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Abstract

Geometrization of Scattering Amplitudes

in Supersymmetric Yang-Mills Theory

A geometric formulation of scattering amplitudes in perturbative quantum field theory

has surfaced in recent years where, in place of the summations of all off-shell Feynman

diagrams for an amplitude, a single geometric object in the kinematic space of on-shell

scattering data completely dictates the final answer. By far the most sophisticated

example of this new formulation is the amplituhedron geometry for the planar N “ 4

super Yang-Mills theory, whose boundary structure encodes all singularities of any

amplitude at any loop-order.

While an amplituhedron describes an amplitude (prior to loop integration) as a

differential form with logarithmic singularities on its boundary, a dual amplituhedron

whose bulk volume directly reproduces the same amplitude is much desired. In chap-

ter two of this thesis, we provide nontrivial evidence for the dual amplituhedron from

the perspective of local triangulation. We classify all the elementary geometric spaces

relevant for one-loop Feynman integrands which allow for further identification of geo-

metrical spaces associated with the chiral pentagon-integrands in the local expansion of

one-loop MHV amplitudes. Using projective duality maps on certain two-dimensional

boundaries where the geometry reduce to polygons, we show that the real purpose of

life of chiral pentagons is to triangulate the putative dual amplituhedron.

The discovery of amplituhedron originated from a reformulation of amplitudes at

the level of the integrand –the unintegrated sum of Feynman diagrams, in terms of

positive Grassmannians and on-shell diagrams. Extending the geometric formulation

to more general theories after the example of N “ 4 sYM requires both a wealth of

theoretical data from explicit computations of loop integrands and further understand-

ing of the connection between on-shell diagrams and Grassmannian geometry without

planarity.
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In chapter three, we discuss one-loop integrand construction for planar Yang-Mills

amplitudes with 1 ď N ă 4 supersymmetry based on a generalized unitarity method.

We trace the source of ambiguity in defining “the loop integrand” for non-maximally

supersymmetric amplitudes to the ill-defined non-singlet massless “bubble-cuts”, and

pinpoint two prescriptions for defining the loop integrand, paving the way for future

exploration of amplituhedron-like geometric objects for less supersymmetric Yang-Mills

theories.

In chapter four, we go beyond the planar sector of N “ 4 sYM, exploring the

geometry of non-planar on-shell diagrams — essential building blocks of any non-planar

amplitudes — that arise in the context of BCFW recursion relations of tree-amplitudes

using non-adjacent shifts of momenta. We show that individual terms in the non-

adjacent BCFW expansions are associated with a particular class of non-planar positive

geometries which generalize the positroid cells of the positive Grassmannian into the

Grassmannian.

-vii-



Acknowledgments

First and foremost, I would like to thank my advisor, Jaroslav Trnka, who has

been both a constant source of intellectual inspiration and a great source of support

and encouragement throughout the five years I spent in Davis. From Jaroslav, I have

learned a tremendous about physics, academics, and life in general, the influence of

which will undoubtedly continue beyond graduate school.

In addition to the mentorship I received from Jaroslav, I have benefited heavily

from interacting with my collaborators Jacob Bourjaily, Enrico Herrmann, Cameron

Langer, Kokkimidis Patatoukos, and Shruti Paranjape. Without them, much of this

thesis research would not have been possible.

Thanks to everyone in the Fields, Strings and Gravity group. I have learned much

from each of them during journal club and seminar discussions. Thanks also to all

the members of the Center for Quantum Mathematics and Physics for creating an

interactive and supportive academic environment. Special thanks to Veronika Hubeny

and Andrew Waldron for serving on my thesis committee.

Thanks to my fellow students and friends in the Physics Department, in particular,

Taro Brown, Umut Oktem, Sean Colin-Ellerin, Andrew Ballin, Miranda Chen, and

Guga Mikaberidze, who have made my time at Davis an overwhelmingly enjoyable

experience.

I am deeply thankful to the people who have encouraged and guided me on my

road to learning theoretical physics while I was an undergraduate nuclear engineering

student. Thanks to Hong-Jian He, my undergraduate academic advisor, for giving me

the chance to work on particle phenomenology. Thanks to Wei Song, who exposed me

to conformal field theory and holographic duality during the year I spent in the String

Theory Group at YMSC. Thanks to Song He, who took me as a visiting student during

my gap year and shared with me his passion and insight about scattering amplitudes.

I cannot imagine where I would be if it were not for their help.

-viii-



I would like to thank my friends from home who have always been a great source

of comfort, especially during the COVID pandemic.

Finally and most importantly, words cannot express my gratitude to my parents.

It is their unwavering, unconditional support at all times that carry me this far.

-ix-



Chapter 1

Introduction

Scattering amplitudes are fundamental observables in quantum field theory. Tradition-

ally they are calculated perturbatively using Feynman diagrams, invoking a spacetime

image of summing over all ways the collisions between particles could take place. Calcu-

lations of Feynman diagrams are notoriously complicated beyond the simplest process,

yet the final results are often strikingly simple. The first glimpse of hidden simplic-

ity in scattering amplitudes is the Parke-Taylor formula [1] discovered in 1986 for the

tree level, color-ordered, maximally-helicity-violating (MHV) gluon amplitude, where

among n massless external gauge bosons, n´ 2 gauge bosons have a particular helicity

and the other two (denoted by i and j below) have the opposite helicity

Atree
MHVp1`2`

¨ ¨ ¨ , i´, ¨ ¨ ¨ , j´, ¨ ¨ ¨n`
q “

xijy4

x12yx23yx34y ¨ ¨ ¨ xn1y
.

This single line formula for the amplitude using the modern helicity-spinor notation is

equal to pages of algebraic expressions in terms of momenta and polarization vectors

coming out of direct calculations of Feynman diagrams. Initially obtained for a 2 Ñ 4

process involving thousands of Feynman diagrams, this formula proves to hold for

all-multiplicity processes. It was natural to wonder if a deeper theory for scattering

amplitudes exits behind all the apparently complicated computations.

The years since Parke and Taylor’s pioneering discovery have seen many computa-

tional and conceptual advances in the study of scattering amplitudes such as generalized
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unitarity methods [2, 3], on-shell recursion relations[4, 5], color-kinematics duality[6–

8], twistor string theory[9], scattering equations[10–13], and various bootstrap methods

[14–19]. Discoveries of new structures and symmetries have led to and been further fu-

eled by the development of alternative theoretical frameworks for scattering amplitudes

in various quantum field theories using different organizing principles than the Feyn-

man diagrammatic expansion. These various new formulations make different hidden

aspects of scattering amplitudes manifest and, besides facilitating calculations, often

connect physics to new areas of mathematics. In the recent decade, amid all of these

developments, surfaced for the first time a purely combinatoric-geometric origin of scat-

tering amplitudes, which does not refer to any spacetime processes, in the study of the

maximally supersymmetric gauge theory pN “ 4 super-Yang-Mills theory) [20, 21] in

the planar limit of a large number of colors. (For reviews of modern amplitude methods

see [22–24])

Planar N “ 4 sYM, arguably the simplest quantum field theory, is an ideal lab-

oratory for exploring new ideas about scattering amplitudes. Intensive study in the

past three decades has revealed many remarkable analytic properties of the planar

N “ 4 sYM amplitudes, including the dual conformal symmetry [25–27] and Yangian

symmetry [28], the connection to cluster algebra [29–35], the amplitude/Wilson-loop

duality[36–40], and the all-loop extension of BCFW recursion relations [41]. The new

geometric picture arose from the dual formulation of scattering amplitudes in terms of

Grassmannians [42–46] and on-shell diagrams [47] and, preluded by the use of momen-

tum twistor methods [48–55], culminated in the construction of the Amplituhedron[56–

59].

An amplituhedron is a particular example of “positive geometries” [60] which gen-

eralize the notion of convex polytopes to geometric objects with non-linear boundaries

as specified by a set of inequalities, generally referred to as positivity conditions. While

the original definition of the Amplituhedron [56] involved an auxiliary Grassmannian

space, a more recent reformulation of the Amplituhedron defines the geometry di-
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rectly in the kinematic space of external scattering data (represented by momentum

twistors [48] Zi for particles i “ 1, . . . , n), using certain topological sign-flip conditions

[58] on sequences of twistor invariants. Encapsulated in the boundary structure of an

amplituhedron is any tree-amplitude or the integrand of any loop-amplitude in pla-

nar N “ 4 sYM. Rather than functions of external kinematic (and loop) variables,

the (color-stripped) super-amplitudes have the interpretation of canonical differential

forms with logarithmic singularities (“dlog forms”) on the boundaries of the amplituhe-

dron. Concrete expressions of scattering amplitudes can be obtained by triangulating

the space, with various natural triangulations reproducing the well-known BCFW and

CSW representations [56, 61]. All physical properties of scattering amplitudes, such as

unitarity and locality, are consequences of the amplituhedron geometry [57, 62].

While there is no direct derivation of this geometric construction from first princi-

ples of quantum field theory, by now we have ample evidence for the relation between

the Amplituhedron geometry and scattering amplitudes. In particular, one can explic-

itly compute the differential forms by triangulating the amplituhedron and comparing

them to existing tree-level amplitudes and loop integrands available in the literature

[58, 63–65]. The geometric picture has also been used to obtain a large amount of ex-

plicit all-loop data [57, 66–69] currently inaccessible from any diagrammatic approach.

In parallel, there has been significant progress trying to understand more formal aspects

of the amplituhedron, including its boundary and combinatorial structure, the connec-

tion to symbol alphabets, properties of final amplitudes (rather than integrands), and

many others (see e.g., [70–91]). Despite this progress, there remain many open ques-

tions. Among which, notably, is the search for a dual amplituhedron [50, 54], of which

a scattering amplitude would literally be the volume.

The amplituhedron arises as a generalization of the positive Grassmannian which

appears in the context of on-shell diagrams and all-loop recursion relations in planar

N “ 4 sYM. Despite their origin in maximally supersymmetric Yang-Mills theory, on-

shell diagrams and the associated construction in the Grassmannian can be defined

3



in various other theories [47, 92–98]. This naturally leads to the question whether

or not Amplituhedron-like structures also exist more generally. Even within N “ 4

sYM theory, the striking similarity of the analytic structure of planar and non-planar

integrands, and the natural non-planar extension of on-shell diagrams [99–104] suggests

that an Amplituhedron-like object should exist for N “ 4 sYM amplitudes beyond the

planar limit. A crucial first step in this direction has been achieved at tree-level by

formulating the geometry of the Amplituhedron directly in momentum space [90, 105].

The momentum space formulation seems crucial beyond the planar limit, since one no

longer has access to momentum-twistor variables which are at the heart of the kinematic

space underlying the original Amplituhedron. At loop-level, the main obstruction is

the non-uniqueness of the non-planar loop momentum, although recent works [106, 107]

suggest possible paths to remedy this situation.

Ongoing efforts also attempt to extend the positive geometry framework to am-

plitudes in other field and string theories. Another example of a positive geometry is

the associahedron, which is relevant for bi-adjoint φ3 amplitudes and is also connected

to cluster polytopes and string amplitudes [108–111]. For attempts to include other

interactions and matter, c.f. [112–116]. Recent advances have also uncovered positive

geometries in conformal field theory correlation functions, the Wilson coefficients of

effective field theories and the cosmological wavefunctions [117–122].

The exploration of the geometric picture of scattering amplitudes and the conse-

quences of this connection is still in its infancy. The ideas outlined above form the

foundations for the work presented in this thesis, consisting of three chapters after this

general introduction.

In the second chapter of this thesis, based on the following papers

• E. Herrmann, C. Langer, J. Trnka and M. Zheng, Positive geometries for one-

Loop chiral octagons, [2007.12191]

• E. Herrmann, C. Langer, J. Trnka and M. Zheng, Positive geometry, local trian-
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gulations, and the dual of the Amplituhedron, JHEP 01 (2021) 035 [2009.05607]

we initiate a systematic study of “local” positive geometries associated with one-loop

Feynman integrals (integrands) in the context of N “ 4 sYM, motivated by the ampli-

tuhedron construction. We classify the elementary geometric spaces by certain topo-

logical “sign-flip” conditions, the simplest of which correspond to the well-known chiral

octagon integrands. These sign-flip spaces form a basis for constructing positive ge-

ometries associated with any one-loop local integrands that are free of spurious poles.

The geometric origin of an arbitrary local integrand in the amplituhedron picture is

non-obvious: any internal triangulation of amplituhedra would result in subspaces with

spurious boundaries and hence summands with non-local poles. Indeed, the association

of an integrand (as a canonical dlog form) to some geometry is often non-unique. Of

particular interest is the geometrical interpretation of chiral pentagon integrands, which

constitute highly compact representations of one-loop MHV amplitudes, manifesting

an intriguing of property the full amplitude — being positive when evaluated inside

the amplituhedron region — term by term. This positivity property is reminiscent of

the property of a signed volume, and closely related to the search for putative dual

amplituhedra, of which triangulations should yield manifestly local expansions.

By studying the local triangulations by chiral pentagon spaces, we reveal a direct

evidence for the yet-to-be discovered dual amplituhedron. Insisting on a faithful corre-

spondence between poles of differential forms and geometric boundaries in gluing chiral

pentagon spaces into a larger positive geometry of the amplitude, we conclude that the

chiral pentagon expansion triangulates externally, not the original amplituhedron but

its twin, an “amplituhedron-prime” space with identical boundaries but a completely

non-overlapping bulk. We then show that all the various positive geometries comput-

ing the the same canonical form map to the same region in the dual space with some

reasonable dualization prescription; while the precise duality mapping for the full ge-

ometry awaits definition, we demonstrate, on two-dimensional boundaries where the

5



MHV one-loop amplituhedron reduces to a polygon, the chiral pentagon expansion

corresponds to an internal triangulation the dual polygon.

Moving beyond planar N “ 4 sYM, an immediate direction to extend the geo-

metrical framework is the planar but less-supersymmetric Yang-Mills theories. Crucial

for exploring various geometric structures is a plenitude of explicit theoretical data.

Notably, at the loop level, the prerequisite knowledge is the amplitude integrand—the

gauge-invariant, unintegrated sum of Feynman diagrams. In chapter three based on

• J. L. Bourjaily, E. Herrmann, C. Langer, K. Patatoukos, J. Trnka and M. Zheng,

Integrands of less-supersymmetric Yang-Mills at one loop, JHEP 03 (2022) 126

[2112.06901]

we use the method of generalized unitarity to construct amplitude integrands in less-

supersymmetric Yang-Mills theory with N “ 1, 2 at one loop. In contrast to the

maximally supersymmetric theory, where integrands are protected by the dual con-

formal symmetry, important subtleties arise due to the presence of poles at infinity

ℓ Ñ 8.

The amplitude-integrands, being rational differential forms of external kinematic

and loop variables, can be expanded on any sufficiently large basis of rational inte-

grands, with loop-independent coefficients fixed by unitarity in terms of in terms of

on-shell, tree-level scattering processes. The basis suitable for representing 1ďN ă 4

sYM amplitude integrands requires ‘bubble’ power-counting in four dimensions, and

standard analysis of generalized unitarity “cuts”, i.e. discontinuities of loop amplitudes

across branch-cuts, determine the integrand only up to the contributions of “massless

bubble” integrands. These outliers, despite integrating to zero in dimensional regular-

ization, are important for disentangling the UV and IR structure and indispensable

for a complete on-shell definition of amplitude integrands. Their coefficients, however,

are intrinsically ambiguous for the lack of meaningful non-singlet bubble cuts of the

field-theoretic amplitudes. In the text we show there are two natural definitions of the

6



non-singlet bubble cuts which lead to different integrands, leaving for future work the

pursuit of geometrization along either path.

On a technical note, we offer a “prescriptive” basis in which every coefficient is

exactly a “leading singularity” of the amplitude, and with the additional benefit of being

divided into to separately UV- and IR-finite sectors of fixed transcendental weight. For

concreteness, we construct the all-multiplicity integrands for MHV amplitudes, and the

split-helicity integrand for six-particle NMHV amplitude.

Leaving the planar sector, in chapter four based on the following paper

• S. Paranjape, J. Trnka and M. Zheng, Non-planar BCFW Grassmannian Geome-

tries [2208.02262],

we begin an investigation into the basic on-shell building blocks of scattering amplitudes

for any theory regardless of planarity: on-shell diagrams, also known to mathematicians

by the name plabic graphs. Physically, on-shell diagrams represent certain singularities

of amplitudes which can be obtained by unitarity from merging simpler tree amplitudes.

In the planar theory, BCFW expansions based on deforming two adjacent momenta

at all orders of recursion have a diagrammatic realization in terms of planar on-shell

diagrams. Notably, every on-shell diagram in the planar expansions individually enjoy

the hidden dual conformal (hence also Yangian symmetry) of the full amplitude, and

has a well-understood correspondence to a positroid cell in the positive Grassmannian

[47]. It was this correspondence together with the diagrammatic realization of BCFW

recursion that gave rise to the discovery of the amplituhedron originally.

The general connection between on-shell diagrams and Grassmannian holds even

without planarity, but much less is understood about the geometry and combinatorics of

non-planar diagrams (generic Grassmannian cells). We focus on a special class of non-

planar on-shell diagrams which arise from BCFW recursion (still of planar amplitudes)

with non-adjacent shifts, anticipating non-trivial but especially simple generalization

of the the positroid geometry. In particular, we identify the p2n ´ 4q-dimensional non-

7



planar geometries associated with BCFW cells for NMHV tree-amplitudes, laying down

the stepping stone in the further quest for non-planar geometries of higher-dimensional

cells. While its full potential is yet to be grasped, the geometric picture has enabled

a direct extraction of the analytic expressions of on-shell diagrams, either as a super-

function or a kinematical dlog form. Associated with these non-planar geometries are a

new type of on-shell functions that generalize the familiar planar R-invariants; indeed,

using the Kleiss-Kuijf relations, we show that they correspond to a linear combination

of the planar R-invariants. Investigation of the residual dual conformal (and Yangian)

symmetry in the non-planar sector starting with these objects is an open question for

the future.
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Chapter 2

Positive geometry, Local
Triangulations, and the Dual of the
Amplituhedron

2.1 Introduction

In this chapter, we revisit one major open question central to Amplituhedron re-

search. In particular, we investigate the role of “local triangulations” of the Ampli-

tuhedron and their relation to a putative dual Amplituhedron space. The original

idea of interpreting scattering amplitudes as volumes appeared in the work of Hodges

[48] where the original momentum twistor space formulation for planar N “ 4 sYM

amplitudes was defined. In [48], the six-point NMHV tree-level amplitude is given by

the volume of a certain polyhedron in dual momentum-twistor space and the BCFW

expansion of the amplitude [4, 5] was interpreted as a particular triangulation of this

volume. This picture was later extended to all NMHV tree-level amplitudes [50]. In

contrast, higher k tree-level amplitudes and loop integrands have not as of yet been

directly identified as volumes. Instead, the Amplituhedron is defined in momentum

twistor space, where tree-level amplitudes and all-loop integrands are differential forms

rather than volumes. The existence of a dual Amplituhedron where amplitudes are

9



interpreted as literal volumes is a very natural and important open problem. Non-

trivial evidence for the existence of such a dual picture was given in [54, 60, 86]. In

particular, it was shown for many examples that both tree-level amplitudes and loop

integrands are positive when evaluated inside the Amplituhedron, which is reminiscent

of the volume positivity. Interestingly, this property also seems to hold for some IR safe

quantities post integration [83]. Here, we make a further major step in this direction.

In particular, we show that the local expansion of the one-loop MHV amplitudes in

terms of chiral pentagon integrals [123] can be naturally interpreted as the internal

triangulation of the putative dual Amplituhedron. We make this statement precise

on two-dimensional boundaries of the full geometry, where the space reduces to poly-

gons and the dualization procedure is well-defined. Our main tool is the reformulation

of the Amplituhedron using sign flips [58]. In the process of interpreting the chiral

pentagons geometrically, we introduce more general positive spaces defined by sign-flip

conditions. Surprisingly, the logarithmic forms of the maximal sign-flip spaces are chiral

octagons, originally introduced in [123] as local building blocks for one-loop integrands.

This chapter is organized as follows: In section 2.2, we introduce the Amplituhedron

geometry and then focus on the MHV one-loop case, where we discuss the projective

geometry of lines in P3 and the positions of physical and unphysical singularities. We

also pose the question of the role of the chiral pentagon expansion in the context of the

dual Amplituhedron. In section 2.4, we discuss how to associate a geometric space to

a d log form and classify all such one-loop geometries. We show that the set of these

one-loop spaces is bounded by the number of sign flips in the propagator space, and

we determine the logarithmic forms for all of these spaces. In section 2.5, we discuss

the geometry of chiral pentagons in detail and show that they naturally triangulate

a different positive space which we call the Amplituhedron-Prime. This space has an

identical boundary structure as the original Amplituhedron and therefore corresponds

to the same logarithmic form. In section 2.6, we show that on all two-dimensional
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boundaries both spaces map under dualization to the same geometry, and the chiral

pentagons internally triangulate this dual Amplituhedron space. We finally conclude

with some future directions in section 2.7. Various technical details are covered in four

appendices.

2.2 Amplituhedron geometry

Momentum twistors and the Amplituhedron’s kinematic space

Scattering amplitudes in planar N “ 4 sYM are naturally described in momentum

twistor space [48]. Since the same kinematic space also plays a major role in the

definition of the Amplituhedron geometry [56], we briefly review some of the salient

features of projective geometry and momentum twistor space that are relevant to our

discussions. These concepts are of course well known (see e.g. [48, 57, 123]), but for

convenience we recall them telegraphically.

A key feature of the twistor correspondence [124] is the relation between points x

in Minkowski spacetime and lines L in twistor space. For planar scattering amplitudes,

the relevant “spacetime" is dual momentum space where region momenta xa are related

to cyclically ordered external momenta pa via pa “ xa ´ xa´1. Dual momentum space

trivializes momentum conservation by the identification xn`1 “ x1.

The kinematic data for n-point massless planar scattering amplitudes can be effi-

ciently encoded in n momentum twistors [48], denoted ZI
a , where a “ 1, . . . , n labels

the particles and I “ 1, . . . , 4 is an SLp4q index on which dual conformal symmetry

acts linearly. The natural SLp4q invariant is the antisymmetric contraction of four

momentum twistors with the Levi-Civita tensor, which we denote as

xabcdy :“ ϵIJKLZ
I
aZ

J
b Z

K
c ZL

d . (2.2.1)

Scattering amplitudes in planar N “ 4 sYM are invariant under both SLp4q transfor-

mations and the action of the little group i.e., the rescaling Za ÞÑ taZa. This rescaling

invariance implies that the external data lives in the projective space P3. Moreover,
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in terms of the Za the amplitudes are invariant under a (twisted) cyclic symmetry:

for the NkMHV helicity sector the amplitude is invariant under the transformation

Z1 ÞÑ Z2, Z2 ÞÑ Z3, . . . , Zn ÞÑ pZ1 :“ p´1qk´1Z1 of the external data.

Incorporating (dual) loop momenta y into the picture is achieved by associating a

line L to y. We will often make use of the following notation: since lines in twistor

space are characterized by the linear span of two representative points, we denote the

line associated to xa Ø La :“ pZa, Za`1q :“ pa a`1q and y Ø Ly :“ pABq. For each

loop, we can represent the corresponding line by two arbitrary momentum twistors

ZA and ZB, defined modulo GLp2q transformations that leave the line invariant. We

can furthermore expand ZA and ZB in an arbitrary basis of four linearly independent

twistors Zi, Zj, Zk, and Zℓ and fix the GLp2q redundancy,1

ZA “ Zi ` α1Zk ` α2Zℓ , ZB “ Zj ` α3Zk ` α4Zℓ . (2.2.2)

In this chapter, we make regular use of such expansions, and depending on the purpose,

we chose convenient expansion twistors. Quite nicely, the four unconstrained parame-

ters αi in the twistor expansion of eq. (2.2.2) match the four degrees of freedom of an

off-shell Feynman loop momentum.

If we consider the analog of a generic Lorentz-invariant in dual momentum space

x2
ab “ ppa`pa`1 ` ¨ ¨ ¨ ` pb´1q

2 in momentum twistor space, we realize that this quantity

breaks conformal invariance,

x2
ab “

xaa`1b`1y

xaa ` 1yxbb ` 1y
, (2.2.3)

as signaled by the appearance of the two-brackets in the denominator. In dual confor-

mally invariant quantities, all two-brackets drop out and we therefore do not discuss

them any further. Crucially, such non-light-like Lorentz invariants are important to

characterize loop-propagators, where any local pole of the integrand is given by

local pole Ø xABii`1y . (2.2.4)

1Note that this choice of coordinates fixes the bracket xABkℓy “ xijkℓy to be a loop-momentum
independent function of the external kinematics.
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In the following it will be important that any other four-bracket involving the loop-

line pABq together with an arbitrary “external" line X constitutes a spurious pole if it

appears in the denominator of some integrand

spurious pole Ø xABXy, if X ‰ pii`1q . (2.2.5)

Below, we will see many examples of spurious poles that occur in various expansions

of a scattering amplitude.

One additional feature of the twistor correspondence is the following fact: whenever

two spacetime points xa and xb are null separated, the associated lines in twistor space

La and Lb intersect. This leads to special configurations of lines which can be concisely

summarized in the following image [123]

(2.2.6)

For a more detailed introduction to the twistor correspondence, we refer directly to the

above references [48, 57, 123].

Finally, let us elaborate on the connection between twistor geometry and the ana-

lytic structure of scattering amplitudes that will play an important role in this chap-

ter. There is an intimate relation between configurations of (loop) lines in momentum

twistor space and certain restricted kinematic configurations of loop momenta on uni-

tarity cuts of loop integrands or local integrals. At one loop, we can depict the off-shell

configuration of lines in twistor space corresponding to a generic loop integrand (ei-

ther of the amplitude or of an integral) by a set of lines corresponding to external

dual momenta, together with a line pABq in a generic configuration (parameterized via
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eq. (2.2.2)),

Ø (2.2.7)

In this setup, the loop-line pABq does not intersect any of the lines associated to external

kinematic points. In the next step, one could go to codimension one configurations by

imposing one condition, e.g. xABii`1y “ 0, which geometrically means that the lines

pABq and pii`1q intersect.

Ø (2.2.8)

At the level of cuts, this corresponds to setting a single propagator xABii`1y “ 0 to

zero. This codimension-one configuration for the line pABq can be parameterized by

three degrees of freedom. The intersection implies that one of the defining points of the

pABq-loop lies on the line pii`1q. Taking into account the projectivity of the external

data, one possible parametrization is

ZA “ Zi ` α1Zi`1 , ZB “ Zj ` α2Zk ` α3Zℓ . (2.2.9)

In subsequent steps, one can impose additional constraints to end up on codimension-

two, three, or four configurations of the line pABq. For completeness, we have included

a list of higher codimension boundaries and their associated cut configurations in ap-

pendix A.

2.2.1 Topological sign-flip definition of the Amplituhedron

The Amplituhedron is defined by three types of positivity conditions [58]. First, we

have inequalities which carve out the positive part of the external kinematic space; these
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conditions depend only on the helicity configuration of interest and are loop-momentum

independent. For NkMHV amplitudes the conditions read

NkMHV ext. positivity: xii`1jj`1y ą 0 ,

sequence txabb`1iyui‰a,b,b`1 has k sign flips,
(2.2.10)

where the twisted cyclic symmetry implies that p´1qk´1xn1ii`1y ą 0. For the simplest

case of MHV (k “ 0) amplitudes the positivity of the external data as defined in

eq. (2.2.10) is equivalent to all ordered brackets being positive,

MHV ext. positivity: xijkly ą 0 , for i ă j ă k ă l . (2.2.11)

Second, there are inequalities between the loop variables pABq and the external data,

again naturally expressed in terms of sign flips,2

NkMHV loop positivity: xABii`1y ą 0 ,

sequence txABijyuj‰i has k`2 sign flips.
(2.2.12)

Finally, for multi-loop calculations, the third type of positivity conditions demand that

all loops are mutually positive,

multi-loop positivity: xpABqipABqjy ą 0, for i ‰ j “ 1, . . . , L. (2.2.13)

The set of conditions in eqs. (2.2.10), (2.2.12), and (2.2.13) define the general loop-level

Amplituhedron Apn,k,Lq relevant for n-particle NkMHV L-loop integrands in the space

of L lines pABq1, . . . , pABqL and n momentum twistors Z1, . . . , Zn. As such, the space

defined by eqs. (2.2.10), (2.2.12), and (2.2.13) constitutes a highly nontrivial example

of a positive geometry [60]. In this setup, the n-point NkMHV L-loop integrand is

conjectured to be the unique degree 4pk`Lq differential form on this space defined by

having logarithmic singularities on all its boundaries. We denote this form (that is, the

2As we will see in subsection 2.2.2, for MHV and MHV amplitudes, there is an equivalent formu-
lation of the loop-positivity given in eqs. (2.2.31) and (2.2.32), respectively.

15



integrand) by Ωpn,k,Lq,3

Ωpn,k,Lq
“

L
ź

i“1

xpABqid
2AiyxpABqid

2Biy ˆ ωpn,k,Lq, (2.2.14)

where ωpn,k,Lq is a 4k-form in external momentum twistors Za, but is simply a rational

function in the loop variables pABq1, . . . , pABqL. The loop integrand can be obtained

by replacing the differentials dZa with the fermionic Grassmann variables ηa to work

directly in on-shell superspace. For MHV amplitudes, ωpn,0,Lq is just a rational function

of Za and pABqi and directly constitutes the loop integrand.

Rudiments of positive geometry

In the course of exploring the geometric properties of the local representation of

loop integrands, we shall naturally encounter a variety of “spaces.” Loosely speaking,

we define a geometric space in this chapter to be a collection of inequalities imposed

on four-brackets involving the loop line pABq. By parametrizing pABq as above in

terms of four (real) degrees of freedom x1, . . . , x4, any four-bracket between pABq and a

bitwistor Xi becomes a polynomial pipx1, . . . , x4q :“ xABXiy. A more precise definition

of a geometric space S is then a semialgebraic set defined by some number say, d, of

inequalities

S “ tpx1, . . . , x4q|p1 ą 0, . . . , pd ą 0u. (2.2.15)

Note that this definition does not require the existence of a canonical form, and thus

may or may not be a positive geometry satisfying the recursive definition of [60]. It may

happen that no line in P3 satisfies the conditions we impose, which means eq. (2.2.15)

would be equivalent to the empty set; we shall refer to such spaces as empty.

The existence of a canonical form with logarithmic singularities on all boundaries

puts further constraints on the general geometric space S. In particular, since any

logarithmic form in the one-loop space is of degree four and can be written as the d log

3We commonly use the notation that all capital forms Ω include the loop measure, whereas for
lower-case forms ω the measure has been stripped off.
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of four (projectively invariant) ratios,4 any one-loop positive geometry must be defined

by at least five inequalities. Any space defined by four or fewer inequalities must have

only the trivial form Ω “ 0; throughout this chapter we refer to such geometries as zero

form spaces.

2.2.2 One-loop MHV and MHV spaces

Following the general Amplituhedron definitions above, let us now specialize to

the geometry relevant to MHV one-loop amplitudes. As stated previously, for MHV

integrands (i.e., k “ 0) the positivity conditions on the external data eq. (2.2.10)

simplify significantly to eq. (2.2.11). Besides the MHV integrand, there is another one-

loop integrand which naturally lives in the same kinematic space: namely, its parity

conjugate. In twistor space, spacetime parity is implemented by the duality under

the exchange of points and planes, Za Ø Wa :“ pa´1aa`1q (often, we will use the

alternative notation a :“ pa´1aa`1q). Thus, we will refer to this “dual" space, as well

as its corresponding canonical form, with the moniker “MHV,” despite the fact that the

actual MHV Amplituhedron corresponds to setting k “ n´2, which yields a slightly

different set of positivity constraints on the external data (see eq. (2.2.10)). Despite the

fact that these two spaces are not equivalent (because the definition of each involves

different positivity conditions on the external data!), their canonical forms are trivially

related by stripping the overall tree-level amplitude prefactor.

Both the MHV and MHV integrands have only local poles; equivalently, the only

codimension-one boundaries of both geometries are the loci where xABii`1y “ 0. We

can think of the MHV and MHV spaces as being cut out from a “larger” space defined

only by xijkly ą 0, for i ă j ă k ă l, and xABii`1y ą 0, without any additional

constraints. For reasons which will become more clear below, we call this space an

“achiral” one-loop space. By construction, its codimension-one boundaries are the same
4Since we can always rescale the entry of any d log form by a four-bracket involving only the external

data, it is always trivial to make any entry projective in all Zi, without modifying the canonical form
(or, in the case of MHV data, affecting the overall sign of the entry). In this chapter we shall often
neglect to write such factors, meaning our d log entries will be manifestly projective only in pABq.
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as those of the MHV and MHV subspaces. From this perspective, it is quite nontrivial

that there even exist two distinct ways of slicing the achiral space without introducing

additional codimension-one (spurious) boundaries. Since the notion of chiralization

plays a pivotal role in our analysis of local triangulations throughout this chapter, in

the following subsection we review some salient features of the MHV and MHV one-loop

geometries.

2.2.3 Boundaries of MHV amplitudes

In this subsection, we briefly discuss the geometric boundaries of the “Kermit” ex-

pansion of one-loop MHV amplitudes [125]. In particular, we will show how to detect

whether or not certain boundaries are present in the geometry and if the correspond-

ing poles appear in the logarithmic form. This discussion allows us to introduce the

necessary notation and concepts used in our later analysis of chiral pentagons.

The inequalities defining the one-loop MHV Amplituhedron are a special case of

eq. (2.2.12), and involve the usual positivity of adjacent brackets as well as a sign-flip

condition:

MHV loop positivity: xABii`1y ą 0 ,

txAB12y, . . . , xAB1nyu has two sign flips,
(2.2.16)

where we have chosen the sequence txAB1iyui“2,...,n only for specificity and to easily

handle the twisted cyclic symmetry in the last bracket of the sequence. There are a

number of sign choices for the brackets appearing in eq. (2.2.16) consistent with two

sign flips, which can be labelled by two indices i, j indicating the brackets xAB1iy and

xAB1jy where the sign flip occurs. The geometry of these individual sign-flip patterns

is completely well understood: the pattern where the sign flips occur at indices i and j

is directly associated to a “Kermit” which corresponds to a particular cell in the positive

Grassmannian. In the following, we make repeated use of these sign-flip patterns and
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often denote brackets by their respective sign, e.g., for the pi, jq flip term,

txAB12y, . . . , xAB1iy, xAB1i`1y, . . . xAB1jy, xAB1j`1y, . . . , xAB1nyu

ÞÑ t`, . . . ,`,´, . . .´,`, . . . ,`u.
(2.2.17)

For the pi, jq sign-flip region, the line pABq can be conveniently parametrized as

A “ Z1 ` αiZi ` αi`1Zi`1, B “ ´Z1 ` αjZj ` αj`1Zj`1 . (2.2.18)

In this coordinate chart, the inequalities in eq. (2.2.17) are equivalent to αi, αi`1, αj, αj`1ą0

and therefore the canonical form is simply the d log form in all variables.5 Written pro-

jectively, this yields the expression for the canonical form (stripping off the measure

xABd2AyxABd2By)

ωpn,0,1q
“
ÿ

iăj

ωpi,jq
n ”

ÿ

iăj

xABp1ii`1qXp1jj`1qy2

xAB1iyxAB1i`1yxABii`1yxAB1jyxAB1j`1yxABjj`1y
, (2.2.19)

where p1ii`1qXp1jj`1q is the line in which the planes p1ii`1q and p1jj`1q intersect.6

By construction, each term in this expansion is associated with a non-overlapping piece

of the amplitude; in other words, this collection of cells provides an honest triangulation

by introducing term-wise spurious poles of the form xAB1iy in the denominator. The

fact that these individual sign-flip spaces are non-overlapping follows directly from

the observation that different Kermit cells differ by the signs of at least one of the

inequalities defining their regions.

Let us provide a simple concrete five-point example where there are three different

sign patterns with two sign-flips. Since the xAB12y and xAB15y brackets are forced to

be positive by the loop conditions in eq. (2.2.16), the three sign patterns are labelled
5For detailed discussions and numerous examples of going from inequalities to forms, see e.g. [58, 64].
6A review of the projective geometry relevant to this work is given in section 2.2 and appendix A.
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by the signs of xAB13y and xAB14y, i.e.,

pi, jq xAB12y xAB13y xAB14y xAB15y

(3,4) + + ´ +

(2,3) + ´ + +

(2,4) + ´ ´ +

. (2.2.20)

In the first column we indicate the locations pi, jq at which the sign flips occur, which

directly match the labels in eq. (2.2.19). Note that although all spaces are naïvely

defined by the same number of inequalities, in this table, the spaces where j “ i`1

are geometrically simpler than the generic case. To illustrate this point and make our

notion of “geometric boundaries” clear, we now consider the p3, 4q cell in more detail.

The analysis of the properties of this space is particularly amenable to the following

parametrization:

A “ Z2 ` wZ1 ` xZ5, B “ Z3 ` yZ1 ` zZ5. (2.2.21)

This choice of coordinates gauge-fixes xAB15y “ x1235y ą 0. Imposing xABii`1y ą 0,

xAB13y ą 0 and xAB14y ă 0 defines the p3, 4q Kermit space:

xAB12y “ ´xx1235y ą 0,

xAB23y “ pwz ´ xyqx1235y ą 0,

xAB34y “ ´yx1234y ` pwz ´ xyqx1345y ` zx2345y ą 0,

xAB45y “ ´yx1245y ` wx1345y ` x2345y ą 0,

xAB15y “ x1235y ą 0,

xAB13y “ ´zx1235y ą 0,

xAB14y “ x1234y ´ zx1245y ` xx1345y ă 0.

(2.2.22)

The codimension-one boundaries of this space correspond to localizing one (and only

one) of the variables w, x, y, z by setting one of the brackets in eq. (2.2.22) to zero.

However, not all of the inequalities in eq. (2.2.22) are boundaries. In particular, we will
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now demonstrate that setting either xAB12y Ñ 0, xAB23y Ñ 0, or xAB14y Ñ 0 leads

to an inconsistent set of inequalities in the three remaining variables, thus proving that

none of these brackets are geometric boundaries of the p3, 4q Kermit. First, consider

xAB12y Ñ 0 which, in our parametrization, corresponds to sending x Ñ 0. From

eq. (2.2.22), we have

xAB14y ÝÑ
xÑ0

x1234y ´ zx1245y ă 0, (2.2.23)

which implies that z ą x1234y{x1245y ą 0. This is inconsistent with xAB13y “

´zx1235y ą 0, which demands that z ă 0. Thus, xAB12y Ñ 0 is not a codimension-

one boundary of the space. Next, consider xAB23y Ñ 0, which can be parametrized as

w Ñ xy{z. In this case, the space defined by eq. (2.2.22) is equivalent to x, z ă 0 and,

after some algebraic manipulation,

xAB34y ÝÑ
wÑxy{z

´ yx1234y ` zx2345y ą 0,

xAB45y ÝÑ
wÑxy{z

ypxx1345y ´ zx1245yq ` zx2345y ă 0,

xAB14y ÝÑ
wÑxy{z

x1234y ´ zx1245y ` xx1345y ă 0.

(2.2.24)

The first inequality in eq. (2.2.24) together with z ă 0 implies that y ă 0. Multiplying

the third inequality in eq. (2.2.24) by y and adding zx2345y to both sides, we find

ypxx1345y ´ zx1245yq ` zx2345y ą ´yx1234y ` zx2345y ą 0, (2.2.25)

which is incompatible with the second inequality of eq. (2.2.24). Finally, consider

setting xAB14y Ñ 0, which corresponds to x Ñ pzx1245y ´ x1234yq{x1345y. In this

case, eq. (2.2.22) yields

xAB34y Ñ z p´yx1245y ` wx1345y ` x2345yq ą 0,

xAB45y Ñ ´yx1245y ` wx1345y ` x2345y ą 0,
(2.2.26)

which, together with z ă 0, are incompatible.

In contrast to the three examples just considered, it is straightforward to verify

that no such inconsistency is found upon setting either xAB34y Ñ 0, xAB45y Ñ 0 or
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xAB13y Ñ 0. Thus, these three brackets are geometric boundaries of the space defined

in eq. (2.2.22). In fact, xAB15y Ñ 0 is also a geometric boundary of the full projective

space; while this fact is obscured in our choice of gauge-fixing, it can be proven with

a similar argument as above by working in an alternative parametrization (which fixes

the sign of some other four-bracket).

Thus, the p3, 4q cell has four codimension-one boundaries xAB34y, xAB45y, xAB15y

and xAB13y which also correspond to the allowed poles in the associated canonical form.

An analogous argument holds for the p2, 3q cell, while the p2, 4q cell is a generic Kermit

with six accessible codimension-one boundaries. A straightforward computation yields

the following expressions for the canonical forms:

ω
p3,4q

5 “
x1345y2

xAB13yxAB34yxAB45yxAB15y
, ω

p2,3q

5 “
x1234y2

xAB12yxAB23yxAB34yxAB14y
,

ω
p2,4q

5 “
xABp123qXp145qy2

xAB12yxAB23yxAB13yxAB14yxAB15yxAB45y
. (2.2.27)

The spurious boundary xAB13y “ 0 cancels geometrically between the first and third

sign-flip terms in eq. (2.2.20). This can be seen in the parametrization of eq. (2.2.21)

by sending z Ñ 0 in both spaces, and observing that the contributions completely

overlap and therefore cancel. A similar analysis shows that the spurious boundary

xAB14y “ 0 cancels between the second and third space in eq. (2.2.20). Algebraically,

the cancellation of spurious poles can be observed between the corresponding forms in

eq. (2.2.27). We will see later that the algebraic cancellation of a spurious pole in the

form is not, in general, sufficient to imply a geometric cancellation of the corresponding

spurious boundary.

As indicated earlier, the one-loop MHV Amplituhedron space is a slice of a larger

“achiral” positive space given only by the xABii`1yą0 conditions. In the five-point

example, the achiral space allows for arbitrary signs of the “spurious-pole" brack-

ets xAB13y, xAB14y. This means that in addition to the three sign-flip patterns of

eq. (2.2.20), we have one additional sign-flip-zero space where both xAB13y and xAB14y

22



are positive,

xAB12y xAB13y xAB14y xAB15y

+ + + +
(2.2.28)

Having zero sign flips in the sequence txAB1iyu actually implies that all xABijy ą 0

are positive for any i ă j. The corresponding logarithmic form reproduces the five-

point MHV amplitude, and the t``u sign pattern is an example of the MHV space

discussed above and is directly related to the MHV space by parity conjugation. This

has a direct generalization to higher points: the MHV space has two sign flips in the

txAB1iyu sequence, while the MHV parity conjugate has zero sign flips. At higher

points, naïvely, there are additional subregions of the larger achiral space with more

than two sign-flips. For example, at six points we can have

xAB12y xAB13y xAB14y xAB15y xAB16y

+ ´ + ´ +
(2.2.29)

However, this combination of inequalities is an example of an empty space discussed

in subsection 2.2.1. In fact, it is known [58] that, for MHV external data, the same is

true for all spaces with more than two sign flips! Thus, remarkably the achiral space

can be cut into two (and only two) chiral subspaces, MHV and MHV, which have only

local boundaries of the form xABii`1y“0.

Note that the sign-flip-zero (MHV) space in the five-point example of eq. (2.2.28)

was not triangulated further into simpler subspaces (with spurious poles). Therefore,

the generalization of this space at n-points has n boundaries, while any individual

sign-flip-two region only has (up to) six codimension-one boundaries, as can be seen

from the Kermit canonical form in eq. (2.2.19). It is therefore natural to ask whether

or not we can analogously slice the sign-flip-zero region into simpler spaces with fewer

boundaries, just as we did with the Kermits for the sign-flip-two MHV pattern. This

slicing can be achieved by realizing that both MHV and MHV spaces are related by

parity, Za Ø Wa. In particular, the n-point MHV space has an equivalent definition as
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the sign-flip-two space in the Wa coordinates, i.e., two sign flips in the sequence

“MHV” positivity : xijkly ą 0 , for i ă j ă k ă l,

xABii`1y ą 0,

txAB12y, xAB13y, . . . , xAB1nyu has two sign flips,

(2.2.30)

where the xAB1iy term in the MHV sequence eq. (2.2.16) has been replaced by xAB1iy,

and p1iq denotes the intersection of the planes 1 “ ´pn12q and i “ pi´1ii`1q. By

expanding the intersections in the first and last brackets in this sequence, we see they

are invariant under conjugation (up to a factor that only depends on the external

data) and are therefore both positive as a consequence of xAB12y, xAB1ny ą 0. In

this definition, the MHV space is triangulated by the collection of sign-flip-two regions

of eq. (2.2.30), analogous to the Kermit triangulation of the MHV space. Using the

sequence of brackets in eq. (2.2.30), we can conversely define the MHV space as the

single sign-flip-zero region with all xABijy ą 0, for i ă j (always accounting for the

twisted cyclic symmetry when i “ 1 or j “ n).

While breaking up the MHV and MHV spaces into smaller regions using sign flips

is a useful triangulation strategy, we can also characterize them in a uniform way as

the sign-flip-zero regions in eq. (2.2.16) and eq. (2.2.30) respectively. In addition to

xABii`1y ą 0 and the k“0 conditions on the external data eq. (2.2.11), we get:

alternative MHV : xABijy ą 0, for all i ă j, (2.2.31)

alternative MHV : xABijy ą 0, for all i ă j. (2.2.32)

As we have seen, the Kermit expansion [125] of the MHV one-loop integrand in eq. (2.2.19)

is in one-to-one correspondence with the sign-flip representation of the Amplituhedron,

and it provides a very natural triangulation. We call this triangulation internal, em-

phasizing that it cuts the Amplituhedron into smaller pieces by introducing internal

(spurious) boundaries. Each geometric space associated to a Kermit lies inside the

Amplituhedron, but in addition to physical (Amplituhedron) boundaries it also has a
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number of spurious boundaries of the form xAB1iy “ 0, which cancel geometrically

when taking the collection of all Kermits. The analogs of Kermit expansions for higher

k and L have been found in [64], and they involve more complicated spurious poles

whose cancellations are nontrivial to demonstrate analytically.

MHV and MHV geometry and allowed singularity structure

As we have laid out in section 2.2 and appendix A, taking residues of one-loop inte-

grands in loop-momentum space is equivalent to localizing the line pABq to special

configurations with respect to the external pii`1q lines. On the other hand, imposing

a set of inequalities txABX1y ą 0, . . . , xABXry ą 0u, where the Xi are some lines (in-

volving external data) in P3, effectively slices the full configuration space of pABq into

smaller subspaces. A given subspace will generically contain a rather small subset of the

possible special configurations associated to cuts of the integrand. The constraint that

a cut-configuration of the loop line pABq be compatible with the inequalities defining

the positive geometry of interest becomes rather severe once we go deep into the cut

structure to, say, codimension-four boundaries. Checking the compatibility of certain

cut configurations and the geometric inequalities will then tell us which singularities

are physical and which ones are spurious.

Let us illustrate this point explicitly in the case of the MHV one-loop geometry.

As we discussed in eq. (2.2.16) and eq. (2.2.31), this space can be characterized by a

simple set of inequalities, xABii`1y ą 0 and xABijy ą 0 (together with the conditions

on the external data in eq. (2.2.10)). It is easy to verify that none of the codimension-

one (eq. (2.2.8)) or two configurations (listed in eq. (A.0.4) of appendix A) violate

any of these inequalities, so all of these singularities are physical. However, there are

two spurious codimension-three configurations which violate the MHV inequalities: the
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three-mass triple cut where pABq intersects three non-adjacent lines,

not allowed in MHV: Ø , (2.2.33)

as well as the configuration where pABq is in the plane piq and intersects a non-adjacent

line pkk`1q,

not allowed in MHV: Ø . (2.2.34)

To prove that the three-mass triple cut of eq. (2.2.33) lies outside of the MHV Am-

plituhedron, we first consider the simplest six-point case where this cut first arises,

xAB12y “ xAB34y “ xAB56y “ 0. This cut can be parametrized by setting

pABq “ ppZ1 ` xZ2q34qXppZ1 ` xZ2q56q

“ p134qXp156q ` xp134qXp256q ` xp234qXp156q ` x2
p234qXp256q,

(2.2.35)

where x parametrizes the intersection point of the lines pABq and p12q. Because this

cut is inconsistent with both the MHV and MHV geometries, the proof that this cut

configuration is spurious must follow directly from the inequalities which are valid in

both spaces. For this example, these are the three inverse propagators

xAB23y “ x1234ypx1356y ` xx2356yq ą 0,

xAB45y “ ´px1345y ` xx2345yqpx1456y ` xx2456yq ą 0,

xAB16y “ x1256yxpx1346y ` xx2346yq ą 0.

