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Desert dust aerosols affect Earth’s global energy balance through direct interactions with 

radiation, and through indirect interactions with clouds and ecosystems. But the 

magnitudes of these effects are so uncertain that it remains unclear whether atmospheric 

dust has a net warming or cooling effect on global climate. Consequently, it is still 

uncertain whether large changes in atmospheric dust loading over the past century have 

slowed or accelerated anthropogenic climate change, or what the effects of potential future 

changes in dust loading will be. Here we present an analysis of the size and abundance of 

dust aerosols to constrain the direct radiative effect of dust. Using observational data on 

dust abundance, in situ measurements of dust optical properties and size distribution, and 

climate and atmospheric chemical transport model simulations of dust lifetime, we find 

that the dust found in the atmosphere is substantially coarser than represented in current 

global climate models. Since coarse dust warms climate, the global dust direct radiative 

effect is likely to be less cooling than the ~-0.4 W/m2 estimated by models in a current 

global aerosol model ensemble. Instead, we constrain the dust direct radiative effect to a 

range between -0.48 and +0.20 W/m2, which includes the possibility that dust causes a net 

warming of the planet. 

The direct radiative effect (DRE) of desert dust aerosols on global climate depends 

sensitively on both the size distribution and atmospheric abundance of dust1-3. However, current 

global model estimates of the atmospheric loading of dust with geometric diameter D ≤ 10 m 
(PM10) vary widely from ~6 to 30 Tg4-7. Similarly, the size distribution of atmospheric dust 

varies substantially across models, with the fraction of dust in the clay size range (D ≤ 2 m) 

varying by over a factor of three8. This uncertainty in dust size and abundance is partially driven 

by a critical limitation of global models: the need to prescribe poorly known attributes of dust 

particles. In particular, the assumed dust optical properties and size distribution at emission 

greatly affect the resultant size-resolved dust loading1, 6. Each model parameterizes these 

properties differently, and in a manner not always consistent with experimental results8-10. This 

divergence in assumed dust properties contributes to a wide range of estimates of the size-

resolved global dust loading6, 8. Because fine dust cools global climate whereas coarse dust (D ≥ 

5 μm) likely warms it3, this uncertainty in size-resolved dust loading contributes to a wide spread 

in model estimates of the dust DRE1, 3, 9, 11-14. 

Since the use of global models alone is thus unlikely to substantially narrow the uncertainty 

on dust climate effects15, we develop an alternative approach to determine the size-resolved 

global dust loading, which we subsequently use to constrain the dust DRE. We use an analytical 

framework that leverages observational and experimental constraints on dust properties, and uses 

global models only where such constraints are not available. Specifically, we link dust loading to 

the dust aerosol optical depth (DAOD), which we constrain by combining extensive ground-

based and satellite observations with global model simulations16 (Fig. 1a). Since the globally-

averaged DAOD quantifies the total extinction of solar radiation by dust in the atmosphere, we 

can use it to determine the dust loading if we also constrain the size distribution of atmospheric 

dust, and the efficiency Qext with which dust of a given size extinguishes solar radiation (see 

Materials and Methods). 

Constraints on atmospheric dust properties and abundance 

We constrain the globally-averaged dust extinction efficiency Qext (Fig. 1b) by combining 

experimental constraints on dust optical properties and shape with a dust single-scattering 

database17. We find that the common simplification to treat dust as spherical particles1-3 results in 

an underestimation of Qext by ~20–60% for dust with D ≥ 1 m (Fig. 1b). This underestimation 



is largely caused by the greater surface-to-volume ratio of irregularly-shaped dust, relative to that 

of an equal-volume sphere18. 

We obtain the size distribution of atmospheric dust from experimental constraints on the size 

distribution of emitted dust (Fig. 1c) and global modeling constraints on the atmospheric lifetime 

of emitted dust (Fig. 1d) (see Materials and Methods). We constrain the globally-averaged 

emitted dust size distribution using five data sets from a variety of dust source regions (Fig. 1c). 

