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Toward a Model of Comparison-Induced Density Effects 
 

Jessica M. Choplin (jchoplin@depaul.edu) 
DePaul University Department of Psychology 

2219 North Kenmore Avenue 
Chicago, IL 60614-3504 

 
Abstract 

A model of the effects of distribution density on evaluations 
of attribute values is proposed in which biases created by 
language-expressible magnitude comparisons (e.g., “I waited 
longer for the bus today than I did yesterday”) serve as the 
mediating mechanism. The biases created by comparisons as 
well as the mechanisms by which comparison-induced biases 
could produce density effects are described. Simulation data 
demonstrate signature characteristics of comparison-induced 
density effects. An experiment found preliminary evidence in 
support of the view that some density effects might be 
comparison-induced. 

Density Effects 
Evaluations of attribute values such as grades (Wedell, 
Parducci, & Roman, 1989), taste (Riskey, Parducci, & 
Beauchamp, 1979), visual velocity (Sokolov, Pavlova, & 
Ehrenstein, 2000), prices (Niedrich, Sharma, & Wedell, 
2001), income (Hagerty, 2000) and so forth often depend 
upon the density—or frequency—of the distribution from 
which judged values are drawn (Krumhansl, 1978; Parducci, 
1965, 1995).  In particular, evaluation functions are 
typically concave (downward) for positively skewed 
distributions and convex (concave upward) for negatively 
skewed distributions. Values drawn from positively skewed 
distributions are also often judged larger than are values 
drawn from negatively skewed distributions. 

Several explanations for these effects have been proposed. 
Parducci’s (1965) Range-Frequency Theory assumes that 
people are aware of and use percentile rank information to 
evaluate attribute values. Range-Frequency Theory explains 
the finding that evaluation functions are often concave for 
positively skewed distributions, because the density at the 
lower end of positively skewed distributions gives low 
values larger percentile rank scores than they would have 
had otherwise.  The slope of the function becomes shallow 
at the sparse upper end of the distribution where percentile 
rank scores increase at a slower rate. The reverse pattern of 
changes in percentile rank scores in negatively skewed 
distributions explains the finding that evaluation functions 
are often convex for negatively skewed distributions. 

Haubensak (1992) suggested an alternative explanation 
for density effects on evaluations of sequentially presented 
values. He argued that since people do not know the 
distribution density and range in advance, they tend to 
assume that early values are typical or average and assign 
them intermediate verbal labels or category ratings. After 
these initial labels or category ratings have been assigned, 
people are obliged to use them consistently. Since early 
values are most likely to come from the dense portion of 
skewed distributions, the portion of the range at the dense 

end of these distributions will be smaller than the portion of 
the range at the sparse end. To cover the entire range of 
values the remaining verbal labels or category ratings would 
have to be assigned asymmetrically. 

In this paper, I propose yet another possible explanation 
for density effects. Namely, that some density effects might 
be comparison-induced (Choplin & Hummel, 2002). Verbal 
comparisons will tend to bias values apart in dense regions 
making the slope of the evaluation function steep and bias 
values together in sparse regions making the slope of the 
evaluation function shallow. These biases would make 
evaluation functions concave for positively skewed 
distributions and convex for negatively skewed 
distributions. The assignment of verbal labels or category 
ratings to these biased values might explain why values 
drawn from positively skewed distributions are often judged 
larger than are values drawn from negatively skewed 
distributions. 

I start by reviewing the basic tenets of Comparison-
Induced Distortion Theory (Choplin & Hummel, 2002) and 
describing how comparisons could produce density effects. I 
present simulation data to demonstrate signature 
characteristics of comparison-induced density effects and 
how they differ from density effects produced by other 
mechanisms. I then describe an experiment in which I found 
preliminary support for the view that some density effects 
might be comparison-induced. 

Comparison-Induced Distortion Theory 
The basic idea behind Comparison-Induced Distortion 
Theory (Choplin & Hummel, 2002) is that language-
expressible magnitude comparisons suggest quantitative 
values. To investigate the meanings of English age 
comparisons Rusiecki (1985) gave his participants sentences 
such as “Mary is older than Jane” and “Martin’s wife is 
older than Ken’s wife” and asked them to report the ages 
they imagined. Rusiecki found considerable agreement in 
the values imagined by his participants. In response to the 
comparison “Mary is older than Jane” participants imagined 
Mary to be 20.2 years on average and Jane to be 17.9 years 
on average. In response to the comparison “Martin’s wife is 
older than Ken’s wife” participants imagined Martin’s wife 
to be 37.2 years on average and Ken’s wife to be 33.0 years 
on average. 

