. This initial density matrix ρ̂initial = |+〉 〈+| ⊗ ρ̂n coincides with the initial

density matrix ρ̂DQC1 = |+〉 〈+| ⊗ ρ̂tar of the DQC1 model, where the target qubit

state ρ̂tar also has an arbitrary polarization.

2. The two qubits experience a composite evolution (within the dashed box in Fig.

4.9), which consists of a free evolution e−iĤτ, a controlled nuclear spin π rotation

R̃n
y(π) = |1〉 〈1| ⊗ (−iσ̂y) + |0〉 〈0|, an electron spin rotation R̂e

y(π), another con-

trolled nuclear spin π rotation R̃n
y(π), and another free evolution e−iĤτ. The equal-
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ity R̃n
y(π)R̂e

y(π)R̃n
y(π) = R̂n

y(π)R̂e
y(π) shows that this composite evolution coincides

with Ûcom in Sec. 4.5.1.

3. A π/2 rotation R̂e
y(π/2) is applied to the electron spin, followed by a measurement

of Ẑ through optical methods [8, 7]. This measurement estimates

〈Ẑ〉 = Tr ẐR̂e
y(π/2)Ûcomρ̂initialÛ†com[R̂e

y(π/2)]†

= Tr X̂e−iĤechoτρ̂initialeiĤechoτ + O(η2).

Since the evolution e−iĤechoτ = e−iĤDQC1τ|θ→−A has the same form as the DQC1

model, the average value is

〈Ẑ〉 = cos(Aτ) + O(η2). (4.22)

The electron spin rotation R̂e
y(π/2) [R̂e

y(π)] in the circuit is achieved by a π/2

pulse (π pulse) with the central frequency |D′| and the bandwidth � A/2, so that both

transitions |0, ↑〉 ↔ |1, ↑〉 and |0, ↓〉 ↔ |1, ↓〉 are equally excited. The controlled nuclear

spin rotation R̃n
y(π) is achieved by a π pulse centered at the resonant frequency A −

gNµN B − δ of the transition |1, ↑〉 → |1, ↓〉. The duration τ of the free evolution can be

chosen in the experiment as τ > 1/A ∼ 0.1 µs. The electron spin rotation occurs within

a few nanoseconds and hence can be regarded as instantaneous [27, 28]. However, the

controlled nuclear spin π rotation takes τn ∼ a few microseconds, comparable to the free

evolution time τ. Detailed analysis in appendix shows that incorporation of τn amounts

to replacing the free evolution time τ in Eq. (4.22) by the sum (τ + τn). For brevity, we

use τ to denote (τ + τn) from now on.

In arriving at Eq. (4.22), we have assumed that all the gate operations in the

circuit and the measurements of Ẑ are free of errors. In a realistic experiment, the

most basic errors include the deviation of the nuclear spin rotation angle from π in the

controlled π rotation R̃n
y(π) and the finite electron spin coherence time T e

2:

• Nuclear spin rotation error. The two controlled nuclear spin π rotations R̃n
y(π) in

the quantum estimation circuit (Fig. 4.9) are subjected to random errors, which

may come from our limited prior knowledge (which becomes more and more

precise after each successive estimation step) about the interaction strength A or



55

other experimental sources. For the actual rotation angle (π+ 2ε) differing from π

by an error 2ε, the actual controlled rotation R̃n
y(π, ε) = R̃n

y(π) + δ̃n
y(π) differs from

the ideal one R̃n
y(π) by

δ̃n
y(π) = |1〉 〈1| ⊗ (−ε + i

ε2

2
σ̂y) + O(ε3).

For the first controlled rotation being R̃n
y(π, εa) and the second controlled rotation

being R̃n
y(π, εb), the actual quantity estimated by the quantum circuit M(τ) is

〈Ẑε〉 =

(
1 −
〈ε2

a〉 + 〈ε
2
b〉

2

)
cos(Aτ)

+ 〈εaεb〉 + 〈εa〉O(η) + 〈εb〉O(η) + O(η2),

The first source of error is our ignorance about A. In the k-th estimation step,

our limited prior knowledge about A (as quantified by the standard deviation ∆k−1,

see Sec. 4.6.1) and hence the resonant frequency A − gNµN B − δ of the transition

|1, ↑〉 → |1, ↓〉 makes it impossible to construct an exact π pulse for this transition.

The typical detuning for this transition is ∆k−1. The typical rotation angle deviates

from the ideal value π by an amount π∆2
k−1/(2Ω2) ∼ 10−3, the same order of

magnitude as O(η), for the Rabi frequency Ω = 500 kHz used in our estimation.

Thus every term in the second line of the above equation has the same order of

∼ 10−6, which allows us to replace the second line by O(η2). For εa and εb being

independent, we obtain

〈Ẑε〉 = (1 − ε2) cos(Aτ) + O(η2),

where ε2 = 〈ε2
a〉 = 〈ε2

b〉. For other experimental sources, the errors are typically

random with 〈εa〉 = 〈εb〉 = 〈εaεb〉 = 0, so that the above equation still holds.

• Electron spin decoherence. The electron spin in the NV center is subjected to

decoherence by the surrounding 13C nuclear spin bath. The coherence time of

the electron spin in the ground state is T e
2 ∼ 350 µs under the natural abundance

of the 12C isotope (98.8%), and it is extended to 1.8 ms under the ultrapure 12C

abundance (99.7%) at room temperature [29, 3]. By incorporating the electron

spin relaxation (with the relaxation time T e
1 = 5.9 ms [48]) and decoherence in
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the Lindblad form, it is straightforward to show that the quantity estimated by the

quantum circuit is no longer Eq. (4.22) but instead

〈Ẑd〉 = e−2τ/T e
2 cos (Aτ) + O(η2).

In summary, in the presence of errors, the quantity estimated by the quantum

circuit in Fig. 4.9 is given by

〈Ẑ〉 = Q(τ) cos(Aτ) + O(η2), (4.23)

where Q(τ) = 1−ε2 for the nuclear spin rotation error of magnitude ε and Q(τ) = e−2τ/T e
2

for a finite electron spin coherence time T e
2 . In our estimation, we use B = 0.2 T so that

the correction for the hyperfine interaction O(η2) ∼ 10−6.