We use a statistical model that accounts for systematic errors inherent in each study’s 

measurement methodology, which allows us to constrain the emitted dust size distribution more 

strongly than otherwise possible (see Supplement for details). We find that clay-sized aerosols 

account for only 4.3% (95% confidence interval: 3.5–5.7%) of the emitted mass with D ≤ 20 m 
(PM20), which is substantially less than the 5–35% assumed in global models8. This finding is 

similar to a recent result8 based on brittle fragmentation theory (black line in Fig. 1c), which is 

reinforced here by the inclusion of three additional data sets. We constrain the globally-averaged 

size-resolved dust lifetime (Fig. 1d) using simulation results from nine global models, which we 

again combine using a statistical model (see Supplement). We find that the lifetime of submicron 

dust is 11 (9 – 15) days, and that it decreases roughly exponentially with increasing D. This 

occurs primarily because of the increase of gravitational deposition with particle diameter3, 19. 

Despite their small emitted fraction, the long lifetime of clay-sized dust causes those particles to 

account for 15 (12–21)% of the atmospheric mass load, and their large surface-to-volume ratio 

and extinction efficiency (Fig. 1b) causes them to account for about half [46 (41–56)%] of the 

global DAOD (Fig. S1). 

 



 
 

Figure 1. New constraints on dust properties and prevalence. (a) Joint observational and modeling constraint on 

global DAOD20 (shading denotes 95% confidence interval (CI)), which is more precise than the AeroCom model 

ensemble21. (b) Joint experimental and modeling constraint on the globally-averaged dust extinction efficiency Qext, 

showing that “spherical” dust substantially underestimates Qext. For b-d, dashed lines and shading represent the 

maximum likelihood estimated (MLE) values and CI (see Materials and Methods). (c) Experimental constraint on 

the globally-averaged emitted dust size distribution (normalized to unity when summed over all sizes), obtained by 

combining five data sets in a statistical model. (d) Modeling constraint on the globally-averaged size-resolved dust 

lifetime, showing that lifetime decreases roughly exponentially with increasing dust size.  

 

The size-resolved global loading of desert dust 
We obtain the normalized globally-averaged dust size distribution (Fig. 2a) by combining our 

constraints on the emitted dust size distribution and lifetime (see Materials and Methods). We 

find that dust in current global models is too fine (Fig. 2b), which is consistent with recent 

observations1, 19 and was previously suggested using brittle fragmentation theory8. 

We combine the constraints on the atmospheric size distribution (Fig. 2a) with those on the 

DAOD (Fig. 1a) and the extinction efficiency (Fig. 1b) to obtain the global PM10 dust emission 

rate Femit and loading Latm (see Materials and Methods). We find that Femit = 1.7 (1.0 – 2.7)∙103 

Tg/year and Latm = 20 (13 – 29) Tg (Fig. 3). The global emission rate and loading of PM20 dust 

are 3.0 (1.7–4.9)∙103 Tg/year and 23 (14 – 33) Tg, respectively (Fig. S1). Since results from the 

AeroCom ensemble indicate that the atmospheric loading of non-dust aerosols is around 10 Tg5, 



we conclude that desert dust likely dominates global aerosol by mass. Most of the AeroCom 

models, as well as the median model, simulate a dust emission rate and loading below our central 

estimates (Fig. 3)6, predominantly because of an underestimation of coarse dust (D > 5 m; Figs. 
2b and S2). 

 

  

 
Figure 2. Size-resolved global loading of desert dust aerosols. (a) The globally-averaged normalized volume 

distribution (shading represents 95% CI) peaks at a coarser size than in current global models in the AeroCom 

ensemble21 (colored lines). Constraints on the (b) size-resolved atmospheric dust mass and (c) the dust AOD size 

distribution indicate that current global models contain too much fine dust and not enough coarse dust. In contrast to 

the volume distribution in panel (a), the mass distribution is not normalized, such that its integral over size equals 

the global dust load. 

 

Because global models need to assume specific values for dust attributes, their results can be 

biased if the assigned values are not consistent with experimental results. In particular, 

inconsistent values for dust optical properties and the emitted particle size distribution generate 

biases in the size-resolved atmospheric dust loading12,14,15, and thus in the simulated dust effects 

on climate1, 3, 8. Current models assume an emitted dust size distribution that is much finer than 

measurements indicate (Fig. S2), which results in a substantial bias toward fine dust in the 

atmosphere (Fig. 2). Since fine dust mostly scatters, whereas coarse dust also absorbs solar 

radiation, this fine-size bias likely contributes to the underestimation of aerosol absorption in 

models22. 