(2.2.36)
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This set of inequalities is equivalent to

´
x1345y

x2345y
ă x ă ´

x1346y

x2346y
and x ą ´

x1356y

x2356y
. (2.2.37)

Non-trivially, the upper bound on x in the first inequality is inconsistent with the

second lower bound given. Namely, by combining x ă ´x1346y{x2346y and x ą

´x1356y{x2356y we find, using the Schouten identity,

0 ă
x1356yx2346y ´ x1346yx2356y

x2346yx2356y
“ ´

x1236yx3456y

x2346yx2356y
ă 0, (2.2.38)

which is a contradiction. This proof crucially depends on the simple external data

positivity conditions relevant for the MHV and MHV spaces. The general three-mass

triple cut xABii`1y “ xABjj`1y “ xABkk`1y “ 0 can be shown to be spurious by

the obvious generalization of the parametrization of eq. (2.2.35), and the proof depends

only on the inequalities adjacent to the cut propagators.

In contrast, the codimension-four leading singularities are much easier to analyze,

as any inequality evaluated on such a configuration just reduces to a condition on the

external data. In fact, simply demanding compatibility of the inequalities defining the

MHV space eq. (2.2.31) evaluated on the leading singularity configurations listed in

appendix A with the positivity constraints on the external data eq. (2.2.10) is enough

to fix the positions of all MHV leading singularities to pABq “ pijq. Said differently, any

leading singularity not of this form will explicitly violate at least one of the inequalities

defining the MHV space. For example, at five points, the line p13q is an allowed leading

singularity, but its parity conjugate p13q “ ´p512qXp234q is not.

allowed in MHV: not allowed in MHV: (2.2.39)

From the inequalities point of view, this can be clearly seen by evaluating xAB24y “

xABp123qXp345qy on the forbidden leading singularity pABq “ p13q, which gives

xAB24y
ˇ

ˇ

p13q
“´xp512qXp234qp123qXp345qy“´x1235yx2345yx1234yă0, (2.2.40)
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and is incompatible with being inside the MHV Amplituhedron. This argument goes

through at n-points. The leading singularities of the form pijq, for i ă j, are allowed

precisely because of the nontrivial positivity conditions [54]

xABkℓy
ˇ

ˇ

pijq
“xijkℓyą0, for i ă j, (2.2.41)

while the parity conjugate lines pijq, as well as all other codimension-four configurations

listed in appendix A, are always inconsistent with at least one of the positivity con-

straints. Note that related analyses were performed in [82] in order to check admissible

Landau singularities in planar N “ 4 sYM.

2.2.4 Positivity and the dual Amplituhedron

The original idea of linking scattering amplitudes to projective geometry appeared

in the seminal work by Hodges [48] (which pre-dates the Amplituhedron) who showed

that the six-particle NMHV tree-level amplitude can be interpreted as the volume

of a polytope in dual momentum twistor space. Later it was shown that the same

amplitude can also be associated with a logarithmic differential form, Ω, directly in

momentum twistor space. It is this picture of amplitudes as differential forms with

logarithmic singularities that was later generalized to the Amplituhedron for all n, k,

and L. For many reasons, the original volume interpretation seems more fundamental

than thinking about amplitudes as differential forms. This led to the conjecture of the

existence of a dual Amplituhedron [54] whose volume calculates all scattering amplitudes

in planar N “ 4 sYM theory.

The only case for which we fully understand the volume interpretation, however,

remains the NMHV tree-level amplitude. There, both the Amplituhedron and the dual

Amplituhedron are certain polytopes in projective space P4 which are related by the

standard dualization procedure: vertices in the Amplituhedron space are mapped into

faces of the dual Amplituhedron, and similarly for other boundaries (codimension r

subspaces of the Amplituhedron map into codimension 5 ´ r ` 1 subspaces of the dual

Amplituhedron). It is not clear how to repeat the same procedure beyond NMHV
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(k ą 1) and/or at higher loops (L ą 0) where Amplituhedra are no longer polytopes

but rather their generalizations to Grassmannians and beyond [56].

Even without an explicit definition of the dual Amplituhedron, there are two impor-

tant properties which follow from its presumed existence. First, volumes are naturally

positive and therefore, we would expect that amplitudes exhibit a similar positivity

property. While the definition of the Amplituhedron is based on a set of positivity con-

ditions eq. (2.2.10) and eq. (2.2.12), nothing a priori predicts any positivity properties

of the differential form Ω. However, if the amplitude also has a volume interpretation,

then we expect that Ω is positive in some suitable sense. Indeed, it was shown in [54]

for many nontrivial examples that if we strip off the measure from Ω, i.e.

Ωpn,k,Lq
“ dµωpn,k,Lq , (2.2.42)

then the integrand ωpn,k,Lq (which is just the scattering amplitude) is in fact positive

if evaluated inside the positive region for both Za and Li “ pABqi. The positivity of

ωpn,k,Lq therefore serves as indirect evidence for the existence of a dual Amplituhedron

and the volume interpretation of scattering amplitudes,

ωpn,k,Lq
“

ż

rA
dV. (2.2.43)

where rA is the dual Amplituhedron space and dV is the appropriate volume form. An

important clue on how to proceed in the search for the dual Amplituhedron is to inves-

tigate whether or not positivity is respected in the context of different triangulations

of the Amplituhedron. Despite the fact that the full integrand ωpn,k,Lq is positive inside

the positive region, individual terms in e.g., the BCFW triangulation of An,k,L do not

have definite signs inside the positive space. While individual BCFW terms internally

triangulate the Amplituhedron, in the dual picture, they get mapped to spaces that

are partially outside of the dual Amplituhedron and therefore do not have a uniform

sign. This is easiest to understand with a simple toy example of a quadrilateral in the

projective plane:
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ÐÑ
dual to

(2.2.44)

“

+

ÐÑ
dual to

“ ´

The two triangles with vertices (123) and (134) triangulate the quadrilateral, but in the

dual picture they correspond to triangles which lie partially outside of the dual quadri-

lateral. Therefore, while the triangles on the left-hand-side of (2.2.44) give an internal

triangulation of the original space via the line p13q, in the dual picture, this corresponds

to an external triangulation with an external triangulation point p13q that is outside

the dual space. In the same sense, internal triangulations of the Amplituhedron are

expected to externally triangulate the dual Amplituhedron.

In particular, the Kermit expansion of MHV amplitudes internally triangulates

the one-loop Amplituhedron [56] and—following our discussion above—is expected to

externally triangulate the putative dual Amplituhedron. This external triangulation

of the dual space therefore suggests that individual Kermits will not be positive term-

wise (after stripping the measure) despite the positivity of the full one-loop integrand.

We can see this non-positivity directly by looking at the denominators of the kermit

forms: each Kermit contains denominator factors like xAB1iy which do not have a

fixed sign inside the Amplituhedron. Consequently, for fixed positive external data and

an arbitrary point pABq inside the MHV one-loop Amplituhedron, the stripped forms
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ω
pi,jq
n in eq. (2.2.19) can have arbitrary signs.

It is very natural to ask about a term-wise positive expansion of the amplitude,

which geometrically would provide an internal triangulation of the putative dual Ampli-

tuhedron. While we will not definitively establish the existence of a dual Amplituhedron

in this chapter, it is easy to at least find a term-wise positive expansion of the ampli-

tude. A priori, any such candidate expansion must have only local poles, xABii`1y

as only these terms have fixed signs, and in addition the numerator factors must be

uniformly positive inside the Amplituhedron. As it turns out, the right candidate is

the chiral pentagon expansion [41, 50, 123]7

ωpn,0,1q
“
ÿ

iăj

ω
pnq

ij “
ÿ

iăj

“
ÿ

iăj

x1ijnyxABijy

xABi´1iyxABii`1yxABj´1jyxABjj`1yxAB1ny
.

(2.2.45)

As a consequence of the MHV loop-positivity eq. (2.2.31), together with the positivity

of external data xijkly ą 0 (for i ă j ă k ă l) in eq. (2.2.11), it can be seen that all four-

brackets in eq. (2.2.45) are manifestly positive, including the loop-momentum depen-

dent part of the numerator. Based on this positivity property of individual terms, the

natural conjecture is that these chiral pentagons internally triangulate the dual Ampli-

tuhedron (but externally triangulate the original Amplituhedron). In our quadrilateral

analogy, this would correspond to introducing a spurious triangulation point p12qXp34q

7In the representation here, we have singled out a particular propagator xAB1ny that appears in
all diagrams and will also take a special role in our geometric considerations below. Furthermore, we
point out that the chiral pentagon expansion contains various “boundary” terms that correspond to
one-mass, and two-mass-hard box integrands. This should be contrasted to the older representations of
one-loop n-point MHV amplitudes [2] in terms of two-mass easy boxes that only match the parity-even
sector at the integrand level but are of course equivalent upon loop integration.

31



outside the quadrilateral,

“ ´ ÐÑ
dual to

“ (2.2.46)

While the chiral pentagons have only physical codimension-one poles xABii`1y (we

also refer to them as local poles), their higher codimension singularities are not all

physical. For example, the generic chiral pentagon eq. (2.2.45) has a non-zero residue

at the leading singularity location pABq “ pijj`1qXpin1q, which is not a physical

leading singularity of MHV amplitudes and corresponds to a cut solution labeled by

the following on-shell function8

Ø (2.2.47)

As we will show, in the original Amplituhedron geometry this means that all codimension-

one boundaries are given by physical xABii`1y “ 0 singularities analogous to the lines

pi i`1q in eq. (2.2.46), whereas higher codimension boundaries can be spurious (such

as the spurious triangulation vertex p12qXp34q). In the dual picture, some of the first

boundaries of chiral pentagon spaces are spurious, analogous to the spurious triangu-

lation line of our quadrilateral example on the right-hand-side of eq. (2.2.46).

2.3 Geometry of d log forms

In this section we lay the groundwork for further study of the relation between

positive geometry and local triangulations of the Amplituhedron. As a first step, we
8Here, we make use of on-shell functions to label solutions to on-shell conditions and not the value

of field theory cuts. This dual meaning of on-shell functions is common in the literature, see e.g. [126].
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need to associate a geometric region to a particular local loop-integrand form. The

most natural starting point for such an endeavour is the d log representation of local

integrands.

2.3.1 d log forms for pentagon integrands

It is our goal to associate a “local” positive geometry to each chiral pentagon and

explore how they glue together into a larger geometric object. In a subsequent step, we

define these new objects and find their connection to the Amplituhedron in section 2.5.

Starting from the local representation of the one-loop MHV amplitude eq. (2.2.45), our

only input information is the rational pentagon integrand. Due to the natural con-

nection between d log forms and positive geometry, we therefore rewrite the integrands

appearing in eq. (2.2.45) as d log forms [47],

Ω
pnq

ij “ xAB d2AyxAB d2Byω
pnq

ij “ d log f1 d log f2 d log f3 d log f4 , (2.3.1)

where we suppress the wedge notation for differential forms and fj are ratios of four-

brackets (to be specified in eq. (2.3.3)). We would like to interpret this d log form as

the form with logarithmic singularities on a region which has fixed signs of all fj. In

particular, each fj can be either positive or negative which leads to 24 “ 16 different

regions that each have the same d log form. Furthermore, the change of variables

eq. (2.3.1) is not unique and there are many different looking d log forms that all have

the same rational form appearing in eq. (2.2.45).

For the massless scalar box integral, which can be viewed as a particular n “ 4

degeneration of the chiral pentagon, there are at least two different d log forms,

Ω
p4q

23 “ “
xABd2AyxABd2Byx1234y2

xAB12yxAB23yxAB34yxAB14y
(2.3.2)

“ d log
xAB12y

xABXy
d log

xAB23y

xABXy
d log

xAB34y

xABXy
d log

xAB14y

xABXy

where we can choose between the two solutions of the quadruple cut, X “ p13q or

X “ p24q. For X “ p13q the d log form eq. (2.3.2) explicitly depends on xAB13y.
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Therefore, one might worry that this spurious pole could show up in the rational form.9

However, by construction, the d log form cannot have xAB13y or xAB24y as an actual

singularity. Algebraically, the absence of the spurious poles from the rational integrand

derived from the d log form eq. (2.3.2) follows from non-trivial kinematic identities.

For more complicated integrands, various alternative d log forms for the same ra-

tional integrand might look remarkably different. This is also the case for the generic

chiral pentagon we discuss next. One particular d log form for this integrand has been

written down in ref. [47] which manifestly breaks the ij flip symmetry of the diagram,

Ω
pnq

ij “ “
xABd2AyxABd2Byx1ijnyxABijy

xABi´1iyxABii`1yxABj´1jyxABjj`1yxAB1ny
(2.3.3)

“ d log
xABi´1iy

xABn1y
d log

xABii`1y

xABn1y
d log

xABj´1jy

xABpin1qXjy
d log

xABjj`1y

xABpin1qXjy
,

with an analogous expression for i Ø j. Here, we present a new d log form for Ω
pnq

ij :

Ω
pnq

ij “d log
xABi´1iy

xABii`1y
d log

xABj´1jy

xABjj`1y
d log

xABpn1iqXpij‹qy

xAB1ny
d log

xABpn1jqXpij‹qy

xAB1ny
,

(2.3.4)

where ‹ corresponds to an arbitrary point in momentum twistor space. It is a highly

non-trivial statement that the integrand form does not depend on the choice of ‹. Let

us point out that our new d log representation in eq. (2.3.4) has two nice features: piq

it is manifestly ij symmetric, and piiq it makes the fact that the integrand vanishes

for pABq P pi´1ii`1q or pABq P pj´1jj`1q obvious since e.g. only one d log blows up

on this cut – xABi´1iy and xABii`1y appear together in one ratio – and this is not

enough to produce a non-zero residue. However, the other solution of the double cut

xABi´1iy “ xABii`1y “ 0, which is A “ i, does produce a non-zero residue because
9The presence of spurious poles in the arguments of d log’s is a very general feature, and in fact is

relevant for understanding simplified differential equations based on d log integrands [127].
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xABpn1iqXpij‹qy also vanishes. In the simplest five-point case, the d log form reads

Ω
p5q

24 “ “
xAB d2AyxAB d2Byx1245yxAB24y

xAB12yxAB23yxAB34yxAB45yxAB15y
(2.3.5)

“ d log
xAB12y

xAB23y
d log

xAB34y

xAB45y
d log

xABp512qXp243qy

xAB15y
d log

xABp514qXp243qy

xAB15y
,

where we have chosen the special point ‹ “ 3.

Similar to the chiral pentagon expansion of the MHV amplitude in eq. (2.2.45),

we can write an analogous formula for the MHV amplitude where the pentagon with a

wavy-line numerator is replaced by a dashed-line numerator of opposite chirality,

ωpn,n´2,1q
“
ÿ

iăj

ω
pnq

ij “
ÿ

iăj

“
ÿ

iăj

x1ijny xABijy

xABi´1iyxABii`1yxABj´1jyxABjj`1yxAB1ny
.

(2.3.6)

and all statements about the “MHV" pentagons can be readily transferred to the

“MHV" pentagons as well. For completeness, we write a novel symmetric d log form

for Ω
pnq

ij obtained by dualizing eq. (2.3.4),

Ω
pnq

ij “ (2.3.7)

“d log
xABi´1iy

xABii`1y
d log

xABj´1jy

xABjj`1y
d log

xABppn1qXiqp‹XjXiqy

xAB1ny
d log

xABppn1qXjqp‹XiXjqy

xAB1ny
,

where ‹ “ px1x2x3q is an arbitrary plane.

Besides the two chiral pentagons appearing in eq. (2.3.3) and eq. (2.3.6), there

is one additional pentagon that will play an important role, namely the parity-odd

pentagon. In momentum space its numerator is proportional to the Levi-Cevita tensor
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and evaluates to zero upon integration over real Minkowski space. In momentum twistor

space, the parity-odd numerator is the difference of two chiral numerators

Nodd
ij “ xABijyx1ijny´xAB ijyx1ijny. (2.3.8)

The relative minus sign between the the wavy and dashed numerators is necessary for

the integrand to be unit on all codimension-four residues; a relative plus sign would

give some leading singularities equal to ˘2, rather than ˘1. The denominator of the

parity-odd pentagon is the same as in eq. (2.3.3). The d log form for this integral is

very simple and involves only physical propagators:

Ω
pnq,odd
ij “ d log

xABi´1iy

xAB1ny
d log

xABii`1y

xAB1ny
d log

xABj´1jy

xAB1ny
d log

xABjj`1y

xAB1ny
, (2.3.9)

where we could also reshuffle the propagators that appear in the denominator. The fact

that only propagators appear as d log arguments also leads to a simple understanding

of why this integral evaluates to zero from a differential equation point of view [127].

The difference of MHV and MHV amplitudes is the parity-odd amplitude, which

integrates to zero on the parity invariant contour. However, it will play a very important

rôle in our further discussion. Combining the expansions eq. (2.2.45) and eq. (2.3.6), we

see that the chiral numerators combine precisely into the numerator Nodd
ij of eq. (2.3.8)

and we get a sum of parity-odd pentagons

ωodd
“
ÿ

iăj

´

ω
pnq

ij ´ω
pnq

ij

¯

“
ÿ

iăj

¨

˚

˚

˚

˝

´

˛

‹

‹

‹

‚

“
ÿ

iăj

Nodd
ij

xABi´1iyxABii`1yxABj´1jyxABjj`1yxAB1ny
.

(2.3.10)

Note that all “boundary terms" (i.e. j “ i`1) cancel between the MHV and MHV

sectors in this expansion so that there are no parity-even box integrals remaining.

Therefore, the sum is zero at four points, gives one parity-odd pentagon at five points,

and so on.
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2.3.2 From d log’s to geometry

In the usual Amplituhedron setup, we start with a positive geometry, and from it

calculate the canonical form with logarithmic singularities on its boundaries. However,

in our case the situation is reversed: we have the d log form for e.g. the pentagon

integrand in eq. (2.3.3) or eq. (2.3.4), but we do not a priori know the correct geometric

space associated to that differential form, let alone whether or not there is even a unique

answer to that question. By construction, any space defined by demanding definite signs

for the ratios of the arguments of each d log in e.g., eq. (2.3.4) gives some geometry

with the appropriate canonical form. More generally, if we start with a d log form

Ω “ d log f1 d log f2 d log f3 d log f4 (2.3.11)

there are 24 “ 16 geometric spaces associated to it via the inequalities

f1 ž 0, f2 ž 0, f3 ž 0, f4 ž 0 . (2.3.12)

Each d log fi factor is the correct form for both inequalities fi ą 0 and fi ă 0, up to a

sign. (If we did not impose any restrictions on fi, the form would vanish as there are

no boundaries.)

Faithful geometries and d log forms

As we have alluded to above, starting from a rational form of the integrand that only has

logarithmic singularities there are often numerous ways to change variables to bring the

integrand into a d log form. For the simple four-point box integrand, we found at least

two solutions specified by the choice of xABXy in eq. (2.3.2). Likewise, for the chiral

pentagons, we also have at least two alternative d log forms in eqs. (2.3.3) and (2.3.4).

Combining this multitude of d log forms with the 16-fold multiplicity of geometric spaces

associated to a given one-loop form encoded in the choice of inequalities in eq. (2.3.12),

it is not hard to imagine that the number of possible geometric spaces associated to a

given integrand quickly grows. It is therefore natural to ask, whether or not there exist
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any special subsets of geometries that have certain desirable properties. Here, and in

the following, we are going to argue for faithful geometries.

What we mean by faithful geometries is the following: for our purposes, simply

getting the correct canonical form is insufficient—we also require the correct boundary

structure of the geometric space itself. Concretely, we demand that all boundaries of

the geometry show up as poles in the form, and furthermore that these are the only

boundaries. (Note that looking at the entries of the d log forms can be misleading as

certain entries of the d logs are in fact not poles of the form. If one were to compute

the residue on such a pole, one in fact finds zero. The simplest example of this is

xABXy in eq. (2.3.2). This bracket is manifestly absent in the rational representation

of the form so that it is clear that there is no singularity at this location.) Checking

the “faithfulness” of a given geometry is more intricate and requires a detailed analysis

similar in spirit to the discussion of the geometric boundaries of the kermit expansion

in section 2.2.3. As we will explain shortly, there are “rare” cases of d log forms that

give rise to faithful geometries, i.e., there is at least one set of inequalities akin to

(2.3.12) for which the resulting geometry only has the geometric boundaries appearing

as singularities of the form and no others. These are the spaces of our interest in this

chapter.

The presence of a boundary in the geometry which does not appear as a corre-

sponding pole in the integrand form might seem strange, but this is in fact one of the

defining features of Grassmannian geometry. As a simple example, consider the four-

point box integral in eq. (2.3.2). As shown earlier, one version of the d log form contains

the xABXy “ xAB13y bracket while the rational integrand form does not. This d log

form naively implies that there are 24 “ 16 different geometries, reflecting the various

sign choices for the four ratios of brackets. Geometrically, each choice would give rise

to the same d log form. However, these 16 geometries are all different, and some of

them actually have xAB13y “ 0 as a boundary despite its absence in the differential
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form. One concrete example of this occurs for the following sign choice10

xAB12y

xAB13y
ą 0,

xAB23y

xAB13y
ą 0,

xAB34y

xAB13y
ą 0,

xAB14y

xAB13y
ă 0. (2.3.13)

We can always fix one of the brackets to have a definite sign, as the only relevant

information is encoded in the ratios. Fixing the sign of xAB12y ą 0 then implies

that all four-brackets appearing in eq. (2.3.13) are positive, except for xAB14y, which

is negative. The geometric region associated to the sign choice eq. (2.3.13) still has

eq. (2.3.2) as the logarithmic form, but geometrically we can now access the xAB13y “ 0

boundary without violating any of the inequalities. We can see this fact explicitly in

coordinates: expanding ZA “ Z3`xZ1`yZ2, and ZB “ Z4`zZ1`wZ2 the inequalities

eq. (2.3.13) are equivalent to

x ą 0, y ă 0, w ą 0, pxw ´ yzq ą 0. (2.3.14)

In this parametrization we have xAB13y “ ´yx1234y, so accessing the boundary cor-

responds to setting y Ñ 0. In this case, the only remaining inequality sensitive to this

choice is xw ´ yz Ñ xw ą 0, which is clearly consistent with x,w ą 0. Therefore,

xAB13y “ 0 is an accessible boundary of the geometry. Since this singularity is absent

in the differential form, we conclude that this geometry is not faithful according to our

definition above.

However, if we instead choose the geometric space where all ratios appearing in

eq. (2.3.13) are positive, in the parametrization above the space becomes

x ą 0, y ă 0, w ă 0, pxw ´ yzq ą 0 , (2.3.15)

i.e., we now have the opposite sign for w ă 0. This time, sending y Ñ 0 yields the

three inequalities x ą 0, w ă 0 and xw ą 0, which are clearly incompatible, thus

demonstrating that y “ 0 (and therefore xAB13y “ 0) is not a geometric boundary
10Let us note that for the ‘local spaces’ we define in this chapter, we do not insist on xABii`1y ą 0

which was a crucial part of the Amplituhedron definition (2.2.12). We comment on this in section
2.3.3.
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of the space. According to our definition above, we would call the positive geometry

associated to this choice of inequalities faithful.

In summary, we see that each d log form gives rise to a large set of geometric spaces

(one for each sign choice of the ratios of four-brackets appearing in the d log form) which

all have the same integrand form. However, only a subset of these spaces are free of

unphysical boundaries. For admissible (faithful) positive geometries, we demand that

all boundaries of the space are directly reflected in the pole structure of the integrand

form. This is true for the Amplituhedron, and we want to preserve this property here.

Faithful geometries from the chiral pentagon d log form

For the generic chiral pentagon of eq. (2.3.3), we found two possible d log forms in

eqs. (2.3.3) and (2.3.4). Starting with the original d log form in eq. (2.3.3) and checking

the boundary structure of the 24 geometries arising from the respective sign choices

for the entries of the d logs, we find that none of these spaces gives rise to a faithful

geometry, i.e., these spaces always have certain additional geometric boundaries that

do not appear as singularities of the form and are therefore unacceptable to us.

This encourages us to consider our novel d log form presented in eq. (2.3.4). While

the rational integrand in eq. (2.3.3) does not have the spurious poles xABpn1iqXpij‹qy or

xABpn1jqXpij‹qy, certain sign choices for the arguments of the d log form in eq. (2.3.4)

do lead to geometric spaces with boundaries when pABq intersects the lines pn1iqXpij‹q

or pn1jqXpij‹q. Only the special sign combinations where the spurious boundaries are

geometrically absent are of our interest. In this case, there are exactly two choices

of signs for the ratios of four-brackets in the d log form eq. (2.3.4) which do have

the correct boundary structure to represent a faithful geometry. The two possibilities

correspond to choosing the reference point Z‹ to be either in the set Z‹Pti`1, . . ., j´1u,

or Z‹Pt1, . . . , i´1uYtj`1, . . . , nu.11 In the first case, Z‹ P ti`1, . . . , j´1u, we find a
11Here, we restrict ourselves to simple momentum twistor choices for Z‹ that are already part of

the diagram. We do not exclude the possibility that there may exist more complicated choices that
yield additional choices satisfying our boundary structure criterion. Furthermore, it is also possible
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consistent geometry defined by the following set of inequalities
"

xABi´1iy

xABii`1y
ă0,

xABj´1jy

xABjj`1y
ă0,

xABpn1iqXpij‹qy

xAB1ny
ă0,

xABpn1jqXpij‹qy

xAB1ny
ą0

*

. (2.3.16)

We fix the sign of xAB1ny ą 0 which in turn fixes the signs for the brackets with

intersections, but leaves four options for the signs of the four individual propagator-

type brackets, txABi´1iy, xABii`1y, xABj´1jy, xABjj`1yu. As a result, the first

consistent chiral pentagon space is a union of four sign patterns:

P
p1q

ij Ø

xABi´1iyxABii`1yxABj´1jyxABjj`1yxAB1nyxABXiyxABXjy

´ + ´ + + ´ +

+ ´ ´ + + ´ +

´ + + ´ + ´ +

+ ´ + ´ + ´ +

(2.3.17)

where we denoted Xi “ pn1iqXpij‹q and Xj “ pn1jqXpij‹q.

The second consistent option we found is to pick ‹ P t1, . . . , i´1u,12 together with

the following signs for the ratios of four-brackets in the d log form eq. (2.3.4)
"

xABi´1iy

xABii`1y
ă0,

xABj´1jy

xABjj`1y
ă0,

xABpn1iqXpij‹qy

xAB1ny
ą0,

xABpn1jqXpij‹qy

xAB1ny
ą0

*

. (2.3.18)

One can check that out of the four possibilities for the signs of individual four-brackets

consistent with the ratios eq. (2.3.18), only one region is actually non-empty, and we

get

P
p2q

ij Ø
xABi´1iyxABii`1yxABj´1jyxABjj`1yxAB1nyxABXiyxABXjy

´ + + ´ + + +
(2.3.19)

When some legs of the pentagon become massless, there are degenerate configurations

which allow more sign choices in the d log form eq. (2.3.4) than in the generic case.

that there are other representations of the chiral pentagon d log form that opens up yet more options.
It would be interesting to prove exhaustively what the set of the most general geometries that can
consistently be assigned to the pentagon integrand are.

12In fact, we can also choose ‹ P tpj`1, . . . , nu, for which the inequalities of the last two ratios in
eq. (2.3.18) flip sign. For this option the geometric space is identical to the one defined by eq. (2.3.18).
As such, it is just a different representation of the same geometry.
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However, upon gluing different integrands, none of these choices lead to a global geom-

etry which is free of spurious boundaries. We return to this point in greater detail in

section 2.5 as well as appendix A.3.

Faithful geometries from the box d log form

A particular degeneration of the chiral pentagon in eq. (2.2.45) leads to the two-

mass-hard integral which arises as a special case, j “ i`1. The d log form for the

general box integral is similar to eq. (2.3.2). In the context of the two-mass-hard box,

it reads

Ω
pnq

ii`1 “ “
xABd2AyxABd2Byxi´1ii`1i`2yx1ii`1ny

xABi´1iyxABii`1yxABi`1i`2yxAB1ny
(2.3.20)

“ d log
xABi´1iy

xABXy
d log

xABii`1y

xABXy
d log

xABi`1i`2y

xABXy
d log

xAB1ny

xABXy
,

where X is one of the two solutions of the quadruple cut of the box,

Ø Xi “ pii`1i`2qXpin1q, or Ø Xi`1 “ pi´1ii`1qXpi`1n1q .(2.3.21)

We now repeat the same exercise as for the chiral pentagon and determine the consistent

positive geometries associated to this d log form. As it turns out, fixing one of the signs

of the brackets involving either Xi or Xi`1 is sufficient to specify the space, as one

inequality automatically enforces the other. Fixing xAB1ny ą 0 then forces xABXy to

have a definite sign depending on the sign of the ratio in the last d log. We find two

different consistent sign choices for the ratios of the d logs in eq. (2.3.20), both of which

have fixed signs for the xABii`1y brackets of the diagram. The first region is given by:

B
p1q

1i´1,i`2n Ø
xABi´1iyxABii`1yxABi`1i`2yxAB1nyxABXiyxABXi`1y

´ + ´ + + ´

(2.3.22)
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Consistent with the statements above, let us reiterate that fixing the sign of only one of

the brackets xABXiy or xABXi`1y together with the signs of the propagator brackets

is sufficient to fix the region; the sign of the other bracket is implied by the rest.

The second allowed region has the same signs as in eq. (2.3.22) for the first four

brackets, but the signs for xABXiy ă 0, xABXi`1y ą 0 are flipped.

B
p2q

1i´1,i`2n Ø
xABi´1iyxABii`1yxABi`1i`2yxAB1nyxABXiyxABXi`1y

´ + ´ + ´ +
(2.3.23)

Note that the union of the two regions eq. (2.3.22) and eq. (2.3.23) constitutes a larger

achiral geometric region defined only by the first four inequalities with no constraints

on xABXiy and xABXi`1y. The canonical form for this achiral region trivially vanishes

because four inequalities are insufficient to produce a non-trivial d log form (simply

because we cannot form four independent ratios). Therefore, this achiral space is a

particular example of a zero-form space defined in subsection 2.2.1. The larger space

can be sliced into two subspaces by fixing the sign of xABXiy, corresponding to exactly

the two chiral subspaces we found in eq. (2.3.22) and eq. (2.3.23). Because the form

for the achiral space vanishes, both subspaces have the same form (up to a sign). We

can once again illustrate this feature of zero-form spaces with a simple two-dimensional

example in the xy-plane. The space defined by ´8 ă x ă 8, 0 ă y ă b has zero

canonical form, so cutting the space into two pieces with x ž a, the respective canonical

forms Ωă,Ωą differ only by a sign:

.

ÝÑ
slicing

(2.3.24)

Ω “ 0dddddddddddddi ÝÑ Ωă ` Ωą “
dx dy

px´aqypy´bq
´

dx dy

px´aqypy´bq

We can also use an alternative d log form representation for the box integrand derived

directly from the degeneration of the chiral pentagon eq. (2.3.4) by setting j “ i`1.
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For this leg configuration, the integrand form eq. (2.3.3) naïvely generates a double

pole xABii`1y in the denominator. However, the chiral numerator exactly cancels one

power of this pole so that we end up with a two-mass-hard box. The resulting d log form

obtained by this procedure has different arguments than eq. (2.3.20), but reproduces

the same rational integrand. This is in complete agreement with our earlier statements

about the non-uniqueness of d log representations.

If we repeat the exercise of subsection 2.3.2 to associate consistent geometric regions

with the appropriate boundary structure to the d log form, we find exactly the same ge-

ometric regions as in eq. (2.3.22) and eq. (2.3.23), albeit described by different inequali-

ties. The brackets involving the lines Xi “ pn1iqXpii`1‹q and Xi`1 “ pn1i`1qXpii`1‹q

inherited from the pentagon simply provide an equivalent description of the same

spaces. Once again, this simply reflects the non-uniqueness of the d log form of an

integrand, and emphasizes that demanding we get the geometry correct (rather than

just the form) is a very strong constraint. More generally, we expect (but have no

proof) that alternative d log forms for the local integrals discussed in this section will

not yield any new consistent geometries.

In addition to the two-mass hard box discussed above, the only other box topology

relevant for the local expansion eq. (2.2.45) are “one-mass” boxes. The first of these

arises as a boundary term when i “ n´2, j “ n´1. The second one-mass box is

a degeneration of the pentagon when i “ 2, j “ 3, and can be obtained by trivial

relabelling.

B1n´3 “ , B4n “ . (2.3.25)

The one-mass geometries with the correct boundary structure can be specified by impos-

ing conditions on the propagators appearing in the diagram, as well as one bracket in-

volving (one of) the solutions to the quadruple cut. Thus, for e.g., B1n´3 in eq. (2.3.25)
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we can define the space by correctly choosing the signs of

txABn´3n´2y, xABn´2n´1y, xABn´1ny, xAB1nyu and xABn´2ny. (2.3.26)

In the two-mass hard case there was only one choice of signs for the list of propagators

i.e., eq. (2.2.29) and eq. (2.3.23) differed only in the signs of the brackets xABXiy and

xABXi`1y. In the one-mass case, both sign choices for the bracket xABn´2ny are also

allowed. In addition, there are two allowed choices for the signs of the sequence of

brackets in eq. (2.3.26) which are geometrically free of spurious boundaries—giving a

total of four consistent spaces. The first two can be written compactly as

B
p1,2q

1n´3 Ø
xABn´3n´2yxABn´2n´1yxABn´1nyxAB1nyxABn´2ny

` ´ ´ ` ˘

, (2.3.27)

while the second pair of solutions is

B
p3,4q

4n Ø
xABn´3n´2yxABn´2n´1yxABn´1nyxAB1nyxABn´2ny

´ ` ´ ` ˘

. (2.3.28)

In subsections 2.5.3 and 2.5.4 we consider the problem of combining the geometries

associated to individual terms in the chiral pentagon expansion of the MHV one-loop

integrand eq. (2.2.45). A priori, we have no reason to prefer any one of the individ-

ually well-defined spaces we have just constructed. Remarkably, however, as we shall

demonstrate in section 2.5, it turns out that demanding a sensible global geometry

whose boundary structure is identical to that of the original Amplituhedron is restric-

tive enough to give a unique choice for the one-mass, the two-mass hard, as well as the

chiral pentagon spaces subject to the assumption that we treat all graph isomorphic

topologies in a uniform way.

Faithful geometries from the chiral hexagon d log form

In this subsection, we consider the problem of assigning faithful geometries to

logarithmic forms more generally. The first example which goes beyond the results of
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the previous two subsections is the chiral hexagon,

Ωhex “ “
xABd2AyxABd2By xAB24yxAB51y

xAB12yxAB23yxAB34yxAB45yxAB56yxAB16y
. (2.3.29)

To identify some candidate geometries the most natural starting point is, as we have

seen, a rewriting of this integrand as a single d log form. For integrals with more

than five local poles, any such form must involve at least one ratio in which both

the numerator and denominator depend quadratically on pABq. For the hexagon of

eq. (2.3.29) our starting point is a novel expression which is a single d log form,

Ωhex “ d log
xAB13y

xAB23y
d log

xAB34y

xAB45y
d log

xAB46y

xAB56y
d log

xAB23yxAB16y

xAB12yxAB36y
. (2.3.30)

Demanding that the geometry defined by sign conditions on the four ratios in this ex-

pression be faithful requires that the three codimension-one loci xAB13y“0, xAB46y“0

and xAB36y“0 do not appear as boundaries of the space. There are two sign choices

which accomplish this:

Hp1q
“

"

xAB13y

xAB23y
ă 0,

xAB34y

xAB45y
ă 0,

xAB46y

xAB56y
ă 0,

xAB23yxAB16y

xAB12yxAB36y
ą 0

*

, (2.3.31)

Hp2q
“

"

xAB13y

xAB23y
ă 0,

xAB34y

xAB45y
ă 0,

xAB46y

xAB56y
ą 0,

xAB23yxAB16y

xAB12yxAB36y
ą 0

*

. (2.3.32)

Decomposing Hpiq into subspaces where all brackets appearing in the ratios have fixed

sign, we naïvely generate a considerable number of non-overlapping regions. Although

this is indeed the case for Hp2q, the first solution is surprisingly equivalent to a single

region described by significantly simpler inequalities

Hp1q
“

!

xAB12y ă 0, xAB23y ą 0, xAB34y ą 0, xAB45y ă 0,

xAB56y ą 0, xAB16y ą 0, xAB14y ă 0
)

,
(2.3.33)

which will arise in a different context in section 2.4 below.
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2.3.3 No-go theorem for external triangulation

In all previous cases, assigning a sensible (faithful) geometric space to a given d log

form led us to consider situations where at least a subset of signs of xABii`1y were

negative. In particular, for all faithful geometries of the local integrands, we did not

encounter any region for which all such brackets were positive. On the other hand, the

Amplituhedron itself is defined with all xABii`1y ą 0, and is cut further either by the

sign-flip conditions in eq. (2.2.10) or by the positivity of xABijy ą 0 in eq. (2.2.31).

This means that all geometric regions we discussed in the context of the chiral pentagon

expansion are outside the Amplituhedron.

It is actually very easy to see that even if there was some other d log representation

for the pentagon or boxes, with correspondingly different geometric regions, they can

not possibly be even partially inside the Amplituhedron space for the following reason:

In order to fix, e.g., the MHV (or MHV) Amplituhedron space, we need to specify n´3

conditions in addition to the positivity of all xABii ` 1y ą 0. While there are many

equivalent ways how to express these conditions, e.g., via sign flips in the sequence

txAB1iyui“2,...,n, or via sign flips in the sequence txAB2iyui“3,...,n,1, or via the positivity

of xABijy ą 0, we always need at least n ´ 3 of them. This number is irreducible and

cannot be decreased. If we attempted to specify fewer conditions, the resulting space

would lie inside the Amplituhedron, alas it would contain spurious boundaries. One

example of this scenario is given by the individual sign-flip spaces associated to the

BCFW Kermits eq. (2.2.19). The unique space with only physical boundaries inside

the Amplituhedron is the whole Amplituhedron itself, and can not be cut into smaller

spaces with purely physical boundaries.

A natural follow-up question is whether or not the Amplituhedron can be contained

inside a space whose logarithmic form is given by the chiral pentagon or the box. While

the logarithmic form for the Amplituhedron is generally very complicated, combining

the Amplituhedron space with many other spaces outside can lead to a simpler space

whose form can be as simple as that of the chiral pentagon or the box. In our two-
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dimensional geometry toy example in subsection 2.2.4, this is precisely what happened

in the external triangulation of the quadrilateral on the left-hand-side of eq. (2.2.46).

There, adding a triangle outside the space gave rise to a larger triangle, for which the

logarithmic form would be simpler than the one for the quadrilateral itself. So the

question is whether or not we can replicate something similar for the Amplituhedron.

For the simplest five-point case, the answer is yes. For n ą 5, however, this is no

longer true and there is no consistent local space based on the pentagon d log form which

contains the Amplituhedron space. This can be understood heuristically by noting that

in the n-point case, to define pentagon geometries that contain the amplitude we would

need n ´ 3 extra conditions, analogous to the intersections appearing in eq. (2.2.31).

However, the d log form of the pentagon contains only four ratios of brackets, indicating

that the set of conditions defining the pentagon should not grow with n. Thus, without

resorting to increasingly complicated ratios of brackets at higher multiplicities a simple

pentagon space cannot possibly contain the complicated Amplituhedron. The n“5 case

is exceptional, as the two conditions required to cut out the Amplituhedron matches

the number of conditions required to define the pentagon.

This argument suggests the chiral pentagon expansion cannot represent a geometric

triangulation (internal or external) of the Amplituhedron. As we will see later in

section 2.5, the chiral pentagons triangulate a different region which has only physical

boundaries and has (almost) all the same properties as the Amplituhedron. However,

our suspicion, for which we give evidence in section 2.6, is that the primary purpose of

the pentagons is to internally triangulate the dual Amplituhedron.

2.4 Sign-flip regions

In this section we take a step back from the chiral pentagon expansion, and look

more generally at the positive geometries which arose in the study of the local in-

tegrands, such as eqs. (2.3.17), (2.3.19), (2.3.22), (2.3.23), (2.3.27) and (2.3.28). In

particular, we constructed spaces with only physical boundaries that were defined by
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both positive and negative signs of various xABii`1y brackets. In [128] we provided an

intriguing classification of these geometries using certain sign-flip conditions which are

reminiscent of, but distinct from, the sign-flip characterization of the Amplituhedron

[58]. In this section we will review these results and provide further discussions and

elaborate on the properties of the various sign-flip spaces.

Classification of sign-flip regions

In the first step we discuss achiral positive spaces that are defined by imposing

fixed signs for xABii`1y brackets only, without further constraints on any other four-

bracket. In other words, we study geometric regions defined by the following set of n

signs for the sequence of brackets

S“
␣

xABii`1y
(

iPt1,...,nu
:“
␣

xAB12y, xAB23y, . . . , xAB1ny
(

. (2.4.1)

From the study of the Amplituhedron, we already know of one example of such a region:

the union of the MHV and MHV one-loop spaces. The corresponding logarithmic form

is the parity-odd amplitude, which is given by the sum of MHV and MHV one-loop

amplitudes in eq. (2.3.10) (defined with appropriate sign). This function integrates

to zero on the parity-invariant Feynman contour. However, from a geometric point of

view, it is the most natural space we can consider where all signs in S are positive,

Sp0q
“ t`,`, . . . ,`u. (2.4.2)

For obvious reasons, we also call Sp0q a sign-flip-zero region because the sequence S has

no sign flips. By drawing the n points on a circle, we can represent the sign-flip-zero

space as

Sp0q
“ . (2.4.3)
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where the ` sign between points 1 and 2 denotes xAB12y ą 0, and similarly for the

other brackets. The only subtlety arises when we reach the arc from n to 1, where we

draw a ` sign to denote the positivity of xABnp1y “ xAB1ny in line with the twisted

cyclic symmetry.

Following the same logic, we define a sign-flip-two region as sequence of signs

S
p2q

ij “ , (2.4.4)

where the labels i and j denote the two positions where the first and second sign flip

occurs, respectively. In particular, this implies that

txABi i`1y, xABi`1 i`2y, . . . , xABj´1jy ă 0u,

txABjj`1y, xABj`1j`2y, . . . , xABi´1iy ą 0u,
(2.4.5)

where the labels 1 and n can be in either the positive or negative regions13 (appropri-

ately taking into account the twisted cyclic symmetry as commented on above).

Next, we define a sign-flip-four region with i, k, ℓ, j labelling the four positions

where the signs in the sequence eq. (2.4.1) flip,

S
p4q

ikℓj “ . (2.4.6)

Naïvely, we can continue to consider sequences of brackets eq. (2.4.1) with ever more

sign flips. Remarkably, all higher sign-flip patterns correspond to empty geometric

regions.
13As written, eq. (2.4.4) and eq. (2.4.5) suggest that i ă j and therefore xAB1ny ą 0 is in the

positive region. In general, spaces xAB1ny ă 0 presents no additional complications whatsoever,
although we will have no use for them in this chapter.
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Sign-flip-zero regions

All the sign-flip-zero, two, and four spaces are positive geometries; as such, all

of these spaces have associated canonical forms with only logarithmic singularities on

all boundaries. By definition, all codimension-one boundaries of the achiral spaces

defined in the previous subsection have to be of the form xABii`1y “ 0. Naïvely, one

may expect that, at n points, all such inverse propagators xAB12y, . . . , xAB1ny will

indeed be boundaries of the spaces leading to very complicated canonical forms. For

the sign-flip-zero space, this is true: the associated form has n poles

Sp0q
“ Ø

N p0q

xAB12yxAB23y ¨ ¨ ¨ xABn´1nyxAB1ny
. (2.4.7)

This means the complexity of the numerator of the canonical form grows with n, just

as the complexity of MHV and MHV amplitudes does. This should not be surprising,

because both of these chiral amplitude spaces in fact live inside the larger achiral

space Sp0q! The MHV amplitude is the subspace of the achiral space defined by the

additional conditions piq xABijy ą 0, eq. (2.2.31), while the parity conjugate MHV

space uses piiq xABijy ą 0, eq. (2.2.32). It is quite nontrivial that imposing either set

of these conditions does not introduce new codimension-one boundaries. In fact, it is

straightforward to verify there is no way to impose a mixed set of conditions of type piq

and piiq, without at least one of these conditions becoming a boundary. Thus, we may

think of the achiral space as having two components, neither of which has any spurious

boundaries; for obvious reasons, we refer to these as chiral components.

In other words, we can cut the sign-flip-zero space defined by xABii`1y ą 0 into

two chiral components which are MHV and MHV Amplituhedra. Both of these spaces

have only physical boundaries. As alluded to in subsection 2.3.3, we need to impose

n´3 conditions to specify either one of these spaces.
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Interestingly, the achiral sign-flip zero space can be externally triangulated in terms

of simpler spaces. In fact, the “parity-odd" pentagon expansion in eq. (2.3.10) exactly

gives this geometric triangulation:

“ . (2.4.8)

Each parity-odd pentagon corresponds to a positive geometry with only five boundaries.

The terms in the set are overlapping and provide an external triangulation of Sp0q. On

the right-hand-side of eq. (2.4.8), ˚ “ ` ‘ ´ instructs us to marginalize over both

signs of the corresponding bracket. More details, including the derivation of (2.4.8) are

given in appendix A.1. As argued above, the same procedure does not work for chiral

spaces, and the chiral pentagon expansion does not provide an external triangulation

of the Amplituhedron. We will get back to the precise role of this expansion in the

next section.

Sign-flip-two regions

Let us continue our discussion with the achiral sign-flip-two regions defined in

eq. (2.4.4) and eq. (2.4.5). First, one can check that this space has all n codimension-

one boundaries so that the logarithmic form a priori has a similar structure as the one

of Sp0q in eq. (2.4.7), but with a different numerator.

However, something surprising happens when we slice the achiral sign-flip-two re-

gion eq. (2.4.4) into smaller components. First, similar to the sign-flip-zero case we

find that the sign-flip-two region can be again cut into two chiral components without

introducing spurious boundaries. Naïvely, we would expect that in order to specify

each subspace we have to impose Opnq additional inequalities, but in fact only a single

inequality suffices; for the sign-flip-two space eq. (2.4.4) the chiral components corre-

spond to the two signs of the bracket xABijy ż 0, which we represent diagrammatically
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as

S
p2q,˘
ij “ , for i ă j . (2.4.9)

This additional inequality is very natural as i and j are the positions where the two

sign-flips occur.

Looking more closely at one of the subspaces defined by xABijyą0, we find two

interesting features: First, all brackets inside the “plus region" have fixed positive sign,

xABpqy ą 0 and xABpqy ą 0, (2.4.10)

for p ă q and p, q P tj, j`1, . . . , i´1, iu. No similar statement is true for the indices

inside the “minus region." Second, from the collection of terms xABpqy inside the plus

region only the boundary terms xABjj`1y and xABi´1iy represent boundaries. In

other words, xABpp`1y for p P pj`1, . . . , i´2q are not poles of the logarithmic form.

Therefore, the canonical form for this chiral region is considerably simpler,

S
p2q,`
ij “ Ø

N
p2q,`
ij

xABii´1yxABii`1y¨ ¨ ¨xABj´1jyxABjj`1y
. (2.4.11)

In the general n-point case the form eq. (2.4.11) is still non-trivial and we will give a pre-

cise formula and its derivation in eq. (A.1.16) of appendix A.1. For some special cases,

the structure of the form simplifies considerably. In particular, if the ‘´’ region shrinks,

the number of poles decreases, as does the complexity of the form. For the special case

where j “ i`2 there are only two negative brackets, xABii`1y, xABi`1i`2y ă 0, which

means that the chiral sign-flip-two space has only four boundaries and the logarithmic
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form must be a box.

