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Abstract

Most body mass index (BMI) genetic loci have been identified in studies of primarily European
ancestries. The effect of these loci in other racial/ethnic groups is less clear. Thus, we aimed to
characterize the generalizability of 170 established BMI variants, or their proxies, to diverse US
populations and trans-ethnically fine-map 36 BMI loci using a sample of >102,000 adults of
African, Hispanic/Latino, Asian, European and American Indian/Alaskan Native descent from the
Population Architecture using Genomics and Epidemiology Study.

We performed linear regression of the natural log of BMI (18.5-70kg/m?) on the additive single
nucleotide polymorphisms (SNPs) at BMI loci on the MetaboChip (Illumina, Inc.), adjusting for
age, sex, population stratification, study site or relatedness. We then performed fixed-effect meta-
analyses and a Bayesian trans-ethnic meta-analysis to empirically cluster by allele frequency
differences. Lastly, we approximated conditional and joint associations to test for the presence of
secondary signals.

We noted directional consistency with the previously reported risk alleles beyond what would have
been expected by chance (binomial p<0.05). Nearly a quarter of the previously described BMI
index SNPs and 29 of 36 densely-genotyped BMI loci on the MetaboChip replicated/generalized
in trans-ethnic analyses. We observed multiple signals at 9 loci, including the description of seven
loci with novel multiple signals.

This study supports the generalization of most common genetic loci to diverse ancestral
populations and emphasizes the importance of dense multi-ethnic genomic data in refining the
functional variation at genetic loci of interest and describing several loci with multiple underlying
genetic variants.
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INTRODUCTION

Obesity is a global epidemic and has become a top public health concern given its
downstream effects on cardiovascular disease, diabetes, cancer, and other diseases (Popkin
2009). In the United States (US), there are marked racial/ethnic differences in obesity
prevalence among adults (Flegal et al. 2012). For example, the US National Health and
Nutrition Examination Survey estimated that in 2009-2010, non-Hispanic/Latino African
descent (50%) and Hispanic/Latino (39%) adults had the highest burden of obesity; whereas
adults of non-Hispanic/Latino European descent had the lowest (34%). Studies of Asian
descent subpopulations indicate that they may have an even lower prevalence of obesity
between 4-10% (Oza-Frank et al. 2009). Given that non-European ancestries and Hispanic/
Latinos collectively make up more than one third of the US population and are experiencing
some of the fastest population growth (Humes et al. 2011), future public health research on
the determinants of obesity in US must be relevant to these racial/ethnic minorities.

Body mass index (BMI, kg/m?) is commonly used to classify obesity in epidemiologic
studies and is a polygenic trait with heritability estimates ranging between 40-70%
(Hjelmborg et al. 2008; Maes et al. 1997). As numerous genome-wide association studies
(GWAS) of predominantly European descent populations have identified more than 100
BMI loci (Berndt et al. 2013; Locke et al. 2015; Okada et al. 2012; Speliotes et al. 2010;
Wen et al. 2012; Wen et al. 2014; Willer et al. 2009; Winkler et al. 2015), little is known
about the effect of these loci in non-European ancestries. Therefore, the study of diverse
populations can inform the generalizability and diversity of alleles at established loci and aid
the identification of underlying causal variants through trans-ethnic fine-mapping.

To this aim the Population Architecture using Genomics and Epidemiology (PAGE) Study
was designed to extend the current body of knowledge on the genetic determinants of
complex chronic diseases from studies of primarily European descent populations to
African, Hispanic/Latino, Asian and American Indian/Alaskan Native ancestries (Matise et
al. 2011), which within the US are differentially affected by the obesity epidemic (Flegal
and Troiano 2000; Oza-Frank et al. 2009). In this study of approximately 102,000 adults
from diverse ancestries, we aimed to generalize a total of 170 previously described BMI
index single nucleotide polymorphisms (SNPs), or their available proxies, located within
166 loci and to fine-map 36 of these BMI loci with dense genotyping on the MetaboChip
(Mumina, Inc.) using trans-ethnic meta-analytic methods to narrow the putative interval for
future biologic study.

METHODS

Study Population

The Population Architecture using Genomics and Epidemiology (PAGE) Study is comprised
of several large study sites/consortia and a coordinating center bringing together samples of
diverse populations including those included in this analysis: the Atherosclerosis Risk in
Communities (ARIC) Study, the Epidemiologic Architecture for Genes Linked to
Environment study accessing BioVU (EAGLE BioVU), Coronary Artery Risk Development
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in Young Adults (CARDIA), Cardiovascular Health Study (CHS), the Hispanic Community
Health Study/Study of Latinos (HCHS/SOL), Multiethnic Cohort (MEC), the Women’s
Health Initiative (WHI) (Matise et al. 2011). Additional studies collaborating in this analysis
also included: the GenNet Network (GenNet), the Hypertension Genetic Epidemiology
Network (HyperGEN) Study, the MEC-Slim Initiative in Genomic Medicine for the
Americas Type 2 Diabetes Consortium (MEC-SIGMA), the Mount Sinai School of
Medicine BioBank (BioME), and the Taiwan-MetaboChip Study for Cardiovascular Disease
(TaiChi) study. A detailed description of each study can be found in our Supplemental
Materials.

Racial/ethnicity was self-reported in most studies except for EAGLE BioVVU where racial/
ethnicity is observer-reported (Dumitrescu et al. 2010; Hall et al. 2014). MEC-SIGMA
sample included Type 2 Diabetes cases and controls from Los Angeles, CA (Consortium et
al. 2014). The TaiChi Consortium substudies were conducted in Taiwan, the San Francisco
Bay Area, and Hawaii and represent East Asian ancestry (Assimes et al. 2016). The PAGE
MEC and WHI Hispanic/Latino samples predominantly represent individuals of Mexican
origin (Carty et al. 2013), whereas the HCHS/SOL (Daviglus et al. 2012) and BioME
Hispanic/Latino samples were more diverse with respect to Hispanic/Latino backgrounds
and admixture (e.g. African, European and American Indian) (Tayo et al. 2011). The
majority of WHI Asian American samples were of Chinese and Japanese descent, but also
included smaller samples of other backgrounds (e.g. Hawaiian, Filipino, Korean, and
Vietnamese). MEC represents both Japanese and Hawaiian ancestries, which were analyzed
separately based on their self-reported Asian background. Only WHI recruited American
Indians/Alaskan Natives.

