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Neurodevelopmental disorders (NDDs) are a collection of diseases with early life onset
that often present with developmental delay, cognitive deficits, and behavioral conditions.
In some cases, severe outcomes such as brain malformations and intractable epilepsy
can occur. The mutations underlying NDDs may be inherited or de novo, can be gain- or
loss-of-function, and can affect one or more genes. Recent evidence indicates that brain
somatic mutations contribute to several NDDs, in particular malformations of cortical
development. While advances in sequencing technologies have enabled the detection
of these somatic mutations, the mechanisms by which they alter brain development and
function are not well understood due to limited model systems that recapitulate these
events. Human brain organoids have emerged as powerful models to study the early
developmental events of the human brain. Brain organoids capture the developmental
progression of the human brain and contain human-enriched progenitor cell types.
Advances in human stem cell and genome engineering provide an opportunity to model
NDD-associated somatic mutations in brain organoids. These organoids can be tracked
throughout development to understand the impact of somatic mutations on early human
brain development and function. In this review, we discuss recent evidence that somatic
mutations occur in the developing human brain, that they can lead to NDDs, and discuss
how they could be modeled using human brain organoids.

Keywords: human brain organoids, neurodevelopmental disorders, mTOR, somatic mutations, cortical
development, malformations of cortical development

INTRODUCTION

Neurodevelopmental disorders (NDDs) impact brain development and function
resulting in a range of neurological and psychiatric manifestations. These can include
epilepsy, intellectual disability, autism spectrum disorder (ASD), and other behavioral,
cognitive, and affective disorders (Niemi et al., 2018; Parenti et al., 2020). Individuals
with NDDs present with an array of clinical symptoms early in life suggesting that
multiple neural circuits are impacted during both pre- and postnatal brain development.
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Extensive genetic mapping over the years has identified
mutations in hundreds of genes that are associated with
NDDs (Gilissen et al., 2014; Tarlungeanu and Novarino,
2018; Satterstrom et al., 2020; Wang et al., 2020). In
particular, genes associated with syndromic NDDs that have
multiple neuropsychiatric and medical presentations often
encode proteins that control essential cellular functions including
the regulation of gene expression (e.g., CDH8, MECP2, SETD5),
RNA processing (e.g., FMR1), protein synthesis (e.g., TSC1/2,
PTEN), and protein degradation (e.g., UBE3A). Mutations in
genes encoding proteins important for neuronal excitability
and synaptic transmission are also frequently found in NDDs
including ASD, epileptic encephalopathy, and intellectual
disability (e.g., SYNGAP1, SHANK3, GRIN2B, SCN1A, SCN2A;
Parenti et al., 2020). How these mutations alter nervous system
development, synaptic connectivity, and neural circuit activity
is an ongoing area of research. Mouse models of NDDs
harboring mutations in these genes have revealed an array of
developmental, cellular, synaptic, and behavioral phenotypes
that have provided insight into the basic functions of these
genes and how changes in their expression may lead to NDDs
(Verma et al., 2019; Bozzi and Fagiolini, 2020; Karalis and
Bateup, 2021). In particular, studying these genes in animal
models enables an understanding of the impact of mutations
across multiple levels from molecules to circuits to behavior.
However, it remains an open question whether mechanisms
uncovered in animal models are translatable to humans. Thus,
our knowledge of how mutations in these genes affect human
neural development, synaptic connectivity, and circuit dynamics
is still limited.

Recent advances in human cell reprogramming and
genome engineering have facilitated the development of
models that enable the study of disease mutations in a
human genetic and cellular context. Such systems provide
a valuable complement to animal models to advance our
understanding of disease mechanisms. With this approach,
human embryonic (hESC) or induced pluripotent (hiPSC)
stem cells (collectively hPSCs) can be differentiated into
various types of neurons and glia. In vitro human neuronal
models have traditionally been 2D monolayer cultures;
however, it is technically challenging to maintain these
cultures for longer than a few weeks or months. Maturation
of neural circuits in the developing human brain occurs
over 9 months of gestation and for several years postnatally
(Stiles and Jernigan, 2010). Thus, in vitro models that
can be maintained long-term are required to capture this
time-dependent maturation, which is highly relevant to the
study of NDDs. Over the last several years, this has been
achieved by harnessing the ability of hPSCs to form 3D
aggregates when maintained in suspension (Paş ca, 2019).
The formation of 3D structures allows neuronal and glial
differentiation and development over prolonged periods of
time (up to 600 days and beyond). This enables the generation
of greater cellular diversity and important developmental
transitions to be captured in vitro (Gordon et al., 2021).
Therefore, these 3D ‘‘human brain organoids’’ (hBOs) provide
an opportunity to model and understand basic principles of