Of particular interest to the current discussion, the age 
differences imagined by Rusiecki’s (1985) participants were 
remarkably similar. Regardless of the particular ages they 
imagined, participants imagined a difference between the 
ages of approximately 2 to 5 years (slightly larger for larger 
values)—not 1 month or 30 years. Inspired by these results, 
Rusiecki argued that comparisons suggest quantitative 
differences between compared values. I will henceforth call 
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these quantitative differences “comparison-suggested 
differences,” because they are the differences suggested by 
comparisons. In the case of age comparisons, for example, 
Rusiecki’s results demonstrate that comparison-suggested 
differences are approximately 2 to 5 years (for ease of 
discussion I operationally define the comparison-suggested 
difference implied by age comparisons to be 3.5 years). 

Choplin and Hummel (2002) proposed a model of 
attribute evaluation in which magnitude comparisons (like 
those investigated by Rusiecki, 1985) bias evaluations of 
magnitude values. In particular, they suggested that 
evaluations of magnitude values might be vulnerable to bias 
whenever values differ from the values suggested by 
comparisons. For example, if the actual age difference 
between two people were 1.5 years (i.e., less than the 
comparison-suggested difference of 3.5 years), then a 
comparison would tend to bias evaluations of their ages 
apart—toward a difference of 3.5 years. The younger person 
would be evaluated younger than she or he would have been 
evaluated otherwise and the older person would be 
evaluated older than she or he would have been evaluated 
otherwise. If the actual age difference between two people 
were 5.5 years (i.e., more than the comparison-suggested 
difference of 3.5 years), then a comparison would tend to 
bias evaluations of their ages together—again toward a 
difference of 3.5 years. The younger person would be 
evaluated older than she or he would have been evaluated 
otherwise and the older person would be evaluated younger 
than she or he would have been evaluated otherwise. 

Formally, the comparison-suggested value of the smaller 
of two compared values (ES; E for Expected) and the 
comparison-suggested value of the larger of two compared 
values (EL) can be calculated from the comparison-
suggested difference, D: 

ES = SL – D  
EL = SS + D 

(1a) 
(1b) 

where SL and SS (S for Stimulus values) are the values of 
the larger and smaller values unbiased by comparisons 
respectively. Represented values are assumed to be a 
weighted mean of the values unbiased by comparisons and 
the comparison-suggested values: 

RS = wES + (1-w)SS  
RL = wEL + (1-w)SL 

(2a) 
(2b) 

where w is the relative weights of the two values, is bound 
between 0 and 1, and is constrained so as to prevent 
impossible values (e.g., negative years or sizes of geometric 
figures) from being represented. For example, assuming a 
comparison-suggested difference, D, of 3.5 years, a 
comparison between a 22-year old and a 28-year old would 
bias evaluations of their ages toward each other. If the 
weight given to comparison-suggested values were .2, then 
the represented age of the 22-year old would be 22.5 years 
and the represented age of the 28-year old would be 27.5 
years. That is, the age of the 22 year old would be evaluated, 
i.e., treated, as if it were half a year older and the age of the 
28 year old would be evaluated as if it were half a year 
younger. 

Comparisons Might Create Density Effects 
Comparison-induced biases like those just described might 
produce density effects. Consider, for example, the 
positively skewed distribution of ages presented in Figure 1 
which might be approximately representative of the ages of 
students in a typical undergraduate classroom. Filled-in 
arrows represent biases created by comparisons between 
values that are closer together than the comparison-
suggested difference and that are, therefore, biased apart by 
comparisons. Outlined arrows represent biases created by 
comparisons between values that are farther apart than the 
comparison-suggested difference and that are, therefore, 
biased together by comparisons. Values in dense regions 
(i.e., 18 – 22 years in Figure 1) are more likely to be closer 
together than the comparison-suggested difference and as a 
result comparisons will more likely bias evaluations apart. 
Values in sparse regions (i.e., 22 – 28 years) are more likely 
to be farther apart than the comparison-suggested difference 
and as a result comparisons will more likely bias 
evaluations together. I propose that this difference in the 
effects of comparisons within dense regions versus the 
effects of comparisons within sparse regions might produce 
comparison-induced density effects. 
 