The PAGE datasets generated during and/or analyzed during the current study are available
in the dbGaP repository (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000356.v1.p1). These non-PAGE datasets are either available on dbGaP or if
not funded by the National Institutes of Health are available from the corresponding author
by request. Each study obtained approval from their Institutional Review Boards and written
consent from all participants with the exception of EAGLE BioVU, which followed an opt-
out program (Pulley et al. 2010; Roden et al. 2008).

Genotyping and Imputation

The MetaboChip was a custom Illumina iSELECT array that contained approximately
195,000 SNPs and was designed to support large scale follow up of putative associations for
cardiovascular and metabolic traits, including BMI (Voight et al. 2012). Approximately 33%
of the MetaboChip SNPs were included as replication targets and 62% were included for
fine-mapping within 257 targeted densely-genotyped loci, which included 21 loci associated
with BMI as of 2009 (Moight et al. 2012) and 15 additional loci (i.e. originally included on
the MetaboChip for other cardiometabolic traits) associated with BMI since 2009 (Locke et
al. 2015; Okada et al. 2012; Speliotes et al. 2010; Wen et al. 2012; Wen et al. 2014; Winkler
et al. 2015). Collectively, these 36 densely-genotyped BMI MetaboChip loci include 37,900
SNPs (Supplemental Table 1), represent 20% of all BMI loci identified as of June 2016.
Across the entire MetaboChip more than a third of all BMI loci are represented by either at

Hum Genet. Author manuscript; available in PMC 2018 June 01.


http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356.v1.p1

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Fernandez-Rhodes et al. Page 4

least one index SNPs, or at leats one proxy SNP. We define a locus as was done as part of
the design of the MetaboChip (Voight et al. 2012). Therefore as shown in Supplemental
Table 1 the number of SNPs per locus, which varied widely as a function of the base pair
range of the putative region of interest (133 to 3,494 SNPs across 38 kb to 1.9Mb,
respectively) and the tiered-prioritization of 11 dense-genotyping for cardiometabolic
phenotypes of interest (e.g. BMI) (Voight et al. 2012).

As part of the PAGE Study, the genotyping of the MetaboChip was performed at research
genomics laboratories: the Human Genetics Center of the University of Texas-Houston
(Houston, TX), the Vanderbilt University Center for Human Genetics Research (CHGR)
DNA Resources Core (Nashville, TN), University of Southern California Genomics Core
(Los Angeles, CA), and the Translational Genomics Research Institute (Phoenix, AZ)
(Buyske et al. 2012). Each genotyping center genotyped the same 90 HapMap YRI (Yoruba
in Ibadan, Nigeria) samples and 2-3% study-specific blinded replicates to facilitate
genotyping quality control. The study-specific SNP- and person-level quality control
measures are summarized in Supplemental Table 2.

Imputation of MetaboChip SNPs was conducted in MEC-SIGMA (Hispanic/Latinos only),
BioME (African and Hispanic/Latino ancestries), and WHI (representing 54% of WHI
African descent women, and all of the WHI European descent women) using 1000 Genomes
phase 1 reference populations, or in the case of WHI using study-specific reference samples
(Liu et al. 2012), and then filtered on imputation quality (Supplemental Table 2). Less than a
third of the final analytic sample genotypes were imputed.

In family- and household-based studies, the family structure was either accounted for using a
linear mixed models (GenNet, HyperGen) or a generalized estimating equation
incorporating clusters of 15t degree relative pairs/fhousehold members (HCHS/SOL) (Lin et
al. 2014). Within each racial/ethnic group, related participants within the remaining studies
and across the PAGE studies were identified using PLINK (Purcell et al. 2007). When
apparent first-degree relative pairs or individuals with high inbreeding coefficients (F>0.15)
(Weale 2010) were identified by non-PAGE study investigators or by the PAGE
Coordinating Center, these individuals or the member from each pair with the lower call rate
was excluded from further analysis. Principal components of ancestry were calculated using
the Eigensoft software (Patterson et al. 2006; Price et al. 2006) and determined either among
the unrelated subset, or in the 1000 Genomes reference populations, and then projected to
the study and racial/ethnic sample (Lin et al. 2014). Within each race/ethnic group in each
study, ancestral outliers of the resulting principal components were excluded by each study’s
investigators or the PAGE Coordinating Center from further analysis (Buyske et al. 2012).

Ascertainment of BMI

Weight and height were measured by trained clinic staff in the ARIC, CARDIA, CHS,
GenNet, HCHS/SOL, HyperGen, WHI and TaiChi studies. In EAGLE BioVU, weight and
height were calculated across the complete medical histories (Crawford et al. 2015)
following a published protocol (Goodloe et al. in press). For BioMe, height and weight
measures were obtained from participants’ medical records at the time of enrollment (Locke
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et al. 2015; Monda et al. 2013). In MEC weight and height were self-reported by
questionnaire with good validity (Lim et al. 2011; Lim et al. 2012).

BMI was then calculated as the ratio of weight to height squared. Following previous PAGE
study recommendations to remove extreme outliers (Fesinmeyer et al. 2012; Gong et al.
2013), BMI values <18.5 or >70 kg/m? are excluded due to the potential for these extremes
to be coding errors, reflect underlying illnesses or rare genetic mutations. However, due to
the young average age of CARDIA participants, additional data cleaning was performed in
CARDIA and individuals <18.5kg/m? were retained in the final analytic sample. To reduce
the influence of variation in growth and development on quantitative variation in BMI, we
limited our analytic samples to adults >19 years of age in EAGLE BioVU, CARDIA, and
BioME, and >20 years of age in HCHS/SOL. Across the PAGE studies (Supplemental Table
3) we had genotype and BMI information available on a resulting analytic sample of 35,606
African, 26,048 Hispanic/Latino, 22,466 Asian and 535 American Indian/Alaskan Native
descent adults.

Statistical Analysis

As described previously (Fesinmeyer et al. 2012; Gong et al. 2013) the distribution of BMI
was naturally log (In) transformed to minimize the influence of outliers. All regression
models were adjusted for age, sex, the top 2 to top 10 principal components, and study site,
as appropriate for the racial/ethnic group and study (Supplemental Table 2). Study- and
racial/ethnic-specific linear regression models were implemented in PLINK (Purcell et al.
2007), R (WHlI, https://cran.r-project.org), SNPTEST (BioME), GWAF (GenNet,
HyperGen) (Chen and Yang 2010), or a weighted version of a generalized estimating
equation in SUGEN (HCHS/SOL) (Lin et al. 2014).