4.6 Quantum measurement protocol

In this section, first we describe in detail the procedure of the entire estima-

tion protocol: the successive adaptation of the quantum circuit for dramatically reduced

standard deviation by combining our prior knowledge with the outcomes of the previ-

ous measurements through adaptive Bayesian inference. Next, we demonstrate that this

protocol approaches the QML ∆QML = O(1/T ) for the ideal case. Finally, we include

the essential errors (the nuclear spin rotation error and the electron spin decoherence)

and show that our protocol still exceeds the SQL.

4.6.1 Estimation procedure

We use M(τ) to denote the quantum estimation circuit in Fig. 4.9, whose total

duration is 2τ. A single run of the circuit M(τ) returns two outcomes: +1 for the electron

spin in the state |0〉 or −1 for the electron spin in the state |1〉, with corresponding proba-

bilities p±1 = [1± 〈Ẑ〉]/2. An estimator of the average value 〈Ẑ〉 [Eq. (4.23)] is obtained

by averaging over the outcomes of repeated running of the circuit. For example, aver-

aging over N measurements produces Z, a single estimator of 〈Ẑ〉. By the central limit

theorem, for relatively large N (e.g., N & 100), this estimator obeys the Gaussian distri-

butionN(〈Ẑ〉, ζ) centered at 〈Ẑ〉 with a standard deviation ζ = 1/
√

N. Alternatively, we
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can also say that the average value 〈Ẑ〉 obeys the Gaussian distribution N(Z, ζ), which

actually means that the difference 〈Ẑ〉 − Z obeys the Gaussian distribution N(0, ζ).

The estimation begins with a prior knowledge of the hyperfine interaction strength

A. It is quantified by a Gaussian distribution N(A0,∆0) centered at A0 with a relatively

large standard deviation ∆0, which quantifies our ignorance about A. This prior knowl-

edge tells us, with a 95% confidence, that A lies within the interval [A0 − 1.96∆0, A0 +

1.96∆0]. From the prior knowledge N(A0,∆0), we construct the quantum circuit M(τ1)

for the first estimation, which provides a new knowledge about A, as quantified by a

Gaussian distribution N(Ā1, ∆̄1). Through the Bayesian inference, this new knowl-

edge is combined with the prior knowledge to produce an updated knowledge about

A, quantified by a Gaussian distribution N(A1,∆1) with a smaller standard deviation

∆1 < ∆0. Therefore, the first estimation step refines our knowledge about A from

N(A0,∆0) to N(A1,∆1) (with ∆1 < ∆0), which in turn serves as the prior knowledge

of the next estimation step. By iterating this procedure, the standard deviation of the

Gaussian distribution quantifying our ignorance about A would decrease successively as

∆0 > ∆1 > ∆2 > · · · . The iteration is stopped at the K-th step when the desired stan-

dard deviation ∆desire is achieved: ∆K ≤ ∆desire. Below, we describe the above estimation

procedures in more detail.

Gaining knowledge about A from measurements

In the k-th estimation step (k = 1, 2, · · · ), the prior knowledge about the hyperfine

interaction strength A is quantified by the Gaussian distribution N(Ak−1,∆k−1). Suppose

that τk has been properly chosen (to be discussed shortly). By running the circuit M(τk)

for a relatively large number Nk (& 100) of times, we obtain an estimator Zk of 〈Ẑ〉k ≡

Q(τk) cos(Aτk) + O(η2) with a standard deviation ζk = 1/
√

Nk. This knowledge tells us

that 〈Ẑ〉k obeys the Gaussian distribution N(Zk, ζk). We need to convert this distribution

of 〈Ẑ〉k to a distribution of A. For a general τk, the relation between 〈Ẑ〉k and A is

nonlinear and the conversion from 〈Ẑ〉k to A results in a non-Gaussian distribution of A,

with a characteristic width
ζk

|∂〈Ẑ〉k/∂A|
=

ζk

Q(τk)τk| sin(Aτk)|
.

Now we determine τk according to two requirements:
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1. The distribution of A should be Gaussian (i.e., the relation between 〈Ẑ〉k and A

should be linear), so that analytical results can be obtained. Based on our prior

knowledgeN(Ak−1,∆k−1) about A, the conditions Ak−1τk = π/2 + 2π× integer and

∆k−1τk � 1 enable the Taylor expansion 〈Ẑ〉k = (Ak−1−A)Q(τk)τk +δk +O(η2) with

δk ≈ Q(τk)(∆k−1τk)3/6. For δk,O(η2) � ζk, |〈Ẑ〉k|, the correction terms δk + O(η2)

can be safely dropped, so that the relation between 〈Ẑ〉k and A becomes linear and

the distribution of A becomes Gaussian N(Āk, ∆̄k) with

Āk = Ak−1 −
Zk

Q(τk)τk
, (4.24a)

∆̄k =
ζk

Q(τk)τk
=

1
Q(τk)τk

√
Nk
. (4.24b)

The distribution N(Āk, ∆̄k) of A tells us, with a 95% confidence, that A lies in the

interval [Āk − 1.96∆̄k, Āk + 1.96∆̄k].

2. For maximal precision of the estimation, the standard deviation ∆̄k should be min-

imized, i.e., Q(τk)τk should be maximized.

Eq. (4.24b) shows that the standard deviation ∆̄k of the measurement of A is

equal to the standard deviation ζk = 1/
√

Nk of the measurement of 〈Ẑ〉k divided by

Q(τk)τk:

• For Q(τk) = 1 (i.e., no errors), the standard deviation ∆̄k is reduced upon the in-

crease of τk, which can be interpreted as a repetition of the circuit operations (as

enclosed in the dashed box in Fig. 4.9) before the measurement is made. This is

equivalent to a multiround protocol suggested by Giovannetti et al. [33]. There-

fore, the dependence ∆̄k ∝ 1/τk implies the QML.