Ages
28222018 2624

Ages
28222018 2624

 
 

Figure 1: Comparison-induced biases that might occur in a 
positively skewed distribution of ages. 

Modeling Density Effects 
To model comparison-induced density effects, Comparison-
Induced Distortion Theory requires several assumptions. 
First, an operational definition of the comparison-suggested 
difference (D) is required. In the preceding sections, for 
example, an adequate operational definition of the 
difference suggested by age comparisons was obtained from 
Rusiecki’s (1985) study in which he queried his participants 
as to the differences they imagined. Alternatively, an 
adequate operational definition might be obtained from 
common real-world differences. 

Second, because the number of comparisons people could 
hypothetically articulate as well as the sequences in which 
they could hypothetically articulate them is—in most 
cases—indefinite, assumptions about which comparisons 
get articulated are required. Almost any comparison scheme 
would produce density effects. Comparing each value to the 
value presented one item back, for example, would produce 
density effects. In the modeling presented below, I assumed 
that the to-be-judged item is only compared to one other 
item. Additionally, I assumed two constraints on the 
selection of this comparison item: the similarity between the 
to-be-judged item and candidate comparison items and the 
sequence in which values were presented. Although these 
assumptions were optional, I utilized them because they are 
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psychologically realistic and they have a long history in 
models of categorization and the psychology of judgment 
(see, for example, Haubensak, 1992; Nosofsky & Palmeri, 
1997; Smith & Zarate, 1992). 

To model the constraint of similarity on the selection of 
comparison items, I (along with Shepard, 1987) assumed 
that similarity is an exponentially decreasing function of the 
distance between item values. For every recently presented 
item j, it’s similarity to i, the to-be-judged item, (ηij) is 
calculated as: 

ijcd
ij e −=η  (3) 

where c is a sensitivity parameter and dij is the weighted 
distance between i and j in similarity space across all 
relevant dimensions weighted by the importance of each 
dimension (see, for example, Nosofsky & Palmeri, 1997). 

To model the constraint provided by the sequence in 
which items are presented, I calculated the activation (aij) of 
each candidate comparison item j as: 

ijjij ηMa =  (4) 

where M is the memory strength of exemplar j and is given 
by: Mj = αt(i) – t(j) where α represents the memory decay on 
each trial and is bound between 0 and 1 and where t(i) and 
t(j) are the trials on which i and j were presented 
respectively (see Nosofsky & Palmeri, 1997). Selection of 
the item to which the to-be-judged item is compared could 
be accomplished a number of different ways. The choice 
axiom might be used to make selection stochastic. In the 
simulations below, maximum activation (aij) was used to 
make selection deterministic. 

Simulation Using Artificial Values 
The purpose of this simulation was to demonstrate how the 
model proposed above might create density effects and to 
point out signature characteristics of comparison-induced 
density effects that differentiate them from density effects 
created by other mechanisms. To demonstrate how the 
model presented above would create density effects, a 
computer-generated sequence of 500 values drawn from a 
log-normal distribution was created from equations 5 and 6. 

)2sin(log2 21 RRVnormal π−=  (5)

normalV
normal eV σ=−log  (6)

where R1 and R2 are random, computer-generated values 
between 0 and 1. Equation 5 produced a normally 
distributed sequence and Equation 6 changed that sequence 
into a log-normally distributed sequence. To skew the log-
normal distribution, σ was set at .9. 

To model recall of the item to which the to-be-judged 
item was compared, the parameter α, representing memory 
decay, was arbitrarily set at .985 thereby minimizing 
memory losses. The parameter c, representing sensitivity to 
differences, was set at 0.3. Within the sequence, the second 
value was compared to the first value; the third value was 
compared to whichever of the first or the second value had 
the highest activation (a; see Equation 4); the fourth value 
was compared to whichever of the first, second, or third 
value had the highest activation, and so forth. In these 

simulations, only the most recent 7 values were candidates 
for comparison. Recalled values were biased by the 
comparison on the trial on which they were judged, but were 
not biased further by subsequent comparisons. 