Generalization of Established SNP-Associations with BMI in Diverse Populations

We created a Bonferroni corrected threshold of significance for the 170 index SNPs (or if
unavailable on the MetaboChip, their highest LD proxy, r>0.8 in the discovery population
1000 Genomes pilot CEU, YRI, or CHB+JPT) from previous GWAS or MetaboChip-wide
studies (Supplemental Table 4) after accounting for the four loci with more than one racial/
ethnic specific finding in strong linkage disequilibrium (LD, r2>0.8 in CEU, YRI and CHB
+JPT). Replication (i.e. in the same population of discovery) or generalization (i.e. to
another racial/ethnic group) was declared if an index SNP was: 1) Bonferroni significant for
166 independent tests (p-value<3.0x10~%) and 2) had a consistent direction of effect as the
previous report. These same criteria were applied to any index SNP within the 36 densely-
genotyped BMI loci. Strong evidence of effect heterogeneity was defined as less than a
Bonferroni p-value (i.e. 0.05/166 for index SNPs, or a locus-specific threshold described
below). Using a binomial distribution, we tested if the number of observed SNPs with
directional consistency between the risk allele observed in this study and prior studies was
greater than would be expected by chance (50% expected allele consistency by chance,
p<0.05 significant).
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Replication/Generalization of 36 Densely-Genotyped BMI Loci in Diverse Populations

To identify independent signals in the fine-mapped regions, we generated a locus-specific
Bonferroni correction for multiple comparisons based on the number of independent SNPs
(r?<0.2, pruned in PLINK using a 50-SNP window that was shifted by five SNPs each
iteration) in the African descent samples with MetaboChip data from the ARIC Study
(n=3,399). This served as a worst-case scenario of the maximum number of independent
tests in the present study’s populations with the least LD. The resulting p-value thresholds
for statistical significance ranged from 6.31x107° to 1.39x1073 (Supplemental Table 1).

Among the subset of the 28,573 SNPs passing quality control and located in the 36 densely-
genotyped loci (range per locus: 110 to 2,785; Supplemental Table 1), we conducted inverse
variance fixed-effect meta-analysis across studies (>100 observations each) in METAL
(version 2011-03-25) (Willer et al. 2010) when the SNP was >0.1% minor allele frequency
(MAF) in the racial/ethnic group and was informed by more than half of the maximum
racial/ethnic-specific sample size.

Trans-Ethnic Meta-Analyses to Narrow the Putative Interval

Similarly, we generated trans-ethnic meta-analyses for SNPs >0.1% MAF in each racial/
ethnic group and informed by at least two populations and more than half of the maximum
trans-ethnic sample size (n=101,979). We excluded American Indians/Alaskan Natives from
our trans-ethnic fixed-effect estimates due to their small sample size and possible within
group heterogeneity due to their recruitment across all nation-wide WHI recruitment centers
(n=535).

Linkage Disequilibrium—Finally the fine-mapping of causal variants was informed by
estimates of population-specific allele frequencies and LD correlation (r2, 500 Kb sliding
windows) in PLINK (Purcell et al. 2007) using genotypes from the ARIC (African descent),
HCHS/SOL (Hispanic/Latino), and WHI studies (Asian, European, and American Indian/
Alaskan Native ancestries). As done in a previous large meta-analysis of BMI (Justice et al.
in press), trans-ethnic LD estimates were generated from a sample of 17,437 individuals
from 1000 Genomes YRI (pilot), ARIC, MEC, HCHS/SOL and WHI, which was both
closely proportionate to the racial/ethnic groups of our trans-ethnic meta-analysis (37%
African, 26% Hispanic/Latino, 20% Asian, 17% European descent; compared to 35%, 26%,
22%, 18%, respectively, in the full trans-ethnic sample) and also representative of the PAGE
studies with the greatest amount of within racial/ethnic group diversity (e.g. HCHS/SOL for
Hispanic/Latinos, WHI for Asian Americans; see section on Study Population for more
information). Regional plots were generated using LocusZoom to visualize trans-ethnic
association differences as well as across the LD of various racial/ethnic groups (Pruim et al.
2010).

Bayesian Trans-Ethnic Meta-Analysis—Lastly, the assumption of fixed-effects across
racial/ethnic groups was relaxed in a Bayesian trans-ethnic meta-analysis in MANTRA,
which allows for the empirical estimation of mean allele frequency differences between
racial/ethnic groups as prior information in the clustering of the observed genetic effects
across defined racial/ethnic groups (Morris 2011)—in our case African, Hispanic/Latino,
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Asian and European ancestries. We adjusted for multiple comparisons in this Bayesian
analysis by defining very strong evidence in favor of association as having a Bayes Factor
(BF)>5, or strong evidence in favor for effect heterogeneity after applying MANTRA as
having a posterior probability of effect heterogeneity above a Bonferroni correction for the
number of independent index tests (e.g. posterior probability>1-0.05/166) or above the
Bonferroni correction for the number of independents tests per locus, both described above.
Furthermore, we also calculated the posterior probability ¢;that the .th SNP in the .th
independent signal is causal as:

BF;
e
’ > BF;

We then ranked all SNPs by their BFs and summed their cumulative posterior probabilities
until it exceeded 99%. The resulting set of SNPs constitutes the 99% credible set and defines
a genomic region where there is a 99% probability of containing the causal SNP, if the
assumption holds that each region of interest contained only one causal variant.

