UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

High-Dimensional Vector Spaces as the Architecture of Cognition

Permalink

https://escholarship.org/uc/item/88v0k9pt

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors

Kelly, Matthew Arora, Nipun West, Robert <u>et al.</u>

Publication Date 2019

Peer reviewed

High-Dimensional Vector Spaces as the Architecture of Cognition

Matthew Kelly

The Pennsylvania State University, University Park, Pennsylvania, United States

Nipun Arora

Carleton Univesity, Ottawa, Ontario, Canada

Robert West

Carleton University, Ottawa, Ontario, Canada

David Reitter

Penn State, University Park, Pennsylvania, United States

Abstract

We demonstrate that the key components of cognitive architectures - declarative and procedural memory - and their key capabilities - learning, memory retrieval, judgement, and decision-making - can be implemented as algebraic operations on vectors in a high-dimensional space. Modern machine learning techniques have an impressive ability to process data to find patterns, but typically do not model high-level cognition. Traditional, symbolic cognitive architectures can capture the complexities of high-level cognition, but have limited ability to detect patterns or learn. Vector-symbolic architectures, where symbols are represented as vectors, bridge the gap between these two approaches. Our vector-space model accounts for primacy and recency effects in free recall, the fan effect in recognition, human probability judgements, and human performance on an iterated decision task. Our model provides a flexible, scalable alternative to symbolic cognitive architectures at a level of description that bridges symbolic, quantum, and neural models of cognition.