• The standard deviation ∆̄k is reduced upon the increase of Nk. The dependence

∆̄k ∝ 1/
√

Nk implies the SQL.

In summary, for optimal performance, we should first choose ζk (or equivalently

Nk) subjected to the constraint

O(η2) � ζk � 1 (4.25)
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and then choose τk to maximize Q(τk)τk, subjected to the constraints

Ak−1τk =
π

2
+ 2mkπ, (4.26a)

(∆k−1τk)3

6
� ζk, (4.26b)

Q(τk)∆k−1τk � O(η2), (4.26c)

where mk ∈ Z and O(η2) ∼ 10−6 for B = 0.2 T. The constraint ζk � 1 ensures the

validity of our Gaussian distribution assumption for 〈Ẑ〉k, while other constraints ensure

the validity of the formula 〈Ẑ〉k ≈ (Ak−1 − A)Q(τk)τk. The error of the linear expansion

can be dropped if δk � ζk, which gives Eq. (4.26b) with Q(τk) ≤ 1. Eq. (4.26c) denotes

the condition to drop O(η2) in 〈Ẑ〉k. Note that the constraints [Eqs. (4.26)] on τk have no

solution under certain conditions, e.g., when Q(τk) . O(η2)/(ζk)1/3. Therefore, for more

flexible choice of τk, the standard deviation ζk of the measurement of 〈Ẑ〉k should not be

too small.

Combining new knowledge with prior knowledge

In the previous subsection, we have spent Nk runs of the circuit M(τk) to obtain

the new knowledge N(Āk, ∆̄k) about A. To make use of the resources spent in obtaining

the prior knowledgeN(Ak−1,∆k−1), we use the Bayesian inference, which combines our

new knowledge N(Āk, ∆̄k) with the prior knowledge N(Ak−1,∆k−1). It gives an updated

Gaussian distribution N(Ak,∆k) centered at

Ak =
Ak−1/∆

2
k−1 + Āk/∆̄

2
k

1/∆2
k−1 + 1/∆̄2

k

(4.27a)

(which is a weighted average of Ak−1 with weight 1/∆2
k−1 and Āk with weight 1/∆̄2

k) with

a standard deviation ∆k determined by

1
∆2

k

=
1

∆2
k−1

+
1
∆̄2

k

. (4.27b)

This updated knowledge N(Ak,∆k) tells us, with a 95% confidence, that A lies in the

refined interval [Ak − 1.96∆k, Ak + 1.96∆k]. The inequalities ∆k < ∆k−1 and ∆k < ∆̄k

reveal that the combination of N(Ak−1,∆k−1) and N(Āk, ∆̄k) gives us a more precise

knowledge about A.
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For very accurate measurement compared with the prior knowledge, i.e., ∆̄k �

∆k−1, Eqs. (4.27a) and (4.27b) reduce to Ak ≈ Āk and ∆k ≈ ∆̄k, suggesting that the

updated knowledge is dominated by the measurement. By contrast, for inaccurate mea-

surement ∆̄k � ∆k−1, the updated knowledge Ak ≈ Ak−1 and ∆k ≈ ∆k−1 is dominated by

the prior knowledge.

4.6.2 Ideal case: approaching quantum metrology limit

In this subsection, we demonstrates the QML scaling of our estimation protocol

in the ideal case, i.e., in the absence of any errors (e.g., operation errors, relaxation,

and decoherence). For simplicity, we assume that in each estimation step, we run the

quantum circuit for the same number of times N1 = N2 = · · · ≡ N, corresponding to

ζ1 = ζ2 = · · · ≡ ζ ≡ 1/
√

N.

Up to the K-th estimation step, the total duration of the our estimation process

(identified as the total amount of resources spent) is

RK = N
K∑

k=1

2τk ≡ Nτtot
K .

To see the scaling of the precision 1/∆2
K with respect to RK , we take the first estimation

step as a reference. Further, we take ∆0 = ∞ to exclude the contribution from the

prior knowledgeN(A0,∆0), so that all our knowledge about A comes from the resources

RK spent in our protocol. Then, the QML limit ∆K,QML is defined by ∆K,QML/∆1 ≡

1/(RK/R1), while the SQL limit ∆K,SQL is defined by ∆K,SQL/∆1 ≡ 1/
√

RK/R1. Using

R1 = 2Nτ1 and ∆1 = 1/(τ1
√

N), we obtain

1
∆2

K,QML

= N

 K∑
k=1

τk

2

, (4.28)

1
∆2

K,SQL

= Nτ1

K∑
k=1

τk, (4.29)

1
∆2

K

= N
K∑

k=1

τ2
k .

First, we compare ∆K with the QML limit ∆K,QML and the SQL limit ∆K,SQL and

discuss the condition for approaching the QML:



61

1. The inequality ∆K > ∆K,QML can be readily verified. This manifests the QML pre-

cision 1/∆2
K,QML as the upper precision bound. To achieve the QML, {τk} should

satisfy τK � τK−1 � · · · � τ1, so that the total amount of resources is dominated

by the final estimation step and hence ∆K ≈ ∆K,QML ≈ 1/(τK
√

N). This condition

is equivalent to a dramatic reduction of the standard deviation of the measurement

for each successive estimation step: ∆̄K � ∆̄K−1 � · · · � ∆̄1. This ensures that in

each estimation step (say, the k-th step), the standard deviation of the estimation,

∆k ≈ ∆̄k ≈ 1/(τk
√

N), is dominated by the standard deviation ∆̄k of the measure-

ment instead of the standard deviation ∆k−1 ≈ ∆̄k−1 of the prior knowledge [cf.

Eq. (4.27b)]. The condition τK � τK−1 � · · · � τ1 is also equivalent to

∆k−1τk � ζ, (4.30)

since ∆k−1τk ≈ ∆̄k−1τk = (τk/τk−1)ζ.