A second bias in models results from the assumption that dust is spherical5,15,19,20,26. This is 

problematic because simplifying the highly aspherical dust particles23 leads to a substantial 

underestimation of the extinction efficiency (Fig. 1b). For the atmospheric dust size distribution 

obtained here (Fig. 2a), the assumption of spherical dust results in an underestimation of the 

extinction produced by a unit mass of dust loading of 29 (24–34)%, which is consistent with 

recent results from deposited dust in ice cores24. This substantial bias is masked by excessive fine 

dust in models, which increases the extinction produced by a unit mass of dust (see Figs. 1d and 

S1). Global models furthermore slightly underestimate the global DAOD16 (Fig. 1a). The net 

result of these three biases is a slight underestimation of global dust loading (Fig. 3).  
 

 

 
Figure 3. Global emission rate and atmospheric loading of desert dust aerosols. Probability densities of (a) the 

global dust emission rate and (b) the atmospheric dust loading (blue lines with shaded CI) indicate that some global 

models in the AeroCom ensemble21 underestimate dust emission and loading. 

 

Constraints on the dust direct radiative effect 

A crucial advantage of our analytical framework is that it is subject to fewer of these biases, 

because it integrates observational and experimental constraints. Despite important limitations of 

our approach (see Materials and Methods), we consider our constraints on the size-resolved 

global dust emission rate and loading (Figs. 2, 3) to be more accurate and robust than constraints 

derived from model ensembles4-7. As such, our constraints on the size-resolved dust loading can 

better inform dust effects on climate through interactions with ecosystems25, 26, clouds27, 28, and 

radiation. The dust DRE2, 3 is particularly sensitive to the atmospheric dust size distribution, as 

fine dust cools global climate by scattering solar radiation, whereas coarse dust (D ≥ 5 μm) likely 

warms by absorbing both solar and thermal radiation3 (Fig. S3). Consequently, our finding that 

atmospheric dust is coarser than represented in the current ensemble of global models6 implies 

that dust DRE is more positive than the -0.30 to -0.60 W/m2 estimated by AeroCom models3, 9, 29, 

30. 

We determine the DRE of PM20 dust by combining results on the size-resolved extinction of 

SW radiation (Fig. 2c) with an ensemble of model simulations of the efficiency with which a unit 

of extinction is converted to DRE (Fig. S3; Materials and Methods). Using the size-resolved dust 

loading obtained by AeroCom models yields a DRE at top-of-atmosphere (TOA) of -0.46 (-0.78 

to -0.03) W/m2
, which is consistent with estimates by individual AeroCom models3, 9, 29, 30 (Fig. 

4). In contrast, using our constraints on the size-resolved dust loading yields a DRE of -0.20 (-



0.48 to +0.20) W/m2 (Fig. 4), which is consistent with recent work13, 14 that used an emitted size 

distribution similar to our experimental constraints (Fig. 1c). This represents a reduction of the 

most likely DRE by approximately a factor of two, and a 25% chance that the global DRE is 

actually positive.  

 

 
Figure 4. Constraints on the global direct radiative effect (DRE) of PM20 dust. The fine-size bias in current 

models causes an overestimation of SW cooling and underestimation of LW warming (hatched bars). We correct 

these biases using our constraints on the global size-resolved dust load (Fig. 2b) and extinction efficiency (Fig. 1b), 

resulting in a more positive (warming) DRE at the top-of-atmosphere. Error bars denote 95% CI9, 29-31. 

 

Three different factors contribute to our result that the dust DRE is substantially more 

positive (warming) than accounted for by current AeroCom models6. First, correcting the fine-

size bias in models reduces SW cooling by ~0.15 W/m2, both because fine dust predominantly 

scatters whereas coarse dust also absorbs, and because the short lifetime of coarse dust 

concentrates these particles over bright deserts, which reduces the cooling effect of scattering 

and enhances the warming effect of SW absorption. Second, the increase in coarse dust increases 

the warming arising from LW interactions by ~0.10 W/m2 (Fig. 4). Finally, very coarse dust (D > 

10 m) produces a positive DRE of +0.03 (+0.01 to +0.06) W/m2, which is neglected by about 
half the AeroCom models6. 