early human brain development in both normal and pathological
states.

In this mini-review, we discuss the utility of hBO models for
studying brain somatic mutations during development, which
can directly cause certain NDDs and may be an important
contributor to many other neuropsychiatric disorders (D’gama
and Walsh, 2018; Jourdon et al., 2020). We describe emerging
evidence that brain somatic mutations contribute to NDDs
and discuss how hBOs provide an opportunity to model and
understand the consequences of somatic mutations during the
early stages of human brain development.

BRAIN SOMATIC MUTATIONS AND THEIR
CONTRIBUTION TO
NEURODEVELOPMENTAL DISORDERS

Somatic mutations arise post-fertilization. During development
they can occur in a progenitor cell and be passed on to the
daughter cells forming a cluster of cells with the mutation
surrounded by cells without the mutation, which are derived
from different progenitors. Somatic mutations can also occur
in post-mitotic cells and it is estimated that human neurons
acquire ∼23 single-nucleotide variants (SNVs) per year over the
lifespan of an individual (D’gama and Walsh, 2018). Somatic
mutations affect only a fraction of cells in an organism, in
contrast to inherited mutations, which are present in every
cell of the offspring. The number and type of cells affected
depend on the origin and developmental timing of the mutation
(D’gama and Walsh, 2018; Dou et al., 2018). A mutation
occurring early in development can affect many cells across
multiple tissues, while a mutation occurring later may only
affect a small number of cells within a specific lineage. Somatic
mutations can arise due to errors during DNA replication
(Rogozin et al., 2001); therefore actively dividing cells are more
vulnerable to acquiring somatic mutations. Somatic mutations
have been traditionally studied in cancer where they can act
as oncogenic drivers (Greenman et al., 2007). Because of the
limited number of cells that are affected, identifying somatic
mutations is challenging. Low alternate allelic frequency (AAF)
means that high DNA sequencing depth is required to identify
somatic mutations in bulk tissue. Notably, AAFs as low as
1%, indicating that 1% of cells in a tissue sample carry the
mutation, can be sufficient to cause disease (D’gama et al.,
2017).

In the human cortex, an extended period of neurogenesis
that spans ∼6 months gives rise to the diversity of neuron
types that make up the cortical layers (Silbereis et al., 2016).
Later in development, cortical progenitors begin producing
astrocytes and other glial cell types. This protracted period of
corticogenesis, which requires huge numbers of cell divisions to
produce the ∼86 billion neurons of the human cortex (Azevedo
et al., 2009), likely increases the probability of acquiring somatic
mutations. Indeed, somatic mosaicism has been detected in
human brain tissue and it is estimated that a given neuron
in the adult human brain may have 800–2,000 somatic single
nucleotide variants (Lodato et al., 2015). While some of these
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mutations contribute to brain diseases, somatic mutations have
also been hypothesized to contribute to neuronal diversity and
inter-individual heterogeneity of the human brain (Jourdon et al.,
2020).