Established and Novel Secondary Signals at Known Loci—We further
investigated our trans-ethnic fixed-effect meta-analysis results at the 36 densely-genotyped
loci for second independent signals using Genome-wide Complex Trait Analysis (GCTA,
version 64) (Yang et al. 2012; Yang et al. 2011). To inform our approximations we used the
same trans-ethnic genotypes of 17,437 individuals from 1000 Genomes YRI (pilot), ARIC,
MEC, HCHS/SOL, and WHI, which were used to calculate trans-ethnic LD above and were
proportionate to the racial/ethnic groups of our trans-ethnic meta-analysis. We first filtered
out SNPs with high trans-ethnic heterogeneity (heterogeneity p-value<1.66x1076) and then
adjusted for the ‘lead SNPs’ (i.e. the marker with the smallest p-value within each region) of
the densely-genotyped regions in an approximate conditional model. We contrasted the
conditional effect estimates and p-values of the surrounding SNPs with their unconditional
estimates to ascertain if any additional SNPs that were associated unconditionally with BMI
at p-value<0.1 then arose as significantly ‘independent’ after we adjusted for the lead SNPs
of these regions and took the number of independent tests in the region into account (see
locus-specific threshold above). We repeated this approach to ensure that no additional
significant lead conditional SNPs arose in subsequent rounds of adjustments.

Then we entered these potentially independent SNP markers into an approximate joint
model in GCTA, which included all of the lead SNPs in the 36 densely-genotyped loci as
well as the 170 index SNPs for BMI outside of these regions to account for any potential
long-range LD with BMI loci not densely-mapped on the MetaboChip. Joint analyses were
repeated dropping out the SNPs with non-significant joint p-values (p-value<0.05/166 for
index SNPs; or p-value less than the locus-specific threshold for lead or secondary SNPs in
densely-genotyped regions), until a final joint model included only significant joint SNP
associations. As a sensitivity analysis of a subset of 6 loci with evidence of independent
signals from the approximate GCTA analyses, we performed a single round of exact
conditional analyses using the same statistical analysis and meta-analysis software as
described above for the unconditional analyses. In this round we adjusted for the lead fixed-
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effect trans-ethnic SNP and queried the significance of the remaining SNPs within the
densely-genotyped region. We also ran the approximate conditional analyses within each
race/ethnic group, meta-analyzing conditional results across race/ethnic groups, and
compared this approach to the exact and approximate conditional approaches, described
above. Additionally these jointly significant SNPs were queried for functional annotation in
HaploReg (version 4.1) (Ward and Kellis 2012). Both GERP and SiPhy conservation, as
well as GENCODE and RefSeq genetic annotations were queried on each lead SNP.

Statistical Power

To aid with the interpretation of null study findings, post hoc we calculated statistical power
in Quanto version 1.2.4 (Gauderman and Morrison 2006) to detect BMI genetic effects.
Previous PAGE meta-analyses using this transformation have estimated that genetic effects
for risk variants at #70 could be as much as 1% change in BMI per risk allele (or 0.0119 on
the natural In scale) (Gong et al. 2013). Using information available on the worst-case locus-
specific Bonferroni correction from Supplemental Table 1 (6.31x1075), the varying BMI
distributions and sample sizes of the race/ethnic specific and trans-ethnic meta-analyses
(Supplemental Table 3) we calculated power to detect effects up to as large as 1% change in
BMI per risk allele.

As shown in Supplemental Figure 1, power was expected to be greatest in the trans-ethnic
meta-analysis, which would allow for the identification of moderate genetic effects (>0.6%
change per risk allele) at >80% power for low frequency variants (=1%). Despite the smaller
size of the Asian descent sample, we estimated that we generally would have better power in
the analysis than in the African and Hispanic/Latino (>13,000 and >3,000 samples larger,
respectively) descent analyses, which would allow us to describe large genetic effects at
=>80% for both low frequency and common variants (=1%). In contrast, the African,
Hispanic/Latino, and European descent analyses were expected not have sufficient power
(<80%) to describe low frequency variants (e.g. <1%), and only had sufficient power (=80%)
to describe moderate effects (>0.6% change per risk allele) that were common (=5%) in that
specific race/ethnic group.

RESULTS

Our study was comprised of 102,514 individuals from five racial/ethnic groups, with a mean
age spanning from 27 years old (range: 20-37 years) in CARDIA to 73 years (65-93 years)
in CHS (Supplemental Table 3). The biobank studies (EAGLE BioVU, BioME), as well as
HCHS/SOL, HyperGen, and TaiChi represented ages across more than 5 decades of the life
course. Women comprised the majority (or entirety, as in the WHI) of all studies, except for
the TaiChi sample, which was only 39% female. Within sex obesity prevalence varied
substantially across studies (26—64% of females and 19-46% of males were obese at the
time of assessment). Yet obesity prevalence appeared to be generally higher in women and
men of African, Hispanic/Latino and American Indian/Alaskan Native ancestry compared to
women and men of Asian and European ancestry.
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Generalization of Established SNP-Associations with BMI in Diverse Populations

Overall, 135 of 165 SNPs, or their proxies (r2=0.8), were previously shown to associate with
BMI, passed quality control filters in at least two racial/ethnic groups, and displayed
consistent directions of effect in the trans-ethnic fixed-effect meta-analysis (Supplemental
Table 4). This is more concordant than would be expected by chance (binomial p, ppin
=1.63x10717). Of all 170 index SNPs, or their proxies, that passed quality control filters in at
least one racial/ethnic group, 42 were significantly associated with BMI in either the trans-
ethnic analyses or in at least one racial/ethnic group. For example, we replicated two African
descent-specific associations at GALNT10 (rs4569924 p=4.79%10~° (Monda et al. 2013).
and DHX34 (rs4802349, p=3.79x1078 (Gong et al. 2013)), and demonstrated generalization
of associations from previous studies of European descent populations for two SNPs at 8p12
(rs7844647, r2=0.96 in CEU, p=2.03x10~4 (Winkler et al. 2015)) at AGBL4 (rs657452,
p=5.52x107% (Locke et al. 2015)) to African and Hispanic/Latino descent individuals,
respectively.

Eighteen of the 42 significant index SNP associations were only significant in the trans-
ethnic sample, perhaps due to its larger sample size (Supplemental Table 4). Three SNPs
exhibited significant heterogeneity across the racial/ethnic groups in the trans-ethnic fixed
effect meta-analysis, yet only one of these SNPs (rs116612809, the index SNP at BRE and
the most significant (‘top’) SNP in the African descent and trans-ethnic fixed-effect
analyses) persisted to have evidence in favor of association after accounting for the ancestral
heterogeneity in a Bayesian meta-analysis. One index SNP at 7RAF3(rs7143963; (Winkler
et al. 2015)) was nominally significant and directionally consistent in both the African
descent and trans-ethnic analyses, but only exhibited significant heterogeneity across the
studies of African descent individuals (Supplemental Figure 2), wherein the effect estimates
from two studies with <1,200 individuals were the most extreme (HyperGen n=1171, Risk
allele frequency=66.9; MEC pilot n=433, 59.2%).