To model comparison-induced distortions, the 
comparison-suggested difference, D, was set at 0.38 and the 
weight given the comparison-suggested values, w, was .5. 
As suggested in Figure 1, values from the dense region were 
more likely to be compared to values that were less than a 
comparison-suggested difference away than were values 
from the sparse region. The values that were smaller than 
1.5 (the dense lower region) were most similar to a value 
that was less than a comparison-suggested difference away 
86.1% of the time (329/382). By contrast, the values that 
were larger than 1.5 (the sparse upper region) were most 
similar to a value that was less than a comparison-suggested 
difference away 40.2% of the time (47/117). 

The results are presented in Figure 2. Generated values 
are plotted along the horizontal axis. The value of each item 
is plotted on the vertical axis. The filled-in squares represent 
comparison-biased values and the outlined circles represent 
unbiased values. 

 
Log-Normal Positively Skewed Distribution (σ = 0.9) 
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Figure 2:  Simulation Results. 

 
As shown in Figure 2, comparisons between each value 

and the most recent similar value created biases. Consistent 
with previous research using category ratings as the 
dependent measure, these biases produced a concave 
evaluation function. Seemingly contrary to previous 
research, however, comparisons had a tendency to bias 
values downward instead of upward. 

This seeming contradiction can be reconciled by noting 
that category ratings depend not only upon representations 
of values but also upon the function mapping 
representations to category ratings. A number of functions 
could produce high category ratings.  For example, if people 
were to use the range of values to make category ratings as 
proposed by Volkmann (1951), then even if comparisons 
biased representations in one direction (perhaps, as 
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measured by reproduction), category ratings could be biased 
in the other direction (see Biernat, Manis, & Kobrynowicz, 
1997). 

To demonstrate this possibility, range scores (i.e., [value 
on trial t minus smallest value up to trial t] divided by 
[largest value up to trial t minus smallest value up to trial t]) 
were calculated from the comparison-biased values. The 
results—after the initial 35 trials in which the range was 
established—are plotted in Figure 3. Filled-in squares 
represent comparison-biased range scores. The range 
transformation makes comparison-biased values comparable 
to the predictions of Range-Frequency Theory and so range-
frequency compromise values (with the weight given to 
frequency set at .35) are also plotted in Figure 3 and 
represented as outlined triangles (see Parducci, 1965). The 
comparison-biased range scores mirrored the unbiased 
range-frequency compromise scores, suggesting that in 
some cases the effects of density on people’s category 
ratings might be comparison-induced. 
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Figure 3:  Simulation Data.  Range scores on 
comparison-biased values mirror Parducci’s (1965) 

range-frequency compromise scores. 
 
Mirroring range-frequency compromise scores, the 

generated values in this simulation had comparison-biased 
range scores that were larger than their unbiased range 
scores 97.4% (487/500) of the time. I have successfully fit 
the model of comparison-induced density effects presented 
here to the results of several published density effect studies 
(e.g., Riskey et al., 1979) under the assumption that the 
comparison-biased represented values are mapped to 
category ratings using Volkmann’s (1951) range function. 

This modeling points out several signature characteristics 
of comparison-induced density effects that differentiate 
them from density effects produced by other mechanisms 
(e.g., range-frequency compromise). The comparison-
induced biases in this simulation depended solely upon the 
model’s knowledge of the comparison-suggested difference 
(D), the importance of the comparison (w), and the value 
retrieved for comparison. The model has no knowledge of 
the density of the distribution or of the percentile ranks of 
values and so the percentile ranks of values do not affect the 
model’s judgments on individual trials. Rather, density 
affects aggregate data, because values in dense regions are 
more likely to be compared to values that differ from them 
by less than a comparison-suggested difference (and less 
likely to be compared to values that differ from them by 
more than a comparison-suggested difference) than are 
values in sparse regions. By contrast, Range-Frequency 
Theory assumes that people have implicit knowledge of 
percentile rank information and use that knowledge in 
making judgments on individual trials. Due to this 
difference, Range-Frequency Theory predicts that density 
effects ought to be observable on individual trials and 
Comparison-Induced Distortion Theory predicts that they 
ought not to be. 