Although our results indicate that the global dust DRE is substantially more positive than 

represented in current models (Fig. 4), the effects of the fine-size bias in current models are 

region-specific. This spatial variability in the dust DRE is primarily driven by regional 

differences in surface albedo and prevalence of clouds, and by the size-dependent dust lifetimes 

(Fig. 1d). Close to source regions, the coarse particles missing from current models produce 

additional warming (Fig. S4), especially over highly reflective arid regions. Further from source 

regions, much of this missing coarse dust has been deposited (Figure 1d and Refs. 19, 32). 

However, the excess of fine dust in current models (Fig. 2b) causes an overestimation of dust 

cooling far from source regions (Fig. S4), particularly over low reflectivity regions, such as 

oceans and forests. Our results thus imply a more positive dust DRE, both close to and far from 

source regions. 



Our results suggest that dust cools the climate system substantially less than represented in 

current models, and raise the possibility that dust is actually net warming the planet. This has 

important implications for the role of changes in dust loading in past and future climate changes. 

Past increases in dust loading11, 33, 34 have likely slowed anthropogenic greenhouse warming less 

than current models suggest11, 34, and might even have accelerated it. This is consistent with 

recent insights that aerosol radiative forcing might be less cooling than previously thought15. 

Similarly, anthropogenic dust emissions, which are estimated to account for about a quarter of 

total dust emissions35, might enhance, rather than oppose7, global warming. Our results further 

suggest that possible future increases in dust loading might dampen global climate change less 

than current models estimate36, and might even enhance it. 
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Materials and Methods 
Analytical framework for constraining the size-resolved atmospheric dust loading. Past 

constraints on the global dust loading and the resulting dust radiative effects have been obtained 

mostly from ensembles of global model simulations4-6. To simulate dust loading, these models 

must represent non-linear small-scale processes, such as dust emission and deposition38, which 

are not resolved within large-scale climate models. These small-scale processes are thus heavily 

parameterized39-41, introducing uncertainty in the simulated dust loading. In addition, model 

results can contain biases that arise from inconsistencies of assumed dust properties with respect 

to experimental and observational constraints8, 9.  

To overcome these limitations of global model ensembles, we have developed an analytical 

framework that constrains the global dust loading and its direct radiative effect using 

observational and experimental constraints, where available, to replace modeling results. Further, 

our framework directly links the global dust loading to a strong observational constraint on the 

magnitude of the global dust cycle: satellite measurements of the aerosol optical depth, which 

can be partitioned between that arising from dust and from other aerosols4, 16, 42. The dust aerosol 

optical depth (DAOD), which quantifies the extinction of solar radiation by dust, is constrained 

globally by years of retrievals from multiple satellites that have been calibrated against accurate 



ground-based measurements43. The global atmospheric loading of PM10 dust (Latm) can thus be 

expressed as, 



 dAL Earthatm  , 
 

(1) 

where AEarth is the area of the Earth, τd is the globally-averaged DAOD at 550 nm wavelength, 

and ετ (m
2/kg) is the mass extinction efficiency. We use the results of Ridley et al.16, who 

combined satellite measurements, ground-based measurements, and global transport model 

simulations to constrain the global DAOD to d = 0.030 (0.020 – 0.040) (Fig. 1a).  
The globally-averaged mass extinction efficiency ετ equals the summed projected surface 

area of a unit mass of dust loading, multiplied by the globally-averaged efficiency with which a 

unit projected dust surface area extinguishes radiation. Because these factors depend on the dust 

geometric diameter D (i.e., the diameter of a sphere with the same volume as the irregular dust 

particle), the contribution of each dust particle size to ετ must be weighted by the globally-

averaged volume size distribution of atmospheric dust, 
𝑑𝑉𝑎𝑡𝑚

𝑑𝐷
, which is normalized (i.e., 

integrating over D yields unity). That is, 
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atm
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(2) 

where A(D)/M(D) = 3/2ρdD is a spherical particle’s projected surface area per unit mass, ρd = 

(2.5 ± 0.2)∙103 kg/m3  is the density of dust aerosols (see Supplement); and Dmax = 20 μm is the 

diameter above which the contribution to the global DAOD can be neglected, as justified by our 

results (Fig. S1). We further define the globally-averaged extinction efficiency Qext(D) as the 

extinction cross-section normalized by πD2/4, the projected area of a sphere with diameter D. 