Identifying brain somatic mutations is especially challenging
given that human brain tissue is inaccessible and usually only
available post-mortem. Exceptions to this are cases in which
brain tissue is surgically removed to control intractable epilepsy
(Sim et al., 2019; Grayson et al., 2020). This is typically done
in cases in which seizures can be mapped to focal lesions.
Through the analysis of this surgically resected tissue, somatic
mutations have been identified in genes that are part of the
greater mTOR signaling network (Crino, 2020). mTOR is part
of two protein complexes, mTORC1 and mTORC2, which serve
as central coordinators of intra- and extracellular signals that
control cell growth, morphology, and metabolism (Saxton and
Sabatini, 2017; Liu and Sabatini, 2020).Mutations associated with
cortical malformations and seizures often cause hyperactivation
of mTORC1 signaling either via gain-of-function mutations in
positive regulators of mTORC1 (e.g., RHEB, AKT3, PIK3CA,
and MTOR itself), or loss-of-function mutations in negative
regulators (e.g., PTEN, TSC1, TSC2, STRADA, DEPDC5, NPRL3,
NPRL2) (Puffenberger et al., 2007; Lee et al., 2012; Lim
et al., 2015, 2017b; Ribierre et al., 2018; Kim et al., 2019;
Zhao et al., 2019; Ye et al., 2019; Koboldt et al., 2021).
Mutations in mTOR pathway genes can also occur in the
germline giving rise to systemic NDDs that affect multiple
organ systems, such as in Tuberous Sclerosis Complex (TSC).
In this case, the germline mutation is heterozygous and a
somatic ‘‘second-hit’’ mutation that disrupts the functional allele
can occur, leading to focal brain lesions including cortical
tubers and benign growths called subependymal nodules (SENs)
and subependymal giant cell astrocytomas (SEGAs; Crino
et al., 2010; Figure 1). Second-hit mutations were originally
described in cancer (Knudson, 1971) and have been found
in TSC-associated tumors, called hamartomas, in the skin,
kidney, and other tissues (Henske et al., 1996; Sepp et al.,
1996; Au et al., 1999). Second-hit mutations have also been
identified in SEGAs and in some but not all resected cortical
tubers (Chan et al., 2004; Crino et al., 2010; Qin et al.,
2010; Martin et al., 2017). Notably, mutations in TSC1 and
TSC2 can also occur somatically in the absence of a germline
mutation, leading to focal brain lesions in the absence of systemic
manifestations (D’gama et al., 2015, 2017; Lim et al., 2017b;
Figure 1).

In addition to ‘‘mTORopathies’’, which are associated with
cortical malformations and epilepsy (Karalis and Bateup, 2021),
brain somatic mutations have been identified in tissue from
individuals with a variety of disorders including Rett syndrome,
neurofibromatosis type 1, neuronalmigration disorders, epileptic
encephalopathies, ASD, intellectual disability, schizophrenia, and
neurodegenerative diseases (Muotri et al., 2010; Garcia-Linares
et al., 2011; D’gama andWalsh, 2018; Park et al., 2019; Kim et al.,
2021; Rodin et al., 2021). In particular, several recent studies have
shown that brain somatic mutations account for approximately
3–5% of ASD cases from the Simons Simplex Collection (Freed
and Pevsner, 2016; Dou et al., 2017; Krupp et al., 2017; Lim

et al., 2017a). The somatic mutations identified thus far may
only be the tip of the iceberg with more to be discovered with
improved sequencing technology, bioinformatics, and access
to human brain tissue (Jourdon et al., 2020; Wang et al.,
2021).

