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ABSTRACT OF THE DISSERTATION

On Censoring-Robust Estimation Under the Nested Case-Control Design

By

Michelle M. Nuño

Doctor of Philosophy in Statistics

University of California, Irvine, 2020

Daniel L. Gillen, Chair

Analysis of time-to-event data using Cox’s proportional hazards model is ubiquitous in sci-

entific research. Most commonly, a sample is taken from the population of interest and

covariate information is collected on everyone. If the event of interest is rare and it is diffi-

cult or not feasible to collect full covariate information for all study participants, the nested

case-control design reduces costs with minimal impact on inferential precision. However, no

work has been done to investigate the performance of the nested case-control design under

model mis-specification. In this dissertation we show that under model mis-specification the

quantity being estimated under the nested case-control design will depend not only on the

censoring distribution, but also on the number of controls sampled at each event time. This

is true in the case of a binary covariate when the proportional hazards assumption is not

satisfied, and in the case of a continuous covariate where the functional form is mis-specified.

We propose several estimators that allow us to recover the statistic that would have been

computed under the full cohort data as well as a censoring-robust estimator. We also inves-

tigate the performance of time-dependent receiver operating characteristic curves under the

full cohort and nested case-control sampling scenarios. We show that if the risk score model

is mis-specified, estimates of the area under the curve will also depend on the censoring

distribution and we propose the use of censoring-robust risk scores that allow us to recover

censoring-independent area under the curve estimates.

xii



Chapter 1

Introduction

The work in this dissertation is motivated by the need for biomarker discovery in Alzheimer’s

disease (AD). It is currently estimated that 5.8 million Americans have AD [Association et al.,

2020] and this number is expected to grow. AD is a neurodegenerative disease that affects

not only the individual with the disease, but also the individual’s friends and families due

to the impact on memory and daily activities. While AD has detrimental effects on the

lives of millions of people, there is still no cure and no way to prevent the disease. Existing

biomarkers include the proteins amyloid-β (Aβ), total tau (T-tau), and phosphorylated

tau (P-tau) (Blennow et al. [2010], Blennow [2005, 2004]). These biomarkers help identify

people who likely have AD or who will progress to AD. A true diagnosis of AD, however,

requires post-mortem verification. Moreover, it is difficult to distinguish early AD from other

disorders involving similar symptoms (Humpel [2011]). This second point is particularly

important now that AD research has shifted to earlier stages of the disease in an attempt

to treat AD before irreversible damage has occurred. Discovery of new biomarkers is also

important, as these could serve as targets for therapeutic treatments.

Existing biomarkers can be measured in cerebrospinal fluid (CSF) or through brain scans such
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as positron emission tomography (PET) scans. A tracer specific to the protein of interest is

required to measure the biomarker using PET scans. Moreover, changes in protein levels in

CSF often reflect changes in the brain, making CSF particularly useful when investigating AD

[Humpel, 2011]. Therefore, when investigating potential biomarkers, a common approach

is to first measure the biomarker in CSF, if possible. In this case, participants undergo

lumbar punctures to provide a CSF sample that is then processed to measure the biomarker

of interest. In AD studies, participants are often asked if they would be willing to undergo

a lumbar puncture. CSF samples are then collected from participants who agree. These

samples are stored and only processed as needed. However, using data collected in a survey

at the University of California, Los Angeles (UCLA) Alzheimer’s Disease Research Center

(ADRC), we found that out of 91 respondents (22 with AD dementia, 32 with MCI, and

37 who were cognitively normal) only approximately 13% of respondents were highly willing

(scores of 6 or 7 from a 7-point Likert scale) to participate in a study requiring lumbar

punctures, compared to 42% who were highly willing to participate in studies requiring PET

scans. It is therefore crucial that stored samples are used efficiently, motivating the need for

efficient sampling designs in AD studies.

Two such designs are the nested case-control and the case-cohort designs. When the event of

interest is rare, these sampling schemes allow for a large reduction in costs compared to the

full cohort scenario where full covariate information on all study participants is collected.

Under the nested case-control and case-cohort designs, however, we only obtain full covariate

information for all participants who experience an event and a subsample of participants who

do not experience an event. In the context of AD research, use of the nested case-control and

case-cohort designs would greatly reduce the number of CSF samples that must be processed

so that the remaining samples may be used to answer other scientific questions. While these

designs provide great utility in scenarios such as the one presented here, it is important that

we understand how these designs perform when model mis-specification occurs. This is the

focus of the dissertation.

2



We begin the dissertation with a review of survival analysis including censoring, estimation

of the survival function, and the Cox proportional hazards (PH) model. Under model mis-

specification, the estimand corresponding to the Cox PH model, or the partial likelihood

estimator, depends on the censoring distribution. That is, if the model is mis-specified,

our results will depend on dropout and accrual patterns of a study, which is not usually

of scientific interest and limits scientific reproducibility and replicability. In Chapter 2, we

discuss the implications of model mis-specification in more detail. We also discuss censoring-

robust estimators [Xu and O’Quigley, 2000, Boyd et al., 2012, Nguyen and Gillen, 2012]

that can be used to remove dependence on the censoring distribution. We continue the

chapter by introducing several estimators for use under the nested case-control and case-

cohort sampling schemes that are meant to recover the statistic obtained using the partial

likelihood estimator. We end with a comparison of the two methods.

The remaining chapters focus on the nested case-control design, as proposed by Thomas

[1977], under model mis-specification and represent the methodologic contribution of the dis-

sertation. Because the nested case-control design is often implemented using a stratified Cox

PH model, we hypothesized that under model mis-specification, the estimand correspond-

ing to the nested case-control design would also be impacted by the censoring distribution.

When using the nested case-control design, one must select the number of controls to be

sampled at each event time, which also alters the censoring distribution. Because of this,

we suspected that the results would also be impacted by the number of controls sampled at

each event time. In Chapter 3, we consider the nested case-control design under violation

of the PH assumption. We show that in this case, our results will in fact be impacted by

the censoring distribution and the number of sampled controls. Dependence on the number

of controls makes it difficult to reproduce results, even within the same study. We therefore

propose two estimators. The first estimator recovers the estimand corresponding to the par-

tial likelihood estimator. This allows for reproducibility of results, even if a different number

of controls is selected. The second is a censoring-robust estimator whose estimand does not

3



depend on the censoring distribution even when the model is mis-specified. This estimator

allows us to replicate results across studies, since they are no longer impacted by patient

accrual and dropout patterns. In Chapter 4, we consider mis-specification of the functional

form of a continuous covariate, which induces non-proportionality. When this occurs, our

estimand again depends on the censoring distribution and, in the nested case-control setting,

on the number of sampled controls. We propose an estimator that again recovers the results

obtained when using the complete data set. The proposed estimator can be combined with

the inverse probability of censoring weights from Chapter 3 to obtain a censoring-robust es-

timator. Chapters 3 and 4 focus on inference under the nested case-control design. In many

disease areas, including AD, there are limited resources and there is much to learn about

the disease. Application of censoring-robust estimators along with the nested case-control

sampling scheme allow us to obtain censoring-robust estimates while maintaining reduction

in costs afforded by the nested case-control sampling scheme.

As previously discussed, the motivation for this work is biomarker discovery in AD. In order

to assess the classification performance of a potential biomarker, it is important that we

have reliable statistical methods. Chapter 5 considers time-dependent receiver operating

characteristic (ROC) curves and the impact of the censoring distribution on estimates of

the area under the ROC curve when the model used to obtain a diagnostic risk score is

mis-specified. In this case, we learn that the estimates of the area under the curve (AUC)

depend on the censoring distribution due to the dependence of the coefficient estimates

on the censoring distribution. This is problematic because even though the classification

performance of the biomarker does not change, estimates of the AUC will be impacted

by accrual and dropout patterns of a study, which are likely to differ across studies. We

propose the use of censoring-robust estimators to obtain the risk scores when estimating

time-dependent ROC curves.

Chapter 5 focuses on time-dependent ROC curves when full covariate information is available

4



for all study participants. However, this is not always feasible. Therefore, in Chapter 6, we

consider time-dependent ROC curves under the nested case-control sampling scheme. We

present existing estimators and investigate the performance of the Cai and Zheng [2012]

estimator when the model used to estimate the risk score is mis-specified. We again notice

dependence on the censoring distribution and, in some cases, on the number of sampled

controls. We show that when the censoring-robust estimator of Chapter 3 is used, we are

able to recover more stable estimates of the AUC, regardless of the censoring distribution.

The use of the censoring-robust estimators provides reliable estimates of the AUC even when

the model used to estimate the risk score is mis-specified. The proposed estimators can be

used to evaluate the classification performance of potential biomarkers in AD, as well as in

other disease areas.

The use of the nested case-control design provides great utility when the event of interest is

rare and it is difficult or expensive to collect full covariate information on all study partici-

pants. While the research in this dissertation was motivated by biomarker discovery in AD,

it is important to note that these statistical methods are also applicable to other disease

areas. Use of the proposed estimators allows us to obtain estimates that do not depend on

the censoring distribution, while still allowing for the reduction in costs associated with the

nested case-control sampling scheme.
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Chapter 2

Alternative Sampling Designs for

Time-to-Event Data with

Applications to Biomarker Discovery

in Alzheimer’s Disease

2.1 Introduction

Researchers all over the world are working to find the causes of and treatments for diseases

such as Alzheimer’s disease (AD). However, many of these diseases are rare and hence tra-

ditional prospective studies require that scientists follow large groups of patients to observe

only a small proportion that will develop the condition. For example, according to the

Alzheimer’s Association’s 2020 report, 1 in 10 people over the age of 65 in the United States

has Alzheimer’s disease [Association et al., 2020], though the clinical consequences of the dis-

ease are severe. While it is believed that early signs of AD are preceded by changes in levels
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of the biomarkers tau and Aβ, two proteins found in cerebrospinal fluid (CSF) [Association,

2016], in order to check levels of these proteins researchers must extract CSF using lumbar

punctures or spinal taps on all patients under study. It is often difficult to convince people

to participate in studies that require lumbar punctures since these are often perceived to

be painful. In a recent survey study conducted at the UCLA Alzheimer’s Disease Research

Center (ADRC), we found that only approximately 13% of participants in the (ADRC) were

willing to participate in a clinical trial requiring lumbar punctures. Responses were based

on a 7-point Likert scale where a score of ”1” represents ”extremely unlikely” to participate

and a score of ”7” represents ”extremely likely” to participate. Participants were deemed

willing to participate in a study of this nature if they responded with a score of ”6” or ”7”

[Nuño et al., 2017].

In cases where a rare disease is being investigated and where exposure measurements are

difficult to obtain due to logistical, monetary, and/or ethical reasons, it is appealing to find

ways to reduce the number of participants required in the study. One solution is to reduce

the number of controls (or people who do not develop the disease) through efficient sampling

designs such as the case-cohort [Prentice, 1986] or nested case-control design [Thomas, 1977].

Case-control studies are retrospective designs in which researchers consider subjects who

developed the outcome of interest and those who didn’t, and then look back to compare

exposure between the two groups. The Cox PH model can be used to model time-to-event

data in the presence of censoring and allows for the adjustment of confounding variables.

The ideas stemming from case-control studies and the Cox PH model lead us to the designs

presented in this chapter. The nested case-control and the case-cohort designs are based

on the idea that cases provide more information than controls do. In the presence of high

censoring, we often have significantly more controls than we do cases. These designs lower

the number of controls required for the analysis with relatively little loss in precision by

selectively sampling only a proportion of controls. The relatively small loss of efficiency

is because cases (subjects who develop the disease) provide greater statistical information
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relative to controls. In scenarios where there are substantially more controls than there

are cases (i.e. in a rare disease setting), this proves beneficial because the total number of

subjects studied can be dramatically reduced.

In this chapter, we provide a review of alternative sampling designs when scientific interest

lies in the estimation of covariate associations with a (possibly) censored time-to-event end-

point. Our goal is to provide a fairly comprehensive review of the background, development

and evaluation of the case-cohort and nested case-control design as well as a brief introduc-

tion to counting process notation, which will be used in the remainder of the dissertation.

We begin with a brief review of censored data before moving on to the Cox PH model and

its performance under model mis-specification. We then introduce time-dependent receiver

operating characteristic (ROC) curves. In Section 2.6 we introduce the nested case-control

design and some of its variations, which differ in how they sample from risk sets and in the

use of selected controls. We also provide simulation results for the nested case-control de-

sign. Similarly, we consider the case-cohort design, its variations, as well as simulation results

for the different methods. After introducing both designs, we provide an example of their

implementation using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

and compare the results obtained using the various designs. We then present alternative

sampling designs whose selection of controls is based on confounding variables. Section 2.10

compares both designs in a scientific and statistical sense to assist researchers in selecting

the appropriate method for their study.
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2.2 A Brief Review of Survival Analysis

2.2.1 Censoring

In cohort studies it is often of interest to model the time from a fixed or designated origin to

the occurrence of some event of interest (eg. death or progression of disease). A commonly

encountered problem in the analysis of time-to-event data is censoring. Generally speaking,

censoring occurs when the time to the event of interest is not known exactly, but is only

known to have occurred within a broader time interval. Here we briefly define the most

encountered forms of censoring. For further discussion on the forms of censoring that can

occur, we refer the reader to the text of Klein and Moeschberger [2005].

Multiple types of censoring can exist. Perhaps the most common form of censoring that is

encountered in practice is right censoring. This form of censoring describes the situation

where subjects enter into a study at some defined origin and who are at risk for the event of

interest at the time of their entry. A subject may then become right censored if their follow-

up ends prior to the event of interest having occurred. Thus a subject may become right

censored for a variety of reasons including: the study follow-up ending at some pre-specified

time point that occurs prior to the subject’s true event time (this is commonly termed

administrative right censoring), the subject choosing to discontinue follow-up prior to the

event occurring for some reason (commonly termed random right censoring), or another event

occurring that precludes the observation of the event of interest (termed a competing risk).

Most survival methods, including those discussed throughout the remainder of this chapter,

make an assumption that the censoring time is independent of the true survival time for all

subjects (conditional upon adjusted covariates that may be collected on the subjects). This

critical assumption, referred to as the non-informative censoring assumption, is considered

to be coarsening at random [Heitjan and Rubin, 1991] and is similar to the missing at random
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assumption in general missing data problems using the nomenclature from the seminal text

of Little and Rubin [2014]. In the case of administrative right censoring, non-informative

censoring is generally a reasonable assumption since the end of follow-up is pre-specified.

However, for random censoring or in the presence of competing risks, careful consideration

for the possibility of informative censoring must be made. In the presence of informative

censoring most standard survival analysis methods, including those discussed here, can lead

to biased and inconsistent parameter estimates.

Three additional types of censoring can occur in cohort studies. Left censoring occurs when

we do not know the exact event time for subjects who experienced the event before a certain

time; specifically, if the event happens before the start of the study, we may not know

precisely when it happened. For example, suppose that patients of ages 65 and older are

observed for the development of AD. If they develop the disease before they turn 65 years

old, we will only know that it happened before they turned 65.

Interval censoring occurs when we only know that an event occurred within a specific time

interval. We again refer to AD studies for an example. Patients at our ADRC are seen

every year. Each year, they are given a series of tests to determine their cognitive status.

If a patient is observed to have AD dementia, we do not know the exact time at which

they developed dementia, only that it occurred sometime between the current visit and the

previous year’s visit. Such data are said to be interval censored with the intervals of length

approximately 1 year.

Finally, double censoring occurs when there is a combination of left and right censoring.

As an example, double censoring could occur if a three-year study was conducted in which

patients were followed for the development of AD dementia. Patients could be enrolled

regardless of whether or not they had AD dementia, but if they developed the disease before

the start of the study we only know that it happened some time before, and if they become

afflicted after the study has ended, researchers only know that the event occurred at some
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point after the end of follow-up.

2.2.2 Statistical functions of interest in time-to-event data

As stated earlier, censoring is common when we are interested in time-to-event data. Survival

analysis methods seek to efficiently estimate and draw inference on statistical functions and

functionals in the presence of censoring. As with uncensored data, focus lies on estimation

of functionals derived from the probability density function (PDF) and cumulative distri-

bution function (CDF). However, due to the presence of censoring, survival methods also

consider estimation of the hazard function and the cumulative hazard function. While these

later functions are defined for uncensored data, they are less encountered in those settings.

For completeness we define each of the statistical functions most commonly of interest below:

1) Probability Density Function (PDF):

f(t) = lim
∆t→0+

1

∆t
Pr[t ≤ T < t+ ∆t]

2) Cumulative Density Function (CDF):

F (t) = Pr[T ≤ t] =

∫ t

0

f(s)ds

3) Survival Function:

S(t) = Pr[T > t] = 1− Pr[T ≤ t] = 1− F (t) = 1−
∫ t

0

f(s)ds
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4) Hazard Function:

λ(t) = lim
∆t→0+

1

∆t
Pr[t ≤ T < t+ ∆t|T ≥ t] =

f(t)

S(t)

5) Cumulative Hazard function:

Λ(t) =

∫ t

0

λ(s)ds = − log(S(t))

What is readily apparent from the above definitions and relationships is that knowing any

one of the four functions allows us to recover the rest. In the presence of censoring, estima-

tion of the hazard function is often most approachable given the conditional nature of the

function. That is, we may condition upon survival up to a given time so that estimates of

the hazard can be formed by utilizing data from subjects that have not been censored or

known to have experienced the event prior to that time.

2.2.3 Parametric estimation of the survival distribution

One way to estimate the functions presented in the previous section is to assume a parametric

distribution. Examples of commonly assumed parametric survival distributions can be found

in Table 2.1.
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Table 2.1: Parametric survival distributions and properties of the corresponding hazard
function.

Distribution Properties of the Hazard Function
Exponential Constant hazard

Gamma Monotonic hazard
Weibull Hazard proportional to a power of time

Log-normal Unimodal, right skewed hazard
Log-logistic Unimodal, right skewed hazard

(heavier tail than Log-normal)
Gompertz Hazard increases exponentially with time

Generalized Gamma Flexible (3 parameter), allowing for non-monotonicity

When we assume a parametric survival distribution and when the regularity conditions hold,

we can use maximum likelihood theory to estimate the survival distribution as long as we

account for censoring. Consider a sample of n subjects and suppose that Ti ∼ FT (·), Ci ∼

GC(·) where Ti represents the event times and Ci represents the censoring times, i = 1, . . . , n.

Assume that the two distributions are known, and that the event and censoring times are

independent. Let Xi be the observed failure time for subject i, so Xi = min(Ti, Ci) and

δi =


1 if the event was observed for subject i

0 if subject i was censored

.

Under this censored data framework, the likelihood contribution for the ith subject is

Li(λ, xi, δi) =


fT (xi)[1−Gc(xi)] if δi = 1

gc(xi)[1− FT (xi)] if δi = 0
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which can be written in the following manner:

Li(λ, xi, δi) = δifT (xi)[1−Gc(xi)] + (1− δi)gc(xi)[1− FT (xi)]

= {fT (xi)[1−Gc(xi)]}δi{gc(xi)[1− FT (xi)]}1−δi .

Suppose, for example, that Ti ∼ Exp(λ). The ith subject’s contribution to the likelihood is:

Li(λ, xi, δi) = [λe−λxi [1−Gc(xi)]]
δi [gc(xi)e

−λxi ]1−δi = λδie−λxi [1−Gc(xi)]
δi [gc(xi)]

1−δi .

After taking the logarithm of the likelihood function and simplifying, we find that the con-

tribution to the log-likelihood becomes li(λ) = δi log(λ)− λxi + k, where k is constant with

respect to λ and the contributions to the score and the information are

Ui(λ) =
∂li(λ)

∂λ
=
δi
λ
− xi and Ii(λ) = −E

[∂Ui(λ)

∂λ

]
= −E

[
− δi
λ2

]
,

respectively where E[·] represents the expectation.

From this, we can use the score function to find the maximum likelihood estimator (MLE)

for λ. Specifically, the MLE for λ can be obtained by solving the score equation given by

U(λ̂) =
n∑
i=1

Ui(λ̂) = 0.

Replacing Ui(λ̂) with δi/λ̂− xi, we obtain

n∑
i=1

(δi
λ̂
− xi

)
=

∑n
i=1 δi

λ̂
−

n∑
i=1

xi = 0,

and solving for λ̂ we obtain the MLE for λ as λ̂ = (
∑n

i=1 δi) / (
∑n

i=1 xi) = δ̄/x̄.
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Finally, appealing to the usual asymptotic theory for MLEs under standard regularity con-

ditions we have that λ̂∼̇N (λ, I−1(λ)) where I(λ) =
∑n

i=1 Ii(λ). Note that in practice the

calculation of I(λ) requires the evaluation of the expectation of δi, i = 1, . . . , n. Because this

would require a further assumption regarding the unknown distribution of Ci, in practice

Ii(λ) is most commonly replaced with Fisher’s observed information matrix and estimated

by I∗i (λ̂) = δi/λ̂
2.

2.2.4 Non-parametric estimation of the survival distribution

As with any statistical estimation procedure, mis-specification of the parametric distribution

may lead to biased and inconsistent estimates of survival. For this reason it may be desirable

to estimate the survival function non-parametrically. To do this, we can rely upon the non-

parametric Kaplan-Meier estimator [Kaplan and Meier, 1958], which is uniformly consistent

for the survival function under the assumption of independent (or uninformative) censoring

[Wang, 1987]. Below we provide a heuristic derivation of the Kaplan-Meier estimator to

appeal to the reader’s intuition.

First, assume that we observe information on the interval (0, τmax]. To estimate the survival,

we may split our interval into K intervals as such: (0, τ1], (τ1, τ2], ..., (τK−1, τmax], and recall

that S(t) = Pr[T > t], which in our case can be written as

S(t) = Pr[T > t] = Pr[T > t|T > τmax] · Pr[T > τmax|T > τK−1] · ... · Pr[T > τ2|T > τ1] · Pr[T > τ1].

For illustrative purposes, consider a finite number of intervals as in Figure 2.1 where we

observe three events and we let K = 8. Notice that we do not observe events at every

interval.

In general, the conditional probability for survival to τj conditional upon survival up to τj−1
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Figure 2.1: This figure presents an example in which we have split our interval into 8 smaller
intervals with three events. The events are marked with a star and their corresponding event
times are labeled.

may be estimated as

P̂r[T > τj|T > τj−1] = 1− dj
nj

=
sj
nj

where dj is the total number of events at time τj, sj is the number of subjects who have not

failed by time τj, and nj is the total number of subjects at risk at time τj.

When estimating the conditional probability for a time at which no event occurred, dj = 0,

we find ourselves with P̂r[T > τj|T > τj−1] = 1− 0/nj = 1. Notice that this would be true

for all intervals not including times t1, t2, or t3.

Therefore in our current example,

Ŝ(t) = 1 · 1 · s1

n1

· 1 · s2

n2

· 1 · s3

n3

· 1 =
s1

n1

· s2

n2

· s3

n3

.

Because the conditional probabilities are approximately 1 when no event has occurred, in-

cluding the censoring times will not change the estimate for the survival function. This allows

us to only focus on the intervals during which an event was observed. We can generalize this

by letting the number of intervals grow to infinity, so that the width of each interval shrinks

to zero. Then assuming that D events are observed, we obtain

Ŝ(t) = 1 · 1 · s1

n1

· 1 · s2

n2

· 1 . . . sD
nD

.
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This leads us to the Kaplan-Meier estimator for S(t):

ŜKM(t) =
∏
j:tj≤t

(
1− dj

nj

)
=
∏
j:tj≤t

( sj
nj

)
. (2.1)

It should be noted that the Kaplan-Meier estimator can also be written in counting process

notation as

ŜKM(t) =
∏
s≤t

{
1− dΛ̂(s)

}

where Λ̂(s) =
∫ s

0

∑n
i=1 dNi(u)

Ȳ (u)
is the Nelson-Aalen estimator [Nelson, 1972, Aalen, 1978],

dNi(t) = Ni(t
− + dt) − Ni(t

−), Ni(t) = I(Xi ≤ t, δi = 1), Ȳ (t) =
∑n

i=1 Yi(t), and

Yi(t) = I(Xi > t). Using Rebolledo’s Theorem, it can be shown that the Kaplan-Meier

estimator is asymptotically normally distributed [Fleming and Harrington, 2011].

Kaplan-Meier estimator as the non-parametric maximum likelihood estimator

for the survival

In this section we show that the Kaplan-Meier estimator is the non-parametric maximum

likelihood estimator for the survival function. We consider event times t1 < t2 < · · · < tD.

Under the assumption of independent censoring and D events, the likelihood on the space

of all survivor functions takes the following form:

L =
D∏
j=1

{
[S(t−j )− S(tj)]

dj

mj∏
l=1

S(tjl)
}

where dj is the number of events that occur at time tj, and mj is the number of observations

that are censored in the interval [tj, tj+1) with censoring times tj1, . . . , tjmj . We denote the

number of subjects at risk right before time tj by nj.

To find the non-parametric MLE, we must find the survival function that maximizes the
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likelihood. Note that the event times t1 < · · · < tD are discrete. Moreover, because tjl ≥ tj,

we have that S(tjl) is maximized at S(tjl) = S(tj) for j = 1, · · · , D and l = 1, · · ·mj. We

denote the MLE by Ŝ with hazards λ̂1, λ̂2, . . . , λ̂D corresponding to each event time.

We can therefore write Ŝ(tj) =
∏j

l=1(1− λ̂l) and Ŝ(t−j ) =
∏j−1

l=1 (1− λ̂l) such that λ̂1, . . . , λ̂D

maximize

L(~λ) =
D∏
j=1

{
[S(t−j )− S(tj)]

dj

mj∏
l=1

S(tjl)
}

=
D∏
j=1

[
λ
dj
j

j−1∏
l=1

(1− λl)dj
j∏
l=1

(1− λl)mj
]

=
D∏
j=1

λ
dj
j (1− λj)nj−dj .

We can then consider the log-likelihood,

`(~λ) =
D∑
j=1

dj log(λj) + (nj − dj) log(1− λj)

which yields the score function with j-th element given by

Uj(~λ) =
∂`(~λ)

∂λj
=
dj
λj
− nj − dj

1− λj
.

Setting the score function equal to zero we obtain λ̂j = dj/nj. Therefore, the non-parametric

maximum likelihood estimator is

Ŝ(t) =
∏
j:tj≤t

(1− λ̂j) =
∏
j:tj≤t

(
1− dj

nj

)
,

which is in fact the Kaplan-Meier estimator.
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Estimating the standard error of ŜKM(t)

In order to quantify the uncertainty in ŜKM(t), it is necessary to derive a variance estimator.

However, this is most easily done by first considering the variance of log ŜKM(t). To this

end, again define λ̂j ≡ dj
nj
, j = 1, . . . , D so that the Kaplan-Meier estimator from (2.1) is

given by

ŜKM(t) =
∏
j:tj≤t

(
1− λ̂j

)
,

and the log of the Kaplan-Meier estimator is given by

log ŜKM(t) =
∑
j:tj≤t

log
(

1− λ̂j
)
.

Let F (tj) denote the filtration (or history) of all deaths and censoring events up to time

tj, j = 1, . . . , D. Then conditional on F (tj), the number of failures occurring in interval

[tj, tj+1) is Binomial(λj, nj) where λj is the probability of failure in interval [tj, tj+1). As

such, the expectation of λ̂j is given by

E[λ̂j] = E[E(λ̂j|F (tj))] = E[λj] = λj.

Similarly, the variance of λ̂j is given by

Var[λ̂j] = E[Var(λ̂j|F (tj))] + Var[E(λ̂j|F (tj))] = E
[λj(1− λj)

nj

]
+ Var(λj) =

λj(1− λi)
nj

.

We can now use the delta method to approximate the variance of log(1− λ̂j) as

Var[log(1− λ̂j)]
.
=

1

(1− λj)2
Var[λ̂j],

and hence an estimate of the variance of log(1 − λ̂j) is given by plugging in λ̂j for λj to
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obtain

V̂ar[log(1− λ̂j)] =
1

(1− λ̂j)2
· V̂ar[λ̂j]

=
1

(1− λ̂j)2

λ̂j(1− λ̂j)
nj

=
dj

nj(nj − dj)
.

To this point we have only considered the variance of the jth subject’s contribution to

log ŜKM(t). For the covariance between terms, without loss of generality, assume that k < j

so that

E[λ̂kλ̂j] = E[E{λ̂kλ̂j|F (tj)}] = E[λ̂kE{λ̂j|F (tj)}] = E[λ̂k]λj = λkλj,

and hence

Cov[λ̂k, λ̂j] = E[λ̂kλ̂j]− E[λ̂k]E[λ̂j] = λkλj − λkλj = 0.

From the above, the covariance between all distinct terms in log ŜKM(t) is 0, yielding an

estimate of Var[log ŜKM(t)] given by

V̂ar[log ŜKM(t)] =
∑
j:tj≤t

V̂ar[log(1− λ̂j)] =
∑
j:tj≤t

dj
ni(nj − dj)

. (2.2)

Again applying the delta method we obtain Greenwood’s formula [Greenwood et al., 1926]

for the variance of the Kaplan-Meier estimator, given by

V̂arG[ŜKM(t)] = Ŝ2
KM(t)

∑
i:ti≤t

di
ni(ni − di)

. (2.3)
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Confidence intervals for S(t)

It can be shown that ŜKM(t)∼̇N (S(t),Var[ŜKM(t)]) [Fleming and Harrington, 2011]. As

such, a 100× (1− α)% Wald-based confidence interval for S(t) can be constructed as

(ŜKM(t)− z1−α
2
· ŜEG, ŜKM(t) + z1−α

2
· ŜEG) (2.4)

where z1−α
2

denotes the (1 − α
2
)-quantile of the standard normal distribution and ŜEG is

the square-root of Greenwood’s variance estimator given in (2.3). However, because the

support of the normal distribution is all real numbers, the interval in (2.4) can yield values

outside the range [0, 1]. In order to fix this problem, a better approach is to first construct a

confidence interval for log Λ(t), which has support over all real numbers, then back-transform

to a confidence interval for S(t). Recall from Section 2.1 that Λ(t) = − logS(t), so we can

estimate the cumulative hazard function using Λ̂(t) = − log ŜKM(t). As before we can appeal

to the delta method to approximate the variance of Λ̂(t) as

Var[log(− log(ŜKM(t))]
.
=

Var[log(ŜKM(t))]

log2(ŜKM(t))
.

Using the results from Section 2.2.1, we can estimate the numerator in the above expression

by considering the variance estimator given in (2.2), yielding

V̂ar[log(− log(ŜKM(t))] =

∑
i:ti≤t

di
nisi

log2(ŜKM(t))
.

Then relying on the approximate normality of log Λ̂(t), a 100× (1−α)% confidence interval

for log Λ(t) = log [− log(S(t))] is given by

(
log
[
− log(ŜKM(t))

]
− z1−α/2 × ŜEG∗ , log

[
− log(ŜKM(t))

]
+ z1−α/2 × ŜEG∗

)
(2.5)

21



where ŜEG∗ =
√∑

i:ti≤t
di
nisi

/
− log(ŜKM(t)).

Finally, transforming the confidence interval limits in (2.5) to formulate a 100 × (1 − α)%

confidence interval for S(t) we obtain

exp

{
−elog(Λ̂(t))±z1−α

2
×ŜEG∗

}
=

(
[ŜKM(t)]

exp

{
z1−α/2×ŜEG∗

}
, [ŜKM(t)]

exp

{
−z1−α/2×ŜEG∗

})
.

(2.6)

Note that the confidence interval provided in (2.6) is range respecting in that both endpoints

lie in the interval (0,1).

2.3 Cox Proportional Hazards Model

As discussed in Section 2.2.4, the Kaplan-Meier estimator is helpful for estimating the sur-

vival distribution. In observational studies, however, we need to include adjustment variables

to account for potential differences between the subjects being observed. One way to incor-

porate adjustment variables when analyzing survival data is via use of the Cox PH model.

The Cox PH model focuses on the hazard function, parameterizing the hazard at time t as

a function of known covariates using a multiplicative model of the form:

λ(t|z1, ..., zp) = λ0(t)eβ1z1+...+βpzp , (2.7)

where the baseline hazard, λ0(t), is the hazard rate when all covariate values are 0. The

model specification in (2.7) allows for covariates to have a multiplicative effect on the hazard

function. Specifically, eβk represents the relative difference in the hazard function comparing

two subpopulations that differ by one unit in zk (k = 1, ...., p), assuming all other covariates
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are constant. Notably, because βk does not depend upon time, the model assumes that the

effect of covariate zk on the hazard function is constant over time.

Estimation of the parameters in the Cox PH model requires the following information:

xi = observed follow-up time

δi =


0 if censored,

1 if an event was observed

zi = covariate values.

Notice that if the event is censored, xi is the censoring time and if an event is observed, xi

is the event time.

As with the Kaplan-Meier estimator, the Cox PH model focuses on the observed event

times; only utilizing information on censored subjects to compare with those of observed

cases. More specifically, at each event time the covariate values of the subject who failed are

compared to those of all other subjects who are still in the risk set, or set of subjects that

have not experienced an event or been censored prior to the time of the event.

The Cox PH model avoids fully parametric assumptions about the form of (2.7) by obtaining

estimates of the model parameters via maximization of the partial likelihood. The partial

likelihood can be constructed by considering the conditional probability that a subject with

specific covariate value experiences the event of interest at a particular time t, given that

some event was observed at time t. More specifically, for subject j who was observed for an
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event at time tj, contribution to the partial likelihood can be written as:

Lj = Pr{subject with covariate vector zj fails at tj| some subject failed at tj}

=
Pr{ subject with covariate vector zj fails at tj}

Pr{ some subject in R(tj) failed at tj}

=
λj(tj)(∆t)∑

l∈R(tj)
λl(tj)(∆t)

=
λj(tj)∑

l∈R(tj)
λl(tj)

,

where λj denotes the hazard function for subject j as defined by the covariate values and

R(tj) represents the subjects at risk at time tj. The last line follows because ∆t does not

depend on the event time.

Plugging in the model specification given in (2.7), we have that the contribution to the

partial likelihood of the subj ect corresponding to the jth event time is

Lj =
λ0(tj)e

zTj β∑
l∈R(tj)

λ0(tj)ez
T
l β

=
ez
T
j β∑

l∈R(tj)
ez
T
l β
.

Therefore, the full partial likelihood incorporating all D (independent) event times is:

L =
D∏
j=1

Lj =
D∏
j=1

ez
T
j β∑

l∈R(tj)
ez
T
l β

(2.8)

and hence the log-partial likelihood is given by

log(L) =
D∑
j=1

log

(
ez
T
j β∑

l∈R(tj)
ez
T
l β

)
=

D∑
j=1

{
zTj β − log

 ∑
l∈R(tj)

ez
T
l β

}. (2.9)

Notice that the baseline hazard does not appear in the partial likelihood or in the log-partial
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likelihood. Because of this, the model is referred to as semi-parametric; the baseline hazard

is non-parametric and potentially infinitely dimensional, but the risk ratio is parametric and

fully specified by a finite set of parameters. The partial likelihood can also be constructed as

a profile likelihood, where the baseline hazard is profiled out of the fully specified likelihood

function [Breslow, 1972].

To estimate the coefficients, we maximize the partial likelihood using the partial likelihood

score equation

U(β) =
∂ log(L)

∂β
=

D∑
j=1

{
zj −

∑
l∈R(tj)

zle
zTl β∑

i∈R(tj)
ez
T
i β

}
. (2.10)

Note that the partial likelihood score function can be written in counting process notation

as

U(β) =
n∑
i=1

∫ ∞
t=0

{
Zi −

n−1
∑n

j=1 ZjYj(t) exp(Zjβ)

n−1
∑n

j=1 Yj(t) exp(Zjβ)

}
dNi(t) = 0

where Yj(t) = I(Xj ≥ t) and Ni(t) = I(Xi ≤ t, δi = 1). In counting process notation, we

denote the covariate values as random. We will use this notation in the following section

and in the remaining chapters.