Experiment 
The purpose of this experiment was to investigate whether 
the signature characteristics of comparison-induced density 
effects demonstrated in the modeling presented above could 
be observed empirically. Participants imagined that they 
were spending 25 days in rural Minnesota during the middle 
of winter and had to rely upon public transportation. The 
length of time they had to wait for the bus varied each 
simulated day and they indicated how aversive the wait 
would be. Half of the participants judged wait times drawn 
from a negatively skewed distribution and the other half 
judged wait times drawn from a positively skewed 
distribution. 

Method 
Participants. Seventy-three people volunteered to 
participate after being approached by the experimenter on 
the University of California, Los Angeles campus or in the 
surrounding community (36 in the positively skewed 
condition and 37 in the negatively skewed condition). 
 
Materials and Procedure. A random sequence of 10 wait 
times drawn from a negatively skewed (7, 10, 13, 16, 16, 
16, 19, 19, 19, and 19 minutes) or a positively skewed (7, 7, 
7, 7, 10, 10, 10, 13, 16, and 19 minutes) distribution was 
created for each participant. Each participant’s sequence 
was presented twice. An initial sequence of 5 days was 
inserted at the start of the sequence to control for primacy 
effects, introduce participants to the range of values they 
would see in the experiment, and to measure participants’ 
baseline evaluations prior to being exposed to the density 
manipulation. The wait times on these 5 days were 7, 19, 
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13, 19, and 7 respectively and were the same for all 
participants. On each simulated day (simulated within a 
single session), the experimenter verbally told participants 
how long the fictitious wait for the bus was that day. 
Participants indicated how aversive they imagined that wait 
would be using a line-analogue measure in which they 
placed a tick at the spot along the line that was analogous to 
how aversive the wait was (see Schifferstein & Frijters, 
1992). A stop mark on the left-hand side of the line was 
labeled 0=not bad and a stop mark on the right-hand side of 
the line was labeled 10=extremely bad. The 25 lines were 
presented on a single, one-page experimental handout and 
labeled Day 1 through Day 25. 

Results and Discussion 
To reduce variance caused by idiosyncratic reactions to wait 
times, participants’ judgments during the initial sequence 
were used as a baseline. Each participant’s judgments on 
trials 6 through 25 were divided by the average of her or his 
judgments on trials 4, 5, and 6. 

Distribution density effects were revealed by differences 
between judgments in sparse regions versus differences 
between judgments in dense regions. Among participants 
whose wait times were drawn from the negatively skewed 
distribution, the difference between judgments of 7-minute 
wait times and judgments of 13-minute wait times (i.e., the 
sparse region) was reliably smaller than the difference 
between judgments of 13-minute wait times and judgments 
of 19-minute wait times (i.e., the dense region), t(36) = 3.99, 
p < .01. Among participants whose wait times were drawn 
from the positively skewed distribution, the difference 
between judgments of 7-minute wait times and judgments of 
13-minute wait times (i.e., the sparse region) was 
approximately the same size as the difference between 
judgments of 13-minute wait times and judgments of 19-
minute wait times (i.e., the dense region), t < 1. A 2 
(distribution) x 2 (region) Mixed-Factors ANOVA found 
that this interaction was significant [F(1,71) = 6.11, MSE = 
0.22, p = .01]. 

Because the initial sequence of 5 days inserted at the start 
of the experiment introduced participants to the entire range 
of wait times and was the same for all participants, 
Haubensak’s (1992) model is not a viable model of the 
observed density effects (but note that the density effects 
observed in this experiment were smaller than the density 
effects often observed). Range-Frequency Theory and 
Comparison-Induced Distortion Theory remain as viable 
models of the observed density effects. 

Range-Frequency Theory assumes that people have 
implicit knowledge about the percentile ranks of stimulus 
values and use that knowledge to judge stimulus values on 
particular trials. It, therefore, predicts density effects on 
individual trials. By contrast, Comparison-Induced 
Distortion Theory assumes that comparisons produce the 
same biases regardless of the type of distribution from 
which values are drawn (as long as D, w, and the values to 
which they are compared remain constant). It predicts 

density effects not on individual trials, but rather only in the 
aggregate and it does so only because the values to which 
judged values are compared differ across distributions. 