S
p2q,`
i i`2 “ Ø

xi´1 i i`1 i`2yxi i`1 i`2 i`3y

xABi´1iyxABii`1yxABi`1i`2yxABi`2i`3y

“ .

(2.4.12)

If we shrink the ‘´’ region even further and consider j“i`1, the negative region consists

of a single term, xABii`1yă0, i.e.,

Ø 0. (2.4.13)

Note, however, that this bracket xABii`1y is exactly the one used to cut the space into

chiral components. Therefore, the xABii ` 1y ą 0 subspace is actually empty, i.e., the

achiral space is now a single region which cannot be cut further without introducing

spurious boundaries.

Above, we have discussed S
p2q,`
ij where xABijy ą 0, but the same analysis can be

done for the opposite chirality where xABijy ă 0 where the rôles of ` Ø ´ are inter-

changed. Going back to the achiral space, we divide the region into chiral components,
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S
p2q

ij “ S
p2q,`
ij ` S

p2q,´
ij

“ `

Ø
N

p2q,`
ij

xABi´1iyxABii`1y . . . xABjj`1y
`

N
p2q,´
ij

xABj´1jyxABjj`1y . . . xABii`1y
.

(2.4.14)

While the canonical form for the achiral space eq. (2.4.4) has all xABii`1y codimension-

one boundaries present, it is in fact the sum of two simpler forms with fewer poles

coming from two chiral subspaces. This feature makes the boundary structure of Sp2q

ij

simpler than that of the sign-flip-zero space Sp0q. For example, in S
p2q

ij there is no

codimension-two boundary corresponding to xABpp`1y “ xABqq`1y “ 0 where p P

pi`1, . . . j´2q and q P pj`1, . . . i´2q. There are several additional interesting aspects

of the sign-flip-two spaces which we discuss at greater length in appendix A.2.

Sign-flip-four regions

In our discussion of sign-flip-four regions we start with a few simple examples

before discussing the general case (which will be surprisingly simple!). Going back to

our original description of one of the faithful chiral pentagon geometries in eq. (2.3.19),

we see that the five-point pentagon with i “ 2 and j “ 4 can naturally be phrased as

a chiral sign-flip-four region,

Ø
xAB24yx1245y

xAB12yxAB23yxAB34yxAB45yxAB15y
“ , (2.4.15)
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where we have also indicated the additional inequalities (xABp512qXp241qy ą 0 and

xABp514q X p241qy ą 0) imposed to define the space. Similar to what we have seen

above, this is one chiral subspace of a larger achiral region defined by the signs of

xABii`1y only. In fact, the intersections appearing in eq. (2.4.15) can be replaced by

a single inequality, either

xAB25y ă 0 or xAB14y ă 0. (2.4.16)

to define exactly the same space as eq. (2.4.15),

“ . (2.4.17)

Note that the bracket xAB24y ą 0 is positive as a consequence of the xABii`1y signs

only. From a Schouten identity,

xAB12y
´

xAB45y
´

` xAB15y
`

xAB24y
`

“ xAB14yxAB25y ą 0, (2.4.18)

it then follows that fixing the sign of xAB14y determines the sign of xAB25y, and vice

versa. Only one of the two four-brackets is necessary to define the chiral sign-flip-

four space, and the other is redundant. The five-point pentagon eq. (2.4.15) space

has both signs negative, while the second chiral subspace (which corresponds to the

opposite chirality pentagon diagrammatically represented by a dashed line) has both

signs positive,

Ø
xAB24yx1245y

xAB12yxAB23yxAB34yxAB45yxAB15y
” ,(2.4.19)
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Ø
xAB24yx1235yx1345y

xAB12yxAB23yxAB34yxAB45yxAB15y
” .(2.4.20)

The union of these two spaces is a larger achiral space whose form is the difference of

the two chiral pentagons, earlier introduced as parity-odd pentagon eq. (2.3.8),

Ø
Nodd

xAB12yxAB23yxAB34yxAB45yxAB15y
, (2.4.21)

where the numerator is Nodd “ xAB24yx1245y ´ xAB24yx1235yx1345y.

Our next example is the achiral six-point region which can likewise be cut into two

chiral components using a single additional inequality,

“ ` , (2.4.22)

where, again, the signs of the “diagonal brackets" are either both positive or both

negative as a consequence of a Schouten identity. Calculating the forms associated to

these spaces, we find two chiral hexagons which were introduced in [123] as examples
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of IR-finite integrands,

Ø
xAB24yxAB51y

xAB12yxAB23y ¨ ¨ ¨ xAB16y
” , (2.4.23)

Ø
xAB24yxAB51yx3456yx6123y

xAB12yxAB23y ¨ ¨ ¨ xAB16y
” . (2.4.24)

Finally, we consider an additional six-point region corresponding to yet another chiral

pentagon integrand:

Ø
xAB25yx1256y

xAB12yxAB23yxAB45yxAB56yxAB16y
” . (2.4.25)

We see the same pattern as in the sign-flip-two spaces: inside the ‘`’ region the “inner

boundaries” are absent; e.g., in eq. (2.4.25), xAB34y is not a pole of the form nor a

boundary of the geometric space.

Having discussed several illuminating examples at low multiplicity, we are now

58



ready to present the general sign-flip-four case:

S
p4q,˘
ikℓj “ . (2.4.26)

where the large achiral region S
p4q

ikℓj of eq. (2.4.6) is cut into two chiral subspaces by

specifying the signs of xABiℓy or xABkjy. In one subspace they are both positive while

in the other they are both negative. In addition, all signs are uniformly fixed inside

the four sign sectors. For example, all brackets of the form

xABpqy, xABpqy ą 0 for p ă q P tj, j`1, . . . iu, (2.4.27)

are positive, whereas the analogous brackets in the “minus region” are negative. We

give further details on the fixed sign structure in appendix A.2. Practically, this means

that the only boundaries from each of these sectors are the ones adjacent to the sign-flip

positions, so the logarithmic form has exactly eight boundaries in the general case. In

fact, each chiral component can be identified with a chiral octagon integrand

ÐÑ , (2.4.28)
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where the wavy and dashed lines indicate the respective numerators [123],

ω
p4q,´
ikℓj “

xABijyxABikyxABkℓyxABℓjy

xABi´1iyxABii`1yxABk´1kyxABkk`1y

ˆxABℓ´1ℓyxABℓℓ`1yxABj´1jyxABjj`1y

. (2.4.29)

The form for the other chiral space, ωp4q,`
ikℓj , for which xABiℓy, xABkjy ą 0, is obtained

by flipping the wavy and dashed lines. The chiral octagons were introduced in [123]

as the one-loop integrand basis elements which split the basis into parity-odd (which

integrate to zero), IR-finite and IR-divergent integrands. While the expression for

the integrand may look complicated, because of the special form of the numerator in

the generic case the integrand is IR finite and evaluates to a simple combination of

dilogarithms. It is very surprising that we see the same objects here in a very different

setup as the integrand forms for maximal sign-flip regions.

The chiral octagons naturally degenerate to simpler spaces when the labels i, k, ℓ, j

become adjacent. Exactly the same happens with our regions as well, and we can

indeed identify the pentagon and hexagon examples discussed above as boundary cases

of the generic octagon.

2.5 Local geometries and the Amplituhedron-Prime

Having discussed various aspects of more general sign-flip spaces, let us come back

to the local integrands of section 2.3 that enter the chiral pentagon expansion of the one-

loop MHV amplitude, eq. (2.2.45). After a careful analysis of consistent sign patterns

for the individual local geometries, we concluded in section 2.3 that there are only

two faithful geometric spaces which can be associated with the general chiral pentagon

eqs. (2.3.17) and (2.3.19), two choices for the two-mass-hard boxes eqs. (2.3.22) and

(2.3.23), and four choices for the one-mass boxes eqs. (2.3.27) and (2.3.28), respectively.

In the next step we discuss how to glue these geometric regions together. We are

going to show that only a single choice for the pentagon and box spaces is globally

consistent (at all multiplicities) upon gluing. By consistency, we mean the require-
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ment that there are no unphysical boundaries left in the resulting geometry akin to our

discussion of faithful geometries in section 2.3.2. As a tool, we make use of the classifi-

cation of all relevant positive geometries in terms of the sign-flip-two and four regions

summarized in sections 2.4 and appendix A.1. This allows us to write a (conjectured)

closed formula for the final geometric space in eq. (2.5.32).

The primary result of this section is a new positive geometry, which we name

the Amplituhedron-Prime, comprised of a particular collection of chiral sign-flip-two

and four regions with only physical boundaries of all codimensions. While this new

space has exactly the same singularity structure as the Amplituhedron, their bulk

geometries are entirely non-overlapping. This follows directly from the fact that the

original Amplituhedron is comprised of a single chiral sign-flip-zero space.

2.5.1 Chiral regions for boxes and pentagons

We start our discussion with the five-point one-loop MHV amplitude. Specializing

eq. (2.2.45) to n“5, the integrand is a sum of one chiral pentagon and two boxes,

ωp5,0,1q
“ ` ` . (2.5.1)

The first box in this expression, which we label as B12, has four individually well-defined

faithful geometries as described in eqs. (2.3.27)–(2.3.28), where the sign of the bracket

xAB12y is unfixed. In section 2.3 we constructed the candidate spaces for the box (all

of which had no spurious boundaries) by imposing conditions on xABii`1y brackets

as well as additional conditions involving its leading singularities. By expanding the

unfixed sign ˚ “ ` ‘ ´, it is straightforward to identify all four choices as particular

instances of sign-flip-two and four spaces described in section 2.4. For the box B12 we
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may write the options as

B
p1q

12 “ , B
p2q

12 “ ,

B
p3q

12 “ , B
p4q

12 “ .

(2.5.2)

Note that for the choice labelled B
p1q

12 , the missing space where xAB12y ă 0 is empty.

The additional inequality xAB35y ž 0 is needed to select one of the chiral components of

the larger achiral space. As we stressed above, all four spaces B
piq
12 are a priori locally

satisfactory as they have the correct boundary structure to represent the associated

integral. However, this box has singularities which are absent in the MHV one-loop

integrand. Indeed, we consider such singularities spurious from the point of view of the

global geometry of the Amplituhedron. Thus, the manner in which B12 glues together

with the other terms in eq. (2.5.1) must be such that all spurious singularities cancel and

we are left with exactly the physical singularity structure of the MHV Amplituhedron.

The discussion of the other box integrand, B45, is analogous and we once again
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have four different options:

B
p1q

45 “ , B
p2q

45 “ ,

B
p3q

45 “ , B
p4q

45 “ .

(2.5.3)

Although this suggests a total of 42 possible choices for combining the two boxes, in

our analysis below we will only consider the four choices tB
piq
12 , B

piq
45 u. This corresponds

to assigning uniform geometries to all permutations of one-mass boxes. While at five

points it is possible to mix-and-match the box spaces and get a consistent global ge-

ometry, this is simply due to the degenerate kinematics and does not extend to the all

multiplicity case.

For the pentagon space, we have two possibilities which are geometrically consis-

tent, as discussed in subsection 2.3.2. In this discussion we carved out the chiral spaces

via inequalities involving xABpn1iqXpij‹qy and xABpn1jqXpij‹qy, where ‹ was in either

of the two sets ti`1, . . . , j´1u or t1, . . . , i´1u. However, it follows directly from the

complete characterization of all sign-flip spaces given in section 2.4 that both solutions

for the pentagon (once expanded using ˚ “ ` ‘ ´) must be a direct sum of either

sign-flip-two or four chiral spaces. For the first option eq. (2.3.17) (which corresponds
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to the choice ‹ “ 3), the equivalent sign-flip characterization of the space is

P
p1q

24 “ ` ` `

(2.5.4)

where for brevity we simply label the sign-flip four spaces by a single non-adjacent chord

of the circle. As discussed in section 2.4 above, a single condition is always sufficient

to fix this space. The second option eq. (2.3.19) corresponds to either choice of ‹ “ 5

or ‹ “ 1 and is equivalent to a single chiral sign-flip-four space:

P
p2q

24 “ . (2.5.5)

As a result, considering a uniform choice for the one-mass boxes eqs. (2.5.2)–(2.5.3)

together with the two choices for the chiral pentagon eqs. (2.5.4)–(2.5.5) yields eight

possible global geometries as a result of gluing the individual spaces. Our task is to see

which (if any) of these are consistent with the boundary structure of the original five-

point MHV Amplituhedron. This is a nontrivial constraint in spite of the fact that each

individual space is free of spurious boundaries from the perspective of the individual

local integrals. As described in appendix A, each local integral has many unphysical

cuts from the perspective of the MHV one-loop geometry; a codimension-four example

of this is the point pABq “ p13q, which is an allowed singularity of the one-mass box
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B45 and the pentagon P24 but is not an allowed singularity of the MHV Amplituhedron,

not allowed in MHV: . (2.5.6)

In fact, while the cancellation of leading singularities is nontrivial, there is an even

stronger constraint at the level of triple cuts which we explain in detail shortly.

2.5.2 Two-dimensional projections

In deciding which individual geometric spaces can be consistently glued together,

it is best to focus on certain two-dimensional boundaries where everything can be

visualized geometrically as regions, lines, and points in the projective plane. The

codimension-two boundaries of interest corresponds to configurations in momentum

twistor space where the line pABq intersects two adjacent lines pi´1iq, pi i`1q. The

codimension-two boundaries of this type are defined by solutions to xABi´1iy “

xABii`1y “ 0.

As discussed in more detail in appendix A in eqs. (A.0.4) and (A.0.6) there are two

solutions to these conditions, the first of which has the geometric interpretation that the

line pABq passes through the point Zi. On this boundary, there are four codimension-

three boundaries which correspond to setting one of the remaining three xABjj`1y“0

together with one additional boundary which corresponds to setting xABi´1i`1y“0.

Geometrically, this additional cut forces pABq to also lie in the plane pi´1ii`1q. Phys-

ically, this special configuration is a collinear cut, see eq. (A.0.7). We can furthermore

look at all the higher-codimension residues that are accessible for MHV and MHV am-

plitudes. This can be summarized in the following picture of on-shell functions that
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label the respective cut solutions [47].

⟨AB45⟩ = 0

⟨AB13⟩ = 0 ⟨AB15⟩ = 0

⟨AB34⟩ = 0
⟨AB15⟩ = 0

⟨AB13⟩
= 0

⟨AB34⟩ = 0

⟨AB
15⟩

= 0 ⟨AB34⟩ = 0

⟨AB15⟩ = 0

⟨AB34⟩ = 0

⟨AB13⟩ = 0

⟨AB45⟩ = 0
⟨AB45⟩ = 0 (2.5.7)

Besides the physical singularities of either MHV or MHV amplitudes depicted in eq. (2.5.7),

there is one additional unphysical leading singularity that could in principle appear in

individual integrals,

unphysical leading singularity: . (2.5.8)

However, for the local representation eq. (2.5.1), this spurious singularity is absent

term-by-term. Geometrically, the content of eq. (2.5.7) can be encoded in the two-
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dimensional configuration space for the line pABq that is passing through Z2,

ÐÑ (2.5.9)

In this picture, lines correspond to codimension-three boundaries, i.e., configurations

where pABq intersects one more line in addition to passing through point Z2. The

codimension-four boundaries are the points in this picture where two lines intersect,

and correspond to completely fixing all four degrees of freedom in pABq. In other

words, the line pABq intersects two additional lines and passes through Z2. These

vertices correspond to positions of leading singularities which are accessible from the

codimension-two surface where pABq “ pA2q. Note first that all triple cuts in this

picture are physical, i.e., the MHV amplitude form has a non-zero residue when eval-

uated on all codimension-three boundaries in this picture. However, only a subset of

the vertices represent actual leading singularities of the amplitude, which are what we

consider physical. In particular, for the MHV amplitude only the points pABq “ pijq

are physical and all others are spurious.

The positive geometries associated to the local integrals in eqs. (2.5.2)–(2.5.5) above

correspond to regions in the plane in eq. (2.5.9), which can be identified by the signs

of brackets which are nonvanishing when evaluated on the boundary pABq“pA2q. For

pABq“pA2q, the non-vanishing brackets of interest are

txAB34y, xAB45y, xAB15y, xAB13yu. (2.5.10)
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Note that because this cut surface is defined by the conditions xAB12y“xAB23y“0, all

information about the signs of these two brackets is lost upon accessing the pABq“pA2q

boundary. While the first three brackets in eq. (2.5.10) are the usual xABii`1y

propagator-type boundaries, the bracket xAB13y corresponds to a spurious codimension-

one boundary that only becomes physical when evaluated on the support of this cut. On

the pABq“pA2q codimension-two boundary, sign conditions on xAB13y are equivalent

to many other expressions, e.g., xAB24y Ñ ´xAB13yx2345y.

It is a relatively simple exercise to deduce the correspondence between regions in

eq. (2.5.9) and sequences of signs for the brackets in eq. (2.5.10) by looking at the

relative positions of vertices with respect to certain lines and using the positivity of the

external data, eq. (2.2.11). For example, the vertex pABq “ p23q is to the left of the

line xAB45y. Taking into account x2345y ą 0, we therefore conclude that the whole

region to the left of the xAB45y“0 line corresponds to xAB45y ą 0 while the region

to the right corresponds to xAB45y ă 0. Again using the vertex pABq “ p23q, we get

similar information about the regions where xAB15y ž 0. For information on xAB34y

we can use the vertex pABq “ p12q. Note that xAB13y vanishes for both pABq “ p12q

and pABq “ p23q since both points are on this line. Instead, we can use pABq “ p24q

which is on the side of xAB13y ă 0. These arguments fix the labeling of all regions

ÐÑ (2.5.11)

where we simply replace the sequence of brackets eq. (2.5.10) by their respective fixed

signs in a given region. Note that since the plane is projective, certain regions “wrap
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around” the point at infinity and come back on the other side of the picture, and

naively have all signs opposite; an example of this is region t`,´,`,´u, which wraps

around at infinity to join with t´,`,´,`u. This is a simple consequence of the fact,

already alluded to above in our discussion of d log forms and geometry, that it is not

the inequality xABXy ą 0 which is projectively meaningful, but rather an inequality

involving a ratio of two four brackets, xABXy{xABY y ą 0. In this context, this

means that flipping all signs in the definition of a space gives a completely equivalent

description of it. In eq. (2.5.11) the regions t`,´,`,´u and t´,`,´,`u are precisely

the same space. Therefore, we will use the same signs for all such instances of regions

which wrap around at infinity, i.e., we identify t`,´,`,´u „ t´,`,´,`u.

Note that in eq. (2.5.11) the MHV Amplituhedron corresponds to the region la-

belled as t`,`,`,´u. This region is a quadrilateral with the four vertices p12q, p23q,

p24q and p25q that correspond to the four physical leading singularities accessible from

the pABq“pA2q cut surface. In contrast, the MHV region corresponds to t`,`,`,`u

which is the triangle with vertices p12q, p23q, p13q.

The second solution to the cut conditions xAB12y “ xAB23y “ 0 has the geometric

interpretation that the line pABq is completely contained in the plane p123q,

Ø . (2.5.12)

Starting from the on-shell function for the double-cut, we could again write down all

possible higher codimension residues that are accessible from this surface. For the

sake of brevity, we refrain from doing so here and proceed directly to the geometric

picture for the configuration space of the line pABq that is contained in the plane p123q.

Analogous to eq. (2.5.10), the accessible codimension-three boundaries

txAB34y, xAB45y, xAB15y, xAB24yu (2.5.13)
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correspond to lines in the two-dimensional pictures. We chose a particular bracket,

xAB24y, to indicate on which side of the collinear boundary the line pABq is. As

mentioned above, on support of the xAB12y“xAB23y“0 cut conditions this can be

re-written in various equivalent ways. The corresponding two-dimensional picture for

the configuration space of the line pABq Ă p123q is,

ÐÑ (2.5.14)

where we have labeled the regions in terms of the signs of the brackets in the sequence

eq. (2.5.13). The MHV Amplituhedron is the region t`,`,`,´u (which on this cut

surface has only three vertices) while the MHV region corresponds to t`,`,`,`u. Note

that for the MHV geometry the entire line xAB45y “ 0 is an unphysical codimension-

three boundary corresponding to the on-shell function

(2.5.15)

Geometrically, none of the physical leading singularities (vertices) lie on xAB45y“0. In

the same spirit, the line xAB45y “ 0 was unphysical for the MHV Amplituhedron in

the previous two-dimensional picture eq. (2.5.11).

All two-dimensional boundaries of the type where pABq Ă pi´1ii`1q or pABq

passes through Zi have the same geometry, and the corresponding projections can be
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obtained by cyclically relabelling the above examples. In principle, there is one addi-

tional class of codimension-two boundaries where we set two non-adjacent xABii`1y

brackets to zero, e.g. xAB12y“xAB34y“0. This boundary, while also two-dimensional,

has a significantly more complicated stratification and is not easily visualized in the

projective plane. While boundaries of this form can lead to spurious higher codimension

cuts which a priori could place additional constraints on gluing together local integral

spaces (discussed in the following subsection 2.5.3), we find in practice that matching

all simple two-dimensional projections mentioned above is sufficient to fix a unique

consistent gluing of spaces into the “Amplituhedron-Prime”.

2.5.3 Gluing regions

While all codimension-two boundaries of the type pABqĂpi´1ii`1q or pABq“pAiq

have the same geometry, in the context of the particular local expansion eq. (2.2.45)

we have to consider each case separately. The reason is that our global choice of

xAB1nyą0 for the local spaces introduced in section 2.3.2 breaks the cyclic symmetry of

the integrand and the individual contributions are different depending on the boundary

we consider.

At five points we must consider ten two-dimensional projections of the form de-

scribed in section 2.5.2. For each projection, we demand that the combination of all

local integrals has exactly the same boundary (but not necessarily bulk) structure as

the original Amplituhedron, i.e., there are no spurious boundaries. In this section, we

first give the answer for the correct spaces for the boxes and pentagons at five and six

points, and subsequently state the result for the general n-point geometries. We only

schematically illustrate how all spurious boundaries cancel for the final correct choice of

geometries for the boxes and chiral pentagons on some representative two-dimensional

planes. The details on how we find a unique solution (under the assumptions discussed

in subsection 2.5.1) that holds for an arbitrary number of external points requires a care-

ful analysis of multiple two-dimensional projections which is deferred to appendix A.3.

Let us briefly start with the five-point geometries, where further details are rel-
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egated to appendix A.3. From eq. (2.5.1), there are two box integrands, B12 , B45,

and one chiral pentagon P24, which we can a priori associate with a number of valid

geometric spaces, see (2.5.2)–(2.5.5). Now we would like to combine these individ-

ual pieces into a single geometric object which has the same singularity structure as

the original Amplituhedron. In order to find the consistent gluings which cancel all

spurious singularities for the eight possible combinations of the box and pentagon

spaces tB
piq
12 , B

piq
45 , P

p1q

24 , P
p2q

24 u, we consider projections to ten codimension-two bound-

aries where the loop line pABq passes either through a point pABq “ pAiq or is in

a plane pABq Ă pi´1 i i`1q. On these codimension-two boundaries, the configura-

tion spaces for pABq become the simple two-dimensional geometries of the form of

eqs. (2.5.11) and (2.5.14). As discussed in section 2.5.2, in these projective pictures

codimension-three boundaries are lines and codimension-four boundaries (i.e., leading

singularities) are points. In order to determine the consistent global geometries, we

demand that all spurious boundaries, i.e. boundaries that are not part of the original

Amplituhedron, cancel. The result of this analysis is that, at five points, only two

combinations of box and pentagon spaces survive:

tB
p2q

12 , B
p2q

45 , P
p1q

24 u, and tB
p3q

12 , B
p3q

45 , P
p1q

24 u. (2.5.16)

For more details on how this was determined we refer the interested reader to appendix

A.3. Of these two solutions, it is the second option, tB
p3q

12 , B
p3q

45 , P
p1q

24 u, which generalizes

to six and higher points, as we show in appendix A.3. Let us briefly discuss why

the second option of eq. (2.5.16) is consistent on two representative two-dimensional

projections. For illustrative purposes, we discuss piq the projection where pABq Ă p234q,

and piiq the projection where pABq “ pA2q. Physically, from the on-shell function

point-of-view these correspond to,

and (2.5.17)
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On these two-dimensional boundaries the local spaces of eqs. (2.5.2)–(2.5.5) correspond

to certain regions in the projective plane which are labeled by the signs of non-vanishing

brackets in the sequences txAB45y , xAB15y , xAB12y , xAB35yu and eq. (2.5.10), re-

spectively. The (projections of the) second solution of eq. (2.5.16), which correctly

generalizes to the all-multiplicity Amplituhedron-Prime, are

xAB45y xAB15y xAB12y xAB35y

B
p3q

12 ´ ` ` `

B
p3q

45 ` ` ´ `

P
p1q

24 ` ` ´ `

` ` ` ´

´ ` ` `

xAB34y xAB45y xAB15y xAB13y

B
p3q

45 ´ ` ` `

´ ´ ` `

P
p1q

24 ´ ` ` `

´ ` ` ´

(2.5.18)

where we have color-coded the regions of the relevant local spaces eqs. (2.5.2)–(2.5.5)

on both pABqĂp234q (l.h.s.) and pABq“pA2q (r.h.s.) codimension-two boundaries. As

already mentioned below eq. (2.5.11), spaces where we flip all signs lead to equivalent

geometries; therefore, we only list one representative in the tables summarizing the

contributing regions of each local integrand. This is why, e.g. on the l.h.s. of (2.5.18),
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the pentagon P
p1q

24 fills in both regions t``´`u „ t´´`´u in the above left-hand-side

picture. Furthermore, not all sign patterns which are present in the full local integral

contribute on a given cut surface. Thus, for P p1q

24 only three of the four sign patterns in

eq. (2.5.4) have access to the codimension-two boundary where pABq Ă p234q.

In order to show the consistency of our claimed solutions eq. (2.5.16) for the local

integrand spaces on this boundary, we have to identify the cancellation of the spurious

xAB15y “ 0 line. In the solution tB
p3q

12 , B
p3q

45 , P
p1q

24 u depicted on the left of eq. (2.5.18),

we trivially see the cancellation of the entire spurious line, because the regions t´ ´

`´u , t´ ` ``u , t` ` ´`u are double-covered by parts of the pentagon spaces as well

as the boxes. For the pABq “ pA2q projection depicted on the right of eq. (2.5.18), we

see that after cancelling overlapping regions we are left with the union of three regions,

t` ` ´´u, t´ ´ ``u and t´ ` `´u. While this space has the correct boundary

structure, here we can see it is non-overlapping with the original Amplituhedron which

is the region t` ` `´u on this projection.

Thus, at five points there is only one consistent space for the pentagon and we

may cancel all spurious boundaries using two different (uniform) choices for the boxes.

Both choices have exactly the same boundaries as the original Amplituhedron and

are completely satisfactory at this multiplicity. However, only one of these solutions

generalizes to higher points. This can be seen directly at six points, where an additional

constraint arises: our five-point choice must be compatible with (at least) one of the

two spaces eqs. (2.3.22) and (2.3.23) for the two-mass hard box.
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Next, we discuss the local representation of the one-loop six-point MHV integrand

ωp6,0,1q
“ ` `

` ` ` .

(2.5.19)

Let us consider the six-point analog of eq. (2.5.9), i.e., the two-dimensional projection

where pABq Ă p234q.

ÐÑ (2.5.20)

We have labeled the regions by the signs of the sequence of brackets

txAB45y, xAB56y, xAB16y, xAB12y, xAB35yu, (2.5.21)

so that the MHV Amplituhedron is the t`,`,`,`,´u triangle region with vertices

p23q, p24q, p34q. At six points there are now two spurious lines, defined by the condi-

tions xAB56y“0 and xAB16y“0. These have simple on-shell function interpretations

analogous to eq. (2.5.15), but for brevity we do not write them explicitly here. In the
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chiral pentagon expansion eq. (2.5.19), three terms contribute on this cut configuration:

ωp6,0,1q

ˇ

ˇ

ˇ

ˇ

cut
“ ` `

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cut

. (2.5.22)

This is the first example where the two-mass-hard box plays a role. We now take the

generalizations of the two consistent spaces for the one-mass box and chiral pentagons

from our five-point analysis eq. (2.5.16) and augment them by two options for the

two-mass hard spaces, see eqs. (2.3.22) and (2.3.23). The details of this analysis can

be found in appendix A.3, but roughly speaking the strategy involves consistently

canceling spurious boundaries on all two-dimensional projections.

Ultimately, we find only the generalization of the second solution in eq. (2.5.16)

together with the first choice B
p1q

12,56 defined in eq. (2.5.29) is the unique (subject to

the assumption that we make uniform choices for all boxes and pentagons, respec-

tively) candidate space which is free of all spurious boundaries on all cut surfaces. For

the pABq Ă p234q projection discussed above, the relevant spaces are defined by the

following by-now familiar circle diagrams:

B
p3q

456 “ , (2.5.23)

P
p1q

24 “ ` ` `

(2.5.24)
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B
p1q

12,56 “ . (2.5.25)

Filling in the regions corresponding to the spaces defined in eqs. (2.5.23)–(2.5.25) in

the two-dimensional projection eq. (2.5.20), the result is:

(2.5.26)
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xAB45y xAB56y xAB16y xAB12y xAB35y

B
p3q

456 ` ` ` ´ `

P
p1q

24 ` ` ` ´ `

` ` ` ` ´

´ ` ` ` `

´ ´ ` ` `

B
p1q

12,56 ´ ` ` ` `

´ ´ ` ` `

Again, we see that the chiral pentagon overlaps with the one-mass and two-mass-hard

box in all regions that have spurious boundaries and therefore cancels those geometri-

cally. On this particular two-dimensional projection, we are left with the triangle with

vertices p23q, p24q and p34q corresponding to the MHV space. We have verified the

cancellation of spurious boundaries on all other two-dimensional projections.

The five- and six-point examples heretofore considered suggest a unique conjecture

for the all-multiplicity Amplituhedron-Prime. Namely, we consider the union of the

one-mass box spaces eq. (2.3.28) (choosing the positive sign for the bracket involving

the leading singularity), the first pentagon space eq. (2.3.17) and the first two-mass

hard box space eq. (2.3.22). We give explicit formulae for these spaces in terms of

the sign-flip spaces of section 2.4 in the following subsection. This encompasses all

integrand topologies that enter the n-point amplitude in the chiral pentagon expansion

eq. (2.2.45).14 Checking higher-point generalizations of projections such as eqs. (2.5.18)

and (2.5.26) is a straightforward, if tedious, exercise. At seven points, we have verified

that all spurious boundaries accessible from the codimension-two configurations pABq Ă

pi´1ii`1q cancel geometrically. At eight points, we have also verified by parametrizing

pABq with four real degrees of freedom that the spurious triple cuts which cut three
14Although the fully massive chiral pentagon first appears at eight points, this generates no addi-

tional complications in our analysis.

78



non-adjacent propagators (which are not visible in the two-dimensional projections

considered above) cancel as functions of the last remaining degree of freedom in pABq.

2.5.4 Amplituhedron-Prime

In the previous subsection, we have seen that demanding a consistent gluing of

spaces associated to general chiral pentagon and box integrands led to a unique defi-

nition for the individual local geometries. In terms of the original integrals appearing

in the chiral pentagon expansion, we associate to the generic chiral pentagon the space

eq. (2.3.17). From the results of section 2.4 it follows that the additional inequalities

involving xABXiy and xABXjy can always be replaced by one of the conditions defining

the sign-flip-two or four spaces. As such, the space in eq. (2.3.17) can be represented

in terms of our sign-flip circle-diagrams as a direct sum of four spaces:

P
p1q

ij Ø Ø ` (2.5.27)

` ` .
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The one-mass and two-mass-hard box spaces in eq. (2.3.28) and eq. (2.3.22), respec-

tively, have the following sign-flip representations:

B
p3q

1n´3 Ø Ø

B
p3q

4n Ø Ø

(2.5.28)

B
p1q

1 i´1, i`2n Ø Ø (2.5.29)

Let us now take the chiral pentagon expansion for the five- and six-particle amplitudes

of eq. (2.5.1) and eq. (2.5.19) and write it in terms of the sign-flip spaces eqs. (2.5.27)–

(2.5.29). As argued in subsection 2.5.3, the resulting space is free of spurious singu-

larities. Therefore, we call the resulting collection of geometric regions the five- and

six-point Amplituhedron-Prime:

A1 p5,0,1q
“

P
p1q

24
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

` ` `
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`

loooooooomoooooooon

B
p3q

12

`

loooooooomoooooooon

B
p3q

45

(2.5.30)

A1 p6,0,1q
“

P
p1q

35
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

` ` `

`

P
p1q

24
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

` ` `

`

P
p1q

25
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

` ` `

`

loooooooomoooooooon

B
p3q

13

`

loooooooomoooooooon

B
p3q

46

`

loooooooomoooooooon

B
p1q

12,56

(2.5.31)

In subsection 2.5.3, we have seen on various two-dimensional projections that the rep-

resentation of the full space in terms of the local building blocks is massively overlap-

ping. From the sign-flip representation in terms of the circle-diagrams in eqs. (2.5.30)–

(2.5.31), this overlap is visible as many terms with the same sign patterns appear in
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different building blocks. In fact, we can exploit the results of section 2.4 and expand

all ˚“ ` ‘´ present in these spaces15, throwing out all patterns with more than four

sign flips. It is easy to see that many terms appear multiple times throughout the ex-

pansion, which geometrically means the same space gets multiply-covered. If we cover a

space an even number of times it cancels completely, while for an odd number of covers

we are left with a single copy of the space. In the end, there is a surprisingly uniform

non-overlapping description of the Amplituhedron-Prime directly in terms of the sign-

flip-two and four spaces of section 2.4, which naturally generalizes to all-multiplicities.

Our conjecture for the n-point, one-loop MHV Amplituhedron-Prime is16

A1pn,0,1q
“ `

` .

(2.5.32)

Extending the five and six-point analysis of section 2.5 to test our all-n expression

eq. (2.5.32) is a straightforward exercise. We demand that all spurious boundaries

present in the individual sign-flip spaces disappear upon gluing. Just as in the five and

six-point examples, the spurious codimension-three boundaries are

(1) pABq Ă pi´1ii`1q and pABq cuts pjj`1q,

(2) triple cuts of non-adjacent propagators, xABii`1y“xABjj`1y“xABkk`1y“0

15After expanding all ˚ in the two-mass-hard box (2.5.29) into a collection of spaces with definite
signs for all xABii`1y, we can relate these spaces to the chiral sign-flip regions in (2.4.9) and (2.4.26).

16Note that in the sum on the second line the term where j “ i`1 is an empty space as it simulta-
neously requires both xABijy ą 0 and xABijy ă 0.
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We have verified at seven points that all spurious boundaries of type (1) and (2) are

absent from the final space. We also performed extensive numerical checks at eight (and

higher) points that eq. (2.5.32) satisfies many nontrivial constraints. In principle, we

could repeat the exercise of section 2.5 at higher points and attempt to find all positive

geometries which consistently glue together. Our conjecture is that the unique spurious-

boundary free combination is equivalent to (after cancelling overlapping regions) the

result eq. (2.5.32). Note that it is clear by construction, that our new Amplituhedron-

Prime space is externally triangulated by the chiral pentagon expansion.

Since the spaces constituting the Amplituhedron-Prime are always defined by (at

least) one inequality of the form xABii`1yă0, the bulk of this new geometry is en-

tirely non-overlapping with the original Amplituhedron. At the same time, it has only

physical boundaries and exactly the same integrand form as the Amplituhedron. This

construction demonstrates there are multiple positive spaces which can be associated

with loop integrands in planar N “ 4 sYM and the Amplituhedron of [56] is only a

particular example (albeit possibly the most canonical one).

It is also interesting to note that while the chiral pentagon expansion externally

triangulates the Amplituhedron-Prime, it also plays an even more natural role in the

presumptive dual geometry. We will argue in section 2.6 that the chiral pentagons

internally triangulate the (yet-to-be discovered) dual Amplituhedron.

As an aside, investigating the structure of eq. (2.5.32) more carefully, we note the

absence of certain sign-flip regions, such as

and . (2.5.33)

While eq. (2.5.32) does provide the complete definition of the Amplituhedron-Prime
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space, it is an expansion in terms of elementary regions and it would be desirable

to find some more uniform definition, much like the definition of the MHV one-loop

Amplituhedron in eq. (2.2.31). One can verify that the following definition is equivalent

to eq. (2.5.32): the Amplituhedron-Prime is the space of all lines pABq which satisfy

txAB12y, xAB23y, . . . xABn´1nyu has even number of sign flips

txAB1ny ą 0, xABi1ny ą 0, xABi1i´1y ą 0, xABi2i´1y ă 0u,
(2.5.34)

where i1,2 is the position of the first (second) sign flip and i´1 that of the last sign flip.

The final two conditions in the second line of (2.5.34) are empty for the third term

in eq. (2.5.32) which only has two sign flips. Also, the representative spaces (2.5.33)

of terms that do not appear in (2.5.32) are ruled out by the first condition in (2.5.34)

which only includes brackets up to xABn´1ny and does not “wrap around” to xAB1ny.

While the definition in eq. (2.5.34) is very simple, we do not quite understand its deeper

meaning at the moment and leave a detailed investigation to future work.

Note that the chiral pentagon expansion of eq. (2.5.27) singles out the the line pn1q

as special, as does our definition of the Amplituhedron-Prime, where xAB1ny ą 0 is

the only uniformly positive quantity throughout the space. While the d log form for

the whole space is cyclic, the space is obviously not, as can be seen in eq. (2.5.32).

By using the chiral pentagon expansion with pii`1q, rather than p1nq, fixed, we can

construct n other Amplituhedron-Prime spaces by cyclically shifting eq. (2.5.32).

Relation between A and A1

The results of this subsection suggests a natural question: how is the Amplituhedron-

Prime A1 related to the original Amplituhedron space A? They are non-overlapping

positive geometries which have only physical boundaries and the same canonical form.

Therefore, it must be possible to identify a collection of zero-form spaces (with no

spurious boundaries) which can be added to A1 to directly yield A.

As it turns out, identifying the correct zero-form space which relates A and A1

is nontrivial, and at the moment we have no closed-form expression for this space.
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However, the process is relatively straightforward for the simplest case of the four-

point one-loop integrand, as we will now demonstrate. While the Amplituhedron is the

space given by xABii`1y ą 0 and xAB13y ă 0, the Amplituhedron-Prime is given by

a single term from the second sum in eq. (2.5.32),

Ap4,0,1q
“ , A1p4,0,1q

“ . (2.5.35)

Starting with A1, we first add the achiral space

B1 “ , (2.5.36)

which effectively flips the sign of xAB13y in A1. Next, we add a combination of chiral

spaces B2 which is defined

B2 “

"

xAB12y

xAB34y
ą 0, xAB23y ą 0, xAB14y ą 0, xAB13y ă 0

*

, (2.5.37)

and obtain A as a result. Expanding B2 in terms of sign-flip-spaces, we have

Ap4,0,1q
“ A1p4,0,1q

` ` ` .

(2.5.38)

Note that even in this simple example, it is actually quite non-trivial that the spaces

with vanishing form we add have only physical boundaries. In particular, if we had
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flipped the sign of xAB23y in the definition of B2 in eq. (2.5.37), the resulting space

would still have zero form, but would have the spurious boundary where xAB13y “ 0.

As our conjecture is that A1 has only physical boundaries, the geometric difference

between A and A1 must be a collection of zero-form spaces with physical boundaries

only. Finding the exact combination becomes very laborious at higher points, and

we do not have a closed formula for it. However, as discussed in the motivations of

section 2.1 and as we will see in the details of section 2.6, the real purpose in life of the

chiral pentagons is to triangulate the dual Amplituhedron, where both A and A1 are

mapped under dualization.
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2.6 Triangulation of the dual Amplituhedron

In the previous section we have seen that the chiral pentagons externally triangulate

the Amplituhedron-Prime, which is free of all spurious boundaries, has the same canoni-

cal form as the Amplituhedron, but is geometrically distinct. In fact, both the A and A1

spaces only intersect on various codimension boundaries. While the Amplituhedron-

Prime is certainly an interesting positive geometry in its own right, we believe that

the real purpose of the chiral pentagon expansion is more directly associated with the

internal triangulation of the dual Amplituhedron.

This belief was first raised in [54] based on the simple observation that the chi-

ral pentagon forms are positive when evaluated inside the Amplituhedron region, and

therefore provide a term-wise positive expansion for the MHV one-loop integrand. In

this picture, the positivity of the loop integrand is reminiscent of the volume interpre-

tation of the dual Amplituhedron. The volume is naturally a positive function of (real)

geometric data (momentum twistors) and slicing this volume into smaller pieces via

internal triangulation preserves a term-wise positivity.

For the simplest k “ 1 tree Amplituhedron the dualization procedure is well under-

stood and involves a simple map between polytopes and their duals. However, for k ą 1

tree-level (and all loop-level amplituhedra) the geometries become non-polytopal, and

in these cases the dualization procedure has not been defined as of yet. While we do

not give a complete solution of this problem in this chapter, in this section we provide

a more direct link between the chiral pentagon expansion and the yet-to-be-found dual

one-loop MHV Amplituhedron.

In subsection 2.5.3 we considered a significant subset of simple codimension-two

faces of the MHV one-loop Amplituhedron. In these pictures, we localize two degrees of

freedom of the line pABq, so that the resulting projection can be viewed as a point (and

polygons) on the projective plane. Although the correct dual of the fully off-shell line

pABq is not known, we can avoid this problem by working directly on codimension-two

surfaces which reduce to the projective plane P2. By exploiting the elementary geomet-
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rical fact that polygons dualize to polygons, we can explicitly construct the associated

codimension-two boundaries of the dual Amplituhedron by mapping pointsØlines, in

a precise way that we outline below. On these dual codimension-two boundaries, we

show that the chiral pentagon expansion corresponds to an internal triangulation of

the dual of the MHV Amplituhedron.

2.6.1 Dualizing polygons

As discussed in section 2.5.3 there are two different codimension-two boundaries

which reduce to the geometry of a point inside a polygon on P2: either we localize the

line pABq in a plane pi´1ii`1q or it passes through the point Zi.

In order to connect the chiral pentagons and the dual Amplituhedron, we dualize

the P2 geometries of subsection 2.5.3. In fact, these projections are structurally identical

to the toy model of appendix A.1; only the labelling of the points and lines is different.

Dualizing a polygon is a straightforward procedure and yields another (dual) polygon;

this was discussed in the (pre-)Amplituhedron context in [50].

We begin with the five-point codimension-two boundary (2.5.9) where pABq passes

through Z2. The dualization procedure maps pointsØlines. Thus, the vertices (leading

singularities) in the original projection become the edges of the dual polygon, while the

codimension-one boundaries xABii`1y “ 0 become the vertices in the dual space. The

dualization of eq. (2.5.9) is

ðñ
dual to

(2.6.1)
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where we use the notation that e.g., p2, 51q corresponds to pABq passing through Z2 and

cutting the line p15q. We have also color-coded the leading singularities (and their dual

lines) to direct the eye of the reader. For example, the red vertex (leading singularity)

AB “ p12q in the left figure gets mapped to the red line in the right figure. Note that

we label the dual picture with conditions imposed on the line pABq, despite the fact

that this projection is actually describing the localization of some dual line ĆpABq to

an associated codimension-two boundary. From this perspective, it is crucial that the

space of pABq lines is four-dimensional, so the dual of a two-dimensional geometry is

another two-dimensional geometry! This gives a concrete way of constructing the faces

of the dual geometry. Ideally, in the dual picture we would like to dispense with pABq

altogether and identify the regions and boundaries in the projection with the signs of

some brackets, à la xĄAB . . .y ż 0; however, we do not yet know the constraints which
ĆpABq should satisfy. Nevertheless, the simple structure of the dualization on these

two-dimensional projections allows us to take a region in the original space and find

the corresponding region in the dual space just by working in the original pABq space,

using a very simple prescription. The rule is that any line which intersected the region

in the original space corresponds to a point in the dual space; moreover, that point

must be outside the dual region. Similarly, a line which was outside the region in the

original space maps to a point which must be inside the dual region. These simple rules

suffice to uniquely determine the image of any region in the dual space. As an example,

the dual of the Amplituhedron in the above example where pABq passes through Z2 is
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the light-blue shaded region on the right-hand-side of:

ðñ
dual to

(2.6.2)

In particular, the spurious leading singularities p13q and p123qXp245q, which are outside

the original Amplituhedron on the left, map to lines in the dual space which pass

through the dual Amplituhedron on the right.

The parity conjugate projection, where pABq lies in the plane p123q, is a slightly

less trivial example of the correct dualization procedure

ðñ
dual to

(2.6.3)

The relative positions of lines/vertices in the dual picture on the right merit an expla-

nation. Once again, the shaded region is the (dual) Amplituhedron, indicated primarily

for illustrative purposes. In this case, the spurious leading singularities p24q, p25q and

p123qXp245q must all pass through the dual Amplituhedron region. Our convention
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throughout this chapter has been to assign the Amplituhedron to a region with finite

area. To maintain this convention here requires the vertex p2, 45q, which denotes the

codimension-three boundary where the line pABq lies in the plane p123q and cuts p45q,

to lie inside the triangle bounded by the edges corresponding to the accessible MHV

leading singularities. On this cut surface, these are pABq “ tp12q, p13q, p23qu. Impor-

tantly, the point p2, 45q is spurious, so it is not included in the amplitude region; to

indicate this, we use an empty (white) vertex. All similar codimension-two boundaries

(at five points) are obtained by simply relabeling the above examples.

2.6.2 Dual spaces of chiral pentagons

Having introduced the dual two-dimensional projections, we now turn to identifying

the image of the boxes and chiral pentagons under dualization using the prescription

discussed above. Let us return to the five-point case, where the amplitude is a sum

of two boxes and a single pentagon, c.f. eq. (2.5.1). Using the results of section 2.5.3

and appendix A.3, we can identify the dual regions corresponding to the projection

summarized in eq. (A.3.1), where pABq “ pA2q. The box space B
p3q

45 relevant for the

Amplituhedron-Prime and its naïve dualization are

B
p3q

45 Ø ðñ
dual to

(2.6.4)

This seems to suggest that the dual of the Amplituhedron-Prime is not an internal

triangulation of the dual Amplituhedron as the dual of the B
p3q

45 box region naively lies

outside of the dual of the Amplituhedron in the right figure of (2.6.4). However, there
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is a critical feature of the dualization which has been neglected in eq. (2.6.4): namely,

the lower-dimensional boundaries in the original projection on the left-hand-side, which

map under dualization to infinite wedges in the dual picture on the right. The cavalier

treatment of the lines and vertices on the left-hand-sides of eq. (2.6.4) causes no issue

from the perspective of the canonical forms because any less-than-full-rank subspace of

P3 has vanishing form. However, these same boundaries play a pivotal role in the dual

picture because they dualize to larger spaces with nonzero (in fact, infinite) volume.

Note that while the dual of a line is a point, the dual of a line segment is an infinite

wedge (with two codimension-one boundaries in the dual) defined by the two leading

singularities which bookend the line segment. Thus, the right-hand-side of eq. (2.6.4)

only represents the bulk component of the dualization and is incomplete. In fact, there

is a simpler way of identifying the correct dual spaces which exploits the fact that

zero-form spaces dualize to lower-dimensional boundaries. First, we can identify the

region which dualizes to the triangle with vertices p2, 51q, p2, 13q and p2, 34q, with all

boundaries included:

ðñ
dual to

(2.6.5)

In the dual picture, we use filled vertices to indicate these are included as boundaries

of the region. Now, the box space on the left-hand-side of eq. (2.6.4) can be related

to the left-hand-side of eq. (2.6.5) by adding a zero-form wedge in the original space,
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namely

ðñ
dual to

(2.6.6)

We use a white vertex to indicate that this point is excluded from boundary of the

region. In the dual picture, we draw “dashed” lines to indicate that only the two orange

vertices constitute the dual region. Therefore, the dualization of the box space of the

left-hand-side of eq. (2.6.4) is the internal triangle with precisely this edge absent,

B
p3q

45 Ø ðñ
dual to

(2.6.7)

The dualization of both pentagon spaces (A.3.2) on the boundary where pABq “ pA2q

can be constructed in a similar fashion. Similarly to (2.6.5), we first identify the region
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in the original space which maps to the second internal triangle of the dual space:

ðñ
dual to

(2.6.8)

The pentagon space P
p1q

24 , relevant for the Amplituhedron-Prime, can be related to

eq. (2.6.8) by the addition of the zero form region

ðñ
dual to

(2.6.9)
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so the correct dualization for the pentagon P
p1q

24 is

P
p1q

24 Ø ðñ
dual to

(2.6.10)

For reference, the dualization for the alternative pentagon space P
p2q

24 is the same dual

bulk region, but with the vertices p2, 51q and p2, 34q missing.