Replication/Generalization of 36 Densely-Genotyped BMI Loci in Diverse Populations

In 35,606 African descent individuals, 31 of 35 index SNPs (or their proxies) that passed
quality controls and were located within one of the 36 densely-genotyped BMI loci showed
an association that was directionally consistent with the previously reported risk allele
(Ppin=1.52x1075). We observed no significant effect heterogeneity within the studies
contributing samples of African descent individuals at either the index or lead SNPs
(Supplemental Table 5). Our analysis of the dense genotypes of African descent individuals
led to the generalization of 14 BMI loci (Table 1), including six loci (COBLL1, POCS5,
SLC22A3, TCF7L2, MAP2K5, ATPZA1) not previously associated in African descent
populations, and eight loci that were previously generalized to African descent individuals
(Gong et al. 2013): SEC16B, ETV5, TFAPZB, FTO and MC4R with the same lead SNP and
TMEM18, GNPDAZ, and BDNF-AS1/BDNF with a different lead marker (r2 of 0.86, 0.98,
0.11, respectively). Additionally as described previously (Gong et al. 2013), rs116612809 at
BRE replicated as the most significant SNP for BMI in our expanded African descent
sample (Table 1). Thus our findings resulted in a total of 15 BMI loci with significant
evidence of association in African descent individuals, six of which were best represented by
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the index SNP from GWAS of European (Locke et al. 2015; Speliotes et al. 2010), and non-
European populations (Gong et al. 2013; Monda et al. 2013; Pei et al. 2014).

In a sample of 26,048 Hispanic/Latinos, 32 of 36 index SNPs in the densely-genotyped BMI
loci had associations that were directionally consistent with previous reports
(Ppin=8.57x1077). We also observed no significant heterogeneity within the Hispanic/Latinos
studies at either the index or lead SNPs (Supplemental Table 6). Using the dense-genotyping
at 36 BMI loci, we were able to generalize 13 BMI loci to Hispanic/Latinos (Table 2),
including 8 loci that were generalized to African descent individuals (SEC168B TMEM18,
COBLL1, GNPDAZ, TCF7L2, MAP2K5, FTO and MC4R) plus an additional 5 loci
(LYPLAL1, IGF2BP2, S| C39A8, KCNQ1, MTCH?2) that only generalized to Hispanic/
Latinos.

In the entire Asian descent sample (n= 22,466), 29 of 34 available index SNPs were
directionally consistent (Supplemental Table 7; pyi,=4.76x1075). At MAP2K5 we did
observe evidence of heterogeneity across the Asian descent studies at one nominally
significant SNP (rs182297248) (Supplemental Figure 3). Excluding the Hawaiian sample
from the MEC (n=2,586) did diminish the effect heterogeneity and decreased the p-value,
but not enough to become Bonferroni significant (Supplemental Table 7). When we included
the Hawaiian samples from the MEC we were able to generalize to Asian descent adults at
eight BMI loci, including loci that were previously generalized to African descent
individuals (POC5, TFAP2B, BDNF-AS1/ BDNF), Hispanic/Latinos (MTCHZ2), or both
racial/ethnic groups (GNPDAZ, TCF7L2, FTO, MC4R) (Table 3). The lead SNP at MC4R
was the index SNP from GWAS of European/trans-ethnic populations (Pei et al. 2014;
Speliotes et al. 2010). In addition, we replicated three loci (CDKALI, KCNQ1, GIPR) that
were previously described in only Asian populations using lead SNPs that were in strong LD
(r2>0.8) with the previously reported index SNPs (Wen et al. 2012; Wen et al. 2014), or
were the Asian index SNP itself (Okada et al. 2012; Wen et al. 2012; Wen et al. 2014). In
summary, a total of 11 BMI loci replicated or generalized to our sample of Asian Americans.
We noted that MTCH?Z and MC4R were no longer Bonferroni significant when we excluded
the Hawaiian samples from the MEC in our exploratory analyses (Supplemental Table 7).
Thus we carried forward the full Asian American sample in our trans-ethnic meta-analyses,
below.

In the European descent sample (n=17,859), 30 of 35 available index SNPs were
directionally consistent (ppin=9.45%x107%). We observed no significant heterogeneity across
studies at either the index or lead SNPs (Supplemental Table 8). Additionally, we replicated
associations at nine BMI loci, including five loci that previously had not been associated
with any other racial/ethnic group (VEGRI1, LINGOZ, PRKD1, KCNJZ2, KCTD15).

Lastly, in the small sample of 535 American Indian/Alaskan Native women 22 of 35
available BMI index SNPs were directionally consistent (Supplemental Table 9;
Ppin=4.30x1072). We were able to generalize the lead SNP (rs73012297) at SLC22A3t0
American Indian/Alaskan Native women, at a different lead SNP than had generalized to
African descent individuals (rs116859471, in ARIC r2<0.01 with top American Indian/
Alaskan Native SNP).
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Trans-Ethnic Meta-Analyses to Narrow the Putative Interval

Established

Across the ancestries carried forward to trans-ethnic analyses (African, Hispanic/Latino,
Asian and European descent), we saw greater variability in risk allele frequencies than effect
sizes at index BMI SNPs of the densely-genotyped BMI regions on the MetaboChip (Figure
1). Trans-ethnic fixed-effect meta-analysis in up to 101,979 individuals generalized 29 of 36
BMI loci (Table 4). Most of these loci were already replicated/generalized to at least one
racial/ethnic group (Figure 2).

The Bayesian trans-ethnic meta-analysis did not reveal additional loci strongly associated
with BMI, as defined as log10 Bayes Factor>5 (Table 4). However, after accounting for
ancestral heterogeneity 22 loci had strong evidence in favor of association and only three of
these were noted to have a different lead SNP than seen in the fixed-effect analysis. For
example, at BRE the Bayesian approach resulted in a top/index SNP, which had significant
heterogeneity across the African descent studies (Table 1) and across the racial/ethnic groups
(Table 4). Whereas, the fixed-effect meta-analysis resulted in a lead SNP that was located
~300kb towards FOSLZ2 (Supplemental Figure 4). The other two loci (/GF2BP2Z, GIPR) with
top significant SNPs that differed between the two trans-ethnic approaches appeared to be
capturing the same signal across the range of LD (e.g. African to European descent)
represented in our trans-ethnic meta-analysis.