The predictions of Range-Frequency Theory and 
Comparison-Induced Distortion Theory were tested by 
concentrating on differences between successive wait times 
of 3 minutes. At 3-minute differences the stimulus one back 
will likely be the most similar recent value, although 
occasionally the identical value 2 trials back may be the 
most similar recent value. To-be judged values drawn from 
the negatively skewed distribution were preceded by a value 
that was 3 minutes away 41.5% of the time (292/703). Of 
these to-be-judged values, 69.9% (204/292) were larger than 
13, i.e., were in the dense region, and 14.7% (43/292) were 
smaller than 13, i.e., were in the sparse region. The to-be-
judged values drawn from the positively skewed distribution 
were preceded by a value that was 3 minutes away 40.6% of 
the time (278/684). Of these to-be-judged values, 72.7% 
(202/278) were smaller than 13, i.e., were in the dense 
region, and 12.2% (34/278) were larger than 13, i.e., were in 
the sparse region. 

Contrary to the predictions of Range-Frequency Theory 
and consistent with the predictions of Comparison-Induced 
Distortion Theory, differences between successive 
judgments (when actual differences were 3 minutes) were 
not correlated with differences in percentile rank. These 
correlations were not significant for descending (r = .065, F 
< 1) or ascending (r = -.030, F < 1) pairs from the positively 
skewed distribution or for descending (r = -.047, F < 1) or 
ascending (r = -.050, F < 1) pairs from the negatively 
skewed distribution.  

Consistent with the predictions of Comparison-Induced 
Distortion Theory and not predicted by Range-Frequency 
Theory, the differences between judgments of successive 
wait times that were different by 3 minutes were biased 
apart, i.e., larger than their rightful proportion of 25% of the 
range (using participants’ responses on trials 4, the large end 
of the range, and 5, the small end of the range, as the 
baseline). The differences between judgments of values that 
differed by 3 minutes were 33.2% of the range on average 
(SD = 25.1%) in the positively skewed distribution [which 
was significantly larger than their rightful proportion of 
25%, t(277) = 5.46, p < .01] and were 44.6% of the range on 
average (SD = 49.6%) in the positively skewed distribution 
[which was also significantly larger than their rightful 
proportion of 25%, t(291) = 6.77, p < .01]. Further analyses 
did not find differences between the two distributions or 
between regions within the two distributions, or interactions 
between them. The differences between judgments of values 
that differed by 6, 9, and 12 minutes did not differ from 
their rightful proportions of the range (all t’s < 1), perhaps 
because more similar recent items were recalled instead. 

General Discussion 
A model of distribution density effects in which verbal 
comparisons such as “I waited longer for the bus today than 
I did yesterday” create the observed biases was proposed. 
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Modeling demonstrated that comparisons might produce 
density effects. An experiment found preliminary empirical 
support for this proposal. 

Future research will investigate density effects using 
reproduction dependent measures and investigate the 
predicted disassociation between representations of values 
(perhaps as measured by reproduction, see Figure 2) and 
category ratings (see Figure 3, Biernat et al., 1997).  Future 
work will also investigate effects of distribution density on 
recall of values from memory. Comparison-Induced 
Distortion Theory predicts density effects on recall of values 
from memory and Range-Frequency Theory does not (see 
Choplin & Hummel, 2002, for a discussion). 

Although in my view many density effects are likely to be 
comparison-induced, I do not assume that all density effects 
are comparison-induced. Density effects observed when all 
values are presented simultaneously in ascending or 
descending order (e.g., Wedell et al., 1989) strike me as 
cases where density effects are particularly likely to be 
categorization-induced as Parducci (1965) suggested.  
Additionally, even if density effects are found to be 
comparison-induced, the equations used to formalize 
Range-Frequency Theory will likely still provide a useful 
heuristic for predicting effects of density on judgment. 

Conclusions 
Some density effects might be comparison-induced. 
Comparisons of values in dense regions will tend to bias 
values away from each other, while comparisons of values 
in sparse regions will tend to bias values toward each other. 
These biases could produce density effects. 
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