2.6.3 Two-dimensional triangulations

The chiral pentagon expansion triangulated the Amplituhedron-Prime space A1.

Since the logarithmic forms for A and A1 are equal, by definition, their dual spaces

have the same volume. Thus, a priori in the dual pictures A and A1 can only differ

by zero-volume lower-dimensional boundaries which are dual to zero-form wedges in

the original space. In fact, the same argument suggests that any choice of individual

box and pentagon geometries must match the dual Amplituhedron up to possibly its

vertices and edges. To demonstrate this correspondence explicitly, we carefully account

for all lower-dimensional boundaries in the dualization procedure. As discussed in the

previous subsection, these line segments dualize to infinite wedges which dramatically

affect the resulting dual region. In general, it is easiest to understand the dualization

by utilizing zero form regions in the original two-dimensional projection.

Let us now compare the behavior of the Kermit eq. (2.2.19) and chiral pentagon

eq. (2.3.3) expansions in the original and dual two-dimensional projections. As shown

in section 2.2, the Kermit representation is by construction an internal triangulation

of the Amplituhedron. By the schematic arguments of section 2.1, the expectation is
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that internal triangulations map to external triangulations of the dual, and vice versa.

We now establish this for the Kermit expansion at five points on the boundary when

pABq passes through Z2. On this cut, the Kermits triangulate the quadrilateral using

the line xAB14y“0. Excluding this line from consideration, the naïve dualization reads

ðñ
dual to

(2.6.11)

We see that just as in eq. (2.6.4) the space remaining is not the quadrilateral repre-

senting the dual Amplituhedron. The issue here is the same as in the naïve dualization

attempt of the previous subsection: we have been glib about the lower-dimensional

boundaries in the original space. Specifically, in the example on the left-hand-side of

eq. (2.6.11), the segment of the line xAB14y “ 0 between the points p12q and p24q du-

alizes to an infinite wedge with exactly these two codimension-one dual boundaries. To

account for this in the dual picture requires that we add the dual of this line segment
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to our naïve picture eq. (2.6.11), i.e.,

ðñ
dual to

(2.6.12)

To be clear, this picture includes both the points p12q, p24q as well as the line segment

itself. Including this boundary with both Kermit regions eq. (2.6.11), we double-cover

the points p12q and p24q. Thus, to recover the dual space we must add these points back,

without the line segment in between them. The dual of this piece is, by completeness,

the wedge in eq. (2.6.12) minus the single point p2, 14q:

ðñ
dual to

(2.6.13)

The net effect of these subtleties on our naïve picture eq. (2.6.11) is the addition of the

infinite wedge eq. (2.6.13), which gives exactly the dual Amplituhedron.

(An alternative resolution to this problem is to include the triangulation line with

one of the Kermits but not the other. Upon removing the extra point p14q in the

dual space, we recover exactly the same (up to relabelling) external triangulation as
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in the motivational example of eq. (2.2.44). This is sensible from a purely geometrical

perspective. However, from the point of view of canonical forms it seems more natural

to include the triangulation line with its endpoints in both terms, as both forms do

have nonzero residues on this boundary.)

Using the results of eq. (2.6.7) and eq. (2.6.10), we see that the dual of the

Amplituhedron-Prime on this cut surface triangulates the dual of the Amplituhedron,

except for the two vertices p2, 13q and p2, 45q, i.e.,

ðñ
dual to

(2.6.14)

Note that the original non-overlapping regions with fixed signs of xABijy brackets are

now overlapping in the dual space. Therefore, it is very non-trivial that the regions cor-

responding to chiral pentagons triangulate internally the dual Amplituhedron without

any overlaps.

The fact that the logarithmic forms for Amplituhedron and Amplituhedron-Prime

are identical means that their (conjectured) dual spaces have the same volume and are

identical up to spaces which have zero volume. This matches the result of eq. (2.6.14),

where we can see that A and A1 differ by lower-dimensional boundaries. This line of

reasoning is also suggestive of an ambiguity in the definition of the Amplituhedron-

Prime. Namely, we are always free to add any spaces which have zero form (such as the

infinite wedge of eq. (2.6.6)) because in the dual space they correspond to zero-volume

lines or points.
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To provide additional evidence that the Amplituhedron-Prime dualizes to an in-

ternal triangulation of the (bulk) dual Amplituhedron, we can repeat the above ex-

ercise for the cut surface pABq Ă p234q which was analyzed in eq. (2.5.18). For the

Amplituhedron-Prime, all three local integrals contribute:

B
p3q

45 Ø ðñ
dual to

(2.6.15)

B
p3q

12 Ø ðñ
dual to

(2.6.16)

99



P
p1q

24 Ø ðñ
dual to

(2.6.17)

Hence the dual of the Amplituhedron-Prime triangulates the dual Amplituhedron, up

to a single vertex p3, 24q on the two-dimensional projection where pABq Ă p234q,

ðñ
dual to

(2.6.18)

We have exhaustively verified for all remaining five and six point two-dimensional

projections where pABq “ pAiq or pABq Ă pi´1ii`1q that the Amplituhedron-Prime

internally triangulates the dual Amplituhedron up to contributions with zero-volume.

In fact, in retrospect this conclusion would follow immediately from the existence of

a spurious-boundary-free, zero-form space B which connects A and A1 through A “

A1 ` B. We wrote down an explicit expression for B at four points in eq. (2.5.38)

and, although we do not have an explicit formula for this space at n-points, we see

no conceptual obstruction which would preclude its existence. We leave an explicit
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construction of the zero-form space connecting the Amplituhedron and Amplituhedron-

Prime to future work.

Rigidity of the dual space

We have seen in the previous discussion that a single d log form gives rise to various

positive geometries. We emphasized the importance of faithful geometries in section

2.3.2, where all boundaries of the geometric space appear as poles in the d log form.

Furthermore, we used these geometries to interpret the chiral pentagon expansion as

external triangulation of Amplituhedron-Prime in eq. (2.5.32). From our discussion it

is clear, that all these spaces have different geometries, but one can naturally ask about

the duals of the positive spaces which originate from the same d log form.

Here, we explicitly discuss different box spaces for the one-mass box B45 summa-

rized in eq. (2.5.3). We can dualize these spaces on the two-dimensional boundary where

the line pABq passes through Z2, c.f. (2.5.11) and (2.6.1). We repeat the same exercise

from section 2.6.1 for the three alternative box spaces appearing in eq. (A.3.1) even

though they are irrelevant for the Amplituhedron-Prime. Because these additional

box spaces are all equivalent to eq. (2.6.5) up to a zero-form region in the original

two-dimensional projection, they all map to the same internal piece of the dual Am-

plituhedron up to lower-dimensional boundaries. Indeed, the results of dualization for

the alternative box spaces are, using the coloring convention of eq. (A.3.1):

B
p1q

45 Ø ðñ
dual to

(2.6.19a)
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B
p2q

45 Ø ðñ
dual to

(2.6.19b)

B
p4q

45 Ø ðñ
dual to

(2.6.19c)

This makes perfect sense because the positive geometries differ by spaces with

vanishing form (wedges on the two-dimensional boundaries) which get mapped to points

and lines in the dual two-dimensional geometry. Therefore, from the point of view of

the dual Amplituhedron, it does not matter which positive geometry we use for a given

d log form, it always represents the same dual geometry. This simply follows from the

fact that the regions with vanishing d log form map to lower-dimensional objects in the

dual which have zero volume.

Therefore, it is natural to expect that while the positive geometries A and A1

are different, the putative dual Amplituhedron is unique, and the chiral pentagons

triangulate it internally. We gave some evidence for this claim in this section.
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2.7 Conclusion

In this chapter we discussed various positive geometries in the context of the one-

loop Amplituhedron and its variants. We have shown that for external data satisfying

the MHV positivity conditions (2.2.11), there are a number of further interesting posi-

tive geometries besides the original MHV and MHV Amplituhedra. In section 2.4, we

classified all these spaces using topological sign-flip properties which are reminiscent

of, but distinct from, the sign-flip definition of the Amplituhedron [58]. Furthermore,

we showed that these positive spaces can be used to give a geometric interpretation

of the chiral pentagon expansion of the one-loop MHV amplitude of eq. (2.2.45). In

particular, the chiral pentagons externally triangulate a new Amplituhedron-Prime

space (2.5.32) which is a non-overlapping twin of the original Amplituhedron with only

physical boundaries and the same logarithmic form. Finally, in section 2.6, we made

more precise the statement that the chiral pentagon expansion can also be interpreted

as the internal triangulation of the yet-to-be found dual Amplituhedron. We were

able to demonstrate the internal triangulation of the dual on certain two-dimensional

boundaries of the full space where the geometry reduces to that of polygons for which

a dualization prescription exists. Exploring other two-dimensional boundaries of non-

polygonal form, as well as three-dimensional boundaries and the role of internal triangu-

lations, should bring us to the ultimate goal of the discovery of the dual Amplituhedron

space.
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Chapter 3

Integrands of Less-Supersymmetric
Yang-Mills at One Loop

3.1 Introduction and Overview

Important recent progress in our understanding of scattering amplitudes in quan-

tum field theory originated from considering the structure of loop amplitudes at the

level of the integrand whose analytic structure is determined by unitarity in terms of

on-shell processes.

The origins of generalized unitarity [2, 3, 129] are extremely simple to understand:

loop integrands, being rational differential forms on the space of loop momenta, can

be expanded into a basis of such forms with coefficients that are loop-momentum in-

dependent. For any process in any particular quantum field theory and at any fixed

loop order and spacetime dimension, the space of all scattering amplitude integrands

(arbitrary multiplicity and external particle content) spans a finite-dimensional space

of ‘master’ integrands. Once these integrands are integrated they can be recycled for

arbitrary scattering amplitudes of interest in the theory.

A familiar illustration of the power of this idea is the ‘no-triangle property’ for

amplitudes in maximally supersymmetric Yang-Mills and gravity at one loop [130–133].

Specifically, this means that all amplitudes in these theories are expressible in a basis of
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‘scalar box’ integrals (those that scale like four propagators at infinite loop momentum).

This basis was called B
p4q

4 in ref. [134], and it is a classic result of Passarino and Veltman

[135] that all one loop integrals involving more than four-propagators can be expanded

into those with four or fewer. Thus, at one-loop in these theories, the scalar box

integrals suffice for representing all scattering amplitudes.

More generally, the size of the basis required to represent amplitudes in a quantum

field theory remains an important and open question. For example, it is known that

scattering amplitudes in both the Standard Model and pure Yang-Mills are expressible

in terms of the basis of integrands B0—integrands that scale like a loop-independent

constant at infinite momentum—which is the basis described by OPP in ref. [136, 137];

but it is not known whether this is the smallest space of loop integrands needed to

express amplitudes in these theories.

In this chapter, we consider the case of one-loop amplitudes in less-than-maximally

supersymmetric (1 ď N ă 4) Yang-Mills theory (‘sYMN’). We show that these am-

plitudes can be expressed in the space B
p4q

2 —the space of integrands with ‘bubble’

power-counting in four dimensions. We do this by constructing a particular, prescrip-

tive [138] basis for B
p4q

2 with several special features, and show how amplitudes in

sYMN can be represented in this basis.

More precisely, we focus on scattering amplitudes of pure N “1, 2 vector multiplets

without additional matter. In terms of on-shell multiplets, one can label on-shell scat-

tering states in terms of helicity super-multiplets [139]. In the planar limit, we expect

a well-defined notion of the integrand due to the fact that planarity, or equivalently

(leading) color ordering, induces a fixed cyclic ordering of the external momenta of the

scattering states, which in turn allows us to define unique labels for the loop-variables to

any order in perturbation theory. These variables are given either by choosing an origin

of loop-momentum space, going to dual coordinates [27], or (in strictly four spacetime

dimensions) introducing momentum twistors [48], all of which have played a major role

in recent developments for maximally supersymmetric amplitudes, and beyond. One
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key advantage of the global labels that originated in N“4 sYM arises from multiple

different definitions of the integrand, either in terms of a standard diagrammatic rep-

resentation or via loop-level on-shell recursion relations [125]. For less-supersymmetric

amplitudes in the planar limit, these recursion relations should exist, but are associated

with various subtleties [92].

The computation of one-loop amplitudes (including non-supersymmetric ones) has

a long tradition partially inspired by the precision needs for particle collider observables.

Previous amplitudes constructions mostly rely on the basis of known scalar one-loop

integrals where the integral coefficients can either be obtained from the integrand reduc-

tion of Feynman diagrams or generalized unitarity cuts. These methods have been be

implemented in a number of useful numerical computer codes, see e.g. [140–143]. The

unitarity approach has the advantage of being also suitable for a fully analytic calcu-

lation as demonstrated in the seminal work by Bern, Dixon, Dunbar, and Kosower [3],

where one-loop MHV amplitudes in N“1 sYM were explicitly computed for arbitrary

multiplicity. Furthermore, NMHV amplitudes are known from similar computations

[144–147], and e.g. [148–150] for additional relevant one-loop amplitudes. Crucially,

the above mentioned methods rely on post-integration results and commonly drop the

massless bubble coefficients in the integrand construction and fix them a posteriori

by matching to the expected IR or UV singularities of scattering amplitudes. Alter-

natively, ref. [151] fixes supersymmetric Yang-Mills integrands with matter multiplets

running in the loop via the Bern Carrasco Johansson (BCJ) color-kinematic dual rep-

resentations, see also [152] for a non-supersymmetric BCJ computation for different

matter fields running in the loop.

In contrast, one goal of this chapter is to uniquely define the one-loop integrands for

less than maximally (1ďNď4) supersymmetric Yang-Mills theory (the pure Yang-Mills

case has new features which we leave for future work). The situation is significantly

different from the case of maximal supersymmetry because of the presence of poles at

infinity as indicated by having triangles and bubbles in the one-loop expansion. We
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show that the standard cuts considered in the context of generalized unitarity fix the

integrand up to massless bubbles contributions. These terms integrate to zero but are

nevertheless important at the integrand-level; and we illustrate two choices of contours

which can be used to fix their coefficients.

Organization and Outline

This chapter is organized as follows. In section 3.2, we review the ingredients

of basis-integrand construction and the role of prescriptivity [138]. We describe our

particular choice of basis for B
p4q

2 in section 3.2.2, and highlight how it is stratified by

its UV/IR structure and its transcendental weight in section 3.2.2.3.

Because the basis we construct is prescriptive, the coefficient of every integrand

is a ‘leading singularity’ in field theory: i.e. the integral of the amplitude along some

particular compact contour (at one loop, always a ‘residue’). In less-than-maximally

supersymmetric Yang-Mills theory, leading singularities require more information to

specify than in N “4 sYM. We review these ingredients in section 3.3. In particular, we

find that one loop amplitude integrands in sYMN can be represented as a combination

of the corresponding amplitude integrands in N “ 4 sYM (which have better power-

counting), plus corrections involving only those diagrams with so-called ‘non-singlet’

helicity flow. In section 3.3.2, we discuss some subtleties that arise in the case of leading

singularities associated with massless bubble integrals, and suggest two natural paths

to defining a unique integrand.

In section 3.4, we apply our diagonalized bubble power-counting basis of integrands

to write down a closed formula for all-multiplicity MHV amplitudes in section 3.4.2. We

further illustrate these ideas with a particular six-point NMHV amplitude integrand in

section 3.4.3, and discuss how this representation of amplitudes manifests the finiteness

of many observables in these theories before concluding in section 3.5.

Finally, in appendix B we provide full details for our integral basis, and each basis

element’s result from loop integration. These results, as well as the all-multiplicity

MHV amplitude integrand, are also provided as ancillary files attached to [153].
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3.2 A Prescriptive, Bubble Power-Counting Basis at One Loop

The fundamental principle behind generalized unitarity [2, 3, 129] is that loop

amplitude integrands A are elements of a vector space of differential forms on the

space of loop momenta; as such, they may be expanded into a basis B (large enough

that AĂB) of such forms,

A “
ÿ

biPB

ci bi , (3.2.1)

where the coefficients ci are loop-momentum-independent ‘on-shell’ functions deter-

mined by generalized unitarity : i.e. the left and right-hand sides of eq. (3.2.1) agree on

all contour integrals which ‘encircle’ loop-dependent Feynman propagators.

In principle, an arbitrary spanning set of Feynman integrands (rational differential

forms involving some number of Feynman propagators and arbitrary functions of loop

momenta in the numerators) can be chosen for a basis in (3.2.1). In this case, the

determination of the coefficients ci amounts to a problem of linear algebra: suppose

that one has some spanning set of integration contours tΩju on which the period matrix

¿

Ωj

bi “:Mi,j (3.2.2)

were known or determined to be full-rank. Then the coefficients of amplitudes ai would

be determined by the system of equations

aj :“
¿

Ωj

A “

¿

Ωj

´

ÿ

biPB

ci bi

¯

“
ÿ

biPB

ci

´

¿

Ωj

bi

¯

“
ÿ

i

ciMi,j

ñ cj “
ÿ

i

ai.
“

M´1
‰

i,j
.

(3.2.3)

Typically, the cycles chosen to determine coefficients are those involving as many

‘residue’ contours as possible—those which encircle a number of Feynman propaga-

tors, poles at infinity, collinear regions, and so-on. Because these contours enclose

physical poles, the periods of amplitude integrands aj defined in (3.2.3) are called lead-
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ing singularities [126] and can be determined in terms of on-shell (tree) amplitudes.

The story of these coefficients is one with a very rich history.

Setting aside the potential computational complexity involved in inverting the pe-

riod matrix Mi,j defined in (3.2.2), it is worth emphasizing that most seemingly natural

choices for bases of master integrands (those involving some Feynman graph’s worth of

propagators and a spanning-set of ‘Lorentz-invariant scalar products’ in their numera-

tors) lead to very poor integrals—ones that can deeply obscure many interesting and

important features of scattering amplitudes. Thus, it is worthwhile to try and find a

good set of integrands for any basis.

3.2.1 Brief Review of Prescriptive Integrand Bases for Amplitudes

A prescriptive integrand basis is one chosen to be cohomologically dual to a span-

ning set of maximal-dimensional compact contours of integration. That is, a basis is

prescriptive provided that there exists a set of compact, maximal-dimensional integra-

tion contours tΩju such that
¿

Ωj

bi “ δi,j . (3.2.4)

When this is the case, the coefficients ci of the amplitude integrand (3.2.1) are leading

singularities of field theory because the inversion of the period matrix (3.2.2) is trivial:

ci “ ai:“
¿

Ωi

A . (3.2.5)

Prescriptive integrand bases have been shown to possess many desirable properties. In

particular, they often evaluate to pure functions (those satisfying nilpotent systems of

differential equations, see e.g. [154, 155]), and hence are comparatively easy to integrate.

To be clear, prescriptive integrand bases are fairly straightforwardly to construct.

Starting from an arbitrary basis of loop integrands B0 and an arbitrary spanning-set

of contour integrals tΩju
1, a prescriptive basis can be obtained according a simple

‘rotation’ of the basis:
1The contours of integration are understood to fully localize the loop momentum. Therefore the
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bi:“
ÿ

k

“

M´1
‰

i,k
b0k where Mk,j :“

¿

Ωj

b0k . (3.2.6)

It should be clear how important the role of the cycle basis is in the above discussion:

different choices of contours tΩju can result in strikingly different bases of integrands.

Thus, there is relatively little uniqueness here. For our particular purposes in this work,

we chose a maximal subset of contours to expose IR and UV divergences, resulting in a

basis stratified by divergences. As stressed previously, this choice is by no means unique

and one could think about alternative bases inspired by other physical or mathematical

properties.

In what follows, we review the elements involved in defining a particular set of

Feynman integrands for a basis—as defined by (some proxy for) ‘power-counting’. Then

we illustrate the kinds of choices made for a dual set of cycles, and how these choices

affect the resulting integrand basis.

3.2.2 Defining a Bubble Power-Counting Basis B
p4q

2

As described in ref. [134], one can construct a basis of ‘bubble-power-counting’

integrands at one loop as follows. Start with any Feynman graph involving some number

of p ě 2 propagators and consider the vector space of loop-dependent polynomials in

the numerator

rℓspp´2q with rℓsq:“ span
QiPRd

!

pℓ ´ Q1q
2

¨ ¨ ¨ pℓ ´ Qqq
2
)

. (3.2.7)

That is, rℓsq represents that linear span of all q-fold products of inverse propagators.

Thus, the space of B2 is defined as the linear span of all Feynman integrals with p

propagators and a product of p´2 inverse propagators in the numerator.

Graphically, if we use

integral coefficients are determined by purely algebraic manipulations. In the absence of sufficiently
many propagators, the contours might involve encircling arbitrary reference points, see e.g. [138] for
more details which is comparable to the one-loop methods of [136, 156]. These procedures are in
contrast to spinor integration methods to extract one-loop coefficients, e.g. [157].
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ℓ⃗
:“

rℓs

ℓ2
, (3.2.8)

to denote the vector space of inverse-propagators times some propagator, then

B0 :=span 1, , , , , , , , . . .

B1 :=span , , , , , , , . . .

B2 :=span , , , , , , . . .

B3 :=span , , , , , . . .

B4 :=span , , , , . . .

. (3.2.9)

As described in ref. [134], this space is finite dimensional for any fixed spacetime di-

mension (or multiplicity). In four dimensions, all integrands involving more than four

propagators are expressible in terms of those with four or fewer. In particular, the basis

B
p4q

2 is spanned by the following vector spaces of loop integrands:

A

B C

D
ℓ

:“
rℓs2

ℓ2pℓ ` pAq2pℓ ` pABq2pℓ ` pABCq2
,

A

B

C
ℓ

:“
rℓs1

ℓ2pℓ ` pAq2pℓ ` pABq2
, and A B

ℓ

:“
1{2

ℓ2pℓ ` pAq2
.

(3.2.10)

Throughout this chapter, we always leave implicit the factor of ‘ -d4ℓ’ in these integration

measures. For each set of leg distributions, these spaces of integrands have rank (in

four-dimensions) of 20“2`18, 6“3`3, and 1, respectively. What we mean by this, for

example, is that the 6-dimensional vector space rℓs1 of loop-dependent numerators for

the triangle integrands can be viewed as spanned by 3 ‘top-level’ degrees of freedom

and 3 contact terms—one numerator for each of the 3 inverse-propagators appearing

in the graph. Similarly, of the 20-dimensional vector space rℓs2 of numerators for the

box integrands, all but 2 can be spanned by contact terms:
`

4
2

˘

“ 6 double-contact

terms (with one degree of freedom each), and
`

4
1

˘

“ 4 single contact terms with 3

top-level degrees of freedom each. Labeling only the top-level degrees of freedom for
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each denominator topology (those numerators not spanned by the contact terms of

the integral) , our bubble power-counting basis consists of 2 numerators per box, 3

numerators per triangle, and a single numerator per bubble, denoted by I i
A,B,C,D, II

A,B,C ,

and IA,B, respectively. We may represent each of these integrands graphically as follows:

A

B C

D

ℓb

ℓc

ℓd

ℓa

i ô
niA,B,C,Dpℓq

ℓ2a ℓ
2
b ℓ

2
c ℓ

2
d

,

A

B

Cℓb

ℓc

ℓa

I ô
nIA,B,Cpℓq

ℓ2a ℓ
2
b ℓ

2
c

, A B
ℓa

ℓb

ô
1{2

ℓ2a ℓ
2
b

(3.2.11)

where i P t1, 2u indexes the top-level degrees of freedom of each box, and I P t1, 2, 3u

indexes the top-level degrees of freedom of each triangle. To be clear, the sets tAu, . . .

represent arbitrary non-empty collections of external momenta flowing into the vertex,

with pA:“
ř

aPA pa and sA:“ p2A “ p
ř

aPA paq2.

Later on, we will have reason to distinguish between sets of external momenta

that are ‘massive’ (sets consisting of more than one massless leg) from those which are

massless. When tAu consists of a single element, we will denote it by a:“ tau “ tAu,

and similarly for the other momenta labels. More generally, we refer to ‘a’ as the first

label in the set tAu:“ ta, . . .u, and so-on. Due to our focus on planar (color-ordered)

amplitudes, the sets are endowed with a natural ordering of external legs.

To determine the specific numerators for the basis, we start from a spanning set

of contours and fix the precise numerators according to the prescriptivity condition

(3.2.4). It is worth emphasizing how the particular numerators are chosen using these

conditions. For example, in the case of box-integrands, two particular numerators are

chosen not simply by the condition
¿

Ωj
A,B,C,D

I i
A,B,C,D “ δi,j , (3.2.12)

112



but also by the requirement that it vanish on all triangle-topology contours of its

contact terms
¿

ΩJ
pA`Bq,C,D

I i
A,B,C,D “

¿

ΩJ
A,pB`Cq,D

I i
A,B,C,D “

¿

ΩJ
A,B,pC`Dq

I i
A,B,C,D “

¿

ΩJ
pD`Aq,B,C

I i
A,B,C,D “ 0 ; (3.2.13)

and similarly for all the contours for its bubble-topology, double-contact terms:
¿

ΩpA`B`Cq,D

I i
A,B,C,D “

¿

ΩA,pB`C`Dq

I i
A,B,C,D “

¿

ΩB,pC`D`Aq

I i
A,B,C,D “

¿

ΩpD`A`Bq,C

I i
A,B,C,D “

¿

ΩpA`Bq,pC`Dq

I i
A,B,C,D “

¿

ΩpD`Aq,pB`Cq

I i
A,B,C,D “ 0 .

(3.2.14)

Thus, of the rankprℓs2q“2`18 degrees of freedom required to specify the basis numera-

tors niA,B,C,D, only 2 are fixed by (3.2.12), while 3̂ 4 of the remaining degrees of freedom

are determined by (3.2.13) and 6ˆ1 are fixed by the analogous equations (3.2.14) for

bubble contact-terms. This is what we mean by saying that an integrand basis B
p4q

2 is

dual to a spanning set of particular cycles.

Of course, in order to construct specific integrand numerators, we must specify

the contour conditions which define the basis prescriptively as described above. We

do this in the following subsection. However, it should be clear that, independent

from the precise contour definition, scattering amplitude integrands in this basis will

be represented according to

A “
ÿ

A,B,C,D

2
ÿ

i“1

aiA,B,C,DI i
A,B,C,D`

ÿ

A,B,C

3
ÿ

I“1

aIA,B,CII
A,B,C`

ÿ

A,B

aA,BIA,B (3.2.15)

where

aiA,B,C,D:“
¿

Ωi
A,B,C,D

A , aIA,B,C :“
¿

ΩI
A,B,C

A , aA,B :“
¿

ΩA,B

A . (3.2.16)

To be any more specific, we must specify the contour conditions which define our basis

prescriptively.

3.2.2.1 A Spanning Set of Maximal-Dimension Contours

It is interesting to note that the basis of bubble power-counting integrands in four

dimensions can be viewed as B
p4q

2 » B
p4q

3 ‘ B
p3q

2 . That is, we may consider the new
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integrands in B
p4q

2 relative to those of Bp4q

3 to be those associated with a bubble power-

counting basis in three dimensions—merely reinterpreted in four dimensions. This is

also motivated by the fact that all the new integrals required have less than maximal

transcendental weight when integrated in 4D, but would be of maximal-weight in 3D;

these weight drops are related to the presence of double-poles when the integrands are

interpreted in 4D. Provided the integrands of Bp4q

3 are full-weight, they will automat-

ically be diagonal with respect to the integrands in B
p3q

2 —that is, they will vanish on

all contours involving double-poles.

The basis elements without double-poles—those of Bp4q

3 ĂB
p4q

2 —are easiest to dis-

cuss, which is why we start with their defining contours. The basis elements in this

category are the chiral boxes I i
A,B,C,D as well as the scalar triangle integrands II“1

A,B,C .

All other basis elements have double-poles at infinity and will be considered momen-

tarily in section 3.2.2.1. A summary of our defining set of contours is also provided in

Table B.1 of appendix B.1.

The contours defining the chiral box integrands can be represented graphically

according to:

Ωi
A,B,C,D:“

$

’

’

’

’

&

’

’

’

’

%

A

B C

Dℓ“ℓ˚
1

1 ,

A

B C

Dℓ“ℓ˚
2

2

,

/

/

/

/

.

/

/

/

/

-

; (3.2.17)

these are simply the contours encircling the two solutions tℓ˚
1 , ℓ

˚
2u to the quadruple-cut

equations ℓ2a“ℓ2b“ℓ2c“ℓ2d“0. Only the box integrals have four-propagators to have a

non-vanishing contour integral on such a cut, and each box integrand involves a unique

set of such propagators; as such, all other basis elements automatically vanish on these

contours.

The chirality of box-integrand contours can be seen more clearly in cases where

massless corners are present, for which we may indicate the parity of the contour using

blue or white vertices. For example, we denote the three-mass box contours as
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Ωi
a,B,C,D:“

$

’

’

’

’

&

’

’

’

’

% a

B C

Dℓ“ℓ˚
1

1 ,

a

B C

Dℓ“ℓ˚
2

2

,

/

/

/

/

.

/

/

/

/

-

, (3.2.18)

which highlights that these contours involve ℓ˚
1 “λa

rλX and ℓ˚
2 “λX

rλa, respectively, and

the precise form of λX and rλX is irrelevant for the moment.

Next, consider the contours for the scalar triangle integrands. Most interesting

are the cases where there is at least one massless leg, since the associated dual basis

integrands can have IR singularities. For example, we define the two-mass scalar-

triangle integrals’ contours by

ΩI“1
a,B,C :“

a

B

C1 , (3.2.19)

where the circle is a graphical notation for the collinearity condition ℓa „pa imposed in

addition to the triple cut ℓ2a “ ℓ2b “ ℓ2c “ 0. Let us mention that this particular contour

is spurious [101], and thus no scattering amplitude has support here. Furthermore,

demanding that the chiral box integrands vanish on ΩI“1
a,B,C guarantees that they are

free of this particular collinear singularity associated with IR divergences.

A similar discussion also applies for the scalar one-mass triangle contour ΩI“1
a,b,C (see

subsection 3.2.2.2 for further details). The contour choice in Table B.1 for the scalar

triangles renders all boxes locally IR-finite as in [158] by demanding that the chiral box

integrands vanish in all collinear or soft regions of loop-momentum space. This choice

leads to the same numerators that have been described in the context of N“4 sYM in

[53]. Our integrated results, summarized in tab. B.3 are also related to the IR finite

integrals discussed in [145].

Defining Contours for Lower-Weight Integrands

115



The second class of basis integrands and their associated contours involves certain

double-poles at infinite loop momentum. These are the objects we turn to now.

The key observation to define a bubble power-counting basis in four dimensions is

that Bp4q

2 » B
p4q

3 ‘B
p3q

2 . That is, the additional integrands needed, relative to a triangle

power-counting basis in four dimensions, are scalar bubbles and triangle integrals with

single-inverse-propagator loop-dependence in their numerators which define B
p3q

2 ; both

of these are naturally defined in three dimensions—and for more than merely pragmatic

reasons.

Consider for example the scalar bubble integral. With the appropriate normal-

ization of the numerator in terms of powers of sA, the bubble integrates to a pure

weight-one function in either two or three dimensions. Moreover, it is possible to write

it as a wedge-product of dlog-differential forms in either case: (for a more detailed

discussion, see e.g. [127, 159])

I
pD“2q

A,B “

ż

-d2ℓ
1

2

sA
ℓ2a ℓ2b

“
1

4

ż

-d log
ℓ2a
ℓ2b

^ -d log
pℓa´ℓ˚

aq2

pℓa´rℓ˚
aq2

I
pD“3q

A,B “

ż

-d3ℓ
1

2

?
sA

ℓ2a ℓ2b
“

1

4

ż

-d log ℓ2a ^ -d log ℓ2b ^ -d log
ℓ¨q

ℓ¨q

(3.2.20)

where, in the two-dimensional bubble, ℓ˚
a and rℓ˚

a are the two solutions to the maximal

cut equation ℓ2a “ ℓ2b “ 0 and the bubble has no pole at infinity, ℓ Ñ 8. The three-

dimensional bubble is slightly more complicated and has a single pole at ℓÑ 8. This

can be thought of as a dual conformal triangle in D “ 3 where one of the dual points is

taken to be infinity [127]. In suitable coordinates (embedding space), infinity is treated

on the same footing as any other point which makes this analysis very clear. Here,

we refrain from introducing embedding coordinates (see [160]) and work in momentum

space directly which leads to the appearance of the two null-vectors q and q normalized

by q ¨ q “ 1 which are defined by the relations q ¨ pA “ q ¨ pA “ 0. (Technically, this is

easiest to implement by choosing light-cone coordinates transverse to pA. Furthermore,

the dlog form remains valid for massive internal propagators where ℓ2a,b Ñℓ2a,b´m2 which
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will become important for our discussion in D“4.) In D“3, we consider for example the

triple cut of the bubble which encircles the two propagators and furthermore encloses

the odd combination (parity-even) of simple poles at ℓ Ñ 8 which is clear from the

d log form in 3D where one cuts the two propagators ℓ2a “ℓ2b “ 0 and then encircles the

parity-even combination of ℓ¨q “ 0 and ℓ¨q “ 0. In three dimensions, this is a leading

singularity of the scalar bubble integrand.

In contrast, in four dimensions, the scalar bubble integrand has a double-pole—

signaling a weight-drop in the resulting integral [99, 100]. This is reflected in the fact

that the bubble can be written explicitly by decomposing the four-dimensional space

of loop-momenta into a three-dimensional subspace and one additional direction, say

ℓi orthogonal to the momentum pA (as well as q, q) entering the bubble and to the

three-dimensional slice. This effectively means that we can think about the 4D bubble

as a 3D bubble where the propagators become massive, with mass m2:“ pℓiq2. Since

our 3D dlog form was valid for internal massive legs, we find

I
pD“4q

A,B “

ż

-d3ℓ -dℓi
1

2

?
sA

ℓ2a ℓ2b
“

1

4

ż

-d log ℓ2a ^ -d log ℓ2b ^ -d log
ℓ¨q

ℓ¨q
^ -dℓi , (3.2.21)

so that the triple-cut residue results in a ‘double-pole at infinity’: an integrand which

is independent of the remaining loop integration parameter.
¿

ℓ2a“ℓ2b“0

ℓ⃗Ñ8
(odd)

-d4ℓ⃗
1

ℓ2aℓ
2
b

9

ż

-dℓi , (3.2.22)

where ℓi is whatever component of ℓ⃗ not eliminated in the three integration cycles.

Thus, for this integrand the differential of the form ‘ -dℓi’ looks like a total derivative on

the cut. Moreover, this differential form has a double-pole at infinity. Unlike -d log, -dℓi

is not scale invariant and thus the coefficient of the double-pole is not uniquely defined.

As this example should make clear, the particular component for the final integration,

say ℓi, is completely arbitrary: any three components of ℓ⃗ can be eliminated in the

first integrations, always resulting in an integrand of the form -dℓi in the remaining
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variable. Thus, there is no particular double-pole: there is a three-dimensional (four-

dimensional, modulo rescaling) family of such double-poles. Perhaps a more invariant

way of describing a bubble integrand in four dimensions would be to start with the fact

that in three dimensions, it is purely polylogarithmic: it is a dlog-form. Going from

three to four dimensions amounts to appending a trivial dℓi onto this polylogarithmic

three-form.

To be clear, the bubble integral is polylogarithmic on any three-dimensional sub-

space chosen—which we may denote as pℓiqK for any component ℓi of ℓ⃗. Considering

that ℓi:“ ℓµ¨eiµ for some basis vector eiµ, it is clear that we can view the complementary

space as the solutions to ℓ¨pX “ 0 for any pX . For reasons of simplicity, it turns out to

be beneficial to take pX to be null. In this construction, we define a three-dimensional

subspace of loop momenta according to

-d4ℓ ÞÑ -d3
pℓ where pℓ P ppXq

K . (3.2.23)

Noting that the null-space ppXqK of pX is defined by ℓ¨pX “ 0, we see that this can be

interpreted more concretely as:

-d3
pℓ:“ -d4ℓ δpℓ¨pXq . (3.2.24)

Although this three-dimensional subspace depends on pX , we will choose the same

subspace for all integrands with double-poles. Thus, when we say that B
p4q

2 » B
p4q

3 ‘

B
p3q

2 , we consider the basis B
p3q

2 to be defined as in (3.2.23) for all integrands and

consider contours to be taken over this three-dimensional space pℓ.

3.2.2.2 Illustrations of the Resulting Numerators in the Basis

In order to make some of the abstract definitions of the previous subsections more con-

crete, we consider a few illustrative examples that highlight all relevant features. The

complete list of one-loop basis integrands with bubble power-counting is summarized
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in Table B.2 of appendix B.2. First, we consider the two-mass-easy box integrands

a

cB

D

ℓb

ℓc

ℓd

ℓa

i Ø I i
a,B,c,D:“

nia,B,c,D

ℓ2a ℓ
2
b ℓ

2
c ℓ

2
d

with

$

’

&

’

%

ni“1
a,B,c,D:“ rrpa, ℓb, ℓc, pcss

ni“2
a,B,c,D:“ rrℓb, ℓc, pc, pass

(3.2.25)

where we use the kinematic bracket conventions from [161, 162] to denote contractions

of momenta

rra1, a2, ¨ ¨ ¨ , c1, c2ss :“
”

pa1 ¨a2q
α
β ¨ ¨ ¨ pc1 ¨c2q

γ
α

ı

, (3.2.26)

where pa1 ¨a2q
α
β :“ aα 9α

1 ϵ 9α 9γa
9γγ
2 ϵγβ and aα 9α:“ aµσα 9α

µ are ‘2ˆ2’ four-momenta, defined via

the Pauli matrices. The ‘rr¨ ¨ ¨ ss’ object may be more familiar to some readers if writ-

ten equivalently as ‘tr`r¨ ¨ ¨ s’, are linear in their arguments, and satisfy the following

identities

rra1, a2, ¨ ¨ ¨ , c1, c2ss “ rrc2, c1, ¨ ¨ ¨ , a2, a1ss “ rrc1, c2, a1, a2, ¨ ¨ ¨ ss . (3.2.27)

Often, they may be simplified using

rr. . . , x, A,A, y, . . .ss “ sA rr. . . , x, y, . . .ss , with rrss “ 2 . (3.2.28)

The two chiral2-box numerators are normalized to unity on the following maximal-

dimensional cycles

Ω1
a,B,c,D:“

a

cB

Dℓ“ℓ˚
1

1 , Ω2
a,B,c,D:“

a

cB

Dℓ“ℓ˚
2

2 , (3.2.29)

where ℓ˚
1 and ℓ˚

2 are the two solutions to the maximal cut equations of the box ℓ2a “

ℓ2b “ ℓ2c “ ℓ2d “ 0 and the white and blue vertices in the contour prescription in p3.2.29q

indicates the chirality of the solution at that vertex. In particular ℓ˚
1 „ λa

rλX and
2Chiral numerators have also appeared elsewhere in the literature with further remarks on special

analytic and IR properties, including at higher loops [163, 164] and in non-supersymmetric YM theory
[165].
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ℓ˚
2 „ λX

rλa. Due to the chirality of the solution and the order of the momenta in

the brackets of nia,B,c,D in (3.2.25), the integrand basis elements are diagonal on the

respective contours. In order to claim that our basis is truly prescriptive, it remains

to be checked that both integrand basis elements vanish on all other defining contours

summarized in Table B.1 in appendix B.

First, we should note that the chiral boxes scale at infinity like scalar triangle

integrals, i.e. they have at most single poles at ℓÑ8. This implies that these integrands

trivially vanish on all contours that involve the instruction of taking a double-pole at

infinity. This implies that the chiral boxes vanish on all defining contours for chiral

triangles (to be discussed in detail shortly) as well as on the bubble-integral contours.

The only remaining question is therefore associated with the defining contours for

the scalar triangle subtopologies Ω1
a,B,C in the language of Table B.1. For the example

considered above, all triangle subtopologies have one massless leg. Our particular choice

of the one-mass scalar-triangle contour involves the collinear limit around the massless

corner of the triangle. Fortunately, the chiral box numerators in (3.2.25) vanish in the

collinear limit where ℓa9pa or ℓc9pc due to the properties of rr¨ ¨ ¨ ss. Crucially, the fact

that these chiral boxes have only single poles at ℓ Ñ 8 together with the fact that

they vanish in the collinear regions ℓa9pa or ℓc9pc renders these objects both UV and

IR finite. These integrands have been integrated in [53] and for the convenience of the

reader we give their result in terms of polylogarithms in Table B.3.

A second illustrative example to consider is the one-mass triangle sector

a

b

Cℓb

ℓc

ℓa

I Ø

$

’

’

’

’

’

&

’

’

’

’

’

%

nI“1
a,b,C :“ ´sC

nI“2
a,b,C :“ 1

2rrpa´pb,pX ss
p2 rrpa, ℓb, pb, pXss ` ℓ2b rrpa´pb, pXssq

nI“3
a,b,C :“ 1

2rrpa´pb,pX ss
p2 rrpX , pa, ℓb, pbss ` ℓ2b rrpa´pb, pXssq

. (3.2.30)

The chiral numerators nI“2,3
a,b,C are written in a way to make the collinear and UV prop-

erties manifest. In particular, the ordering of momenta in rrpa, ℓb, pb, pXss and its con-
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jugated version guarantees that these integrand elements are IR finite in the collinear

regions ℓb9pa, pb as well as in the soft region ℓb „0.

These integrands in (3.2.30) are constructed to be dual to the following defining

contours

ΩI
a,b,C :“

$

’

’

’

’

&

’

’

’

’

%

a

b

C1 ,

a

b

C2

ℓ˚
1Ñ8

(double-pole)

,

a

b

C3

ℓ˚
2Ñ8

(double-pole)

,

/

/

/

/

.

/

/

/

/

-

(3.2.31)

where the first contour ΩI“1
a,b,C represents the soft-collinear leading singularity that sets

ℓb “0 and uniquely selects the scalar one-mass triangle. (All box integrands are chiral

and their numerators guarantee the vanishing in the soft-collinear configuration.)

The chiral contours ΩI“2,3
a,b,C warrant some further explanation. This is the first

time in our discussion where we have to deal with the double-poles at infinity that are

naturally associated with a weight drop at the integrated level. These were discussed

abstractly in section 3.2.2.1 and we would like to concretely give our definition for the

chiral one-mass triangles here. The way to think about the chiral contours such as

ΩI“2
a,b,C that involve the double-pole at infinity is as follows. First, one projects ℓa into a

particular direction

rrℓa, pXss

rrpa´pb, pXss
“ 0, (3.2.32)

which leaves us with a three-dimensional surface for ℓa perpendicular to the above

projection constraint. The particular normalization of the projection (3.2.32) is related

to our choice of projection and enters in the overall normalization of our integrand.

The remaining three parameters of pℓaqK are then fixed on the triple-cut ℓ2a “ℓ2b “ℓ2c “0.

Together with the projection condition (3.2.32), the three on-shell constraints therefore

localize all four degrees of freedom of ℓa. There are two different solutions to the

constraints which we denote by ℓ˚
1,8 and ℓ˚

2,8, where the additional subscript signals

that we are interested in the leading behavior of ℓÑ8. Taking into account the proper
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Jacobian factor J , our numerators evaluated on the leading singularity solutions are

unit

nI“2
a,b,C

J

ˇ

ˇ

ˇ

ˇ

ˇ

ℓa“ℓ˚
1,8

“ 1 ,
nI“3
a,b,C

J

ˇ

ˇ

ˇ

ˇ

ˇ

ℓa“ℓ˚
1,8

“ 0 ,
nI“2
a,b,C

J

ˇ

ˇ

ˇ

ˇ

ˇ

ℓa“ℓ˚
2,8

“ 0 ,
nI“3
a,b,C

J

ˇ

ˇ

ˇ

ˇ

ˇ

ℓa“ℓ˚
2,8

“ 1 . (3.2.33)

One additional point worth discussing is the explicit presence of the bubble-contact

term `ℓ2b in the definition of our one-mass chiral triangle numerators nI“2,3
a,b,C . This term

is there in order to have the chiral triangles vanish on the massive bubble contour

Ωa`b,C , which we define presently.

Consider the generic massive bubble topology ΩA,B. Just as in the chiral triangle

sector, we begin by projecting ℓa onto the three-dimensional subspace

rrℓa, pXss

rrpA, pXss
“ 0. (3.2.34)

Next, two additional degrees of freedom are fixed by localizing to the bubble cut ℓ2a “

ℓ2b “ 0. In fact, there are two solutions to these three combined conditions, which we

may denote as ℓ˚
1 , ℓ

˚
2 . (If one parametrizes ℓa in a basis of spinors involving the null

momentum pX , these two solutions are chiral and involve loop momenta proportional

to either λX or rλX , as we illustrate more explicitly in section 3.4.2.) The final degree

of freedom is fixed on the double-pole at infinity, with the bubble integral normalized

on the parity-even combination of these two evaluations.

The downside of the explicit presence of this bubble contact term is that the chiral

triangles are rendered UV divergent. In principle, one could avoid this feature by

explicitly removing the bubble contribution. However, this would come at the cost that

the resulting basis would no longer be dual to a particular choice of contours, rendering

the basis non-prescriptive. This would have the effect that in the representation of an

amplitude, the coefficients of bubbles, say, would need to be the difference of bubble-cut

leading singularities and whatever pollution arises from the triangle integrals.

Of course, one could start from a prescriptive basis to determine coefficients sim-

ply and then rotate into a non-prescriptive one in order to highlight other aspects of
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interest—such as a better separation between UV and IR divergent integrands. We

should note in passing that we have in fact constructed such a possibly preferential

basis—one in which the only UV-divergent integrals are the bubbles, and for which

all integrals are pure. Such choices, however, are far from unique, and leave open the

generally broad questions of aesthetic and technical preferences, and so we leave such

potentially illuminating rotations to future work.

Bubble Integrands and Integrals Involving Massless Legs

Most of the integrand and contour definitions are conceptually very simple, al-

though the exact details and choices made required a nontrivial amount of work. There

is however, one additional cases that is often neglected: bubbles involving massless ex-

ternal legs:

a B
ℓa

ℓb

. (3.2.35)

In dimensional regularization, this integral is somewhat special in the sense that it

is scaleless and integrates to zero in a nontrivial way. UV and IR divergences cancel

one another in the form 0“ 1
ϵUV

´ 1
ϵIR

. In traditional generalized unitarity constructions,

these terms are neglected at first and a tentative amplitude is computed. Once one sep-

arates UV from IR divergences, e.g. by introducing a mass regulator, one can compare

the resulting IR or UV divergences of the tentative amplitude to general expectations

and ultimately adjust the coefficients of these massless bubbles to match the expected

results. We come back to this point in more detail in subsection 3.3.2.

From the viewpoint of prescriptivity and basis-building, however, these integrals

pose no subtlety whatsoever: they are defined in exactly the same ways as the massive

bubble integrands—except that the collinear condition is imposed on the three-point

vertex instead of taking a residue at infinity—thereby highlighting the region of loop-

momentum space that is responsible for these integrals’ IR divergences.
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Table 3.1. Properties of basis integrands defined in B
p4q

3 ĂB
p4q

2 . All these integrals are pure

and weight-2 in transcendentality when integrated in (4-2ϵ) dimensions.

I i
A,B,C,D I i

a,B,C,D I i
a,b,C,D I i

a,B,c,D I1
A,B,C I1

a,B,C I1
a,b,C

locally-finite — —

IR-divergent (UV-finite) — — — — —

What is genuinely subtle, however, is the meaning of leading singularities defined on

such a contour—which affects the coefficients of these integrands in the representation

of amplitudes. We review this issue in some detail in section 3.3.2, and pose two possible

definitions one may take for these coefficients.

3.2.2.3 Stratification of UV/IR Structure and Transcendental Weight

The discussion of the previous subsection 3.2.2.2 should have made clear that our

prescriptive basis integrands have certain desirable features both from an UV and IR

point of view, related to the presence or absence of double-poles at infinity, or (soft-

)collinear poles, respectively. Of course, being one-loop integrals, by now it is straight

forward to explicitly check these integrand-level statements by simply integrating all

basis elements. The results of the loop integration (in dimensional regularization) for

every integrand in our basis is given in Table B.3.