Since an irregular dust particle has more surface area than a spherical particle with the same 

volume, it will generally have a larger extinction efficiency18. 

The globally-averaged size distribution of atmospheric dust, 
𝑑𝑉𝑎𝑡𝑚

𝑑𝐷
, is determined by three 

factors: (i) the normalized volume size distribution at emission (
𝑑𝑉𝑒𝑚𝑖𝑡

𝑑𝐷
), (ii) the globally-

averaged size-resolved dust lifetime (T(D)), and (iii) any changes in the size of dust particles 

during transport due to chemical processing and aggregation with other aerosols, which is likely 

insignificant for African dust44, 45 but might play a role for Asian dust46. Such changes in dust 

size during transport are neglected in many models due to a lack of mechanistic understanding3, 

11, 35, 39, 47. By similarly neglecting this process, we obtain 
 

T

DT

dD

dV

dD

dV emitatm 
, 

 

(3) 

where the mass-weighted average dust lifetime 𝑇̅ is given by 

 
max

0

emit

D

dDDT
dD

dV
T . 

 

(4) 

where we have used the fact that both the atmospheric and emitted volume size distributions are 

normalized; note that 𝑇̅ is also equal to Latm/Femit, where Femit is the global dust emission rate. 
The above equations yield ετ = 0.67 (0.55–0.84) m2/g for PM20 dust, which is consistent with 

results from the AeroCom global model ensemble6. We use ετ to obtain the size-resolved global 

dust emission rate and loading (Fig. 2 and 3). 

We use these constraints on the size-resolved dust loading to similarly constrain the dust 

direct radiative effect, ζ. Since ζ is generated by extinction of radiation by dust, it can be 



expressed as the product of the dust optical depth and the radiative effect produced per unit of 

optical depth15,  
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where we used Eqs. (1) and (2) to write 
𝑑𝜏𝑑

𝑑𝐷
 in terms of the dust size distribution and extinction 

efficiency. The radiative effect efficiency Ω(𝐷) is the all-sky DRE that dust of diameter D 
produces per unit DAOD. It depends on numerous properties of the Earth system, including the 

spatial and temporal variability of dust, the surface albedo, the vertical temperature profile, the 

distribution of radiatively-active species such as clouds and greenhouse gases, and the 

asymmetry parameter and single-scattering albedo of dust. The value of Ω(𝐷) is thus not readily 

amenable to an analytical treatment, such that we use results from four global model simulations 

to estimate Ω(𝐷) (see Supplementary Figure S3 and Supplementary Text).  
We used a procedure similar to Eq. (5) to calculate the dust DRE that results from the 

atmospheric dust size distributions in AeroCom models (colored lines in Fig. 2b), for which we 

obtained the global extinction of atmospheric radiation as a function of dust size by combining 

the AeroCom dust size distributions (Fig. 2b) with the Mie theory extinction efficiency (brown 

line in Fig. 1b) assumed in AeroCom models5,15,19,20,26 (see Supplement for additional details). 