Using the physical location of the top fixed-effect racial/ethnic specific results, we compared
our results to the base pair range defined by the bounds of each MetaboChip densely-
genotyped region (Supplemental Table 1) and calculated a percentage reduction of our
putative interval of interest (Table 5). Across the 29 loci with significant trans-ethnic fixed-
effect estimates the reduction in base pairs and percentage narrowed ranged from 14,099
(37% of region) to 930,200 (72%).

Using a Bayesian approach to account for ancestral heterogeneity, we used the physical
bounds of the 99% credible set to reduce the putative interval by 52,690 base pairs (bp) at
ETV5(46% of region) to 764,979 bp at CDKAL1 (96% of region; Table 5). Figures 3—-4
illustrate the trans-ethnic fixed-effect estimates of 12 loci where the Bayesian approach
narrowed the putative interval to <12 SNPs. The remaining 24 fine-mapped regions are
plotted in the Supplement (Supplemental Figures 4-7). At three of these loci (SEC16B,
TFAPZB, MC4R) the 99% credible set reduced the interval of interest by between from
182,749-566,266 bp to a single SNP (Figure 3).

and Novel Secondary Signals at Known Loci

We first performed conditional analyses of the trans-ethnic fixed-effect estimates in the 36
densely-genotyped BMI loci after adjusting for the top trans-ethnic fixed-effect SNP. Then
we entered these potential independent signals and index SNPs outside of the densely-
mapped BMI regions into an approximate joint analysis, keeping only the significant
associations in the final joint model. As previously noted in European descent populations
(Locke et al. 2015), we observed that the SBKZ association (index SNP rs2650492, p.
=3.5x1072) was dependent on our lead trans-ethnic SNP at A7P2A1 (rs8061590), and the
presence of Bonferroni-significant secondary signals at BONF-AS1 and MC4R (Table 6) in
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weak LD with our top trans-ethnic findings (r2<0.3). Interestingly, we noted that rs2331841
at MC4R, originally reported in Asian populations (Okada et al. 2012), was also nominally
independent of our top finding in the region (p. =4.10x1072). Additionally, we confirmed
the observation that our association signal located between GPRC5B and GPR139 (lead
SNP, rs67501351; joint p, p; =7.70x10719) was independent of the signal at GP2 (index SNP,
rs11074446; p; =1.69x1077).

We also noted a secondary signal at #70 in our trans-ethnic sample with BMI in joint
analyses (Table 6), which was in moderate LD in our trans-ethnic sample with our lead SNP
(r?=0.41). We also observed evidence for 6 additional novel secondary signals at LYPLAL1,
COBLL1, IRS1, SLC39A8, TFAPZ2B, STK33/TRIM66 (Table 6). Incidentally most of the
99% credible intervals for the 9 loci with evidence of secondary signals not well refined and
included =15 SNPs (Table 5); however, TFAPZB and FTO had 99% credible intervals that
included 1-6 SNPs (Figures 1-2). Collectively 10 of 18 SNPs representing multiple signals
(6 for primary and 4 for secondary signals) within 9 densely-genotyped regions varied in
risk allele frequencies by more than 20% across the racial/ethnic groups (Supplemental
Figure 8).

Interestingly the top/index SNP at BRE was significant in the single-variant model, but was
not significant in the joint model of the most significant SNPs representing each signal,
which included a variant >3 Mb upstream at ADCY3(rs10182181, p; =2.42x10710),
Conditional analyses adjusting for rs10182181 at ADC Y3 confirmed that the top fixed-effect
and Bayesian SNPs in the region were no longer Bonferroni significant (p; =2.02x1073 and
9.94x1073, respectively), suggesting that this association may in part be related to long-
range LD patterns.

We also conducted a trans-ethnic exact conditional sensitivity analysis of African, Hispanic,
Asian and European descent populations in a subset of densely-genotyped BMI loci, which
had evidence of two independent signals in the conditional and joint GCTA analyses. At
three of the six loci included in the sensitivity analysis we noted Bonferroni significant
evidence for secondary signals (COBLL 1, BDNF-AS1 BDNF, MC4R; Pe exact<9.5%107°)
and at three loci, nominally significant evidence for secondary signals (LYPLALI,
SLC39A8, TFAP2ZB; 4.5%107°<p;. exact<1.4x1072; Supplemental Table 10). Additionally, we
ran a race/ethnic group-stratified approximate conditional analysis. Although this approach
had greater missingness in the meta-analyzed trans-ethnic results, it did confirm the
Bonferroni significant exact conditional findings at COBLL 1, BDNF-AS1/ BDNF, MC4R,
and also yielded significant evidence of a secondary signal at /RS21. Although all secondary
signals were supported at nominally significance by all methods, Bonferroni significance
was only seen at LYPLAL1, SLC39A8, TFAPZB, STK33/TRIM66, and FTOin the
approximate conditional (Supplemental Table 10) and joint analyses (Table 6) using a mixed
reference population.

DISCUSSION

Trans-ethnic fine-mapping has been called for as an important next step in describing the
genetic architecture of BMI (Locke et al. 2015). This work expands on previous fine-
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mapping efforts conducted by the PAGE Study, which generalized 8 of 21 then known BMI
loci to African American individuals (Gong et al. 2013), by including several under-studied
populations in genetic epidemiology (Bustamante et al. 2011) with distinct burdens of
obesity (Flegal et al. 2012; Oza-Frank et al. 2009). We also incorporate BMI index SNPs
from African, Asian, and trans-ethnic GWAS (Monda et al. 2013; Okada et al. 2012; Pei et
al. 2014; Wen et al. 2012; Wen et al. 2014), and harness the dense genotypes at 36 BMI loci
in a trans-ethnic sample to generalize, or fine-map, more than a third of currently known
BMI loci to diverse populations.

The trans-ethnic meta-analyses are better powered than racial/ethnic specific analyses
(Supplemental Figure 1) for genetic loci that are shared across ancestral groups (Wang et al.
2013). We find that nearly a quarter of the previously described BMI index SNPs and even
more (81%) of the densely-genotyped BMI loci available on the MetaboChip met our
definition for generalization in a trans-ethnic sample of 101,979 adults. These results help
demonstrate the transferability of common genetic loci to diverse populations and how effect
dilution can be avoided using fine-mapping techniques (Carlson et al. 2013).