It is worth highlighting several interesting features. In the decomposition of the

basis B
p4q

2 » B
p4q

3 ‘B
p3q

2 , the integrands in the B
p4q

3 subspace are all pure, weight-2

functions that are free of any regions of UV-divergence; moreover, only the scalar

triangle integrals involving massless legs are IR divergent—all others are locally finite.

These general features are summarized in Table 3.1.

In contrast, all those integrands in the Bp3q

2 subspace are weight-one functions when

evaluated in 4´2ϵ dimensions (as is natural for having maximal weight in 3D). All but

one class evaluates to a pure function. These general features of these integrals are
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summarized in Table 3.2.

As discussed above, it is possible to alter the basis of integrands to improve the

IR/UV properties of the basis. For example, it is easy to render the integrands I2,3
a,B,C

pure or to make all triangle integrands UV-finite. However, this rotation of the basis

would seem to be in conflict with prescriptivity, and make it harder to directly determine

the coefficients of an amplitudes in the new basis.

3.3 Leading Singularities in N ď4 Super Yang-Mills Theory

Having discussed the integrand basis construction at length, we now comment on

the second key building block in the generalized unitarity expansion of the amplitude

which are the coefficient functions. As discussed in section 3.2.2.1, all defining contours

are of maximal dimension so that the coefficients of our basis integrands are simply

leading singularities. In this section, we give details on how to compute these leading

singularities in less (than maximally) supersymmetric theories.

The description of on-shell (super-)states for amplitudes in N ă4 super Yang-Mills

theory are best implemented by considering the states to be truncations of those in

N “ 4. This was described in detail in ref. [139], but is worth reviewing. We denote

the fields related by supersymmetry to the p`q-helicity gluon by an ordered list (of

length 0 to length N ) of indices I Pt1, . . . ,N u; similarly, we can label the fields related

by supersymmetry to the p´q-helicity gluon by the complements of the previous labels

I2
A,B,C I3

A,B,C I2,3
a,B,C I2,3

a,b,C I1
A,B I1

a,B

locally-finite — — — — —

UV-divergent (IR-finite) — —

UV- and IR-divergent — — — — —

Table 3.2. Properties of basis integrands defined in B
p3q

2 Ă B
p4q

2 . All these integrals are

weight-1 in transcendentality when integrated in (4-2ϵ) dimensions; only I2,3
a,B,C are impure.
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within the set t1, . . . , 4u. Thus, a p`q-helicity gluon always has a label of tu and p´q-

helicity gluon always has a label of t1, 2, 3, 4u “:tu; similarly, the (`½)-helicity fermions

are labeled by sets tIu with I Pt1, . . . ,N u while the (´½)-helicity fermions are labelled

by tIu:“ t1, 2, 3, 4uztIu; and similarly for the rest of the states in the theory. Labeling

the states in this way, every (non-vanishing) amplitude involves the same number k of

each of the indices t1, 2, 3, 4u corresponding to an Nk´2MHV super-amplitude.

This scheme makes it obvious that for any amount of supersymmetry, the external

states can be labelled as particular instances of those of N “ 4—the only difference

being in the selection rule for which R-charge labels are allowed among the external

states. These selection rules have the effect of requiring that the indices tN`1, . . . , 4u

all appear in the labels of some subset of k external states for an Nk´2MHV amplitude.

This amounts to a truncation of some N “4 super-function.

Thus, all processes in an Nk´2MHV amplitude (or on-shell function) must specify

precisely k states related by supersymmetry to the p´q-helicity gluon. These are simply

‘helicity’ amplitudes in the case of ‘pure’ (N “ 0) Yang-Mills theory; but the same
`

n
k

˘

distinguished labels are required for all component amplitudes for any degree of

supersymmetry (other than maximal).

This can be encoded graphically in an on-shell diagram by orienting all its edges.

We choose to use an incoming arrow to denote the
`

n
k

˘

states related to the p´q-helicity

gluons (incoming at the vertex), and outgoing arrows to denote those related to the p`q-

helicity gluons (incoming at a vertex). For example, the three-point super-amplitudes

in sYMN would require orientations as in

. (3.3.1)

To be clear, these amplitudes may be defined in terms of coherent states as follows:
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Apiq
3 :“ i

a

b

:“
ra bs4´N

ri asra bsrb is
δ1ˆN`

rabsrηIi `rb isrηIa`ri asrηIb
˘

δ2ˆ2
`

λ¨rλ
˘

Api,jq

3 :“ a

j

i

:“
xi jy4´N

xi jyxj ayxa iy
δ2ˆN`λα

i rη
I
i `λα

j rη
I
j `λα

arη
I
a

˘

δ2ˆ2
`

λ¨rλ
˘

(3.3.2)

in terms of Grassmann variables rηIi for I P t1, . . . ,N u. The generalization to MHV

amplitudes is extremely natural:

Api,jq

n,0 :“
xi jy4´N

x1 2yx2 3y ¨ ¨ ¨ xn 1y
δ2ˆN`λ¨rη

˘

δ2ˆ2
`

λ¨rλ
˘

(3.3.3)

where

δ2ˆN`λ¨rη
˘

:“ δ2ˆN
´

ÿ

a

λα
arη

I
a

¯

(3.3.4)

is the super-momentum-conserving δ-function and δ2ˆ2
`

λ¨rλ
˘

:“ δ2ˆ2
`
řn

a“1 λ
α
a
rλ 9α
a

˘

en-

codes overall momentum conservation. More generally, an Nk´2MHV superfunction

(such as a leading singularity) in N “ 4 super Yang-Mills is related to
`

n
k

˘

oriented

superfunctions in sYMN according to

fpλ, rλqδkˆ4
`

C ¨rη
˘

ñ f pi1,...,ikq:“ fpλ, rλq detpci1 , . . . , cikq
4´N δkˆN`C ¨rη

˘

, (3.3.5)

where C represents the k n̂ ‘boundary-measurement’ matrix [47] and tiru label the neg-

ative helicity super-multiplets. Just as in the three-point amplitudes given above, any

decorated on-shell diagram must be oriented such that each Nk´2MHV tree-amplitude

appearing at a vertex has k ‘sources’—i.e., incoming arrows.

3.3.1 Decorated On-Shell Diagrams: Singlet vs. Non-Singlet

There is a marked difference between on-shell functions in maximally supersym-

metric Yang-Mills and its less supersymmetric cousins. This is primarily a result of

the distinction between so-called ‘singlet’ and ‘non-singlet’ helicity configurations. In

the former case, the R-charges of the external states uniquely determine those of the

internal states running through the loop, regardless of the amount of supersymmetry.
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All such singlet on-shell diagrams are therefore N -independent and therefore equal to

(truncations of) N “4 super-functions and may be immediately recycled. In contrast,

when there are oriented loops of ‘helicity’ in an on-shell diagram, we must sum over all

the states in the supermultiplet which clearly depends on N .

A prototypical example of a non-singlet decorated on-shell function is the following

four-point box diagram with external states t2, 4u are taken as incoming:

˘

1

2 3

4

:“

1

2 3

4

`

1

2 3

4

. (3.3.6)

For each of the two possible ‘helicity’ flows through the graph (each involving a sum

over states), it is not difficult to determine the corresponding on-shell function by direct

computation. In particular, we find:

1

2 3

4

“ Ap2,4q

4,0 φ4´N ,

1

2 3

4

“ Ap2,4q

4,0 p1´φq
4´N, (3.3.7)

where we have defined the cross-ratio

φ:“
x1 4yx2 3y

x1 3yx2 4y
. (3.3.8)

Thus, the decorated on-shell diagram (3.3.6) is, for 1 ď N ă 4,

˘

1

2 3

4

“ Ap2,4q

4,0

”

φ4´N
` p1´φq

4´N
ı

. (3.3.9)

When N “4, the equation above over-counts the sum over states by 2 as both directions

of helicity flow are included in the same coherent state. Furthermore, eq. (3.3.9) is valid

for entire super-amplitudes: replacing the pre-factor (the gluonic component of the
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MHV tree amplitude) by the superamplitude gives the correct answer for all components

such that the R-charges of particles t1, 3u are in the ‘`’ multiplet (related to g` by

some number of supersymmetry generators rQI ’s).

Another example which is directly relevant for the all-multiplicity MHV amplitude

presented in section 3.4 is the generic two-mass easy box cut where the states related

to the negative helicity gluons have particle label i, j. It is easy to verify that the only

non-singlet configuration in this case is when both i and j are each in a distinct massive

corner:

˘

a

i

j

c

:“

a

i

j

c

‘`’ `

a

i

j

c

‘´’ . (3.3.10)

A straightforward calculation yields the result

˘

a

i

j

c

“ Api,jq

n,0

«

ˆ

xa iyxc jy

xa cyxi jy

˙4´N

`

ˆ

1 ´
xa iyxc jy

xa cyxi jy

˙4´N
ff

. (3.3.11)

On-shell diagrams of either the triangle or bubble type may be computed in an anal-

ogous fashion; the structure of the result is depends on whether the cut is singlet or

non-singlet. As mentioned in section 3.2, the evaluation of field theory on triangle

and bubble contours involves double-poles at infinity and requires a projection of the

loop momentum onto a particular direction. Pragmatically, one can always derive such

contour integrals from the double and triple-cuts of standard unitarity. We illustrate

this feature for the massive MHV bubble coefficients in section 3.4.2.

3.3.2 Generalized Unitarity for Massless Bubble Coefficients

For gauge theories with N ă 3 supersymmetry, there is an important subtlety

associated with loop integrand and cut topologies which define the massless bubble

integrals. If only interested in the integrated amplitudes, these coefficients may be ig-

nored as all such integrands integrate to zero (in dimensional regularization). However,
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if one were interested in disentangling the UV and IR structure of an amplitude, they

play an important role. As such, their coefficients can be determined post-integration

by the requirement that this behavior is correct (see e.g. [139, 166, 167]).

To see this subtlety, consider the two-particle, massless cuts of an amplitude. For

any NkMHV degree (and any assignments of external helicities), there always exists one

singlet and one non-singlet configuration depending on the parity of the three-particle

vertex:

!

a , ˘a

)

or
!

˘a , a
)

. (3.3.12)

The singlet cuts are always unambiguous and finite (and in fact always equal to trun-

cated superfunctions of N “4 due to the helicity selection rules described above). This

allows one to compute such cuts directly from any valid representation of the max-

imally supersymmetric amplitudes (including unitarity based representations). Since

e.g. unitarity based representations of maximally supersymmetric amplitudes do not

include any bubble topologies at all, the finiteness of the singlet bubble cuts is clear. In

contrast, the non-singlet cuts are unfortunately always ill-defined—as they generally

diverge. Thus, there is no obvious meaning to these cuts in field theory, making it diffi-

cult to compute the leading singularities corresponding to the massless bubble contours:

there always exists some branch of the bubble-cut on which the amplitude diverges.

Similar observations were also made in e.g. [168] from a string theory perspective.

Of course, the massless bubble integrals in our basis have been defined by contours

not merely taking the co-dimension 2 residue of the bubble cut, but a contour accessing

the double-pole at infinity which starts from the collinear triple-cut in loop-momentum

space—the region in which

ℓ˚
a “ α pa , ℓ˚

b “ p1 ` αq pa . (3.3.13)

If this contour were viewed as arising as a co-dimension one residue taken along the

well-defined (singlet) triple-cut in every case, then because all such cuts are equal to
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(truncations of) their N “ 4 equivalents, no amplitudes would have support on these

double poles. This would suggest that every massless bubble coefficient should be

identically zero. This is the first option we consider.

While this choice for interpretation is ensured to match field theory functionally

on all of the well-defined (singlet) massless bubble-cuts, it turns out that it fails to

match the conventional UV-structure of amplitudes (as deduced using the logic of

e.g. [139, 166, 167]). In particular, it leads to representations of one-loop amplitudes

that exactly misses the standard answer by a multiple of the tree amplitude times the

sum of massless bubble integrals.

Perhaps this missing contribution could be attributed to some (however unconven-

tional) renormalization ‘scheme’. And it may prove that ignoring all massless bubble

contributions turns out to lead to better (more elegant in some way, perhaps) strategies

at higher loops. But we must leave such speculation to future work.

However, there is another way to interpret the leading singularities corresponding

to these collinear cuts. Namely, it seems natural to associate the collinear configuration

as equivalent to a massless bubble on an external leg, as in:

b
a :“

b
a ñ

b
a . (3.3.14)

This interpretation naturally suggests that we should view the value of field theory

evaluated on these contours directly as the tree amplitude as in [169]. This also repro-

duces the standard result for one-loop amplitudes’ UV and IR structure, and certainly

seems like an appropriate ‘convention’ for defining these bubble coefficients. This is the

prescription used in the expressions generated for our concrete examples given in the

ancillary files for this work in [153].

These kinds of subtleties are much more abundant in pure (N “ 0q Yang-Mills

theory, the amplitudes of which are known to require worse power-counting in their

bases. While we can certainly define a prescriptive basis B0 to express these amplitudes,

the coefficients of tadpoles and constants seem intrinsically ambiguous and for similar
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reasons. There have been some recent proposals for how to deal with tadpoles [170]

(see also [171]); however, all these proposals begin from some prior knowledge of the

loop integrand—i.e. start from the (literal) sum of Feynman diagrams in some gauge

and using some regularization scheme. This does lead to specific coefficients for any

integrand in a basis even as ugly as B0, but it does not provide a gauge-invariant,

cut-level definition of the coefficients in terms of on-shell, tree-level scattering data.

(But see e.g. [172] for some interesting ideas in that direction at higher loops that

relies on a particular on-shell renormalization scheme.) Naturally, we must leave such

questions—important though they are—to future work.

3.4 Amplitude Integrands for N ď4 Super Yang-Mills Theory

The derivation of a diagonalized basis of integrands in section 3.2 has an immediate

application: namely, the construction of prescriptive representations of 1ďN ď4 sYM

amplitudes. Achieving this amounts to the computation of the coefficient of each basis

element—that is, field theory evaluated on the contours defining the basis.

As discussed in section 3.3.1, there are essentially two cases to consider for each

coefficient, depending on the helicity configuration of interest. For a given on-shell

diagram, if there is only a single allowed internal helicity flow—i.e., a ‘singlet’ config-

uration where the external helicities uniquely specify the internal helicity states—then

the on-shell function is identical for sYM for any N . By virtue of the fact that the

N “4 integrand is free of all poles at infinity, this implies that for all ‘singlet’ cuts, the

coefficient of every basis element defined on contours involving infinite loop momentum

necessarily vanishes.

For the ‘non-singlet’ configurations where there are multiple allowed helicity con-

figurations, sYM for N ă 4 can have support on single (and double) poles at infinity

and the associated coefficients are generically non-vanishing (and non-trivial).

In this section, we illustrate the procedure outlined above with two concrete ex-

amples: the all-multiplicity MHV (Api,jq

n,1-loop) and the six-point split-helicity NMHV
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(Ap4,5,6q

6,1-loop) one-loop integrands.

3.4.1 General Structure of Amplitude Integrands

The general form of a one-loop amplitude integrand expressed in the bubble-power-

counting basis defined in section 3.2 is,

A “
ÿ

A,B,C,D

2
ÿ

i“1

aiA,B,C,DI i
A,B,C,D`

ÿ

A,B,C

3
ÿ

I“1

aIA,B,CII
A,B,C`

ÿ

A,B

aA,BIA,B (3.4.1)

where the coefficients of each basis element are defined as

aiA,B,C,D:“
¿

Ωi
A,B,C,D

A , aIA,B,C :“
¿

ΩI
A,B,C

A , aA,B :“
¿

ΩA,B

A . (3.4.2)

The box coefficients aiA,B,C,D are defined on the two quad-cut leading singularities i.e.,

field theory evaluated on the two solutions to ℓ2a “ ℓ2b “ ℓ2c “ ℓ2d “ 0. For any singlet

configuration, these leading singularities are simply truncations of those defined in

N “ 4; for the non-singlet configurations, there is a modification resulting from the

helicity flow as described above.

Regardless of supersymmetry, all one-mass triangle integrands with scalar numera-

tors have coefficients a1a,b,C because are defined on the composite ‘soft-collinear’ residue

where one internal leg is set to zero on which amplitudes always have support. More-

over, and just as in maximal sYM, the residue of field theory is always equal to the

tree amplitude (as this reflects the only universal IR divergence at one loop); that is,

a1a,b,C “ An,0. For similar reasons, the coefficients of all two-mass scalar triangles are

always zero: a1a,B,C “0.

The non-singlet cuts of amplitudes can generally lead to support on double-poles

at infinity, resulting in non-trivial coefficients for triangles with loop-dependent nu-

merators. For any singlet cuts, these coefficients are all zero. The same is true for

the all bubble contours defined on double-poles at infinity. Thus, these coefficients

depend strongly on how the helicity-flow at each vertex amplitude of the cut flows into

the graph, and varies depending on which of the
`

n
k

˘

external legs are taken to have

‘incoming’ helicity.
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3.4.2 Exempli Gratia: MHV Amplitude Integrands

We can illustrate how these considerations work in the concrete case of MHV

amplitudes (k=2) in N “1, 2 super Yang-Mills theory. As with maximal supersymmetry,

the only box cuts which have non-vanishing support for these amplitudes are Ω1
a,B,c,D—

the (chiral) two-mass-easy contours (and their one-mass degenerations). Of these, most

contours admit only a singlet configuration of internal helicity—namely,

i

j

“:a1i,i`1,j,j`1 “

i

j c

“:a1i,i`1,c,c`1 “

i j

c

“ Api,jq

n,0 . (3.4.3)

All of these leading singularities are equal to the tree-level MHV amplitude Api,jq

n,0 .

Among the two-mass-easy boxes, there is only one case which admits a non-singlet

configuration, see eq. (3.3.10). This example was already encountered in section 3.3,

and leads to the coefficient

˘

a

i

j

c

“ aa,a`1,c,c`1 “ Api,jq

n,0

«

ˆ

xa iyxc jy

xa cyxi jy

˙4´N

`

ˆ

1 ´
xa iyxc jy

xa cyxi jy

˙4´N
ff

“Api,jq

n,0

”

1 ` p4´N qφpφ´1q

ı

where φ:“
xa iyxc jy

xa cyxi jy
,

(3.4.4)

where the final equality follows from the binomial expansion of the exponents in the

first line and is valid only for N “1, 2.

Turning now to the triangle configurations, we may start with the scalar one-mass

contours, on which all amplitudes have support equal to the tree:

a

a`1

c
“:a1a,a`1,c “ Api,jq

n,0 . (3.4.5)
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(We have neglected to indicate any helicity information from the left-hand-side for the

simple reason that every one-mass scalar triangle has the same coefficient, regardless

of the helicity configuration under consideration.)

For the two triangle integrals elements normalized on double-poles, there are just

three classes of leg distributions with non-singlet helicity configurations leading to non-

zero coefficients. By directly evaluating field theory on the corresponding contours, we

find that these non-vanishing coefficients are:

˘

i

a

c
j ñ a2a,i,C :“ Api,jq

n,0 p4´N q
xi cyxj ay

xi jyxc ay

xiXyxj ay

xi jyxXay

ˆ

1´
rrpa, pXss

rrpi, pXss

˙

,

˘

i

b

c
j ñ a3i,b,C :“ Api,jq

n,0 p4´N q
xb jyxiXy

xi jyxbXy

xb jyxi i´1y

xi jyxb i´1y

ˆ

1´
rrpb, pXss

rrpi, pXss

˙

,

˘

b
c

i

a

j ñ a2a,B,C :“ Api,jq

n,0 p4´N q
1

2

rXasxc´1 cy

xa|pB|Xsxc´1 ayxc ay

ˆ

xi ayxj ay

xi jy

˙2

.

(3.4.6)

Finally, among the massive bubble contours, the only ones with non-singlet helicity

flow are those for which ti, ju are on opposite sides of the bubble. These coefficients

turn out to be

˘

a

b
i j ñ aA,B :“ Api,jq

n,0 p4´N q
xa´1 ayxb´1 by

xi jy2

«

xiXy2xjXy2

xa´1XyxaXyxb´1XyxbXy

`
xi|pA|Xs2xj|pA|Xs2

xa´1|pA|Xsxa|pA|Xsxb´1|pA|Xsxb|pA|Xs

ff

.

(3.4.7)

The massless bubble coefficients aa,B were discussed at length in section 3.3.2 and—as

emphasized there—we have two options: either aa,B “2pN´4qApi,jq

n,0 or aa,B “0.

It is worth clarifying how the massive bubble coefficients aA,B in eq. (3.4.7) may

be obtained by a straightforward computation. It is convenient to evaluate field theory
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on the bubble contour by first computing the two-parameter non-singlet bubble cut,

which was in fact given already in [139] and may be written as,

˘

a

b
i j “ Api,jq

n,0

xa´1 ayxb´1 by

Jxi jy2

pxi ℓayxj ℓbyq
4´N

` pxi ℓbyxℓa jyq
4´N

xa´1 ℓayxa ℓayxb´1 ℓbyxb ℓby
. (3.4.8)

A parametrization of ℓa, ℓb which is particularly convenient for the projection onto

rrℓa, pXss“0 is given by

ℓa “

„

sA

ˆ

1

rrpX , pAss
´α

˙

λX`β
´

pA¨rλX

¯

ȷ„

rλX`
α

β
ppA¨λXq

ȷ

,

ℓb “

”

´α sA λX`β
´

pA¨rλX

¯ı

„

rλX´
1

β

ˆ

1

rrpX , pAss
´α

˙

ppA¨λXq

ȷ

.

(3.4.9)

The Jacobian of the bubble cut in this parametrization is simply J “ β, while the

projection condition rrℓa, pXss “ 0 has two solutions, λℓa „ λX and rλℓa „ rλX , which

correspond to βÑ0 and βÑ8, respectively. Our bubble contour prescription amounts

to evaluating (3.4.8) on (3.4.9), taking the residue at either β Ñ 0 or β Ñ 8, and

extracting the coefficient of the double-pole at α Ñ 8. We define the bubble leading

singularity to be the even combination of these two field-theory evaluations, which are

precisely the two terms appearing in (3.4.7).

The basis of integrands and the collection of non-vanishing coefficients in (3.4.4),

(3.4.3), (3.4.6), (3.4.6) and (3.4.7), together with a prescription for the massless bubble

coefficients, constitutes the MHV one-loop amplitude integrand in the form of (3.4.1).

Combining all terms, one can (numerically) check that the pX dependence drops out

of the integrand via a nontrivial cancellation between all terms.

Using the tabulated integration rules found in appendix B.3, we find the n-point

MHV integral to be of the form,
ż

-d4´2ϵℓ Api,jq

n,1(-loop) “:´Api,jq

n,0

«

n

ˆ

1

ϵ2
`
1

ϵ
logpµ2

q`
1

2
logpµ2

q
2

˙

`

ˆ

1

ϵ
` logpµ2

q`2

˙

˜

p4´N q´

n
ÿ

a“1

logpsa,a`1q

¸

` pApi,jq

n,1

ff

`Opϵq .

(3.4.10)
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Here, the expression pApi,jq

n,1 is implicitly defined to be the UV- and IR-finite part of the

one-loop amplitude divided by the tree amplitude.

It is worth remarking that the while the expression in (3.4.10) is correct, it is not

entirely manifest in our representation. In particular, the expression on the second line

does not follow manifestly from the basis we have constructed. Nevertheless, we have

explicitly checked its correctness.

3.4.3 Exempli Gratia: a Six-Point NMHV Amplitude Integrand

As another example of prescriptive unitarity with bubble power-counting, we con-

sider the six-particle split-helicity NMHV amplitude integrand with particles t4, 5, 6u

to be those related by supersymmetry generators to negative helicity states.

First, it is easy to see that for the particular helicity configuration we’ve considered,

every non-vanishing box diagram is of the singlet type. This implies that the box

coefficients are given by extracting the prη4q4prη5q
4prη6q

4 component of the R-invariants

appearing in the N“4 superamplitude.

Just as in the MHV example discussed above, the coefficients of the one-mass scalar

triangles is always the tree amplitude, Ap4,5,6q

6,1-loop. It turns out that the non-vanishing

chiral triangle and bubble coefficients, can all be expressed compactly in terms of the

following two superfunctions (R-invariants)

f1:“
x6|p45|3s4´N

x12yr45sx2|p34|5ss345x6|p45|3sx61yr34s
δ3ˆN`C1 ¨rη

˘

δ2ˆ2
`

λ¨rλ
˘

,

f3:“
x4|p56|1s4´N

x34yr61sx4|p56|1ss561x2|p16|5sx23yr56s
δ3ˆN`C3 ¨rη

˘

δ2ˆ2
`

λ¨rλ
˘

,

(3.4.11)

where C1:“

¨

˚

˚

˚

˝

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

0 0 r45sr53sr34s 0

˛

‹

‹

‹

‚

, C3:“

¨

˚

˚

˚

˝

λ1
1 λ1

2 λ1
3 λ1

4 λ1
5 λ1

6

λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6

r56s 0 0 0 r61sr15s

˛

‹

‹

‹

‚

. (3.4.12)

In terms of these two superfunctions, we find that the non-vanishing non-singlet cuts

for this amplitude give rise to the following non-vanishing coefficients:
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˘

3

4

5
6
1

2

ñ a23,4,t5,6,1,2u
:“ p4´N q

rrp3´p4, pXss

xX3yr4Xs

ˆ

f1
x6|p12|4s

x6|p12|3s
´f3

x3|p56|1s

x4|p56|1s

˙

˘

6

1

2
3
4

5

ñ a36,1,t2,3,4,5u
:“ p4´N q

rrp6´p1, pXss

xX1yr6Xs

ˆ

f1
x1|p45|3s

x6|p45|3s
´f3

x4|p23|6s

x4|p23|1s

˙

(3.4.13)

˘

2

3
4

5
6
1

ñ a22,t3,4u,t5,6,1u
:“ p4´N qf3

1

2

x2 4yx2|p34|1srX2s

x2|p34|Xsx4|p56|1s

˘

2

3
4 5

6
1 ñ a22,t3,4,5u,t6,1u

:“ p4´N qf1
1

2

x2 6yx2|p16|3srX2s

x2|p16|Xsx6|p45|3s

(3.4.14)

˘

5

6
1

2
3
4

ñ a35,t6,1u,t2,3,4u
:“ p4´N qf3

1

2

r1 5sx4|p16|5sxX5y

x4|p56|1sxX|p16|5s

˘

5

6
1 2

3
4 ñ a35,t6,1,2u,t3,4u

:“ p4´N qf1
1

2

r3 5sx6|p34|5sxX5y

x6|p45|3sxX|p34|5s

(3.4.15)

˘

2
3
4 5

6
1

ñ at2,3,4u,t5,6,1u:“
p4´N qf3
x4|p561|1s

”

x24yx2|rp561, pXsp561|1s

x2|p561pX |2y

`
x4|p561|5s r1|rpX , p561s|5s

r5|pXp561|5s

ı

˘

3
4
5 6

1
2

ñ at3,4,5u,t6,1,2u:“
p4´N qf1
x6|p345|3s

”

x26yx2|rp345, pXsp345|3s

x2|p345pX |2y

`
x6|p345|5s r5|rpX , p345s|3s

r5|pXp345|5s

ı

(3.4.16)
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where we introduced a ‘commutator’ xa|rpA, pBspC |bs:“ xa|pApBpC |bs´xa|pBpApC |bs to

write more compact expressions for the bubble-integrand coefficients. The final two

non-zero bubble massive bubble coefficients are:

˘
3
4

5
6
1

2

ñ at3,4u,t5,6,1,2u:“

p4´N q

#

„

x6|p12|4s rrp3´p4, Xss

xX3yr4Xs
´

x6|p34|5s r3|rpX , p34s|5s

r5|pXp34|5s

ȷ

f1
x6|p45|3s

`

„

x3|p56|1s rrp3´p4, Xss

xX3yr4Xs
´

x2|p34|1s x2|rpX , p34s|4y

x2|p34pX |2y

ȷ

f3
x4|p56|1s

+

(3.4.17)

˘

2
3
4
5

6
1 ñ at6,1u,t2,3,4,5u:“

p4´N q

#

„

x1|p45|3s rrp6´p1, Xss

xX6yr1Xs
`

x2|p16|3s x2|rpX , p16s|6y

x2|p16pX |2y

ȷ

f1
x6|p12|3s

`

„

x4|p23|6s rrp6´p1, Xss

rX6sx1Xy
`

x4|p16|5s r1|rpX , p16s|5s

r5|pXp16|5s

ȷ

f3
x4|p23|1s

+

(3.4.18)

Plugging these coefficients into the expansion of the amplitude in eq. (3.4.1), we obtain

the integrand for the six-point split-helicity NMHV amplitude integrand with particles

4, 5 and 6 being related by supersymmetry to negative helicity gluons.

3.4.4 Finite Observables at One Loop

It is widely appreciated that four-dimensional scattering amplitudes for massless

particles are problematic due to the presence of long-distance (infrared) divergences

associated to low energy (soft) or unresolved collinear radiation, see e.g. [173]. For

inclusive enough physical observables such as cross-sections, all such divergences cancel

when real radiation effects are taken into account consistently as a consequence of the

KLN theorem [174, 175] in QED and its generalizations. Another example of an IR-

finite observable is the energy-energy correlation function, see e.g. [176, 177]. The IR

structure of general gauge theories is still an important subject of current study; both

formally (see e.g. [178, 179]) as well as phenomenologically in the form of efficient IR

subtraction schemes for high-precision predictions for collider observables [180–184].
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From an amplitudes perspective, it is possible to determine which diagrams can

contribute to IR divergences and which ones remain finite. This analysis amounts

to investigating all soft and collinear regions of a given diagram, taking into account

potential numerator factors that can dampen IR singularities. It turns out that the

situation is especially simple for one-loop integrals where one can easily account for all

possible singular regions which suffices for the present discussion. For general gauge

theories, the infrared structure has been completely understood up to two-loop order

by Catani [185] with numerous subsequent progress, see e.g. [186–191].

The universality of IR divergences of gauge theory scattering amplitudes at one

loop implies that all divergences should be proportional to the tree amplitude. Together

with the requirement that UV divergences in a renormalizable gauge theory should be

canceled by appropriate counter terms also implies that the one-loop UV divergences

is also proportional to the tree-level amplitude. Motivated by this discussion, we can

organize the n-particle one-loop amplitude in the following form:

An,1 “:Afin
n,1`An,0

`

IUV
div `IIR

div

˘

“:An,0

´

pAfin
n,1`IUV

div `IIR
div

¯

with pAn,1:“ An,1{An,0 ,
(3.4.19)

where we suppress the explicit helicity-labels of the (super-)amplitudes as well as the

MHV-degree k. The universality of IR divergences is more general than the specific

one-loop example discussed above and is encoded in the following factorization formula

(see e.g. [191, 192]) for massless parton scattering amplitudes

Anptpiu, αsq “ Znptpiu, µ, αsqAfin
n ptpiu, µ, αsq (3.4.20)

where all IR singularities are factorized in Zn in the form of poles in dimensional

regularization ϵ “ pD ´ 4q{2. The above equation depends on a factorization scale µ

and the running coupling constant αs:“ αspµ
2q.

Motivated by this decomposition, it is natural to introduce the IR-finite ratio func-

tion where the universal IR singularities cancel. A priori, we can write the ratio of two
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n-point amplitudes Apaq
n , and Apbq

n to all orders in perturbation theory:

Ppa,bq
n “

Apaq
n

Apbq
n

. (3.4.21)

In maximally supersymmetric theories, there is only a single independent super ampli-

tude for a given Npk´2qMHV sector and one takes IR finite ratios between amplitudes

of different k charge. In this case, the labels ‘a’ and ‘b’ denote the respective k-charge

of the amplitudes and it is common to always divide by the k“2 MHV amplitude and

denote the resulting ratio function by Ppkq
n . The IR-finiteness of Ppkq

n underlies several

important features of the integrated results for the maximally supersymmetric theory,

including dual conformal invariance [25–27, 193, 194]. These simplifications, together

with a number of conceptual and technological advances enabled Dixon and collabora-

tors to obtain function level results to very high loop order, see e.g. [15, 195, 196].

For the N “ 1, 2 supersymmetric amplitudes under consideration, we can further-

more take nontrivial ratios of (super-) amplitudes within the same Npk´2qMHV k sector

due to the distinction between the positive and negative helicity gluon supermultiplet

and write e.g.

Pp2q

4 “
Ap2q

4 p1´, 2´, 3`, 4`q

Ap2q

4 p1´, 2`, 3´, 4`q
“:

Ap1,2q

4

Ap1,3q

4

, (3.4.22)

where the ˘ labels the relevant supermultiplet of particle i. We omit labeling the

ratios by the individual helicities of the contributing amplitudes to avoid cluttering the

equations and introduced the shorthand notation Api,jq
n for MHV amplitudes to indicate

the position of the negative helicity supermultiplets.

All ratios can be expanded perturbatively in the coupling constant g and yield

IR-finite quantities at each order in perturbation theory, e.g. up to two-loop order we

find

Ppa,bq
n “:

Apaq

n,0`αsApaq

n,1`α2
sA

paq

n,2 ` Opα3
sq

Apbq

n,0`αsApbq

n,1`α2
sA

pbq

n,2 ` Opα3
sq

“ Ppa,bq

n,0 `αs Ppa,bq

n,1 `α2
s P

pa,bq

n,2 `Opα3
sq

“
Apaq

n,0

Apbq

n,0

` αs

´

Apbq

n,0A
paq

n,1´Apaq

n,0A
pbq

n,1

¯

”

Apbq

n,0

ı2 ` (3.4.23)
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` α2
s

ˆ

”

Apbq

n,0

ı2

Apaq

n,2´Apbq

n,0A
paq

n,0A
pbq

n,2`Apaq

n,0

”

Apbq

n,1

ı2

´Apbq

n,0A
pbq

n,1A
paq

n,1

˙

”

Apbq

n,0

ı3 `Opα3
sq ,

where we indicate the loop order of various quantities by an additional subscript. The

formulae for the ratio of amplitudes in the same MHV sector follow trivially from the

above results. In the presentation above, the various factors of the tree-level ampli-

tudes Apbq

n,0 and Apaq

n,0 ensure a uniform helicity weight of all terms in the perturbatively

expanded form version of the ratio function. It is often convenient to divide out certain

helicity-dependence by removing the tree-level amplitude and work instead with pAn to

define

pPpa,bq
n “

1`αs
pApaq

n,1`α2
s
pApaq

n,2`Opα3
sq

1`αs
pApbq

n,1`α2
s
pApbq

n,2`Opα3
sq

“ pPpa,bq

n,0 `αs
pPpa,bq

n,1 `α2
s
pPpa,bq

n,2 `Opα3
sq

“ 1`αs

´

pApaq

n,1´ pApbq

n,1

¯

`α2
s

ˆ

pApaq

n,2´
pApbq

n,2`

”

pApbq

n,1

ı2

´ pApaq

n,1
pApbq

n,1

˙

`Opα3
sq .

(3.4.24)

At one-loop, the IR and UV finiteness of the ratio function is easy to see. From

general expectations (and confirmed by our explicit calculation below), both the UV-

and IR-divergent parts of the one-loop amplitudes must be proportional to the tree-

level amplitudes as in (3.4.19). Working with the rescaled quantities, we see that the

universal factor IIR/UV
div cancels in the difference (3.4.24). Similar arguments also lead

to the finiteness of the higher-loop ratio functions.

We may illustrate how this works for the simplest example involving four particles.

Before taking the ratios, we give the integrated results for the individual amplitudes

(N “ 1, 2)

pAp1,2q

4,1 “
4

ϵ2
´

1

ϵ

„

p4 ´ N q ` 2 log
s

µ2
` 2 log

t

µ2

ȷ

(3.4.25)

´ 2p4 ´ N q ` π2
` log2

s

t
` p4 ´ N q log

t

µ2
` log2

s

µ2
` log2

t

µ2

pAp1,3q

4,1 “
4

ϵ2
´

1

ϵ

„

p4 ´ N q ` 2 log
s

µ2
` 2 log

t

µ2

ȷ

(3.4.26)

´
p4 ´ N qs

u

„

´2 ` log
t

µ2

ȷ

´
p4 ´ N qt

u

„

´2 ` log
s

µ2

ȷ
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`
s4´N ` t4´N ` p´uq4´N

2p´uq4´N

”

π2
` log2

s

t

ı

` log2
s

µ2
` log2

t

µ2

in terms of the usual Mandelstam variables s:“ pp1`p2q
2,t:“ pp2`p3q2,u:“ pp1`p3q

2. In

the one-loop ratio function of (3.4.24), we are supposed to take the difference of the

two amplitudes. Both the UV and IR divergences cancel in this difference and we find

for N “ 1, 2 that

pAp1,2q

4,1 ´ pAp1,3q

4,1 “
p4 ´ N q t

2u2

”

s
´

π2
` log2

s

t

¯

` 2u log
s

t

ı

, (3.4.27)

where standard Mandelstam invariants s, t, u satisfy s ` t ` u “ 0. As advertised,

this result is IR and UV finite, but of mixed transcendental weight. Compared to the

individual amplitudes, the ratio is considerably simpler and does not depend on the

dimensional-regularization scale µ2 anymore.

Going to higher point is also feasible by inserting the integral values for each of

our basis integrands that are summarized in Table B.3 of appendix B.3. At five points,

the results depend on five independent Mandelstam invariants which leads to more

complicated looking results. Since all ingredients are provided with this work, we

refrain from writing explicit results here. In general, however, the fact that these ratio

functions are UV- and IR-finite follows directly from the general form (3.4.10).

3.5 Conclusion

In this chapter, we computed one-loop amplitude integrands in color-ordered less-

than-maximally supersymmetric (1ďN ă4) Yang-Mills theory (‘sYMN’) in the context

of generalized unitarity. We constructed a prescriptive bubble power-counting integrand

basis, and showed how the coefficients of MHV and NMHV amplitudes can be calculated

using contour integrals that are dual to that basis.

While the box, triangle, and massive bubble integral coefficients can be extracted

in a standard manner, there is an important subtlety in the case of massless bubbles.

This topology is traditionally ignored in unitarity-based approaches due to the fact

that scalar massless bubble integrals evaluate to zero in dimensional regularization. In
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contrast, in this chapter, it was our primary objective to construct a well-defined in-

tegrand. This forces us to specify a prescription for the massless bubble coefficients as

well. Here, we have presented two distinct possibilities that appear well motivated from

field theory and on-shell function considerations: (a) choose collinear cuts or (b) choose

singlet double cuts which are the same for any amount of supersymmetry, including

N“4 where these cuts are unambiguously defined. In the first scenario, the massless

bubble coefficients are fixed to be tree-level amplitudes. The resulting integrand cor-

rectly reproduces both the expected IR and UV divergences upon integration. In the

second scenario, we get zero coefficients for the massless bubbles and the integrand has

improved behavior at infinity on singlet cuts. While both approaches are justified, each

exhibits a different structure for the resulting integrands for amplitudes. We leave it

to future work to investigate which of the two directions is preferred from the point of

view of defining the unique Nă4 sYM integrand beyond one loop.

Having a unique integrand is essential for the formulation of loop-level recursion

relations (see e.g. [93]), or attempts to reproduce it as a certain differential form on

a positive geometry. Therefore, our work is a crucial first stepping stone for a pos-

sible extension of amplituhedron-like geometric objects [56] beyond planar maximally

supersymmetric Yang-Mills theory.
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Chapter 4

Non-planar BCFW Grassmannian
Geometries

4.1 Introduction

We have seen enormous progress in our understanding of scattering amplitudes

in the planar N “ 4 sYM by now. A key question is if some of the developments

can be generalized beyond the planar sector of N “ 4 sYM perturbative S-matrix.

Naively, planarity is essential, as it implies a cyclic ordering of the amplitude without

which we can not talk about dual conformal symmetry, integrability methods, positive

Grassmannian, or Amplituhedron. Nevertheless, surprisingly many of the properties

indeed survive beyond the planar limit evidencing that the new ideas extend to the full

N “ 4 sYM. For instance, the absence of poles at infinite momenta in the multi-loop

non-planar integrands indicates that the analog of dual conformal symmetry for full

N “ 4 sYM should exist [99–101, 162, 197–200]. The study of non-planar amplitudes

in N “ 4 sYM also pertains to a larger question of the role of planarity in the study

of scattering amplitudes. Understanding how to do without planar variables and cyclic

symmetry is crucial for addressing open questions in perturbative gravity where the

graviton amplitudes are intrinsically non-planar. And indeed there are many intriguing

properties of graviton amplitudes such as color-kinematics duality [6–8], surprisingly
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compact formulas for tree-level amplitudes [201–208] or enhanced UV behavior of loop

amplitudes [209–213], all of which suggest new formulations for amplitudes extend

beyond the planar sector.

One interesting class of non-planar objects studied extensively in the past are on-

shell diagrams. These gauge invariant functions appear as discontinuities of loop am-

plitudes across branch-cuts, where all intermediate particles are taken to be on-shell.

There exists a fundamental connection between on-shell diagrams in quantum field

theory and Grassmannian geometry. For an n-point Nk´2MHV amplitude, each planar

on-shell diagram corresponds to a cell of the positive Grassmannian G`pk, nq, whereas

a generic non-planar diagram is associated with a general cell in Gpk, nq without any

positivity properties. The non-planar on-shell diagrams were partially classified in a

series of papers [102, 104]. But much remains to be understood about non-planar

on-shell diagrams. On-shell diagrams can be computed as products of tree-level am-

plitudes from the definition. The same expressions are also reproduced as canonical

differential forms associated with the corresponding cells in Gpk, nq. In N “ 4 sYM,

the canonical forms are simple “dlog”-forms in both the planar and non-planar cases.

However, while the expressions for planar on-shell diagrams are invariant under dual

super-conformal (and also Yangian) symmetry, the non-planar on-shell diagrams have

no such symmetry a priori. It natural to ask if, and under what conditions, any part

of the dual conformal symmetry survives in the non-planar sector.

A hopeful starting point for investigating the problem of residual symmetry is the

special class of on-shell diagrams which serve as the building blocks in the BCFW

representation of scattering amplitudes. The tree-level BCFW recursion relations for

cyclically ordered amplitudes can be realized diagrammatically in terms of on-shell di-

agrams, where each term in the recursion corresponds to one (or multiple) on-shell

diagrams. These on-shell diagrams are not generic, as they originate from gluing sim-

pler diagrams, representing the two subamplitudes separated by an additional “BCFW

bridge”. A very simple application of the recursion relations for gluons allows us to
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write very compact formulas for N “ 4 sYM tree-level amplitudes. In the usual imple-

mentation of BCFW recursions, we use exclusively adjacent shifts, i.e. BCFW bridges

attached to two adjacent legs, leading to highly efficient expansions in planar on-shell

diagrams with manifest Yangian symmetry. But there is no preventing us from choos-

ing non-adjacent legs for BCFW shifts; with such choices, the recursion relations give

rise to expansions in terms of generally non-planar on-shell diagrams.

In this chapter we initiate a systematic study of the connection between non-planar

on-shell diagrams arising in the context of non-adjacent BCFW shifts and the Grass-

mannian geometry. We identify the BCFW cells in the Grassmannian Gpk, nq associ-

ated with these diagrams by looking at configurations of n points in Pk´1 as encoded in

the representative C-matrices. While not retaining the cyclicity and convexity of their

planar counterparts, the configurations underlying the non-planar on-shell diagrams

generated by non-adjacent BCFW shifts turn out to form a surprisingly simple subset.

We also find a new way to extract the on-shell functions directly from the Grassmannian

configurations, bypassing the standard procedures of computation. The key insight,

drawn from analyses of the geometry of MHV amplitudes and Parke-Taylor factors in

the kinematic space, is to make connection between constrained Grassmannian config-

urations and singularities in external kinematic data. Exploiting this correspondence

we present a closed-form formula of non-adjacent BCFW representation of tree-level

amplitudes in terms of certain non-planar on-shell functions analogous to the familiar

planar R-invariants. Using the Kleiss-Kuijf (KK) relations we show that the non-planar

on-shell functions can be expressed as linear combinations of their planar counterparts,

which is reminiscent of a similar statement for the MHV on-shell diagrams [102]. We

mainly focus on NMHV amplitudes, but also show some N2MHV examples and outline

the generalization for any k.

The paper is organized as follows: In section 2, we review the connection between

tree-level BCFW recursion and the cells in the positive Grassmannian. In section 3, we

propose a new holomorphic formula for planar BCFW on-shell functions, extracted di-
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rectly from the Grassmannian geometry as viewed in the kinematical space. In section

4, we identify the non-planar Grassmannian geometries associated with non-adjacent

BCFW terms in the NMHV amplitudes. In section 5, we obtain the on-shell functions

for these non-planar geometries which extend the formula in section 3 into a new type

of objects, and show that they nevertheless can be re-expressed as a linear combination

of planar R-invariants with different orderings. In section 6, we further exploit the

geometric picture and find a holomorphic dlog-form representation of the on-shell func-

tions directly in the kinematical space. In section 7, we extend the NMHV discussion

in sections 3-6 to the N2MHV amplitudes and beyond. We end with the conclusions

and outlook in section 8.

4.2 Background: From BCFW to Positive Geometry

We consider the n-pt gluon NkMHV scattering amplitudes in N “ 4 sYM theory.

(Note that at tree-level, gluon amplitudes are identical for any number of supersymme-

tries N , so the maximal supersymmetry is here mainly for book-keeping reasons. ) At

tree-level, we can decompose the amplitude as a sum of cyclically ordered amplitudes,

Apkq
n “

ÿ

π

TrpT a1T a2 . . . T anqApkq
n p1, 2, . . . nq , (4.2.1)

where the sum is over all permutations modulo cyclic. We focus on the amplitude

A
pkq
n ” A

pkq
n p1, 2, . . . nq with a canonical ordering, which can be calculated using Britto-

Cachaz-Feng-Witten (BCFW) recursion relations. We perform a BCFW shift,

λ
pi “ λi ` zλj, rλ

pj “ rλj ´ zrλi , (4.2.2)

under which the amplitude Apkq
n pzq develops a dependence on the shift parameter. Since

it scales like Apkq
n pzq “ Op1{zq for z Ñ 8, we can use the Cauchy formula to reconstruct

the original amplitude A
pkq
n “ A

pkq
n pz “ 0q,

¿

A
pkq
n pzq dz

z
“ 0 ñ Apkq

n “ ´
ÿ

j

Resz“zj

«

A
pkq
n pzq

z

ff

. (4.2.3)
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Based on tree-level unitarity, all poles of Apkq
n pzq correspond to Pkpzq2 “ 0 where Pk

is a (shifted) sum of adjacent external momenta, and the residues are products of

lower-point amplitudes with shifted momenta,

Apkq
n “

ÿ

P

A
pkLq
nL A

pkRq
nR

P 2
, (4.2.4)

where nL ` nR “ n ´ 2, kL ` kR “ k ´ 1, and we sum over all factorization channels

where particle i is on the left side and particle j on the right side. For adjacent BCFW

shifts, namely pn1q shift,

λ
pn “ λn ` zλ1, rλ

p1 “ rλ1 ´ zrλn , (4.2.5)

the expression (4.2.4) simplifies to a sum over the single index j,

Apkq
n “

ÿ

j

A
pkLq
nL pp1, 2, . . . j, IqA

pkRq
nR pI, j`1, . . . , pnq

P 2
, (4.2.6)

where the on-shell momentum P of the internal line is given by

PI “
pP q|ns x1|pP q

x1|P |ns
, where P “ p1 ` ¨ ¨ ¨ ` pj. (4.2.7)

The adjacent BCFW recursion relations provide highly efficient representations of the

tree-level amplitude involving a minimal number of terms. Furthermore, they preserve

the cyclic ordering of external legs required for introducing momentum twistor variables

[48]. In the case of N “ 4 sYM the adjacent BCFW expansions are then term-wise

Yangian invariant, making this hidden symmetry of tree-level amplitudes manifest.