2. For τ1 = τ2 = · · · = τK , the precision 1/∆2
K = NKτ2

1 coincides with the SQL

precision 1/∆2
K,SQL since in this case our protocol reduces to simple repetition of

the same quantum circuit M(τ1).

Then we give the best choice {τideal
k } satisfying the QML condition Eq. (4.30) for

the ideal case according to the description in Sec. 4.6.1. We choose {τideal
k } by taking

the largest mk such that ∆k−1τk ≈ c at every step, where c is a constant satisfying c � ζ

and c3 � 6ζ. Then {τideal
k } automatically satisfies the QML condition Eq. (4.30) and

the linear expansion condition Eq. (4.26b). From ∆k−1τk ≈ c, we have ∆k ≈ ∆̄k ≈

(ζ/c)k∆0, i.e., the standard deviation ∆k ≈ ∆̄k is dramatically reduced by each successive

estimation step. We also have τideal
k ≈ (c/ζ)kτ0 (with τ0 defined through ∆0 ≡ ζ/τ0), i.e.,

an exponential increase of τideal
k with k. Note that, for B = 0.2 T, we have O(η2) ∼ 10−6.

Therefore ζ can be as small as ∼ 10−5.

Finally we provide a numerical simulation for the estimation process. The pa-

rameters for the simulation are A = 3.06 MHz, B = 0.2 T, N = 1000, corresponding to

ζ ≈ 0.03. We take c = 0.2, which satisfies c � ζ and c3 � 6ζ. The prior knowledge is

A0 = 3.03 MHz with a standard deviation ∆0 = 0.03 MHz, which has been reported by

a previous experiment [23]. Each controlled nuclear spin π rotation uses a 1-µs square

pulse with the Rabi frequency Ω = 500 kHz. The electron spin rotations are regarded as
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Table 4.1: A sample numerical simulation result for the estimation of the hyperfine
interaction A in the NV center, without any errors or decays of the system. k = 0
denotes the prior information for the first estimation step. A = 3.06 MHz is used in the
simulation.

k τk (µs) Ak (MHz) ∆k (MHz)

0 0 3.03 0.03

1 1.07 3.058 7 0.004 6

2 6.95 3.059 48 0.000 72

3 44.52 3.060 17 0.000 11

4 285.05 3.060 022 0.000 017

5 1,825.24 3.059 996 9 0.000 002 7

instantaneous, as mentioned at the end of Sec. 4.5.2. In Fig. 4.10, the proximity of ∆K

(circles) to ∆K,QML (solid line) confirms the QML scaling of the estimation.

4.6.3 Realistic case: surpassing standard quantum limit

In this subsection, we take into account the nuclear spin rotation error and elec-

tron spin decoherence and discuss the optimal choice of {τk} and the resulting precision

1
∆2

K

= N
K∑

k=1

[Q(τk)τk]2

of the estimation, derived from Eq. (4.24b) and (4.27b):

• Nuclear spin rotation error Q(τ) = 1 − ε2 ≡ Q. This error is equivalent to an

increase of ζ to ζ̃ ≡ ζ/Q. Then QML condition Eq. (4.30) becomes ∆k−1τk � ζ̃.

For a general Q that is not too small (i.e., 1 ≥ Q � ζ), the conclusion in the

ideal case remains valid with ζ → ζ̃, i.e., {τk} is chosen as τk ≈ (c/ζ̃)k(τ0/Q),

where c is a constant subjected to c � ∆̃Z and c3 � 6∆̃Z. In the simulation,

we consider a typical error ε = 0.1 (corresponding to ∼ 3% error in the rotation

angle). Then we have Q ≈ 1, and this allows us to set c = 0.2, the same value with

the ideal case. As a result, we can choose τk ≈ τ
ideal
k and ∆K is nearly the same as

the ideal case. Therefore, the QML scaling is preserved for the realistic nuclear
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Figure 4.10: Comparison of the standard deviation ∆K of our protocol with the QML
limit ∆K,QML (solid line) and the SQL limit ∆K,SQL (dashed line). How to choose the
optimum τk is explained in the main text. ∆ε = 0.1 (Q=0.99) is used for the nuclear spin
rotation error. For the electron spin decoherence, we use T e

2 = 350 µs as the electron
spin coherence time.

spin rotation error, as confirmed by the nearly complete coincidence between ∆K

(stars) and ∆K,QML (solid line) in Fig. 4.10.

• Electron spin decohence Q(τ) = e−2τ/T e
2 . According to Sec. 4.6.1, we should

choose τk to maximize Q(τk)τk, subjected to the constraints in Eqs. (4.26). We

use ∆k−1τk ≈ c = 0.2 in the simulation. In the presence of the electron spin deco-

herence, Q(τ) decreases as τ increases. Thus the QML condition c � ζ/Q(τk) is

no longer valid at some point. This is why ∆k starts to deviate from the QML line

at k = 3 in Fig. 4.10. Note that the estimation of k = 3 still surpasses the SQL. The

maximum of Q(τ)τ occurs at τ = T e
2/2, meaning that the standard deviation ∆̄k

of the quantum circuit M(τk) is the smallest when τk ≈ T e
2/2. Further increase of

τk makes the precision of M(τk) worse. Once τk reaches τk ≈ T e
2/2 at k = kc, the
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Table 4.2: A sample numerical simulation result for the estimation of the hyperfine in-
teraction A in the NV center, with the electron spin decoherence error. k = 0 denotes the
prior information for the first estimation step. A = 3.06 MHz is used in the simulation.
We have τ4 = T e

2/2 at the fourth estimation.

k τk (µs) Ak (MHz) ∆k (MHz)

0 0 3.03 0.03

1 1.07 3.054 8 0.004 7

2 6.96 3.060 34 0.000 74

3 42.89 3.060 01 0.000 15

4 175.24 3.060 049 0.000 069

5 175.24 3.060 041 0.000 052

6 175.24 3.060 044 0.000 043

estimation for k > kc is performed with τk = τkc . Therefore, for K = kc +K̃, further

estimation steps beyond kc (i.e., k = kc + 1, · · · , kc + K̃) increases the precision

1/∆2
K by the SQL trend:

1
∆2

kc+K̃

−
1

∆2
kc

≈ NK̃(T e
2/2)2.