Our analytical framework has important limitations. First, our results rely on the constraint 

on global DAOD from Ref. 16 (Fig. 1a), which is consistent with both AeroCom model 

simulations6 and with the MERRA Aerosol Reanalysis product16. Nonetheless, the analysis in 

Ref. 16 is subject to various possible biases, including due to the cloud-screening algorithm48, due 

to the separation of dust optical depth from that of all other aerosols, due to the remotely-sensed 

optical depth retrieval algorithm for aspherical particles49, and due to systematic differences 

between remotely-sensed clear-sky aerosol optical depth and all-sky optical depth. The 

uncertainty due to many, but not all, of these biases were quantified in Ref. 16, and have been 

propagated into the results presented here. Second, as is the case in many global models3, 11, our 

analytical approach to constraining the size-resolved dust loading cannot explicitly account for 

changes in optical properties and size distribution during transport due to chemical processing, 

internal mixing with other aerosols, and absorption of water vapor47, 50. However, our 

methodology does implicitly account for some of the effects of internal mixing because the 

globally-averaged dust extinction properties are based on both fresh and aged dust from a range 

of source regions (see Supplement). Third, our constraint on the dust extinction efficiency uses 

numerical modeling results in which dust is represented as an ensemble of tri-axial ellipsoids17. 

This shape is an imperfect representation of the highly heterogeneous and mineralogy-dependent 

shape and roughness of real dust, and thus might produce systematic errors18. Further, the 

shortest axis (height) of these ellipsoids is poorly constrained due to a scarcity of 

measurements23, which also prevent the propagation of uncertainty in the particle height 

distribution (see Supplement). We thus likely underestimate the uncertainty on the dust 

extinction efficiency. Fourth, our analytical framework uses globally-averaged properties of dust 

to calculate the global size-resolved dust loading and resulting dust radiative effects. The neglect 

of regional heterogeneity in dust properties could introduce errors by not accounting for 

covariance between dust properties. An example of this would be if the index of refraction or 

shape of dust depended substantially on particle size. However, experimental results suggest 

such covariances are small51, 52. Fifth, our constraints on the global dust DRE at TOA (Fig. 4) 

rely on an ensemble of four global model simulations of the size-resolved dust DRE (Fig. S3). 



These models assume specific optical properties that, although broadly consistent with remote 

sensing and in situ measurements (see Supplement), are not subject to the detailed experimental 

constraints that we have used for constraining the emitted dust size distribution and extinction 

efficiency. Sixth, our constraints likely underestimate the warming effect of LW scattering 

interactions, which are not accounted for in most global models. We therefore follow the 

treatment of Miller et al.3, which is the only global modeling study that we are aware of that has 

accounted for the contribution of LW scattering to the dust DRE. Specifically, we assume that 

the DRE from LW scattering equals 30% of that produced by LW absorption. Since the DRE 

from LW scattering is likely of similar magnitude to that arising from LW absorption 

interactions53, our constraint on the LW DRE should be seen as conservative. 

A final limitation of our approach is that it is currently impossible to observationally 

constrain the globally-averaged dust lifetime. Consequently, we rely on an ensemble of model 

results (Fig. 1d), which could contain systematic biases. Since there are few observational 

constraints to test deposition schemes in models40, 42, the uncertainty of dust lifetime might be 

incompletely represented. Further, some models underestimate the prevalence of coarse dust far 

from source regions1, 16, 39, which could be partially explained by the fine-size bias in models 

(Fig. 2). However, this underestimation of coarse dust can also be due to processes missing from 

models, such as aggregation during transport, numerical errors in the size distribution treatment, 

the neglected effect of asphericity on dust settling, electrostatic charging, or errors in the (dry) 

deposition parameterization32, 54, 55. Such systematic biases towards underrepresentation of long-

range coarse dust transport could have caused our results to underestimate the global dust 

emission loading. However, this would strengthen our conclusions that dust loading is slightly 

underestimated, that atmospheric dust is coarser than represented in current models, and that the 

dust DRE is more positive than accounted for in current models. 

Constraining the globally-averaged size-resolved shortwave extinction efficiency. The 

extinction efficiency of the global population of dust particles depends on (i) its average real 

refractive index, (ii) its average imaginary refractive index, and (iii) the distribution of dust 

particle shapes. Based on extensive measurements, we take the globally-averaged real index of 

refraction at 550 nm as n = 1.53 ± 0.03 (see Supplement). The uncertainty in the imaginary index 

of refraction k is substantially larger, partially due to regional variations in shortwave-absorbing 

minerals like hematite12, 13, 56. However, since absorption accounts for only a small fraction of the 

total extinction, its influence on our constraint on the extinction efficiency (Fig. 1b) is limited. 