BRAIN ORGANOIDS AS MODELS OF
HUMAN EMBRYONIC BRAIN
DEVELOPMENT

hBOs have emerged as powerful models to study early
human brain development. Undirected neural differentiation
of hPSCs, in the absence of specific patterning cues beyond
initial neural induction, gives rise to hBOs containing cells of
multiple neural lineages that can include forebrain, ganglionic
eminences, midbrain, retina, and others, in a manner that
is stochastic and can differ from organoid to organoid
(Lancaster et al., 2013; Quadrato et al., 2017). Directed
differentiation protocols have been developed to generate
hBOs that more reproducibly give rise to cell lineages of
a particular brain region like the cortex (Kadoshima et al.,
2013; Pasca et al., 2015; Qian et al., 2018; Pollen et al.,
2019; Velasco et al., 2019), midbrain (Jo et al., 2016),
striatum (Miura et al., 2020), or cerebellum (Ballabio et al.,
2020). Human cortical organoids have been used widely
and recapitulate some, but not all, of the cellular diversity
and intrinsic developmental timing of the early stages of
human cortical development (Di Lullo and Kriegstein, 2017).
Notably, cortical organoids contain outer radial glia cells
(oRGs), which are a highly proliferative progenitor cell type
enriched in the human fetal cortex (Pollen et al., 2015).
Cortical organoids are therefore a good model for assessing
the impact of NDD-associated mutations on the biology of
oRGs, which is not possible in other model systems, including
mice, which lack significant numbers of this progenitor cell
type. Early in the differentiation process, cortical organoids
also capture some of the structural features of cortical
development including the generation of ventricular and
subventricular zone-like cellular assemblies, which give rise
to a surrounding rudimentary cortical plate that can include
areas containing upper and lower layer cortical neurons
(Qian et al., 2020). Importantly, these organoids recapitulate
the temporal segregation of neurogenesis and astrogenesis
that occurs in the developing human cortex, with neurons
born first and astrocytes emerging around 3–4 months
post-differentiation (Pasca et al., 2015; Sloan et al., 2017).
Interestingly, astrocytes continue to develop in brain organoids
over time and spontaneously transition to a more mature
‘‘postnatal’’-like state after about 7–9 months in culture (Sloan
et al., 2017).

While hBOs offer several advantages to modeling the
developing human brain, there are important challenges
associated with hBOs that necessitate optimization of
differentiation protocols and establishing standards for quality
control and reproducibility. For example, hBOs generated from
different hESC or hiPSC lines may differ in their potential to
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FIGURE 1 | Potential mechanisms by which somatic mutations during development can lead to cortical malformations. (A) The mutation may occur in cortical
progenitors as a “single-hit” in individuals with no inherited mutation or as a “second-hit” in individuals with an inherited mutation. (B) The timing of somatic mutations
can determine the outcome on cortical development. A somatic mutation acquired early during corticogenesis can lead to malformations that affect an entire cortical
hemisphere, as in Hemimegalencephaly. Somatic mutations acquired later in development may lead to more localized cortical malformations as seen in Focal
Cortical Dysplasia and TSC-associated cortical tubers.

differentiate into particular cell lineages or brain regions. Since
hPSCs need to be differentiated in batches, there can be batch-
to-batch variability in differentiation or cell health even when
starting from the same hPSC line. Continued culturing of hPSCs
may lead to the acquisition of genetic or epigenetic changes that
could affect differentiation capacity or cellular phenotypes. Since
hBOs do not have a blood supply, there may be limited access
to oxygen and nutrients, especially for cells in the center of the
organoid when it reaches a certain size. If this activates cellular
stress responses, it may interfere with proper differentiation
(Bhaduri et al., 2020). While technological advancements are
continuously arising to address these challenges, for example
slicing hBOs to maintain access to oxygen (Qian et al., 2020)
or implanting hBOs into a rodent host brain (Mansour et al.,
2018), careful consideration needs to be given to reproducibility
and quality control when working with hPSCs and brain
organoids.

GENE-EDITED AND PATIENT-DERIVED
hPSCs FOR MODELING
NEURODEVELOPMENTAL DISORDERS

NDDs can be modeled in hBOs using hPSCs that have been
gene-edited to disrupt the expression of an NDD-associated gene
or introduce a disease-associated mutation. This is relevant in
the case of NDDs for which causal or high-confidence risk genes
have been identified. Alternatively, hiPSCs reprogrammed from
patient cells can be used to generate hBOs. This is beneficial
for NDDs in which multiple or unknown genetic variants are
involved. Recapitulating this complex patient-specific genetic
landscape by gene-editing would be difficult and hence hiPSCs
provide a useful resource in this regard. hBOs generated from
patient-derived hiPSCs have been used to understand the cellular