Using the Newton-Raphson method, we can solve for β̂ such that U(β̂) = 0, the maximum

partial likelihood estimates of β. Moreover, it can be shown using Rebolledo’s Theorem that

β̂∼̇Np( ~β0, I−1(β0)), where β0 denotes the true value of β and I(β0) = −E
[
∂U(β)
∂β

∣∣∣
β=β0

]
, the

partial information. In practice, it is common to replace I(β0) with the observed information

given by I(β0) = ∂U(β)
∂β

∣∣∣
β=β0

.
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2.4 Cox Proportional Hazards Model Under Model Mis-

specification

When one’s primary research goal is to estimate and draw inference regarding the association

between a predictor of interest and response, it is important to specify the statistical model a

priori to avoid multiple testing bias (cf. Ioannidis [2005], Gelman and Loken [2013], de Groot

[2014], Motulsky [2015]). Because it is unlikely that all assumptions pertaining to an a priori

specified model will hold when actually applied to observed data, it is critical to consider

the statistical properties of estimators when underlying model assumptions are violated.

When analyzing time-to-event data, use of Cox’s PH model [Cox, 1972] is ubiquitous in the

literature despite the fact that non-proportional hazards (NPH) effects commonly arise in

clinical research. In the context of our motivating AD research, if a time-varying biomarker is

only sampled at baseline, the association between the biomarker and the outcome of interest

may be higher in magnitude at times local to the measurement due to within-subject changes

in the biomarker that arise over time. While this would yield a NPH biomarker effect, a

priori specification of exactly how the hazard ratio is likely to change over time is difficult,

leading many researchers to simply default to Cox’s PH model.

As before, let Ti, Ci and Zi denote the true event time, censoring time, and covariate value

for subject i, i = 1, . . . , n, respectively. Further, denote the observed time for subject i as

Xi = min(Ti, Ci). Under a PH structure, the hazard function can be written as λ(t|Z) =

λ0(t) exp(Zβ). In results presented throughout, Z may depend on time but for ease of

exposition, we omit such indexing. Using counting process notation, Cox’s partial likelihood

estimator can be written as the solution to

U(β) =
n∑
i=1

Ui(β) =
n∑
i=1

∫ ∞
t=0

{
Zi −

n−1
∑n

j=1 ZjYj(t) exp(Zjβ)

n−1
∑n

j=1 Yj(t) exp(Zjβ)

}
dNi(t) = 0 (2.11)
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where Yj(t) = I(Xj ≥ t) and Ni(t) = I(Xi ≤ t, δi = 1).

Under model mis-specification and in the absence of censoring, Cox’s partial likelihood es-

timator can be interpreted as an average covariate effect over the observed support of sur-

vival times [Xu and O’Quigley, 2000]. However, in the presence of censoring and under

the standard assumption of independence between the survival and censoring time condi-

tional upon covariates, T⊥⊥C|Z, and covariate-independent censoring, C⊥⊥Z, it has been

shown [Struthers and Kalbfleisch, 1986] that if the PH assumption is invalid, the estimand

consistently estimated by the solution to (2.11) depends on the censoring distribution. The

practical implication of this result is that heterogeneity in accrual or drop-out patterns across

studies will yield different estimates of association even though the true relative difference in

hazards associated with a covariate of interest may be homogeneous. This makes replication

of results difficult due to the high heterogeneity of patient accrual and retention patterns

typically observed across studies.

As shown in Boyd et al. [2012], when the model is mis-specified, the estimand corresponding

to the partial likelihood estimator is consistent for the solution to

∫ ∞
0

EZ

(
fT (t|Z)SC(t|Z)

[
Z − EZ{ZST (t|Z)SC(t|Z) exp(Zβ)}

EZ{ST (t|Z)SC(t|Z) exp(Zβ)}

])
dt = 0. (2.12)

Notice the dependence on SC(t|Z), the survival function for the censoring times. When

considering independent censoring (i.e. the censoring distribution does not depend on Z),

(2.12) simplifies to

∫ ∞
0

EZ

(
fT (t|Z)SC(t)

[
Z − EZ{ZST (t|Z) exp(Zβ)}

EZ{ST (t|Z) exp(Zβ)}

])
dt = 0,

getting rid of the dependence on the censoring distribution in the compensator term [Boyd

et al., 2012]. To obtain an estimator that is robust to the censoring distribution in this

setting, Xu and O’Quigley [2000] propose reweighting the partial likelihood score function
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as

UXO(β) =
n∑
i=1

Ui,XO(β) =
n∑
i=1

∫ ∞
t=0

Wi,XO(t)

{
Zi−

n−1
∑n

j=1 ZjYj(t) exp(Zjβ)

n−1
∑n

j=1 Yj(t) exp(Zjβ)

}
dNi(t) (2.13)

where Wi,XO(t) = ŜKM(t)/
∑n

j=1 Yj(t) and SKM(t) is the left-continuous Kaplan-Meier es-

timator of the survival function [Kaplan and Meier, 1958]. The estimand of the proposed

estimator no longer depends on the censoring distribution and can be interpreted as an

average covariate effect.

In some cases, the censoring times depend on the values of the covariates. For example,

subjects receiving placebo in an open-label study may be more likely to drop out in search

of an active treatment. To address this, Boyd et al. [2012] propose reweighting the partial

likelihood by the inverse of the covariate-dependent censoring distribution in the context of

randomized clinical trials. The proposed estimating equation is:

UCR(β) =
n∑
i=1

∫ ∞
t=0

W (t|Z = zi)

{
Zi −

S
(1)
CR(β, t)

S
(0)
CR(β, t)

}
dNi(t) = 0 (2.14)

where S
(r)
CR(β, t) = n−1

∑n
j=1 Z

r
jW (t|Z = zj)Yj(t) exp(Zjβ), W (t|Z = zj) = {ŜC,KM(t|Z =

zj)}−1, and ŜC,KM(t|Z = zj) is the covariate-dependent left continuous Kaplan-Meier es-

timator. Reweighting the score function in this manner yields a censoring-robust estima-

tor that is asymptotically equivalent to that proposed by Xu and O’Quigley [2000] when

SC(t|Z) = SC(t). This work was later extended to observational studies by Nguyen and

Gillen [2012], who proposed a survival tree-based estimator. The three estimators allow us

to estimate an average covariate effect when the model is mis-specified, and still yield valid

results when the model is correctly specified.

28



2.5 Time-Dependent Receiver Operating Characteris-

tic Curves

Oftentimes, the goal is to investigate the classification performance of a marker, or model.

Receiver operating characteristic (ROC) curves are often used to evaluate the classifica-

tion performance of continuous measures by considering the sensitivity and specificity of a

biomarker for a wide range of thresholds. Sensitivity is the probability that an individual

is classified as testing positive (or meeting a specific threshold) given that they have the

disease, while specificity is the probability that an individual is classified as testing negative

(or not meeting the threshold value) given that the individual does not have the disease.

ROC curves are generated by plotting sensitivity vs. (1 - specificity). A common summary

measure of biomarker performance is the area under the ROC curve (AUC), which provides

an estimate of the probability that a randomly selected individual with the disease will be

rated higher than one without the disease [Fawcett, 2006, Heagerty et al., 2000]. The higher

the AUC, the better the biomarker is for classifying diseased and non-diseased individuals.

One benefit of ROC curves is that the sensitivity and specificity are estimated over all pos-

sible cut points, so the results do not depend on a single cut point value. ROC curves also

allow comparison of different markers, even if these are on different scales [Heagerty et al.,

2000].

Classic ROC curves assume the disease status is fixed. In many cases, however, the disease

status may change over time. For these scenarios, Heagerty et al. [2000] proposed the use

of time-dependent ROC curves, where the sensitivity, specificity, and corresponding AUC

are estimated at a particular time point. There are several ways to estimate sensitivity

and specificity in the time-dependent ROC setting [Heagerty et al., 2000, Chambless and

Diao, 2006, Zheng et al., 2006, Uno et al., 2007, Heagerty and Zheng, 2005]. Some methods

rely on nonparametric estimation, while others use semiparametric methods to estimate the
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sensitivity and specificity. Several of these estimators [Heagerty and Zheng, 2005, Chambless

and Diao, 2006] calculate the sensitivity and specificity using a risk score made of up several

covariates, or biomarkers. While the risk score can be estimated in various ways, a common

approach is to use a linear predictor based on the partial likelihood estimator [David et al.,

1972] described in Section 2.3.

The use of time-dependent ROC curves allows us to investigate the classification perfor-

mance at different event times and therefore also allows us to investigate the performance

of the marker over time. When using time-dependent ROC curves, cases and controls can

be defined in several ways, and how these are defined will impact estimation of the sensitiv-

ity and specificity. Here, we consider two commonly encountered scenarios: (1) cumulative

sensitivity and dynamic specificity and (2) incident sensitivity and dynamic specificity. Cu-

mulative sensitivity considers the probability that an individual’s risk score value, Bi, exceeds

some threshold value, c, given that the individual experienced an event after baseline and

before time t. Dynamic specificity is the probability that an individual has a risk score

value less than or equal to c conditional upon not having experienced an event up to time

t [Kamarudin et al., 2017]. These can be written as SensC(t, c) = P (Bi > c|Ti ≤ t) and

Spec(t, c) = P (Bi ≤ c|Ti > t). Incident specificity, on the other hand, is the probability

that an individual has a biomarker measure above c given that they experienced an event

exactly at time t and can be written as SensI(t, c) = P (Bi > c|Ti = t). The cumula-

tive/dynamic setting is more appropriate when there is a specific time of scientific interest

at which investigators would like to see who has developed the disease and who has not.

The incident/dynamic setting is more appropriate when the exact event time is known and

it is of interest to investigate who has developed the disease at that time [Kamarudin et al.,

2017]. While several estimators have been proposed for both scenarios, we will focus on

the cumulative/dynamic estimator of Chambless and Diao [2006] and the incident/dynamic

estimator of Heagerty and Zheng [2005].
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The work of Heagerty and Zheng [2005] considers time-dependent ROC curves to evaluate

the classification performance of risk scores made up of one or more covariates, or biomark-

ers. The risk scores can be obtained using a variety of models, but their manuscript fo-

cuses on the Cox PH model. Sensitivity and specificity are also estimated using the Cox

PH model. When the data follow non-proportional hazards, the sensitivity is estimated as

ŜensHZ(t, c) =
∑n

k=1[I(Bk > c)Yk(t) exp(Bkγ̂(t))/
∑n

j=1 Yj(t) exp(Biγ̂(t))] where Yk(t) is an

indicator for whether individual k is at risk at time t and γ̂(t) is the estimate for the time-

dependent coefficient. The specificity is estimated using ŜpecHZ(t, c) =
∑n
k=1 I(Bk>c)Yk(t+)

WR(t+)

where Yk(t+) = limδ→0 Yk(t + |δ|) and WR(t+) is the number of controls (non-events) in

the risk set at time t. When the data follow PH, γ̂(t) in the sensitivity is replaced by γ̂, an

estimate for the time-invariant effect.

Another way to estimate the sensitivity and specificity under a time-dependent ROC curve

uses the methods proposed by Chambless and Diao [2006] for the cumulative/dynamic sce-

nario. These methods also allow for assessment of a risk score, which can be obtained using

various models. In their manuscript, the authors present Kaplan-Meier [Kaplan and Meier,

1958] type estimators of the sensitivity and specificity as well as regression-based estimators.

The R function AUC.cd in the survAUC package implements the regression-based approach

using a Cox PH model. Under this approach, the sensitivity and specificity take the form

SensCD(t, c) = E[(1−S(t|B))I(B>c)]
E[1−S(t|B<c)] and SpecCD(t, c) = E[S(t|B)I(B<c)]

E[S(t|B)]
. S(t|B), the survival func-

tion at time t, is estimated using Ŝ(t|B) = exp(−Λ̂0(t) exp(γ̂B)) where Λ̂0(t) is obtained

using the Breslow [1972] estimator and γ̂ is calculated using the Cox PH model.

Other estimators have been proposed that account for censoring using inverse probability

weights. The work of Uno et al. [2007] and Hung and Chiang [2010] reweight the estima-

tor of the sensitivity from Heagerty et al. [2000] by the inverse of the survival function for

censoring, Sc(t). The estimator for sensitivity is ŜensIW (t, c) =
∑n
i=1 I(Bi>c,Xi≤t)δi/[nŜc(Xi)]∑n
i=1 I(Xi≤t)(δi/[nŜc(Xi)])

and the estimator for specificity is ŜpecIW (t, c) =
∑n
i=1 I(Bi≤c,Xi>t)∑n

i=1 I(Xi>t)
. This estimator, how-

31



ever, does not account for marker dependent censoring. Blanche et al. [2013] extended this

method to allow for marker dependent censoring. Their proposed estimators are ŜensB(t, c) =∑n
i=1 I(Bi>c,Xi≤t)[δi/(nŜc(Xi|Bi))]∑n

i1 I(Xi≤t)(δi/(nŜc(Xi|Bi)))
and ŜpecB(t, c) =

∑n
i=1 I(Bi≤c,Xi>t)[1/(nŜc(t|Bi))]∑n

i1 I(Xi>t)(1/(nŜc(t|Bi)))
. While this esti-

mator reweights by the inverse probability of censoring, it is based on Kaplan-Meier type

estimators of the sensitivity and specificity.

Note that several of the estimators introduced in this section rely upon the use of the Cox

PH model. As seen in Section 2.4, however, under model mis-specification the estimand

corresponding to the partial likelihood estimator depends on the censoring distribution.

Because several time-dependent ROC curve estimators rely upon use of the Cox PH model,

it is important to investigate if and how model mis-specification impacts estimates of the

area under the curve. We will explore this topic in more detail in Chapter 5.

2.6 Nested Case-Control Study

So far, we have introduced the partial likelihood estimator. However, use of this estimator

requires that full covariate information is collected for all study participants, which is not

always feasible. Under the partial likelihood estimator, cases provide more information than

controls do. This motivates the idea that failure to include all controls in the analysis may

lead to a relatively small loss in efficiency, which becomes especially useful in studies of rare

outcomes where we have a lot more controls than we do cases. The sampling schemes for

the nested case-control and case-cohort designs make use of this fact to provide efficient

estimators that do not require full covariate information for all study participants. We start

off by showing the influence of cases and controls under the partial likelihood estimator.

In the rest of the section, we introduce the nested case-control design along with several

variations.
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2.6.1 Influence of Cases and Controls in the Cox Model

In this section, we motivate the nested case-control and case-cohort designs that will be the

focus of the remainder of the chapter. These methods only require full covariate information

on a subset of the entire cohort. While we do not consider all controls, these designs require

the analysis of all cases, which is motivated by considering the contributions of subjects that

do and do not have a failure time observed.

2.6.2 The partial information in the two-sample case

To examine the relative contribution of statistical information coming from cases and controls

in a survival setting, we begin by analytically assessing the information contributed from

cases and controls in the setting of a two-sample comparison. Specifically, we derive Fisher’s

Information for the Cox model when a single binary covariate, z ∈ {0, 1}, is considered. In

this case, the score function for the Cox model given in (2.10), is given by

U(β) =
∂l(β)

∂β
=

D∑
j=1

[
zj −

∑
l∈R(tj)

zle
zTl β∑

l∈R(tj)
ez
T
l β

]
, (2.15)

and negating the derivative of (2.15) with respect to β yields the observed information:

I(β) = −∂U(β)

∂β
=

D∑
j=1

{∑
l∈R(tj)

ez
T
l β
∑

l∈R(tj)
z2
l e
zTl β − (

∑
l∈R(tj)

zle
zTl β)2

(
∑

l∈R(tj)
ez
T
l β)2

}
. (2.16)

Under the null hypothesis of no covariate effect, H0 : β = 0, we then have

I(0) =
D∑
j=1

[nj · n1j − n2
1j

n2
j

]
=

D∑
j=1

[
n1j(nj − n1j)

n2
j

]
=

D∑
j=1

[
n1jn0j

n2
j

]
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where nj, n1j, n0j = nj − n1j, denote the total number of subjects at risk, the number

of subjects at risk in group 1, and the number of subjects at risk in group 0 at time tj,

respectively.

To approximate the observed information under the null hypothesis of equal survival between

groups, note that the expected number of patients at risk in each group is given by

E[n0j] = N · (1− π) · S(tj−) · [1− C(tj−)] and E[n1j] = N · π · S(tj−) · [1− C(tj−)]

and hence E[nj] = E[n0j] + E[n1j] = N · S(tj−) · [1− C(tj−)] , where N is the total number

of subjects, π is the probability of being in group 1, S(tj−) is the survival function evaluated

just prior to time tj, and C(tj−) is the censoring function evaluated just prior to time tj.

Replacing each number of at risk subjects with their respective expectations, we obtain

I(0) ≈
D∑
j=1

{
{N · S(tj−) · [1− C(tj−)]}2 · π − {N · S(tj−) · [1− C(tj−)]}2 · π2

{N · S(tj−) · [1− C(tj−)]}2

}

=
D∑
j=1

[π · (1− π)] = D · π · (1− π).

Suppose, for example, that π = 1
2

(as is the case for a 1:1 randomized experiment). Then

I(0) ≈ D · 1

2
· 1

2
=
D

4
,

so that the information is solely a function of the total number of events observed (cases),

as opposed to the total number of subjects (cases plus controls) available for analysis.
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2.6.3 An empirical assessment of the influence of cases and con-

trols

The results of the previous section focus on the number of events observed as opposed to the

number of subjects in total. This is because most of the information we are drawing from

the data set comes from the cases.

One way to measure influence is through the delta-beta values calculated from the residuals.

Delta-beta values compare the coefficient estimates when the model is fit using the entire

data set to those where the ith subject is excluded. Figure 2.2 shows the delta-beta values

calculated from a Cox PH model fit to simulated data (N = 200 observations) against

a single predictor (age). Standardized age was simulated from a Normal(0,1). Survival

times were simulated from a Exponential distribution with hazard rate 0.5× exp{log(2) ×

Age}. Censoring times were simulated from a Uniform(0,2) distribution, resulting in 67.5%

censoring.

Delta-beta values for observed events (cases) are depicted with closed triangles and values

for censored observations (controls) are depicted with open circles. For visual reference, the

horizontal lines in the figure are plus/minus one standard deviation of the delta-beta values.

Notice that subjects for whom an event was not observed tend to have delta-beta values close

to 0, while those delta-beta values that are relatively large in magnitude generally belong

to cases for whom an event was observed. More specifically, 67% of cases have a delta-

beta value greater than one standard deviation in magnitude. This is true for only 6.3% of

controls. Though only a single empirical example, this further emphasizes the idea that a

disproportionate amount of information is derived from the cases and therefore justifies the

idea of not using all controls in the nested case-control and the case-cohort studies.
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Figure 2.2: Plot of delta-beta values calculated from a Cox PH model fit to simulated data
(N = 200 observations) against a single predictor (age). Standardized age was simulated
from a Normal(0,1). Survival times were simulated from a Exponential distribution with
hazard rate 0.5× exp{log(2) × Age}. Censoring times were simulated from a Uniform(0,2)
distribution, resulting in 67.5% censoring. Delta-beta values for observed events (cases) are
depicted with closed triangles and values for censored observations (controls) are depicted
with open circles. For visual reference, the horizontal lines in the figure are plus/minus one
standard deviation of the delta-beta values.

2.6.4 Introduction to the nested case-control design

As seen in the previous section, under the partial likelihood estimator, cases provide more

information than controls do. The nested case-control design makes use of this idea by

only sampling a specified number of controls for each event. The number of controls to be

sampled, M , is selected before analysis of the data. At each event time, we randomly sample

M controls from the subjects who are still at risk [Thomas, 1977]. As such, the nested case-

control design exploits the retrospective nature of the partial likelihood (which conditions
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upon observed event times) by matching cases (subjects that have experienced an event) to

controls by their at-risk status at the time of the event.

Recall from (2.8) that the partial likelihood when using the full data takes the following form

L =
D∏
j=1

ez
T
j β∑

l∈R(tj)
ez
T
l β
.

Due to the matching involved in the nested case-control design, a stratified version of the

partial likelihood given by

LNCC =
D∏
j=1

ez
T
j β

ez
T
j β +

∑M
l=1 e

zTl β
(2.17)

is necessary for parameter estimation to appropriately account for the non-random sampling

scheme. Notice that instead of summing over all subjects in the risk set, we only sum over

the M controls that were randomly selected for that case. The sampled subjects may be

controls for events in the future, or they may become a case themselves.

Figure 2.3 gives an example of the nested case-control design. Notice from Figure 2.3a that

we have three event times (t1, t2, t3). During the first event, we randomly select four controls

from those who still have not had an event. In 2.3b we show the controls when using the full

data (left) versus the four sampled controls (right) used with the nested case-control design:

4, 7, 10, and 18. The next event occurs at time t2. Notice that subject 20 is no longer in the

risk set since its event already occurred. We again sample four controls from those who are

still at risk at time t2. This time, we select subjects 7, 8, 10, and 12. Note that we can have

controls for one event be controls for a later event. In this case we have that subjects 7 and

10 were sampled as controls for the first and the second events. The third event occurs at

time t3. The nested case-control design also allows us to sample controls who become cases

at a later time. In this example, we find that subject 18, who was a control during the first
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Figure 2.3: An example of the nested case-control design. 2(a) shows the event times and
subjects still at risk at each event time. 2(b)-(d) show the controls that the case would be
compared to in the full cohort scenario (left) and in the nested case-control (right). Black
represents the case, dark gray are the controls that the case is compared to, and light grey
represents those in the risk set that are not included when using the nested case-control
design.
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event time, became a case.

It has been shown not only that the estimates obtained from the nested case-control design

are consistent, but also that they are asymptotically normally distributed [Goldstein and

Langholz, 1992].

Because the nested case-control design does not use all of the information, it is not as efficient

as using the full data set. However, in many studies where covariate information may be

expensive or burdensome to collect, researchers may prefer a slight loss of efficiency.

2.6.5 Equivalence of the Cox proportional hazards and conditional

logistic regression model under the nested case-control de-

sign

In this section, we show the equivalence of the conditional logistic regression likelihood and

Cox’s stratified partial likelihood, reinforcing the connection between the nested case-control

design and the usual matched case-control design. To see the connection, consider fitting a

conditional logistic regression model to matched case-control data in which we assume that

there are M controls for each case. Thus each matching strata contains M + 1 observations

(1 case plus M controls). For strata i, let ~Yi = (Yi1, . . . , YiM+1) denote the vector of binary

responses for all subjects in the strata. Further note that
∑M+1

j=1 Yij = 1 in the case of 1 : M

matching. Then the corresponding conditional logistic regression model is given by

logit

(
Pr[Yij = 1

∣∣~zij]) = β0i + β1zij1 + · · ·+ βpzijp = β0i + ~zij~β ≡ ηij, (2.18)

where ~zij is a vector of covariate values for subject j in strata i, j = 1, . . . ,M + 1, and

~β are the corresponding regression parameters (excluding the intercept). Further, denote
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πij ≡ Pr
[
Yij = 1

∣∣~zij] and note that the model specification in (2.18) and the fact that∑M+1
j=1 Yij = 1 implies

πij ≡ Pr
[
Yij = 1

∣∣~zij] =
eηij

1 +
∑M+1

k=1 eηik
. (2.19)

The contributions to the likelihood for the conditional logistic regression model can be for-

mulated by noting that ~Yi = (Yi1, . . . , YiM+1) is a multinomial random variable and hence

Pr
[
~Yi = ~y

∣∣M+1∑
k=1

yik = 1, Z2,i, ~zi

]
=

Pr
[
~Yi = ~y,

∑M+1
k=1 yik = 1

∣∣Z2,i, ~zi

]
∑

~y∗:
∑
y∗ik=1 Pr

[
~Yi = ~y∗

∣∣Z2,i, ~zi

]
=

∏M+1
j=1 π

yij
ij∑

~y∗:
∑
y∗ik=1

∏M+1
j=1 π

y∗ij
ij

,

where Z2,i denotes all the matching covariates that were used to define the ith strata. Plug-

ging in the values of πij as given in (2.19) we obtain

Pr
[
~Yi = ~y

∣∣M+1∑
k=1

yik = 1, Z2,i, ~zi

]
=

exp
{∑M+1

j=1 yijηij/(1 +
∑M+1

j=1 eηij)
}

∑
~y∗:
∑

~yik
∗=1 exp

{∑M+1
j=1 y∗ijηij/(1 +

∑M+1
j=1 eηij)

}
=

exp
{∑M+1

j=1 yijηij

}
∑

~y∗:
∑

~yik
∗=1 exp

{∑M+1
j=1 y∗ijηij

} ,
where the last equality follows because the denominators in the numerator and denominator

terms do not depend on yij and hence cancel. Incorporating covariates via the linear pre-

dictor, ηij = β0i + ~zij~β, and simplifying the result by canceling eβ0i from the numerator and
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the denominator we obtain the likelihood contribution for subject i as:

Pr
[
~Yi = ~y

∣∣M+1∑
k=1

yik = 1, Z2,i, ~zi

]
=

exp{β0i} exp
{∑M+1

j=1 yij~zij~β
}

∑
~y∗:
∑
y∗ik=1 exp{β0i} exp

{∑M+1
j=1 y∗ij~zij

~β
}

=
exp

{∑M+1
j=1 yij~zij~β

}
∑

~y∗:
∑
y∗ik=1 exp

{∑M+1
j=1 y∗ij~zij

~β
} .

Comparing the above to the factors in (2.17) shows us that the contribution to the likeli-

hood under conditional logistic regression model is equivalent to that of the stratified Cox

PH model when we stratify by match group, since the numerator is simply the exponentiated

linear predictor for the case and the denominator is the sum of exponentiated linear predic-

tors for all subjects in the strata. To formulate the full likelihood we take the product across

all independent strata (corresponding to the observed event times for the nested case-control

design), with one case per stratum.

2.6.6 Variations of the Standard Nested Case-Control Design

The usual nested case-control design, as described in Section 2.6.4, randomly samples controls

without replacement from the risk set at each event time. Although controls cannot be

sampled more than once at each time, they may be sampled again at later event times as

long as they are still at risk. Sampled controls may also become cases at later event times.

In light of this, variations on the sampling strategies and estimating equations utilized in

the nested case-control design have been introduced and investigated in the literature. The

following sections introduce the most commonly encountered variations of the usual nested

case-control design.

41



Inverse Probability of Sampling

We start off by introducing the estimator proposed by Samuelsen [1997]. While this estimator

relies on the usual nested case-control sampling scheme, it differs from that proposed by

Thomas [1977] in the estimation procedure. The standard nested case-control design is

estimated using (2.17), which can be written as

LNCC =
D∏
j=1

ez
T
j β∑

l∈R̃(tj)
ez
T
l β

(2.20)

where R̃(tj) = j ∪ Sj, j is the case at time tj and Sj represents the set of sampled controls

at failure time tj. The risk sets at each event time, therefore, are made up of the case and

sampled controls at each event time, and controls are only included in the risk sets for which

they were were sampled as controls. The estimator proposed by Samuelsen [1997], on the

other hand, includes all subjects in the nested case-control sample in all risk sets for which

subjects are at risk. Each subject’s contribution is reweighted by the inverse probability of

ever being sampled, pl = δl + (1 − δl)[1 −
∏

Xi<Xj
(1 − M

ni−1
δi)], where ni is the number of

subjects at risk at time ti and M is the number of controls sampled at each event time. In

this case, the pseudo-likelihood takes the form:

LS(β) =
n∏
j=1

[
ez
T
j β∑

l∈R(tj)
Vl
pl
ez
T
j β

]δj

where R(tj) represents everyone who is at risk at time tj in the full cohort and Vl is an in-

dicator for whether subject l was included in the nested case-control sample either as a case

or as a control. By including all controls forward and backward in time, the estimator pro-

posed by Samuelsen [1997] allows us to gain efficiency compared to the standard estimation

procedure.
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Risk set sampling

Langholz and Thomas introduced three designs in their 1991 paper. These designs follow

the same form as (2.20), but differ in their definition of R̃(tj).

The first design, referred to as Design I in Langholz and Thomas [1991] or “retained nested

case-control sampling”, randomly samples controls at each event time. Those controls are

then introduced as controls forward in time, until they are no longer at risk, ie. until they

have either failed or been censored. Using the notation presented in Langholz and Thomas

[1991], let Si denote the sampled controls, and Ri denote the full risk set. Their first design

considers R̃1(tj) = ∪i≤j[Si ∩ R(tj)]. In Section 2.6.8 we compare the resulting bias and

efficiency of this sampling scheme, which we refer as the Control Forward sampling design,

to the full cohort and standard nested case-control sampling schemes.

The authors also introduce a design which they refer to as Design II or ”augmented nested

case-control sampling”. This design is motivated by the idea that we could obtain more

information if we use the sampled controls forward and backward in time in all risk sets

during which they are still at risk. However, because the time that subjects are at risk could

be associated with the outcome of interest, this sampling scheme leads to biased estimates;

those who are in the study longer have a higher probability of being sampled than those

who are not. In order to avoid this problem, the authors introduce the concept of a path

set. Using the notation introduced by Thomas and Langholz, a path set Qij consists of all

subjects who enter the study right before time ti (in the interval (ti−1, ti]) and exit right after

tj (in the interval (tj, tj+1]). Subjects who later become cases are not included in any of the

path sets that make up their own risk set since they cannot be their own control. The controls

sampled using the nested case control design provide us with random samples from the path

sets. Therefore, to include the controls selected during other event times, we may randomly

sample these controls by stratifying on the path sets. In this way, we consider samples
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of individuals with various path set lengths and we again obtain consistency [Langholz and

Thomas, 1991]. Sampling is then performed using a two-step approach. The first step follows

as usual; we randomly sample a set of M controls at each event time. Let P be the pooled

set of controls for all event times. For each sampled control, we also have the path set that

it belongs to, so each control is grouped with other controls corresponding to the same path

set, Qij. At each event time we randomly sample controls from the valid path sets (in a way

that is representative of the path sets’ presence in the risk set) and include those controls,

as well as the originally sampled controls, in the analysis.

The third design introduced in their paper selects controls in a way that reduces the number

of controls sampled more than once. This design is motivated by the fact that sampling

controls from those who had not been selected yet leads to inconsistent parameter estimates

[Robins et al., 1986]. Under this proposed design, referred to as Design III in Langholz and

Thomas [1991] we randomly sample a path set according to the probability representing

that path set at each event time. We then proceed by randomly sampling a subject from

the selected path set. Once a subject has been selected, that subject cannot be sampled

as a control again until all controls in that path set have been sampled. In this way, we

reduce the number of times the same subject is selected. The estimates generated by this

design are slightly biased, and when there was an efficiency gain, improvement was very

small compared to the standard nested case-control design [Langholz and Thomas, 1991]. In

Section 2.6.8, we also use simulation to compare Design III (which we refer to as the Path

Sampling design) to the full cohort and standard nested case-control sampling designs with

respect to bias and efficiency.

Langholz and Thomas were rather surprised by their results. They intuitively expected

that by including subjects in more risk sets than just their own, the variance of parameter

estimates would naturally decrease. However, what they found, is that with Designs I and

II, the variance of parameter estimates can be larger than that of the standard nested case-
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control design in some cases.

In the full cohort analysis, even though subjects enter many risk sets, the covariance between

contributions to the partial likelihood score function is zero conditional on the filtration, or

history up to the event time of each case. With the nested case-control design, however, the

full history is not known since subjects are randomly sampled at each event time. Including

subjects in risk sets other than the ones for which they were sampled thus introduces a

covariance term because we do not have the full history of each subject. Therefore, although

we are using more information at each event time, the covariance term between contribu-

tions to the score can cause the variance of parameter estimates to increase for Designs

I and II. Design III also introduces a covariance term, but in this case the covariance is

negative because, by design, we are trying to sample controls that are different than the

ones present. Although this decreases the variance of the parameter estimates stemming

from this design, because we try to sample as many unique subjects as possible, the same

number of controls would require a larger number of unique subjects to be included in the

overall analysis. If the goal is to reduce the number of subjects for whom complete covariate

information is required (the general motivation for using a nested case-control design), the

only alternative is to sample less controls per subject to match the number of controls in the

usual nested case-control sampling framework, hence increasing the variance of parameter

estimates. Ultimately, these opposing forces effectively cancel out and the path-sampling

strategy of Design III yields parameter estimate variances similar to that of the standard

nested case-control design when the total number of unique subjects that are included in the

analysis are held constant between the two sampling strategies.

Biased selection of controls

We have explained that randomly sampling controls from all subjects in the risk set leads

to consistent estimates. There are other practical ways of sampling controls, however, that
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will lead to inconsistent estimates.

One sampling scheme is introduced by Lubin and Gail [1984] as the sampling of ”pure

controls”. Sampling of pure controls refers to sampling only subjects who have not failed

due to the outcome of interest and have not been censored by the end of the study. In

this way, we can never sample subjects who become cases in the future. Applying such a

restriction leads to under-representation of cases in the analysis because, although cases are

present in other risk sets, they are never included in risk sets other than their own. Lubin and

Gail [1984] state that when the disease is rare, the bias induced by pure control sampling is

very small. This can be explained by the fact that when the outcome is rare, the probability

of sampling a case is also very small since there are very few cases to consider. Therefore,

even if cases had been included as controls, the probability of sampling these as controls

would have been very small.

Another possible sampling scheme, referred to as ”case exclusion”, only samples controls that

do not become cases during some future interval of time. Notice that inclusion of controls

in the risk set under this scenario requires that the subject has not become a case or been

censored up to the current time. Moreover, it requires that they do not become a case in

the specified interval, and that they are sampled as a control for the event time. Because

we are sampling controls conditional upon their future, we are no longer randomly selecting

subjects as controls, which induces bias.

A final control sampling scheme that might be considered is referred to as ”control exclusion”.

In this scenario, we exclude subjects with diseases related to exposure [Lubin and Gail, 1984].

We can think about this sampling scheme in the context of competing risks. Because subjects

are not included as controls if they develop another disease related to exposure, we will not

record the disease of interest if it does occur. Moreover, the diseases excluded from the

analysis may be precursors to the outcome of interest so removing these from the analysis

will bias the results.

46



Although the standard nested case-control design has been shown to be consistent for the

true parameters, variations of the method may induce bias. By forcing subjects into or

out of risk sets, we cause over- or under-representation of these subjects in our data such

as in the “pure controls” and “case exclusion” sampling designs presented. In practice, we

may also find that researchers often apply exclusion criteria for study participants. “Control

exclusion” shows that we should be careful when determining such criteria as this may also

induce bias. Oftentimes, we find that in practice we may be forced into sampling controls

in a specific way and it is important that researchers understand the effect of such sampling

schemes on the reliability of their results. Moreover, understanding how bias is induced may

also allow statisticians to account for such bias [Lubin and Gail, 1984].

2.6.7 Software implementation of the standard nested case-control

design

The nested case-control sampling scheme can be implemented using the Epi package within

R or via the sttocc command in STATA. In addition, SAS macros exist that can implement

the standard nested case-control design. Within the R Epi package, the function ccwc

samples the controls for each event, and arranges the data to separate each group; for each

event time, the case and its sampled controls are considered to be one group. Once the data

are in the correct format, we can fit a model using either conditional logistic regression or a

stratified Cox PH model stratified by group. As was shown in Section 2.6.5, the two models

are equivalent. The command sttocc within STATA samples the controls and allows for

fitting in an analogous way. In the Appendix of this chapter we provide all necessary R

code for implementing the data analysis presented in Section 2.8. We also present examples

of STATA code to perform the nested case-control analysis and provide reference to a SAS
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macro that implements the nested case-control design.

2.6.8 Simulated performance of the nested case-control design

In this section, we use simulation studies to investigate consistency and relative efficiency

of estimates when using the nested case-control (NCC) design compared to the full data

analysis. We start with approximately 60% censoring and increase censoring to determine

if and how the consistency and efficiency of the nested case-control designs change. For

illustrative purposes we consider the standard nested case-control as well as the control

forward and path sampling designs (Designs I and III from Langholz and Thomas (1991),

respectively) using M = 1, 2, 3, and 4. We also display results that illustrate the efficiency

trade-offs to be made if a simple random sample (unconditional upon disease status) of the

same size as the standard nested case-control design is used.

Survival times for our simulation study were generated from a Exponential distribution

having hazard rate 0.5× exp{βZ}, with Z ∼ N(0,1) distribution. The true parameter value

associated with the covariate was taken to be β = log(2.0) = 0.693 (true HR of eβ = 2.0).

We generated censoring times using a Uniform(0, 2.25) distribution to obtain approximately

60% censoring and took the observed time to be the minimum of the survival and censoring

times. The 85% censoring scenario was generated similarly, but censoring times were drawn

from a Uniform(0, 0.5) distribution.