We take k as a lognormal distribution with log(-k) = -2.5 ± 0.3 (see Supplement). Finally, 

measurements and theory indicate that the distribution of dust shapes in the atmosphere can be 

represented as tri-axial ellipsoids17 with a height-to-major axis ratio of εh = ~0.33323, 57, and a 

deviation of the aspect ratio from 1 (spherical) described by a lognormal distribution51 with a 

median aspect ratio of 𝜀𝑎̅  = 1.7 ± 0.2 and a geometric standard deviation of 𝜎𝜀𝑎
= 0.6 ± 0.2. We 

converted these parameters to Qext(D) using a dust single-scattering database17. Specifically, we 

assumed that each of these parameters is independent, and obtained a large number (104) of 

parameter sets (m, n, 𝜀𝑎̅, and 𝜎𝜀𝑎
) by randomly choosing values from the probability distribution 

of each parameter. We used the resulting sets of values for Qext(D), obtained from the single-

scattering database17, to obtain the median and CI (dashed line and shading in Fig. 1b). We 

calculated the extinction efficiency of spherical dust with identical index of refraction using Mie 

theory58 (brown line in Fig. 1b). 

Constraining the globally-averaged dust size distribution at emission. We interpreted each of 

the five emitted dust size distribution data sets37, 59-64 as a measure of the globally-averaged size 



distribution of emitted dust. We did so because (i) differences between measurements from 

different soils within a given study are very small37, 59-61, implying that differences in the emitted 

dust size distribution between different soils are relatively small8, and (ii) the wind speed at 

emission has no statistically significant influence on the size distribution of emitted PM10 dust65. 

These observations from dust flux measurements are supported by the invariance of in situ dust 

size distributions to source region66 and wind speed67. We fit each of the five data sets37, 59-64 

with an analytical form derived from brittle fragmentation theory8. We then combined these five 

analytical functions representing each data set in a statistical model to obtain the maximum 

likelihood estimate (MLE) of the globally-averaged emitted dust size distribution (dashed line in 

Fig. 1c). We obtained the uncertainty (shaded area in Fig. 1c) using a modified bootstrap 

procedure. See Supplement for additional details. 

Constraining the globally-averaged dust lifetime. We constrained the globally-averaged and 

size-resolved dust lifetime using an ensemble of global model results from previous studies56, 68-

71, supplemented with simulations from the global transport models WRF-Chem, GEOS-Chem, 

and HadGEM (see Supplement). We fit an exponential function to each of the nine simulation 

results, which we combined in a statistical model to obtain the MLE of the globally-averaged 

size-resolved dust lifetime. We obtained the uncertainty (shaded area in Fig. 1d) using a 

modified bootstrapping procedure. See Supplement for additional details. 

Analysis of AeroCom model simulations. We used results from the Aerosol Comparison 

between Observations and Models (AeroCom) project5, 6 as representative of the current 

generation of global models. We included the probability distributions of simulation results from 

these models in Figs. 1a and 3, which were obtained using kernel density estimation with a 

Gaussian kernel with standard smoothing parameter following equation (3.31) in Ref. 72. Results 

from the ‘median’ AeroCom model were obtained by Ref.6 by taking the median of each dust 

cycle variable for each grid box and month. AeroCom results in Fig. 3 from models that 

simulated a dust size range larger than PM10 were corrected based on our constraints on the dust 

size distribution at emission (Fig. 1c) and in the atmosphere (Fig. 2a), respectively. Results from 

the subset of seven AeroCom models that reported the simulated dust size distributions (see 

Supplement) are included in Fig. 2. Some of these AeroCom models simulated a dust diameter 

range smaller than 20 m, for which we similarly used our constraints to correct the normalized 
size distributions of atmospheric (Fig. 2a) and emitted (Fig. S2) dust to the PM20 range.  

Code availability. The codes used to conduct the analysis presented in this paper and in the 

production of the figures are available at https://github.com/jfkok/KokDustDRE2017 

Data availability. Data used in Figures 1-3 are included in the code. The global climate and 

chemical transport model simulation data that were used to constrain the dust DRE in Figure 4 

are available through Zenodo (doi to be added when data is complete).  
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