mechanisms underlying the cortical malformations observed in
Miller-Dieker and Pretzel syndromes (Bershteyn et al., 2017;
Iefremova et al., 2017; Dang et al., 2021). iPSC-derived hBOs
have also been used to identify changes in neuronal composition
andmolecular alterations associated with Rett syndrome (Gomes
et al., 2020; Samarasinghe et al., 2021), idiopathic ASD (Mariani
et al., 2015; Chiola et al., 2021), microcephaly (Lancaster
et al., 2013), schizophrenia (Stachowiak et al., 2017; Khan
et al., 2020), and other disorders. However, patient-to-patient
genetic variability can be a challenge for directly linking cellular
phenotypic outcomes to a specific genetic cause. In addition,
defining an appropriate control group is an issue due to genetic
heterogeneity within the human population. One way to address
this is to correct the NDD-associated patient mutation using gene
editing to generate an isogenic control line (Soldner and Jaenisch,
2018).

A limitation to the use of hiPSCs is that somatic brain
mutations, which may drive or modulate NDD phenotypes
in some cases, are not normally present in patient-derived
blood cells or fibroblasts that are used to generate hiPSCs.
Furthermore, the opposite complication can arise whereby
somatic mutations acquired in patient skin fibroblasts that are
used for reprogramming could lead to phenotypes in hBOs that
are not related to the brain manifestations of the disease (Abyzov
et al., 2012). Therefore, assessing how somatic mutations impact
human brain development requires additional approaches and
considerations.

MODELING SOMATIC MUTATIONS IN
BRAIN ORGANOIDS

During development, a somatic mutation can occur in a single
progenitor, which will then pass it on to its progeny, assuming
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FIGURE 2 | Generating hBOs that capture the development and pathological outcomes of brain somatic mutations. (A) Chimeric assembloids can be generated by
fusing cortical and ganglionic eminence (GE) organoids derived from either wild-type (WT) or mutant hPSCs, in different combinations. In this example, cells in the GE
organoid express a green fluorescent protein. (B) WT and mutant hPSCs that express different fluorescent proteins can be mixed to generate chimeric hBOs. The
proportion of cells of each genotype can be adjusted to create mosaic hBOs with different ratios of WT to mutant cells. Such an approach can be used to model
different alternate allelic frequencies. (C) hPSCs can be gene-edited to generate Cre-inducible conditional mutations. Cells can harbor one copy of the conditional
allele, in which Cre induces a heterozygous mutation (“Single-hit”), or have one constitutive mutant allele and one conditional allele, thus causing complete loss of
function when Cre is expressed (“Second-hit”). These hPSCs can be further gene-edited to include a LoxP-STOP-LoxP cassette followed by a fluorescent reporter in
a safe harbor locus. This allows labeling and tracking of all conditional mutant cells and their progeny. hBOs generated from these conditional lines can be
transduced with Cre at varying time points during development to vary the timing of the simulated somatic mutation.

that it is not deleterious for cell survival. While the neurons and
glia differentiated from progenitors with an acquired mutation
may directly cause a brain malformation, as in focal cortical
dysplasia, it is possible that the mutant cells could also alter the
development and function of the surrounding ‘‘normal’’ cells
via non-cell autonomous interactions. Therefore, systems that
capture this genetic mosaicism are needed to model somatic
mutations in hBOs and study their autonomous and non-cell
autonomous impact on brain development.

There are several ways in which the consequences of a
disease-associated mutation have been studied in a genetically
heterogeneous context in hBOs. For each of these approaches,
it is necessary to distinguish cells of different genotypes
and fluorescent labels can be useful for this. Due to the
mosaic nature of these organoids, approaches that assess the
differentiation, morphology, connectivity, physiology, or gene
expression profile of individual cells are advantageous as
bulk analyses of the entire organoid would be difficult to
interpret.

In one approach, hBOs derived from a fusion of cortex (Cx)
and ganglionic eminence (GE) organoids called ‘‘assembloids’’
were generated from healthy and Timothy Syndrome patient-
derived iPSCs to study defects in interneuron migration (Birey
et al., 2017). Similar fusion organoids have been generated
from Rett syndrome patient-derived iPSCs in which either the
Cx or GE organoid carried the MECP2 mutation. This study
used extracellular recordings and calcium imaging to show that
patient-derived mutant interneurons in the GE organoid could
modulate circuit activity in the fused cortical organoid, which
contained cells from a healthy donor (Samarasinghe et al.,
2021; Figure 2A). While these studies were not designed to
model somatic mutations per se, they show how a mutation
in a sub-population of developing neurons can non-cell
autonomously alter the development and activity of adjacent,
normally developing cells.