Notice that under approximately 60% censoring (Table 2.2), all variations yield consistent

estimates. However, taking a random sample from the full data is more efficient than using

the nested case-control design and any of its variations. Because there are a large number

of cases in this scenario, taking a random sample will still provide a sufficient number of

cases. When we use a random sample with approximately 625 subjects, the variance is only

approximately 64% larger than the variance using the full cohort. In this scenario, the nested
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case-control design, although it performs well, is not required since a random sample also

yields consistent estimates and is more efficient.

Table 2.2: Simulations for the comparison of the full cohort analyses, standard nested case-
control, control forward sampling, path sampling, and a simple random sample of same sam-
ple size as the standard nested case-control design. True survival times were simulated from
a Exponential distribution with hazard rate 0.5× exp{βZ}, with Z ∼ N(0,1) distribution.
The true parameter value associated with the covariate was taken to be β = log(2.0) = 0.693
(true HR of eβ = 2.0) and we have approximately 60% censoring. Censoring was obtained
using a Uniform(0, 2.25) distribution. 10,000 simulations with 1000 subjects each were
performed.

Sampling Total Empirical Relative
Design Subjects Exp(Coeff.) Coeff Variance Efficiency

Full Cohort 1000.0 2.01 0.695 0.003 1.00

(M=4)
NCC 844.7 2.01 0.696 0.004 1.48
Control Forward 844.7 2.01 0.696 0.005 1.55
Path Sampling 893.2 2.01 0.696 0.004 1.31
Random Sample 844.7 2.01 0.696 0.003 1.19

(M=3)
NCC 803.5 2.01 0.696 0.005 1.61
Control Forward 803.5 2.01 0.696 0.005 1.78
Path Sampling 862.4 2.01 0.696 0.004 1.39
Random Sample 803.5 2.01 0.696 0.004 1.23

(M=2)
NCC 737.6 2.01 0.697 0.006 1.92
Control Forward 737.6 2.02 0.698 0.007 2.29
Path Sampling 807.6 2.01 0.697 0.005 1.67
Random Sample 737.6 2.01 0.696 0.004 1.36

(M=1)
NCC 624.6 2.02 0.699 0.008 2.79
Control Forward 624.6 2.03 0.701 0.011 3.84
Path Sampling 682.8 2.02 0.698 0.007 2.43
Random Sample 624.6 2.01 0.696 0.005 1.64

In the case of a rare event, because there are less cases, taking a random sample will no longer

be as efficient since we will be left with an even smaller number of cases in our analysis. This

can be seen in Table 2.3, in which we present the results for approximately 85% censoring.

Under this scenario, we see that the nested case-control design is more efficient than simply
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taking a random sample. When we use one control per case, the standard nested case-control

design variance is approximately three times larger than that of the full cohort. Using the

same number of subjects in total, but taking only a random sample gives us a variance more

than four times larger than that of the full cohort. Similar patterns are observed when we

have more than one control per case.

Table 2.3: Simulations for the comparison of the full cohort analyses, standard nested case-
control, control forward sampling, path sampling, and a simple random sample of same sam-
ple size as the standard nested case-control design. True survival times were simulated from
a Exponential distribution with hazard rate 0.5× exp{βZ}, with Z ∼ N(0,1) distribution.
The true parameter value associated with the covariate was taken to be β = log(2.0) = 0.693
(true HR of eβ = 2.0) and we have approximately 85% censoring. Censoring was obtained
using a Uniform(0, 0.5) distribution. 10,000 simulations with 1000 subjects each were per-
formed.

Sampling Total Empirical Relative
Design Subjects Exp(Coeff.) Coeff Variance Efficiency

Full Cohort 1000.0 2.01 0.696 0.008 1.00

(M=4)
NCC 484.2 2.02 0.699 0.012 1.50
Control Forward 484.2 2.03 0.701 0.014 1.81
Path Sampling 604.0 2.02 0.699 0.011 1.31
Random Sample 484.2 2.03 0.700 0.017 2.18

(M=3)
NCC 419.3 2.03 0.701 0.014 1.69
Control Forward 419.3 2.04 0.704 0.017 2.16
Path Sampling 502.8 2.03 0.701 0.012 1.49
Random Sample 419.3 2.03 0.700 0.020 2.53

(M=2)
NCC 341.8 2.04 0.704 0.016 2.03
Control Forward 341.8 2.06 0.710 0.023 2.85
Path Sampling 382.7 2.03 0.702 0.014 1.80
Random Sample 341.8 2.04 0.702 0.025 3.17

(M=1)
NCC 248.7 2.06 0.709 0.024 3.05
Control Forward 248.7 2.09 0.716 0.037 4.58
Path Sampling 259.6 2.05 0.708 0.023 2.86
Random Sample 248.7 2.06 0.704 0.035 4.35

Moreover, notice that the standard nested case-control design performs better than the
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Control Forward design. While the Path sampling design appears to do better than the

nested case-control design, it should be noted that the Path sampling design requires a

larger number of subjects in total as it is designed to reduce the number of controls that are

included more than once. If instead of matching on the number of controls, we match on the

total number of subjects included, we find that the standard design still performs better. For

example, the number of subjects included for path sampling when M = 3 is approximately

500, which is larger than the number of subjects used for the standard nested case-control

design with M = 4. Although the variances are equal now, the Path sampling design still

requires more subjects than the standard design. Because the goal of the nested case-control

design is to reduce the number of subjects required for analysis, we find that the standard

design performs better than the Path sampling design.

2.7 Case-Cohort Design

2.7.1 Introduction to the case-cohort design

The case-cohort design, similar to the nested case-control design, reduces the number of

controls utilized in an analysis. While the nested case-control design selects controls at the

time of each event, the case-cohort design selects controls ahead of time. Before analysis or

the start of the experiment, researchers and statisticians randomly select a subcohort from

all patients in the study. The subcohort is based on some pre-specified proportion, call it

α. Because the subcohort is randomly selected, it may include subjects who never become

cases, as well as subjects who eventually become cases. The analysis then consists of the

subcohort, as well as all of the cases (even if they were not sampled into the subcohort).

Recall the partial likelihood when considering the full cohort (2.8):
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L =
D∏
j=1

ez
T
j β∑

l∈Rj e
zTl β

.

One form of the case-cohort design includes the cases that were not part of the original

subcohort right before their event time [Prentice, 1986]. If the case is not in the subcohort,

the psuedo-likelihood contribution for the case takes the form:

Lj =
ez
T
j β

ez
T
j β +

∑
l∈RS,j e

zTl β
(2.21)

where RS,j represents subjects who are still at risk at time tj and who were also part of

the selected subcohort. If the case is already in the cohort, the contribution to the psuedo-

likelihood remains as usual.

Figure 2.4 illustrates an example of the sampling scheme for the case-cohort design assuming

the same data as in the nested case-control example (see Figure 2.3) with a subcohort

proportion, α=0.4. The selected subcohort consists of the eight subjects that subject 20 is

compared to at the first failure time. Notice that the subcohort consists of subject 18, who

becomes a case at time t3. We also have that subject 19 is not in the selected subcohort, so

it is not included as a control at time t1; it is included in the analysis only at its own event

time. It has been shown that the estimators based on this method are consistent. Further,

using the fact that the score statistic is asymptotically normally distributed along with a

Taylor series expansion, it can be shown that the estimator derived from the case-cohort

design is also asymptotically normally distributed [Self and Prentice, 1988].

Another common variation of the case-cohort design follows a similar structure, but includes

cases at all times during which they were in the risk set as opposed to only including them

at the time of their event [Lin and Ying, 1993]. This estimator was derived for scenarios

in which we have missing data, but can be used for the case-cohort design because we are
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Figure 2.4: An example of the case cohort design with α = 0.4. We consider the same
scenario as that presented in Figure 2. 3(a) shows the event times and the subjects who are
still at risk at each event time. 3(b)-(d) show the controls that the case would be compared
to in the full cohort scenario (left) and in the case-cohort design (right). Black represents
the case, controls are in dark gray, and subjects in the risk set who are not used as controls
in the case-cohort design are light gray.
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”missing” data on all subjects who are neither part of the subcohort, nor cases. In the

likelihood, subjects are weighted according to their subcohort status:

LSC =
D∏
j=1

wje
zTj β∑

l∈RSC,j wle
zTl β

(2.22)

where RSC,j is the set of all subjects who are part of the subcohort or who become cases and

are still in the risk set at time tj. For cases, the weight, wj is 1, and for subcohort members,

the weight is 1/α.

Notice that these weights are necessary to yield consistent parameter estimates. If one simply

included cases for all risk sets during which they are risk, bias in the estimated coefficients

would result because we are oversampling cases in each of the risk sets relative to the original

random sample.

The design proposed by Lin and Ying [1993], assuming the example from Figure 2.4, would

then include subjects 18 and 19 as controls for subject 20 at time t1. Since subject 18, a

case, is already in the subcohort, the controls for subject 19 at time t2 would remain as they

currently are in the example, as would those for subject 18 at time t3.

The Lin and Ying [1993] estimator, which includes all subcohort members and all cases who

are still at risk at each event time, belongs to a class of estimators that have been termed

D-estimators [Kulich and Lin, 2004]. Additional members of the class of D-estimators and

alternative designs for including cases in the analysis of case-cohort sampled data have been

proposed in the literature. We will briefly discuss these in Section 2.7.2.

Various approaches have been proposed to estimate the variance of the regression parameter

estimates under the case-cohort design. One of these estimators, which accounts for corre-

lation in the score function and which may be applied to more complicated structures, is

the robust variance estimator [Barlow, 1994]. It allows for estimation of the variance using

54



a function of the delta-beta values. As previously discussed, the delta-beta values quantify

the influence of each observation on the parameter estimates. Because the robust variance

estimator can be easily calculated and may be implemented under various sampling schemes,

it is a recommended alternative to the usual variance estimator.

2.7.2 Implementation of the case-cohort design

As stated in Section 2.7.1, there are various ways to include non-subcohort cases in the

analysis of data stemming from a case-cohort design. Some of the ways in which the imple-

mentation may differ is in how subjects are weighted in the partial likelihood calculation. In

this section, we discuss some of the weighting schemes available for the case-cohort design.

Weighting schemes for the case-cohort design

The case-cohort design may vary in the selection of weights used in the pseudo-likelihood.

Notice that the contribution to the pseudo-likelihood in (2.21) may be written as

Lj,CC =
ez
T
j β

wj(tj)e
zTj β +

∑
l∈Rs,j wl(tj)e

zTl β
(2.23)

.

where w represents a weight. In (2.21), wj(tj) and wl(tj) are equal to one for all j and l.

In all of the weighting schemes we consider, subjects who are not part of the subcohort and

who never become cases receive a weight of zero at all times. The first weighting scheme we

consider places a weight equal to one for subcohort members at all times during which they

are at risk. Observations who are not part of the subcohort but who become a case receive

a weight of one only at their event time [Prentice, 1986]. Another weighting scheme differs
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Table 2.4: This table was adopted from Barlow (1999) and presents various weighting
schemes for the case-cohort design for different failure status and times.

Outcome and time Prentice Self and Prentice Barlow
(1986) (1988) (1994)

Non-subcohort case before failure 0 0 0
Non-subcohort case at failure 1 0 1
Subcohort case before failure 1 1 1/α
Subcohort case at failure 1 1 1
Subcohort control 1 1 1/α

from that of Prentice [1986] in that cases who are part of the subcohort receive a weight of

one during their event time, while cases outside of the subcohort receive weights of zero even

at their event time [Self and Prentice, 1988].

In a third weighting scheme, subjects who become cases receive a weight of one at their event

time only. If cases are not part of the subcohort, they receive a weight of zero outside of

their event time, and if they are part of the subcohort they receive a weight of 1/α outside

of their event time. For all members of the subcohort who don’t experience an event, the

weight is 1/α at all times during which they are still in the risk set [Barlow, 1994].

Table 2.4, adopted from Barlow et al. [1999], summarizes the weight assignment for each

of the methods described. It has been shown that the Prentice method yields results most

similar to those of the full cohort, while the Self and Prentice method yields the largest

differences. For large enough subcohorts, however, the three methods yield similar results

[Onland-Moret et al., 2007].

Because correlation is induced when we include a case that was not part of the original

subcohort, we must account for this correlation in the variance. Prentice (1986) accounts for

this correlation by including a covariance term when calculating the variance of the regression

parameter estimators. Another method uses bootstrapping to calculate the variance of the

case-cohort method [Wacholder et al., 1989], while others have proposed the use of a jackknife
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variance estimator [Barlow, 1994, Lin and Ying, 1993]. Yet another estimator is based on the

variance estimator in the presence of missing data in the covariate measurements [Lin and

Ying, 1993]. As previously stated, Barlow [1994] proposed the robust variance estimator,

which is based on the influence of each observation on β̂ and is meant to handle modifications

of the case-cohort design.

Alternative sampling strategies

We have considered case-cohort designs that differ by the weights placed on subjects. In this

section, we consider a modification of the D-estimator [Kulich and Lin, 2004].

Barlow [1994] proposed an estimator similar to the D-estimator. He explains the estimator

using an example of breast cancer data. In these data, the outcome is death due to breast

cancer, but the subcohort consists of all subjects who developed breast cancer, even if they

did not die from it and were not part of the subcohort [Barlow, 1994]. In doing this, Barlow

allows the opportunity to study breast cancer as the outcome of interest, which may also

provide important information for their study. Following a similar notation to that of Barlow

[1994], this design gives a psuedo-likelihood of the following form:

LDE =
D∏
j=1

ez
T
j β

ez
T
j β +

∑
l∈{R2,j\j} e

zTl β + n(t)
ñ(t)

∑
l∈{Sj\(j∩R2,j)} e

xTl β
(2.24)

where Sj represents subjects from the subcohort who are still at risk with respect to the

primary outcome (death due to breast cancer). R2,j represents subjects who develop the

second outcome (breast cancer). We also have that n(t) is the number of subjects in the

full cohort who are still at risk and ñ(t) is the number of subjects in the subcohort who

are still at risk at time t. This differs from previous methods in that we now compare the

covariate values of the case with those of subcohort members who are still at risk and those
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of non-subcohort members who experience the second event.

In his paper, Barlow compares the estimates obtained for both of the outcomes. One con-

sideration when looking at time-to-event data is competing risks. With death due to breast

cancer, for example, subjects may die because of complications due to breast cancer, but

these may not be counted as an observed event. Comparing the results with both outcomes

might therefore provide greater insight into the disease. This type of design might also be

useful when more than one outcome may be of interest as it provides an opportunity to

analyze these data with both outcomes.

Combined doubly weighted estimator

Oftentimes, certain covariates are recorded for all subjects regardless of their case/subcohort

status. These covariates may include age, gender, etc. With the case-cohort design, however,

we do not use this information if subjects are neither in the subcohort nor become a case.

The doubly weighted and combined doubly weighted estimators seek to use this information

by including it in the analysis. These estimators implement the case-cohort design using a

two-stage approach. In the first stage, we must sample subjects to be selected as part of

the clinical study cohort. The second stage requires selection of these controls as subcohort

members. The weights considered for these estimators are therefore based on the idea of

Kulich and Lin [2004] as well as on the fact that we can use the information that is already

collected on all subjects.

The doubly weighted estimator, as the name suggests, contains two sets of weights. One set

of weights, referred to as the second-level weights, is involved in calculations of the subcohort

sampling probabilities. The other set, referred to as the first-level weights and which also

includes the subcohort sampling probabilities, is included in the psuedo-score. The variance

of the doubly weighted estimator in this setting depends on the choice of second-level weights
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[Kulich and Lin, 2004]. Because the variance of the doubly weighted estimator depends on

the selection of the second-level weights, Kulich and Lin (2004) proposed an efficient doubly

weighted estimator, which selects the second-level weights in a way that the variance no

longer depends on these. One of the disadvantages of this estimator, however, is that it

does not always perform well in finite sample sizes. This led to the creation of the combined

doubly weighted estimator (CDW) [Kulich and Lin, 2004].

The CDW is calculated by combining the pseudo-score functions of the efficient doubly

weighted estimator and that of the time-varying weights estimator introduced by Borgan

et al. [2000]. By combining the two pseudo-scores, the authors ensure that the efficiency of

the estimator is not lower than that of Borgan’s estimator and that the doubly weighted

estimator can be calculated under finite samples [Kulich and Lin, 2004].

2.7.3 Software implementation of the case-cohort design

Implementing the case-cohort design in the survival context is similar to fitting a Cox PH

model with the full data. The only difference is the way in which the data is set up. One

must first randomly sample the subcohort using the software selected. In R, this can be done

using the function sample and selecting the number of subjects to be sampled. Once the

subcohort has been sampled, the new data set only contains the cases and members of the

subcohort. Members of the subcohort keep their usual entry time, while cases that are not

in the subcohort enter the analysis immediately before their own event time. Once the data

have been set up in this way, a Cox PH model can be used to fit a model with only these

data. In R, a Cox PH model is fit using coxph and including a Surv object. One may

also use cch which allows the user to select the preferred weighting scheme. As with the

nested case-control design, in the Appendix of this chapter we provide all necessary R code

for implementing the case-cohort data analysis presented in Section 2.8. We also present
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examples of STATA and SAS code to perform the case-cohort analysis.

2.7.4 Simulated performance of the case-cohort design

In this section, we discuss simulation results to investigate the consistency and efficiency of

estimates when using the case-cohort design compared to that of the full analysis. These

subcohort sizes were selected so that the total number of subjects is comparable to the

number of subjects in the simulation study from Section 2.6.8. We also present results to

compare the efficiency of these designs with that of a simple random sample of the same size

as the case-cohort designs. As with the nested case-control design simulations, we start with

a scenario consisting of approximately 60% censoring. These simulations were generated in

the same way as those for the nested case-control design.

Notice that under approximately 60% censoring, we obtain consistent estimates with the

case-cohort design as well as with a simple random sample. We find that a simple random

sample performs better than most of the designs presented with the exception of the Lin

and Ying [1993] estimator, with which it performs similarly. As explained with the nested

case-control design, the simple random sample performs well because there are a fairly large

number of cases; when we take a random sample we can still obtain a reasonable number of

cases. Notice, however, that even though the other designs are less efficient than a simple

random sample and the Lin and Ying estimator, all designs perform well. The greatest loss

in efficiency is observed in the case with the smallest subcohort size, α = 0.35. In this case,

the Prentice [1986] and Self and Prentice [1988] methods yield a variance almost three times

larger than that of the full cohort analysis, while the Lin and Ying estimator and the simple

random sample yield variances less than 2 times larger.

We now consider a scenario with approximately 85% censoring. In this case, we see that

a simple random sample does not perform as well compared to the other designs. We do
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Table 2.5: Simulations for the comparison of the case-cohort and the full cohort analyses
with a single covariate. True survival times were simulated from a Exponential distribution
with hazard rate 0.5× exp{βZ}, with Z ∼ N(0,1) distribution. The true parameter value
associated with the covariate was taken to be β = log(2.0) = 0.693 (true HR of eβ = 2.0)
and we have approximately 60% censoring. Censoring was obtained using a Uniform(0, 2.25)
distribution. 10,000 simulations with 1000 subjects each were performed.

Sampling Total Empirical Relative
Design Subjects Exp(Coeff.) Coeff Variance Efficiency

Full Cohort 1000 2.01 0.695 0.003 1.00

(α = 0.725)
Prentice 839.4 2.01 0.696 0.004 1.35
Self & Prentice 839.4 2.01 0.697 0.004 1.36
Lin & Ying 839.4 2.01 0.696 0.003 1.14
Random sample 839.4 2.01 0.696 0.003 1.20

(α = 0.65)
Prentice 795.6 2.01 0.696 0.004 1.49
Self & Prentice 795.6 2.01 0.698 0.004 1.50
Lin & Ying 795.6 2.01 0.696 0.003 1.20
Random sample 795.6 2.01 0.695 0.004 1.29

(α = 0.55)
Prentice 737.1 2.01 0.696 0.005 1.72
Self & Prentice 737.1 2.02 0.698 0.005 1.75
Lin & Ying 737.1 2.01 0.696 0.004 1.29
Random sample 737.1 2.01 0.695 0.004 1.35

(α = 0.35)
Prentice 620.2 2.02 0.697 0.008 2.69
Self & Prentice 620.2 2.03 0.702 0.008 2.78
Lin & Ying 620.2 2.01 0.697 0.005 1.69
Random sample 620.2 2.01 0.695 0.005 1.63

notice, however, that when the subcohort size is small (such as α = 0.125), the simple

random sample performs similarly to the Self and Prentice method.

The Lin and Ying estimator still performs better than the other estimators regardless of the

subcohort size. The largest difference can be seen when the subcohort size becomes very

small. For example, when α = 0.125, the variance of the Lin and Ying estimator is about

three times larger than that of the full cohort analysis. The Prentice estimator has a variance

approximately 3.7 times larger than that of the full cohort, and the variance for the Self and
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Table 2.6: Simulations for the comparison of the case-cohort and the full cohort analyses
with a single covariate. True survival times were simulated from a Exponential distribution
with hazard rate 0.5× exp{βZ}, with Z ∼ N(0,1) distribution. The true parameter value
associated with the covariate was taken to be β = log(2.0) = 0.693 (true HR of eβ = 2.0)
and we have approximately 85% censoring. Censoring was obtained using a Uniform(0, 0.5)
distribution. 10,000 simulations with 1000 subjects each were performed.

Sampling Total Empirical Relative
Design Subjects Exp(Coeff.) Coeff Variance Efficiency

Full Cohort 1000 2.01 0.695 0.008 1.00

(α = 0.4)
Prentice 481.8 2.03 0.700 0.013 1.57
Self & Prentice 481.8 2.03 0.703 0.013 1.61
Lin & Ying 481.8 2.03 0.701 0.012 1.41
Random sample 481.8 2.03 0.699 0.018 2.17

(α = 0.325)
Prentice 417 2.03 0.699 0.014 1.74
Self & Prentice 417 2.04 0.704 0.015 1.81
Lin & Ying 417 2.03 0.701 0.013 1.54
Random sample 417 2.03 0.699 0.020 2.48

(α = 0.25)
Prentice 352.2 2.04 0.705 0.018 2.15
Self & Prentice 352.2 2.06 0.712 0.019 2.27
Lin & Ying 352.2 2.04 0.707 0.015 1.83
Random sample 352.2 2.03 0.698 0.024 2.92

(α = 0.125)
Prentice 244.2 2.07 0.712 0.030 3.68
Self & Prentice 244.2 2.12 0.731 0.035 4.23
Lin & Ying 244.2 2.07 0.717 0.024 2.93
Random sample 244.2 2.05 0.702 0.036 4.41

Prentice estimator is more than four times larger than that of the full cohort.

As with the nested case-control design, we find that the case-cohort design becomes useful in

the case of rare events. When events are not rare, taking a simple random sample performs

similarly (if not better) than the case-cohort designs. Moreover, comparing the simulation

results for the nested case-control and case-cohort designs, we find that the standard nested

case-control design performs similarly to the Lin and Ying estimator for the case-cohort

design. Therefore, selection of the method to be used will depend on the study under

62



consideration.

2.8 Implementation of Sampling Designs Using Data

from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI)

Data used in the preparation of this example were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.

The primary goal of ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cogni-

tive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see

www.adni-info.org.

The study is currently in its fourth phase, ADNI 3. The first three phases include ADNI,

ADNI 2 and ADNI GO, and all phases have been made possible by volunteer participants

[Weiner, 2013]. The subset of the data used for this analysis only includes participants from

ADNI, ADNI 2 and ADNI GO who started with mild cognitive impairment (MCI). For the

purpose of this example, we considered any participants with significant memory concern,

those with early MCI, and those with late MCI as belonging to the MCI diagnostic group. It

should be noted that only subjects with complete demographic and biomarker data as well

as more than one recorded visit were included, which left us with a total of 359 participants.

The current section presents the results based on the analysis for the full cohort as well

as those for the nested case-control and the case-cohort designs. As an illustrative exam-
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ple, we consider estimating the association between phosphorylated tau protein, a potential

biomarker for Alzheimer’s disease measured in cerebral spinal fluid, and the time to progres-

sion of AD dementia. The corresponding code for the presented analyses can be found in

the Appendix.

Table 2.7: This table presents disease progression for the ADNI data. The MCI category
consists of participants who were severely cognitively impaired but not MCI, as well as those
with early and late MCI.

Last recorded diagnosis
Baseline diagnosis

Cog. Normal MCI Dementia

Cog. Normal 261 18 3

MCI 112 525 96

Dementia 0 1 233

Table 2.7 presents disease progression for all participants with full demographic and biomarker

data, including those who started as cognitive controls and those with AD. In this analysis,

we consider the event to be progression to AD dementia. Notice that some MCI participants

became part of the cognitively normal group. The reason for this is that we included severe

cognitive impairment as MCI, while these were recorded as cognitively normal in their official

diagnosis. Because we are only interested in the event that MCI participants progress to

AD, however, we kept the official diagnosis of ”cognitively normal” as the diagnosis at their

final visit.
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Table 2.8: Characteristics of ADNI study participants from ADNI1, ADNI2, and ADNI GO
whose baseline diagnosis was MCI. For continuous variables, we present mean (sd), and for
categorical variables we have N (%).

Participant Characteristics Mean (sd) or N(%)

Race
Caucasian 340 (94.71%)
Black 7 (1.95%)
Asian 6 (1.67%)
More than one 5 (1.39%)
Hawaiian/Other Pacific Islander 1 ( 0.28%)

Gender
Male 209 (58.22%)
Female 150 (41.78%)

Education (years) 16.21 (2.76)
Age 72.73 (7.36)
APOE 4

0 alleles 177 (49.30%)
1 allele 140 (39.00%)
2 alleles 42 (11.70%)

Median Aβ at first visit (baseline pg/ml) 175.51 (52.79)
Median P-tau at first visit (baseline pg/ml) 39.16 (21.72)
Median T-tau at first visit (baseline pg/ml) 95.87 (53.21)
Progression to AD

No 262 (72.98%)
Yes 97 (27.02%)

Table 2.8 shows the characteristics of only those subjects who were included in this study.

Notice that out of the 359 participants, 97 experienced progression to AD dementia. Be-

cause many of the races only had a few subjects, we combined American Indians, Asians,

Hawaiian/Pacific Islander, and subjects with more than one race into the category ”other”

for this analysis. Therefore, we were left with three categories: ”Caucasian”, ”Black”, and

”other”. It should be noted that the three biomarkers were measured using various kits to

account for the variation induced by the kit. The recorded measurements include individual

measurements as well as the median measurement. In this table we present the median
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measurements for the biomarkers amyloid beta (Aβ), tau protein phosphorylated at the

threonine 181 (P-tau), and total tau protein (T-tau).

It has been shown that the biomarkers T-tau, P-tau, and Aβ are predictive of AD dementia

in patients with MCI [Andreasen et al., 2003]. As previously noted, in this analysis we

will focus on the association between the levels of P-tau and the risk of progression to AD

dementia.

Figure 2.5 shows the survival curves for subjects with a P-tau level above the median (34.6)

and for subjects with levels below the median. Notice that subjects with a lower P-tau level

have a higher survival compared to subjects with a higher P-tau measurement, which is what

we expected to see due to the association of P-tau and the development of AD dementia.

Figure 2.5: Kaplan-Meier estimates of time to disease progression for participants with P-tau
above and below the median level. Below the plot we present the total number of subjects
at risk in each group at each time point, along with the the total number of events that have
occurred up until that time.
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Although the P-tau measurements are available for all subjects, we perform the analysis

as if these measurements are not known but are measurable. Many times, for example,

cerebrospinal fluid (CSF) is stored and only the samples required are analyzed. Because

study participants are often unwilling to undergo lumbar punctures [Nuño et al., 2017], it

would be beneficial to patients if they are not required to receive a lumbar puncture during

their visit. The nested case-control and the case-cohort design are appealing in this scenario

because since only about 27% of the full cohort experienced the event, we can reduce the

number of participants whose full covariate information needs to be collected.

We first consider the results based on the full cohort analysis and then compare them to those

obtained using the standard nested case-control and case-cohort designs. The adjustment

variables, selected a priori, were age, race, gender, education, and the presence of the APOE

4 allele. These are all known to be associated with development of AD. In particular, the

risk of developing AD is higher for subjects with two alleles than those with a single APOE

4 allele [Corder et al., 1993].

Table 2.9: Results for ADNI analysis using the full cohort, standard nested case-control
design with three controls, and the Prentice method with α = 0.75.

Full Cohort Nested case-control Prentice
Covariate Est (se) HR (95% CI) Est (se) HR (95% CI) Est. (se) HR (95% CI)

N = 359 N = 273 N = 299
P-tau (20 pg/ml) 0.32 (0.08) 1.38 (1.17, 1.62) 0.34 (0.09) 1.40 (1.18, 1.66) 0.30 (0.09) 1.35 (1.13, 1.60)
Age (5 years) 0.13 (0.08) 1.14 (0.98, 1.34) 0.13 (0.08) 1.13 (0.97, 1.32) 0.11 (0.09) 1.12 (0.94, 1.33)
Race

White 1.0 1.0 1.0
Black -0.68 (1.01) 0.51 (0.07, 3.69) -0.40 (1.02) 0.67 (0.09, 4.98) -0.49 (1.04) 0.61 (0.08, 4.74)
Other -0.38 (0.72) 0.69 (0.17, 2.82) -0.20 (0.72) 0.82 (0.20, 3.36) -0.09 (0.75) 0.92 (0.21, 3.99)

Gender
Male 1.0 1.0 1.0
Female -0.29 (0.23) 0.75 (0.48, 1.16) -0.32 (0.22) 0.73 (0.47, 1.12) -0.31 (0.24) 0.73 (0.46, 1.17)

Education -0.06 (0.04) 0.94 (0.87, 1.01) -0.06 (0.04) 0.94 (0.87, 1.01) -0.06 (0.04) 0.94 (0.86, 1.02)
APOE 4

0 alleles 1.0 1.0 1.0
1 allele 0.28 (0.24) 1.32 (0.82, 2.12) 0.22 (0.24) 1.25 (0.78, 1.99) 0.31 (0.26) 1.37 (0.83, 2.25)
2 alleles 0.79 (0.32) 2.19 (1.18, 4.06) 0.64 (0.31) 1.90 (1.04, 3.48) 0.81 (0.35) 2.24 (1.14, 4.41)
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We used three controls for the nested case-control design, giving us a total of 273 subjects

for the analysis. The case-cohort design was based on α = 0.75 which requires a total of 299

subjects for the analysis. In practice, it is difficult to obtain the same number of subjects for

the nested case-control and the case-cohort designs. This is due to the random sampling of

controls. In the case-cohort design, the controls are sampled ahead of time and may include

subjects that later become cases. Despite having the opportunity to select the subcohort

proportion, because we do not know how many cases will be sampled into the subcohort, we

do not know how many subjects will be needed in total. Similarly, in the nested case-control

design we sample a certain number of controls at each event time, but these controls may

later become cases or may be sampled again at other event times. Once again, because we

do not know how many controls are re-sampled and how many become cases in the future,

we do not know exactly how many subjects will be required.

Table 2.9 presents the estimated hazard ratios based on the full cohort analysis as well as

the standard nested case-control and case-cohort designs. From the full cohort, we find that

comparing two populations that differ by 20 pg/ml in P-tau, the relative risk of developing

AD dementia is approximately 38% (95% CI: 1.1743, 1.6150) higher for the group with the

higher P-tau levels, assuming the two groups are similar with respect to the other character-

istics. This is consistent with previous studies investigating the association between P-tau

levels and progression to AD as well as with the survival curves presented earlier. Notice that

the relative risk of developing AD dementia is approximately 30% higher for a population

with one APOE 4 allele compared to a population with no APOE 4 alleles (95% CI: 0.822,

2.119) when both populations are similar with respect to the other variables. Comparing a

population with two APOE 4 alleles to a population with none, we find that the relative risk

of developing AD dementia is approximately two times larger for the population with both

APOE 4 alleles (95% CI: 1.183, 4.062). The other estimates follow similar interpretations.

For most cases, the estimates for the nested case-control and the case-cohort designs are
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very similar. For example, even though the coefficient estimates associated with two APOE

4 alleles differs for the three methods, they all correspond to a hazard ratio of approximately

two. The main difference is observed for the coefficients associated with race. The reason

these differ so much, however, is because the ”Black” and ”other” categories each had very

few subjects.

Table 2.10 presents the coefficient estimates for the full cohort and several variations of the

nested case-control and the case-cohort designs. In this table, we present the estimates and

standard errors along with the hazard ratios and the confidence intervals. Notice that even

though the path sampling design also requires three controls per case, the total number of

subjects is different than that for the other nested case-control designs. Because this design

was created to reduce the number of times that each control is sampled, we naturally sample

more controls than in the standard nested case-control design.

We find that all variations of the designs yield similar estimates to those of the full cohort.

The control forward design appears to differ more than the other designs, while the case-

cohort designs appear to yield estimates that are closest to those of the full cohort; however,

these differences are almost negligible. Notice also that the standard errors for most designs

are larger than those of the full cohort analysis. The smallest standard error is that of the

path sampling design, which is due to the number of controls selected. Because we attempt

to sample as many different controls as possible, we are nearly using the entire cohort. Notice

that the standard errors are approximately the same for all three designs even though our

simulation studies show that the nested case-control study is less efficient than the full cohort

analysis. This example, however, represents only one random sample from the full cohort.

Although the Control Forward and Path Sampling designs were meant to increase efficiency

compared to the standard nested case-control design, in their paper, Langholz and Thomas

[1991] show that under most scenarios, the proposed designs are as efficient as the nested case-

control design and in cases where these designs are more efficient, the increase is negligible.
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Table 2.10: Estimates for the P-tau coefficient based on the ADNI analysis using the full
cohort as well as variations of the nested case-control and case-cohort designs. This table
presents the total number of subjects included in the analysis (N), as well as the coefficient
estimates, standard error, hazard ratio, and 95% confidence interval.

Covariate N Est SE HR (95% CI)
Full Cohort 359 0.32 0.08 1.38 (1.17, 1.62)

Std. NCC 273 0.34 0.09 1.40 (1.18, 1.66)
Control Forward 273 0.37 0.09 1.45 (1.23, 1.71)
Path Sampling 305 0.28 0.08 1.33 (1.13, 1.56)

Prentice 299 0.30 0.09 1.35 (1.13, 1.60)
Self & Prentice 299 0.29 0.09 1.33 (1.12, 1.59)
Lin & Ying 299 0.32 0.09 1.37 (1.16, 1.63)

Comparing the results from the nested case-control and the case-cohort designs, we observe

that in this example, the case-cohort design provides estimates that are closer to those of

the full cohort analysis. The estimates obtained from the two designs are also fairly similar.

Despite some (very small) differences in the coefficient estimates, the interpretation of the

results remains the same. In all designs, we find that the relative risk is approximately 40%

higher comparing two populations of subjects with similar backgrounds that differ by 20

pg/ml in P-tau measurements.

In studies such as the one presented here, where covariate measurements may be difficult to

obtain, the nested case-control and the case-cohort designs may be worth considering. Not

only do these reduce the number of subjects whose full covariate information is required,

but they also yield results similar to those of the full cohort analysis. In sections 2.10 and

2.11 , we compare and contrast the two designs and further discuss how these methods are

implemented in practice.

70



2.9 Explicit adjustment for confounding variables us-

ing alternative sampling designs

With the nested case-control and the case-cohort designs, we can often adjust for confounding

variables in the specified model. When investigators know about the existence of a possible

confounding variable, they may choose to adjust for it by design. For example, if the purpose

of the study is to investigate the effects of a new treatment and there are strong reasons to

believe that age is a confounder, researchers may choose to randomize subjects to the new

treatment and the control within certain age groups, thereby avoiding potential imbalances

in age by treatment group that may have arisen by chance in the randomization process.

Adjusting for confounding variables in this way proves beneficial when the functional form

of the variable is not known because by matching with respect to that variable, we eliminate

the need to specify a functional form. This avoids the potential for model mis-specification

that can occur when adjustment is model-based.

The same idea holds when considering case-control studies. Rather than adjusting for con-

founding variables in the model, statisticians may decide to match on that covariate value

via a matched case-control design. One should take special caution when matching on mul-

tiple variables as this could lead to very small group sizes and may leave no controls for

comparison.