4.2.1 From BCFW to On-shell Diagrams

BCFW recursion relations have a natural diagrammatic realization in terms of on-

shell diagrams. An on-shell diagram is built from 3-point massless amplitudes connected

with on-shell edges. There are two types of 3-particle massless amplitudes, represented

by black and white black and white 3-pt vertices in the graph, which corresponds to
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MHV and MHV helicity configuration, resp. In N “ 4 sYM theory, all the various 3-pt

amplitudes are packaged into two elementary superfunctions1

3

1 2

“
δ4pP qδ4pQq

r12sr23sr31s
,

3

1 2

“
δ4pP qδ4pQq

x12yx23yx31y
.

(4.2.8)

Gluing these elementary building blocks together generate more complicated objects

that we call on-shell diagrams.

Functions corresponding to such graphs are called on-shell functions; they have the

physical interpretation as residues of multi-loop integrands that computes discontinu-

ities of loop amplitudes across branch-cuts, where all intermediate particles taken to

be on-shell. If the cuts conditions localize all the loop variables, and impose no further

constraints on external kinematics, e.g.

l1 ` k1
l1

l1 ` k1 ` k2
l1 ´ k4 ´ k5

l2 ´ l1 l2 ´ k5

l2

l2 ´ k4 ´ k5
4

5

1

3

2

rλ5 „ rλl2 „ rλl2´k5

rλl1 „ rλl2 „ rλl2´l1

l21 “ pl1 ` k1q
2

“ pl1 ` k1 ` k2q
2

“ pl1 ` k1 ` k2 ` k3q
2

“ pl2 ´ k4 ´ k5q
2

“ pl2 ´ k5q
2

“ l22 “ pl2 ´ l1q
2

“ 0 (4.2.9)

we call the on-shell function (diagram) a leading singularity. In this case L “ 4nI

where L is the number of loops and nI number of internal propagators in the diagram;
1While we are primarily interested in N “ 4 sYM here, let us mention in the passing that on-shell

diagrams can be defined for any quantum field theory. If we work in another theory, we just replace
these expressions by other 3-point amplitudes. For theories with less than maximal supersymmetry,
we need to add arrows on all legs indicating the helicities
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in other words, all 4L degrees of freedom in L off-shell loop momenta ℓi are fixed by cut

conditions. Note that the cuts conditions admit two sets of solutions for loop momenta

ℓi and this information is also encoded in the diagram through collinearities of λ, rλ in

each vertex.

To compute the on-shell function, we take the product of all three-point amplitudes

in the diagram as evaluated on the cut solution and dress it with the Jacobian factor

J resulting from the elimination of internal variables.

4

5
1

3

2 “
1

J

7
ź

i

Atree
i (4.2.10)

Having introduced the on-shell diagrams, let us quickly review how to use them to

implement BCFW recursion. The BCFW shift (4.2.2) of any on-shell object is furnished

by a BCFW bridge. If we denote the n-point amplitude An by a grey blob schematically,

then the pn1q-shifted amplitude Anpzq corresponds to attaching the following BCFW

bridge:

An “

1
n

n ´ 1

3

2

¨ ¨ ¨

Anpzq “

1
n

n ´ 1

3

2

¨ ¨ ¨

(4.2.11)

Taking a residue of Anpzq corresponds to removing one internal edge from the diagram

on the right. The Cauchy formula (4.2.3) is then the statement that all the diagrams
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with one edge by removed sum to zero (see [214] for details).

B

1
n

n ´ 1

3

2

¨ ¨ ¨

“

1
n

n ´ 1

3

2

¨ ¨ ¨

`

n´2
ÿ

j“2

1n

n ´ 1

j ` 1

3

j

2

¨ ¨ ¨ ¨ ¨
¨

“ 0

(4.2.12)

Thus we can then express the unshifted amplitude An which corresponds to removing

the edge in the BCFW bridge) as a sum of all the other on-shell diagrams, which are

given by gluing together lower-point amplitudes (grey blobs) with the addition of the

same BCFW bridge pn1q. Note that each grey blob in itself represents a sum of on-shell

diagrams which are obtained recursively.

Let us look at a few examples. At 4-point and 5-point, the MHV amplitudes are

represented by a single on-shell diagram.

Ak“2
4 “

14

23

Ak“2
5 “

15

2

3

4

“
δ4pP qδ4pQq

x12yx23yx34yx41y
“

δ4pP qδ4pQq

x12yx23yx34yx45yx51y
(4.2.13)

This extends to n-point MHV as BCFW recursion only contains one term at each

order.
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Ak“2
n “

1n

2

n ´ 1

4
3

¨ ¨ ¨

AMHV
n´1

“
δ4pP qδ4pQq

x12yx23y ¨ ¨ ¨ xn1y
(4.2.14)

Beyond MHV, BCFW recursion decompose the amplitude into multiple on-shell dia-

grams. For instance, the 6-point NMHV can be expressed as

Ak“3
6 “

4

5

6 1

2

3

`

4

5

6 1

2

3

`

6 1

5

4
3

2

(4.2.15)

where we recognize the 4pt MHV and 5pt MHV building blocks embedded in the 6pt

NMHV diagrams, with additional BCFW bridges. We will study these BCFW terms

in great details later.

Before proceeding further, let us make two important remarks. First, if we choose

adjacent BCFW shifts exclusively at each order of recursion, we only get planar on-

shell diagrams; non-planar on-shell diagrams arise when non-adjacent legs are shifted.

Second, the set of all on-shell diagrams relevant for the BCFW recursion relations

(planar or non-planar) is a (particularly simple) subset of all leading singularities.

4.2.2 From On-Shell Diagrams to Grassmannian Geometry

On-shell diagrams also appear in combinatorics and algebraic geometry as plabic

graphs and are related to the cells of Grassmannian Gpk, nq, where k and n specify the

underlying helicity configuration and the number of external legs respectively. To each

planar plabic graph we can associate a cell in the positive Grassmannian G`pk, nq,

represented by a pk ˆ nq real matrix C modulo GLpkq transformations which has all
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main pk ˆ kq ordered minors being positive. The plabic graph provides a particular

way to parameterize the matrix via boundary measurement. Specifically, a boundary

measurement gives a set of variables αi’s labelling the egdes of the graph; when these

variables are real with definite signs, the C-matrix has all main minors positive. The

top cell of G`pk, nq has maximal kpn´kq dimensionality and is parameterized kpn´kq

of parameters; all other cells are lower-dimensional boundaries of the top cell where

some parameters are sent to zero – in the plabic graph, this corresponds to removing

edges . See [214] for more details.

As an example, we can show the same diagram from the previous section. It

corresponds to a top cell of G`p2, 5q, and a particular positive parametrization of the

p2 ˆ 5q matrix found using boundary measurements is as follows:

α1

α2

α6 α4

α5

α3

4

5
1

3

2 C “

¨

˝

1 α1 ` α2α6 α6 α3α6 0

0 α2α5α6 α5α6 α4 ` α3α5α6 1

˛

‚ . (4.2.16)

For αk ą 0 all p2 ˆ 2q ordered minors are positive.

A cell in the positive Grassmannian G`pk, nq is a space with boundaries and an

example of the positive geometry [60]. The geometry can be interpreted as a k-plane

spanned by the rows of C in n-dimensions subject to positivity constraints on its

parameters. But it is illuminating to view the C-matrix instead as a collection of n

columns vectors P⃗i in the projective space Pk´1

C “

¨

˚

˚

˚

˚

˚

˚

˝

˚ ˚ ˚ ˚ . . . ˚

˚ ˚ ˚ ˚ . . . ˚

...
...

...
...

...
...

˚ ˚ ˚ ˚ . . . ˚

˛

‹

‹

‹

‹

‹

‹

‚

Ñ

´

P⃗1 P⃗2 P⃗3 P⃗4 . . . P⃗n

¯

, (4.2.17)
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Modding out the scale from each vector

P⃗i “ λiPi with λi ą 0 (4.2.18)

Pi then describes a point in the projective space and the cell in G`pk, nq can be inter-

preted as as a particular configuration of n points in the projective space Pk´1. Let us

consider the k “ 2 and k “ 3 scenarios explicitly.

k “ 2, MHV case The projective space is just P1, ie. projective line, and each Pi is

a point on this projective line:

Pi “

´

1 xi

¯

(4.2.19)

The p2 ˆ 2q minor of P⃗i then reduces to

pijq “ |P⃗i P⃗j| “ λiλj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1

xi xj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ λiλjpxj ´ xiq (4.2.20)

Positivity of all such ordered minors, pijq ą 0 for j ą i implies an ordering of parameters

xi,

x1 ă x2 ă x3 ă ¨ ¨ ¨ ă xn (4.2.21)

Geometrically, this corresponds to n ordered points on a projective line,

‚
‚

‚

‚

1 2 3 ¨ ¨ ¨
n

(4.2.22)

The boundaries of this geometry are lower dimensional cells which correspond to

sending some of the consecutive minors pi i`1q “ 0. Sending one minor to zero, for

example, p12q “ λ1λ2px2 ´ x1q “ 0 Ñ x1 “ x2, corresponds to merging two adjacent

two points

‚
‚

‚

‚

12 3 4 ¨ ¨ ¨
n

p12q “ 0 (4.2.23)
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Sending another minor pj j`1q “ 0 would merge respective points and we can continue

this process by probing lower and lower dimensional boundaries. We can also send the

overall factor λi Ñ 0 and delete the point i point completely. This gives us two types

of codimension-2 boundaries,

‚
‚

‚

‚

1, 2, 3
4 5 ¨ ¨ ¨

n

p12q “ p23q “ 0

P1 „ P2 „ P3

‚
‚ ‚ ‚

‚

1 3 4 5 ¨ ¨ ¨
n

λ2 Ñ 0

(4.2.24)

Note that we can only remove point i if Pi is already identified with other Pj (either

Pi´1 or Pi`1), otherwise the dimensionality of the configuration would decrease by 2,

rather than 1. This continues to even lower dimensional boundaries when we merge or

delete more points.

k “ 3, NMHV case The Grassmannian geometry is configurations of n points in

P2, the generic configuration corresponding to the p3n ´ 9q-dimensional top cell are

arranged as

‚
5

‚
4

‚
n

‚
1

‚
2

‚
3

.
.

.

pijkq ą 0 (4.2.25)

The convexity of the configuration follows from the positivity of all p3ˆ3q consecutive

minors. Sending consecutive minors pi´1 i i`1q “ 0 places three adjacent points on
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the same line, for instance

‚
‚

‚1 2 3
‚
n

‚
4

‚
5

¨¨
¨

‚
6

p123q “ 0, otherwise pijkq ą 0 (4.2.26)

Similarly, setting another consecutive minor pj´1 j j`1q “ 0, places the respective

triplet of points on a line. When two overlapping minors both vanish, e.g. in the above

example further setting p234q “ 0 , we get two solutions: either all points 1, 2, 3 and

4 are on the same line or points 2 and 3 coincide.

‚
‚

‚1 2 3
‚
n

‚
4‚

5

¨¨
¨

‚
6

§

§

‚
‚

‚
‚

1 2 3 4
‚
n

‚
5

¨¨
¨

‚
6

‚
‚1
23

‚
n

‚
4‚

5

¨¨
¨

‚
6

ñ p234q “ 0 has two solutions. (4.2.27)

This can be also understood algebraically. When p123q “ 0 we can express P3 “

αP1 ` p1 ´ αqP2 and the minor p234q factorizes,

p234q “ ´
λ2

λ1

αp124q . (4.2.28)

Now we can either set p124q “ 0 to access the first configuration or set α “ 0 to access

the second. Note that unlike in the MHV case where merging two points is achieved by

imposing a single constraint, we need two constraints in the NMHV case. In addition
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we have an overlapping case where p124q “ α “ 0,

‚
‚

‚

1
23

4

‚
n

‚
5

¨¨
¨

‚
6

(4.2.29)

which is p3n´12q-dimensional, ie. codimension-3 configuration.

We can also consider removing a point completely. If we remove a point directly by

sending λi Ñ 0 the dimensionality of the configuration would drop by 3. Hence, in

order to eliminate a point, we must first put this point on a line with at least two other

points, then merge it with an adjacent point before finally removing it.

‚
‚

‚1 2 3
‚
n

‚
4‚

5

¨¨
¨

‚
6

‚
‚1
23

‚
n

‚
4‚

5

¨¨
¨

‚
6

‚
‚1
3

‚
n

‚
4‚

5

¨¨
¨

‚
6

Iteratively these procedures allow us to access all lower-dimensional cells of G`p3, nq.

The discussion above generalizes to higher k. The top cell of G`pk, nq with all

consecutive minors positive corresponds to a generic convex configuration of n points

in Pk´1. Any lower-dimensional cell results from moving some of these points to lower-

dimensional spaces (eg. on special planes, lines , etc) or removing some of them com-

pletely, which can be achieved by iteratively sending consecutive minors to zero and

keeping in mind that minors can factorize wherein we get multiple solutions. For more

details see [42, 214].

Going back to the plabic graphs: assessing lower-dimensional boundaries by sending

one of the edge variables to zero corresponds to removing that edge from the graph.

Hence, the plabic graphs provide natural stratifications of the positive Grassmannian
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G`pk, nq. In our G`p2, 5q example, we can make minor p12q vanish by setting α2 “ 0

to vanish and the resulting plabic graph describes 2n´5 dimensional cell in G`p2, 5q.

α1

α2

α6 α4

α5

α3

4

5
1

3

2
α2Ñ0

´́ ´́ÝÑ

α1

2

3

α6 α4

α5

α3

4

5
1

(4.2.30)

As we already know, this corresponds to merging points 1, 2 as shown in (4.2.23) in

the geometric picture.

4.2.3 Canonical dlog forms

For a top cell in G`pk, nq we can associate a canonical differential form

Ωtop
n,k “

dkˆnC

volrGLpkqs

1

p12. . .kqp23. . .k`1qpn1. . .k´1q
(4.2.31)

where we wedge all the (differentials of) parameters of the C-matrix modulo GLpkq

redundancy. The denominator contains the product of all consecutive minors which

specify the codim-1 boundaries of the top cell. The canonical form Ωn,k for a lower

dimensional cell is obtained by taking subsequent residues of (4.2.31) where we set the

corresponding minors to zero,

Ωn,k “
dkˆnC

volrGLpkqs

1

p12. . .kqp23. . .k`1qpn1. . .k´1q

ˇ

ˇ

ˇ

ˇ

ˇ

pminorsq“0

(4.2.32)

Le us look at some simple examples. For G`p2, nq the canonical form for the top form

is

Ωtop
n,k“2 “

d2ˆnC

volrGLp2qs

1

p12qp23qp34q . . . pn1q
. (4.2.33)

To get the canonical form associated with the cell (4.2.23), we take the residue on

p12q “ 0. This can be achieved by setting x1 “ x2 in the partial parametrization

(4.2.19):

Ωn,k“2 “
d2ˆn´1C

volrGLp2qs

1

λ1p23qp34q . . . pn2q
. (4.2.34)
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Similarly, starting from the top form of G`p3, nq

Ωtop
n,k“3 “

d3ˆnC

volrGLp3qs

1

p123qp234qp345q . . . pn12q
. (4.2.35)

we get for the codimension-2 cell corresponding to the second configuration in (4.2.27)

Ωn,k“3 “
d3ˆn´2C

volrGLp3qs

1

λ2p134qp345qp456q . . . pn13q
. (4.2.36)

by eliminating two degrees of freedom in vector P⃗2.

We can write these canonical forms explicitly using any parametrization txiu of the

C-matrix, obtaining for a m-dimensional cell

Ωn,k “ F px1, x2, . . ., xmq dx1. . .dxm , (4.2.37)

where F px1, x2, . . ., xmq is a rational function. With a proper choice of parameterization,

the canonical form reduces to a simple dlog form,

Ωn,k “
dα1

α1

dα2

α2

. . .
dαm

αm

“ d logpα1q ^ d logpα2q ¨ ¨ ¨ ^ d logpαmq. (4.2.38)

making it possible to access the form for a lower-dimensional cell as a simple residue

about αi “ 0. The edge variables tαiu given by the boundary measurement of the

plabic graph are one such convenient choice. Note that by explicitly parameterizing

the C-matrix, we have assumed a particular gauge-fixing of GLpkq in (4.2.32). We have

traded the manifest GLpkq gauge invariance of (4.2.32) for exposing that all singularities

of the form Ωk
n are logarithmic in (4.2.38).

4.2.4 Dual formulation

There is a direct connection between on-shell diagrams we defined in (4.2.10) and

the canonical forms for the cells in the positive Grassmannian. For any on-shell diagram

in a given theory, the superfunction as computed by gluing 3-pt amplitudes has the
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following Grassmannian integral representation2,

Fn,kpλ, rλ, rηq “

ż

Ωn,k δkˆ2
pC¨rλq δ2ˆpn´kq

pCK
¨λq δkˆN

pC¨rηq (4.2.40)

The specific choice of the differential form Ω is theory-dependent. For the N “ 4 sYM

theory, this is a canonical dlog form (4.2.38). The differential form Ω is also known

for N ă 4 sYM [214] and supergravity [94, 95]. The δ-functions in (4.2.40) play an

important role as they relate the edge variables αi and the kinematics λi, rλi, rηi. The

bosonic δ-functions have a clear geometric interpretation. Thinking of both λ, rλ as

2-planes in n-dimensions:

λ “

¨

˝

λα“1
1 λα“1

2 . . . λα“1
n

λα“2
1 λα“2

2 . . . λα“2
n

˛

‚, rλ “

¨

˝

rλ 9α“1
1

rλ 9α“1
2 . . . rλ 9α“1

n

rλ 9α“2
1

rλ 9α“2
2 . . . rλ 9α“2

n

˛

‚ (4.2.41)

The first set of δ-functions constrain the k-plane C to be orthogonal to the 2-plane rλ,

in other words, the pn ´ kq-plane CK contains rλ; the second set of δ-functions says C

contains the 2-plane λ. Together these δ-functions imply the orthogonality of 2-planes

λ and rλ,

rλ2-plane

λ2-plane
C

(4.2.42)

which is precisely the statement of momentum conservation in the n-dimensional (par-

ticle) space.

δ4pP q ” δ2ˆ2
pλ ¨ rλq. (4.2.43)

2All integrals are to be evaluated as contour integrals, i.e.
ż

dx

x
δpx ´ x0q “

1

x0
. (4.2.39)
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Furthermore, with λ Ă C, the Grassmann δ-functions in (4.2.40) impose the super-

momentum conservation (along with additional constraints on rη for k ą 2)

δ2N pQq ” δ2ˆN
pλ ¨ rηq (4.2.44)

Out of the 2n bosonic δ-functions, p2n ´ 4q constraints are available for localizing the

integral. We can always use part of the δpCK¨λq constraints to fix the first two rows of

the C-matrix to λ,

C “

¨

˚

˚

˚

˝

λ
p1q

1 λ
p1q

2 λ
p1q

3 . . . λ
p1q
n

λ
p2q

1 λ
p2q

2 λ
p2q

3 . . . λ
p2q
n

˚ ˚ ˚ . . . ˚

˛

‹

‹

‹

‚

. “

¨

˝

λ

C˚

˛

‚ (4.2.45)

then factor out the momentum and super-momentum conserving explicitly from the

remaining δ-functions,

δkˆ2
pC ¨ rλqδkˆN

pC ¨ rηq “ δ4pP qδ2N pQq ˆ δpk´2qˆ2
pC˚

¨ rλqδpk´2qˆN
pC˚

¨ rηq. (4.2.46)

The residual constraints only involving pk´2qˆn matrix C˚. Depending on the dimen-

sionality of the Grassmannian cell, the full integral will evaluate to one the following

• if m “ 2n ´ 4: ordinary superfunctions. All degrees of freedom of the C-matrix

are precisely fixed by the δ-function constraints. This is exactly the case of on-

shell diagrams that appear in the BCFW recursion relations, and in general all

leading singularities fall into this category.

• if m ą 2n´4: differential forms with unfixed parameters. The remaining degrees

of freedom can be interpreted as components of loop momenta ℓi not determined

by cuts.

• if m ă 2n´4: singular limits of superfunctions, where the external kinematics

are subject to additional constraints

162



Let us go back to our example of on-shell diagram (4.2.10). In N “ 4 sYM this

diagram evaluates to

F2,k“5 “
1

J

ź

j

A3pt “

ż

Ω5,k“2 δ
2ˆ2

pC ¨ rλq δ3ˆ2
pCK

¨ λq δ2ˆ4
pC ¨ rηq (4.2.47)

The C-matrix is a 2-plane in 5-dimensions which must contain another 2-plane λ.

We can set C “ λ trivially. The other two δ-functions reproduce momentum and

supermomentum conservation and we get as expected

F2,k“5 “
δ2ˆ2pλ ¨ rλqδ2ˆ4pλ ¨ rηq

x12yx23yx34yx45yx51y
(4.2.48)

Note that if we were to use the edge variables provided by the plabic graph, we would

not get the solution in the form of C “ λ. Instead we would find, for instance,

C “

¨

˝

1 0 x14y

x12y

x15y

x12y
. . . x1ny

x12y

0 1 x24y

x21y

x25y

x21y
. . . x2ny

x21y

˛

‚ (4.2.49)

this is related to C “ λ by a GLp2q transformation. The two matrices represents

the same point in the Grassmannian, only parameterized with different gauge-fixing

schemes. The expression (4.2.47) obviously does not depend on the choice of the GLp2q

fixing and we always get the same result.

4.2.5 Cells for NMHV Tree-level Amplitudes

Now we turn our attention to NMHV tree-level amplitudes, which will be our

main focus throughout this chapter. The Grassmannian cells appearing in the BCFW

construction of tree amplitudes are always p2n ´ 4q-dimensional. Since in the NMHV

case, the top cell of G`p3, nq has the dimensionality 3n ´ 9, the relevant cells for the

amplitude must be of co-dimension n ´ 5. In other words, they are obtained from the

top cell by imposing n ´ 5 constraints (on consecutive minors).

The 5-point case is trivial. The BCFW representation contains only a single term,

which is a parity conjugate of the 5-pt MHV amplitude. There is no constraint to be

imposed – the single BCFW term directly corresponds to the top cell of Gp3, 5q and
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the generic convex configuration of five points in P2. The first interesting case appear

at 6-point where the BCFW representation of the amplitude, using the p61q shift for

instance, consists of three on-shell diagrams (4.2.15). Each diagram represents an 8-

dimensional configuration in G`p3, 6q with one constraint impose on a configuration of

six points in P2,

‚
5

‚
4

‚
6

‚
1

2
‚

‚
3

‚
5

4
‚

‚
6

‚
1

‚
2

‚
3

‚5 ‚
4

6‚

‚1 ‚
2

‚
3

(4.2.50)

The first term has minor p123q “ 0 as reflected by points 1, 2 and 3 lying on the same

line in the picture. Solving the δ-function constraints we get the form of the C-matrix,

C “

¨

˚

˚

˚

˝

λ
p1q

1 λ
p1q

2 λ
p1q

3 λ
p1q

4 λ
p1q

5 λ
p1q

6

λ
p2q

1 λ
p2q

2 λ
p2q

3 λ
p2q

4 λ
p2q

5 λ
p2q

6

0 0 0 r56s r64s r45s

˛

‹

‹

‹

‚

, (4.2.51)

The superfunction (4.2.40) then takes a particularly simple form,

R1 “
δ4pP qδ8pQqδ4pr56srη4 ` r64srη5 ` r45srη6q

s123x12yx23yr45sr56sx1|23|4sx3|45|6s
, (4.2.52)

where we denoted x1|23|4s ” x12yr24s ` x13yr34s. All other expressions are related

by cyclic shifts R1 Ñ Ri`1 where we just relabel k Ñ k ` i. The 6-point tree-level

amplitude is then given by

Ap3q

6 “ R1 ` R3 ` R5 . (4.2.53)

If we perform the BCFW recursion relation with the shift p12q, we get a different set

of on-shell diagrams. They are are constructed in the same way, but the BCFW bridge

attached is now p12q, rather than pn1q. The set of three Grassmannian configurations
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is following,

‚
5

‚4

‚
6

‚
1

‚2

3‚

5
‚

‚
4

‚
6

‚
1

‚
2

‚
3

‚
5

‚
4

‚
6

1
‚

‚
2

‚
3

(4.2.54)

The superfunction for each configuration can be again obtained from R1 by a cyclic

shift,

Ap3q

6 “ R2 ` R4 ` R6 . (4.2.55)

The equality of (4.2.53) and (4.2.55) is guaranteed by the Global Residue Theorem

(GRT) for the superfunction associated with the top cell of G`p3, 6q (which has an

extra parameter z and vanishes for z Ñ 8).

Going to higher points BCFW recursion expands the amplitude as a sum of two

types of on-shell diagrams:

ÿ

i

n 1

2

ii ` 1

n ´ 1

¨ ¨ ¨¨ ¨
¨

AMHV
i`1AMHV

n´i`1

`

n 1

n ´ 1

2

3
4

¨ ¨ ¨

ANMHV
n´1

(4.2.56)

The first type of on-shell diagrams corresponds to the factorizations of the NMHV

amplitude into two MHV amplitudes; each MHV blob corresponds to a single on-shell

diagram; gluing them with the BCFW bridge makes an NMHV on-shell diagram. It

is not hard to see every diagram thus constructed corresponds to a Grassmannian
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configuration where all n points are localizes on three lines:

n ´ 1

i ` 1

pn

2

p1

i
¨ ¨

¨¨ ¨ ¨

2 2

‚ ‚
n ´ 1 ¨ ¨ ¨ i ` 1

‚n

‚

‚

‚

i
¨ ¨ ¨

2

1

(4.2.57)

This is indeed 2n´4 dimensional configuration whose C-matrix has vanishing minors:

p123q “ p234q “ ¨ ¨ ¨ “ pi´2 i´1 iq “ pi`1 i`2 i`3q “ ¨ ¨ ¨ “ pn´3n´2n´1q “ 0

(4.2.58)

while all other minors pijkq ą 0. Note that none of the points are merged with another

or removed with these constraints.

The second term in (4.2.56) corresponds to a sum of on-shell diagrams which arise

from the factorization of the amplitude into a pn´1q-pt NMHV and a 3-point MHV

amplitude. It can also be interpreted as adding particle n to the pn´1q-pt NMHV

amplitude via an k-preserving inverse-soft factor. Suppose we have found the dia-

grammatic expansion of the pn´1q-point NMHV amplitude via recursion (4.2.56), then

adding the inverse-soft factor corresponds to adding point n between n´1 and 1 for ev-

ery Grassmannian configuration underlying the pn´1q-point NMHV amplitude, which

involve n´1 points distributed on three lines with special point 1 on the intersection

of two lines

ÿ

i,j

‚ ‚
j ¨ ¨ ¨i ` 1

‚

‚

j ` 1

¨ ¨
¨

n ´ 1

‚

‚

‚

i

¨ ¨ ¨

2

1 add n between

n ´ 1 and 1
ÝÝÝÝÝÝÝÝÝÝÝÝÑ

ÿ

i,j

‚ ‚
j ¨ ¨ ¨i ` 1

‚

‚

‚

j ` 1

¨ ¨
¨

n ´ 1

n

‚

‚

‚

i

¨ ¨ ¨

2

1

(4.2.59)
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The resulting configurations have points n and n´1 on the same line. They complement

the first set of on-shell diagrams (4.2.57) where point n´1 is on a different line than

point n.

Indeed if we consistently use the same shift on the lower-point NMHV amplitudes

(e.g. for the subamplitude ApI,p1, 2, 3, . . ., iq on the factorization channel we use pI1q

shift in the recursion), we obtain a closed-form solution for general n-point NMHV

amplitudes as a sum over a special set of configurations

ANMHV
n “

ÿ

i,j

‚ ‚
j ¨ ¨ ¨ i ` 1

‚

‚

j ` 1
¨ ¨

¨

n

‚

‚

‚

i

¨ ¨ ¨

2

1

(4.2.60)

where all n points are localized on three lines and each line has at least two points on

it. Each configuration is characterized by 3 labels: the first label 1 (as 1 in the pn1q

shift used above) specifying the “center” of the configuration, the other two labels i

and j specifying the “boundary”, where i ě 2, i`2 ď j ď n´1 ensures that at least

two points are on each line. The Grassmannian cell (and also the permutation) can be

easily read off from the configuration:

p123q “ p234q “ . . . “ pi´2 i´1 iq “ pi`1 i`2 i`3q “ . . .pj´2 j´1 jq “

“ pj`1 j`2 j`3q “ . . .pn´1n 1q “ 0 while all others pijkq ą 0 (4.2.61)

The corresponding superfunction F is

R1,i`1,j`1 “

‚ ‚
j ¨ ¨ ¨ i ` 1

‚

‚

j ` 1

¨ ¨
¨

n

‚

‚

‚

i

¨ ¨ ¨

2

1

“
δ4pP qδ8pQq

x12yx23y . . . xn1y
ˆ Rr1, i, i`1, j, j`1s ,

(4.2.62)
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where we have used the first points on each line in the general configuration (4.2.60)

to label the expression. We also introduce the R-invariant in the momentum twistor

space

Rra, b, c, d, es “
pηaxbcdey ` ηbxcdeay ` ηcxdeaby ` ηdxeabcy ` ηexabcdyq4

xabcdyxbcdeyxcdeayxdeabyxeabcy
, (4.2.63)

where ηk are the momentum twistor Grassmann variables [43, 44]. This representation

makes both the superconformal and the dual superconformal symmetries (and hence

the Yangian symmetry) manifest. For our purpose, we rewrite the R-invariant in the

momentum space,

Rr1, i, i`1, j, j`1s “
xi i`1yxj j`1y ¨ δ4pΞ1,i`1,j`1q

P 2
2 x1|P1P2|jyx1|P1P2|j`1yx1|P3P2|iyx1|P3P2|i`1y

, (4.2.64)

where we denoted

P1 “ p2 ` ¨ ¨ ¨ ` pi, P2 “ pi`1 ` ¨ ¨ ¨ ` pj, P3 “ pj`1 ` ¨ ¨ ¨ ` pn , (4.2.65)

such that P1 ` P2 ` P3 ` p1 “ 0. Pictorially P1, P2, P3 are the collections of points on

each of the three lines:

‚ ‚
j ¨ ¨ ¨
loooomoooon

P2

i ` 1

‚

‚

j ` 1

P 3
h

k

k

k

k

i

k

k

k

k

j

¨ ¨
¨

n

‚

‚

‚

i

P
1

h

k

k

k

k

i

k

k

k

k

j

¨ ¨ ¨

2

1

(4.2.66)

The argument of the super delta function δ4pΞ1,i`1,j`1q is given by

Ξ1,i`1,j`1 ”
ÿ

kPP2

xk|P2P3|1yrηk `
ÿ

jPP3

P 2
2 x1jyrηj . (4.2.67)

Note that this formula does not depend on the ordering in sets P1, P2 and P3 on the

respective lines. This will be very important in the next section when we discuss non-

adjacent BCFW recursion. As might be evident, the expression (4.2.67) only depends
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on Grassmann variables rηs from lines P2 and P3. Thus we can use super-momentum

conservation to rewrite it in an equivalent form when P1 Ø P3 (reflection of the picture),

Ξ1,i`1,j`1 ”
ÿ

kPP2

xk|P2P1|1yrηk `
ÿ

jPP1

P 2
2 x1jyrηj . (4.2.68)

The set of all BCFW terms generated by adjacent shifts is a subset of all planar

on-shell diagrams of dimensionality 2n ´ 4 (which are leading singularities). For a

general leading singularity, the p2n ´ 4q-dimensional cell in G`p3, nq corresponds to a

configuration of n points in P2 located on five lines,

‚
‚

‚

a a ` 1

¨ ¨ ¨

b

‚b ` 1

...
‚
c

‚
c ` 1¨ ¨ ¨

‚
d

‚
e ` 1

¨ ¨ ¨

‚d ` 1

...

‚e

– Rra, b, c, d, es

(4.2.69)

Any term which appears in the context of adjacent BCFW recursion is a special case,

where two of the lines have exactly two points and we get the configuration discussed

earlier,

‚
‚

‚

a a ` 1

¨ ¨ ¨

b

‚
b ` 1¨ ¨ ¨

‚
c

‚
a ´ 1

¨ ¨ ¨

‚c ` 1 –

‚ ‚
c ¨ ¨ ¨ b ` 1

‚

‚

c ` 1

¨ ¨
¨

a ´ 1

‚

‚

‚

b

¨ ¨ ¨

a ` 1

a

– Rra, b, b ` 1, c, c ` 1s

(4.2.70)

Recap: Let us close the section with a summary of a few important points in the

discussion
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• Each BCFW term is a sum of on-shell diagrams.

• Each on-shell diagram is corresponds to a 2n´4 dimensional cell in G`pk, nq with

a super-function that can be calculated using (4.2.40).

• Each cell in G`pk, nq is characterized by a configuration of n points in Pk´1 with

only consecutive constraints.

• For MHV, k “ 2, the amplitude is given by the top cell of G`p2, nq which describes

n ordered points on a projective line P1, and the superfunction reproduces a

famous Parke-Taylor formula.

• For NMHV, k “ 3, the amplitude is given by a collection of co-dimension pn´5q

cells in G`p3, nq. These cells describe configurations of n points in P2 localized

on three lines and the superfunctions are the R-invariants with special labels.

It is worth repeating that having the Grassmannian configurations, we can easily re-

construct the C-matrix and calculate the associated superfunction (4.2.40). Therefore,

we focus mainly on these geometries here.

4.3 Holomorphic expressions for BCFW terms

The δ-functions constraints in (4.2.40) provide a map between the Grassmannian

space and the kinematic space through C ¨ rλ “ CK ¨ λ “ 0. In this section we will

recast the Grassmannian geometries of C-matrices in the space of λ (we refer to it

as holomorphic space). We will see that the interpretation of the geometry in the

kinematic space lead to new, intuitive representations of BCFW terms.

As a trivial example of the λ-geometry, consider the case of k “ 2 MHV geometry.

In this case C “ λ we identify the C-matrix with the 2-plane spanned by λ, and the

positive Grassmannian geometry can be directly interpreted as the λ-geometry, that is,

P⃗k “ λk – the column vector P⃗k for each point on the projective line P1 is equal to the
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kinematic variable λ.

‚
‚

‚

‚

12 3 4 ¨ ¨ ¨
n

p12q “ x12y “ 0

λ2 “ αλ1

‚
‚

‚

‚

1 3 4 ¨ ¨ ¨
n

λ2 Ñ 0

(4.3.1)

Merging points 1 and 2 sets the minor p12q “ 0 and this is the same as x12y Ñ 0.

Removing the point 2 from the picture corresponds to sending λ2 Ñ 0 and so on.

For k ą 2 the connection between the C-matrix and kinematical constraints on λ,
rλ is not straightforward. We need to solve the conditions C ¨ rλ “ CK ¨ λ “ 0, express

the C matrix using λ, rλ and evaluate minors of the C matrix. Let us look at a 6-pt

NMHV configuration associated with discussed earlier:

‚
5

‚
4

‚
6

‚
1

2
‚

‚
3

(4.3.2)

This is a 8-dimensional cell with p123q “ 0. Solving for C from the delta functions we

get explicit form (4.2.51). We can evaluate remaining minors:

p234q “ x23yr56s, p345q “ x3|45|6s, p456q “ s123, p561q “ x1|23|4s, p612q “ x12yr45s

Let us look at p234q “ 0, which has two solutions (4.2.27): 1, 2, 3, 4 on the same line

or merging points 2, 3. While the first one sends r56s “ 0, the latter corresponds to

x23y “ 0. Similarly, p612q “ 0 puts points 6, 1, 2, 3 on a line (r45s “ 0) or merges

1, 2 (x12y “ 0). We can see that merging points on the 1, 2, 3 line gives x12y “ 0 or

x23y “ 0 which resembles the C “ λ correspondence for the k “ 2 geometry. The other

boundaries are more complicated and there is no obvious pattern in these singularities.

For instance, putting 3, 4, 5 on a line by p345q “ 0 sends x3|45|6s “ 0 which is hard to
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interpret. Furthermore the poles are no longer holomorphic xaby “ 0 like in the MHV

case, ie. they generally depend on both λ and rλ.

Nevertheless, our intention is to make a direct connection between the Grassman-

nian geometry and the kinematical space. The motivation comes from the analysis of

the BCFW term (4.2.57), which originates as the product of two MHV amplitudes,

n ´ 1

i ` 1

pn

I
2

p1

i
¨ ¨

¨¨ ¨ ¨

2 2 “ Atree
k“2pi`1, i`2, . . ., n´1, pn, Iq ˆ

1

pP2 ` pnq2

ˆ Atree
k“2pI,p1, 2, . . ., i´1, iq .

(4.3.3)

Here we denote P1 “ p2 ` ¨ ¨ ¨ `pi and we also define P2 “ pi`1 ` ¨ ¨ ¨ `pn´1. Momentum

conservation implies P1 ` P2 ` p1 ` pn “ 0. The BCFW shift parameter is fixed to

z “
pP1 ` p1q2

x1|P1|ns
, (4.3.4)

and the shifted spinors λ
pn, rλp1 and internal momentum pI are given by

λ
pn “

x1|P1P2

x1|P1|ns
, rλ

p1 “
P1P2|ns

x1|P1|ns
, pI “

1

x1|P1|ns
pP2|nsq px1|P1q . (4.3.5)

In this notation the spinor x1|P1P2 is equal to

x1|P1P2 “
ÿ

iPP1

ÿ

jPP2

x1iyrijsλj (4.3.6)

Note that the division of pI into λI and rλI is ambiguous. We see that the BCFW

term (4.3.3) is the product of two MHV amplitudes with an additional pole 1
pP2`pnq2

.
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Therefore, we can modify the Grassmannian configuration for (4.2.57) as

R1,i`1,n “

‚ ‚ ‚ ‚
pn

n ´ 1¨ ¨ ¨
loooomoooon

P2

i ` 1

I

‚n

‚

‚

‚

i

P
1

h

k

k

i

k

k

j

¨ ¨ ¨

2
1

(4.3.7)

where we added two extra points pn and I in the picture. Note these points originate

as certain special momenta p
pn and pI but now we associate them with points in the

Grassmannian geometry.

Let us take a closer look at the geometry: we have now points 1, 2, . . . , i, I on the

first line, points I, i`1, . . . , n´1, pn on the second line and points pn, n, 1 on the third

line. It is obvious that the two MHV amplitudes in (4.3.3) correspond to configurations

of points on the first two lines in (4.3.7), but it is not that clear what to do with the

third line and 1{pP2 ` pnq2 pole. Let us make the connection precise now.

We start with the expression for the R1,i`1,j`1 and rewrite it as

R1,i`1,n

“
r∆1,i`1,n

x12y...xi´1 iyxi`1 i`2y...xn´2n´1yxi|P2|nsxi`1|P2|nsxn´1|P2P1|1ypP2`pnq2P 2
2

,

(4.3.8)

where

r∆1,i`1,n “ δ4pP q δ8pQq δ4prΞ1,i`1,nq , (4.3.9)

and the reduced argument of the delta function is

rΞ1,i`1,n “
ÿ

kPP2

xk|P2|nsrηk ` P 2
2 rηn “

1

x1ny
Ξ1,i`1,n . (4.3.10)
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Looking at the denominator we can now clearly identify Parke-Taylor factors for MHV

amplitudes on two of the lines which now also involve points pn and I,

PT p1, 2, . . . , i´1, i, Iq ˆ PT pi`1, i`2, . . . , pn, Iq (4.3.11)

where the Parke-Taylor factors are defined as usual,

PT pa1, a2, . . . amq “
1

xa1a2yxa2a3y . . . xama1y
. (4.3.12)

Note that all the mixed poles come from holomorphic poles involving λI and λ
pn,

xi Iy
.
“ xi|P2|ns, xi`1 Iy

.
“ xi`1|P2|ns, xn´1 pny

.
“ xn ´ 1|P2P1|1y, xpn Iy

.
“ P 2

2

(4.3.13)

We have ignored any factor of x1|P1|ns “ ´x1|P2|ns to some power in the above equa-

tion; as noted before, the splitting pI into λI and rλI is ambiguous which produces some

particular power of x1|P1|ns “ ´x1|P2|ns from the Jacobian. This will be accounted for

in the end. Furthermore, there is a factor 1{pP2 ` pnq2 which does not originate from

either of the Parke-Taylor factors, but can be interpreted as

xn pny “ x1|P1P2|ny “ pP2 ` pnq
2
x1ny . (4.3.14)

In fact, noticing that x1 pny “ x1nyx1|P1|ns , we can easily check all the remaining

factors conspire to make another Parke-Taylor factor for the MHV amplitude living on

the third line with points 1, n, pn:

1

x1nyxn pnyxpn1y
. (4.3.15)

Taking everything together we conclude that the R1,i`1,n can be rewritten as the

product of three Parke-Taylor factors living on the three lines that form the Grassman-

nian geometry

R1,i`1,n “ PT p1, . . . , i, I1qPT pI1, i`1, . . . , n´1, I2qPT pI2, n, 1q ˆ x1|P1pn|1y
3
r∆1,i`1,n ,

(4.3.16)
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where we have introduced two points I1, I2, instead of I, pn, with fixed form for their

λ-spinors,

λI1 “ P2|ns, λI2 “ x1|P1P2 . (4.3.17)

Note that in the formula (4.3.16) we have a product of three Parke-Taylor factors,

rather than the full MHV amplitudes. So far we have merely rewritten R1,i`1,n in

a particular way. But, importantly, there is a clear pattern in the formula (4.3.16)

that immediately generalize to the more general R-invariants R1,i`1,j`1, for which the

interpretation using BCFW shifts is absent.

In the general configuration we have n points living on all three lines,

‚ ‚ ‚ ‚
I2

j ¨ ¨ ¨
loooomoooon

P2

i`1

I1
‚

‚

j`1

n

P 3
h

k

k

i

k

k

j

¨ ¨
¨

‚

‚

‚

i

P
1

h

k

k

i

k

k

j

¨ ¨ ¨

2

1

(4.3.18)

and R1,i`1,j`1 is given by the product of Parke-Taylor factor on three lines, with labels

indicated in the picture,

R1,i`1,j`1 “PT p1, . . ., i, I1qPT pI1, i`1, . . ., j, I2qPT pI2, j`1, . . ., n, 1q

ˆ x1|P1P3|1y
3∆1,i`1,j`1 (4.3.19)

where P1 “ p2 ` . . . ` pi, P2 “ pi`1 ` . . . ` pj and P3 “ pj`1 ` . . . ` pn. The auxiliary

spinors λI1 , λI2 are given by

λI1 “ x1|P3P2, λI2 “ x1|P1P2 (4.3.20)

and ∆1,i`1,j`1 is just given by the delta functions in (4.2.62),

∆1,i`1,j`1 “ δ4pP q δ8pQq δ4pΞ1,i`1,j`1q (4.3.21)
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Our expression (4.3.19) reproduces (4.2.62). The salient feature of the new formula

is that all mixed poles in R1,i`1,j`1 appear as simple holomorphic poles involving λI1

and λI2 . The introduction of points I1, I2 prime the original configuration of n points

in Grassmannian cell G`p3, nq for a kinematical interpretation. Merging two points,

which corresponds to sending certain consecutive minor of the C-matrix to zero, turns

into statement about xaby “ 0, ie. λa „ λb for two points a, b on one of the three lines

with points 1, 2, . . . , i, I1 and I1, i`1, . . . , j, I2 and I2, j`1, . . . , n, 1. This is trivially true

for the points 1, . . . , n but quite remarkably this also extends to all merging involving

points I1 and I2 which lead to more complicated non-holomorphic poles,

‚ ‚ ‚ ‚ ‚
I2

j ¨ ¨ ¨ a,b ¨ ¨ ¨i`1

I1

‚

‚

j`1

¨ ¨
¨

n

‚

‚

‚

i
¨ ¨ ¨

2

1

xaby “ 0

‚ ‚ ‚ ‚
I2, j

j´1 ¨ ¨ ¨ i`1

I1

‚

‚

j`1

¨ ¨
¨

n

‚

‚

‚

i

¨ ¨ ¨

2

1

xI2jy “ x1|P1P2|jy “ 0 (4.3.22)

As an example, let us look at the 8-point configuration R1,4,7.

‚ ‚ ‚ ‚ ‚
I2

6 5 4

I1

‚

‚

7

8

‚

‚

‚

3

2

1

(4.3.23)

Following the above procedure we can build the superfunction from three Parke-Taylor

factors

R1,4,7 “ PT p1, 2, 3, I1qPT pI1, 4, 5, 6, I2qPT pI2, 7, 8, 1q ¨ x1|p23qp78q|1y
3∆1,4,7 (4.3.24)
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“
∆1,4,7

x12yx23yx3|p456qp78q|1yx1|p78qp56q|4yx45yx56yx1|p23qp45q|6ys456x1|p23qp456q|7yx78yx81y

with

λI1 “ x1|p78qp456q , λI2 “ x1|p23qp456q . (4.3.25)

As a side note, while all we need is the λ-part of I1, I2 in the context of Yang-

Mills theory, for the purpose of extending the same positive geometry picture to other

theories we may try to upgrade them to full momenta. To do this, we have to ensure

that momentum conservation is respected on each of the three lines. First, we can

determine the rλs for I1 and I2 uniquely from the momentum conservation,

rλI1 “
x1|P1

x1|P1P3|1y
, rλI2 “

x1|P3

x1|P3P1|1y
, (4.3.26)

where we can again see the normalization factor x1|P1P3|1y. In this case we get a

momentum conservation pI1 ` pI2 ` pi`1 ` ¨ ¨ ¨ ` pj “ 0. On the other two lines,

momentum p1 is split into two parts p1 “ pa1 ` pb1, where both momenta share the same

λ1 but differ in rλ parts such that momentum conservation ´pI2 ` P3 ` pa1 “ 0 and

´pI1 ` P1 ` pb1 “ 0 is respected.

4.4 Non-adjacent BCFW recursion and non-planar positive ge-

ometry

The main goal of this chapter is to explore the space of non-planar on-shell diagrams

that arise in BCFW recursion relations with non-adjacent shifts in the context of N “ 4

sYM. We consider a non-adjacent BCFW shift pk1q,

λ
pk “ λk ` zλ1, rλ

p1 “ rλ1 ´ zrλk, rη
p1 “ rη1 ` zηk (4.4.1)

which gives rise to an expansion of tree-level amplitudes in terms of building blocks

that are superconformal invariant.

Apkq
n “

ÿ

i,j

j ` 1

pk

i

j

i ` 1

p1

¨¨
¨

¨ ¨
¨

¨¨
¨

¨ ¨
¨

(4.4.2)
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However, for general k, the dual super conformal invariance of the N “ 4 sYM

amplitude is broken in the individual terms as the cyclic ordering of points is spoiled.

Nonetheless, we can still represent these terms by non-planar on-shell diagrams

k 1

k´1

j`1

2

j

n

i`1

k`1

i

¨ ¨
¨¨¨

¨

¨ ¨
¨¨¨

¨ (4.4.3)

where each blob can recursively expressed in terms trivalent plabic graphs. For ex-

ample, one of the non-planar on-shell diagrams in the BCFW expansion of 6pt NMHV

amplitude using p51q shift is

2

p1

6

I

3

p5

42 2 “

1

İ

İ

Ĳα7

Ĳ
§
α1

5

İα5

İα8

İ

§
α3

§
α6

đ

Ĳ

§
α2

6
§

3

4

İ

İα4

İ
§

2

(4.4.4)

While on-shell diagrams that are planar correspond to cells in the positive Grass-

mannian G`pk, nq, an arbitrary non-planar diagram corresponds to a certain cell in

(the non-positive part of) Gpk, nq. Specifically, For each non-planar on-shell diagram

we can construct the C-matrix via the boundary measurement. The rules are the same

as in the planar case: label the edge variables (here face variables can not be used),

choose a perfect orientation and calculate the entries of the C-matrix. For the example

above we get

C “

¨

˚

˚

˚

˝

1 0 0 ´α2α5α6α7 ´α1 ´ α2α5α6α7α8 ´α2α7

0 1 0 ´pα2 ` α3qα5α6 ´pα2 ` α3qα5α6α8 ´α2

0 0 1 ´pα4 ` α5q ´α5α8 0

˛

‹

‹

‹

‚

(4.4.5)
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This C-matrix does not have any obvious positivity properties, ie. there is no choice

of signs for edge variables αi such that all main minors are positive.

The lack of positive coordinates does not prevent us from calculating the on-shell

functions for the BCFW term (4.4.4) using the dual formulation (4.2.40) for the on-

shell diagram (4.4.4), which gives the same result as direct evaluation of the product

of two MHV amplitudes with 1{P 2 pole,

F “
A4p3, 4,p5, IqA4pI, 6,p1, 2q

s345
(4.4.6)

where λ
p5 and rλ

p1 being the shifted momenta and I the internal on-shell leg.