In another approach, a cell mixing strategy can be used
to generate chimeric hBOs containing wild-type (WT) and
mutant progenitor cells expressing different fluorescent reporters
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(Figure 2B). With this strategy, it is possible to modulate
the ratio of WT to mutant cells and study the effects
of varying cellular compositions on a range of phenotypic
outcomes such as differentiation capacity, gene expression,
morphology, and electrophysiology. Such a strategy would be
relevant to NDDs such as lissencephaly and double cortex
syndrome in which the percentage of cells harboring the mutant
gene results in differing outcomes, ranging from more mild
subcortical band heterotopia with low AAF (i.e.,∼10%) to severe
complete lissencephaly with a germline mutation (100% of cells
expressing the mutation; Jamuar et al., 2014; D’gama and Walsh,
2018).

Another strategy for modeling a somatic mutation is
to use Cre recombinase to induce a conditional mutation
in developing hBOs (Figure 2C). This can be done using
sparse viral delivery of Cre to hBOs derived from cells
that are heterozygous or homozygous for a conditional
mutation. Cells that are transduced by Cre will harbor the
mutated allele and be surrounded by WT cells, modeling a
genetically-mosaic developing brain. An extension of this
approach can be used to model a somatic ‘‘second-hit’’
mutation. In this case, the hBOs are generated from hPSCs
carrying a constitutive NDD-associated mutation in one allele
and a Cre-inducible mutation in the second allele. In the
presence of Cre, the functional allele is disrupted thereby
generating a ‘‘second-hit’’. Such an approach has been used
in mouse models of TSC (Feliciano et al., 2011), where
in utero electroporation was used to deliver Cre to a small
population of Tsc1c/- cortical progenitors during embryonic
development, resulting in the formation of a focal region
of dysplastic cells. More recently, a similar approach was
used in TSC2c/- hBOs with lentivirus-mediated delivery of
Cre to conditionally delete TSC2 from a small population
(∼1–5%) of neural progenitors early in development (Blair
et al., 2018). This resulted in focal regions within the organoid
that when analyzed by immunohistochemistry contained
dysmorphic and enlarged cells with altered differentiation
capacity, resembling cortical tuber-like lesions (Blair et al., 2018;
Figure 2C).

Delivering Cre to hBOs with a virus allows temporal
control over the conditional mutation by modulating the timing
of Cre expression, thereby generating mutant progenitors or
post-mitotic cells at different stages of development (Figure 2C).
Differences in the timing of the somatic mutation may lead to
differential outcomes on the cellular composition and severity of
the lesions formed. This is particularly relevant in the context
of human cortical neurogenesis, which spans ∼6 months and
proceeds through temporally segregated periods of development
during which progenitors transition to produce a variety of

cell fates (Lui et al., 2011). Therefore, introducing the somatic
mutation at different time-points of hBO development may
reveal mechanisms that control the cellular composition of focal
lesions and their impact on neural circuit development and
function.

CONCLUSIONS

Understanding the cellular andmolecular mechanisms of human
brain development has been greatly challenged by limited access
to developing human brain tissue. While model organisms
are instrumental for studying the fundamentals of neural
development, circuit function, and behavioral control, these
models cannot capture aspects of human-specific development
that may be important for understanding human brain function.
hBO models of the human brain offer a step towards achieving
the ambitious goal of modeling the complex development of
the human brain in a dish. Combining the knowledge gained
from patient genetics with hBO technology offers a platform
for testing how altering the expression of disease-associated
genes impacts cellular signaling, development, and neuronal
activity in the context of human neural development. Modeling
somatic mutations in hBOs will provide a new system for testing
how these mutations cause brain malformations, how different
mutations and their time of onset can change the cellular
composition of the developing brain, and how cells harboring
somatic mutations contribute to the altered function of the
surrounding brain circuitry.
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