Variations of the nested case-control and the case-cohort designs are based on this idea

of matching on confounders. This section is dedicated to discussion of these extensions,

including the matched nested case-control, counter-matching, and exposure stratified case-

cohort design.
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2.9.1 Matching in the nested case-control design

The matched nested case-control design

In the usual nested case-control design, we have discussed that controls are randomly selected

from those who are still at risk at the time of the event. In a sense, we are matching cases to

controls with respect to time. The nested case-control design can also be used to adjust for

confounding variables using what is known as the matched nested case-control design. This

design considers subjects who are still at risk at the time of the event, and who are similar

to the case with respect to some variable, usually a known confounder. When using the

matched nested case-control design, we are not able to estimate the effect of the confounding

variable, but we explicitly remove the potential confounding effect of that variable by forcing

similarity between cases and controls [Keogh and Cox, 2014].

In the case of the matched nested case-control design, the pseudo-likelihood takes the form:

LMNCC =
D∏
j=1

ez
T
j,kβ∑

l∈R̃k(tj)
ez
T
l,kβ

(2.25)

zj,k tells us that the jth subject is in the kth strata and R̃k(tj) = j∪Sj,k where Sj,k represents

the sampled controls at time tj. Notice that these controls are sampled from the same strata

as that of the case.

The counter-matched nested case-control design

Another design extension meant to increase efficiency and which is similar to the matched

nested case-control design, is known as counter-matching. Like the matched nested case-

72



control design, counter-matching considers a certain variable when sampling the controls.

Unlike the previous method, however, it seeks to draw subjects with various values for that

outcome instead of restricting the sampling of controls only to those in the same strata as the

case. Suppose for example that there are j strata for the variable being considered. Using

the notation provided by Langholz and Clayton [1994], suppose that stratum i contains ni

subjects at risk. For the stratum in which the case is found, we will randomly sample mi−1

controls. For all other strata, we will randomly sample mi controls. The likelihood for the

counter-matched design takes the following form

LCM =
D∏
j=1

ez
T
j,kβ

ez
T
j,kβ +

∑mk−1
l=1 ez

T
l,kβ +

∑
g 6=k
∑mg

l=1 e
zTl,gβ

. (2.26)

Consider a scenario in which we have two strata (0 and 1) and are considering 1:1 matching.

If the case is from stratum one, we will sample one control from stratum zero. Similarly,

if the case is from stratum zero, we will randomly sample one control from stratum one.

This scenario gives rise to the name ”counter-matching” [Langholz and Clayton, 1994]. One

scenario in which counter-matching may prove useful is when a variable is expensive to collect,

but there is an inexpensive measure that can be used as a surrogate. In this case, we use

counter-matching based on the surrogate to select the controls. Once controls are selected,

the ”expensive measurement” is then collected from the cases and the selected controls. This

method provides large efficiency gains when the surrogate measure is moderately predictive

of the expensive measure. Moreover, high specificity of the surrogate is more important than

high sensitivity [Langholz and Borgan, 1995].

2.9.2 The exposure stratified case-cohort design

With the nested case-control design, we considered the matched nested case-control and

the counter-matched method. The case-cohort design has a similar variation, known as the
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exposure stratified case-cohort design [Borgan et al., 2000]. The original case-cohort method

considers a random sample from the full cohort, while the exposure stratified case-cohort

groups subjects into ”exposure-related strata” when selecting the subcohort [Borgan et al.,

2000]. In this design, we create L groups. From each group l, we must randomly sample

ml subjects. The subcohort is then made up of m =
∑L

l=1ml subjects. As with the usual

case-cohort design, full covariate information is collected from all of the subcohort members

as well as all subjects who later become cases.

Borgan et al. [2000] consider estimators that maximize the following weighted pseudo-

likelihood:

Lwcc(β) =
D∏
j=1

ez
T
j βwj(tj)∑

k∈Rwcc(tj) e
zTk βwk(tj)

. (2.27)

Three possible estimators, based on this pseudo-likelihood, are available for the exposure

stratified case-cohort design. The first estimator considers Rwcc(tj) = Sj, the subcohort

members who are still at risk at time tj and uses weight wk(tj) = ns(k)/ms(k) where ns(k) is

the total number of subjects in stratum s(k) and ms(k) is the total number of subjects in

stratum s(k) in the subcohort.

The second estimator uses Rwcc(tj) = Sj ∪Dj as the members of the subcohort who are still

at risk at time tj as well as all the cases not in the subcohort who are still at risk. This

estimator uses weights

wk(tj) =


n0
s(k)/m

0
s(k) if k is in the subcohort but does not become a case.

1 if k becomes a case

.

Here we have that n0
s(k) is the total number of non-cases in stratum s(k) and m0

s(k) is the
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total number of non-cases in the subcohort that are also in stratum s(k).

Notice that in the first estimator, cases outside of the subcohort are only considered at the

time of their event, while in the second estimator we include cases who are still at risk (even

if they are not in the original subcohort).

The third estimator uses the same weights as the first estimator. However, the difference

between this estimator and the first is that if the case is not in the subcohort, that case is

included in the risk set at the time of the event, but a subject from the risk set is removed

from the risk set at that event time. That is, we have Rwcc(tj) = (Sj ∪ j)\rj where rj is a

randomly selected subject. If the case is in the subcohort, the risk set remains as usual.

Because the exposure-stratified case-cohort design is a stratified version of the original case-

cohort method, the asymptotic properties are similar to those of the original design. It can

be shown that the estimators derived from the exposure-stratified case-cohort design are

consistent for the true coefficient, and that these coefficients are asymptotically normally

distributed. Moreover, the authors use a simulation study to show that the stratified case-

cohort design is more efficient than the usual case-cohort design. They find that the greatest

gain in efficiency is seen when there are few exposed subjects [Borgan et al., 2000].

The three variations of the exposure-stratified case-cohort design can be used with time-

dependent weights as well. However, asymptotic distributions using such weights have not

been derived. Furthermore, the authors discuss that more research must be conducted to

determine how covariates should be stratified.

As stated with the use of counter-matching for the nested case-control design, a surrogate

variable can be used to sample the subcohort. This approach may also be used with the

case-cohort design [Borgan et al., 2000]. In this scenario, the strata are defined using the

surrogate variable, and once the subcohort has been selected, the actual predictor of interest

is collected only on the subcohort members and on those who become cases.
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2.10 Nested case-control design vs. the case-cohort

design

As discussed in the previous sections, the nested case-control and the case-cohort designs

both reduce time for data collection, economic costs, and burden to patients. Because

controls are sampled from the same sample as the cases, we also have that the cases and

controls are from the same population, which is necessary for valid comparisons [Ernster,

1994]. Although these methods were designed for similar purposes, there are important

differences that may make one design more appealing for a particular study. In this section,

we consider both the scientific and statistical differences between the two methods.

2.10.1 Scientific Considerations

One major difference between the nested case-control and the case-cohort designs is that the

nested case-control design selects controls at each event time, while the case-cohort method

selects controls ahead of time. Because of this, if we are interested in multiple outcomes,

the controls selected using the nested case-control for one outcome will probably not be

adequate for another outcome of interest; controls selected for one outcome may not all

be in the risk set at the event times for another outcome. The subcohort selected using

the case-cohort design, on the other hand, may be applicable for more than one outcome

because the subcohort was selected independently of event times [Wacholder, 1991]. The

only difference will be the subjects who become cases and are not in the subcohort. In this

case, we only need to be sure that we can obtain the complete information on these cases as

well. If the analysis seeks to investigate the association of risk factors to different outcomes,

no adjustments need to be made to the variance. If the goal is to compare risk factors

of different diseases, however, confidence levels and intervals must be adjusted [Wacholder,
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1991].

Another consideration when deciding between the nested case-control and the case-cohort

methods is whether researchers are interested in continuing follow-up after the study has

ended. Because the subcohort in the case-cohort design is independent of events, the same

subcohort may be used after the study has concluded. As long as we have full covariate

information on the subcohort and we can obtain the same information for new cases, we can

conduct the analysis. For the nested case-control design, however, we must select controls

at the time of the event. If it is not difficult to obtain covariate information on the new

case and controls, it may not be a problem. In fact, because we would need to follow less

subjects, the nested case-control design may be more favorable. If covariate information

is difficult to obtain after time, however, the case-cohort design might be more appealing;

since the subcohort is being followed, information on these subjects will be complete and the

only remaining task is to obtain the information for new cases that are not in the subcohort

[Wacholder, 1991].

Wacholder also notes that, with the case-cohort design, controls are selected more quickly.

For the nested case-control design, one must wait until a case has been identified so that

controls can be selected. The case-cohort design does not require waiting for events to occur,

so the controls are already present. If the study must be conducted in a timely manner, the

case-cohort design might be more appealing.

Because the same number of controls is selected for every event in the nested case-control

design, we do not have to worry about depleting the available controls. The only scenario

during which this might happen is if controls are censored before the last event(s), but that

same problem would arise when conducting the full cohort and case-cohort analyses as well.

With the case-cohort design, however, there may be times where many of the subcohort

members become cases early on even if there are non-subcohort members who are still at

risk. If this happens, there are very few, if any, subjects to compare to later cases. In
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this setting, the subcohort can be augmented to include more controls [Wacholder, 1991].

Although this can be fixed, this problem is not encountered using the nested case-control

method.

Finally, when utilizing the case-cohort design prospectively there is also the possibility that

investigators induce bias. Because researchers know ahead of time that they will need to

collect full covariate information on the members of the subcohort, they might follow them

more closely than non-subcohort members. If closer follow-up leads to more compliance of

a proposed treatment, this may bias the results. The nested case-control design does not

suffer from this potential problem because researchers do not know ahead of time who will

be the cases or the controls [Langholz and Thomas, 1990].

2.10.2 Statistical Considerations

When considering the nested case-control and the case-cohort designs, one topic that comes

to mind is efficiency. This problem was considered by Self and Prentice [1988] as well as by

Langholz and Thomas [1990]. Although Self and Prentice (1988) did not account for repeated

sampling in the nested case-control design, their results are similar to those of Langholz and

Thomas [1990] in that the case-cohort design is slightly more efficient when considering a

study in which all people enter at the beginning of the study and are followed until the end

of the study or until they fail; that is, the only censoring that occurs is if subjects have not

failed by the end of follow-up.

The difference in efficiency of the two designs can be partially explained by the use of

controls in risk sets. With the nested case-control design, controls are only included in the

risk set for the event time at which they were sampled. With the case-cohort design, controls

belonging to the subcohort are included in all risk sets during which they are still at risk.

Although controls for the nested case-control design may be included forward in time as in
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the Control Forward design, doing this introduces a covariance term, therefore increasing

the variance [Langholz and Thomas, 1991]. We do not encounter this problem with the

case-cohort design because, as explained earlier, the case-cohort design allows us to obtain

the filtration of the subjects in the analysis, and we can therefore regard the observations

as independent conditional upon their filtration. As shown in the simulation studies, the

Lin and Ying [1993] method is strikingly more efficient than the other designs. This can be

explained by the fact that the Lin and Ying method includes cases in all risk sets during

which they are at risk. Although the other methods require the same number of subjects as

the Lin and Ying method, they do not use non-subcohort cases outside of their event time.

In this sense, the Lin and Ying method obtains more information from the cases, allowing

for better efficiency.

Depending on the study under consideration, we may find that the case-cohort or the nested

case-control design is more convenient. Regardless of which design is selected, however,

investigators must select the control sizes carefully as these will influence results of the

study.

2.11 Study Design

Throughout this chapter, we have discussed several variations of the nested case-control and

the case-cohort designs. You may have noticed that, regardless of the design, there is one

important decision to be made in practice. If we decide to implement the nested case-control

design, we must select the number of controls that will be used for each case. Similarly, if

we select the case-cohort design, we must select the size of the subcohort. The simulation

studies have shown that these decisions are crucial to the efficiency of the study. This section

briefly considers the selection of these control sizes. There are three possible scenarios that

may provide valuable information for study planning: (1) full event-time data is available
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on the study cohort, (2) there is partial follow-up on the cohort, and (3) there is an external

data source with a small sample size but missing covariate information and follow-up for the

event.

In the first scenario, we may consider a study in which complete information is available for

the full cohort (with the exception of the covariate of interest). Researchers may turn to

the nested case-control and the case-cohort designs if the covariate of interest is expensive

to collect, so the only missing information is the distribution of that covariate for the cases

and the controls. To decide upon the size of the controls (the subcohort size or the number

of controls for each case), one may make assumptions on the exposure distribution between

the cases and the controls. Based on these assumptions, we may investigate the sensitivity

of the results stemming from the number of controls selected through the use of simulation

studies. From this, we may also consider other factors such as power to select the number

of controls required for the study.

In the second scenario, we assume that we have followed a cohort for a certain amount of

time, but the study has not concluded. In this case we may have complete information on

all predictors with the exception of the covariate of interest. However, because the study has

not concluded, we also have not seen event times for all subjects. Therefore, we must project

the marginal survival to the anticipated maximal follow-up time of the study as well as make

assumptions on the exposure distribution. Based on these assumptions, we may therefore

perform simulation studies to observe the optimal characteristics for the study design as in

the first scenario.

We encounter the third scenario when pilot data is available with follow-up for the event

and covariate information on the cases and controls, but with only a small sample size.

This scenario requires that we make assumptions on the exposure distribution of cases and

controls. Based on this information, we may then perform simulation studies to investigate

the optimal characteristics of the design with special attention to power and efficiency.
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One method, designed to help with sample size/power calculation, can also be used to

inform the parameter estimates and confounding variables. This method is based on a two-

stage approach. During the first step, the bounds for the sample size/power calculation are

established. At this time, various scenarios and potential confounders are considered for a

sensitivity analysis of the potential confounders. The second stage considers “internal pilot

data”, or the data collected as the study progresses. Before completion of the study, one may

use the data collected up to that point to update, or “refine” the estimates from stage I and

to obtain estimates for the fully adjusted model as well as information on power [Haneuse

et al., 2012]. With the internal pilot data, we could also perform sensitivity analyses in the

usual way to investigate the number of controls or the subcohort size to be used for the fully

adjusted model.

2.12 Discussion

Time-to-event studies are often time-consuming and expensive. When the disease or outcome

under consideration is rare, large groups may be needed for analysis, even though most of

the information being used comes from those subjects that experience the event of interest.

The nested case-control and the case-cohort designs were developed for these scenarios.

By considering all cases and only a fraction of the controls, both designs reduce cost to

researchers and/or burden for participants.

The nested case-control design samples a specified number of controls at each event time

and uses those controls only for the event at which they were sampled. Variations exist that

make use of sampled controls differently, such as using them forward in time or sampling

based on path sets as discussed in earlier sections. Other modifications occur with respect

to how controls are sampled in order to explicitly adjust for confounding, such as in the

matched nested case-control or the counter-matched design.
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Alternatively, one can use the case-cohort design which samples controls ahead of time and

only includes these controls and all subjects who become cases. Variations of this design

consider different weighting schemes. For example, cases outside of the subcohort may receive

a weight of one or zero in the denominator for the likelihood in (2.23). With the case-cohort

design, we may also use the exposure stratified design which samples subjects from different

strata and combines the subjects from all strata to make up the subcohort.

Although both the nested case-control and case-cohort design seek to reduce burden on

subjects as well as cost and time, there are special considerations that should be made for

each design. The nested case-control design, for example, selects controls at each event time

while the case-cohort design selects these controls ahead of time. Because of its design,

the case-cohort method also has the advantage that subjects can be followed even after the

study has ended. With this, however, we also have that the case-cohort design may be

subject to biased estimates if subcohort members are followed more or less rigorously than

non-subcohort members.

Researchers often have limited time and funding, and it is of utmost importance to reduce

patient burden when possible. The nested case-control and the case-cohort designs both

assist researchers in obtaining these goals. Considering the advantages of these two methods,

researchers will often find that the benefits far outweigh the disadvantages. Although neither

method is universally superior to the other, researchers may find that one method is better

suited for the purpose of their study.

While these designs represent excellent alternatives to traditional time-to-event cohort stud-

ies, there are many areas that can be improved. In the remaining chapters, we focus on the

nested case-control design and its performance under model mis-specification and propose

robust parameter estimation methods. We also investigate the performance of estimators for

receiver operating characteristic (ROC) curves and the area under the curve (AUC) when

a nested case-control design is used. Another problem to be studied in future work is that
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in the usual survival setting, we consider biomarker measurements to remain constant until

the time of the next measurement. However, this is not generally the case; measurements

are constantly fluctuating. Simultaneous estimation of the smooth trajectory of a biomarker

over time and how it relates to the risk of an event remains an open area of research. Finally,

in order to improve the efficiency of these and of existing methods when time-dependent co-

variates are under consideration, further work for assessing optimal control selection should

be considered.
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Chapter 3

On Estimation in the Nested

Case-Control Design Under

Non-Proportional Hazards

3.1 Introduction

Time-to-event is a common outcome in many empirical studies. Biomedical examples include

modeling the time to disease progression or time to death. Typically, studies utilize a

simple random sample obtained from the population of interest to estimate the time-to-

event distribution, usually as a function of measured covariates. As seen in Chapter 2,

however, when the outcome of interest is rare, a random sample is not the most efficient

sampling method since a very small proportion of sampled subjects will experience the event.

Moreover, if the covariate(s) of interest are difficult or expensive to collect, the nested case-

control design may provide greater utility. The nested case-control design makes use of the

fact that events provide more information than non-events when using the partial likelihood
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estimator [Thomas, 1977]. This sampling scheme utilizes full covariate information on all

subjects who experience the event of interest (cases) and a subsample from those who do not

experience the event (controls). To implement the design, at each event time we randomly

sample M controls from the risk set at that time. Usually, M is selected to be between one

and four, allowing for a large reduction in costs when the event of interest is rare.

The work here is motivated by research on the discovery of new biomarkers for Alzheimer’s

disease (AD). In this setting, potential biomarkers are generally expensive to obtain and bur-

densome to participants. As an example, consider phosphorylated tau (P-tau) and amyloid-β

(Aβ), two proteins associated with plaques and tangles in the brain that are a hallmark of

AD [Selkoe, 2001]. These proteins can be measured in the cerebrospinal fluid (CSF), which is

collected via lumbar puncture. To help identify new biomarkers, we may consider investigat-

ing other proteins found in CSF. However, as previously stated, trial participants are often

unwilling to undergo lumbar punctures [Nuño et al., 2017]. Therefore, when it is collected,

CSF is stored and processed as needed. Applying the nested case-control design would allow

for strategic use of existing CSF samples.

Use of the Cox PH model is common in the literature, even though time-varying effects often

arise in clinical research. In Chapter 2, we learned that when the model is mis-specified,

the estimand corresponding to the partial likelihood estimator depends on patient accrual

and dropout patterns. Fortunately, several estimators have been proposed that recover an

estimand that does not depend on the censoring distribution including those of Xu and

O’Quigley [2000], Boyd et al. [2012] and Nguyen and Gillen [2012] when using the full cohort

data. In this chapter, we show that under finite samples and a NPH covariate effect, the usual

Cox estimator for the nested case-control estimates a quantity that depends on the number

of controls sampled for each event time as well as on the underlying censoring distribution.

In Section 3.2 we begin by considering the case of a single binary predictor of interest and

build on previous work for mis-specified PH models under the full cohort (FC) or simple
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random sample design, extending these results to the nested case-control design setting. We

then propose a new estimating equation that recovers the FC estimand, and extend it to also

allow for consistent estimation of a censoring-robust estimand. The asymptotic distribution

of both estimators is derived and finite sample variance estimators are provided. Finally, an

extension of the proposed estimators that incorporates adjustment of confounding variables is

provided at the conclusion of Section 3.2. Section 3.3 presents simulated results to illustrate

the performance of the proposed estimators in finite samples and in Section 3.4 we apply the

estimators to ADNI data. Section 3.5 concludes with a discussion of the scientific relevance

of the methodology and avenues for future research.

3.2 Methodology

3.2.1 Model Mis-specification Under the Full Cohort

We start with a brief review of the censoring-robust estimators presented in Chapter 2.

The first estimator, proposed by Xu and O’Quigley [2000], considers the scenario in which the

censoring distribution does not depend on any covariate values. In this case, the estimating

equation under the partial likelihood estimator can be reweighted as

UXO(β) =
n∑
i=1

Ui,XO(β) =
n∑
i=1

∫ ∞
t=0

Wi,XO(t)

{
Zi−

n−1
∑n

j=1 ZjYj(t) exp(Zjβ)

n−1
∑n

j=1 Yj(t) exp(Zjβ)

}
dNi(t) (3.1)

where Wi,XO(t) = ŜKM(t)/
∑n

j=1 Yj(t) and ŜKM(t) is the left-continuous Kaplan-Meier es-

timator of the survival function [Kaplan and Meier, 1958]. The estimand of the proposed

estimator no longer depends on the censoring distribution and can be interpreted as an

average covariate effect.
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Boyd et al. [2012] consider the conditionally independent censoring scenario in which cen-

soring and event times are independent conditional upon the covariate value. The authors

show that in this case, the partial likelihood estimator is consistent for the solution to

∫ ∞
0

EZ

(
fT (t|Z)SC(t|Z)

[
Z − EZ{ZST (t|Z)SC(t|Z) exp(Zβ)}

EZ{ST (t|Z)SC(t|Z) exp(Zβ)}

])
dt = 0, (3.2)

which is dependent upon SC(t|Z), the covariate-specific censoring distribution. Boyd et al.

[2012] propose reweighting the partial likelihood by the inverse of the covariate-specific cen-

soring distribution where the censoring distribution depends on a single, binary covariate.

The proposed estimating equation is:

UCR(β) =
n∑
i=1

∫ ∞
t=0

W (t|Z = zi)

{
Zi −

S
(1)
CR(β, t)

S
(0)
CR(β, t)

}
dNi(t) = 0 (3.3)

where S
(r)
CR(β, t) = n−1

∑n
j=1 Z

r
jW (t|Z = zj)Yj(t) exp(Zjβ), W (t|Z = zj) = {ŜC,KM(t|Z =

zj)}−1, and ŜC,KM(t|Z = zj) is the covariate-dependent left continuous Kaplan-Meier es-

timator. Reweighting the score function in this manner yields a censoring-robust estima-

tor that is asymptotically equivalent to that proposed by Xu and O’Quigley [2000] when

SC(t|Z) = SC(t).

3.2.2 Partial Likelihood Estimator under a Nested Case-Control

Design

As seen in Chapter 2, when the event of interest is rare, the nested case-control design reduces

the number of subjects for whom the full covariate information is required by including all

subjects who experience an event and a subsample from those who do not experience an

event. At each event time, M subjects are randomly sampled from everyone who is still

in the risk set at that time. Only the event and the sampled controls are included as part
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of the nested case-control risk set. The partial likelihood for the nested case-control design

in (2.17) can be rewritten as LNCC =
∏n

i=1

{
ez
T
i β∑n

j=1 Ỹj(ti)e
zT
j
β

}δi

where, as before, δi is an

indicator for whether subject i experiences an event and Ỹj(t) is an indicator for whether

subject j is in the nested case-control risk set at time t (i.e. the subject either experienced

an event at time t or was sampled as a control). Written in counting process notation, the

estimating equation under the nested case-control design then takes the form UNCC(β) =∑n
i=1

∫∞
t=0

{
Zi −

S
(1)
NCC(β,t)

S
(0)
NCC(β,t)

}
dNi(t) = 0 where S

(r)
NCC(β, t) = n−1

∑n
j=1 Z

r
j Ỹj(t) exp(Zjβ) and

Ni(t) = I(Xi ≤ t, δi = 1). When M controls are utilized in the nested case-control design,

the cardinality of the risk set size at each event time will be M + 1 (M controls plus the

observed case) unless there are less than M potential controls at risk in the FC (in this

setting, all possible controls are sampled). Recall that under a FC simple random sample,

the estimating equation is given by (2.10). Thus the difference between the two estimating

equations lies in the risk set size at each observed event time.

Proposition 1. Let fT (t|Z) and ST (t|Z) denote the density and survival function for the fail-

ure times, respectively, and let SC(t|Z) denote the survival function for the censoring times.

Suppose that M/n→ a as M,n→∞ for some constant a, 0 < a ≤ 1. If P (Yi(τ) > 0) > 0

where τ is the maximum observed time, the partial likelihood estimator under the nested

case-control design is consistent for the solution to

∫ ∞
0

EZ

{
EZ∗|Z

(
fT (t|Z)SC(t|Z)γ(a, Z∗, t)×

[
Z − EZ{ZST (t|Z)SC(t|Z) exp(Zβ)}

EZ{ST (t|Z)SC(t|Z) exp(Zβ)}

])}
dt = 0

where γ(a, Z∗, t) = a·ST (t|Z∗)SC(t|Z∗)
ST (t)SC(t)

and Z∗ represents the covariate values of sampled con-

trols.

Proof. The nested case-control estimator is the solution to UNCC(β) =
∑n

i=1

∫∞
0

{
Zi −

S
(1)
NCC(β,t)

S
(0)
NCC(β,t)

}
dNi(t) = 0 where Ni(t) = I(Xi ≤ t, δi = 1) is a right continuous counting process,

S
(r)
NCC(β, t) = n−1

∑n
j=1 Z

r
j Ỹj(t) exp(βZj) and Ỹj(t) is an indicator for whether subject j is

in the nested case-control risk set at time t. Note that the expected value of S
(r)
NCC(β, t), r =
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0, 1 will depend on who is sampled into the nested case-control risk set. We must therefore

consider the probability of experiencing an event or being sampled as a control given that

the subject does not experience an event. This probability is given by:

E[Ỹj(t)] =

[
M

n(t)− 1

{
1− λ(t, Zj)∑n

k=1 Yk(t)λ(t, Zk)

}
+

λ(t, Zj)∑n
k=1 Yk(t)λ(t, Zk)

]
SC(t|Zj)ST (t|Zj),

(3.4)

where Yk(t) is an indicator for whether subject k is at risk in the FC, and n(t) represents

the size of the risk set in the FC at time t. If limM,n→∞M/n = a for some constant a where

0 < a ≤ 1, then limM,n→∞E[Ỹj(t)] = aST (t|Z)SC(t|Z)
ST (t)SC(t)

since limn→∞
λ(t,Zj)∑n

k=1 Yk(t)λk(t,Zk)
= 0. When

considering a binary covariate under the nested case-control design, events will not contribute

to the score if all subjects in the risk set (case and controls) have the same covariate value.

This means that contributions to the partial likelihood estimating function will depend on the

values of sampled controls. We therefore consider the probability of sampling a subject with

covariate value Z∗ given that an event occurred. This probability is given by MST (t|Z∗)SC(t|Z∗)
nST (t)SC(t)

.

Denote limM,n→∞
M ·ST (t|Z∗)SC(t|Z∗)

nST (t)SC(t)
= aST (t|Z∗)SC(t|Z∗)

ST (t)SC(t)
to be γ(a, Z∗, t). Combining our results

with the work of Struthers and Kalbfleisch [1986], we have that the nested case-control

estimator is consistent for the solution to

∫ ∞
0

EZ

{
EZ∗|Z

(
fT (t|Z)SC(t|Z)γ(a, Z∗, t)

[
Z −

EZ
{
Z aST (t|Z)SC(t|Z)

ST (t)SC(t) exp(βZ)}

EZ{aST (t|Z)SC(t|Z)
ST (t)SC(t) exp(βZ)}

])}
dt

=

∫ ∞
0

EZ

{
EZ∗|Z

(
fT (t|Z)SC(t|Z)γ(a, Z∗, t)

[
Z −

EZ
{
ZST (t|Z)SC(t|Z) exp(βZ)}

EZ{ST (t|Z)SC(t|Z) exp(βZ)}

])}
dt = 0.

In Proposition 1, γ(a, Z∗, t) denotes the probablity that a subject with covariate Z∗ is sam-

pled into the nested case-control risk set at failure time t. Note that if M/n→ a the equation

from Proposition 1 simplifies to
∫∞

0
EZ

{
afT (t|Z)SC(t|Z)×

[
Z−EZ{ZST (t|Z)SC(t|Z) exp(Zβ)}

EZ{ST (t|Z)SC(t|Z) exp(Zβ)}

]}
dt =

0. In this case, the estimand for the nested case-control design is the same as that of the FC

partial likelihood estimator and depends on the censoring distribution when the model is
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mis-specified. Under finite samples and small M (as used in practice), however, contribution

to the partial score depends on the covariate values of sampled subjects. In the binary set-

ting in particular, events for which the case and all sampled controls have the same covariate

value will not contribute to the partial score and the number of times this occurs will depend

on the number of controls sampled at each event time. The practical implication is that in

finite samples the Cox PH model under the nested case-control sampling scheme estimates

a different quantity for different values of M when the PH assumption is violated, as em-

pirically demonstrated in Section 3.3. In this chapter, we introduce a reweighted estimating

function to deal with the dependency on M and on the censoring distribution.

3.2.3 Recovering the FC Estimand: Single Binary Predictor

Consider a binary predictor of interest. In Proposition 1, the dependence of the estimand

on γ(a, Z∗, t) can be explained by the fact that under the nested case-control design, event

times will not contribute to the score if all subjects in the risk set have the same covariate

value. Therefore, to recover the FC estimand, we propose imputing the covariate values for

subjects who were not sampled into the nested case-control design to allow for inclusion of

these event times. To do this, we must estimate the number of subjects at risk with each

covariate value in the FC. Let π(t) be the proportion of subjects with covariate value Z = 1

at time t and let p(t) be an estimator of π(t). Multiplying p(t) by the number of subjects at

risk in the FC, we can obtain an estimate of the number of subjects at risk with Z = 1 in

the FC.

Proposition 2. Let p(t) be a consistent estimator of π(t), the true proportion of subjects

with Z = 1 at time t, and P (Yi(τ) > 0) > 0 where τ is the maximum observed time. Further,

let β0 denote the estimand corresponding to the partial likelihood estimator based upon full
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cohort data obtained from a simple random sample. If β̂FC is the solution to

ŨFC(β) =
n∑
i=1

∫ ∞
0

{
Zi −

n−1{n̂1(t) exp(β)}
n−1{n̂0(t) + n̂1(t) exp(β)}

}
dNi(t) = 0 (3.5)

where n̂0(t) = n(t) · (1 − p(t)), n̂1(t) = n(t) · p(t) and n(t) is the number of subjects at risk

in the FC at time t then β̂FC
P→ β0.

The proof of Proposition 2 follows that of Proposition 3. For this result to hold, we require

a consistent estimator for π(t). Under the nested case-control design, controls are sampled

at random conditional upon being at risk at that event time. As such, one can naturally

borrow information from risk sets before the current event time, and use this information to

impute the covariate values for subjects who were not sampled into the current nested case-

control risk set. One possibility is to use a generalized additive model to smooth estimates

of π(t) at each event time. Specifically, we consider a logistic regression model of the form

logit (π(t)) = s0 + s(t) where s(t) is a natural cubic spline with evenly spaced knots and π(t)

is the proportion of subjects at risk at time t with covariate value Z = 1. At each event

time, we estimate π(t) using controls who were sampled for risk sets at or before time t. For

the first two event times p(t) is the proportion of subjects (including cases) in the nested

case-control sample with Z = 1 in risk sets at or before the current event time.

To obtain better estimates of the proportion of subjects at risk with Z = 1 under the full

cohort simple random sample, one may modify the nested case-control sampling scheme to

allow for more controls at earlier event times. In particular, one can sample a larger number

of controls at the first event time and M controls for remaining event times. At each event

time, we include subjects who were previously sampled and who are still at risk in the full

cohort sample.
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3.2.4 Censoring-robust Estimation

In Section 3.2.3, we proposed an estimator that allows us to recover the results based on

the FC. However, as stated in Section 3.2.1, under model mis-specification the estimand

corresponding to the FC estimator will depend on the censoring distribution. In this section,

we extend the proposed estimator to recover a censoring-robust estimand under the nested

case-control design using a method analogous to that of Boyd et al. [2012].

Boyd et al. [2012] reweight the estimating function for the Cox partial likelihood estimator

by the inverse of the censoring distribution to recover a censoring-robust estimand. These

weights are based on estimates for the censoring distribution from the FC data. Because

we do not have full covariate information on all subjects when using the nested case-control

design, we cannot directly estimate the FC censoring distribution. Under the nested case-

control design, however, we know the covariate values for subjects who experience an event or

are sampled as controls. Therefore, we propose estimating the covariate-dependent survival

for censoring as

ŜC(t|Z = z) = P̂ (C > t|Z = z) =
∏
j:tj≤t

1− cj(z)

nj(z)
, (3.6)

where cj(z) is the number of subjects with covariate value Z = z who are censored at time

tj and nj(z) is the number of subjects with Z = z in the nested case-control design who are

still at risk. Subjects are considered to be at risk for censoring from the time they were first

included in the nested case-control sample until their observed time.

Proposition 3. Let p(t) be a consistent estimator of π(t) and assume that P (Yi(τ) > 0) > 0,

where τ is the maximum observed event time. Further, let βCR denote the censoring-robust

estimand based upon data obtained from a simple random sample. If β̂CR is the solution to

ŨCR(β̂CR) =

n∑
i=1

∫ ∞
0

W̃ (t|Z = zi)

{
Zi−

n−1{W̃ (t|Z = 1)n̂1(t) exp(β̂CR)}
n−1{W̃ (t|Z = 0)n̂0(t) + W̃ (t|Z = 1)n̂1(t) exp(β̂CR)}

}
dNi(t) = 0
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(3.7)

where W̃ (t|Z = z) = 1/ŜC(t|Z = z), then β̂CR
P→ βCR.

Proof. To show that β̂CR
P→ βCR holds, we will first show that W̃ (t|Z) is consistent for

w(t|Z) = 1/SC(t|Z). To this end, let Y ∗i (t) = I(Si ≤ t ≤ Xi) where Si is the first time subject

i entered the nested case-control design sample. Further, denote Λ̂C(u) =
∫ u

0
J(s)dN̄∗(s)

Ȳ (s)
where

N̄∗(t) =
∑n

i=1 N
∗
i (t), N∗i (t) = I(Xi ≤ t, δi = 0), Ȳ (t) =

∑n
i=1 Y

∗
i (t), J(t) = I(Ȳ (t) > 0) and

dΛ∗C(t) = J(t)dΛC(t). Then

ŜC(t)
SC(t)

= 1−
∫ t

0
ŜC(u−)
SC(u)

{dΛ̂C(u)− dΛC(u)}(Fleming and Harrington [2011]) and

ŜC(t)− SC(t) = −SC(t)

∫ t

0

ŜC(u−)

SC(u)
[{dΛ̂C(u)− dΛ∗C(u)} − {dΛC(u)− dΛ∗C(u)}]

= −SC(t)

∫ t

0

ŜC(u−)

SC(u)

{
dN̄∗(u)J(u)

Ȳ (u)
− dΛ∗C(u)

}
+ SC(t)

∫ t

0

ŜC(u−)

SC(u)
{dΛC(u)− dΛ∗C(u)}

= −SC(t)
n∑
i=1

∫ t

0

ŜC(u−)

SC(u)

{
dN∗i (u)J(u)

Ȳ (u)
− Y ∗i (u)J(u)

Ȳ (u)
dΛC(u)

}

+ SC(t)

∫ t

0

ŜC(u−)

SC(u)

{
(1− J(u))dΛC(u)

}
= −SC(t)

n∑
i=1

∫ t

0

ŜC(u−)

SC(u)

{
J(u)

Ȳ (u)
dMi(u)

}

+ SC(t)

∫ t

0

ŜC(u−)

SC(u)

{
(1− J(u))dΛC(u)

}

where dMi(u) = dN∗i (u) − Y ∗i (u)dΛC(u) and Mi(u) is a martingale. This follows from the

fact that controls are randomly sampled from existing risk sets. Therefore, the first term

converges in probability to 0. As n → ∞, J(u)
a.s.→ 1, so the second term also converges to

0. This gives us that ŜC(t)
P→ SC(t). Note that this proves the convergence of the marginal

censoring distribution. For ease of notation, the proof of the covariate-specific censoring

distribution is not shown, but the same argument holds. Therefore, ŜC(t|Z)
P→ SC(t|Z).