Unlike the planar case, where the cells have a simple combinatorial characterization

and are understood to be associated with stratification of the positive Grassmannian,

much remains to be understood about the connection between between non planar

on-shell diagrams and the Grassmannian in general. In what follows, we find the

Grassmannian geometry for non-adjacent BCFW terms. In other words, we identify a

particular subspace in Gpk, nq associated with the non-planar on-shell diagrams which

appear in the context of non-adjacent BCFW recursion relations. This is a general-

ization of the connection between on-shell diagrams/plabic graphs and the cells of the

positive Grassmannian G`pk, nq into the non-planar sector, at least for the special set

of BCFW cells identified. We start with a review of the MHV case which was worked

out in [102] before discussing the new results on the NMHV non-planar cells.

179



4.4.1 MHV amplitudes

It was shown in [102] that any non-planar MHV on-shell diagram evaluates to a

linear combination of Parke-Taylor factors with coefficients `1. For instance:

1

2

3

4

5

6

“PT p1, 2, 3, 4, 5, 6q ` PT p1, 2, 4, 5, 6, 3q ` PT p1, 4, 2, 5, 6, 3q

` PT p1, 4, 5, 6, 2, 3q ` PT p1, 4, 6, 2, 3, 5q ` PT p1, 4, 6, 2, 5, 3q

` PT p1, 6, 2, 3, 4, 5q . (4.4.7)

This statement follows from the fact that the whole Gp2, nq Grassmannian can be

decomposed into positive Grassmannians G`p2, nq with various orderings, and holds

for arbitrary complicated MHV diagrams which are associated with a cell in Gp2, nq.

This is obvious from the geometric picture. The real Grassmannian Gp2, nq can be

represented as a collection of n points on the projective line P1 (with no restrictions).

Obviously, any configuration of these points has a certain ordering, so any point in

Gp2, nq is also in one of the positive Grassmannians G`p2, nq (with a particular order-

ing). An arbitrary non-planar on-shell diagram then corresponds to a union of G`p2, nq

with different orderings.

The non-adjacent BCFW recursion relations produce a special class of non-planar

on-shell diagrams. We expect this class to be particularly simple because in the recur-

sion we have only one type of factorization diagram into pn´1q-point MHV amplitude

and 3-point MHV amplitude (the latter necessarily involve leg 3 instead of 1).

Let us start our discussion with the p31q shift. At 4-point there are two contributing
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terms:

A4 “

2

p3

I

p1

4

1 2 `

p3

4

I

2

p1

1 2 (4.4.8)

Following the discussion in Section 2, both factorization diagrams are inverse soft

factors on the 3-point amplitude Ap124q. The first diagram then evaluates to ´Ap1324q

and the second to ´Ap1342q, and the underlying Grassmannian geometry are just two

different configurations of points on the projective line. So in this case each diagram is

one particular fixed ordering of points on a line in P1.

‚
1

‚
3

‚
2

‚
4

`
‚
1

‚
3

‚
4

‚
2

(4.4.9)

At 5-point we get again two factorization diagrams,

A5 “

2

p3

I

p1

4

51 2 `

p3

4

I

2

5

p11 2 (4.4.10)

The first diagram adds points 3 between 1 and 2 in an ordered amplitude Ap1245q

and leads to ´Ap13245q, while for the evaluation of the second diagram we need to use

the representation (4.4.9), and we get ´Ap13425q ´ Ap13452q. Note that in the first

diagram p1 and I are adjacent while in the second diagram they are non-adjacent. The

formula for the amplitude is then

A5,2 “ ´Ap13245q ´ Ap13425q ´ Ap13452q (4.4.11)

This easily generalizes to the n-pt case, the BCFW recursion using p31q shift gives,

An,2 “ ´

n
ÿ

j“3

Ap134. . .j 2 j`1. . .nq (4.4.12)
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This is just a formal way to write that we start with the pn´1q labels 1, 3, 4, 5, . . . , n

and we insert label 2 anywhere between 3, . . . , n. In order to show that this equal to

the original Parke-Taylor factor Ap123 . . . nq we use a U(1) decoupling identity,

ÿ

j

Ap13 . . . j 2 j`1 . . . nq “ 0 (4.4.13)

where we sum over all possible positions of the label 2.

It is easy to see that for the general pk1q shift the BCFW recursion relations contain

two terms,

An “

k ´ 1

pk

I

k ` 1

k ´ 2

n

p1

2

¨¨
¨

¨¨¨

1 2 `

pk

k ` 1

I

k ` 2

k ´ 1

n

p1

2

¨¨
¨

¨¨¨

1 2 (4.4.14)

Each term is one particular on-shell diagram

An “

k 1

k´1

2

k´2

n

k`1
¨ ¨ ¨

¨ ¨ ¨

AMHV
n´1

`

k 1

k`1

n

k`2

2

k´1
¨ ¨ ¨

¨ ¨ ¨

AMHV
n´1

(4.4.15)

and they evaluate to

t1 “ p´1q
k
ÿ

σPΣ1

Ap1 k k´1σq, t2 “ p´1q
k
ÿ

σPΣ2

Ap1 k k´1σq (4.4.16)

where Σ1 “ t2, ¨ ¨ ¨ , k´2uT � tk`1, ¨ ¨ ¨ , nu and Σ2 “ t2, ¨ ¨ ¨ , k´1uT � tk`2, ¨ ¨ ¨ , nu.

Here � denotes the shuffle product of two orderings while the superscript T denotes

the reversal of an ordering. The corresponding geometry is just given by a union of

G`p2, nqs with a particular ordering given by the ordering of the Parke-Taylor factor
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in the sum. For the amplitude we get

An,2 “ ´
ÿ

σ

Ap1 k σ2...k´1,k`1...nq (4.4.17)

where we sum over all Parke-Taylor factors with indices 1, k being adjacent and over all

permutations of other labels which keep labels k´1, . . ., 2, resp. k`1, . . ., n relatively

ordered. The fact that this is equal to a single Parke-Taylor factor with canonical

ordering Ap123 . . . nq, is the famous Kleiss-Kuijf (KK) relation [215].

Note that the on-shell diagrams we got in the context of BCFW recursion relations

formed a subset of all diagrams, and only special labels appeared in the linear combina-

tions of Parke-Taylor factors (4.4.16). However, as noted earlier any on-shell diagram

evaluates to some combination of Parke-Taylor factors and the underlying geometry is

just a union of ordered points on a projective line. The first case where non-adjacent

BCFW shifts lead to something qualitatively new is at the NMHV level.

4.4.2 NMHV amplitudes

For k ą 2 the non-planar on-shell diagrams are completely new on-shell functions,

which can not be obtained by relabeling of planar on-shell functions, R-invariants and

their higher k generalizations, or any linear combinations of them. To see what is new,

we can look at an 8-dimensional non-planar on-shell diagram of Gp3, 6q

“
x12yr64sδ3ˆ4pC˚ ¨ rηq δ2ˆ2pλ ¨ rλq

x13yr56sx1|5 ` 6|4sx2|4 ` 5|6spx23yr56sx1|5 ` 6|4s ´ x12yr45sx3|4 ` 5|6yq

(4.4.18)

Note the pole x23yr56sx1|56|4s ´ x12yr45sx3|45|6s does not factorize, and can not be

simplified. This is a new type of singularity of purely origin that would never show up

in the planar on-shell diagrams. It also implies that the non-planar loop amplitudes

have new kinematical poles (in external momenta) which do not arise in the planar

limit.
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This on-shell diagram is one of all the inequivalent 8-dimensional cells of Gp3, 6q

(i.e. leading singularities) identified in [104], where new type of on-shell functions with

more complicated poles were found. The authors of [104] also classified all inequivalent

9-dimensional top cells of Gp3, 6q, but their underlying Grassmannian geometry (if any)

is still unclear.

In this chapter we initiate the exploration of non-planar Grassmannian geometry

by looking at the BCFW on-shell diagrams (we also refer to them as BCFW cells) which

are expected to form a particular simple subset of all non-planar on-shell diagrams. Our

goal is to identify the Grassmannian geometry for these special cells. Specifically, for

each diagram parameterized by some Gp3, nq matrix, we want to associate a (generally

non-convex) configuration of n points in P2 to it. Once identified, this configuration

sets the signs of all minors needed to define the subspace in Gp3, nq corresponding to

the on-shell diagram.

Five point amplitude

Let us start with the simplest 5-point case. Note that for the adjacent BCFW shift,

say p51q, we only had one BCFW diagram which was interpreted geometrically as

3

p5

2

p1

4 2 2 ÝÑ

‚ ‚
4 3

‚5 ‚

‚

2

1

(4.4.19)

This is nothing else than the convex configuration of five points, ie. top cell of G`p3, 5q.

The three lines we chose to draw are arbitrary as no three points are on a single line.
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For the non-adjacent BCFW shift p41q we get a sum of two terms,

3

5

I

2

p1

p4 2 2

2

p4

I

p1

5

3 2 2

3

5

2

14

3

2

5

14

(4.4.20)

Let us look at the first term, by definition this is equal to

Ak“2p3,p4, 5, IqAk“2pI,p1, 2q

s12
(4.4.21)

Using the procedure from the previous section, the first MHV amplitude Ak“2p3,p4, 5, Iq

corresponds to a line with 3,p4, 5, I (in this ordering), the second MHV amplitude gives

a line I, 1, 2, and the point 4 is on the line 1,p4. Similar analysis can be done for the

second BCFW term, and we get two configurations

I
‚‚

3
‚
5

‚4 ‚

‚

2

1

‚‚‚
I

23

‚4

‚1

‚5 (4.4.22)

Note that points I, p4 are not part of the original set of points and do not participate

in the positivity/negativity constraints on the minors of the C-matrix.

185



Grassmannian cells and positivity conditions

Now we want to identify the cells in Gp2, 5q which correspond to the two configurations

(4.4.22). The configuration on the right is simple, it is just a usual positive Grassman-

nian top cell with an ordering 1, 5, 2, 3, 4, and hence satisfies pijkq ą 0 where i, j, k

respect this ordering.

‚‚‚
I

23

‚4

‚1

‚5

p152q ą 0 p123q ą 0 p523q ą 0 p234q ą 0

p153q ą 0 p124q ą 0 p524q ą 0

p154q ą 0 p134q ą 0 p534q ą 0

(4.4.23)

The configuration on the left is more interesting, and it is a genuinely new non-planar

Gp2, 5q cell. The points 1, 2, 3, 4 form a convex configuration and hence p123q, p124q,

p134q, p234q ą 0. If point 5 was next to 3 (say to the left), we would have p125q, p135q,

p235q, p154q, p354q, p254q ą 0 and this would be still just a top cell of G`p3, 5q with

ordering 1, 2, 3, 5, 4. However, moving the point 5 away from 3 to a different segment

of the line changes the signs:

I
‚‚

3
‚
5

‚4 ‚

‚

2

1
p123q ą 0 p234q ą 0 p235q ą 0 p254q ž 0

p124q ą 0 p125q ą 0 p154q ă 0

p134q ą 0 p135q ą 0 p354q ą 0

(4.4.24)

We see that two signs flipped: point 5 is now to the left of the line p41q, hence p415q “

p154q ă 0, and 5 can be on either side of the line p24q depending on the exact positions

of 2,4, hence p254q can have any sign and it does not impose any condition. Here we

should remind the reader that each column of the C-matrix can be always rescaled

without changing the Grassmannian cell. Hence, we can flip pjq Ñ ´pjq for any
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column and the configuration of points is still the same. Therefore, in (4.4.24) we can

flip p5q Ñ ´p5q and get

p123q ą 0 p234q ą 0 p235q ă 0 p254q ž 0

p124q ą 0 p125q ą 0 p154q ą 0

p134q ą 0 p135q ą 0 p354q ă 0

(4.4.25)

and it should correspond to the same configuration. It is not hard to see that these

signs of minors are reproduced by

I
‚‚

3
‚
5

‚4 ‚

‚

2

1

(4.4.26)

which is indeed the same configuration when we wrap 5 around infinity and come back

on the right segment. As a result, drawing a point on the left or right outer segments

are equivalent as (4.4.24) and (4.4.26) are the same configurations corresponding to the

same non-planar cells in Gp2, 5q.

At 5-point, there are really only two inequivalent BCFW shifts: adjacent p51q and

next-to-adjacent p41q; all others are related by cyclicity. But at higher points, we have

a general pk1q shift. Below, we first study the next-to-adjacent shift pn´1 1q before

considering a general case.

Six-Point Amplitude

Let us consider the calculation of the 6-pt NMHV amplitude using p51q BCFW shift.

We get four terms where the amplitude factorizes into two MHV amplitudes and two
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other terms where it factorize into a 5-pt NMHV and a 3-pt MHV amplitudes.

4

p5

6
I

p1

2

3

2 2

3

4

p5
I

6

p1

2

2 2

3

4

6

p5 I

p1

2

2 2

2

3

p5

4 I
6

p1

2 2

p5

6
I

4

3
2

p1

1 3

4

p5
I

3

2

p1

6

1 3

(4.4.27)

As before, we can easily express these BCFW terms as non-planar on-shell diagrams.

The first term, for instance, is given by a single on-shell diagram:

2

Ĳ

Ĳα2

Ĳ

1

Ĳ

Ĳ
Ĳ

§
α1

6

İ
α5

İ

§
α4

§
α8

đ

Ĳ

đ
α3

4

5

İ

İα6

İα7

İ

§

3

(4.4.28)

and similarly for the three other terms in (4.4.27) of this type. They are are just

products of two MHV amplitudes with shifted labels, and we can construct the Grass-

mannian geometry in the same way as for the 5-pt amplitude,

‚
4

‚5 ‚3

‚2

‚1

‚
6

‚
4

‚
3

‚5 ‚2

‚1

‚6

‚
4

‚
3

‚5 ‚2

‚1

‚
6

‚
4

‚
3

‚
2

‚5

‚1

‚6
(4.4.29)

The last two terms of the form Ap1q

3 bAp3q

5 have the interpretation of (holomorphic)

inverse soft-factors, and the associated configurations can be obtained by adding point
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5 to some fixed configurations of points 1, 2, 3, 4, 6. Now the resulting geometry does

depend on how we recurse the 5pt NMHV amplitude, whether two adjacent or non-

adjacent legs in the sub-amplitude are chosen for BCFW shift. To get a closed form

formula, which generalizes for any n and any pk1q shift, we use the pI1q shift, ie. the legs

which are shifted in the 6-pt recursion are also used to represent the 5-pt amplitude.

For the bottom left term in (4.4.27), pI1q shift is an adjacent shift, and we start with the

configuration for the top cell of G`p3, 5q with labels 1, 2, 3, 4, 6 and add point 5 between

1 and 6. We got a positive Grassmannian cell in G`p3, 6q with minor p156q “ 0 while

all others being positive.

‚ ‚

‚ ‚

‚

4 3

2

1

6

‚5
ÝÑ

‚
4

‚
3

‚5
‚6

‚1

‚2
(4.4.30)

For the last term of (4.4.27), the pI1q shift is a non-adjacent shift with which we get a

representation of the 5pt NMHV amplitude Ak“3
5 p1, 2, 3, 4, 6q as in (4.4.20) as a sum of

two on-shell diagrams

4

p5
I

3

2

p1

6

1 3 “

4

3

6

2

5

1

`

4 5

1

6

2

3

(4.4.31)

each of them is associated with one 8-dimensional cell in Gp3, 6q. Adding point 5
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between 4 and 1, we get a sum of two configurations

‚
3

‚5

‚4
‚2

‚1

‚
6

`

‚
3

‚
2

‚4

‚5

‚1

‚6

(4.4.32)

As before, we can easily read off the signs of all p3 ˆ 3q minors and hence fully

determine the 8-dimensional cell in Gp3, 6q. For the first configuration in (4.4.32) it is

‚
3

‚5

‚4
‚2

‚1

‚
6

p123q ą 0 p134q ą 0 p146q ă 0 p236q ă 0 p345q ą 0

p124q ą 0 p135q ą 0 p156q ă 0 p245q ą 0 p346q ą 0

p125q ą 0 p136q ă 0 p234q ą 0 p246q ž 0 p356q ą 0

p126q ă 0 p145q “ 0 p235q ą 0 p256q ž 0 p456q ą 0

(4.4.33)

The second diagram is just a usual cell in G`p3, 6q with an ordering 1, 6, 2, 3, 4, 5 and

p145q “ 0, as also suggested by the right on-shell diagram in (4.4.31). However, as we

will see later we can also interpret this term as a configuration

‚
3

‚
2

‚4

‚5

‚1

‚6

p123q ą 0 p134q ą 0 p146q ă 0 p236q ă 0 p345q ą 0

p124q ą 0 p135q ą 0 p156q ă 0 p245q ą 0 p346q ž 0

p125q ą 0 p136q ă 0 p234q ą 0 p246q ž 0 p356q ž 0

p126q ă 0 p145q “ 0 p235q ą 0 p256q ž 0 p456q ą 0

(4.4.34)

This means that the planar on-shell diagram on the right of (4.4.31) can be associated

either with the cell in G`p3, 6q or to the cell (4.4.34) in Gp3, 6q. In both cases, we get

the same canonical form (up to a sign). The union of these two cells in Gp3, 6q is a

space with arbitrary signs of any pij6q ž 0 (ie. point 6 can be anywhere on that line)

and vanishing form.
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All-n expansion

We can extend this procedure to higher points using the next-to-adjacent pn´1 1q shift.

The amplitude either factorizes into a product of two multi-particle MHV amplitudes

or a product between an pn ´ 1q-pt NMHV amplitude and a 3-pt MHV amplitude

zn ´ 1
I

p1

¨¨
¨

¨ ¨
¨

¨¨
¨

¨ ¨
¨

2 2

yn´1
I

p1

¨¨
¨

¨ ¨
¨1 2 (4.4.35)

Each BCFW term of the form MHVˆMHV, as in the adjacent case, is given by one

on-shell diagram associated with a particular cell of Gp3, nq, describing a single config-

uration of points where all except point n´1 are ordered on two lines (with different

orderings) and the point n´1 is on another line. By contrast, every BCFW term of

the form (n´1-pt NMHV) ˆ (3-pt MHV) gives rise to a sum of on-shell diagrams, and

correspondingly, a collection of configurations of n points on three lines; all of these

terms nicely complement the first type of configurations. Overall the n-pt NMHV am-

plitude is a sum over all configurations where points 1, 2, 3, . . . , n´1 are ordered on

three lines, exactly as in the pn´1q-pt NMHV amplitude using adjacent shift pn´1 1q,

but in addition we insert point n on one of the three lines at an arbitrary position –

denoted by a circle:

Ak“3
n “

ÿ

σn

ÿ

i,j

‚ ‚
j ¨ ¨ ¨ i ` 1

⃝
‚

‚

⃝

j ` 1

¨ ¨
¨

n ´ 1

‚

‚

‚

i

¨ ¨ ¨

2

1

⃝

(4.4.36)

Note that points 1 and n ´ 1 are adjacent on the third line in all the configurations,

and points i, j marking the borders are such that there are at least two points on each

line. Each configuration corresponds to an generally non-planar on-shell diagram, and

191



the particular cell in Gp3, nq associated with it is defined by a set of inequalities which

can be read off directly from the configuration. For illustration, we show below all 10

configurations for the 7-pt NMHV amplitude using p61q shift:

‚

5
‚

4
‚

3
‚

7

‚6 ‚ 2
‚ 1

‚

5
‚

4
‚

3

‚6

‚

7

‚ 2
‚ 1

‚

5
‚

4
‚

3

‚7

‚6 ‚ 2
‚ 1

‚

5
‚

4
‚

7

‚6
‚ 3

‚ 2
‚ 1

‚

5
‚

4

‚6

‚

7

‚ 3
‚ 2

‚ 1

‚

5
‚

4

‚7

‚6
‚ 3

‚ 2
‚ 1

‚

4
‚

3
‚

7

‚6
‚5

‚ 2

‚ 1

‚

4
‚

3

‚6
‚5

‚

7

‚ 2

‚ 1

‚

4
‚

3

‚6
‚7

‚5
‚ 2

‚ 1

‚

4
‚

3

‚6
‚5

‚7
‚ 2

‚ 1

For the general shift pk1q, we proceed in the same way and find the following expression

Ak“3
n “

ÿ

i,j,l,m
σpj`1¨¨¨k´1;m`1¨¨¨nq

‚1

‚
2

‚

¨ ¨ ¨

i

‚
l

¨ ¨ ¨

‚
k ` 1

‚
j ¨ ¨ ¨

‚
i ` 1

‚
l ` 1 ¨ ¨ ¨

‚
m

⃝

σ

$

&

%

j`
1¨

¨¨
k

´
1

m
`
1¨

¨¨
n

,

.

- ‚
k

(4.4.37)

Here again we have n points on three lines distributed as follows: points 1 and k are

fixed in adjacent positions on the third line; all other points are grouped into two

ordered sets S1 “ t2, 3, . . . , k´1u and S2 “ tk`1, . . . , nu, and distributed among three
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lines. Schematically we denote the internal orderings as

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚

‚
‚
‚
‚

‚

‚

‚

‚

‚

‚

‚

‚

(4.4.38)

where blue represents S1 while red represents S2. In fact, because of projectiv-

ity, the picture is invariant under switching blue and red points. The set S1 fur-

ther splits into three pieces: t2, . . ., iu on the first line, ti`1, . . ., ju on the second

line and tj`1, . . ., k´1u on the third line. Similarly the second set S2 splits into

tk`1, . . ., lu on the first line (to the right), tl`1, . . . ,mu on the second line (horizontal)

and tm`1, . . ., nu on the third line (to the left). On the first two lines the two sets

do not interact – they belong to distinct segments, and fixing the splitting points i, j,

resp. l,m determines the configuration on these two lines completely. On the third line,

points from S1 and S2 both sets are mixed together while keeping the relative orderings

within their respective subsets tj`1, . . ., k´1u and tm`1, . . ., nu. This means that even

after fixing i, j, l,m we get multiple configurations from various ordering of points on

the third line. In (4.4.37) we sum over all the possible configurations.

To demonstrate how the points are distributed on the third line, consider an exam-

ple for a general pk1q shift where we have points k´2, k´1 from S1 and points n´1, n

from S2 to be distributed on that line. This gives us following configurations on the
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third line,

‚
k ´ 2 ‚
k ´ 1 ‚
n ´ 1 ‚

n ‚
k ‚
1

‚
n ´ 1 ‚

n ‚
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k ´ 1 ‚

k ‚
1

‚
n ´ 1 ‚
k ´ 2 ‚

n ‚
k ´ 1 ‚

k ‚
1

‚
k ´ 2 ‚
n ´ 1 ‚
k ´ 1 ‚

n ‚
k ‚
1

‚
k ´ 2 ‚
n ´ 1 ‚

n ‚
k ´ 1 ‚

k ‚
1

‚
n ´ 1 ‚
k ´ 2 ‚
k ´ 1 ‚

n ‚
k ‚
1

(4.4.39)

To get a full geometry we decorate them with a (fixed) configuration of points on the

first two lines. As an explicit example, consider the 8-pt configurations for the p51q

shift. For some choices of i, j, l,m we end up with only one configuration for the third

line
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‚
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‚
7

‚
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‚
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i “ 3, j “ 4

l “ 5, m “ 6

(4.4.40)

but for another choice i “ 1, j “ 2, l “ 6, m “ 7 we get three different terms,
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‚
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(4.4.41)
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To get the amplitude we have to sum over all possible choices of i, j, l,m and subsequent

distributions of the remaining points on the third line. Note that for the adjacent shift

pn1q, S2 is empty and we get a usual representation (4.2.60), while for the next-to-

adjacent shift pn´1 1q, S2 “ tnu and we reproduce the formula (4.4.36).

We can also explicitly identify the cells in Gp3, 8q by fixing signs of minors. For

example, for the first figure in (4.4.2) we get

p123q ą 0 p134q ą 0 p146q ă 0 p167q ă 0 p237q ă 0 p256q ă 0 p347q “ 0 p457q ą 0

p124q ą 0 p135q ą 0 p147q ă 0 p168q ą 0 p238q ą 0 p258q ă 0 p348q ą 0 p458q ă 0

p125q ą 0 p136q ă 0 p148q ą 0 p178q ą 0 p245q ą 0 p267q ă 0 p357q ą 0 p467q ă 0

p126q “ 0 p137q ă 0 p156q ă 0 p234q ą 0 p246q ă 0 p268q ą 0 p358q ă 0 p478q ă 0

p127q ă 0 p138q ą 0 p157q ă 0 p235q ą 0 p247q ă 0 p345q ą 0 p367q ă 0 p567q ă 0

p128q ą 0 p145q ą 0 p158q “ 0 p236q ă 0 p248q ą 0 p346q ă 0 p378q ă 0 p568q ą 0

p578q ą 0

(4.4.42)

where we skipped the minors which signs are not completely fixed. As before, we can

wrap points 6 and/or 7 around infinity which flips signs of all minors with 6 and/or 7,

but the cell in Gp3, 8q remains unchanged.

In summary, all non-planar on-shell diagrams arising from non-adjacent BCFW

recursion relations for NMHV amplitudes correspond to cells in the Grassmannian

Gp3, nq and describe configurations of n points located on three lines. For the adjacent

shift pn1q these configurations are all convex, corresponding to p2n´4q-dimensional

cells in G`p3, nq, while for a general shift the configurations subsume two independent

orderings S1, S2. As expected, these geometries, despite being non-planar (or non-

convex), are simpler than the general case of on-shell diagrams and cells in Gp3, nq. We

have seen earlier in (4.2.69) that, even in the planar case, the geometry of a general

p2n´4q-dimensional cell involve n points on five different lines in P2, but here all points

are restricted to be on three lines. It would be very interesting to find a compact
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combinatorial description of these non-planar cells. Unlike the planar case, where

a single permutation πp1, 2, . . ., nq specified the cell completely, the above discussion

suggests that there should be at least two different permutations π1, π2 involved.

4.5 Non-planar tree-level R-invariants

In the last section, we found a correspondence between the terms in non-adjacent

BCFW recursion relation and Grassmannian geometries for NMHV amplitudes, ie.

configurations of n points in P2. We showed that these n points are localized on three

lines:

‚ ‚ ‚ ‚ ‚ ‚

‚
‚
‚
‚

‚

‚

‚

‚

‚

‚

‚

‚

(4.5.1)

We refer to these p2n´4q-dimensional subspaces in the Grassmannian Gp3, nq as non-

planar BCFW cells. This is the most general configuration we would get in any BCFW

recursion relation, for any shift and any choice of representation of the lower-point

NMHV amplitudes in (4.2.59). As we showed in the previous section, making consistent

choices for shifts gives us a particularly simple and compact representation of the

amplitude (4.4.37) which is a direct generalization of the expansion in terms of cells in

G`p3, nq with the adjacent shift (4.2.60). Nonetheless even if we make arbitrary choices

for the lower-point geometries, we never get anything more complicated than (4.5.1),

only that labeling the collection of terms that enter the BCFW formula for the NMHV

amplitude is more complicated.

In this section, we discuss the superfunctions associated with these configurations.

In other words, we are to find an analog of R1,i`1,j`1 (4.3.19), the R-covariant which
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is associated with the general planar BCFW configuration (4.3.18). This is a laborious

but in principle straightforward exercise. These configurations arise in the analysis

of individual terms in the BCFW recursion relations, and each of them is tied to a

particular non-planar on-shell diagram, as we showed in Section 4.4. We can compute

the diagram either using (4.2.40) or by directly taking the product of 3-point amplitudes

with a proper Jacobian to get the superfunction Fγpλ, rλ, rηq. For instance, for the

diagram (4.4.4) we studied earlier, the Grassmannian configuration is

1

İ

İ

Ĳα7

Ĳ
§
α1

5

İα5

İα8

İ

§
α3

§
α6

đ

Ĳ

§
α2

6
§

3

4

İ

İα4

İ
§

2

ÐÑ

‚ ‚
4 3

‚5
‚

‚

2

1

‚ 6

(4.5.2)

and plugging the C-matrix (4.4.5) obtained from boundary measurement into (4.2.40)

we get

Fγ “
∆ ¨ x1|26|5s

s345x12yx16yr34sr45sx2|34|5sx6|34|5sx1|26|3s
, (4.5.3)

where the super δ-functions are

∆ “ δ4pP q δ4pQq δprΞq with rΞ “ r45srη3 ` r53srη4 ` r34srη5 . (4.5.4)

We make two observations here. First, the kinematical part of (4.5.3) looks different

from 6-point R-invariants, it has more poles and a numerator factor. On the other

hand, the fermionic δ-function is identical to the planar case (up to relabeling). This is

true in general for a simple but simple reason: the argument of the fermionic δ-function

δ4pΞq in (4.2.67) (or δ4prΞq in the special boundary case) is agnostic of the orderings of

points within a line, only the partition into three sets P1, P2, P3 matters.

For the planar R-invariant R1,i`1,j`1 (4.2.67), we used Ξ1,i`1,j`1 to denote this
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argument, which could have also been represented as

‚ ‚
¨ ¨ ¨

loomoon

P2

‚

‚

P 3
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k

k

j
¨ ¨

¨

‚

‚

‚1

P
1

h

k

k

k

i

k

k

k

j

¨ ¨ ¨ Ξ1,P2,P3 ”
ÿ

kPP2

xk|P2P3|1yrηk `
ÿ

jPP3

P 2
2 x1jyrηj , (4.5.5)

where we list P2, P3 explicitly ( P1 is just a complement). For the non-planar gener-

alization, indicating the boundary points is insufficient, and we need to use the more

comprehensive symbol in order to specify the sets P2, P3.

4.5.1 Non-planar R-invariant

In analogy with the definition of the R-invariant R1,i`1,j`1 associated with the

convex configuration (4.6.19), we define the non-planar R-invariant associated with a

general non-convex configuration arising from the non-adjacent BCFW recursion,

R1,Pa
1 ,P

b
1 ,P

a
2 ,P

b
2 ,P3

“

‚ ‚ ‚ ‚ ‚
I2 I1
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P
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k

k

i

k

k

k

j

¨ ¨ ¨

(4.5.6)

In general, the points are completely unordered and we do need to specify all five

subsets P a
1 , P b

1 , P a
2 , P b

2 , P3 including their internal orderings. While the non-planar R-

invariant can be a very complicated kinematical function, the actual form is surprisingly

simpler. The δ-functions are given by

∆1,P2,P3 “ δ4pP q δ8pQq δ4pΞ1,P2,P3q (4.5.7)
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where Ξ1,P2,P3 was defined in (4.5.5). Here we denote

P1 “ P a
1 Y P b

1 , P2 “ P a
2 Y P b

2 (4.5.8)

As noted above, the super δ-function neither depends on the ordering of points, nor

on the split of P2 into P a
2 , P

b
2 , and is analogous to ∆1,i`1,j`1 which appeared in the

R-invariant.

More surprisingly, the bosonic function takes exactly the same form as its planar

counterpart (4.3.19), given by the product of three Parke-Taylor factors

R1,tPa
1 ,P

b
1 u,tPa

2 ,P
b
2 u,P3

“ PT p1, P a
1 , I1, P

b
1 q ˆ PT pI2, P

a
2 , I1, P

b
2 q ˆ PT pI2, P3, 1q

ˆ x1|P2P3|1y
3

¨ ∆1,P2,P3 (4.5.9)

The λ spinors for I1, I2 are given by the same formulae (4.3.20),

λI1 “ x1|P3P2, λI2 “ x1|P1P2 . (4.5.10)

The only difference between (4.5.9) and (4.3.19) is that points 1, I1, and I1, I2 are not

adjacent and that leads to more types of poles that involve I1 and I2. Also, in the planar

case (4.3.19) the factor x1|P2P3|1y3 always canceled against poles from the Parke-Taylor

factors and R1,i`1,j`1 never had any numerator factors apart from delta functions. In

the non-planar case, this is no longer true, and we get up to two factors of x1|P2P3|1y

left in the numerator.

Examples

First, let us reproduce the expression (4.5.3) we obtained earlier from the direct

computation using on-shell diagram, C-matrix and (4.2.40). We draw the same config-
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uration again and label points I1, I2,

‚ ‚
4 3

‚5

‚
I2

‚

‚

2

1

‚ 6
‚
I1

(4.5.11)

Their λ-spinors are given by

λI1 “ x1|p5qp34q “ r5|p34q ¨ x15y, λI2 “ x1|p26qp34q (4.5.12)

We see that the λI1 spinor simplifies because there is only one point on the third line,

but we keep the constant factor x15y in the definition of λI1 – we will see that it trivially

cancels against the same factors in the numerator. The argument of the fermionic delta

function is given by

Ξ1,34,5 “x3|p34qp5q|1yrη3 ` x4|p34qp5q|1yrη4 ` s34x15yrη5

“x15yx34ypr45srη3 ` r53srη4 ` r34srη5q . (4.5.13)

The Parke-Taylor factors evaluate to

PT p1, 2, I1, 6q “
1

x12yx2I1yxI16yx61y
“

1

x12yx16yx2|34|5sx6|34|5sx16y ¨ x15y2
(4.5.14)

PT pI1, 3, 4, I2q “
1

xI13yx34yx4I2yxI2I1y
“

1

r34sr45sx1|26|3sx1|26|5s ¨ x15y2x34y3

(4.5.15)

PT p1, 5, I2q “
1

x15yx5I2yxI21y
“

1

s345x1|26|5sx15y3
(4.5.16)

where we used the momentum conservation P1`P2`P3`p1 “ 0 to rewrite x1|P1P3|1y “

´x1|P1P2|1y “ x1|P3P2|1y etc., and then x1|P1P3|1y “ x1|26|5sx15y. Plugging all these

ingredients into (4.5.9) we get

R1,t2,6u,t34,u,t5u “
x1|26|5s ¨ δ4pP q δ8pQq δ4pr45srη3 ` r53srη4 ` r34srη5q

s345x12yx16yr34sr45sx2|34|5sx6|34|5sx1|26|3s
(4.5.17)
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which is equal to (4.5.3).

Let us look now at a more general 9-point configuration,
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‚
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‚
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‚
2

‚1

(4.5.18)

The internal spinors I1, I2, are now

λI1 “ x1|p89qp567q, λI2 “ x1|p234qp567q (4.5.19)

and following the same procedure we get

R “
x1|p234qp89q|1y2 ¨ δ4pP q δ8pQq δ4pΞ1,567,89q

x12yx23yx14yx56yx89yx91yx1|p89qp567q|3yx1|p89qp567q|4yx1|p89qp67q|5yx1|p89qp56q|7y

x1|p234qp57q|6yx1|p234qp56q|7yx1|p234qp567q|8y

(4.5.20)

where we denoted R ” R1,t23,4u,t56,7u,t89u. For a general configuration, we can plug into

(4.5.9) for the Parke-Taylor factors and obtain an expression for a general R,

R1,tPa
1 ,P

b
1 u,tPa

2 ,P
b
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‚ ‚ ‚
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“
δ4pP q δ8pQq δ4pΞ1,P2,P3q x1|P1P3|1y2

p
ś

xabyq xi1I1yxi2I1yxi3I1yxi4I1yxj1I2yxj2I2yxj3I2y
(4.5.21)
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where in the first term in the denominator we took the product of all xaby of the points

a, b adjacent on one of the lines. There is a boundary case for which P b
2 is empty, and

the new pole xI1 I2y appears from the Parke-Taylor factor.

R1,tPa
1 ,P

b
1 u,Pa

2 ,P3
“

‚
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‚ ‚ ‚
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‚

I2 I1

¨ ¨ ¨
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δ4pP q δ8pQq δ4pΞ1,P2,P3q x1|P1P3|1y2

p
ś

xabyq xi1I1yxi2I1yxi3I1yxI1 I2yxj1I2yxj2I2y
(4.5.22)

Because of xI1 I2y “ x1|P3P1|1yP 2
2 one power in the numerator cancels and we get only

a single power of x1|P1P3|1y. If both P b
2 and P b

1 are empty, points i3, i4, j3 are missing

and i1 Ñ i, i2 Ñ i`1, j1 Ñ j, j2 Ñ j`1, the formula simplifies to

R1,Pa
1 ,P

a
2 ,P3 “

‚
j
‚ ‚ ‚
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¨ ¨ ¨
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¨
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h
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k

k
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¨ ¨ ¨

“
δ4pP q δ8pQq δ4pΞ1,P2,P3q

p
ś

xabyq xi I1yxi`1 I1yxj I2yxj`1 I2yP 2
2

(4.5.23)

which is just the usual R-invariant (4.2.62).

The general expression (4.5.21) has a non-trivial numerator x1|P1P3|1y2 (the third

power cancels against the x1P2y pole), and poles from the Parke-Taylor factors. Note

that 7 of these poles depend on points I1, I2 (these are non-holomorphic after plugging
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in expressions for λI1 , λI2). This is in contrast with R1,i`1,j`1, where there is no extra

numerator factor and only 5 non-holomorphic poles appear in the denominator (4.5.23).

4.5.2 Planar expansion

There is similarity between (4.5.21) and the compact formula for MHV on-shell

diagrams [102], which also has a square of certain kinematical factors in the numerator.

In that case, the formula was valid for all on-shell diagrams (of dimensionality 2n´4),

whereas our construction is only for BCFW cells. Nevertheless, we can explore the

similarity further. As shown in [102] any MHV on-shell diagram (on-shell function)

can be expressed as a linear combination of Parke-Taylor factors with various orderings,

and ˘1 coefficients. We can ask the same question in the context of NMHV BCFW

cells and formula (4.5.9) – can we express it as a linear combination of the original

R-invariants with different orderings?

Let us first look at the case where points are “misplaced" only on one of the lines

while the rest are canonically ordered,

‚ ‚ ‚ ‚
j i ` 1

I2 I1
¨ ¨ ¨

‚ ‚
j ` 1 k¨ ¨ ¨

‚

‚

¨ ¨
¨

n

k ` 1

‚1

‚i

‚2

¨ ¨ ¨ (4.5.24)

The superfunction can be built from Parke-Taylor factors as

R “ PT p1, . . ., i, I1qPT pI1, i`1, . . ., j, I2, j`1, . . ., kqPT pI2, k`1, . . ., n, 1qx1|P1P3|1y
3
¨δ4pΞq

(4.5.25)

where P1 “ p2 ` . . . ` pi, P3 “ pk`1 ` . . . ` pn, and Ξ “ Ξ1,i`1,k`1, just as in the

standard R-invariant. The non-planarity of the configuration is caused by the middle

Parke-Taylor factor where points I1, I2 are not adjacent. We can use the Kleiss-Kuijf

(KK) relations to rewrite this expression as a sum over Parke-Taylor factors where I1
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and I2 are adjacent,

PT pI1, i`1, . . ., j, I2, j`1, . . ., kq “
ÿ

σ

PT pI1, σ, I2q (4.5.26)

where σ belongs to the shuffle product of two sets

σ P ti`1, . . . , ju� tj`1, . . . , ku
T . (4.5.27)

This means we sum over permutations of labels ti`1, . . . , ku where the relative orderings

of both sets tj, j´1, . . . , i`1u and tj`1, . . . , ku (this is the transverse of the original

set) are preserved. For example, in the case of i “ 1, j “ 3 and k “ 5 with σ P

t2, 3u� t4, 5uT ,
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‚
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(4.5.28)

Note that while the KK relation is for MHV amplitudes, it also true for the Parke-

Taylor factors as the super δ-function is the same for any ordering. We can now plug

(4.5.26) into (4.5.25). Each term in the sum leads to a planar R-invariant with some

given ordering. As a result, we get an expansion of R as a linear combination of

R-invariants,

R “
ÿ

σ

Rp1, . . ., i, σ, k`1, . . ., nq “
ÿ

σ

‚ ‚ ‚ ‚
I2 . . .

σ

I1
‚

‚

k ` 1 ¨ ¨
¨

n

‚

‚

‚

i

¨ ¨ ¨

2
1

(4.5.29)

Note that this is only possible because neither the Jacobian factor x1|P1P3|1y nor the

fermionic delta function δ4pΞq depends on the ordering of points in P2 and they are the

same for all terms in the sum (4.5.29).
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As an example, let us expand the first of the 6-pt NMHV non-planar on-shell

functions (4.4.29). In that case, the KK relation produces two terms,

‚
4

‚
5

‚6 ‚3

‚2

‚1

“

‚
4

‚
5

‚6 ‚3

‚2

‚1

`

‚
5

‚
4

‚6 ‚3

‚2

‚1

(4.5.30)

And we get two R-invariants for p123q “ 0 corresponding to orderings 1, 2, 3, 4, 5, 6

and 1, 2, 3, 5, 4, 6. The bosonic part of the on-shell functions (the fermionic part is the

same across all term as stressed before) yield (4.5.17),

1

s123x12yx23yr45sr56sx1|23|4sx3|45|6s
`

1

s123x12yx23yr45sr46sx1|23|5sx3|45|6s

“
x1|23|6s

s123x12yx23yr46sr56sx1|23|4sx1|23|5sx3|45|6s
. (4.5.31)

Note that the pole r45s is spurious, ie. it is present in both R-invariants but cancels

in the sum. Geometrically r45s “ 0 corresponds to merging points I1 and I2 and

indeed that is not a singularity of the non-planar configuration. The appearance of the

spurious poles (which cancel in the sum) is also a feature of the Parke-Taylor expansion

of the on-shell functions for MHV on-shell diagrams [102].

Finally, we can do the same for the general case where points are misplaced on two

lines.

‚1

‚
2

‚

¨ ¨ ¨

i

‚i ` 1

¨ ¨ ¨

‚j

‚
I2

‚
k ¨ ¨ ¨

‚
j ` 1

‚
I1

‚
m ¨ ¨ ¨

‚
k ` 1

‚
m ` 1 ¨ ¨
¨

‚
n

(4.5.32)
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The expansion in terms of Parke-Taylor factors is then

R “ PT p1, . . ., i, I1, i`1, . . ., jq ˆ PT pI1, j`1, . . ., k, I2, k`1, . . . ,mq

ˆ PT pI2,m`1, . . . , n, 1q ˆ x1|P1P3|1y
3

¨ δ4pΞ1,j`1,m`1q (4.5.33)

where P1 “ p2 ` ¨ ¨ ¨ ` pi ` pi`1 ` ¨ ¨ ¨ ` pj is defined as usual, but there are now two

sets of momenta on the interval between 2 and j, and P3 “ pm`1 ` ¨ ¨ ¨ ` pn ` p1. The

argument of the fermionic δ-function is again the same as in a planar R-invariant for

any ordering of points on three lines.

Now we use KK relations on both lines and express Parke-Taylor factors in terms

of the ones where 1, I1, and I1, I2 are adjacent,

PT p1, 2, . . ., i, I1, i`1, . . ., jq “
ÿ

σ1

PT p1, σ1, I1q (4.5.34)

PT pI1, j`1, . . ., k, I2, k`1, . . . ,mq “
ÿ

σ2

PT pI1, σ2, I2q (4.5.35)

where the permutations σ1, σ2 are again given by shuffle products,

σ1 “ t2, . . ., iu� ti`1, . . ., ju
T , σ2 “ tj`1, . . ., ku� tk`1, . . .,mu

T . (4.5.36)

We plug back into (4.5.33) and get

R “
ÿ

σ1,σ2

Rp1, σ1, σ2,m`1, . . . , nq “
ÿ

σ1, σ2

‚ ‚ ‚ ‚
I2 . . .

σ2

I1
‚

‚

m ` 1 ¨ ¨
¨

n

‚

‚

‚

¨ ¨ ¨
σ
1

1

(4.5.37)

This is a very interesting result. While a general non-planar R-invariant is a new

kinematical object associated with a non-convex configuration of points in P2, it can be

expressed as a linear combination of ordinary R-invariants with various orderings. This

further shows that the BCFW cells form a very special subset of all leading singularities,

ie. 2n´4 dimensional on-shell diagrams.
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4.6 Kinematical dlog forms

In the previous section, we see how the Grassmannian configurations directly em-

body superfunctions of external kinematic data, sidestepping the standard procedures

of computation from constructing representative C-matrices to evaluating contour in-

tegrals. In this process, the canonical forms associated with the BCFW cells appear

as auxiliary objects to be integrate over with a set of δ-functions. On the other hand,

it was shown in [216] that super-amplitudes (or super-functions for individual BCFW

cells) can be viewed more fundamentally as differential forms in the on-shell kinematic

space. Operationally the kinematical differential forms can be obtained as a pushfor-

ward of the canonical forms on Grassmannian cells to the kinematic space. In this

section, we discuss the connection between Grassmannian configurations and the kine-

matical forms with logarithmic singularities in N “ 4 sYM. In particular, we provide

a method for constructing a holomorphic dlog representation of the kinematical forms

for NMHV amplitudes, in both the planar and non-planar cases, without invoking the

pushforward map.

4.6.1 Super-functions as kinematical differential forms

Let us first review the idea of super-functions for individual BCFW cells as dif-

ferential forms in the kinematical space. This was first formulated in the momentum

twistor space [58]. The relation between the dlog form ΩZ and the superfunction is just

a simple replacement

FpZ, ηq “ ΩpdZk Ñ ηkq (4.6.1)

where η are momentum twistor Grassmann variables. Summing forms on individual

cells gives the tree-level amplitudes (and loop integrands) as forms with logarithmic

singularities on the boundaries of the Amplituhedron space.

It was suggested in [216] how this picture extends to the spinor-helicity space and

this was used in the formulation of the momentum Amplituhedron [105]. We start with

a super-function for a given on-shell diagram γ in the non-chiral space, which is given
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by a Fourier transformation of F on half of the Grassmann variables rηI ,

Fγ
n,k “

¿

ωγ
n,k δ

2k
pC ¨ rλqδ2pn´kq

pCK
¨λqδ0|2k

pC ¨ rηqδ0|2pn´kq
pCK

¨ ηq (4.6.2)

In the case of BCFW cells the dimensionality of the form is m “ 2n ´ 4. The non-

chiral super function can be thought of as a differential form of degree p2pn ´ kq, 2kq

in pdλ, drλq space with the replacement η1,2 Ñ dλ1,2 and rη1,2 Ñ drλ1,2. The resulting

2n-form vanishes identically as the super function contains δ4pP qδ4pQqδ4p rQq. Upon the

replacement

δ4pQq Ñ pdqq
4

“

2
ľ

α“1

2
ľ

9α“1

pdqq
α 9α

“

2
ľ

α“1

2
ľ

9α“1

«

n
ÿ

a“1

λα
a pdrλaq

9α

ff

,

δ4p rQq Ñ pdrqq
4

“

2
ľ

α“1

2
ľ

9α“1

pdrqq
α 9α

“

2
ľ

α“1

2
ľ

9α“1

«

n
ÿ

a“1

pdλaq
α
rλ 9α
a

ff

, (4.6.3)

by virtue of momentum conservation

pdqq
α 9α

` pdrqq
α 9α

“ 0 (4.6.4)

the full “super momentum-conserving form” vanishes. We can factor out half of the

super momentum-conserving factor explicitly by partially localizing C so that the first

two rows are simply pλ1, . . . , rλnq. As a result, we get

Fγ
“ δ4pP qδ4pQq ˆ rFγ

pλ, rλ, η, rηq (4.6.5)

Stripped of δ4pP qδ4pQq, the remaining superfunction rFγ turns into a form,

Ωγ
n,k “

ż

ωγ
n,k

ź

µ

δ2pCµ ¨ rλq
ź

µ1

δ2pCK
µ1 ¨ λq

ľ

µ

pCµ ¨ drλq
2
ľ

µ1

pCK
µ1 ¨ dλq

2 (4.6.6)

where µ1 “ 3, . . . , k, rµ “ 1, . . . , n´k. The bosonic δ-functions define a map with which

allows us to pushforward the canonical form ωγ
n,k on the Grassmannian space,

ωγ
n,k “ F px1, x2, . . ., x2n´4q dx1. . .dx2n´4 “

2n´4
ľ

i“1

dαi

αi

(4.6.7)
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to the differential form Ωγ
n,k on the kinematical space. Concretely, we write ωγ

n,k in

arbitrary coordinates txiu and solve Cpxq ¨ rλ “ CKpxq ¨ λ “ 0 for xi in terms of

λ, rλ, make the substitution in the rational function F px1, . . ., xmq with the appropriate

Jacobian. In a canonical parameterization, eg. edge variables tαiu, the canonical form

ωγ
n,k is a trivial dlog and the resulting kinematical form is simply

Ωγ
n,kpλ, rλq “

2n´4
ľ

i“1

dαipλ, rλq

αipλ, rλq
(4.6.8)

where the differential operator acts on λ and rλ.