For T e
2 = 350 µs, we have kc = 4. Fig. 4.10 shows that ∆K surpasses the SQL for

K < 4, while it decreases parallel to the SQL for K ≥ 4.

4.7 Conclusions

We have proposed an efficient quantum measurement protocol to estimate the hy-

perfine interaction between the electron spin and the 15N nuclear spin in the NV center.

The essential idea of our protocol is the combination of the DQC1 parameter estimation

[6] with the spin-echo technique. The spin echo eliminates the independent dynamics of

the electron spin and the nuclear spin in the DQC1 model, but keeps the dynamics due to

their interactions, whose strength is to be estimated. This protocol does not require the

preparation of the nuclear spin state. We quantify the resources R as the total duration∑
τ of the estimation process. In the absence of any errors, the precision 1/∆2 (with ∆
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being the standard deviation) of the estimation approaches the quantum metrology limit

(QML) 1/∆2
QML = O(R2). This QML scaling is robust against the typical nuclear spin

rotation error in realistic experimental conditions. In the presence of electron spin de-

coherence, the precision 1/∆2 keeps its QML scaling when τ � T e
2/2. Once τ becomes

close to T e
2 further estimation steps increase the precision 1/∆2 according to the scaling

1/∆2
SQL = O(R) of the standard quantum limit (SQL). Due to the QML scaling in the ini-

tial stage, the overall precision still surpasses the SQL. We expect that this method can

be applied to other solid state systems such as quantum dots or cold atoms to measure

the interaction between two spins.

4.8 Appendix

4.8.1 Extended two-qubit DQC1 model

Here we consider an arbitrary target qubit state in the two-qubit DQC1 model.

The circuit diagram of the two-qubit DQC1 model with a general target qubit

state ρtar is illustrated in Fig. 4.11. An arbitrary initial state of the mixed-state target

qubit can be written as

ρ̂tar =
Î + ~q · ~σ

2
,

with the polarization
∣∣∣~q∣∣∣ ≤ 1. An arbitrary unitary operation is expressed as

Û = eiϕ exp
(
−i

n̂ · ~σφ
2

)
. (4.31)

tar
ρ̂

+ +

Û

Figure 4.11: Two-qubit DQC1 model with one control qubit in the pure state |+〉 ≡
(|0〉 + |1〉)/

√
2 and one target qubit in an arbitrary state ρtar.



66

After the controlled operation, we have the output state of the system

ρ̂o =
1
2

[
|0〉 〈0| ⊗ ρ̂tar + |0〉 〈1| ⊗ ρ̂tarÛ† + |1〉 〈0| ⊗ Ûρ̂tar + |1〉 〈1| ⊗ Ûρ̂tarÛ†

]
. (4.32)

The reduced state of the control qubit is

ρ̂c
o =

1
2

[
|0〉 〈0| + Tr[ρ̂tarÛ†] |0〉 〈1| + Tr[Ûρ̂tar] |1〉 〈0| + Tr[Ûρ̂tarÛ†] |1〉 〈1|

]
. (4.33)

We are interested in the coherence of the control qubit. Ûρ̂tar is further calculated to

Ûρ̂tar = eiϕ
[
cos

(
φ

2

)
− in̂ · ~σ sin

(
φ

2

)] Î + ~q · ~σ
2

=
eiϕ

2

[
cos

(
φ

2

) (
Î + ~q · ~σ

)
− i sin

(
φ

2

) (
n̂ · ~σ + n̂ · ~q + i

(
n̂ × ~q

)
· ~σ

)]
. (4.34)

From Tr[~σ] = 0, we have

Tr[Ûρ̂tar] = eiϕ
[
cos

(
φ

2

)
− in̂ · ~q sin

(
φ

2

)]
, (4.35)

Tr[ρ̂tarÛ†] = e−iϕ
[
cos

(
φ

2

)
+ in̂ · ~q sin

(
φ

2

)]
. (4.36)

If we choose an measurement operator as M̂ ≡ cosϕX̂ + sinϕŶ in the DQC1 model,

then the average value of M is

〈M̂〉 = Tr[ρ̂cM̂] = cos φ. (4.37)

This result is independent on ~q. In other words, for a given Û, there is a certain direction

of the measurement of which the average value is independent on the initial state of the

target qubit. We use this property to construct a parameter estimation algorithm for the

NV center in the next section.

4.8.2 Calculation of 〈X̂〉 of the DQC1 model

Here we provide the calculation for 〈X̂〉 under the Hamiltonian Ĥ = Ĥ0 + Ĥmix

discussed in Sec. 4.4.2. Ĥmix is treated as a perturbation. The initial state of the NV

center is ρ̂i = |+〉 〈+| ⊗ ρ̂neq, where ρ̂neq = (Î + qzσ̂z)/2 denotes a partially polarized

qubit. We use the matrix representation with a basis [|0, ↑〉 , |0, ↓〉, |1, ↑〉, |1, ↓〉]. Ĥ0 is
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represented by

Ĥ0=̇



gNµN Bσ̂z
2 0 0 0

0 −
gNµN Bσ̂z

2 0 0

0 0 D′ − A
2 +

gNµN Bσ̂z
2 0

0 0 0 D′ + A
2 −

gNµN Bσ̂z
2



=


E|0,↑〉 0 0 0

0 E|0,↓〉 0 0

0 0 E|1,↑〉 0

0 0 0 E|1,↓〉


, (4.38)

and Ĥ is written as

Ĥ=̇


E|0,↑〉 0 0 0

0 E|0,↓〉 A⊥√
2

0

0 A⊥√
2

E|1,↑〉 0

0 0 0 E|1,↓〉


=V̂Λ̂V̂†, (4.39)

where

Λ̂=̇


E|0,↑〉 0 0 0

0 λ|0,↓〉 0 0

0 0 λ|1,↑〉 0

0 0 0 E|1,↓〉


(4.40)

is a diagonal matrix with the eigenvalues of Ĥ and

V̂=̇


1 0 0 0

0 1 − η2

2 η 0

0 −η 1 − η2

2 0

0 0 0 1


(4.41)

is a matrix composed of the eigenvectors of Ĥ in its columns up to the second order in