Applying the continuous mapping theorem, we have that W̃ (t|Z)
P→ w(t|Z).
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We now prove that our proposed estimator is consistent for the same censoring-robust esti-

mand proposed by Boyd et al. [2012]. Define S
(r)
CR(β, t) = n−1

∑n
i=1 Z

r
iW (t|Z = zi)Yi(t) exp(βZi)

(r = 0, 1, 2), where Yi(t) = I(Xi ≥ t). Note that for a binary predictor S
(0)
CR(β, t) =

n−1{n0(t)W (t|Z = 0)+n1(t)W (t|Z = 1) exp(β)} and S
(1)
CR(β, t) = S

(2)
CR(β, t) = n−1{n1(t)W (t|Z =

1) exp(β)}. Let S̃
(0)
CR(β, t) = n−1{n̂0(t)W̃ (t|Z = 0)+n̂1(t)W̃ (t|Z = 1) exp(β)} and S̃

(1)
CR(β, t) =

S̃
(2)
CR(β, t) = n−1{n̂1(t)W̃ (t|Z = 1) exp(β)}. We define W (t|Z = z) to be 1

SC,KM (t|Z=z)
where

SC,KM(t|Z = z) is the Kaplan-Meier estimator for the covariate-dependent survival for cen-

soring and W̃ (t|Z = z) = 1

ŜC(t|Z=z)
where ŜC(t|Z = z) is defined as in (3.6). We denote the

true covariate-dependent survival for censoring as SC(t|Z) and the inverse as w(t|Z). Let

s
(r)
CR(β, t) = limn→∞ S

(r)
CR(β, t).

Assuming that we have selected a consistent estimator of π(t), we have that n̂j(t)−nj(t)
P→ 0

for j = 0, 1. We also have that ŜC,KM(t|Z)
P→ SC(t|Z) [Kaplan and Meier, 1958] and by

continuous mapping W (t|Z)
P→ w(t|Z). Using the fact that W̃ (t|Z) and W (t|Z) both

converge in probability to w(t|Z) along with continuous mapping, we have that W̃ (t|Z) −

W (t|Z)
P→ 0. Applying continuous mapping again, we have that S̃

(r)
CR(β, t)−S(r)

CR(β, t)
P→ 0. If

these are both monotone and bounded, we have that supβ∈B,t∈[0,τ ] ||S̃
(r)
CR(β, t)−S(r)

CR(β, t)|| P→

0. Note that ||S̃(r)
CR(β, t)− s(r)

CR(β, t)|| ≤ ||S̃(r)
CR(β, t)− S(r)

CR(β, t)||+ ||S(r)
CR(β, t)− s(r)

CR(β, t)||, and

from Boyd et al. [2012], we have that supβ∈B,t∈[0,τ ] ||S
(r)
CR(β, t) − s(r)

CR(β, t)|| P→ 0. Together,

these give us that supβ∈B,t∈[0,τ ] ||S̃
(r)
CR(β, t)− s(r)(β, t)|| P→ 0.

Applying the continuous mapping theorem along with our previous results, we get that

supβ∈B ||ŨCR(β) − UCR(β)|| P→ 0, the estimating function corresponding to our proposed

estimator and to the censoring-robust estimator of Boyd et al. [2012], respectively. Therefore,

ŨCR(β) and UCR(β) converge to the same function, which, when set equal to zero, has a

unique solution at βCR. Therefore, β̂CR
P→ βCR, proving Proposition 3.

To prove Proposition 2, we take W̃ (t|Z = z) = W (t|Z = z) = w(t|Z = z) = 1. Using

supβ∈B,t∈[0,τ ] ||S̃
(r)
CR(β, t) − s(r)(β, t)|| P→ 0 and following the approach of Andersen and Gill
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[1982], we can show that the log partial likelihood converges to a concave function maximized

at β0, the estimand corresponding to the full cohort partial likelihood estimator.

The finite-sample performance of the censoring-robust estimator is presented in Section 3.3.2

through the use of simulations.

3.2.5 Asymptotic Distribution and Variance Estimation

In this section we provide the asymptotic distribution of the proposed estimators along with

two finite sample variance estimators.

Proposition 4. Let β̂CR denote the solution to (3.7). Suppose that P (Yi(τ) > 0) > 0,

p(t) is a consistent estimator of π(t), and let βCR denote the censoring-robust estimand.

Then
√
n(β̂CR − βCR)

D−→ N(0, A−1BA−1) where A = limn→∞An, B = limn→∞Bn, with

An(β̂CR) = n−1
∑n

i=1 δiρ(Xi)

(
1 − ρ(Xi)

)
, δi an indicator for whether subject i experienced

an event, Xi is the observed time for subject i,

ρ(Xi) =
W̃ (Xi|Z = 1)n̂1(Xi) exp(β̂CR)IM,1(Xi)

W̃ (Xi|Z = 0)n̂0(Xi)IM,0(Xi) + W̃ (Xi|Z = 1)n̂1(Xi) exp(β̂CR)IM,1(Xi)
, (3.8)

and IM,Z(t) is an indicator for whether the original nested case-control sampling included

controls from group Z at time t. Further, Bn(β̂CR) =
∑D

j=1 Ũ
∗
j (β̂CR)Ũ∗j (β̂CR)T , where

t1, t2, · · · , tD are the unique event times, Ỹi(t) = 1 if subject i is in the nested case-control
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risk set at time t (otherwise, it is 0), and

Ũ∗j (β) = n−1
n∑
i=1

Ỹi(tj)

[
δiW̃ (tj |Z = zi)

{
Zi

− W̃ (tj |Z = 1)n̂1(tj) exp(β̂CR)

W̃ (tj |Z = 0)n̂0(tj) + W̃ (tj |Z = 1)n̂1(tj) exp(β̂CR)

}
− Zi exp(β̂CRZi)

n(tj)W̃ (tj |Z = zi)

[
∑n

i=1 Ỹi(tj)]{W̃ (tj |Z = 0)n̂0(tj) + W̃ (tj |Z = 1)n̂1(tj) exp(β̂CR)}

+ exp(β̂CRZi)
n(tj)W̃ (tj |Z = zi)W̃ (tj |Z = 1)n̂1(tj) exp(β̂CR)

[
∑n

i=1 Ỹi(tj)]{W̃ (tj |Z = 0)n̂0(tj) + W̃ (tj |Z = 1)n̂1(tj) exp(β̂CR)}2

]
.

(3.9)

Proof. As before, let Ti be the event time for subject i, Ci the censoring time, and let the

observed time be Xi = min(Ti, Ci). Ni(t) = I(Xi ≤ t, δi = 1) is a right continuous count-

ing process. Define S
(r)
CR(β, t) = n−1

∑n
i=1 Z

r
iW (t|Z = zi)Yi(t) exp(βZi) (r = 0, 1, 2), where

Yi(t) = I(Xi ≥ t). Note that for a binary predictor S
(0)
CR(β, t) = n−1{n0(t)W (t|Z = 0) +

n1(t)W (t|Z = 1) exp(β)} and S
(1)
CR(β, t) = S

(2)
CR(β, t) = n−1{n1(t)W (t|Z = 1) exp(β)}. Let

S̃
(0)
CR(β, t) = n−1{n̂0(t)W̃ (t|Z = 0) + n̂1(t)W̃ (t|Z = 1) exp(β)} and S̃

(1)
CR(β, t) = S̃

(2)
CR(β, t) =

n−1{n̂1(t)W̃ (t|Z = 1) exp(β)}. We define W (t|Z = z) to be 1
SC,KM (t|Z=z)

where SC,KM(t|Z =

z) is the Kaplan-Meier estimator for the covariate-dependent survival for censoring and

W̃ (t|Z = z) = 1

ŜC(t|Z=z)
where ŜC(t|Z = z) is defined as in (3.6). We denote the true

covariate-dependent survival for censoring as SC(t|Z) and the inverse as w(t|Z). Let s
(r)
CR(β, t) =

limn→∞ S
(r)
CR(β, t).

We will use Theorem 5.3 of Kalbfleisch and Prentice [2011], which implies Rebolledo’s Mar-

tingale Central Limit Theorem, to derive the asymptotic distribution of our proposed estima-

tors. This requires that there exists an open neighborhood B of βCR and s
(r)
CR(β, t), r = 0, 1, 2

defined on B × [0, τ ] that satisfy the following: (1) supβ∈B,t∈[0,τ ] ||S̃
(r)
CR(β, t) − s(r)

CR(β, t)|| p→

0 as n → ∞; (2) s
(0)
CR(β, t) is bounded away from 0 for t ∈ [0, τ ]; (3) For r = 0, 1, 2,

s
(r)
CR(β, t) is a continuous function of β uniformly in t ∈ [0, τ ], s

(1)
CR(β, t) =

∂s
(0)
CR(β,t)

∂β
and
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s
(2)
CR(β, t) =

∂2s
(0)
CR(β,t)

∂β2 ; (4)
∑

(β, t) =
∫ τ

0
ν(β, u)s

(0)
CR(β, u)λ0(u)du is positive definite ∀β ∈ B;

(5) Zi is bounded ∀t ∈ [0, τ ]; (6)
∫ t

0
λ0(u)du <∞.

Assuming that P (Yi(τ) > 0) > 0 (i.e. there is positive probability that subject i is at risk

over the inferential support interval) implies that conditions (2) and (6) hold. Conditions

(4) and (5) are assumed. (5) together with the dominated convergence theorem ensures (3).

The proof of Proposition 3 shows that condition (1) holds.

Following an analogous argument to that given in Boyd et al. [2012], it can be shown that the

estimating function in (3.7) can be written as a sum over stochastic integrals of a predictable

process with respect to a martingale. In our case, it is necessary to note that predictability

of the nested case-control sampling holds by Goldstein and Langholz [1992]. Specifically,

because controls are sampled immediately after an event through a random mechanism,

the sampling processes are predictable. Moreover, the weights from our proposed estimator

are also predictable because they do not use information from future event times. Thus

application of Theorem 5.3 of Kalbfleisch and Prentice [2011] together with the sandwich

variance of Lin and Wei [1989] and a Taylor expansion of the estimating equation about

s
(0)
CR(β, t), s

(1)
CR(β, t), and limn→∞ n

−1
∑n

i=1 W̃ (t|Z = zi)Ni(t) to account for uncertainty in

the estimated censoring distribution and risk set sizes, implies that
√
n(β̂CR − βCR)

D→

N(0, A−1BA−1) where A = limn→∞An(βCR) and B = limn→∞Bn(βCR), with An(β) =

n−1
∑n

i=1 δiρ(Xi)(1 − ρ(Xi)) and Bn(β) =
∑D

j=1 Ũ
∗
j (β)Ũ∗j (β)T . As defined in Section 3.2.5,

δi is an indicator for whether subject i experienced an event, ρ(Xi) is defined as in (3.8),

and Ũ∗j (β) is defined as in (3.9). The above argument yields the asymptotic distribution

of the proposed censoring-robust estimator given in (3.7) and establishes Proposition 4.

To obtain the asymptotic distribution of the full cohort estimator in (3.5), simply take

W̃ (t|Z = z) = 1.

Note that the asymptotic results for β̂FC can be obtained by setting W̃ (t|Z) = 1. From the
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asymptotic results, we find that an analytic variance estimator for V̂ar(β̂CR) is given by

V̂ar(β̂CR) = n−1A−1
n (β̂CR)Bn(β̂CR)A−1

n (β̂CR). (3.10)

Another approach for estimating Var(β̂FC) or Var(β̂CR) is via a two-stage bootstrap that

accounts for the nested case-control sampling scheme (see Algorithm 1). We account for

the nested case-control sampling scheme by taking a bootstrap sample from the observed

events. Because we consider continuous time, we add random noise to the bootstrapped

events to break any ties. We then sample the controls for each event time from subjects who

are at risk at that time. As before, controls are considered to be at risk from the time they

were first included in the nested case-control sample until their observed time. Using the

bootstrap sample, we obtain an estimate of the coefficient. We repeat this procedure B times

and calculate the variance of the bootstrap estimates to obtain an estimate of Var(β̂FC) or

Var(β̂CR).

3.2.6 Incorporating Adjustment Covariates

We have introduced two estimators, one to estimate the FC estimand and one to estimate

the censoring-robust estimand, in the case of a single predictor. In observational studies,

however, we try to adjust for potential confounding variables in our analyses. The proposed

estimators can be extended for use in these scenarios by incorporating a hotdeck multiple

imputation procedure [Fellegi and Holt, 1976], which we explain in detail below.

As before, our goal is to estimate the number of subjects with a given covariate structure at

each event time. The estimation procedure considers the following estimating function:

ŨHD(β) =
n∑
i=1

∫ ∞
t=0

W̃ (t|Z1 = z1i)

{
~Zi −

S̃
(1)
HD(β, t)

S̃
(0)
HD(β, t)

}
dNi(t) (3.11)
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Algorithm 1 Two-stage Bootstrapping

1: B: number of bootstrap samples
2: D: number of events
3: M : number of controls selected for each event
4: dk, k = 1, · · · , D: subjects who experience an event in the original sample
5: cjk: j

th control for event k, k = 1, · · · , D, j = 1, · · · ,M
6: sk: start time for control cjk
7: xjk: observed time for control cjk
8: t1 < · · · < tD: the ordered event times
9: tk −∆t denotes the time immediately before time tk

10: procedure Two-stage Bootstrap
11: for b in 1 : B do
12: Sample D events with replacement from ~d, call these ~d∗ (the corresponding event times

are ~t∗)
13: ~d∗ ← ~d∗ + Unif(−a, a), a small (remove ties)
14: sk ← tk −∆t (start time for control cjk)
15: for i in 1:D do
16: Sample M controls with replacement from subjects in ~c satisfying sk < t∗i < xjk
17: end for
18: Calculate the reweighted nested case-control estimator, β̂

(b)
CR (this includes estimating

the censoring distribution, if applicable)
19: end for
20: Variance estimate = 1

B−1

∑B
b=1(β̂(b)CR − β̂(b)

CR)2

21: end procedure

where S̃
(r)
HD = n−1

∑n
j=1

W̃ (t|Z1=z1j)n̂z1j (t)∑n
k=1 Ỹk(t){z1kz1j+(1−z1k)(1−z1j)}

~Zr
j Ỹj(t) exp(~Zjβ), ~Zj is the vector of

covariates, z1j is the value of the predictor of interest for subject j and n̂z1j(t) is the estimated

number of subjects at risk with the same covariate value as z1j at time t. To recover the FC

estimator, we can set W̃ (t|Z) = 1.

One problem that is often encountered in the nested case-control design with a binary pre-

dictor is that there may not be full covariate representation of that predictor in the risk

sets. The proposed estimator allows us to estimate the number of subjects at risk in each

group, allowing representation of both groups in risk sets for which the case and sampled

controls all have the same covariate value. When we only have one predictor, estimating

the number of subjects at risk in each group is sufficient. However, when adjusting for

confounding variables we also need to impute the values for the confounders. For risk sets
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in which we have full covariate representation, we may simply reweight observations in the

risk set as in (3.11) to represent everyone who is at risk under the FC. When we only have

covariate representation for one group, we randomly sample one control from the l previous

risk sets who is still at risk and has the missing covariate value. The sampled subject will

have Ỹj(t) = 1 and will therefore be included in the risk set. If the l closest times do not

include subjects with the required covariate value, we may increase l.

3.3 Empirical performance

In this section we present simulation results to illustrate the problems associated with model

mis-specification under the usual nested case-control design and to demonstrate the perfor-

mance of our proposed estimators.

3.3.1 Full Cohort Estimator

We consider the performance of the standard nested case-control design and the proposed

FC estimator under PH and NPH. In both scenarios, we have a total of 2,000 subjects, half

with each value of the predictor. Censoring times were drawn from Exp(0.75) for subjects

with Z = 0 and Exp(0.45) for subjects with Z = 1. The observed time was taken to be the

smaller of the censoring and event times and observed times were truncated at time t = 7. In

the NPH scenario, we consider two change points resulting in a hazard function of the form:

λ(t) = λ0(t) exp

{
log(0.05) · Z · I(t ≤ 3) + log(2) · Z · I(3 < t ≤ 6) + log(1) · Z · I(t > 6)

}
.

Under the PH scenario, we assume a hazard function given by λ(t) = λ0(t) exp[log(0.30) ·Z].

In both scenarios, we have approximately 90% censoring. We sampled 60 controls at the first

event time and M (M = 1, 2, 3, 4) at later events. The analytic variances for the reweighted

estimator in Table 3.1 were calculated using (3.10) while the bootstrap variance estimates
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were obtained using Algorithm 1.

Table 3.1: We present results for the usual nested case-control estimator, the proposed FC
estimator (Rwt. NCC), and the variance estimators based on 500 simulations. Bootstrap
estimates are based on 100 bootstrap draws.

Non-Proportional Hazards Proportional Hazards
N Coeff. % Emp. An. Boot N Coeff. % Emp. An. Boot

Est. Bias Var. Var. Var. Est. Bias Var. Var. Var.

FC 2000.00 -1.2815 0.00 0.0180 0.0179 – 2000.00 -1.1978 0.00 0.0263 0.0269 –
NCC

M = 1 446.68 -1.5040 17.36 0.0810 0.0469 0.0764 378.29 -1.1986 0.07 0.0664 0.0417 0.0667
M = 2 568.56 -1.4220 10.96 0.0483 0.0281 0.0399 503.56 -1.2047 0.58 0.0456 0.0310 0.0452
M = 3 665.70 -1.4051 9.65 0.0419 0.0233 0.0310 612.54 -1.2012 0.29 0.0390 0.0285 0.0387
M = 4 749.23 -1.3788 7.60 0.0320 0.0208 0.0258 707.72 -1.1958 -0.17 0.0338 0.0276 0.0355

Rwt. NCC
M = 1 446.68 -1.2909 0.74 0.0454 0.0589 0.0286 378.29 -1.1834 -1.20 0.0559 0.0664 0.0393
M = 2 568.56 -1.2690 -0.97 0.0320 0.0284 0.0207 503.56 -1.1950 -0.23 0.0418 0.0360 0.0340
M = 3 665.70 -1.2827 0.10 0.0283 0.0219 0.0186 612.54 -1.1935 -0.36 0.0384 0.0295 0.0319
M = 4 749.23 -1.2782 -0.25 0.0238 0.0190 0.0172 707.72 -1.1925 -0.44 0.0332 0.0271 0.0309

When the proportionality assumption does not hold (NPH in Table 3.1), we see that the

coefficient estimates based on the usual nested case-control design are different than those

obtained using the partial likelihood estimator with the FC. Moreover, these vary for different

values of M . M = 1 yields a bias of approximately 17% (compared to the FC estimator)

while M = 4 leads to a bias of approximately 7%. Applying our proposed estimator reduces

the bias from 17% to less than 1% for M = 1 and from 7% to less than 1% for M = 4. In

the NPH setting, the sandwich estimator is conservative for M = 1 but performs well for

all other values of M . The bootstrap estimator performs similarly but it underestimates the

variance when M = 1.

We consider PH to assess the robustness of the proposed estimator. Notice that in the PH

setting the usual nested case-control estimator performs well, as is expected. Our proposed

estimator also performs well and is more efficient than the usual nested case-control estima-

tor. As stated in Section 3.2.3, under the usual nested case-control design, we may find that
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the event and all of its sampled controls have the same covariate value. If this happens, these

event times will not contribute any additional information. Because the proposed estimator

combines the information from previous risk sets, it allows for contribution from these cases,

allowing it to be more efficient than the usual nested case-control estimator. The variance

estimators again perform similarly except when M = 1. In this case, the sandwich estimator

is slightly conservative while the bootstrap variance estimator is anti-conservative.

3.3.2 Censoring-Robust Estimator

We now consider the performance of the proposed censoring-robust estimator under the

same settings as those considered in Section 3.3.1. The results in Table 3.2 are based on 500

simulations, in which the FC estimates were obtained using the partial likelihood estimator

in the absence of censoring. Standardized bias was used instead of percent bias due to the

small magnitude of the coefficient under NPH.

In the previous section we showed that we could reweight the nested case-control estimating

equation to estimate the same quantity as the FC estimator. However, because these esti-

mates were obtained assuming PH, the estimand will depend on the censoring distribution.

In the absence of censoring under NPH, the full cohort estimates average -0.1514. Using

our proposed estimator, we manage to estimate this quantity using the data available from

our nested case-control sample. The sandwich estimator is slightly conservative, but the

estimates obtained by our bootstrapping approach perform well regardless of the number of

controls.

Under the PH setting, the usual NCC design performs well and the estimand does not

depend on the censoring distribution. The proposed estimator also performs well, with a

standardized bias ranging from 0.01 to 0.45. In this setting, the sandwich estimator tends
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Table 3.2: Simulation results for the proposed censoring-robust estimator based on 500
simulations. Standardized bias is obtaining by dividing the bias by the standard error of
the full cohort estimator in the absence of censoring. Bootstrap estimates are based on 100
bootstrap draws for each simulation.

N CR-NCC Std. Emp. Analytic Bootstrap
Est. Bias. Var. Est. Est.

NPH
FC 2000.00 -0.1514 0.00 0.0032 0.0035 –
Rwt. NCC

M = 1 446.68 -0.1476 0.07 0.0979 0.2761 0.1198
M = 2 568.56 -0.1104 0.73 0.0786 0.1368 0.0891
M = 3 665.70 -0.1201 0.55 0.0689 0.1027 0.0811
M = 4 749.23 -0.1157 0.63 0.0653 0.0883 0.0737

PH
FC 2000.00 -1.2002 0.00 0.0051 0.0047 –
Rwt. NCC

M = 1 378.29 -1.1952 0.07 0.2077 0.2502 0.1476
M = 2 503.56 -1.1996 0.01 0.1745 0.1542 0.1342
M = 3 612.54 -1.1802 0.28 0.1416 0.1259 0.1202
M = 4 707.72 -1.1684 0.45 0.1270 0.1157 0.1153

to provide conservative estimates and the bootstrap estimator provides anti-conservative

estimates when M = 1. Both estimators perform similarly for larger values of M .

3.3.3 Including Adjustment Covariates

Here we present simulation studies for the extension of the proposed estimators in which we

allow for adjustment of confounding variables under the NPH setting. This setting includes

2,000 subjects with Z1 ∼ Bernoulli(0.5) and Z2 ∼ N(µ = 2 + 2 ∗ I(Z1 = 1), σ = 1). Under

the NPH scenario, the hazard function takes the form λ(t) = λ0(t) exp

{
log(0.05) ·Z1 · I(t ≤

3) + log(2) · Z1 · I(3 < t ≤ 6) + log(1) · Z1 · I(t > 6) + log(0.85) · Z2

}
. Censoring times,

as before, were drawn from Exp(0.75) for subjects with Z1 = 0 and Exp(0.45) for subjects

with Z1 = 1. Observed times were truncated at t = 7. Generating data in this way yields

approximately 90% censoring. We also considered the PH setting where the hazard function

is specified as λ(t) = λ0(t) exp{log(0.30) · Z1 + log(0.85) · Z2}. We have omitted the PH
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Table 3.3: 200 simulations for hotdeck imputations. We show the results for the full cohort
estimator under NPH. Hotdeck imputations are performed using l = 5 and three imputations.

N β̂1 % Bias Var(β̂1) β̂2 % Bias Var(β̂2)

FC 2000.00 -1.3170 0.00 0.0382 -0.1150 0.00 0.0051
NCC

M = 1 427.27 -1.6829 27.78 0.1469 -0.0880 -23.48 0.0118
M = 2 549.36 -1.5459 17.38 0.0971 -0.0998 -13.28 0.0096
M = 3 650.47 -1.4922 13.30 0.0708 -0.1028 -10.67 0.0082
M = 4 734.67 -1.4806 12.43 0.0733 -0.1021 -11.21 0.0071

Rwt. NCC
M = 1 427.27 -1.3625 3.46 0.1389 -0.0926 -19.54 0.0211
M = 2 549.36 -1.3247 0.58 0.0799 -0.1131 -1.66 0.0124
M = 3 650.47 -1.3281 0.85 0.0667 -0.1066 -7.36 0.0096
M = 4 734.67 -1.3368 1.50 0.0592 -0.1067 -7.26 0.0084

results for brevity, but results were similar to those seen in Sections 3.3.1 and 3.3.2.

Table 3.3 presents the observed coefficient estimates under the FC, the nested case-control

design, and the proposed estimator for the NPH setting. In Table 3.4 we present the FC

results in the absence of censoring along with the estimates based on our censoring-robust

estimator and the empirical variance. As before, we present the standardized bias for the

censoring-robust estimator due to the small magnitude of the coefficients in the absence of

censoring. Under NPH, the usual nested case-control design estimates a different quantity

as the number of controls changes (as seen earlier). The proposed estimator greatly reduces

the bias for the predictor of interest and the confounding variable. Though not shown, under

PH the usual nested case-control estimator and the partial likelihood estimator under the

FC estimate the same quantity as was seen before.

3.4 Application to ADNI Data

We now apply the proposed estimator to ADNI data. These data were downloaded Jan-

uary 14, 2017. ADNI was created to assist in the advancement of AD research and allows
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Table 3.4: 200 simulations for hotdeck imputations, each with three imputations. We show
the results for the censoring-robust estimator under NPH. l = 5 hotdeck were used and each
simulation consisted of three imputations. We divide the bias by the standard error of the
full cohort estimator to obtain the standardized bias.

N β̂1 Std. Bias Var(β̂1) β̂2 Std. Bias Var(β̂2)

FC 2000.00 -0.3323 0.00 0.0071 -0.0577 0.00 0.0008
C-R NCC

M = 1 427.27 -0.3804 -0.57 0.4427 -0.0503 0.26 0.0683
M = 2 549.36 -0.3177 0.17 0.2449 -0.0593 -0.05 0.0371
M = 3 650.47 -0.3144 0.21 0.2393 -0.0654 -0.27 0.0356
M = 4 734.67 -0.3057 0.32 0.1883 -0.0627 -0.17 0.0258

investigators to access data from multiple sites.

The goal of this analysis is to associate APOE 4 to the risk of progression. Previous research

has shown that APOE 4 is associated with an increased risk of AD [Saunders et al., 1993].

Because the APOE 4 allele is also associated with cardiovascular disease [Liu et al., 2013],

we might expect that the association between this gene and progression to AD changes

with time due to subjects developing cardiovascular disease. However, we do not have

enough information to accurately model how this association changes with time. A common

approach in scenarios like this is to fit a Cox PH model.

In this analysis, we define progression in terms of thresholds for the Clinical Dementia Rating

Scale Sum of Boxes (CDR-SB) scores proposed by O’Bryant et al. [2008]. These thresholds

were proposed to map CDR-SB scores to CD-global scores, which are often used in the

staging of AD [Hughes et al., 1982]. In this study, a progressor is defined as someone with

a CD-Global score of at least two after baseline, where a score of two indicates moderate

dementia [O’Bryant et al., 2008]. Subjects with only one available CD-Global score are

excluded from the analysis along with subjects who were censored before the first event

time. Therefore, of the 1,737 subjects available in our data set, 1,643 were included in the

analysis. From these subjects, 183 (11.1%) experienced an event. Time to progression was

defined to be the first time (months from baseline) at which the CD-Global score increased

105



Table 3.5: Demographics of participants who were included in our analysis.

0 APOE 4 alleles >= 1 APOE 4 alleles
N 866 777
Age, mean (sd) 74.52 (7.16) 72.94 (6.95)
White, n (%) 801 (92.49) 722 (92.92)
Education, mean (sd) 16.11 (2.81) 15.71 (2.87)
Male, n (%) 477 (55.08) 434 (55.86)
CDR-SB (bl), mean (sd) 1.20 (1.60) 2.05 (1.82)
MMSE (bl), mean (sd) 27.81 (2.34) 26.58 (2.77)

to at least a score of 2.

Table 3.5 shows the demographics of study participants stratified by APOE 4 status. Par-

ticipants in both groups were similar with respect to age, education, gender, race, and

Mini-Mental State Exam (MMSE) scores at baseline. Subjects with at least one APOE 4

allele had higher scores in the CDR-SB at baseline. Figure 3.1 shows a Kaplan-Meier plot

of the probability of no progression by APOE 4 status. This plot shows that the risk of

progression is higher for subjects with at least one APOE 4 allele. As previously stated,

we have reason to believe that the effect of APOE 4 on progression may change with time.

Therefore, we conducted a Schoenfeld residuals test [Schoenfeld, 1982], which indicates that

there is statistically significant evidence (p-value = 0.024) that APOE 4 status violates the

PH assumption.
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Figure 3.1: Kaplan-Meier plot of probability of no progression by APOE 4 status. At each of
the specified times, we include the number of subjects at risk (cumulative number of events).
The Schoenfeld residuals test gives a p-value of 0.024 for APOE 4.

We fit a Cox PH model to all the available data using the Breslow approximation to ac-

count for ties [Breslow et al., 1974]. The censoring-robust estimates for the FC sample were

obtained using the estimating equation proposed by Boyd et al. [2012]. To assess the per-

formance of our estimator, we took 200 nested case-control samples from the FC for each

value of M (M = 1, 2, 3, 4) and coefficient estimates were calculated assuming that complete

data were only available for subjects in the nested case-control samples. At the first event

time, we drew 60 controls regardless of the value of M . Using each sample, we estimated the

log hazard ratio for APOE 4 status, education, and age using the usual nested case-control

estimator as well as the proposed estimators. The results presented include the average

estimates for the coefficients from the 200 samples as well as for the variance.

Table 3.6 presents the coefficient estimates for APOE 4. The FC model indicates that for

subjects similar in age and education, the risk of progression is approximately 3.5 times
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Table 3.6: Mean coefficient estimates for APOE 4 allele status along with the hazard ratio
(HR). These results are based on 200 nested case-control draws. Estimates of the variance
are also provided.

Full Cohort Censoring-Robust
N APOE 4 % Bias Analytic Boot. APOE 4 % Bias Analytic Boot.

(HR) Var Var (HR) Var. Var.

Full Cohort 1643 1.2599 (3.5) 0.00 0.0271 - 1.4691 (4.4) 0.00 0.0562 -
NCC

M = 1 379.23 1.0046 (2.7) -20.26 0.0266 0.0663 - - - -
M = 2 497.71 1.1328 (3.1) -10.09 0.0262 0.0457 - - - -
M = 3 597.20 1.1683 (3.2) -7.27 0.0262 0.0387 - - - -
M = 4 680.81 1.1943 (3.3) -5.21 0.0261 0.0359 - - - -

Rwt. NCC
M = 1 379.23 1.2306 (3.4) -2.33 0.0473 0.0465 1.4715 (4.4) 0.16 0.1432 0.1087
M = 2 497.71 1.2546 (3.5) -0.42 0.0321 0.0379 1.4866 (4.4) 1.19 0.0855 0.0832
M = 3 597.20 1.2558 (3.5) -0.33 0.0280 0.0343 1.4690 (4.4) -0.01 0.0697 0.0749
M = 4 680.81 1.2636 (3.5) 0.29 0.0266 0.0326 1.4818 (4.4) 0.86 0.0652 0.0730

higher for subjects with at least one APOE 4 allele compared to subjects with none.

As seen in previous results, the usual nested case-control estimates differed for each value of

M . The nested case-control estimates were approximately 20% lower than the FC estimate

when M = 1. When M = 4, the coefficient estimates under the nested case-control design

were, on average, approximately 5% lower than that of the FC. While we observed non-

proportional hazards (as seen in Figure 3.1), the current example did not present an extreme

case of non-proportionality. Even then, we observed considerable differences in the coefficient

estimates for different values of M under the usual nested case-control design. However, we

found that the estimates obtained using the proposed estimator recovered the results from

the FC regardless of M . When M = 1, for example, we found that the mean estimate

obtained from our proposed FC estimator was only 2% smaller than the FC estimate.

When we applied the censoring-robust estimator proposed by Boyd et al. [2012] to the full

cohort data, we estimated that the risk of progression was approximately 4.4 times higher

for subjects with at least one APOE 4 allele. The proposed censoring-robust estimator

performed well for all values of M with the largest difference occurring at M = 1. In
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this case, the average estimate obtained from our proposed censoring-robust estimator was

approximately unbiased. Table 3.6 also presents estimates of the variance using the two

methods proposed in Section 3.2.5. We found that the bootstrap estimates and the analytic

variance estimates were similar regardless of the number of controls. In general, although

the same sample was utilized, the coefficient estimates provided by the proposed estimators

were closer to the full cohort estimates compared to those obtained using the Cox partial

likelihood estimator with the nested case-control sampling scheme, therefore supporting the

use of the proposed estimator.

3.5 Discussion

Under NPH, it has been shown that the usual partial likelihood estimator is consistent for

a quantity that depends on the censoring distribution. This makes it difficult to replicate

results across studies simply because of possible differences in drop out and accrual patterns.

We investigated this scenario when using the nested case-control design and found that in

this case the finite sample estimates depend on M , the number of controls selected at each

event time. Not only do we have the problem of replicability, but we also run into a problem

when it comes to reproducing the results using the same sample if different values of M are

used.

In this chapter we address both of the problems encountered with the nested case-control

design. We propose an estimator that recovers the FC estimates as well as one whose

estimand does not depend on the censoring distribution. When we have NPH, we show that

these estimators recover the desired quantities. If we indeed have PH, the FC estimator

not only remains consistent but is more efficient than the usual nested case-control design

because it borrows information from past risk sets. Our proposed estimators can be extended

to account for confounding variables using a hotdeck imputation approach. While other
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imputation methods can be used, we use a hotdeck imputation approach so that estimation

remains feasible when there are a large number of covariates.

We proposed two variance estimation methods for the proposed estimators. As seen in Sec-

tions 3.3.1 and 3.3.2, the performance of the estimators improves as M increases. However,

we found that in some cases the analytic variance estimator provides conservative estimates

of the variance. Therefore, we recommend using the bootstrap approach when possible.

The nested case-control design can provide great reduction in costs when the event of interest

is rare because it only requires covariate values for subjects included in the nested case-control

sample. The proposed estimators ensure robustness of the results in the presence of NPH

and a binary predictor of interest, and provide the added benefit that they perform well even

when we truly have PH. Therefore, we recommend the use of these estimators as they are

robust to model mis-specification while retaining the cost reductions afforded by the nested

case-control sampling scheme. While we have focused on the nested case-control design with

a binary predictor of interest, similar problems can arise under the nested case-control design

when the functional form of a continuous variable is mis-specified. We discuss this in more

detail in the following chapter.
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Chapter 4

Robust Estimation in the Nested

Case-Control Design Under a

Mis-specified Covariate Functional

Form

4.1 Introduction

In Chapter 3, we showed that when the proportionality assumption does not hold under

the nested case-control design and a binary predictor is of interest, the expectation of the

sampling distribution of the usual nested case-control estimator will depend on M , the

number of controls sampled at each event time [Nuño and Gillen, 2019].

If the PH assumption holds under a correctly specified PH model, mis-specification of the

functional form of a covariate in the model will induce non-proportional hazards. Therefore,

based upon the results provided in Nuño and Gillen [2019], it is natural to hypothesize that if
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the functional form of a covariate is mis-specified in the usual nested case-control design then

the expectation of the sampling distribution of the usual nested case-control estimator will

depend on the parameters of the design (i.e. the number of controls sampled at each event

time). It is important to note, however, that this dependence arises differently than that

explored in Nuño and Gillen [2019] which considered the time-varying effect of a discrete

covariate as opposed to an induced dependence on the sampling design parameters via a

mis-specified model.

Returning to our motivating AD research, note that AD trials require participants to un-

dergo various tests to help detect progression of the disease. One such examination is the

Alzheimer’s Disease Assessment Scale 11 (ADAS-11), which was created to evaluate cogni-

tive and behavioral function [Rosen et al., 1984], both of which are compromised by AD. If

we are interested in investigating the association of ADAS-11 and time to progression to AD,

one would have to a priori specify the functional form of baseline ADAS-11 in order to avoid

dependence of the estimand on the sampling design. Failure to do so could reasonably lead

to lack of scientific reproducibility and replicability. The functional form of a continuous

covariate is not obvious, however, and since interest lies in conducting inference rather than

data-driven modeling we might decide to fit a first-order linear trend to relate ADAS-11

to the log-hazard for time to dementia progression. As we will see later in this chapter,

the observed relationship is indeed not linear in nature. If interest lies in the association,

changing the a priori specified model in a post-hoc fashion to fit the observed data will

inflate the Type I error rate. It is therefore necessary to understand precisely how model

mis-specification impacts the resulting estimator in this case and to correct, if possible, any

deleterious impacts of the mis-specification.