However, some of the BMI loci assessed in this study (7 of 36) were not significant in our
trans-ethnic fixed-effect meta-analysis. Three of these loci replicated in European Americans
only (NEGR1, PRKD1, KCNJ2). One locus (SLCZ22A3) generalized to individuals of
African and American Indian/Alaskan Native descent. Two more loci were significant in at
least one subgroup, but the risk alleles were directionally inconsistent at the index SNPs and
the lead trans-ethnic SNPs in the regions were in weak LD in WHI European women
(KCNJ11and BRAP TRAFDI, r2<0.01; Supplemental Tables 6-7), suggesting that there
may be distinct ancestral haplotypes at these loci. Our results are consistent with the
hypothesis that the majority of common genetic loci for complex traits like BMI will
generalize to diverse populations given sufficient statistical power (a function of allele
frequency, effect size and sample size, etc.) (Carlson et al. 2013), and the importance of
considering directional consistency and LD when multiple underlying causal variants may
be present across populations.

At 6 loci (e.g. SECI16B, IRS1, SLC39A8, FAIMZ2, TCF7L2, MC4R) we noted the same lead
SNP using a Bayesian trans-ethnic fine-mapping approach (Morris 2011) as previously
reported in European descent individuals using an approximate Bayesian fine-mapping
approach (Locke et al. 2015; Wakefield 2007). Of note, the lead SNP at one of these loci,
SLC39A8, was a non-synonymous SNP that was conserved across species (Supplemental
Table 11). We were also able to narrow the putative regions of interest (in base pairs) at 9 of
the 20 loci assessed either at least as well or better than in previous studies (SEC16B,
TMEM18, IRS1, TFAPZB, NT5C2, TCF7L2, BDNF-AS1BDNF, MC4R, GIPR).

The assumption of one underlying signal appeared to hold for five of these fine-mapped loci
(e.0. SEC16B, TMEM18, NT5CZ, TCF7LZ, GIPR), which gives us further confidence to
interpret the credible intervals of these five loci as representing the interval where there is a
99% probability of capturing the underlying functional variant. Among these loci, there were
several interesting functional consequences (Supplemental Table 11) of our lead SNPs. For
example, the lead/index SNP 8.8kb 3" of SEC16B and 3.6kb 3’ of RP4-798P15.2 was the
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only SNP in our Bayesian 99% credible set and was conserved across species and from
histone modification assessment was predicted to be an enhancer in muscle tissue
(rs543874). The lead SNP (rs6731872), 43kb 3" of TMEM18, was predicted to change BCL
and TR4 motifs, and was identified as an eQTL for C100rf32-AS3MT. The lead/index SNP
within 7CF7L2 (rs7903146) was found to be a promoter in pancreas; an enhancer in fat,
muscle, and five other tissues; and changed several binding motifs. Interestingly a non-
synonymous lead SNP at G/PR (rs1800437) lies within a CMY C binding motif, and was
predicted to be an enhancer, promoter, and an eQTL with FBX046/VASP in whole blood; a
DNAse sensitive region in several tissues including fat, muscle, and pancreas; and found to
change a CTCF binding motif.

Due to allelic diversity of our sample, we were able to describe secondary signals for BMI at
9 loci, 7 of which for the first time with BMI (LYPLAL1, COBLL1, IRS1, SLC39A8,
TRAPZB, STK33/ TRIM66, and FTO). SNPs representing four of these 7 new BMI
secondary signals had larger risk-allele frequencies (>20%) across the African, Hispanic/
Latino, Asian and European ancestries of our trans-ethnic sample (Supplemental Figure 8),
further indicating the potential for remarkable variability in the frequency of underlying
causal variants at established BMI loci across diverse populations. A sensitivity analysis
comparing exact and approximate conditional p-values supported our approximate
conditional findings at nominal significane, or in the case of COBLL 1, IRS1, BDNF-AS1/
BDNF, MC4R, at Bonferroni significance.

Using our approximate conditional approach we replicated previously-reported independent
BMI signals at BONF-AS1IBDNF, MC4R and GPRC5B/GP2 (Locke et al. 2015). Both the
independent lead SNPs for the BDNF-ASI (rs1519480) and BONF (rs190666912) signals
were conserved across species, predicted to be enhancer in brain and other tissues, and lied
in DNAse sensitive regions (Supplemental Table 11). The primary signal (rs1519480) was
intronic to BODNF-AS1 and an eQTL for BDNF antisense RNA, which binds to GATA2 and
YY1. The SNP for the primary signal (rs6567160, located 209kb 3" of MC4Rand 1.7kb 5
of U4, a small nucleor RNA) was both conserved across species and in a DNAse sensitive
region in muscle. In contrast the SNP representing the secondary signal (rs77901086) was
44kb 5" of MC4R and was in high LD (r2>0.8 in 1000 Genomes AFR) with a highly
conserved non-synonymous SNP (rs2229616) 44kb upstream within MC4R, which alters a
GATA binding motif and has histone marks consistent with being a promoter and enhancer
in brain. However, only rs6567160 remained in our 99% credible set.

Moreover, our observation of novel secondary signals is supported in the literature at three
loci. First, with waist-hip ratio COBLL 1 has been described to have as many as five
independent signals (Shungin et al. 2015). Interestingly, we observe stronger LD patterns
between our primary BMI signal (rs10184004) and their primary-quaternary waist-hip ratio
signals (r2=0.30-0.97 in 1000 Genomes pilot CEU), and stronger LD between our secondary
signal (rs17244444) and their quinary signal (r2=0.44). Whereas the SNP representing the
primary signal at 1.7kb 3" of COBLL1 (rs10184004) alters several binding sites including
Nrf-2 and Maf for MAFK, is DNAase sensitive in skin and is an eQTL with SLC38A11in
muscle, the SNP for the secondary signal (rs17244444) was intronic to COBLL 1 and also
alters a Nrf-2 binding site (Supplemental Table 11). Second, we have previously noted a
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possible secondary signal at TRAP2ZB in the Hispanic/Latino women from WHI (Graff et al.
2013). The SNPs representing two signals at the 7FAP2B region were located on either side
of this gene and predicted to modify several binding motifs including TATA and GAGA
(rs2744475, rs2397016), but only rs2744475 was retained in our 99% credible set.