η ≡ A⊥/[
√

2(D′ + gNµN B − A/2)]. The corresponding evolution operator is represented
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up to the second order in η by

Û(τ) = e−iĤτ = V̂e−iΛ̂τV̂†

=


e−iE|0,↑〉τ 0 0 0

0 (1 − η2)e−iλ|0,↓〉τ + η2e−iλ|1,↑〉τ η
(
e−iλ|1,↓〉τ − e−iλ|0,↓〉τ

)
0

0 η
(
e−iλ|1,↑〉τ − e−iλ|0,↓〉τ

)
η2e−iλ|0,↓〉τ + (1 − η2)e−iλ|1,↑〉τ 0

0 0 0 e−iE|1,↓〉τ


.

After the evolution, the output state of the system is

ρ̂o = Ûρ̂iÛ† =
1
2

ρ̂e
00 ρ̂e

01

ρ̂e
10 ρ̂e

11

 ,
where {ρ̂e

jk} is a 2 × 2 matrix and ρ̂e
01 = (ρ̂e

10)†. Since we are interested in the coherence

of the electron spin, we need to compute Tr[ρ̂e
10] only, which is given by

Tr[ρ̂e
10] =

1 + qz

2
e−iω̃e

↑
τ +

1 − qz

2
e−iω̃e

↓
τ + O(η2),

where ω̃e
↑

= λ|1,↑〉 − E|0,↑〉 (ω̃e
↓

= E|1,↓〉 − λ|0,↓〉) is a transition frequency of the electron

spin as described in Sec. 4.4.2. Note that the first order in η does not appear in Tr[ρe
10].

Therefore, we have 〈X̂〉 as

〈X̂〉 =
1
2

(
Tr[ρ̂e

10] + Tr[ρ̂e
01]

)
+ O(η2)

=
1 + qz

2
cos(ω̃e

↑) +
1 − qz

2
cos(ω̃e

↓) + O(η2)

= cos[(D′ + δ)τ] cos
(A

2
τ
)

+ qz sin[(D′ + δ)τ] sin
(A

2
τ
)

+ O(η2),

where δ = ηA⊥/2 + O(η2A⊥) is an energy shift by the perturbed Hamiltonian Ĥmix.

4.8.3 Calculation of 〈X̂〉 of the spin-echo DQC1 circuit

Here we calculate 〈X̂〉 of the spin-echo DQC1 circuit discussed in Sec. 4.5.1.

The composite evolution Ûcom in Eq. (4.20) governs the dynamics of the system. Using
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Eq. (4.21), Ĥ′ is given by

Ĥ′ = Ĥ′0 + Ĥmix

=


E|1,↓〉 0 0 0

0 E|1,↑〉 A⊥√
2

0

0 A⊥√
2

E|0,↓〉 0

0 0 0 E|0,↑〉


=V̂†Λ̂′V̂ (4.42)

with a basis [|0, ↑〉 , |0, ↓〉, |1, ↑〉, |1, ↓〉], where

Λ̂′=̇


E|1,↓〉 0 0 0

0 λ|1,↑〉 0 0

0 0 λ|0,↓〉 0

0 0 0 E|0,↑〉


.

The corresponding evolution operator of Ĥ′ is

e−iĤ′τ = V̂†e−iΛ̂′τV̂

=


e−iE|1,↓〉τ 0 0 0

0 (1 − η2)e−iλ|1,↑〉τ + η2e−iλ|0,↓〉τ η
(
e−iλ|1,↓〉τ − e−iλ|0,↓〉τ

)
0

0 η
(
e−iλ|1,↑〉τ − e−iλ|0,↓〉τ

)
η2e−iλ|1,↑〉τ + (1 − η2)e−iλ|0,↓〉τ 0

0 0 0 e−iE|0,↑〉τ


.

Therefore, the composite evolution Ûcom becomes

Ûcom =R̂e
y(π)R̂n

y(π)
(
e−i(σ̂yŶ ĤŶσ̂y)τe−iĤτ

)

=R̂e
y(π)R̂n

y(π)


e−i(E|0,↑〉+E|1,↓〉)τ 0 0 0

0 e−i(λ|0,↓〉+λ|1,↑〉)τ O(η) 0

0 O(η) e−i(λ|0,↓〉+λ|1,↑〉)τ 0

0 0 0 e−i(E|0,↑〉+E|1,↓〉)τ


+ R̂e

y(π)R̂n
y(π)O(η2)

=R̂e
y(π)R̂n

y(π)
[
e−iAτσ̂z/2e−iĤechoτ + O(η) (|0, ↓〉 〈1, ↑| + |1, ↑〉 〈0, ↓|)

]
+ O(η2), (4.43)
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where Ĥecho = |1〉 〈1| ⊗ (−Aσ̂z). In particular, all higher order energy shifts as well as

the second order in A⊥ by the perturbed Hamiltonian Ĥmix are completely erased since

λ|0,↓〉 + λ|1,↑〉 = E|0,↓〉 + E|1,↑〉 = −A/2.

We use ρ̂i = |+〉 〈+| ⊗ (Î + qzσ̂z)/2 as the initial state. After the composite

evolution, the output state is

ρ̂o = ÛcomρiÛ†com.

〈X̂〉 can be obtained by

〈X̂〉 = Tr
[
X̂ρ̂o

]
= − cos(Aτ) + O(η2).

As long as the initial nuclear spin state has no off-diagonal elements, O(η) of Ûcom in

Eq. (4.43) does not appear in 〈X̂〉.