In this chapter, we show the dependence of the estimand on the sampling proportion (which

in finite samples leads to a dependence on M). We propose an estimator that recovers the

estimand corresponding to the full cohort partial likelihood estimator, and in Section 4.2.3 we
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present the asymptotic distribution of the proposed estimator and finite-sample estimators

for the variance. We include simulation studies for the proposed estimator and end with an

application of the proposed estimator to data stemming from the ADNI study to investigate

the association between the ADAS-11 and time to progression of AD dementia.

4.2 Methodology

4.2.1 Partial Likelihood Estimator under the usual Nested Case-

Control Design

Recall that under the nested case-control design, M subjects are randomly sampled from

everyone who is still at risk at each event time. In Chapter 3, we saw that if the nested

case-control sampling scheme is utilized and the proportionality assumption is not satisfied,

the PL estimator is consistent for the solution to

∫ ∞
0

EZ

{
EZ∗|Z

(
fT (t|Z)Sc(t|Z)γ(a, Z∗, t)×

[
Z − EZ{ZST (t|Z)SC(t|Z) exp(Zβ)}

EZ{ST (t|Z)SC(t|Z) exp(Zβ)}

])}
dt = 0

(4.1)

where fT (t|Z) and ST (t|Z) denote the density and survival function for the failure times,

respectively, and SC(t|Z) denotes the survival function for the censoring times. Moreover,

γ(a, Z∗, t) = a·ST (t|Z∗)SC(t|Z∗)
ST (t)SC(t)

represents the probability of sampling a control with covariate

value Z∗ if an event is observed at time t with limM,n→∞M/n = a. As described in our

previous work, in finite samples the estimates obtained using the nested case-control design

will depend on M , the number of controls sampled at each event time. Under the nested

case-control design, we alter the risks sets compared to those of the FC and, as a result,

we also change the observed censoring distribution. As seen in Proposition 1, the censoring
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distribution determines the weight given to each event time and therefore influences the esti-

mates. Note that the censoring distribution (and in turn the weighting scheme) will differ for

different values of M . When the PH assumption is satisfied, the weighting scheme will not

impact the estimates because the relative hazards do not vary with time. When the func-

tional form of a predictor is mis-specified, however, we no longer satisfy the proportionality

assumptions and the weights given to each event time will effect the estimates.

4.2.2 Recovering the FC Estimand for a Single Continuous Vari-

able with Mis-specified Functional Form

As described in the previous section, when the PH model is mis-specified the expectation

of the sampling distribution of the usual nested case-control estimator will depend on the

number of controls sampled at each event time. This result is due to the changing censoring

distribution, and hence, potentially changing covariate distributions of subjects included in

the risk sets of the nested case-control design relative to the FC analysis. In order to mimic

the risk-set representation of the FC, we propose imputing the values of subjects in the FC

risk sets who were not included in the nested case-control sample. Because controls are

randomly sampled at each event time, we can use information from previous risk sets to

learn about subjects who are still at risk in the FC. Under the nested case-control design we

have full covariate information for subjects sampled into the nested case-control sample. We

also know the at-risk status for all subjects in the FC at each event time. We can therefore

use this information to impute the covariate values for subjects in the FC who were not

sampled. Using the new risk sets with the imputed values, we can obtain estimates of the

coefficients.

Proposition 5. Let R̃I(t) be the risk set including the imputed values at time t and assume

that the values of covariates in R̃I(t), Z̃j, are sampled from the same distribution as those
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in R(t), the FC risk set at time t. Denote β0 to be the estimand corresponding to the FC PL

estimator and let β̂I be the solution to

ŨI(β̂I) =
n∑
i=1

∫ ∞
0

{
Zi −

n−1
∑

j∈R̃I(t) Z̃j exp(β̂IZ̃j)

n−1
∑

j∈R̃I(t) exp(β̂IZ̃j)

}
dNi(t) = 0. (4.2)

Then β̂I
P→ β0.

Proof: Let Ti, Ci, and Xi = min(Ti, Ci) be the event, censoring, and observed times for

subject i, respectively. Ni(t) = I(Xi ≤ t, δi = 1) is a right-continuous counting process.

Define S(r)(β, t) = n−1
∑n

i=1 Z
r
i exp(βZi)Yi(t) (r = 0, 1, 2) where Yi(t) = I(Xi ≥ t). Let

s(r)(β, t) = limn→∞ S
(r)(β, t) and S̃

(r)
I (β, t) = n−1

∑n
i=1 Z̃

r
i exp(βZ̃i)Yi(t) where Z̃i = Zi if

subject i was originally sampled into the nested case-control sample and the imputed value

otherwise.

To establish consistency, we can show that supβ∈B,t∈[0,τ ] ||S̃
(r)
I (β, t)−s(r)(β, t)|| P→ 0. We have

that s(r)(β, t) = E[S(r)(β, t)] and that ||S(r)(β, t)− s(r)(β, t)|| P→ 0 by the strong law of large

numbers. Now, suppose that Z ∼ fZ and Z̃ ∼ fZ . This gives us that s(r)(β, t) = E[S̃
(r)
I (β, t)]

and that ||S̃(r)
I (β, t)− s(r)(β, t)|| P→ 0 by the strong law of large numbers.

The proof of consistency follows from the work of Andersen and Gill [1982]. Using the fact

that supβ∈B,t∈[0,τ ] ||S̃(r)(β, t) − s(r)(β, t)|| P→ 0 and under the assumption that Z̃ and Z are

drawn from the same distribution, it is easy to show that the log partial likelihood of the

proposed estimator converges in probability to a concave function maximized at β0.

Note that R̃I(t) represents the same subjects as R(t). The notation is used to emphasize

that covariate values for subjects not in the nested case-control sample were imputed. As

seen in the proof of Proposition 5, for the result to hold we need the imputed values to be
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drawn from the same distribution as those in the FC risk set at time t. While the covariate

values can be imputed in several ways, one way to do so is via Algorithm 2. In this setting

we estimate µ(t), the mean covariate value, for subjects in the risk set at each event time

and calculate the mean squared error, σ2
MSE(t). To obtain µ̂(t), we start by calculating the

sample mean for the first event times (five in our example). The number selected here can

differ and depends on the number of event times required to fit the natural spline. When

fitting the natural spline, we include subjects sampled for previous event times only for the

time at which they were sampled. Once we obtain µ̂(t), we impute covariate values for

subjects not in the nested case-control risk set (but who are still at risk in the full cohort) by

randomly drawing values for the predictor of interest from a N(µ̂(t), σ2
MSE(t)) distribution

where µ̂(t) represents the estimated mean covariate value at time t.
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Algorithm 2 Imputation approach for the univariate setting with a continuous predictor

Imputation Approach for the Univariate Setting

1: D: number of events
2: tj, j = 1, · · · , D: ordered event times
3: Rj: risk set at time tj under the FC
4: R̃I,j: risk set at time tj including the imputed values
5: M : number of controls sampled at each event time
6: s0: is the intercept
7: s(t): a natural spline with evenly spaced knots
8: µ(t): the mean covariate value at time t
9: zkc: predictor of interest for subject k sampled at time tc

10: procedure Imputation of the Predictor of Interest
11: for j in 1 : D do
12: if j ≤ 5 (Note: 5 was selected to allow enough time points to fit the natural

spline). then
13: Calculate µ̂(tj) = z̄ = 1∑j

c=1

∑n
k=1 Ỹk(tc)

∑j
c=1

∑n
k=1 zkcỸ (tc)

14: else
15: Fit µ̂(t) = s0 + s(t) using subjects sampled for all tk ≤ tj to obtain µ̂(tj)

16: σ2
MSE(tj) = 1∑j

k=1 |R̃I(tk)|

∑j
k=1

∑|R̃I(tk)|
i=1 (µ̂(tk)− zik)2

17: Sample |R(tk)| −
∑n

i=1 Ỹi(tj) values from N(µ̂(tj), σ
2
MSE(tj)). These values,

together with the original nested case-control controls, make up R̃I(tj).
18: end if
19: end for
20: Fit a Cox proportional hazards model using the imputed values.
21: end procedure

If the sample size is small, we can increase the number of controls sampled at the first event

time to obtain better estimates of the mean covariate value at each time while not grossly

impacting the overall efficiency of the nested case-control design. Moreover, all controls from

previous risk sets can be used to estimate the means at each event time as long as those

controls are still at risk.

Previous work also relies on imputation of subjects not sampled into the nested case-control

risk sets [Nuño and Gillen, 2019]. However, in the binary case, the imputed value can only

take on two values so estimating the number of subjects in each group is sufficient. When

a continuous covariate is of interest, we must account for the variability in the covariate
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values (as is proposed in Algorithm 2) so that the imputed values are representative of the

full cohort risk set.

4.2.3 Asymptotic Properties and Estimation of the Variance

In this section we provide the asymptotic properties of the proposed estimator and introduce

a finite-sample variance estimator.

Proposition 6. Let β̂I denote the solution to (4.2). Suppose that P (Yi(τ) > 0) > 0 and let

β0 denote the estimand corresponding to the FC PL estimator. If values in R̃I(tj) are drawn

from the same conditional distribution as those in R(tj) then
√
n(β̂I−β0)

D−→ N(0, A−1
I BIA

−1
I )

where AI = limn→∞AI,n, BI = limn→∞BI,n, with AI,n(β̂) = n−1
∑n

i=1 δiρI(Xi)

(
1−ρI(Xi)

)
,

δi an indicator for whether subject i experienced an event, Xi the observed time for subject

i, ρI(Xi) =
n−1

∑n
j=1 Ỹj(Xi)Zj exp(Zjβ0)

n−1
∑n
j=1 Ỹj(Xi) exp(Zjβ0)

and Ỹj(Xi) an indicator for whether subject j was orig-

inally sampled to be in the nested case-control risk set at time Xi. Further, BI,n(β0) =∑D
j=1 Ũ

I
j (β0)Ũ I

j (β0)T , where t1, t2, · · · , tD are the unique event times and

Ũ Ij (β0) = n−1
n∑
i=1

[
δi

{
Zi −

∑
k∈R̃I(tj)

Z̃k exp(β0Z̃k)∑
k∈R̃I(tj)

exp(β0Z̃k)

}
− Zi exp(β0Zi)∑

k∈R̃I(tj)
Z̃k exp(β0Z̃k)

+ exp(β0Zi)

∑
k∈R̃I(tj)

Z̃k exp(β0Z̃k)

{
∑

k∈R̃I(tj)
exp(β0Z̃k)}2

]
. (4.3)

Proof: Let Ti, Ci, and Xi = min(Ti, Ci) be the event, censoring, and observed times for sub-

ject i, respectively. Ni(t) = I(Xi ≤ t, δi = 1) is a right-continuous counting process. Define

S(r)(β, t) = n−1
∑n

i=1 Z
r
i exp(βZi)Yi(t) (r = 0, 1, 2) where Yi(t) = I(Xi ≥ t). Let s(r)(β, t) =

limn→∞ S
(r)(β, t) and S̃

(r)
I (β, t) = n−1

∑n
i=1 Z̃

r
i exp(βZ̃i)Yi(t) where Z̃i = Zi if subject i was

originally sampled into the nested case-control sample and the imputed value otherwise. For

subjects not in the original nested case-control sample, Z̃i ∼ N(µ̂(t), σ2
MSE(t)) where µ̂(t)
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is an estimate of E[ZY (t)]. We prove the asymptotic properties of the proposed estimator

using Theorem 5.3 of (Kalbfleisch and Prentice [2011]), which implies Rebodello’s theorem.

This requires that there exists an open neighborhood B of β0 and s(r)(β, t), r = 0, 1, 2 de-

fined on B × [0, τ ] that satisfy the following: (1) supβ∈B,t∈[0,τ ] ||S̃
(r)
I (β, t) − s(r)(β, t)|| P→ 0;

(2) s(0)(β), t) is bounded away from 0 for t ∈ [0, τ ]; (3) For r = 0, 1, 2, s(r)(β, t) is a con-

tinuous function of β uniformly in t ∈ [0, τ ], s(1)(β, t) = ∂s(0)(β,t)
∂β

and s(2)(β, t) = ∂2s(0)(β,t)
∂β2 ;

(4) Σ(β, t) =
∫ τ

0
ν(β0, u)s(0)(β, u)λ0(u)du is positive definite ∀β ∈ B; (5) Zi is bounded

∀t ∈ [0, τ ]; (6) λ0(u)du < ∞. As in Eriksson et al. [2019], our results require that the im-

puted values are drawn from the same conditional distribution as the covariates for subjects

in the full cohort and that missing values are missing at random. The latter is satisfied by

design.

We assume that P (Yi(τ) > 0) > 0 (i.e. there is positive probability that subject i is at

risk over the inferential support interval) which implies that conditions (2) and (6) hold.

We also assume that conditions (4) and (5) hold. Condition (5) along with the dominated

convergence theorem ensures that (3) is also satisfied. We have already shown that condition

(1) holds when proving Proposition 5.

(4.2) is a sum over stochastic integrals of a predictable process with respect to a martin-

gale and the predictability of the nested case-control sampling scheme holds by Goldstein

and Langholz [1992]. Notice that at each event time the proposed estimator only considers

controls that were sampled into risk sets up to the current time so the proposed estima-

tor maintains predictability. Therefore, Theorem 5.3 of Kalbfleisch and Prentice [2011]

with the sandwich variance estimator of Lin and Wei [1989] and a Taylor expansion of

the estimating function about s(0)(β, t), s(1)(β, t) and limn→∞ n
−1
∑n

i=1Ni(t) implies that

√
n(β̂I − β0)

D→ N(0, A−1
I BIA

−1
I ). AI = limn→∞AI,n(β0) and BI = limn→∞BI,n(β0) where

AI,n(β) = n−1
∑n

i=1 δiρI(Xi)

(
1−ρI(Xi)

)
and BI,n(β) =

∑D
j=1 Ũ

I
j (β)Ũ I

j (β)T . δi an indicator

for whether subject i experienced an event and ρI(Xi) =
n−1

∑n
j=1 Ỹj(Xi)Zj exp(Zjβ)

n−1
∑n
j=1 Ỹj(Xi) exp(Zjβ)

where Ỹj(Xi)

119



is an indicator for whether subject j was originally sampled to be in the nested case-control

risk set at time Xi. Ũ
I
j (β̂I) is defined as in (4.3). This provides the asymptotic distribution

and establishes the consistency of the proposed estimator.

Based on the asymptotic properties of our estimator, we find that the finite-sample variance

can be estimated using V̂ ar(β̂I) = n−1A−1
I,n(β̂I)BI,n(β̂I)A

−1
I,n(β̂I). Notice that An is the vari-

ance under the usual nested case-control design when the model is correctly specified. Bn

represents the true variance and accounts for imputation of the risk sets through a Taylor

expansion.

4.2.4 Incorporating Adjustment Covariates

So far we have introduced an estimator that recovers the FC results in the univariate setting.

In observational studies, however, we often adjust for potential confounding variables to

isolate the association of interest. As before, the imputation approach can be selected by

the user, but in this manuscript we use a hotdeck multiple imputation approach [Fellegi and

Holt, 1976]. Imputation of the risk sets can be accomplished as in Algorithm 3.

The estimating function in this setting takes the form ŨIHD(β) =
∑n

i=1

∫∞
t=0

{
~Zi−

S̃
(1)
IHD(β,t)

S̃
(0)
IHD(β,t)

}
dNi(t)

where S̃
(r)
IHD = n−1

∑
j∈R̃I(tj)

~Zr
j exp(~Zjβ) and ~Zj is the vector of covariates. R̃(tj) represents

the covariate values for the imputed risk sets which include the originally sampled subjects

and the imputed subjects. For subjects who were not originally sampled into the nested

case-control sample we draw values for the predictor of interest from a N(µ̂(t), σ2
MSE(t)) as

in the univariate setting. We match each of the imputed values to the subject from the l

previous risk sets in the nested case-control sample with the closest value to the imputed

value (l is selected by the user). The values of the adjustment variables of the selected

subject are used to impute the values for the imputed subject. If more than one nested

case-control subject can be used to impute the covariate values, we randomly sample one
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subject from eligible subjects. As stated earlier, l can be selected by the user. If event times

are far apart, we recommend selecting a small l because neighboring event times may have

drastically different risk sets. If event times are close, a larger l may be selected. In fact,

if event times are close, l can be selected to include all previous risk sets. When sampling

subjects to impute covariate values, however, one must ensure that the subjects selected are

still at risk during the current event time.

Algorithm 3 Imputation approach for the multivariate setting with a continuous predictor

Imputation Approach for the Multivariate Setting

1: D: number of events
2: tj, j = 1, · · · , D: ordered event times
3: Rj: risk set at time tj under the FC
4: R̃I,j: risk set at time tj including the imputed values and the originally sampled nested

case-control sample controls
5: R̃j: the risk set at time tj under the nested case-control design
6: M : number of controls sampled at each event time
7: s(t): a natural spline with evenly spaced knots
8: µ(t): the mean covariate value at time t
9: zik1: predictor of interest for subject i sampled in the nested case-control sample at time
tk

10: z̃ik1: imputed value for the predictor of interest for subject i at time tk
11: p: the number of covariates in the model
12: l: the number of previous risk sets to consider for hotdeck imputations
13: procedure Imputation of Confounding Variables (Done after Algorithm

2)
14: for j in 1:D do
15: for m in 1:length(R̃I(tj)) do
16: if Ỹm(tj) 6= 1 then Find min |z̃mj1 − zhj1| for h ∈ ∪jk=(j−l)R̃(tk).

17: Let z∗1 be zhj1 for h ∈ ∪jk=(j−l)R̃(tk) with the smallest absolute difference.
18: Impute values of z̃mj2, · · · , z̃mjp using z∗2 , · · · , z∗p
19: end if
20: end for
21: end for
22: Fit a Cox PH model with the imputed subjects.
23: end procedure

Some covariate information, such as demographic information, may be easily available for

all study participants. If this is the case, we may use this information (instead of estimating
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the mean covariate values) along with the hotdeck imputation method to impute covariate

values that may be difficult or expensive to collect.

4.3 Empirical Performance

4.3.1 Univariate Results

We begin by presenting simulation results for the univariate setting. Table 4.1 illustrates

the performance of the usual nested case-control PL estimator and our proposed estimator

when the functional form is mis-specified. Values for the predictor of interest were sampled

from a N(µ = 1.5, σ = 0.5) distribution. The true hazard function takes the form λ(t) =

exp(log(0.1) + log(1.25)Z + log(0.5)Z2), failure times were drawn from Exp(rate = λ(t)),

and censoring times were drawn from a Unif(0, 6) distribution. Observed event times were

taken to be the minimum of the event and censoring times. Generating data in this way

led to approximately 90% censoring and we included 2,000 subjects in each of the 200

simulations. We considered nested case-control samples with one to four controls per event

time. We did not consider more than four controls since in practice people often use up

to four controls [Ernster, 1994]. Moreover, it has been shown that using more than four

controls does not provide a large benefit in terms of efficiency and power [Taylor, 1986].For

each nested case-control sample, we sampled 60 controls at the first event time regardless of

M . The 60 controls were only used at the first event time for the usual nested case-control

PL estimator and for the proposed estimator. These 60 controls were also used to impute

the covariate values of subjects not in the nested case-control sample. To illustrate the

performance of the estimators under a mis-specified functional form we fit a model of the

form λ(t) = λ0(t) exp(βZ). The analytic variance estimates for the usual nested case-control

PL estimator were obtained using the robust variance estimator while those of the proposed
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estimator were obtained using the estimator presented in Section 4.2.3.

Mis-specified Model Correctly Specified Model
N Coeff. % Est. Emp. An. N Coeff. % Est. Emp. An.

Est. Bias Var. Var. Est. Bias Var. Var.
FC 2000.00 -1.4064 0.00 0.0167 0.0182 2000.00 0.9311 0.00 0.0239 0.0215
NCC

M = 1 403.49 -1.6614 18.13 0.0808 0.0574 411.25 0.9272 -0.42 0.0595 0.0318
M = 2 544.65 -1.5686 11.53 0.0521 0.0371 553.62 0.9194 -1.26 0.0418 0.0254
M = 3 668.32 -1.5388 9.42 0.0324 0.0298 679.66 0.9237 -0.80 0.0332 0.0236
M = 4 778.99 -1.5308 8.85 0.0376 0.0271 791.18 0.9278 -0.35 0.0346 0.0228

Proposed Estimator
M = 1 403.49 -1.4136 0.52 0.0776 0.1728 411.25 0.9156 -1.67 0.0675 0.1300
M = 2 544.65 -1.4065 0.01 0.0505 0.0773 553.62 0.9147 -1.76 0.0524 0.0627
M = 3 668.32 -1.4075 0.08 0.0422 0.0529 679.66 0.9185 -1.36 0.0426 0.0472
M = 4 778.99 -1.4219 1.10 0.0417 0.0437 791.18 0.9167 -1.55 0.0391 0.0395

Table 4.1: 200 simulations under a mis-specified functional form (left) and a correctly spec-
ified functional form (right). The nested case-control samples included 60 controls at the
first event time, regardless of M . Empirical variance and analytic variance estimates are also
provided.

Table 4.1 shows that the nested case-control PL estimator performs poorly when the model

is not specified correctly and that the results obtained depend on the value of M , the number

of controls sampled at each event time. The proposed estimator, however, reduces the bias

relative to the full cohort estimator from approximately 18% to less than 1% when M = 1

and from approximately 9% to 1% when M = 4. The robust variance estimator for the nested

case-control PL estimator tends to under estimate the variance for smaller values of M . Our

proposed sandwich estimator is conservative when M = 1 but performs well for M = 2 to 4.

To assess the robustness of the proposed estimator we also investigated the performance when

the functional form is specified correctly. In this setting data were generated as in the first

scenario, but now the true hazard function takes the form λ(t) = exp(log(0.008)+log(2.5)Z)

and the failure times were drawn from Exp(rate = λ(t)). These data also had approximately

90% censoring. As seen on the right side of Table 4.1, when the model is specified correctly

the nested case-control PL estimator estimates the same quantity as the FC estimator. Our
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proposed estimator also performs well regardless of M , yielding a bias (relative to the full

cohort estimator) between 1% and 2% for all values of M . In this setting the proposed

variance estimator again gives conservative estimates of the variance when M = 1, but

performs well for M = 2 to 4. When the functional form is specified correctly, we observe a

small loss in efficiency. However, this loss is nearly negligible and we have the added benefit

that if the functional form is not specified correctly we still estimate the same quantity as

that of the full cohort.

4.3.2 Multivariate Results

When using data from observational studies, it is almost always necessary to adjust for

confounding variables. In Section 4.2.4 we described a hotdeck imputation approach to

impute the values for the missing covariates. In this section we present simulation results

when adjusting for a confounding variable. As before, we consider two scenarios- one in

which the functional form of the predictor of interest is mis-specified and one in which the

functional form is correctly specified. In this setting we assume that no covariate information

is available for subjects not sampled into the nested case-control sample.
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N β̂1 % Est. Emp. V̂ ar(β̂1) β̂2 % Est. Emp. V̂ ar(β̂2)
Bias Var. Bias Var.

Mis-specified Functional Form
Full Cohort 2000.00 -1.4446 0.00 0.0226 0.0215 0.2753 0.00 0.0024 0.0022
NCC

M = 1 383.68 -1.6510 14.29 0.0926 0.0685 0.2941 6.83 0.0067 0.0041
M = 2 517.73 -1.6080 11.31 0.0671 0.0442 0.2883 4.72 0.0046 0.0031
M = 3 635.58 -1.5923 10.22 0.0540 0.0372 0.2896 5.19 0.0037 0.0028
M = 4 742.26 -1.5658 8.39 0.0478 0.0331 0.2900 5.34 0.0034 0.0026

Proposed Estimator
M = 1 383.68 -1.4964 3.59 0.1241 0.2869 0.2912 5.78 0.0086 0.0186
M = 2 517.73 -1.5055 4.22 0.0795 0.1188 0.2918 5.99 0.0063 0.0085
M = 3 635.58 -1.4596 1.04 0.0481 0.0768 0.2811 2.11 0.0045 0.0058
M = 4 742.26 -1.4707 1.81 0.0492 0.0617 0.2846 3.38 0.0042 0.0048

Correctly Specified Functional Form
Full Cohort 2000.00 0.9152 0.00 0.0076 0.0068 -0.6847 0.00 0.0074 0.0066
NCC

M = 1 408.57 0.9366 2.34 0.0241 0.0175 -0.7046 2.91 0.0208 0.0145
M = 2 550.38 0.9234 0.90 0.0165 0.0117 -0.6876 0.42 0.0154 0.0101
M = 3 675.37 0.9219 0.73 0.0130 0.0099 -0.6908 0.89 0.0130 0.0089
M = 4 786.52 0.9189 0.40 0.0124 0.0089 -0.6907 0.88 0.0115 0.0081

Proposed Estimator
M = 1 408.57 0.9349 2.15 0.0301 0.0974 -0.7354 7.40 0.0360 0.0882
M = 2 550.38 0.9122 -0.33 0.0247 0.0389 -0.7007 2.34 0.0224 0.0339
M = 3 675.37 0.9081 -0.78 0.0159 0.0251 -0.6949 1.49 0.0164 0.0225
M = 4 786.52 0.9093 -0.64 0.0188 0.0201 -0.6869 0.32 0.0158 0.0178

Table 4.2: 200 simulations for hotdeck imputations, each with 3 imputations under mis-
specification of the functional form (top) and a correctly specified functional form (bottom).
The nested case-control samples included 60 controls at the first event time, regardless of
M . Empirical and analytic variance estimates are also provided.

Table 4.2 presents the results for the multivariate setting with a mis-specified functional

form. The predictor of interest and the confounding variable are distributed as Z1 ∼ N(µ =

1.5, σ = 0.5) and Z2 ∼ N(µ = 0 + 2 · I(z1 ≥ 1.6), σ = 1.5), respectively. The true hazard

function for this scenario takes the form λ(t) = exp(log(0.075) + log(1.25)Z1 + log(0.5)Z2
1 +

log(1.35)Z2) and failure times were drawn from Exp(rate = λ(t)). As before, censoring

times were drawn from Unif(0, 6) and the observed times were the minimum of the observed
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and censoring times, yielding approximately 90% censoring. We sampled 60 controls at

the first event time regardless of M and the model is assumed to take the form λ(t) =

λ0(t) exp(β1Z1 + β2Z2). We find that when the model is mis-specified, the usual nested

case-control PL estimator produces biased coefficient estimates (when compared to the full

cohort estimates) and the estimates obtained depend on the number of controls sampled at

each event time. The proposed estimator, however, yields results similar to those of the FC

PL estimator. When M = 1, the bias relative to the full cohort estimator is approximately

14% under the usual nested case-control PL estimator. This is reduced to approximately 4%

when the proposed estimator is used. In this setting, the proposed variance estimator gives

conservative estimates of the variance, but performance of the variance estimator improves

as M increases. While the estimates provided by our variance estimator can be conservative,

it should be noted that those provided by the robust variance estimator for the nested case-

control PL estimator tend to give anti-conservative estimates of the variance. The bottom

portion of Table 4.2 presents the results for the usual nested case-control PL estimator and

our proposed estimator when the model is correctly specified. Data were generated as in

the previous scenario, but the true hazard function takes the form λ(t) = exp(log(0.0125) +

log(2.5)Z1 + log(0.5)Z2), with failure times being drawn from Exp(rate = λ(t)). In this

setting the fitted model takes the same form as the true data-generating mechanism. The

usual nested case-control PL estimator and the proposed estimator perform similarly, both

having a small bias relative to the full cohort estimator regardless of the selected M . In

this setting, the proposed variance estimator is again conservative when M = 1, but its

performance improves as M increases.
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4.4 Application to ADNI Example

In this section we apply the proposed estimator to data from ADNI to investigate the as-

sociation between the ADAS-11 at baseline and time to progression to AD dementia. The

ADAS-11 is a cognitive test used to evaluate cognition and behavioral function, both of which

are affected by AD [Rosen et al., 1984]. We had 974 participants in our analysis. These par-

ticipants had ADAS-11 and CSF Aβ at baseline and did not have a diagnosis of Alzheimer’s

disease dementia at baseline. In our analysis, progression was defined as a stable clinical

diagnosis of dementia or a diagnosis of dementia at the last visit. Based on this definition,

approximately 15% of subjects experienced an event. Baseline characteristics of our sample

can be found in Table 4.3. The mean age in the sample was 72.9 years, approximately 45%

of participants were female, and approximately 42% of subjects had at least one APOE 4

allele.
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Figure 4.1: Martingale residuals plotted against baseline ADAS-11. The solid line represents
a smoother.

As stated before, the goal of this analysis is to investigate the association between ADAS-11

at baseline and time to progression to AD. In this case, one may a priori specify a model

that assumes a linear relationship between ADAS-11 and time to progression. Using the

Martingale residuals as in Klein and Moeschberger [2005], we found that the functional
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form of ADAS-11 at baseline is not linear (Figure 4.1). Because the goal of the study was

to investigate an association, changing the a priori selected model to fit the observed data

could increase the Type I error rate and therefore is not recommended. Instead, we fit a first-

order trend to investigate the behavior of the nested case-control design and the proposed

estimator in this setting.

Characteristic mean (sd) or n(%)
N 974
Progressors (to AD dementia) 152 (15.6%)
Age 72.9 (7.0)
Female 442 (45.4%)
White 909 (93.3%)
≥ 1 APOE 4 allele 405 (41.6%)
ADAS-11 8.5 (4.6)
Mini-Mental State Examination 28.2 (1.7)
Education 16.2 (2.7)
Aβ 182.1 (53.7)

Table 4.3: Baseline demographics for subjects in our study.

We fit the Cox proportional hazards model to the entire sample to obtain the FC estimates.

We then obtained 200 nested case-control samples for each value of M and applied the

PL estimator and the proposed estimator as if we only had full covariate information for

subjects in the nested case-control sample. We sampled 60 controls at the first event time

for all nested case-control samples, regardless of M . All models were adjusted for age,

education, race, the presence of at least one APOE 4 allele, gender, and baseline CSF Aβ

levels. Because APOE 4 status and CSF Aβ levels would be the most difficult covariates to

collect, we applied the nested case-control sampling scheme as if these measurements were

not available. Demographic information, on the other hand, is easily collected for all study

participants. Therefore, we assume that demographic information is available for all study

participants, even if they were not sampled into the nested case-control sample. We used

the hotdeck imputation method to impute values of APOE 4 and Aβ for participants not

sampled into the nested case-control sample. Mahalanobis distance [Mahalanobis, 1936] was
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used to match subjects with missing values to sampled controls. When the covariance matrix

was singular, we used Euclidean distance.

N ADAS-11 % Est. Var. APOE 4 % Est. Var. Aβ (HR) % Est. Var.
(HR) 5 pts. Bias Est. (HR) Bias Est. 50 pg/ml Bias Est.

Full Cohort 974.0 0.651 (1.92) 0 0.008 0.099 (1.10) 0.00 0.046 -0.537 (0.58) 0.00 0.010
Usual NCC

M = 1 310.0 0.748 (2.11) 14.75 0.016 0.248 (1.28) 150.71 0.046 -0.583 (0.56) 8.57 0.020
M = 2 393.6 0.770 (2.16) 18.22 0.013 0.249 (1.28) 151.72 0.044 -0.572 (0.56) 6.52 0.010
M = 3 462.1 0.764 (2.15) 17.32 0.012 0.240 (1.27) 142.73 0.043 -0.570 (0.57) 6.15 0.010
M = 4 518.2 0.747 (2.11) 14.69 0.011 0.201 (1.22) 102.93 0.042 -0.562 (0.57) 4.66 0.010
M = 5 564.6 0.724 (2.06) 11.16 0.010 0.182 (1.20) 83.54 0.042 -0.560 (0.57) 4.28 0.010

Proposed Est.
M = 1 310.0 0.677 (1.97) 3.99 0.064 0.159 (1.17) 61.01 0.201 -0.583 (0.56) 8.57 0.070
M = 2 393.6 0.668 (1.95) 2.61 0.032 0.103 (1.11) 3.74 0.118 -0.592 (0.55) 10.24 0.030
M = 3 462.1 0.660 (1.94) 1.37 0.023 0.119 (1.13) 19.90 0.091 -0.580 (0.56) 8.01 0.030
M = 4 518.2 0.657 (1.93) 0.92 0.019 0.092 (1.10) -7.58 0.079 -0.575 (0.56) 7.08 0.020
M = 5 564.6 0.656 (1.93) 0.75 0.016 0.072 (1.07) -26.97 0.073 -0.583 (0.56) 8.57 0.020

Table 4.4: Mean coefficient estimates for ADAS-11, APOE 4, and Aβ based on 200 nested
case-control samples from the FC data. 60 controls were sampled at the first event time,
regardless of M .

Table 4.4 presents the coefficient estimates for a difference of five points in baseline ADAS-11,

our predictor of interest, as well as for APOE 4 and CSF Aβ. Under the FC PL estimator,

we estimate that comparing two subpopulations that differ by five points in baseline ADAS-

11, the risk of progression to AD dementia is approximately 92% higher for the group with

higher ADAS-11. When we estimate the coefficients using the PL estimator and the nested

case-control sampling scheme, we find that as in the simulated examples, the estimates

are different than those obtained using the FC PL estimator and that these differ by the

value of M . The bias relative to the full cohort estimator in this case ranges from 11% to

18% compared to the FC PL estimates. Applying our proposed estimator reduces this to

between 0.75% and 4% while using the same sample sizes as the usual nested case-control

design. Notice also that, as expected, the variance estimates for the proposed estimator are

larger than those for the usual nested case-control PL estimator and that both are larger

129



than those of the full cohort PL estimator.

To calculate the usual nested case-control PL estimator and the proposed estimator, we

would only have to collect full covariate information for subjects in the nested case-control

samples. That is, we would only have to perform genotype testing and process CSF samples

for subjects who progressed to AD dementia or those who were sampled as controls. This

reduces costs associated with these tests and allows us to use CSF samples to answer other

questions that we may have about AD.

4.5 Discussion

It has been shown that the expectation of the sampling distribution of the usual nested

case-control estimator will depend on the number of controls sampled at each event time

when the PH assumption is violated. Previous work has proposed an estimator that yields

the same results as those obtained using the FC data when the predictor of interest is binary

[Nuño and Gillen, 2019]. In this scenario, the functional form of the covariate of interest is

specified correctly, but the effect of the covariate is assumed to be constant when in reality

it varies with time.

In this chapter, we consider the performance of the PL estimator under the nested case-

control design when the effect of the covariate is constant over time, but the functional

form is mis-specified. We again observe that the estimates obtained using the PL estimator

under the nested case-control design also depend on the number of controls sampled at each

event time. We therefore propose a method that estimates the same quantity as the FC PL

estimator under mis-specification of the functional form, while only using the information

from the usual nested case-control design. By only requiring full covariate information

from the nested case-control sample, our proposed estimator maintains the reduction in
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costs afforded by the nested case-control design. The proposed estimator recovers the FC

estimates when the model is mis-specified, both in the univariate and multivariate scenarios.

When the model is specified correctly, the proposed estimator still recovers the FC estimates

regardless of M . While the proposed estimator increases the bias relative to the full cohort

estimator for M = 1 in the multivariate setting, it should be noted that M is usually larger

than one in practice. Our proposed finite-sample variance estimator performs well for M

greater than one but yields conservative estimates when M = 1.

It is known that the estimand corresponding to the FC PL estimator depends on the cen-

soring distribution when the model is mis-specified [Struthers and Kalbfleisch, 1986, Xu and

O’Quigley, 2000, Boyd et al., 2012]. In the previous chapter, we introduced an estimator

for the FC censoring distribution that only requires the nested case-control sample. The

estimator for the censoring distribution can also be used to reweight the estimating func-

tion to yield a censoring-robust estimator in this setting [Nuño and Gillen, 2019]. Similarly,

the proposed weights for censoring-robust estimator can be applied to the Samuelsen [1997]

estimator.