Third, even though previous studies of BMI have not previously observed strong evidence
for a F7Osecondary signals (Akiyama et al. 2014; Gong et al. 2013; Locke et al. 2015;
Peters et al. 2013; Yang et al. 2012), one study of Type 2 Diabetes has noted a secondary
signal at F70 in European descent individuals (Maller et al. 2012). The independent signals
seen in our study (rs3751812; rs9936385, which is r?=1.0 with rs9939609 in 1000 Genomes
YRI pilot) lie in two distinct clusters of SNPs that define two African ancestral haplotypes
(Akiyama et al. 2014). Both of our FTOsignals (rs3751812, rs9936385) lie within the
physical bounds of the putative interval of interest from our earlier PAGE fine-mapping
work with African Americans only (Peters et al. 2013). Lastly both signals at #70 were
intronic and predicted to be enhancers in muscle as well as either fat or brain and DNAse
sensitive in brain and several other tissues (rs3751812, rs9936385; Supplemental Table 11).
The SNP representing the primary signal at /70 (rs3751812) was conserved across species,
but interestingly the SNP for the secondary signal (rs9936385) was associated with Type 2
Diabetes in a trans-ethnic sample (Mahajan et al. 2014).

At four loci with novel multiple signals for BMI and no president in the literature, we noted
interesting functional consequences of the implicated SNPs (Supplemental Table 11). For
example, both independent SNPs (rs2820436, 254kb 3" of LYPLAL I; and rs4445477,
287kb 5” of RNUS5F) were predicted to be enhancers in fat and a number of other tissues, as
well as modify motifs of a number of binding factors. At the /RS locus, both SNPs
(rs2176040, rs2673147) were both located between AC068138.1 (>40kb 5”) and /RSI
(>400kb 3"), predicted to alter binding motifs and be eQTLs with /RS and RP11-395N3.2
in adipose tissue, but only the SNP for the secondary signal (rs2673147) was predicted to be
an enhancer in brain tissue. In contrast to the non-synonymous SNP for the primary signal at
SL.C39A8 (rs13107325), the secondary signal (rs28392891) was located 38kb 3 of
SLC39A8and predicted to alter a number of binding motifs. The SNPs representing the
region’s secondary signal (rs76633799) at STK33and the primary signals (rs76876925) at
TRIM66 were predicted to change several binding motifs including HDAC2 sites. The
variant at STK33(rs76633799) was also conserved across species and an enhancer in fat and
skin. Yet a key limitation of this work is that independent effect estimation and replication
using exact conditional methods are needed to accurately pinpoint the exact underlying
genetic variants and describe the variance explained by them in similarly diverse
populations.

Although our study does allow for interesting insights on the genetic architecture of BMI
across diverse samples, several additional limitations should be noted. First, fine-mapping
resolutions depend on many factors, such as the extent of LD within the locus, allele
frequencies and sample sizes of populations. Therefore, not surprisingly in this study the
narrowing of the interval in trans-ethnic meta-analyses varied from one locus to another
(Table 5). Second, in order to relax the strong assumption of fixed genetic effects in all of
the racial/ethnic groups, we have also performed a trans-ethnic Bayesian analysis to apply

Hum Genet. Author manuscript; available in PMC 2018 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Fernandez-Rhodes et al. Page 16

empirical estimates of the mean allele frequency differences, appropriately cluster the racial/
ethnic groups and construct credible intervals of confidence that the causal SNP lies within
its bounds. Yet the relative improvement in fine-mapping resolution offered by this Bayesian
trans-ethnic meta-analysis related to the ancestral heterogeneity at a given locus, the extent
to which the estimated allele frequency differences across populations captured this
heterogeneity, the number of independent signals, and their allele frequencies, and it comes
at the cost of assuming one underlying signals. Even though approximate conditional and
joint analyses helped us rule out the presence of statistically significant secondary signals at
27 densely-genotyped loci, future methodologic work should describe the impact of multiple
signals on trans-ethnic fine-mapping techniques.

This study represents another step towards prioritizing candidates for future etiologic study
and targeted functional follow-up. The genetic architecture of a complex trait like BMI and
disparities in obesity emphasize the need for future obesity interventions to consider both
determinants of individual and population-level variation. This study expands our
understanding of allele frequency heterogeneity in the genetic architecture of BMI, while
emphasizing the importance of diverse ancestral populations and high-dimensional genetic
data in the fine-mapping of complex traits.
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Lead Fixed Effect SNPs Across Racial Ethnic Groups

The comparison of the statistical significance (-log10 of the p-value), effect size (% change
in BMI per risk allele) and coded allele frequencies (oriented to the risk allele in the trans-
ethnic meta-analysis) across African, Hispanic/Latino, Asian and European ancestries for

the lead SNPs (position noted for build 36) within the 36 densely-genotyped BMI regions on

the MetaboChip with either locus-specific Bonferroni significant associations (rsid in black)
or non-significant (rsid in gray).
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Figure2.

Venn diagram of overlap in significant lead SNP findings at each of 36 densely-genotyped
BMI loci across the racial/ethnic populations [African (AfA), Hispanic/Latino (HA), Asian
(AsA), European (EA), American Indian/Alaskan Native descent (NA, in parentheses)] and

in the trans-ethnic fixed-effect meta-analysis of African, Hispanic/Latino, Asian and
European descent adults (noted with asterisk).
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Figure 3.

Regional plots of trans-ethnic fixed-effect estimates (I, index SNPs; FE, top finding) and
Bayesian fine-mapping of 6 significant BMI loci to select the SNP with the highest posterior
probability (M, shown in purple and reference for trans-ethnic linkage disequilibrium) and
narrow the putative interval of interest to <4 SNPs (SNPs in 99% credible interval shown in
diamonds) in a sample of up to 101,979 individuals
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Figure 4.
Regional plots of trans-ethnic fixed-effect estimates (I, index SNPs in black; FE, top finding)

and Bayesian fine-mapping of 6 significant BMI loci to select the SNP with the highest
posterior probability (M, shown in purple and reference for trans-ethnic linkage
disequilibrium) and narrow the putative interval of interest to 4-12 SNPs (SNPs in 99%
credible interval shown in diamonds) in a sample of up to 101,979 individuals
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