4.8.4 Accounting for finite duration of controlled nuclear spin rota-

tion

In this section, we assume that each of the two controlled nuclear spin π rotation

in the quantum protocol (Fig. 4.9) is driven by a square π pulse with a duration τn ∼

1 µs and prove that inclusion of this finite duration amounts to a trivial renormalization

τ→ τ + τn in Eq. (4.22).

In Fig. 4.9, the initial state ρ̂i = |+〉 〈+| ⊗ ρ̂neq is prepared at t = −τ− τn. The first

free evolution e−iĤτ occurs during t ∈ [−τ − τn,−τn], followed by a controlled nuclear

spin π rotation during t ∈ [−τn, 0]. A fast electron spin π rotation is applied at t = 0,

another controlled nuclear spin π rotation during t ∈ [0, τn], and another free evolution

e−iĤτ during t ∈ [τn, τ + τn].

First we calculate the evolution operator driven by a square π pulse applied dur-

ing t ∈ [t1, t2], with a central frequency ω = A − gNµN B − δ (where +δ is the energy

correction to |1, ↑〉 by the off-diagonal hyperfine interaction) resonant with the transition

|1, ↑〉 → |1, ↓〉. During this pulse, the Hamiltonian Ĥ(t) = Ĥ + V̂(t) of the electron-

nuclear spin qubits acquires an additional term

V̂(t) =
iΩR

2
(e−iωt |1, ↓〉 〈1, ↑| − eiωt |1, ↑〉 〈1, ↓|),
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with a constant Rabi frequency ΩR = π/(t2 − t1). With the aid of the interaction picture

|ΨI(t)〉 ≡ eiĤt|Ψ(t)〉, the evolution operator ÛV(t2, t1) during t ∈ [t1, t2] can be calculated

straightforwardly as ÛV(t2, t1) = e−iĤt2e−iĤI(t2−t1)eiĤt1 , where ĤI(t) ≡ eiĤtV̂(t)e−iĤt. Simi-

lar to the discussions in Sec. 4.4.2, we have ĤI(t) = (ΩR/2) |1〉 〈1| ⊗ σ̂y + O(ΩRη), where

η ∼ 10−3 for the external magnetic field B = 0.2 T used in our estimation. Therefore,

the evolution e−iĤI(t2−t1) ≈ R̃n
y(π) coincides with the instantaneous controlled rotation and

hence

ÛV(t2, t1) = e−iĤt2R̃n
y(π)eiĤt1 .

With the aid of this result, we can compute Ûcom again

Ûcom = e−iĤτÛV(τn, 0)R̂e
y(π)ÛV(0,−τn)e−iĤτ

= e−iĤ(τ+τn)R̃n
y(π)R̂e

y(π)R̃n
y(π)e−iĤ(τ+τn). (4.44)

Thus, the evolution operator for the composite evolution (as enclosed by the dashed box)

in Fig. 4.9 is equal to Ûcom|τ→(τ+τn). Therefore, inclusion of the finite duration τn of the

controlled nuclear spin rotation amounts to replacing τ with (τ + τn) in Eq. (4.22). Note

that the nuclear spin relaxation time and decoherence time & 1 ms [25, 49] are much

longer than τn ∼ 1 µs and hence have negligible influence on this result.

4.8.5 Bayesian inference

The Bayesian inference provides a posterior distribution based on a prior distri-

bution and its associated likelihood function. We use the first estimation step of A in the

main text as an example.

The prior distribution of A is given by the Gaussian distribution N(A0,∆0),

f (A) =
1

√
2π∆0

exp
(
−

(A − A0)2

2∆2
0

)
.

And we construct the quantum estimation circuit M(τ1) based on the prior information

we have, with the constraints in Eq. (4.26). The circuit M(τ1) produces an estimator Z1

of 〈Ẑ〉1 = cos(Aτ1), which obeys the Gaussian distribution N(〈Ẑ〉, ζ). This information

is converted to the distribution of Ā1 by the linear expansion. Ā1 also obeys the Gaussian

distribution N(A, ∆̄1),

f (Ā1 | A) =
1

√
2π∆1

exp
− (Ā1 − A)2

2∆̄2
1

 . (4.45)
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The distribution of Ā1 is conditioned on A because it is obtained from the prior distribu-

tion of A. Thus f (Ā1 | A) is considered as the likelihood of Ā1. Note that Eq. (4.45) can

also be interpreted as the Gaussian distribution of A with the mean value of Ā1 and the

standard deviation of ∆̄1, which we have done in the first part of Sec. 4.6.1.

The posterior distribution of A is computed according to the Bayes’ rule

f (A | Ā1) =
f (Ā1 | A) · f (A)

f (Ā1)
.

The joint distribution f (Ā1 | A) · f (A) is

f (Ā1 | A) · f (A) =
1

√
2π∆0

exp
(
−

(A − A0)2

2∆2
0

)
×

1
√

2π∆1

exp
− (Ā1 − A)2

2∆̄2
1

 .
The exponent of the above equation is

−
(A − A0)2

2∆2
0

−
(Ā1 − A)2

2∆̄2
1

= −
1
2

 1
∆2

0

+
1
∆̄2

1

 A2 − 2
A0

∆2
0

+
A1

∆̄2
1

 A + · · ·


= −

(A − A1)2

2∆2
1

+ g(Ā1),

where

A1 =
A0/∆

2
0 + Ā1/∆̄

2
1

1/∆2
0 + 1/∆̄2

1

, (4.46a)

1
∆2

1

=
1
∆2

0

+
1
∆̄2

1

. (4.46b)

These are the formulae used in Eq. (4.27a) and (4.27b). Since the distribution f (Ā1) has

no dependence on A, the posterior distribution f (A | Ā1) is the Gaussian distribution

centered at A1 with the standard deviation ∆1.

As seen in Eqs. (4.46), the posterior distribution contains both the resources

spent in obtaining the prior information and the resources spent in the estimation circuit

M(τ1). As a result, the standard deviation of the posterior distribution ∆1 is smaller than

∆0 and ∆̄1.
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Chapter 5

Conclusions

5.1 Summary

In this dissertation, we have studied on the optical initialization of the nitrogen

nuclear spin in the NV center and the quantum measurement of the hyperfine interaction

between the electron spin and 15N nuclear spin in the NV center.