The nested case-control design provides great reduction in costs when the event of interest

is rare. When the model is specified correctly, the nested case-control design estimates the

same quantity as the FC PL estimator. If the functional form is mis-specified, however,

the results obtained from the usual nested case-control estimator depend on the number of

controls sampled at each event time. The proposed estimator uses the same information as

the usual nested case-control design but recovers the FC results even when the functional

form is mis-specified. We therefore recommend application of the proposed estimator since

the estimator performs well even when the functional form is specified correctly and still

affords the cost reductions offered by the nested case-control sampling scheme. When using

our estimator, however, we do recommend using M larger than one (which is commonly

done in practice).
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Chapter 5

Censoring-Robust Time-dependent

Receiver Operating Characteristic

Curve Estimators

5.1 Introduction

Biomarker discovery is crucial in many fields since biomarkers play a critical role in un-

derstanding the mechanisms of disease, tracking disease development [Mayeux, 2004] and,

oftentimes, testing for treatment efficacy [Strimbu and Tavel, 2010]. One area in which the

discovery of biomarkers is of utter importance is in Alzheimer’s disease (AD) where diagno-

sis of AD requires post-mortem verification. Recently, research in AD has shifted to earlier

stages in an attempt to prevent the disease before it causes significant, irreversible dam-

age. Existing biomarkers, such as the proteins amyloid beta (Aβ), total tau (T-tau) and

phosphorylated tau (P-tau), help identify individuals who are more likely to develop AD

[Blennow et al., 2010, Blennow, 2005, 2004]. However, it is difficult to distinguish early AD
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from other disorders involving similar symptoms (Humpel [2011]). Moreover, it is difficult

to distinguish between symptoms of AD and those of normal aging [Denver and McClean,

2018]. The discovery of new biomarkers for AD could help not only to accurately diagnose

people, but could also provide targets for therapeutic treatments, allowing us to develop

treatments for AD. The importance of biomarker discovery is not unique to AD, making it

even more important to have reliable methods to aid in the discovery of new biomarkers.

Receiver operating characteristic (ROC) curves are often used to evaluate the classification

performance of continuous measures, such as potential biomarkers. ROC curves are defined

by the sensitivity and specificity of a biomarker over a range of thresholds. Sensitivity is the

probability that an individual is classified as testing positive (or meeting a specific threshold)

given that they have the disease, while specificity is the probability that an individual is

classified as testing negative (or not meeting the threshold value) given that the individual

does not have the disease. A common summary measure of biomarker performance is the

area under the ROC curve (AUC), which provides an estimate of the probability that a

randomly selected individual with the disease will be rated higher than one without the

disease [Fawcett, 2006].

When dealing with time-to-event data, it is common for the disease status and the risk

sets to change over time. Because of this, Heagerty et al. [2000] proposed using time-

dependent ROC curves in which the sensitivity, specificity, and the corresponding AUC are

estimated at a particular time point. There are several ways to estimate sensitivity and

specificity in the time-dependent ROC setting [Heagerty et al., 2000, Chambless and Diao,

2006, Zheng et al., 2006, Uno et al., 2007, Heagerty and Zheng, 2005]. Some methods

rely on nonparametric estimation, while others use semiparametric methods to estimate the

sensitivity and specificity. Several of these estimators [Heagerty and Zheng, 2005, Chambless

and Diao, 2006] calculate the sensitivity and specificity using a risk score made of up several

covariates, or biomarkers. While the risk score can be estimated in various ways, a common
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approach is to use a linear predictor based on the partial likelihood estimator [David et al.,

1972].

As seen in previous chapters, the partial likelihood estimator is commonly used to estimate

the hazard ratio for time-to-event data. Its popularity is partially due to the fact that

the Cox proportional hazards model does not require specification of the baseline hazard

[David et al., 1972]. While the Cox model is of great utility, it has been shown that when

the model is mis-specified, the estimand corresponding to the partial likelihood estimator

depends on the censoring distribution [Struthers and Kalbfleisch, 1986]. As seen throughout

this dissertation, when the goal of a study is to conduct inference, the dependence on the

censoring distribution makes it difficult to replicate results across studies. If the goal is to

evaluate classification performance, dependence on the censoring distribution would make it

difficult to accurately evaluate the biomarker’s performance since the results will depend on

dropout and accrual patterns of the current study.

The goal of this chapter is to investigate how the censoring distribution affects estimates of

the AUC when the risk score used to estimate the sensitivity and specificity is obtained using

coefficient estimates derived from the partial likelihood estimator and the proportionality

assumption is not satisfied. We also provide a method for censoring-robust estimation of

the AUC. We begin with a brief review of time-dependent ROC curves. We then discuss

the impact of model mis-specification under the partial likelihood estimator, investigate the

performance of the AUC when the partial likelihood estimator is used in violation of the

proportionality assumption, and propose the use of censoring-robust estimators. We end the

chapter with an application of the proposed methodology to Alzheimer’s disease using data

from ADNI.
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5.2 Background

5.2.1 Time-dependent ROC Curves

ROC curves are commonly used to assess the classification performance of a continuous vari-

able and are obtained by plotting sensitivity versus (1 - specificity). The area under the curve

(AUC) is often used as a summary measure for the ROC curve and can be interpreted as

the probability that a randomly selected individual with the disease will have a higher level

of the marker than someone without the disease [Fawcett, 2006, Heagerty et al., 2000]. The

higher the AUC, the better the biomarker is for classifying diseased and non-diseased indi-

viduals. One benefit of ROC curves is that the sensitivity and specificity are estimated over

all possible cut points, so the results do not depend on a single cut point value. ROC curves

also allow comparison of different markers, even if these are on different scales [Heagerty

et al., 2000].

Classic ROC curves assume the disease status is fixed. In many cases, however, the disease

status may change over time. For these scenarios, Heagerty et al. [2000] proposed the use

of time-dependent ROC curves, where the sensitivity and specificity are estimated at a

particular time point. The use of time-dependent ROC curves allows us to investigate the

classification performance at different event times and therefore also allows us to investigate

the performance of the marker over time. When using time-dependent ROC curves, cases

and controls can be defined in several ways, and how these are defined will impact estimation

of the sensitivity and specificity. In this chapter, we consider two commonly encountered

scenarios: (1) cumulative sensitivity and dynamic specificity and (2) incident sensitivity and

dynamic specificity. Cumulative sensitivity considers the probability that an individual’s

risk score exceeds some threshold value, c, given that the individual experienced an event

after baseline and before time t. Dynamic specificity is the probability that an individual
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has a risk score value (Bi) less than or equal to c conditional upon not having experienced an

event up to time t [Kamarudin et al., 2017]. These can be written as SensC(t, c) = P (Bi >

c|Ti ≤ t) and Spec(t, c) = P (Bi ≤ c|Ti > t). Incident specificity, on the other hand, is the

probability that an individual has a risk score measure above c given that they experienced

an event exactly at time t and can be written as SensI(t, c) = P (Bi > c|Ti = t). The

cumulative/dynamic setting is more appropriate when there is a specific time of scientific

interest at which investigators would like to see who has developed the disease and who has

not. On the other hand, the incident/dynamic setting is more appropriate when the exact

event time is known and it is of interest to investigate who has developed the disease at

that time [Kamarudin et al., 2017]. While several estimators have been proposed for both

scenarios, we will focus on the cumulative/dynamic estimator of Chambless and Diao [2006]

(Section 3.3) and the incident/dynamic estimator of Zheng et al. [2006].

The work of Heagerty and Zheng [2005] considers time-dependent ROC curves to evaluate

the classification performance of risk scores made up of one or more covariates, or biomarkers.

The risk scores can be obtained using a variety of models, but their manuscript focuses on the

Cox proportional hazards model. Sensitivity and specificity are also estimated using the Cox

proportional hazards model. When the data follow non-proportional hazards, the sensitivity

is estimated as ŜensHZ(t, c) =
∑n

k=1[I(Bk > c)Yk(t) exp(Bkγ̂(t))/
∑n

j=1 Yj(t) exp(Bj γ̂(t))]

where Yk(t) is an indicator for whether individual k is at risk at time t and γ̂(t) is the

estimate for the time-dependent coefficient. The specificity is estimated using ŜpecHZ(t, c) =∑n
k=1 I(Bk>c)Yk(t+)

WR(t+)
where Yk(t+) = limδ→0 Yk(t + |δ|) and WR(t+) is the number of controls

(non-events) in the risk set at time t. When the data follow proportional hazards, γ̂(t) in

the sensitivity is replaced by γ̂, an estimate for the time-invariant effect. In this manuscript,

we focus on the proportional hazards estimator. While the first estimator for sensitivity

is more flexible, investigators may not expect a time-varying effect, or exact specification

of the change points may not be known. In this case, one may consider estimating the

sensitivity using a time-invariant effect. Moreover, the widely used CoxWeights function

136



in the risksetROC package in R implements the proportional hazards approach. Therefore,

it is important that we investigate the properties of this procedure when the model is mis-

specified.

Another way to estimate the sensitivity and specificity under a time-dependent ROC curve

uses the methods proposed by Chambless and Diao [2006] for the cumulative/dynamic sce-

nario. These methods also allow for assessment of a risk score, which can be obtained using

various models. In their manuscript, the authors present Kaplan and Meier [1958] type esti-

mators of the sensitivity and specificity as well as alternative estimators that use a regression-

based estimator of the survival function. The R function AUC.cd in the survAUC package

implements the regression-based approach using a Cox proportional hazards model. Under

this approach, the sensitivity and specificity take the form SensCD(t, c) = E[(1−S(t|B))I(B>c)]
E[1−S(t|B<c)]

and SpecCD(t, c) = E[S(t|B)I(B<c)]
E[S(t|B)]

. S(t|B), the survival function at time t, can be estimated

using Ŝ(t|B) = exp(−Λ̂0(t) exp(−γ̂B)) where Λ̂0(t) is obtained using the Breslow [1972]

estimator and γ̂ is calculated using the Cox proportional hazards model.

Other estimators have been proposed that account for censoring using inverse probability

weights. The work of Uno et al. [2007] and Hung and Chiang [2010] reweight the estima-

tor of the sensitivity from Heagerty et al. [2000] by the inverse of the survival function for

censoring, Sc(t). The estimator for sensitivity is ŜensIW (t, c) =
∑n
i=1 I(Bi>c,Xi≤t)δi/[nŜc(Xi)]∑n
i=1 I(Xi≤t)(δi/[nŜc(Xi)])

and the estimator for specificity is ŜpecIW (t, c) =
∑n
i=1 I(Bi≤c,Xi>t)∑n

i=1 I(Xi>t)
. This estimator, how-

ever, does not account for marker dependent censoring. Blanche et al. [2013] extended this

method to allow for marker dependent censoring. Their proposed estimators are ŜensB(t, c) =∑n
i=1 I(Bi>c,Xi≤t)[δi/(nŜc(Xi|Bi))]∑n

i1 I(Zi≤t)(δi/(nŜc(Xi|Bi)))
and ŜpecB(t, c) =

∑n
i=1 I(Bi≤c,Xi>t)[1/(nŜc(t|Bi))]∑n

i1 I(Xi>t)(1/(nŜc(t|Bi)))
. While these esti-

mators reweight by the inverse probability of no censoring, they focus on Kaplan-Meier type

estimators of the sensitivity and specificity. Moreover, these articles do not show the impact

of model mis-specification on estimates of the AUC under different censoring scenarios. In

this manuscript, our goal is to emphasize the effect of the censoring distribution on estimates
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of the AUC and to propose estimators that can be quickly and easily implemented in R with

existing packages. In the following section, we present the partial likelihood estimator and

its behavior under model mis-specification.

5.2.2 Model Mis-specification under the Partial Likelihood Esti-

mator

As we have seen in the previous section, various methods for time-dependent ROC curves

make use of the partial likelihood estimator, either to obtain a risk score or to estimate the

sensitivity and specificity. The partial likelihood estimator is commonly used when dealing

with time-to-event data and does not require specification of the baseline hazard. Recall

that the estimating function under the Cox proportional hazards model takes the form

U(β) =
n∑
i=1

δi

(
Zi −

∑n
j=1 ZjYj(t) exp(βZj)∑n
j=1 Yj(t) exp(βZj)

)
.

However, Struthers and Kalbfleisch [1986] show that the estimand corresponding to the

partial likelihood estimator is the solution to

∫ ∞
0

EZ

(
fT (t|Z)SC(t|Z)

[
Z − EZ{ZST (t|Z)SC(t|Z) exp(Zβ)}

EZ{ST (t|Z)SC(t|Z) exp(Zβ)}

])
dt = 0,

which depends on SC(t|Z), the covariate-specific censoring distribution. When the pro-

portionality assumption is satisfied, the dependence on the censoring distribution does not

impact the results. As seen in previous chapters, if the proportionality assumption is vio-

lated, the results will depend on the censoring distribution. That is, simply changing the

accrual and dropout patterns will change the quantity estimated by the partial likelihood

estimator. This makes it difficult to replicate results across studies, since the dropout and

accrual patterns will likely differ. Fortunately, several estimators have been proposed that

estimate the average covariate effect, which does not depend on the censoring distribution.

138



Xu and O’Quigley [2000] consider the scenario where SC(t) = SC(t|Z). As shown by Boyd

et al. [2012], in this case, (2.12) simplifies to
∫∞

0
EZ

(
fT (t|Z)SC(t)

[
Z−EZ{ZST (t|Z) exp(Zβ)}

EZ{ST (t|Z) exp(Zβ)}

])
dt =

0. To get rid of the dependence on SC(t), Xu and O’Quigley [2000] propose using the esti-

mating function

UXO(β) =
n∑
i=1

δiWXO(Xi)

(
Zi −

∑n
j=1 ZjYj(t) exp(βZj)∑n
j=1 Yj(t) exp(βZj)

)

where WXO(t) = ŜKM(t)/
∑n

i=1 Yi(t) and S(t) can be estimated using the Kaplan-Meier

estimator.

In many scenarios, however, the censoring distribution will depend on the covariate values.

Boyd et al. [2012] consider the scenario where the censoring distribution depends on a single,

binary covariate. They propose the following reweighted estimating function

UCR(β) =
n∑
i=1

δi/ŜC,KM(t|Zi)
(
Zi −

∑n
j=1 ZjYj(t)/ŜC,KM(t|Zj) exp(βZj)∑n
j=1 Yj(t)/ŜC,KM(t|Zj) exp(βZj)

)
.

The resulting estimator again recovers a censoring-independent estimand that can be inter-

preted as the average covariate effect. Note that although the Boyd et al. [2012] estimator

allows for a covariate-dependent censoring distribution, it can also be used when the censor-

ing distribution does not depend on other covariates.

While the estimator proposed by Boyd et al. [2012] allows for dependence of the censoring

distribution on a single covariate, the censoring distribution might depend on multiple,

possibly continuous, covariates. Nguyen and Gillen [2017] proposed survival tree based

estimators for these scenarios. Succinctly stated, the three estimators presented in this

section allow us to recover an estimand that does not depend on the censoring distribution,

therefore allowing us to replicate results across studies.
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5.3 Censoring-Robust Time-dependent ROC Curves

Due to the dependence of the partial likelihood estimator on the censoring distribution and

because the sensitivity and specificity can be estimated using Cox regression, we hypothesized

that estimates of the AUC would also differ when the risk score model is mis-specified.

While there are various ways to account for the dependence on the censoring distribution,

we propose estimating the risk scores using the estimators presented in Section 5.2.2. In

this chapter, we apply the work of Boyd et al. [2012], which can be used when the censoring

distribution depends on a single covariate. If the censoring distribution depends on more

than one covariate, the estimator proposed by Nguyen and Gillen [2017] should be used.

In Section 5.2.1 we saw that some estimators allow for time-dependent effects when estimat-

ing the time-dependent ROC curves. However, application of these estimators would require

specification of the change points, which is not always obvious. Other works have proposed

inverse probability weighted estimators where the sensitivity and specificity are calculated

using a weighted Kaplan-Meier type estimator. The work presented in this manuscript differs

from previous work in several ways. First, we explore the impact of the censoring distri-

bution on the AUC estimates. We also propose the use of censoring-robust estimators for

estimation of the risk scores, which corrects the dependence on the censoring distribution

and can be easily implemented in R using existing functions.

5.3.1 Empirical Performance

In this section, we consider the empirical performance of the Chambless and Diao [2006]

and Heagerty and Zheng [2005] AUC estimators when the risk score is calculated using

the Cox partial likelihood estimator and the estimator proposed by Boyd et al. [2012]. We

performed 2,000 simulations, each with 2,000 subjects. Two variables, Z1 and Z2, were
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used to estimate the risk score for the AUC. Half of all subjects had z2 = 0 and half had

z2 = 1. Z1 ∼ N(µ = 2 + 2 ∗ Z2, sd = 1). The true hazard function takes the form

λ(t) = exp

{
log(0.5) + log(0.85)Z1 + log(0.05) · Z2 · I(t ≤ 3) + log(2) · Z2 · I(3 < t ≤

6)+ log(1) ·Z2 · I(t > 6)

}
with change points at times t = 3 and t = 6. Event times, Ti, were

drawn from Exp(λ(t)). The observed times were taken to be Xi = min(Ti, Ci) and we applied

different censoring distributions following the cumulative density function FC(c) = (c/7)r,

with r taking values from 0.25 to 4. Under the nonproportional hazards scenario, the risk

score was calculated using a linear combination of the form β̂1Z1 + β̂2Z2 where the coefficient

estimates were obtained from a model of the form λ̂(t) = λ̂0 exp(β̂1Z1+β̂2Z2) using the partial

likelihood and the censoring-robust estimator. Note that although data were generated with

a time-varying effect, the risk score was calculated assuming a time-invariant effect. Because

the Chambless and Diao [2006] estimator requires a training set and a test set, we generated

an additional 1,000 observations to use as the test set when implementing their estimator.

Figure 5.1 presents the density curves for the different censoring distributions (left plot)

along with the coefficient estimates under no censoring, the partial likelihood estimator, and

the Boyd et al. [2012] estimator. Note that, as discussed in Section 5.2.2, when the model is

mis-specified, the coefficient estimates obtained from the partial likelihood estimator differ

depending on the censoring distribution. When censoring times are drawn using scenario

1 (r = 0.25), we find that the coefficient estimate corresponding to Z2 is estimated to be

approximately -1.21. When we consider censoring scenario 16 (r = 4), the coefficient estimate

is approximately -0.7. The estimates obtained using the Boyd et al. [2012] estimator, on the

other hand, do not depend on the censoring distribution. In this case, the coefficient estimate

corresponding to Z2 is approximately -0.61 regardless of the censoring distribution.
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Figure 5.1: Density curves for the censoring times (left) and the corresponding estimates
when there is no censoring, under the partial likelihood estimator, and the censoring-robust
estimator based on 2000 simulations.

Figure 5.2 presents the estimates of the AUC for two common estimators. On the left is the

estimator of Chambless and Diao [2006] and on the right is the estimator of Heagerty and

Zheng [2005]. In both cases the partial likelihood estimator is used to calculate the risk score.

Note that, as seen with the coefficient estimates, the estimates of the AUC differ depending

on the censoring distribution when the partial likelihood estimator is used to obtain the

risk score. Using the Chambless and Diao [2006] estimator under censoring scenario 1, we

find that the AUC is estimated to be approximately 0.71, and in censoring scenario 16,

the AUC is estimated to be approximately 0.63. Similarly, when the Heagerty and Zheng

[2005] estimators are used, we find that the estimate of the AUC is approximately 0.70 under

censoring scenario 1 and 0.60 under censoring scenario 16. Similar trends are observed at

times t = 4.5 and 5.5. When the Boyd et al. [2012] estimator is used to estimate the risk

score, the estimates of AUC remain at approximately 0.62 at time t = 1.5 regardless of the

censoring distribution used under the Chambless and Diao [2006] and at approximately 0.60

under the Heagerty and Zheng [2005] estimator. The estimates of the AUC under the Boyd

et al. [2012] estimated risk score are not impacted by the censoring distribution.
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Figure 5.2: AUC estimates (± 1 s.d) based on 2000 simulations under nonproportional
hazards. The number of subjects at risk under each censoring scenario can be found below
each plot. Risk scores are calculated using the partial likelihood estimator and the censoring-
robust estimator of Boyd et al. [2012].
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Figure 5.3: AUC estimates (± 1 s.d) based on 2000 simulations under proportional hazards.
Risk scores are calculated using the partial likelihood estimator and the censoring-robust
estimator of Boyd et al. [2012].

To ensure that the Boyd et al. [2012] estimator still performs well when the model is specified

correctly, we considered another simulation setting, this time satisfying the proportionality

assumption. The covariates and censoring times were drawn in the same way as in the non-

proportional hazards setting. The hazard function now takes the form λ(t) = exp(log(0.5) +

log(0.85)Z1 + log(0.30)Z2).

Figure 5.3 presents the AUC estimates under the proportional hazards setting. We find that

when the proportionality assumption is satisfied, both the partial likelihood estimator and

the Boyd et al. [2012] estimator perform well under the methods proposed by Chambless

and Diao [2006] and Heagerty and Zheng [2005]. The variability in the estimates (based on

the empirical variance) of the AUC is similar regardless of which estimator is used to obtain

the risk score.

5.4 Bootstrap Estimates of the Variance

In Section 5.3.1, we presented the AUC estimates along with the empirical standard devia-

tion. In practice, we will only observe one realization, and can estimate the variance of the

AUC estimates using a bootstrapping approach. To obtain bootstrap estimates, we sam-
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ple with replacement from our original sample and obtain estimates of the coefficients, risk

scores, and the AUC. If a training and test set are used, bootstrap samples are required for

both the training set and the test set. In this section, we present estimates of the bootstrap

variance of the AUC estimators of Chambless and Diao [2006] and those of Heagerty and

Zheng [2005]. The simulation set-up is the same as that in Section 5.3.1. The only difference

is that we ran 1,000 simulations with 1,500 subjects. The bootstrap estimates are based on

100 bootstrap samples.

Figure 5.4 presents the empirical variance and the bootstrap estimates of the variance for

the AUC estimates under the partial likelihood and censoring-robust estimators. For the

Chambless and Diao [2006] estimator, the bootstrap estimator is able to correctly estimate

the variance. When considering the censoring-robust estimator, the bootstrap estimates tend

to be slightly lower than the true variance. Even in this scenario, however, the bootstrap

estimates are close to the empirical variance. Under the Heagerty and Zheng [2005] estimator

of the time-dependent AUC, we find that the bootstrap estimates are very close to the

empirical variance. The only exception lies in the first censoring scenario at time t = 5.5.

In this case, the bootstrap estimates tend to be larger than the empirical variance. This is

likely due to the fact that there are less people at risk, and therefore less events, at time

t = 5.5.
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Figure 5.4: Bootstrap estimates of the variance based on 1,000 simulations each with 1,500
subjects. Results are obtained using 100 bootstrap samples for each simulation.

146



5.5 Evaluating the Classification Performance of Aβ

and APOE 4

As discussed in previous chapters, there is currently no cure for AD. In an attempt to prevent

AD, research has shifted to earlier stages during which people have few or no symptoms. In

these settings, it is important to consider early biomarkers to help identify people who are

likely to progress. While biomarkers such as CSF Aβ exist, in the early stages it is difficult

to distinguish between symptoms of AD and those of normal aging [Denver and McClean,

2018]. Even when signs of dementia are present, it is difficult to distinguish AD from other

types of dementia [Humpel, 2011]. In order to develop treatments for AD, we must find new

biomarkers, or combinations of biomarkers and other risk factors, to help identify subjects

who are likely to progress to AD. Moreover, the discovery of new biomarkers could provide

targets for therapeutic treatments.

There are currently several known biomarkers and risk factors for AD. One biomarker is

amyloid beta, or Aβ, a protein that can be measured in cerebrospinal fluid (CSF), with low

levels of CSF Aβ indicating increased AD pathology [Grimmer et al., 2009]. A threshold of

192 pg/ml has been proposed as a possible cutoff to distinguish people with low levels of CSF

Aβ and those not considered to have low levels of Aβ [Shaw et al., 2009]. The apolipoprotein

E (APOE) 4 allele is also associated with a higher risk of developing AD. People may have

one or two alleles of this gene and the risk of AD increases with the number of alleles present

[Saunders et al., 1993].

In this section, we investigate the performance of CSF Aβ and APOE 4 for distinguish-

ing people who develop AD dementia from those who do not. Aβ was included as an

indicator for whether the individual had low levels of Aβ at baseline. To increase the clas-

sification performance, we also included other measures that are associated with AD. These
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measures included the Alzheimer’s Disease Assessment Cognitive Subscale- 11 (ADAS-11)

[Rosen et al., 1984] and the Mini-Mental State Exam (MMSE) [Folstein et al., 1975], two

cognitive assessments. We hypothesized that there would be a time-varying effect since all

measures included were those at baseline. Therefore, we developed risk scores using the par-

tial likelihood estimator and the censoring-robust estimator of Boyd et al. [2012] to compare

the estimates of the AUC.

We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), an ongoing

cohort study, and required that participants had Aβ, ADAS-11, and MMSE at baseline, as

well as their APOE 4 status. To be in our study, participants could not have a diagnosis of

dementia at baseline, and progression was defined as progressing from an earlier stage to a

diagnosis of dementia. Table 5.1 presents the baseline demographics of participants in our

study. We included 973 individuals, with a mean age of 72.92 years. Participants had an

average of 16.19 years of education. Approximately 40% of participants had at least one

APOE 4 allele, and the average baseline measure of CSF Aβ was 182.14 pg/ml.

Mean (sd) or n (%)
N 973
Age 72.92 (7.95)
Education 16.19 (2.71)
Female (vs. Male) 442 (45.43%)
White (vs. non-White) 908 (93.32%)
≥ 1 APOE 4 allele (vs. 0) 404 (41.52%)
Aβ 182.14 (53.76)
ADAS-11 8.52 (4.56)
MMSE 28.21 (1.73)

Table 5.1: Baseline characteristics of participants in our study.

We considered the performance of the cumulative/dynamic estimator of Chambless and Diao

[2006] and the incident/dynamic estimator of Heagerty and Zheng [2005] when risk scores

were obtained using the partial likelihood estimator and the censoring-robust estimator of

Boyd et al. [2012]. While the simulation results for the Chambless and Diao [2006] estimator
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were based on the availability of a training and test set, due to the number of participants in

this study, in this example we only used a training set. Along with the coefficient estimates,

Table 5.2 includes AUC estimates at years one, two, three, and four.

Note that the coefficient estimates differ for the partial likelihood estimator and the censoring-

robust estimator. When using the partial likelihood estimator, we estimated that the risk

of progressing to AD dementia was 25% higher for people with at least one APOE 4 allele

compared to those without any allele. The hazard ratio was estimated to be 1.71 under

the censoring-robust estimator. The largest difference was observed when considering Aβ.

The risk of developing AD dementia was estimated to be approximately 3.7 times higher for

people with low Aβ at baseline compared to those who do not have low Aβ. When using the

censoring-robust estimator, the hazard ratio was estimated to be 2.64. The differences in

the coefficient estimates led to differences in the AUC estimates. Under the Chambless and

Diao [2006] estimator, the AUC was estimated to be 0.784 when the risk score was calcu-

lated using the partial likelihood estimator and 0.721 when the censoring-robust estimator

was used. At year four, the AUC was estimated to be 0.795 under the partial likelihood

estimator and 0.735 under the censoring-robust estimator. Similar results were observed

when using the Heagerty and Zheng [2005] estimator. At year 1, the AUC was 0.782 under

the partial likelihood estimator and 0.721 under the censoring-robust estimator. At year

four, the AUC estimate was 0.768 under the partial likelihood estimator and 0.715 under

the censoring-robust estimator.
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Log Hazard Ratio (Hazard Ratio) AUC Estimates
APOE 4 ADAS-11 (bl) Abeta < 192 MMSE (bl) 1 year 2 years 3 years 4 years

C & D
PLE 0.220 (1.25) 0.123 (1.13) 1.305 (3.69) -0.096 (0.91) 0.784 0.787 0.791 0.795
CR 0.535 (1.71) 0.085 (1.09) 0.969 (2.64) 0.011 (1.01) 0.721 0.725 0.729 0.735

H & Z
PLE 0.220 (1.25) 0.123 (1.13) 1.305 (3.69) -0.096 (0.91) 0.782 0.780 0.777 0.768
CR 0.535 (1.71) 0.085 (1.09) 0.969 (2.64) 0.011 (1.01) 0.721 0.721 0.719 0.715

Table 5.2: AUC estimates when APOE 4, ADAS-11, Aβ eligibility, and MMSE are used to
predict progression to dementia.

There is a large discrepancy when using the partial likelihood estimator and the censoring-

robust estimator. As seen in Section 5.3.1, the estimates of the AUC obtained using the

partial likelihood estimator differ depending on the censoring distribution while those ob-

tained from the censoring-robust estimator do not depend on the censoring distribution. We

also observe differences in the estimates of the AUC when different estimators [Chambless

and Diao, 2006, Heagerty and Zheng, 2005] are applied. This is due to the definition of the

sensitivity. Investigators should select the appropriate estimator based on which definition

of sensitivity is more scientifically relevant.

5.6 Discussion

It has been shown that under model mis-specification, the estimand corresponding to the

partial likelihood estimator will depend on the censoring distribution. Several estimators,

including those of Xu and O’Quigley [2000], Boyd et al. [2012], and Nguyen and Gillen [2017]

have been proposed to deal with the dependence on the censoring distribution. Most work

in this area has focused on inference. However, many estimators of the AUC allow for the

use of the partial likelihood estimator to obtain risk scores based on multiple biomarkers, or

covariates. Therefore, it is important to consider how the censoring distribution impacts the
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estimates of the AUC. While Viallon and Latouche [2011] show that model mis-specification

can lead to biased estimates of the AUC by comparing three censoring scenarios, the focus

of their manuscript was to derive a relation between the AUC and the predictiveness curve.

Our manuscript focuses on the impact of the censoring distribution on estimates of the AUC.

Moreover, we propose the use of censoring-robust estimators to obtain risk scores. These

risk scores allow us to recover estimates of the AUC that do not depend on the censoring

distribution and can be easily implemented using CoxWeights and AUC.cd in R. Moreover,

these estimators perform well even when the model is specified correctly. In Chapter 6 we

focus on estimation of the AUC under the nested case-control design [Thomas, 1977] and

propose censoring-robust estimators analogous to those presented in this chapter.
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Chapter 6

Time-Dependent Censoring-Robust

Area Under the Curve Estimators

under the Nested Case-Control

Sampling Scheme

6.1 Introduction

As previously discussed, it is imperative that we find new biomarkers for AD. A common

approach for biomarker discovery in AD is to first measure potential biomarkers in CSF to

determine if these can accurately distinguish diseased from non-diseased individuals. How-

ever, as seen in Nuño et al. [2017], study participants are often unwilling to undergo lumbar

punctures, so it is difficult to obtain CSF samples on all study participants. Use of the nested

case-control design would allow us to use existing CSF samples efficiently by only requiring

that some of these samples are processed, while still allowing us to continue the search for
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new AD biomarkers. In order to identify these biomarkers, however, it is also important

that we have reliable statistical methods to evaluate their performance.

In Chapter 5 we presented estimators for the AUC in the time-dependent ROC curve setting.

In cases like the one presented above, however, it may not be feasible to collect full covariate

information on all study participants. While our motivating example comes from AD, the

problem of limited resources is one that is common in most disease areas. In light of this,

several estimators have been proposed to estimate the AUC under the nested case-control

design, including those of Cai and Zheng [2012] and Zhou et al. [2013]. However, as seen

in Chapters 3 and 4, the partial likelihood estimator under the nested case-control design is

also susceptible to dependence on the censoring distribution under model mis-specification.

In Chapter 5, we showed that due to the dependence on the censoring distribution, esti-

mates of the AUC under the full cohort partial likelihood estimator (when all the data are

used) depend on the censoring distribution. We hypothesized that due to this dependence,

estimates of the AUC obtained using the nested case-control sampling scheme would also

depend on the censoring distribution.

In this chapter, we introduce the estimator proposed by Cai and Zheng [2012]. We inves-

tigate its performance when the model for the risk score is mis-specified and propose the

use of censoring-robust estimators to allow for censoring-robust estimators of the AUC. We

then show the empirical performance of the estimators through simulation studies. We end

with an application to ADNI data where, as before, the goal was to evaluate the classifica-

tion performance of Aβ while accounting for APOE4, ADAS-11 at baseline, and MMSE at

baseline.
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6.2 Background

In Chapter 5, we discussed time-dependent ROC curves to evaluate the classification per-

formance of a continuous measure when full covariate data are available for all study par-

ticipants. This measure is often either a single biomarker measure or a risk score based

on several biomarkers or risk factors. As previously discussed, the risk score is often ob-

tained using a linear combination of the biomarkers along with coefficient estimates derived

from the partial likelihood estimator. There are many scenarios in which it is difficult or

expensive to collect full covariate information on all study participants. When the event

of interest is rare, the nested case-control design provides a reduction in costs due to the

fact that it only requires full covariate information on participants who experience an event

and a subsample of those who are censored. While the nested case-control design is often

used to conduct inference, it can also be used to investigate the classification performance

of potential biomarkers.

Several estimators have been proposed for use under the nested case-control sampling scheme.

The first estimator was proposed by Cai and Zheng [2011] and uses non-parametric estimators

of the sensitivity and specificity. The authors later propose a semi-parametric approach [Cai

and Zheng, 2012]. In this case, the sensitivity and specificity are estimated as

ŜensCZ(t, c) =
F̂W (c)− ŜW (t, c)

1− ŜW (t)
(6.1)

and

ŜpecCZ(t, c) = 1− ŜW (t, c)

ŜW (t)
(6.2)
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where ŜW (t, c) =
∑N
i=1 Vi/piŜ

W (t|Bi)I(Bi>c)∑N
i=1 Vi/pi

. ŜW (t|B) = exp{−Λ̂W
0 (t) exp(β̂WB)} where Λ̂W

0 (t) =∑N
i=1

Vi/piI(Xi≤t)δi∑N
j=1 Vj/pjI(Xj≥Xi) exp(β̂Zj)

, pi = δi+(1−δi)[1−
∏

Xl<Xi
(1− M

nl−1
δl)] and Vi is an indicator

for whether individual i was included in the nested case-control sample either as a case or

as a control.

β̂W is estimated using the inverse probability weight estimator for the nested case-control

design proposed by Samuelsen [1997]. F̂W (c) = 1 − ŜW (0, c) and S(t) can be estimated as

ŜW (t) = ŜW (t,−∞). Note that, as before, B may be a risk score made up of a combination

of several markers. This is often done when comparing the predictive abilities of different

models. In the full data case, for example, Chambless and Diao [2006] consider use of the

Cox PH model to estimate the coefficients to create a risk score.

Several estimators have been proposed to estimate the log hazard ratio under the nested

case-control sampling scheme. In this chapter, we will focus on the estimators of the AUC

proposed by Cai and Zheng [2012] with risk scores obtained using coefficient estimates as pro-

posed by Thomas [1977], Samuelsen [1997], and Nuño and Gillen [2019]. We show that when

the risk score model is mis-specified, estimates of the AUC will also depend on the censoring

distribution unless the risk score model is calculated using censoring-robust estimators.

6.3 Estimating the Risk Scores

As discussed in Chapter 2, when the model is mis-specified, the estimand corresponding

to the partial likelihood estimator under the full data setting [Cox, 1972] will depend on

the censoring distribution. Similarly, the partial likelihood estimator under the nested case-

control design depends on the censoring distribution and on the number of sampled controls,

as seen in Chapters 3 and 4. In the previous chapter, we showed that when the risk score

model is mis-specified, the AUC estimates will also depend on the censoring distribution. Be-
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cause of this, we hypothesized that under the nested case-control design, the AUC estimates

would depend on the censoring distribution under model mis-specification and that the use

of censoring-robust estimators such as that proposed by Nuño and Gillen [2019] would allow

for censoring-robust estimation.

Recall that the estimating equation for the estimator proposed by Thomas [1977] is

UNCC(β) =
n∑
i=1

∫ ∞
t=0

{
Zi −

S
(1)
NCC(β, t)

S
(0)
NCC(β, t)

}
dNi(t) = 0

where S
(r)
NCC(β, t) = n−1

∑n
j=1 Z

r
j Ỹj(t) exp(Zjβ). The risk sets only include cases and controls

who are sampled for that event time.

Samuelsen [1997] proposed including subjects in the nested case-control sample at all risk

sets during which they were at risk and reweighting by the inverse probability of sampling.

The estimating equation under the Samuelsen [1997] estimator takes the form

US(β) =
n∑
i=1

∫ ∞
t=0

{
Zi −

S
(1)
IPW (β, t)

S
(0)
IPW (β, t)

}
dNi(t) = 0

where S
(r)
IPW (β, t) = n−1

∑n
j=1 Z

r
jY
∗
j (t) exp(Zjβ)Vj/pj, Y

∗
j (t) is an indicator for whever sub-

ject j was ever sampled into the nested case-control sample and is at risk at time t, and pj

represents the probability of ever being sampled into the nested case-control sample, either

as a case or as a control.

When the model is mis-specified, we have seen that the quantity estimated depends on

the censoring distribution. To deal with this dependence, a censoring-robust estimator was

proposed by Nuño and Gillen [2019], for which the estimating equation takes the form

ŨHD(β) =
n∑
i=1

∫ ∞
t=0

W̃ (t|Z1 = z1i)

{
~Zi −

S̃
(1)
HD(β, t)

S̃
(0)
HD(β, t)

}
dNi(t) = 0 (6.3)
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where S̃
(r)
HD = n−1

∑n
j=1

W̃ (t|Z1=z1j)n̂z1j (t)∑n
k=1 Ỹk(t){z1kz1j+(1−z1k)(1−z1j)}

~Zr
j Ỹj(t) exp(~Zjβ), ~Zj is the vector of

covariates, z1j is the value of the predictor of interest for subject j and n̂z1j(t) is the estimated

number of subjects at risk with the same covariate value as z1j at time t. This estimator

requires imputation of the covariate values for subjects in the full cohort who were not

sampled into the original nested case-control sample. While the imputation method can be

selected by the user, one possible method is hotdeck imputation. Note that to recover the

FC estimator, we can set W̃ (t|Z) = 1.

In the following section, we show the performance of the estimators presented here under

model mis-specification. We then show how mis-specification of the risk score model effects

estimates of the AUC under the Cai and Zheng [2012] estimators.

6.4 Empirical Performance

We first present the performance of the four estimators when estimating the coefficients

under a mis-specified model. The simulation studies used were the same as those in Chapter

5. This time, we performed 1,000 simulations each with 1,500 subjects (750 with z2 = 0 and

750 with z2 = 1). As before, the true hazard function takes the form λ(t) = exp

{
log(0.5) +

log(0.85)Z1 + log(0.05) ·Z2 · I(t ≤ 3) + log(2) ·Z2 · I(3 < t ≤ 6) + log(1) ·Z2 · I(t > 6)

}
with

change points at times t = 3 and t = 6. We again applied different censoring distributions

following the cumulative density function FC(c) = (c/7)r, with r taking values from 0.25

to 4. Although we had a time-varying effect, the risk score was calculated using a linear

combination of the form β̂1Z1 + β̂2Z2 where the coefficient estimates were obtained from a

model of the form λ̂(t) = λ̂0(t) exp(β̂1Z1 +β̂2Z2). The Thomas, Samuelson, and the proposed

estimators (full cohort and censoring-robust) from Chapter 3 were used to calculate the risk

score. These risk scores were then used to estimate the time-dependent AUC.
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6.4.1 Coefficient Estimates

Figure 6.1 presents the coefficient estimates under M = 1 to 4 controls under four different

estimators. Note that we estimate a different quantity depending on the censoring distri-

bution. Moreover, the Thomas [1977] estimator also leads to dependence on the number

of controls sampled at each event time. When M = 1, the coefficient estimate averages

approximately -1.41. When M = 4, the estimated log hazard ratio is approximately -1.3.

If the estimators of Samuelsen [1997] and Nuño and Gillen [2019] are used, we observe less

of a dependence on the number of controls sampled, but we still observe the dependence on

the censoring distribution. When r = 0.25, the average coefficient estimate is approximately

-1.25, and approximately -0.65 when r = 4 is used.

When the censoring-robust estimator is applied (bottom right), on the other hand, we obtain

estimates that do not depend on the censoring distribution. It should be noted that the

Samuelsen [1997] estimator can be reweighted to account for the censoring distribution using

the weights proposed in Nuño and Gillen [2019]. Doing this also provides estimates that do

not differ according to the censoring distribution.

6.5 Estimates of the area under the curve

In this section, we consider estimates of the AUC when the risk scores are obtained using the

four estimators from Section 6.3. We consider estimates of the AUC at times t = 1.5, 4.5,

and 5.5. As with the coefficient estimates, we find that estimates of the AUC also depend on

the censoring distribution. If we consider the Thomas [1977] estimator, we find that when

r = 0.25 and M = 1, the AUC is estimated to be approximately 0.74. When we instead

have r = 4, the AUC is estimated to be approximately 0.65. We observe similar results

under the Samuelsen [1997] estimator and the estimator proposed by Nuño and Gillen [2019]
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Figure 6.1: Coefficient estimates for Z2 based on 1,000 simulations with 1,500 subjects each.
These results were obtained under model mis-specification, where a time-varying effect exists,
but it is assumed to be time invariant.
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Figure 6.2: Estimates of the AUC under various nested case-control estimators and for
different numbers of sampled controls based on 1,000 simulations with 1,500 subjects each.

to recover the full cohort partial likelihood estimator. Notice that because of how the risk

sets are formed under the Thomas [1977] estimator, the estimates of the AUC also depend

on M . Considering again r = 0.25, we find that when M = 1, the average estimated AUC

is approximately 0.74. When M = 4, the average estimated AUC is approximately 0.725.

While these differences are small, we do find that there is less dependence on M when the

Samuelsen [1997] or full cohort Nuño and Gillen [2019] estimators are used. We observe

similar patterns at times t = 4.5 and t = 5.5.
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Figure 6.3: Estimates of the AUC under various nested case-control estimators and for
different numbers of sampled controls based on 1,000 simulations with 1,500 subjects each.
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Figure 6.4: Estimates of the AUC under various nested case-control estimators and for
different numbers of sampled controls based on 1,000 simulations with 1,500 subjects each.
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We now consider the censoring-robust (CR) estimator at time t = 1.5. The estimates from

the full cohort in this scenario are based on risk scores using the estimator proposed by

Boyd et al. [2012]. Notice that we are able to obtain much more stable estimates when the

censoring-robust estimator of Nuño and Gillen [2019] is applied to the nested case-control

sample. For the first three scenarios (r = 0.25, 0.5, and 0.75), we find that we are not able

to fully recover the estimates obtained from the full data. However, the censoring-robust

estimator does provide much more stable results compared to the other estimators. The

same is true when we consider estimates of the AUC at times t = 4.5 and 5.5.

When the model is correctly specified, however, we obtain similar estimates regardless of the

censoring distribution. This holds regardless of the estimator used.

6.6 Evaluating the Classification Performance of Aβ

and APOE 4 Under the Nested Case-Control De-

sign

We again consider the ADNI example presented in Section 5.5. Recall that in AD studies,

it is often difficult to obtain CSF samples, so use of the nested case-control design would

limit the number of CSF samples that need to be processed. As before, we were interested

in investigating the classification performance of Aβ when APOE 4, MMSE at baseline, and

ADAS 11 at baseline are also available. Considering the fact that CSF samples may be

limited, we used the time-dependent ROC curve estimator of Cai and Zheng [2012] along

with a nested case-control sample to calculate the AUC. Risk scores were calculated using

coefficient estimates obtained using the estimators of Thomas [1977], Samuelsen [1997], and

Nuño and Gillen [2019]. Our data set included the same subjects as those in Table 5.1. To

obtain the estimates in Table 6.1, we drew 100 nested case-control samples from the full
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cohort data set for each number of controls (M = 1, 2, 3, and 4).

We assumed that baseline MMSE and ADAS 11 were available for all participants, even if

they were not included in the nested case-control sample. However, Aβ and APOE 4 status

were only available for participants who experienced an event or were sampled as controls.

Recall that our proposed estimator requires imputation of covariate values for subjects not

in the original nested case-control sample. While the standard nested case-control method

only includes participants in risk sets for which they were sampled as controls, we included

all subjects in the nested case-control sample in all risk sets for which they were still at

risk in the full cohort study. For the remainder of the participants (those not included

in the sample), we used a hotdeck imputation approach where we matched to participants

who were still at risk and had been sampled at or before the current event time. Matching

was based on MMSE and ADAS 11 at baseline using Mahalanobis distance. To obtain the

censoring-robust estimator, the censoring distribution was estimated as in Section 3.2.4.

As before, the largest difference between the full cohort and censoring-robust estimators was

observed for Aβ. The log hazard ratio was estimated to be 1.3 under the partial likelihood

estimator and 0.969 under the censoring-robust estimator of Boyd et al. [2012].

We also observed a difference in the coefficient estimates obtained using the Thomas [1977]

estimator, where the log hazard ratio was estimated to be approximately 0.3 for APOE 4

compared to 0.22 under the full cohort. The coefficient estimates for ADAS 11 and MMSE did

not differ by the number of controls and were similar for all estimators although the estimates

obtained using the Thomas [1977] estimator did differ slightly. When the censoring-robust

estimator of Nuño and Gillen [2019] was used, the estimates were much closer to those

obtained using the Boyd et al. [2012] estimator.

We also noticed a large difference in the AUC estimates when using the censoring-dependent

estimators compared to the censoring-robust estimators. Under the censoring-dependent
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estimators, the AUC was estimated to be approximately 0.80. Notice that the estimates

of the AUC were similar, although slightly higher, when using the nested case-control es-

timators compared to the full cohort estimators. When the risk score was estimated using

the censoring-robust estimators, the estimates of the AUC decreased to approximately 0.73

under the full cohort. Under the nested case-control sample, the estimates were a little

larger than those obtained using the full cohort data. The largest difference was observed

when M = 1, where the estimated AUC at four years was estimated to be 0.758 (compared

to 0.735 under the full cohort). However, it should be noted that M = 1 is rarely used in

practice.
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Estimated Log Hazard Ratio (HR) AUC
N APOE 4 ADAS 11 (bl) Aβ < 192 MMSE (bl) 1 yr. 2 yrs. 3 yrs. 4 yrs.

Censoring-Dependent
Full Cohort 973 0.220 (1.25) 0.123 (1.13) 1.305 (3.69) -0.096 (0.91) 0.784 0.787 0.791 0.795
Thomas

M = 1 303.71 0.332 (1.39) 0.152 (1.16) 1.303 (3.68) -0.064 (0.94) 0.813 0.814 0.817 0.820
M = 2 403.54 0.318 (1.37) 0.148 (1.16) 1.346 (3.84) -0.083 (0.92) 0.812 0.814 0.816 0.819
M = 3 483.84 0.318 (1.37) 0.150 (1.16) 1.294 (3.65) -0.083 (0.92) 0.811 0.813 0.815 0.818
M = 4 546.20 0.300 (1.35) 0.142 (1.15) 1.316 (3.73) -0.086 (0.92) 0.806 0.808 0.811 0.814

Samuelson
M = 1 303.71 0.217 (1.24) 0.137 (1.15) 1.309 (3.70) -0.093 (0.91) 0.800 0.802 0.805 0.809
M = 2 403.54 0.217 (1.24) 0.127 (1.14) 1.329 (3.78) -0.101 (0.90) 0.790 0.793 0.796 0.801
M = 3 483.84 0.231 (1.26) 0.129 (1.14) 1.286 (3.62) -0.098 (0.91) 0.790 0.792 0.796 0.800
M = 4 546.20 0.213 (1.24) 0.125 (1.13) 1.315 (3.72) -0.097 (0.91) 0.788 0.791 0.795 0.799

Proposed
M = 1 303.71 0.261 (1.30) 0.131 (1.14) 1.278 (3.59) -0.101 (0.90) 0.798 0.800 0.804 0.808
M = 2 403.54 0.263 (1.30) 0.127 (1.14) 1.294 (3.65) -0.097 (0.91) 0.791 0.793 0.797 0.801
M = 3 483.84 0.254 (1.29) 0.127 (1.14) 1.261 (3.53) -0.097 (0.91) 0.789 0.791 0.795 0.799
M = 4 546.20 0.238 (1.27) 0.126 (1.13) 1.287 (3.62) -0.098 (0.91) 0.789 0.792 0.796 0.800

Censoring-Robust
Full Cohort 973.00 0.535 (1.71) 0.085 (1.09) 0.969 (2.64) 0.011 (1.01) 0.721 0.725 0.729 0.735
Proposed

M = 1 303.71 0.519 (1.68) 0.090 (1.09) 1.07 (2.92) -0.011 (0.99) 0.744 0.747 0.752 0.758
M = 2 403.54 0.580 (1.79) 0.086 (1.09) 0.989 (2.69) 0.019 (1.02) 0.731 0.734 0.739 0.745
M = 3 483.84 0.537 (1.71) 0.089 (1.09) 0.929 (2.53) 0.018 (1.02) 0.725 0.729 0.733 0.738
M = 4 546.20 0.543 (1.72) 0.086 (1.09) 0.956 (2.60) 0.014 (1.01) 0.726 0.730 0.734 0.740

Table 6.1: Coefficient and AUC estimates were obtained using 100 nested case-control sam-
ples from the ADNI data. Estimates were obtained using various nested case-control estima-
tors along with the estimators proposed by Cai and Zheng [2012]. Full cohort estimates were
obtained using the partial likelihood estimator (PLE) and the censoring-robust estimator of
Boyd et al. [2012] with the Chambless and Diao [2006] estimator.

6.7 Discussion

Biomarker discovery is crucial in various disease areas, including in AD. In order to discover

new biomarkers, however, it is important that we are able to carefully assess the classifi-

cation performance of these biomarkers which requires reliable statistical methods. When
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determining whether a biomarker is able to contribute additional information compared to

existing biomarkers, one may decide to compare the performance of several risk scores. It is

common to calculate these risk scores using a linear combination of several biomarkers using

coefficient estimates obtained from a survival model.

In this chapter, we found that when the risk score model is mis-specified, the AUC estimates

will depend on the censoring distribution due to dependence of the coefficient estimates on

the censoring distribution. This is concerning because classification performance of these

biomarkers does not depend on patient accrual and dropout patterns, which often differ

from one study to the next. It is therefore important that we are able to estimate the same

quantity regardless of the censoring distribution. We propose the use of censoring-robust

estimators when estimating the risk scores since these estimate the same quantity for the

AUC, regardless of the censoring distribution.
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Chapter 7

Conclusion

Throughout this dissertation, we have seen the utility of the nested case-control sampling

scheme and its performance under model mis-specification. When the model is mis-specified,

commonly used estimators yield results that depend not only on the censoring distribution

(affecting replicability), but also on the number of sampled controls (affecting reproducibility

within a study). We have proposed three estimators for conducting inference under the nested

case-control sampling scheme. We have also investigated the performance of time-dependent

ROC curves both in the full data and the nested case-control setting and found that when

the model used to obtain the risk score is mis-specified, estimates of the AUC depend on

the censoring distribution. In the nested case-control setting, they may also depend on

the number of sampled controls. To fix this, we proposed estimating the risk scores using

censoring-robust estimators so that estimates of classification performance are not impacted

by the censoring distribution.

There are many areas in which the nested case-control design would prove useful, but which

could benefit from new methodology or extensions to existing methods. In this final chapter,

we discuss areas of future work. In particular, we consider extensions of joint longitudinal
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survival and the analysis of recurrent events under the nested case-control sampling scheme.

7.1 Future work

7.1.1 Joint Longitudinal Survival Models under the Nested Case-

Control Design

In many cases, we may be interested in investigating the association between the time to

an event of interest and a longitudinal variable. While measures of these variables are often

changing, they are only observed (or measured) at specific time points. A common approach

is to use the last observation carried forward, which assumes that these measurements remain

constant until the next time they are collected. This is not often the case and assuming it

is could lead to biased results [Prentice, 1982]. In these settings, a common approach is

the use of joint longitudinal survival models. These models estimate the trajectory of the

longitudinal marker and its association to the event of interest.

Various methods have been proposed for joint modeling of longitudinal covariates in the

survival setting including the work of Tsiatis et al. [1995], Faucett and Thomas [1996],

Wulfsohn and Tsiatis [1997], Dafni and Tsiatis [1998], Tsiatis and Davidian [2001] among

many others. These include two-stage and likelihood based methods. In the two-stage

methods, a linear mixed effects model is often used to estimate the covariate values at each

event time. These estimates are then used to fit a survival model [Wu et al., 2012]. Under

the likelihood approach, the coefficient estimates are obtained using the likelihoods of the

longitudinal covariates as well as the likelihood of the survival data. In this approach, the

longitudinal measures and the coefficient estimates are obtained simultaneously.

While there exists extensive literature about joint longitudinal survival models in the full co-
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hort data setting, literature in the nested case-control setting is scarce. Tseng and Liu [2009]

propose a joint longitudinal survival model using shared latent parameters and maximum

likelihood estimation. Their proposed methodology allows for adjustment of other covariates

when estimating the longitudinal trajectory. Under the nested case-control sampling scheme

some covariate measures, such as demographic information, are available for all study par-

ticipants regardless of whether they were sampled into the nested case-control sample. The

estimator proposed by Tseng and Liu [2009] allows for inclusion of these participants in the

likelihood of the survival data, therefore allowing the use of all available information. The

authors propose the use of the E-M algorithm to solve for the coefficient estimates.

As we have discussed, the standard nested case-control design randomly samples a cer-

tain number of controls at each event time. Therefore, participants who are in the study

longer have a higher probability of being sampled. In the joint longitudinal survival setting,

this means that people with longer follow-up will be over-represented when estimating the

longitudinal trajectory, which could lead to biased results. To account for oversampling

of participants with longer follow-up, SAN [2013] propose a weighted likelihood approach

similar to that of Tseng and Liu [2009], but which reweights contributions by the inverse

probability of sampling when estimating coefficients.

While existing methods provide a great option that allows for reduction of costs even when

longitudinal measurements are collected, there are several ways in which existing methods

can be improved. Under the standard nested case-control design, as proposed by Thomas

[1977] and used by Tseng and Liu [2009] and SAN [2013], controls are randomly sampled

without replacement at each event time. However, it is common for some participants

to have different numbers of measurements as well as different lengths of time between

measurements. In scenarios where the nested case-control design would prove most beneficial,

biospecimen samples (such as CSF) are collected and only processed if they are needed

due to the high expenses associated with processing these samples. Therefore, we know
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how many measurements people have available for sampling, as well as the length of time

between measurements. In these settings, we could benefit from optimally sampling controls

to individuals likely to provide more information about the association of interest and the

longitudinal trajectory. One possibility is to consider weighted sampling of controls in which

controls are sampled with probability proportional to their overall contribution. During

estimation of the coefficients, we would then reweight by the inverse probability of sampling.

Another consideration is the performance of joint longitudinal survival models under model

mis-specification. As seen throughout this dissertation, under model mis-specification the

nested case-control sampling scheme and use of the partial likelihood estimator can lead

to dependence on the censoring distribution when estimating model parameters. The same

problems may arise when considering joint longitudinal survival models. Therefore, we

also propose to investigate the performance of these models under the nested case-control

sampling scheme and to provide robust methods.

7.1.2 Recurrent Event Analysis under the Nested Case-Control

Design

The methods presented throughout this dissertation have focused on a single outcome. How-

ever, in many disease areas including cancer, an individual may experience recurring events.

There are a variety of ways to model recurrent event data in the full cohort setting. Com-

monly used models include Poisson regression, extensions of the Cox proportional hazards

model [Andersen and Gill, 1982, Prentice et al., 1981], and frailty models. Under Poisson

regression, we model the number of recurrent events. Another way to model recurrent events

is through the use of frailty models, which include random effects, or frailties, to account for

differences between individuals [Amorim and Cai, 2015]. In this setting, the full likelihood

must be specified, including the distribution of the random effects. The Andersen-Gill and
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Prentice et al. [1981] models are semi-parametric and do not require specification of the

baseline intensity function. When using the Andersen-Gill model and the total time model

of Prentice et al. [1981], individuals with more than one event provide multiple observations,

where each observation starts after the individual’s previous event. The Anderson-Gill model

assumes that the baseline intensity is the same regardless of the event number (how many

previous events an individual has had), while the model proposed by Prentice et al. [1981]

stratifies by the event number to allow for different baseline intensity functions. As previ-

ously stated, one benefit of using these models is that the baseline intensity function does

not need to be specified. While recurrent event analysis has been greatly studied in the full

cohort setting, little work has been done for recurrent event analysis under the the nested

case-control design. In this setting, Jazić et al. [2019] propose the use of joint frailty models

for recurrent events subject to a terminal event. They present five designs for sampling

controls in a similar fashion to the nested case-control design. These include sampling con-

trols at the first observed recurrent event, at the terminal event, or modifications of these.

Under the proposed estimator, however, one needs to fully specify the likelihood, including

the distribution of the frailty terms and the baseline intensity functions.

To avoid modeling the baseline intensity functions and distribution of the frailty terms, we

may consider use of a semi-parametric approach such as that proposed by Prentice et al.

[1981] for the full cohort setting. Under the nested case-control design, this would require

reweighting contributions to the partial likelihood by the inverse probability of sampling to

account for the sampling under the nested case-control design. This is analogous to the

estimator of Samuelsen [1997] when modeling a single event, or time to the first event. In

their work, Jazić et al. [2019] also mention the possibility of oversampling controls that

provide more information about the frailty parameters. A similar idea could be used in the

proposed methodology by oversampling controls who experience more events and reweighting

by the inverse probability of sampling weights.
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Vivian Viallon and Aurélien Latouche. Discrimination measures for survival outcomes: con-
nection between the auc and the predictiveness curve. Biometrical Journal, 53(2):217–236,
2011.

Sholom Wacholder. Practical considerations in choosing between the case-cohort and nested
case-control designs. Epidemiology, pages 155–158, 1991.

Sholom Wacholder, Mitchell H Gail, David Pee, and Ron Brookmeyer. Alternative variance
and efficiency calculations for the case-cohort design. Biometrika, 76(1):117–123, 1989.

Jia-Gang Wang. A note on the uniform consistency of the kaplan-meier estimator. The
Annals of Statistics, pages 1313–1316, 1987.

Michael W. Weiner. Welcome from the adni principal investigator. http://adni-info.
org, 2013. Accessed: 2017-01-22.

Lang Wu, Wei Liu, Grace Y Yi, and Yangxin Huang. Analysis of longitudinal and survival
data: joint modeling, inference methods, and issues. Journal of Probability and Statistics,
2012, 2012.

179

http://adni-info.org
http://adni-info.org


Michael S Wulfsohn and Anastasios A Tsiatis. A joint model for survival and longitudinal
data measured with error. Biometrics, pages 330–339, 1997.

Ronghui Xu and John O’Quigley. Estimating average regression effect under non-
proportional hazards. Biostatistics, 1(4):423–439, 2000.

Yingye Zheng, Tianxi Cai, and Ziding Feng. Application of the time-dependent roc curves
for prognostic accuracy with multiple biomarkers. Biometrics, 62(1):279–287, 2006.

Qian M Zhou, Yingye Zheng, and Tianxi Cai. Assessment of biomarkers for risk prediction
with nested case–control studies. Clinical Trials, 10(5):677–679, 2013.

180



Appendix A

Implementing ADNI Analysis in R,

SAS, and STATA

This section provides the code used to perform the analysis in Section 2.8. In the following

code we refer to data for MCI participants from the ADNI site with minor data cleaning.

A.1 Implementation in R

The analysis for this chapter was conducted using R, and code to recreate the analyses follows

below. Note that permission from ADNI must first be obtained prior to using these data,

and that the dataset referred to in the example below (MCI-ADNI.csv) was preprocessed.

#load the required packages

library(Epi)

library(survival)

#read in the data to be used, and set the base categories
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mci.tte.surv <- (read.csv("MCI-ADNI.csv", header = TRUE))

mci.tte.surv$race <- relevel(mci.tte.surv$race, "White")

mci.tte.surv$PTGENDER <- relevel(mci.tte.surv$PTGENDER, "Male")

#fit the model for the full cohort analysis

fit.full <- coxph(Surv(obstime, Fail) ˜ I(ptau_bl/20) + I(AGE/5)+ race +

PTGENDER + PTEDUCAT + factor(APOE4), data = mci.tte.surv)

summary(fit.full)

################ nested case-control ##############################

#sample 3 controls for the nested case-control

set.seed(12345)

ncc.mci.tte.surv3 <- ccwc(exit = obstime, fail = Fail, controls = 3,

include = list(RID,ptau_bl, AGE,race, PTGENDER,PTEDUCAT, APOE4, obstime),

data = mci.tte.surv)

#fit the model to the data from the case-control design

fit.ncc <- coxph(Surv(obstime, Fail) ˜ I(ptau_bl/20) + I(AGE/5) + race

+ PTGENDER + PTEDUCAT + factor(APOE4) + strata(Set), data = ncc.mci.tte.surv3)

summary(fit.ncc)

#function to organize nested case-control data for Design I

nestedcc.forward <- function(tx.cc1){

tx.cc1 <- tx.cc1[order(tx.cc1$Time),]
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times.order <- sort(tx.cc1$Time[!duplicated(tx.cc1$Time)])

tx.cc1$Set <- NA

for(l in 1:length(times.order)){

tx.cc1$Set[tx.cc1$Time == times.order[l]] <- l

}

controls <- tx.cc1[tx.cc1$Fail == 0,]

controls$Set1 <- controls$Set

tx.cc.x <- tx.cc1[tx.cc1$Fail == 1,]

split.tx.cc.x <- split(tx.cc.x, tx.cc.x$Set)

ncc.forward <- NA

for(i in 1:length(split.tx.cc.x)){

temp <- split.tx.cc.x[[i]]

temp$Set1 <- temp$Set

temp.controls <- rbind(temp, controls)

temp.controls$Set <- i

temp.controls$Time <- temp$Time[1]

ncc.forward <- rbind(ncc.forward, temp.controls)

}

ncc.forward <- ncc.forward[-1,]

ncc.forward <- ncc.forward[which((ncc.forward$Set1 <= ncc.forward$Set)

& (ncc.forward$obstime >= ncc.forward$Time)),]

ncc.forward <- ncc.forward[,-which(names(ncc.forward) == "Set1")]

ncc.forward <- ncc.forward[which(!duplicated(ncc.forward[,c(1,2)])),]
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return(ncc.forward)

}

#call function and fit model

ncc.mci.i <- nestedcc.forward(ncc.mci.tte.surv3)

fit.ncc.i <- coxph(Surv(obstime, Fail) ˜ I(ptau_bl/20) + I(AGE/5) + race

+ PTGENDER + PTEDUCAT + factor(APOE4) + strata(Set),

data = ncc.mci.i)

summary(fit.ncc.i)

#generate data for Design III

ncc.design3 <- function(dat, delta,n, id, numcontrols){

#set variables based on the ones in the data set

dat <- dat

dat$delta <- delta

dat$id <- id

event.times <- dat$obstime[dat$delta == 1]

u.event.times <- sort(unique(event.times))

#label index

compare <- matrix(rep(c(NA, u.event.times), each = dim(dat)[1]), byrow = FALSE,

nrow= n, ncol = length(u.event.times) + 1)

compare[,1] <- dat$obstime

dat$indx <- apply(compare, 1, rank)[1,] - 1

dat$status <- 1
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dat$indx <- ceiling(dat$indx)

temp <- NA

controls <- NA

ncc.nr <- NA

#sample controls for each event time

for(i in 1:length(u.event.times)){

set.seed(i)

controls <- dat[which(dat$indx >= i),]

#save the cases for this event time and remove them from controls

case <- controls[which(controls$delta == 1 & controls$indx == i), ]

case$Fail <- 1

controls <- controls[-which(controls$delta == 1 & controls$indx == i),]

controls$Fail <- 0

#set weights for path sets

weights <- prop.table(table(controls$indx))

#if not the last pathset, sample from the list of available path sets

if(weights[1] != 1){

select.pathset <- sample(sort(unique(controls$indx[controls$indx >= i])),

(numcontrols*dim(case)[1]), prob = weights, replace = TRUE)

}else{

select.pathset <- rep(unique(controls$indx), numcontrols)

}

#sample controls
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for(k in 1:(numcontrols*dim(case)[1])){

sample.controls <- controls$id[which((controls$indx ==

select.pathset[k]) & (controls$status == 1))]

#if number of controls available is greater than one, sample a control

if(length(sample.controls) > 1){

select.subject <- sample(sample.controls, 1)

}

#if number of controls available is one, take that as the control

else if(length(sample.controls) == 1){

select.subject <- sample.controls

}

#if there are no available controls, make all controls

available for that path set

#and select control

else{

dat$status[dat$indx == select.pathset[k]] <- 1

controls$status[controls$indx == select.pathset[k]] <- 1

sample.controls <- controls$id[which((controls$indx ==

select.pathset[k]) & (controls$status == 1))]

select.subject <- ifelse(length(sample.controls) >1,

sample(sample.controls,1),

sample.controls)

}

#mark the selected control as used and add them to the set of controls

dat$status[which(dat$id == select.subject)] <- 0
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controls$status[which(controls$id == select.subject)] <- 0

temp <- rbind(temp, controls[which(controls$id == select.subject),])

#if the control is repeated as a control, sample another control

while(sum(duplicated(temp$id)) != 0

& (sum(is.na(match(controls$id, temp[-1,]$id))) != 0)){

sample.controls <- controls$id[which((controls$indx == select.pathset[k])

& (controls$status == 1))]

dup <- which(duplicated(temp$id))

temp <- temp[-dup,]

if(length(sample.controls) > 1){

select.subject <- sample(sample.controls, 1)

dat$status[which(dat$id == select.subject)] <- 0

controls$status[which(controls$id == select.subject)] <- 0

temp <- rbind(temp, controls[which(controls$id == select.subject),])

}

else if(length(sample.controls) == 1){

select.subject <- sample.controls

dat$status[which(dat$id == select.subject)] <- 0

controls$status[which(controls$id == select.subject)] <- 0

temp <- rbind(temp, controls[which(controls$id == select.subject),])

}

}

}

#remove the NA in the first row

temp <- temp[-1,]
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#combine cases and controls and save them to data set

case.controls <- rbind(case, temp)

case.controls$Set <- i

case.controls$Time <- case$obstime[1]

ncc.nr <- rbind(ncc.nr, case.controls)

temp <- NA

}

ncc.nr <- ncc.nr[-1,]

return(ncc.nr)

}

#generate Design III data

ncc.nr <- ncc.design3(mci.tte.surv, mci.tte.surv$Fail, dim(dat)[1],

mci.tte.surv$RID, 3)

#change the reference level

ncc.nr$PTGENDER <- relevel(ncc.nr$PTGENDER, "Male")

ncc.nr$race <- relevel(ncc.nr$race, "White")

fit.ncc.iii <- coxph(Surv(obstime, Fail) ˜ I(ptau_bl/20) + I(AGE/5) +race +

PTGENDER + PTEDUCAT + factor(APOE4) + strata(Set), data = ncc.nr)

summary(fit.ncc.iii)

################ case-cohort #####################
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#sample the subcohort

set.seed(12345)

n.obs <- dim(mci.tte.surv)[1]

keep <- sample(1:n.obs, ceiling(n.obs*0.75), replace = FALSE)

mci.tte.surv$subcohort <- 0

mci.tte.surv$subcohort[keep] <- 1

mci.subcohort <- mci.tte.surv[(mci.tte.surv$subcohort == 1) |

(mci.tte.surv$Fail == 1),]

#change the reference level

mci.subcohort$race <- relevel(mci.subcohort$race, "White")

mci.subcohort$PTGENDER <- relevel(mci.subcohort$PTGENDER, "Male")

###Prentice method

fit.subcohort.p <- cch(Surv(obstime, Fail) ˜ I(ptau_bl/20) + I(AGE/5) + race +

PTGENDER + PTEDUCAT + factor(APOE4),

data = mci.subcohort,

subcoh = ˜subcohort,

id = ˜RID, cohort.size = n.obs)

summary(fit.subcohort.p)

###Self and Prentice method

fit.subcohort.sp <- cch(Surv(obstime, Fail) ˜ I(ptau_bl/20) + I(AGE/5) + race +

PTGENDER + PTEDUCAT + factor(APOE4),

data = mci.subcohort,

subcoh = ˜subcohort, id = ˜RID, cohort.size = n.obs,

method = "SelfPrentice")

summary(fit.subcohort.sp)
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###Lin and Ying method

fit.subcohort.ly <- cch(Surv(obstime, Fail) ˜ I(ptau_bl/20) + I(AGE/5) + race

+ PTGENDER + PTEDUCAT + factor(APOE4),

data= mci.subcohort, subcoh = ˜subcohort,

id = ˜RID,

cohort.size = n.obs, method = "LinYing")

summary(fit.subcohort.ly)

A.1.1 Implementation in STATA

The following represents analogous code used to conduct the analysis in STATA. In STATA and SAS

(next section), we only discuss the nested case-control design and the Prentice (1986) case-cohort

design.

*read in the data

insheet using MCI-ADNI.csv

*only keep the variables needed for the analysis

keep rid age ptgender pteducat apoe4 ptau_bl obstime fail race

save MCI-ADNI2.csv

*create indicator variables for categorical

tabulate apoe4, generate(apoe)

tabulate ptgender, generate(gender)

tabulate race, gen(_race)

190



*divide ptau by 20

generate ptau20 = ptau_bl/20

*divide age by 5

generate age5 = age/5

*define survival data

stset obstime, failure(fail==1)

*fit model for full cohort

stcox ptau20 age5 _race1 _race3 gender1 pteducat apoe2 apoe3, efron

*****************************

* nested case-control

*****************************

set seed 12345

sttocc, n(3) nodots

*set the ncc data as survival data

stset obstime, failure(_case==1)

*fit model for nested cc

stcox ptau20 age5 _race1 _race3 gender1 pteducat apoe2 apoe3, strata(_set) efron

****************************

* case cohort
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****************************

set seed 12345

gen u = runiform()

*generate 55% censoring

gen subcohort = u < 0.55

*set start time to be 0 if in subcohort

*if not in suhcohort, set start time to be right before event time

gen start = 0

replace start = obstime - 0.0001 if subcohort == 0

*set case-cohort data as survival data

stset obstime, id(rid) failure(fail==1) origin(start)

*fit model for case-cohort data

stcox ptau20 age5 _race1 _race3 gender1 pteducat apoe2 apoe3, efron

The sttocc command also allows for the option to match based on a specified variable, therefore

allowing the implementation of the matched nested case-control design. We may also implement

some of the case-cohort designs by setting the correct weights.

A.2 Implementation in SAS

The code to perform this analysis in SAS for the case-cohort data is the following:

/*read in the data */
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proc import datafile="D:\HOSchapter\ADNI\MCI-ADNI-short.csv"

out= mci dbms = csv replace;

getnames = yes;

/*delete subjects who only have the baseline visit recorded */

data mci2;

set mci;

if obstime = 0 then delete;

/*fit the model to the full cohort */

proc phreg data = mci2;

class race PTGENDER APOE4;

model obstime*Fail(0) = race PTGENDER PTEDUCAT AGE APOE4 ptau20;

/*create a new variable that randomly assigns numbers from

the uniform distribution*/

data mci2;

set mci2;

unif = ranuni(12345);

/*select approximately 55% of the cohort as the subcohort */

data mci2;

set mci2;

if unif > 0.55 then subcohort = 0;

else subcohort = 1;

/*define a new variable that decides whether they are included in the analysis*/

data mci2;
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set mci2;

if (subcohort = 1 or Fail = 1) then count = 1;

else count = 0;

/*delete all observations that are not in the subcohort nor become cases*/

data mci2;

set mci2;

if count = 0 then delete;

/* set start time to be 0 if in the subcohort, otherwise start

time is right before event time */

data mci2;

set mci2;

if subcohort = 1 then start = 0;

else start = obstime - 0.0001;

/* fit model to the case-cohort data */

proc phreg data = mci2;

class race PTGENDER APOE4;

model (start, obstime)*Fail(0) = race PTGENDER PTEDUCAT AGE

APOE4 ptau20/ties = efron;

run;

quit;

The SAS code for the nested case-control design is not included here. Instead, we refer readers to

the nCCsampling macro, available at:
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http://www.drugepi.org/wp-content/uploads/2011/04/nCC-sampling-macro.txt.

This macro generates the data for a nested case-control analysis and allows for matching on con-

founding variables Desai et al. [2016]. Once the data is generated, a model can be fit similarly to

the case-cohort analysis but stratifying on the group or case number.
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