In chapter 3, we have calculated the dynamics of the optical initialization of the

nitrogen nuclear spin in the NV center under optical pumping. The nitrogen nuclear

spin can be deterministically prepared in a given pure state by incoherent optical pump-

ing. So far, the known understanding of the optical initialization mechanism was not

sufficient to explain the earlier experiment. Our semi-classical calculation successfully

explains the experimental data and provides a quantitative understanding of the initial-

ization mechanism of the nitrogen nuclear spin which is based on the level anticrossing

in the excited state. The mechanism is a competition between the two spin-mixing

transitions in the excited state due to the hyperfine interaction. Since one transition is

dominant over the other, a large amount of polarization can be achieve not only near the

level anticrossing (B ≈ 500 G) but over a wide range of the magnetic field. While the

experiments using the nitrogen nuclear spins have not considered the effect of the local

strain in the NV center, we have found that the local strain induces the depolarization

the nuclear spin at the level anticrossing. As a result, the optimal point of the initial-

ization is not at the level anticrossing but near B ≈ 470 G for the 15N nuclear spin and

B ≈ 580 G for the 14N nuclear spin. We also suggest that a weaker pumping at these

74
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optimal magnetic fields produces a better purity of the prepared qubit.

In chapter 4, we have proposed a quantum measurement protocol to estimate

the hyperfine interaction between the electron spin and the 15N nuclear spin in the NV

center. The underlying concept of the protocol is the mixed-state quantum computa-

tion (DQC1) with the spin-echo technique. The spin-echo eliminates the independent

dynamics of the electron spin and the nuclear spin but keeps only the hyperfine interac-

tion in the coherence of the electron spin. While most quantum metrological techniques

require pure qubits and entanglement between them, the suggested protocol does not

require the preparation of the 15N nuclear spin and entanglement. Instead, the proto-

col utilizes the total duration of the operations
∑
τ as a resource of the estimation. In

principle, by exponentially increasing the operation time, the precision of the estimation

approaches the quantum metrology limit (QML). In the presence of the nuclear spin ro-

tation error, the precision of the estimation still approaches the QML if the error in the

rotation angle is a few %. In other words, the protocol is robust against the nuclear spin

rotation error. In the presence of the electron spin decoherence, the estimation is close to

the QML when the operation time is much shorter than the coherence time of the elec-

tron spin (τ � T e
2). However, τ cannot increase arbitrary large because the decoherence

erases the coherence of the electron spin where the information of the hyperfine inter-

action is stored. Thus τ increases at each step only until τ = T e
2/2 where the precision

of the estimation is optimal. For further estimation steps, τ is fixed and the resulting

precision of the estimation follows the trend of the standard quantum limit (SQL). In the

benefit of the QML scaling in the first a few steps, the overall estimation still exceeds

the SQL.

5.2 Future works

First of all, our two studies will contribute to the practical use of the nitrogen nu-

clear spin in the NV center as a quantum memory. In quantum computation, the initial-

ization and the coherent control of a qubit are key requirements for the implementation

of quantum computers [17]. Our work on the initialization of the nitrogen nuclear spin

proposes the optimal conditions to increase the purity of the prepared nitrogen spin. The
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work on the estimation of the hyperfine interaction in the NV center provides a precise

quantum measurement technique of the hyperfine interaction, which allows a coherent

control of the nitrogen nuclear spin with a higher accuracy. By improving the yield of

the initialization and the accuracy of the coherent control, the nitrogen nuclear spin in

the NV center approaches the realization of a room-temperature quantum memory.

There are still a lot of work to be done for the nitrogen nuclear spin as a quan-

tum memory. First of all, the initialization mechanism needs to be robust against the

alignment of the magnetic field. While our proposal for the initialization of the nitrogen

nuclear spin works if the external magnetic field is well-aligned, it does not work even

for a small misalignment (∼ 1◦). However, it is important to initialize several qubits

together with a single operation for a scalable quantum memory. For this purpose, the

robust initialization mechanism should be introduced in the future.

For a room-temperature scalable quantum memory, the entanglement between

flying qubits (photons) and stationary qubits (electron and nuclear spins in the NV cen-

ter) is to be created at room temperature. So far, the spin-photon entanglement in the

NV center has only been achieved at low temperature [64]. At room temperature, the

local strain and the vibration of the NV center prevent a generation of the entanglement.

While a recent study shows that the local strain can be electrically tuned [4], the vi-

bration of the diamond lattice is difficult to be frozen at room temperature. Thus the

creation of the entanglement may be related with the vibrational mode of the NV center,

which has been intensively studied [1, 24, 45].

Readout of the nitrogen spin state is another important issue to be done in the fu-

ture. A single-shot readout of the nitrogen nuclear spin has been demonstrated recently,

but the timescale of the measurement is about 5 ms [49], which is long with compared

to the operation time of the nuclear spin (0.1−50 µs). The slow readout of the qubit may

drop the efficiency of a quantum memory. One possible solution for the fast readout of

the nuclear spin is using the mapping of the nuclear spin to the electron spin and the

subsequent readout of the electron spin [25]. In this case, a single-shot readout of the

electron spin at room temperature needs to be accomplished [7].

We would like to close this dissertation with mentioning possible applications of

the quantum measurement protocol suggested in chapter 4. The proposed method is de-
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signed to measure the hyperfine interaction in the NV center efficiently. We claim that

our measurement method can be extended to other coupled systems such as quantum

dots or trapped ions. In particular, it can be applied to the system in which only one

qubit can be initialized but the other is not. In quantum computation, a precise knowl-

edge of the coupling constant is important to minimize an error in the creation of the

entanglement. Our method can estimate the coupling constant between two qubits with

spending less amount of resources. As a result, the operation error from the detuning

may drop to 0.001%, which is a requirement for quantum computation [17].
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