Recovering the super-function from the kinematical form Ωγ
n,k is straightforward.

Note the full super-function corresponds to an (vanishing) invariant 2n form. In order

to recover the superfunction, we need to multiply the 2n´4 form by pdqq4

Fγ
n,k “ pdqq

4
^ Ωγ

n,k

ˇ

ˇ

ˇ

ˇ

dλÑη,drλÑrη

. (4.6.9)

making the replacements dλ1,2 Ñ η1,2, drλ1,2 Ñ rη1,2 then turns the form back to the

non-chiral superfunction Fγ
n,k. See [216] for more details.

The punchline: the 2n´4 form Ωγ
n,k in the kinematic space contains the same

information as the super-function Fγ
n,k (in a non-chiral) for a given amplitude, on-shell

diagram or particular BCFW cell. They can be cast into a simple dlog form that

contains all this information. The translation from the form Ωγ
n,k to a super-function

is trivial, the construction of the kinematical form, however, involves non-trivial work.

Let us look at a few examples.

MHV The form for the n-pt MHV amplitude can be famously obtained from a tringu-

lation of the polygon, which results in

1

2

3

4 5

6

n ´ 1

n

Ωn,2 “

n´1
ľ

i“2

dlog
x1 iy

xi i`1y
^ dlog

x1 i`1y

xi i`1y
(4.6.10)
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and does not depend on a particular triangulation. As noted earlier, Ωn,2 contains pdrqq4

which is not manifest in the dlog representation. For example, at 4-point we have

Ω4,2 “
pdrqq4

st
“ dlog

x12y

x13y
^ dlog

x23y

x13y
^ dlog

x34y

x13y
^ dlog

x41y

x13y
. (4.6.11)

NMHV Consider the 6-pt NMHV cell with p123q “ 0 discussed earlier (4.5.30).

Plugging the solution of C-matrix (4.2.51) into the Grassmannian integral (4.6.6) gives

Ω6,3 “
pdrqq4pdλ1x23y ` dλ2x31y ` dλ3x12yq2pdrλ4r56s ` drλ5r64s ` drλ6r45sq2

s123x12yx23yr45sr56sx1|5`6|4sx3|4`5|6s
. (4.6.12)

This is equivalent to the following dlog representation

Ω6,3 “ dlogpα1q ^ dlogpα2q ^ ¨ ¨ ¨ ^ dlogpα8q (4.6.13)

with the canonical variables given by

α1“
x12y

x31y
, α2“

x23y

x31y
, α3“

rp34s

rp3p1s
, α4“

r46s

rp3p1s
, α5“

r6p1s

rp3p1s
, α6“

rp14s

rp3p1s
, α7“

r54s

r64s
, α8“

r65s

r64s
.

(4.6.14)

where the shifted momenta defined as

rλ
p1 “ rλ1 `

x23y

x13y
rλ2, rλ

p3 “ rλ3 `
x12y

x13y
rλ2. (4.6.15)

Note the dlog form then naturally splits into two parts: an anti-holomorphic dlog form

for a 5-point NMHV tree-amplitude with shifted momenta, and a holomorphic dlog

form for a 3-point MHV amplitude

Ω6,3 “ Ω5,3pp1,p3, 4, 5, 6q ^ Ω3,2p1, 2, 3q. (4.6.16)

This is reminiscent of a holomorphic(k-preserving) inverse-soft factor and indeed (4.6.15)

is precisely the shift induced by adding a point 2 by to the 5-pt on-shell diagram using

a holomorphic inverse-soft factor. In general, higher point NMHV forms can be built

successively from repeatedly taking holomorphic (k-preserving) inverse-soft factors. In
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particular, we can get the following dlog form representation of the general R-invariant

R1,i`1,j`1

Ω1,i`1,j`1 “ Ωk“3pp1,pi,yi`1,pj, yj`1q^Ωk“2p1, . . ., iq^Ωk“2pi`1, . . ., jq^Ωk“2pj`1, . . ., n, 1q

(4.6.17)

with the shifted rλ spinors given by

rλ
p1 “ rλ1 `

i´1
ÿ

a“2

xi ay

xi 1y
rλa `

n
ÿ

a“j`2

xa j`1y

x1 j`1y
rλa,

rλ
pi “ rλi `

i´1
ÿ

a“2

x1ay

x1iy
rλa, rλ

yi`1 “ rλi`1 `

j´1
ÿ

a“i`2

xa, jy

xi ` 1, jy
rλa

rλ
pj “ rλj `

j´1
ÿ

a“i`2

xi ` 1, ay

xi ` 1, jy
rλa, rλ

yj`1 “ rλj`1 `

n
ÿ

a“j`2

xa, 1y

xj ` 1, 1y
rλa . (4.6.18)

The structure of the form (4.6.17) reflects the way it is constructed. We start with

the skeleton form Ωp1, i, i ` 1, j, j ` 1q associated with five points on three lines, and

by successive application of holomorphic inverse-soft factors insert extra points n, n ´

1, . . . , 2 in reversed order to the three lines; the shifts in λ-spinors propagate through

the neighboring points leading to (4.6.18) in the end, and the 3-point dlog forms thus

added nicely join into three Ωk“2 forms for the Parke-Taylor factors. For more detailed

discussion on the inverse-soft construction of kinematic dlog forms see [216]. Note,

however, even though the Grassmannian configuration is obvious, there is no direct

geometric interpretation of (4.6.17) analogous to what we see in the last section. This

is to be expected from the presence of the outstanding anti-holomorphic dlog factor

Ωk“3pp1,pi,yi`1,pj, yj`1q.

Differential forms for higher k can also be built using the inverse-soft construction

with anti-holomorphic (k-increasing) inverse-soft factors. But there is a limitation to

this method. It only works for on-shell diagrams that can be built from simpler dia-

grams, whose form are already known, by adding points through inverse-soft factors.

This is not generally the case for on-shell diagrams we encountered in the earlier dis-

cussion of BCFW cells even with adjacent shifts. Nevertheless, there is a particular
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recursion scheme t´2, 2, 0u that yield any tree amplitude in inverse-soft constructible

terms solely.

4.6.2 Holomorphic dlog forms

Now we turn our attention to the canonical dlog forms. The standard procedure

is to use the Grassmannian formula (4.6.6) for a particular cell represented by a C-

matrix. Our goal is to construct the dlog form for the general NMHV R-invariant

R1,i`1,j`1 in a different way which will also generalize to the non-planar case. Inspired

by the existence of the geometrical formula (4.3.19), we propose a holomorphic dlog

form which only depends on the holomorphic λ-spinors. The rλ-dependency will be

absorbed into the dependence on the spinors λI1 and λI2 , which we defined in (4.3.25)

up to a normalization. Since (4.3.19) gives the superfunction as the product of three

Parke-Taylor factors, we may naively try to take the wedge product of three MHV dlog

forms on each of the lines. It is easy to see that this cannot be exactly correct as we

would get dlog forms of degree 2n ´ 2 instead of 2n ´ 4. The second problem is that

the spinors λI1 and λI2 defined in (4.3.20) were not normalized.

The correct prescription for the holomorphic dlog form is the following. For a

general NMHV configuration

‚ ‚ ‚ ‚
I2

j ¨ ¨ ¨
loooomoooon

P2

i`1

I1
‚

‚

j`1

n

P 3
h

k

k

i

k

k

j

¨ ¨
¨

‚

‚

‚

i

P
1

h

k

k

i

k

k

j

¨ ¨ ¨

2

1

(4.6.19)

take the wedge product of three dlog forms

Ωn,k“3 “ rΩk“2p1, 2, . . . , i, I1q^Ωk“2pI1, i`1, . . ., j, I2q^rΩk“2pI2, j`1, . . ., n, 1q. (4.6.20)
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The spinors for I1 and I2 are defined with correct normalization as follows:

λI1 “ x1|P3P2 ¨
x1iy

x1|P1P3|1y
, λI2 “ x1|P1P2 ¨

x1 j`1y

x1|P1P3|1y
(4.6.21)

The dlog form for the middle line is the usual MHV amplitude for points I2, i`1, . . ., j, I1

and it is given by the triangulation of a corresponding polygon

i ` 1

i ` 2

j ´ 1

j

I2

I1

Ωk“2pI1, i`1, . . ., j, I2q

“ Ωk“2pi`1, . . ., jq ^ dlog
xi`1 jy

xjI2y
^ dlog

xi`1 I2y

xjI2y

^ dlog
xi`1 I2y

xI2I1y
^ dlog

xi`1 I1y

xI2I1y

(4.6.22)

where we denoted the dlog form for the polygon pi`1, . . . , jq,

Ωk“2pi`1, . . ., jq “

j´1
ľ

k“i`2

dlog
xi`1 ky

xk k`1y
^ dlog

xi`1 k`1y

xk k`1y
(4.6.23)

and we added in (4.6.22) dlog forms for two triangles pi`1, j, I2q and pi`1, I2, I1q which

depend on extra points I1, I2. This all trivially follows from the triangulation.

The reduced dlog form rΩk“2p1, 2, . . . , i, I1q also corresponds to a polygon,

1

2

i ´ 1

i

I1
(4.6.24)

We triangulate the sub-polygon with points p1, 2, . . ., iq in the standard way and write

its dlog form. For the last triangle p1, i, I1q we only associate one dlog factor rather

than two,
rΩk“2p1, 2, . . . , i, I1q “ Ωk“2p1, 2, . . ., iq ^ dlog

xI1 iy

xI1 1y
(4.6.25)

Interestingly the last triangle is very degenerate, therefore there is indeed only one

non-trivial ratio we can construct as x1I1y “ x1iy. In some sense it is a dlog form on

213



the line rather than a “half-dlog form" on a triangle. Similarly, the other reduced dlog

form is

rΩk“2pI2, j`1, . . ., n, 1q “ Ωk“2pj`1, . . . , n, 1q ^ dlog
xI2 j`1y

xI2 1y
(4.6.26)

Everything combined, we can write the holomorphic dlog form for the general NMHV

configuration associated with the R-invariant R1,i`1,j`1 as

Ωk“3 “ Ωk“2p1, . . ., iq ^ Ωk“2pI1, i`1, . . ., j, I2q ^ Ωk“2pj`1, . . ., n, 1q

^ dlog
xI1 iy

xI1 1y
^ dlog

xI2 j`1y

xI2 1y
(4.6.27)

which is the wedge product of three MHV amplitude dlog forms with two extra dlogs.

We checked explicitly that the formula (4.6.27) is equivalent to (4.6.17) .

As an example, the 8-dimensional cell in G`p3, 6q for p123q “ 0 turns into

Ω6,3 “ Ωk“2p1, 2, 3q ^ Ωk“2pI1, 4, 5, I2q ^ dlog
x13y

x3I1y
^ dlog

x16y

x1I2y
(4.6.28)

where the I1 and I2 λ-spinors are defined as

λI1 “ p45q|6s ¨
x13y

x1|23|6s
, λI2 “ x1|p23qp45q ¨

x16y

x1|p23qp45q|1y
(4.6.29)

Our construction uses only holomorphic data and the dlog form is a wedge product

of rational functions which only depend on the λ-part of 1, 2, . . . , n and I1, I2. Obviously,

the final form must also have a dependence on rλs of external momenta, which comes

exclusively through the dependence on λI1 and λI2 . While the forms in [216] and the

ones presented here, are completely equivalent, the holomorphicity of our representation

is indicative of the geometric fact that the answer was built from the dlog forms on three

lines. This underscores the notion that we can think about the Grassmannian geometry

picture directly in the kinematical space. It is suggestive that the same construction

can be used for higher k to build the NkMHV dlog form from the MHV dlog forms on

individual lines.
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4.6.3 Non-planar generalization

The formula for the dlog form from the previous section directly generalizes to

the non-adjacent BCFW terms and the non-planar positive geometry. Let us directly

consider the general case,

‚1

‚
2

‚

¨ ¨ ¨

i

‚i ` 1

¨ ¨ ¨

‚j

‚
I2

‚
k ¨ ¨ ¨

‚
j ` 1

‚
I1

‚
m ¨ ¨ ¨

‚
k ` 1

‚
m ` 1 ¨ ¨

¨

‚
n

(4.6.30)

The strategy is the same as before, write the dlog form for the middle line and

partial dlog forms on the other two lines with two compensating terms. On the first line,

the points are cyclically ordered p1, 2, . . ., i, I1, i`1, . . ., jq “ pi`1, . . ., j, 1, 2, . . ., i, I1q.

The final formula for the dlog form is

Ω “ Ωk“2pi`1, . . ., j, 1, 2, . . ., iq ^ Ωk“2pI1, j`1, . . ., k, I2, k`1, . . .,mq

^ Ωk“2pm`1, . . ., nq ^ dlog
xI1 iy

xI1 i`1y
^ dlog

xI2m`1y

xI2 1y
(4.6.31)

where the spinors λI1 and λI2 are given by (4.6.21),

λI1 “ x1|P3P2 ¨
x1 iy

x1|P1P3|1y
, λI2 “ x1|P1P2 ¨

x1 j`1y

x1|P1P3|1y
(4.6.32)

with P1, P2, P3 being the sums of momenta on the three lines excluding p1. The formula

for the dlog form (4.6.31) is basically identical to the planar counterpart (4.6.27), though

we had to be careful about which extra dlog factor to add to the first line. Note that

the argument here is xI1 iy{xI1 i`1y from the triangle pi, I1, i`1q. This triangle is not

degenerate, so we can not use xi i`1y in the argument (this is indeed not a pole).
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As an example, we do two 6-point non-planar configurations,

‚
I2

‚
I1

‚
4

‚6 ‚3

‚2

‚1

‚
5

‚
I2

‚
I1

‚
4

‚
3

‚6 ‚2

‚1

‚
5

(4.6.33)

In the first case, we get

Ω “ Ωk“2p1, 2, 3q ^ Ωk“2pI1, 4, I2, 5q ^ dlog
xI1 3y

xI1 1y
^ dlog

xI2 6y

xI2 1y
(4.6.34)

where I1 and I2 spinors are

λI1 “ p45q|6s ¨
x13y

x1|23|6s
, λI2 “ x1|p23qp45q ¨

1

x1|23|6s
. (4.6.35)

In the second example, the dlog form is

Ω “ Ωk“2pI1, 3, 4, I2, 5q ^ dlog
xI1 2y

xI1 1y
^ dlog

xI2 6y

xI2 1y
(4.6.36)

where

λI1 “ p12q|6s ¨
1

r26s
, λI2 “ p16q|2s ¨

1

r26s
. (4.6.37)

As a result, we conclude that the same formula for the holomorphic dlog form works for

the planar (4.6.27) as well as the non-planar (4.6.31) cases. The planarity/convexity of

the configuration does not matter; the expression only depends on the Grassmannian

configuration of points on three lines in P2. The holomorphicity of the dlog form

(4.6.31) and the representation of the superfunction using Parke-Taylor factors (4.5.9)

shows that we can indeed think about the Grassmannian configuration of points in P2

as the collection of three lines directly in the kinematical λ-space.

4.7 N2MHV and Beyond

In the previous sections, we restricted our discussion to MHV and NMHV cases.

In this section, we generalize our discussion of Grassmannian geometry for BCFW cells

to N2MHV, considering both adjacent and non-adjacent shifts. The same construction

extends to higher k and we outline how it works for arbitrary k.
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4.7.1 N2MHV geometries

Planar geometries

Let us first consider the adjacent BCFW shift pn1q. At N2MHV, we have three types

of terms in the recursion,

n ´ 1

i ` 1

pn

I
2

p1

i
¨ ¨

¨¨ ¨ ¨

2 3 n ´ 1

i ` 1

pn

I
2

p1

i
¨ ¨

¨¨ ¨ ¨

3 2

pn

n ´ 1

I
2

p1

n ´ 2
¨ ¨

¨

1 4

(4.7.1)

As before, we can express these terms as sums of on-shell diagrams. For each diagram

we construct the representative C-matrix and calculate the superfunction as a Grass-

mannian integral. Now the C-matrix, viewed as a collection of n columns, describes a

configuration of n points in P3.

The Grassmannian geometries associated with factorizations into MHV and NMHV

amplitudes can be built from the MHV and NMHV configurations we found in the

previous sections. In the first term in (4.7.1), we have Ak“2pI, i`1, . . ., n´1, pnq, a MHV

amplitude, represented by a line, and Ak“3pI,p1, 2, . . ., iq, an NMHV amplitude, given

by a sum over configurations of points localized on three lines (where we sum over all

j, k),

‚ ‚
k ¨ ¨ ¨ j ` 1
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‚
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‚
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‚
1 ‚
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¨ ¨ ¨ ¨ ¨ ¨ ‚

j ‚
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‚j`2

¨
¨
¨
¨
¨
¨

‚
k

‚ I

‚n
´
1¨ ¨ ¨ ¨ ¨ ¨

‚i
`
1 (4.7.2)

Gluing the MHV and NMHV configurations together at points 1 and I leads to N2MHV

configurations of n points on five lines in P3. Merging the MHV line Ak“2p1, 2, . . ., i, Iq
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with the collection of NMHV configurations Ak“3pI, i`1, . . ., n´1, pnq gives the second

term in (4.7.1). As a result, we get a different configuration of n points on five lines in

P3,

‚ ‚
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(4.7.3)

Moreover, it can be shown recursively that the geometries for the last term in (4.7.1)

are obtained by adding more points on the pn, n, 1 line of an N2MHV configuration.

This recursive construction is similar to the NMHV case. The resulting configurations

complement those associated with the first two terms and in the end, the N2MHV

amplitude can be written as a sum over on-shell functions corresponding to the cells in

G`p4, nq represented by two types of configurations,
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(4.7.4)

where we sum over all 1 ă j ă k ă i ă m ă n and 1 ă i ă j ă k ă m ă n

labels respectively (in the ordering indicated in the figures, subject to the constraint

that there are always at least two points on each line). All these p2n´4q-dimensional

configurations are convex, which means that all p4ˆ 4q ordered minors of the C matrix

are positive (or zero).
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Non-planar geometries

We can now extend our discussion of Grassmannian geometries for non-adjacent BCFW

shifts to N2MHV. The non-adjacent BCFW shifts produce three types of terms in the

recursion relations, differing from (4.7.1) only by having k, 1 non-consecutive:

j ` 1

pk

i

I

j

i ` 1

p1
¨¨

¨
¨ ¨

¨

¨¨
¨

¨ ¨
¨

2 3
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¨¨
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¨ ¨
¨

¨¨
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¨ ¨
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3 2
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I
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¨¨
¨

¨ ¨
¨1 4

(4.7.5)

Here the last term includes the BCFW term with Ak“1
3 ppk, I, k ´ 1q on the left and

the one with Ak“1
3 ppk, k ` 1, Iq on the left. Associated with the first term is a sum of

configurations arising from merging NMHV and MHV configurations,
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(4.7.6)

where we only denoted labels as necessary for make the gluing procedure clear. All

other labels are inherited from the MHV and NMHV configurations. Note that the

only difference between (4.7.2) and (4.7.6) is that some points are “misplaced" on the

lines, ie. they are on both sides of the intersections points with other lines, which

makes the configurations non-convex. Hence these are configurations in the general

Grassmannian Gp4, nq, rather than in the positive part G`p4, nq. Similarly, for the
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second term we get
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(4.7.7)

Finally, the third term, which is of the form (pn´1q-point N2MHV) ˆ (3-point MHV)

corresponds to adding more points on the line connecting points k and 1. As in the

planar case, this can be shown recursively. In the end we get two types of configurations

for the N2MHV amplitude
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(4.7.8)

The BCFW expansion instructs us to sum over both topologies and the distribution of

all labels which respect the relative ordering of 2, . . . , k´1 and k`1, . . . , n. It is easy
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to see that the labels flows are
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where the blue arrow represents points 2, . . . , k´1 and the red arrow points k`1, . . . , n

(or vice versa). The red arrows go in order 1, 2, 3. The geometry configuration is

projective (unlike our drawing), so the picture is actually symmetric in switching red

and blue arrows (finite Ø infinite intervals). Note that on three of the lines, the red and

blue labels do not overlap, while on the remaining two lines they are mixed together,

respecting the shuffle product ordering.

For higher k, we use the same procedure to glue together two geometries into a

higher-dimensional configuration. For example, at N3MHV the BCFW recursion for a

pk1q shift contains a following term,

I
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(4.7.10)
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This gives rise to a configuration of n points in P4,
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(4.7.11)

This is hard to visualize, but we can see here two projective planes P2, which are glued

together with an additional line p1kpkq that lives in an additional direction, making the

space P4 rather than P3. We can see that four of the lines have misplaced points, this

generalizes to higher k as well. For general k, we have configurations of n points on

2k ´ 3 lines in Pk´1 where k´1 lines have misplaced points.

4.7.2 Holomorphic on-shell functions

From our study of MHV and NMHV amplitudes, we have seen that Grassman-

nian configurations, with the kinematic space interpretation, provide a fast track to

the on-shell function. The geometrical formula expresses an NMHV amplitudes as a

product of Parke-Taylor factors with auxiliary labels which encode special points in the

Grassmannian configurations. Our goal in this subsection is to generalize this formula

to N2 MHV and beyond.

On-shell functions from planar configurations

Let us begin with the planar configurations (4.7.4). Note that the five lines on which

the points are localized lie in two different planes and each plane has three lines (with

one line overlapping). This is precisely the structure encoded in the representation of

the N2MHV on-shell functions as a product of two R-invariants, [217],

F “
δ4pP qδ8pQq

x12yx23y . . . xn1y
ˆ Rra1, a2, a3, a4, a5sRrb1, b2, b3, b4, b5s , (4.7.12)
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with each R-invariant being associated with on one of the planes. The arguments of

the R-invariants are shifted (super-)momentum twistors; the same entries can also be

thought of as non-zero entries on the rows in the positive Grassmannian G`p4, nq.

This formula generalizes to higher k where each p2n´4q-dimensional configuration of

n points in Pk´1 (localized on 2k ´ 3 lines) gives rise to an on-shell function which

can be expressed as a product of k copies of R-invariants with various shifted indices.

Together they furnish a representation of the Nk´2MHV amplitude in terms of R-

invariant products. For more details of this representation see [217].

Now back to the kinematic space of tλ, rλ, ηu. The formula (4.7.12) can be rewrit-

ten in terms of λ-spinors only with the introduction of some auxiliary spinors which

correspond to special points in the Grassmannian configurations (4.7.4). The holomor-

phic expression consists of five Parke-Taylor factors. We start with the first convex

configuration, and add intersection points I1, I2 and I3 in the figure,
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(4.7.13)

To set up notation, we collectively label momenta on individual lines,

P a
1 “ p2`. . .`pj, P b

1 “ pj`1`. . .`pk, P c
1 “ pk`1`. . .`pi , (4.7.14)

P2 “ pi`1`. . .`pm, P3 “ pm`1`. . .`pn . (4.7.15)

We also define P1 “ P a
1 ` P b

1 ` P c
1 . We need to associate momenta to the points I, I1,

I2 and I3. The momentum pI can be easily obtained directly from the BCFW term
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and is analogous to the NMHV form,

pI “
x1|P3P2 ˆ x1|P1

x1|P1P3|1y
. (4.7.16)

All other λ-spinors can be directly read off from the geometry following the same rules

as we identified for I1 and I2 in the NMHV case. The first plane gives us,

λI2 “ x1|P a
1 P

b
1 , λI1 “ x1|pP c

1 ` pIqP b
1 . (4.7.17)

substituting in pI we get

λI1 “ x1|pP a
1 ` P b

1 qP b
1 . (4.7.18)

Similarly we can calculate λI3 , making the list of all λ-spinors we need

λI “ x1|P3P2, λI1 “ x1|pP a
1 ` P b

1 qP b
1 , λI2 “ x1|P a

1 P
b
1 , λI3 “ x1|P1P2 . (4.7.19)

The superfunction which can be computed from (4.2.40) takes the familiar form of a

product of Parke-Taylor factors,

F “ PT p1, 2, . . ., j, I1q ˆ PT pI1, j`1, . . ., k, I2q ˆ PT pI2, k`1, . . ., i, I, 1q

ˆ PT pI, i`1, . . .,m, I3q ˆ PT pI3,m`1, . . ., n, 1q

ˆ x1|P1P2y
3

¨ x1|P a
1 P

b
1 |1y

3
¨ δ8pΞq . (4.7.20)

Note that we have two normalization factors coming from each of the planes x1|P1P2y
3

and x1|P a
1 P

b
1 |1y3. Also, x1Iy “ x1I3y “ x1|P2P3|1y and x1I1y “ x1I2y “ x1|P a

1 P
b
1 |1y.

We have factored out and omitted momentum and super momentum-conserving delta

functions δ4pP qδ8pQq as usual. This can always be achieved by setting the first two

rows of the C-matrix to λ with GLp4q gauge symmetry. What remains of the fermionic

constraints δ4ˆ4pC ¨ ηq evaluates to δ8pΞq, which can be written as a product of two

NMHV delta functions,

δ8pΞq “ δ4pΞ1q δ
4
pΞ2q . (4.7.21)
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corresponding to the third and fourth rows of the localized C-matrix. As one may

expect, the expressions for Ξ1 and Ξ2 can be directly read from the Grassmannian

geometry, focusing on one plane at a time,

Ξ1 “
ÿ

rPP b
1

xr|P b
1P

a
1 |1yηr `

ÿ

sPPa
1

x1sypP b
1 q

2ηs, Ξ2 “
ÿ

rPP2

xr|P2P3|1yηr `
ÿ

sPP3

x1syP 2
2 ηs .

(4.7.22)

Note that there are many ways to write the delta function on the support of super

momentum conservation. As before, the arguments Ξ1 and Ξ2 do not depend on a

particular ordering of points on the given lines.

The second configuration can be analyzed in a similar way
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(4.7.23)

Denote

P1 “ p2`. . .`pi, P a
2 “ pi`1`. . .`pj, P b

2 “ pj`1`. . .`pk,

P c
2 “ pk`1`. . .`pm, P3 “ pm`1`. . .`pn . (4.7.24)

The momentum pI in these conventions is

pI “
x1|P3P2 ˆ x1|P1

x1|P1P3|1y
, (4.7.25)

and λI “ x1|P3P2. We can solve for the λI3 spinor from the first plane, to get λI3 “

x1|P1P2. The other two spinors can be obtained from the second plane, but now the
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“center” is label I rather than 1,

λI1 “ xI|pP a
2 ` P b

2 qP b
2 , λI2 “ xI|P a

2 P
b
2 . (4.7.26)

The resulting superfunction is then

F “ PT p1, 2, . . ., i, Iq ˆ PT pI, i`1, . . ., j, I1q ˆ PT pI1, j`1, . . ., k, I2q

ˆ PT pI2, k`1, . . .,m, I3, Iq ˆ PT pI3,m`1, . . ., n, 1q

ˆ x1|P1P3|1y
3

¨ xI|P a
2 P

b
2 |Iy

3
¨ δ8pΞq . (4.7.27)

Following the same logic, we can factorize the fermionic delta function δ8pΞq“δ4pΞ1qδ
4pΞ2q,

where

Ξ1 “
ÿ
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xIsyP 2
3 ηs, Ξ2 “
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a
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xIsypP b
2 q

2ηs .

(4.7.28)

Note that we used the supermomentum conservation in Ξ1 to eliminate ηI2 .

On-shell functions from non-planar configurations

The configurations stemming from non-adjacent BCFW shifts follow an identical pat-

tern: associate momenta for all intersection points I, I1, I2, I3 and take the product of

Parke-Taylor factors, one for each line.
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F “ PT p1, 2, . . ., i, I1, i`1, . . ., jq ˆ PT pI1, j`1, . . ., k, I2, k`1, . . ., lq

ˆ PT pI2, l`1, . . .,m, I, 1q ˆ PT pI,m`1, . . ., p, I3, p`1, . . ., qq ˆ PT pI3, q`1, . . ., n, 1q

ˆ x1|P1P2y
3

¨ x1|P a
1 P

b
1 |1y

3
¨ δ8pΞq , (4.7.30)

where the definitions of the variables P a
1 , P b

1 , P c
1 , P1, P2, P3, I, I1, I2, I3, Ξ are the same

as in the planar configuration. Hence the normalization factors and the fermionic δ-

functions are identical. The only difference is the ordering of points in the Parke-Taylor

factors.

The on-shell function (4.7.30) is a generalization of N2MHV Yangian invariants.

Similar to the NMHV case, we can now decompose (4.7.30) into a linear combination

of (4.7.27) with different orderings by rewriting the Parke-Taylor factors in (4.7.30). In

(4.7.29), points are now misplaced on three of the lines. We use KK relations to rewrite

the corresponding Parke-Taylor factors using terms which have (1, I1), (I1, I2) and (I,

I3) adjacent,

PT p1, 2, . . ., i, I1, i`1, . . ., jq “
ÿ

σ1PΣ1

PT p1, σ1, I1q , (4.7.31)

PT pI1, j`1, . . ., k, I2, k`1, . . . , lq “
ÿ

σ2PΣ2

PT pI1, σ2, I2q , (4.7.32)

PT pI,m`1, . . ., p, I2, p`1, . . . , qq “
ÿ

σ3PΣ3

PT pI, σ3, I3q , (4.7.33)

where Σ1 “ t1, 2, . . ., iu � ti`1, . . ., juT , Σ2 “ tj`1, . . ., ku � tk`1, . . . , luT and finally

Σ3 “ tm`1, . . ., pu � tp`1, . . . , quT . As before, � denotes a shuffle product and tuT

denotes reversal of ordering. Plugging back into (4.7.30) we get a linear combination
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of Yangian-invariants,

F “
ÿ

σ1,σ2,σ3
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ÿ
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(4.7.34)

Higher k The geometrical formula for on-shell functions extends to higher k. Re-

gardless of planarity, an on-shell function that originates from BCFW recursion has

the following structure

F “
ź

lines

PT p. . . q ˆ
ź

planes

J ˆ
ź

planes

δ4pΞq . (4.7.35)

For any non-planar NkMHV configuration that originates from non-adjacent BCFW

shifts, applying KK relations to its Parke-Taylor factors allows us to rewrite the on-

shell function as a linear combination of Yangian-invariants, each of which correspond

to planar configurations with various orderings.

4.8 Conclusion

In this chapter, we discussed non-adjacent BCFW recursion relations and the con-

nection between individual terms and Grassmannian geometry. We found that each

term corresponds to a particular cell in the Grassmannian Gpk, nq which we identified

using configurations of n points in Pk´1. These Grassmannian cells are similar to the

2n´4 dimensional cells in the positive Grassmannian G`pk, nq which are associated

with adjacent BCFW terms, but their underlying configurations of points do not have

one fixed ordering. In fact, there are two separate orderings of all points which lie be-

tween the two shifted legs 1 and k. We mostly focused on the NMHV case, extending
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the analysis of MHV on-shell diagrams and geometries in [99]. We outlined a general

structure beyond NMHV in Section 4.7.

We also found a new representation of the on-shell functions associated with these

geometries, both planar and non-planar, as the product of Parke-Taylor factors local-

ized on each line in Grassmannian space. We identified momenta associated with inter-

section points Ik, which then entered the arguments of the Parke-Taylor factors. As a

result, the on-shell forms were purely holomorphic in λ and the only non-holomorphicity

(dependence on rλ) came from the dependence on special points λIk . This is a very inter-

esting picture because it allows us to think about the Grassmannian geometry directly

in the momentum space. This connection is trivial for the MHV case but it seems to

have a lot of non-trivial structure for higher helicity sectors. The representation using

Parke-Taylor factors allowed us to use Kleiss-Kuijf relations and rewrite any BCFW

non-planar superfunction as a linear combination of planar super functions with various

orderings. For a fixed ordering, the on-shell superfunction can be written as a product

of R-invariants and enjoys the infinite-dimensional Yangian symmetry. Whether the

Yangian structure survives in any form beyond the planar limit where the ordering is

lost is an important open question, and the simple relation between the planar and

non-planar on-shell functions offers a window into future investigation.

Our work opens a new direction of study of non-planar on-shell functions and

geometries in N “ 4 sYM theory. The BCFW building blocks belong to a larger

family of non-planar on-shell diagrams, which appear as cuts of loop integrands to any

loop order. Each non-planar on-shell diagram is associated with some Grassmannian

geometry, but the concrete description is unclear. We made a first step in this direction

by identifying the Grassmannian geometries associated with BCFW cells. It would

be very interesting to learn what the positive geometries for all non-planar on-shell

diagrams are, and find a direct way to evaluate the on-shell functions.
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Chapter 5

Summary

In this thesis, we discussed various questions regarding the geometrization of scattering

amplitudes in supersymmetric Yang-Mills theories. Within the context of N “ 4 sYM,

we explored the geometric role of local expansions of scattering amplitudes and their re-

lations to the original and the putative dual amplituhedron. To find the amplituhedron-

like geometric structures for less supersymmetric theories, a crucial first stepping stone

is having a unique integrand. To this end, we showed two natural on-shell prescriptions

for defining the N “ 1, 2 one-loop amplitude integrands and several concrete construc-

tions using a prescriptive unitarity method. Finally, there the is larger open question

of extending the geometrical framework beyond the planar sector. Given the key role

played by the correspondence between on-shell diagrams and positive Grassmannian

as well as the on-shell diagrammatic realization of BCFW recursions in the geometric

reformulation of the planar theory, we investigated the Grassmannian geometries of

non-planar on-shell diagrams in the context of BCFW recursions. Below we summarize

the main points of each chapter.

In chapter 2, we initiated the systematic study of local positive spaces arising in the

context of the Amplituhedron construction for scattering amplitudes in planar max-

imally supersymmetric Yang-Mills theory. We showed that all local positive spaces

relevant for one-loop MHV amplitudes are characterized by certain sign-flip conditions
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and are associated with surprisingly simple logarithmic forms. In the maximal sign-flip

case they are finite one-loop octagons. Particular combinations of sign-flip spaces can

be glued into new local positive geometries. These correspond to local pentagon inte-

grands that appear in the local expansion of the MHV one-loop amplitude. We showed

that, geometrically, these pentagons do not triangulate the original Amplituhedron

space but rather its twin “Amplituhedron-Prime." This new geometry has the same

boundary structure as the Amplituhedron (and therefore the same logarithmic form)

but differs in the bulk as a geometric space. On certain two-dimensional boundaries,

where the Amplituhedron geometry reduces to a polygon, we checked that both spaces

map to the same dual polygon. Interestingly, we found that the pentagons internally

triangulate that dual space. This gives direct evidence that the chiral pentagons are

natural building blocks for a yet-to-be-discovered dual Amplituhedron.

In chapter 3, we constructed a prescriptive, bubble power-counting basis of one-loop

integrands suitable for representing amplitude integrands in less-supersymmetric (1ď

N ď4) Yang-Mills theory. With the exception of massless bubbles, all integrands have

unambiguous, leading singularities as coefficients defined in field theory; for the massless

bubbles on external legs, we found two natural choices which lead to different integrands

that highlight distinct aspects of field theory. We showed explicit representations of

the all-multiplicity integrands for MHV amplitudes, and the split-helicity amplitude

integrand for six-particle NMHV. The basis we constructed is mostly pure and is divided

into to separately UV- and IR-finite sectors of fixed transcendental weight, resulting in

UV- and IR-finite ratio functions of n-particle helicity amplitudes.

In chapter 4, we studied non-adjacent BCFW recursion relations and their connec-

tion to positive geometry. For an adjacent BCFW shift, the n-point NkMHV tree-level

amplitude in N “ 4 sYM theory is expressed as a sum over planar on-shell diagrams,

corresponding to canonical “dlog” forms on the cells in the positive Grassmannian

G`pk, nq. Non-adjacent BCFW shifts naturally lead to an expansion of the amplitude

in terms of a different set of objects, which do not manifest the cyclic ordering and
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the hidden Yangian symmetry of the amplitude. We showed that these terms can

be interpreted as dlog forms on the non-planar positive geometries, generalizing the

cells of the positive Grassmannian G`pk, nq to a larger class of objects which live in

Gpk, nq. We focused mainly on the case of NMHV amplitudes and discussed in detail

the Grassmannian geometries. We also proposed an alternative way to calculate the

associated on-shell functions and dlog forms using an intriguing connection between

Grassmannian configurations and the geometry in the kinematical space.
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Appendix A

Configuration of lines in momentum
twistor space

There is an intimate relation between configurations of (loop) lines in momentum

twistor space and certain restricted kinematic configurations of loop momenta on uni-

tarity cuts of loop integrands or local integrals. At one loop, we can depict the off-shell

configuration of lines in twistor space corresponding to a generic loop integrand (ei-

ther of the amplitude or of an integral) by a set of lines corresponding to external

dual momenta, together with a line pABq in a generic configuration (parameterized via

eq. (2.2.2)),

Ø (A.0.1)

In this setup, the loop-line pABq does not intersect any of the lines associated to external

kinematic points. In the next step, one could go to codimension-one configurations by
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imposing one condition, e.g. xABii`1y “ 0, so that the lines pABq and pii`1q intersect.

Ø (A.0.2)

At the level of cuts, this corresponds to setting a single propagator xABii`1y “ 0 to

zero. This codimension-one configuration for the line pABq can be parameterized by

three degrees of freedom. The intersection implies that one of the defining points of

the pABq-loop lies on the line pii`1q. Taking into account the projectivity of the Z’s,

one possible particular parametrization is

ZA “ Zi ` α1Zi`1 , ZB “ Zj ` α2Zk ` α3Zl . (A.0.3)

In a second step, one can impose an additional constraint to end up on a codimension-

two configuration of the line pABq. Depending on the condition one imposes, there are

three situations to consider

(A.0.4)

(A.0.5)

which have explicit two-dimensional parametrizations of the solution for the line pABq

given by,

Z
p1q

A “ Zi ` γ1Zi`1 , Z
p2q

A “ Zi ` γ1Zi`1 , Z
p3q

A “ Zi ,

Z
p1q

B “ Zj ` γ2Zj`1 , Z
p2q

B “ Zi ` γ2Zi´1 , Z
p3q

B “ Zj ` γ1Zk ` γ2Zl .
(A.0.6)
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We can continue by imposing yet further constraints. At codimension-three, for the

first time we encounter the situation associated with a composite residue where we

localize the loop-line into a collinear configuration, depicted in the second figure below.

(A.0.7)

(A.0.8)

Here we have omitted two special configurations where the loop line pABq intersects

three consecutive external lines pi´2i´1q, pi´1iq and pii`1q. For the solutions depicted

above, we can write one-parametric representations of the solution space for pABq. The

generic solution is a bit involved, so here we only give the parametrization for the simple

configuration where pABq is in the plane pi´1ii`1q and passes through the point Zi,

Z
p2q

A “ Zi , Z
p2q

B “ Zi´1 ` δZi`1. (A.0.9)

Finally, we can discuss codimension-four configurations of the line pABq where all

degrees of freedom are completely fixed. Such configurations are related to leading

singularities. Again, there are various cases to consider, some of which correspond to

soft composite residues that are physical, as well as spurious residues where scattering
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amplitudes have no support (see the figure on the right below)

(A.0.10)

(A.0.11)

Besides the generic “four-mass" configuration depicted in the left figure above, we can

have special kinematic configurations where some of the external lines intersect (corre-

sponding to massless corners in diagrams) and the Schubert problem simplifies.

Ø Ø

Ø Ø

Ø Ø

(A.0.12)
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Ø Ø

Ø Ø

For the maximal codimension configurations, we have explicitly written the final con-

figuration of the loop-line pABq in terms of external twistors only. In these formulae,

certain geometric quantities appear that we briefly discuss for completeness. In par-

ticular, pabcq X pdefq denotes the intersections of two planes, spanned by twistors

tZa, Zb, Zcu and tZd, Ze, Zfu respectively. In P3, the intersection of two planes is a line,

which can be represented as

pabcq X pdefq “ ZaZbxcdefy ` ZbZcxadefy ` ZcZaxbdefy

“ xabcdyZeZf ` xabcfyZdZe ` xabceyZfZd

(A.0.13)

Additionally, there are points defined by the intersection of a line pabq and a plane

pcdeq, which can be represented as

pabq X pcdeq “ Zaxbcdey ` Zbxcdeay “ ´pZcxdeaby ` Zdxeabcy ` Zexabcdyq , (A.0.14)

which naturally reflects the antisymmetry pabq X pcdeq “ ´pcdeq X pabq.

A.1 External triangulations

In this section we focus on external triangulations, as a first application of the

systematic classification of the sign-flip spaces introduced in section 2.4. As discussed

briefly in section 2.2.4, an external triangulation of a space introduces a “larger” space

outside of the original region using spurious vertices which violate the original positivity

conditions. In the context of the sign-flip spaces above, this corresponds to flipping the
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signs of some brackets which defined the original space. As a warm-up, let us go back

to the projective plane P2, where the analog of a line pABq in P3 is a point Y on the

plane with two degrees of freedom. As heuristically described above, we can externally

triangulate the quadrilateral with vertices z1, z2, z3, z4 with two triangles,

“ ´ (A.1.1)

Note that the codimension-one boundaries of each triangle (which are lines in P2) are

subsets of boundaries of the original quadrilateral, but there is an additional spurious

vertex p12qXp34q :“ z1x234y ´ z2x134y which is used as a triangulation point that

cancels between triangles.1 We can also describe this triangulation in the language of

the previous section as follows. The quadrilateral is defined by the following conditions:

Ø xY 12y ą 0, xY 23y ą 0, xY 34y ą 0, xY 14y ą 0, (A.1.2)

where we used the same circle to visualize the constraints, but now for xY ii`1y. We

can define the triangles in a similar way. Note that the first triangle with vertices

tp12q X p34q, 2, 3u in eq. (A.1.1) has an unfixed sign for xY 14y and therefore lacks this
1In this context, angle brackets denote contraction with a three-index Levi-Civita symbol, i.e.,

xabcy :“ ϵIJKzIaz
J
b z

K
c .
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codimension-one boundary. Pictorially this will be denoted by ˚ for the relevant bracket

in the circle-figures and can also be interpreted as marginalizing over both signs. Even

though the second triangle with vertices tp12q X p34q, 1, 4u has xY 23y ą 0 fixed, from

the picture we see that this is not a boundary of the space. The two triangles are

associated to the following circle diagrams:

Ø , (A.1.3)

Ø . (A.1.4)

In summary, we can re-interpret this triangulation as taking the space of the first

triangle with unfixed sign of xY 14y and dividing it into two spaces: one where xY 14y ą

0, which is the quadrilateral, and another where xY 14y ă 0 which is the second triangle.

“ ` (A.1.5)

239



“ `

In P2 the triangle is the simplest geometric space with non-vanishing form. If we remove

one more boundary by marginalizing over the corresponding xY ii`1y, we get a “wedge"

defined by only two inequalities. In this case the canonical form vanishes, e.g.

Ø Ω “ 0. (A.1.6)

This vanishing can also be understood from the d log form perspective as we need at

least three brackets to form two independent projective ratios that enter the arguments

of d log’s.

Simplest sign-flip spaces

We can almost verbatim generalize the above discussion to the configuration space

of lines pABq in P3 relevant to the MHV one-loop positive geometry. In P3, the simplest

space has four boundaries, and the corresponding logarithmic form is given by the box

integrand. However, in this case we need to include one additional inequality which

does not correspond to a boundary but is nonetheless required to define the chiral

sign-flip-four space. In the simplest four-point example, we define the space

Ø ω
p4q,´
1234 “

x1234y2

xAB12yxAB23yxAB34yxAB14y
” (A.1.7)
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with xAB13y, xAB24y ă 0. The second chiral region has xAB13y, xAB24y ą 0 and its

form is the same up to a sign, Ωp4q,`
1234 “ ´Ω

p4q,´
1234 . The union of these two regions is an

achiral space which has vanishing form and unfixed signs for xAB13y and xAB24y,

“ ` (A.1.8)

Directly at the level of d log forms, four brackets xAB12y, xAB23y, xAB34y, xAB14y

are insufficient to define four independent projective ratios that enter the arguments

of the d logs, and therefore the whole form must vanish. If we additionally impose

xAB13y ž 0 to cut the space into chiral components, we have access to one further

bracket to form four independent projective ratios, e.g., xABii`1y{xAB13y. The same

argument applies to any other space with only four boundaries xABii`1y. A less trivial

example of that logic is the special sign-flip-two region we discussed in eq. (2.4.12). Even

though there were many brackets with fixed signs, the space has only four boundaries

– so we get a zero-form space if we drop the chiralization condition xABii`2y ż 0.

The simplest achiral space with non-vanishing form must therefore have five bound-

aries, and the integrand form is the general parity-odd pentagon (given by a suitable

generalization of eq. (2.3.8) where none of the external legs need to be massless). In

fact, because the achiral space is defined by a set of inequalities which all correspond

to physical codimension-one boundaries, any of the 25 sign choices are allowed and lead

to the same canonical form up to a sign. (This is distinct from the chiral components

where only a subset of signs led to a consistent geometry.) For the five-point space we
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get

Ø ωodd
5 “

Nodd

xAB12yxAB23yxAB34yxAB45yxAB15y
, (A.1.9)

where ˘ indicates an arbitrary (but fixed) sign for the corresponding bracket. Exactly

the same is true for higher points: if we marginalize over the signs of the n´5 brackets

xABii`1y for i R ti1, i2, i3, i4, i5u and pick any of the 25 possible sign choices for the

remaining xABirir`1y, we find the general parity-odd pentagon

Ø ωodd
n “

Nodd

xABi1i1`1yxABi2i2`1yxABi3i3`1y

ˆxABi4i4`1yxABi5i5`1y

,

(A.1.10)

where ˘ indicates that either sign choice is acceptable and ˚ instructs us to marginalize

over both sign choices.

In the rest of the section we will relate different sign-flip spaces via external tri-

angulations, which allows us to write the canonical forms for more complicated spaces

with many boundaries. In our discussion, we use several important facts:

1. Canonical forms of sign-flip-four spaces are chiral octagons, eq. (2.4.28), and

descendants.

2. The form for a chiral space with four boundaries is a box.

3. The form for an achiral space with five boundaries is a parity-odd pentagon,

eq. (A.1.10).
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4. Any chiral space with three or fewer boundaries has vanishing form. Any achiral

space with four or fewer boundaries has vanishing form.

5. Sign-flip-six and higher regions are empty; their form is identically zero.

Triangulation of sign-flip-two regions

We first consider the chiral sign-flip-two space, with the additional condition xABijyą0:

S
p2q,`
ij “ . (A.1.11)

As stated in section 2.4, the codimension-one boundaries of this space correspond to

the four brackets adjacent to the sign flips, as well as all other ‘negative’ brackets in

the upper half of the circle, i.e.,

boundaries: txABi´1iy, xABii`1y, xABi`1i`2y, . . . , xABj´1jy, xABjj`1yu.

(A.1.12)

(For the opposite chirality defined by xABijy ă 0, the boundaries correspond to the four

brackets adjacent to the sign flips, as well as the positive brackets in the lower half of the

circle.) To externally triangulate this space, we use the fact that any space defined by

four or fewer inequalities has a vanishing canonical form. Thus, if we marginalize over

all signs in the sequence txABi`1 i`2y, . . . , xABj´2 j´1yu but leave all other signs

unchanged, the corresponding space has four boundaries, and is therefore trivially a

two-mass-easy box form:

Ø . (A.1.13)
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This fact can now be used in a “completeness relation” to determine the canonical form

for Sp2q,`
ij . If we expand eq. (A.1.13) in terms of regions with definite signs we encounter

the sign-flip-two region whose form we want to determine, a collection of sign-flip-four

regions, e.g.,

, (A.1.14)

together with a number of sign-flip-six and higher regions which are empty. From

this we can express the sign-flip-two region in terms of eq. (A.1.13) and sign-flip-four

regions2

“ ´

(A.1.15)

Note that this is an external triangulation as also indicated by the minus sign between

the two terms on the right-hand-side of eq. (A.1.15). Geometrically we remove sign-

flip-four regions from eq. (A.1.13) leaving us with the chiral sign-flip-two region of

interest. Since we already found all canonical forms associated to the regions on the

right-hand-side of eq. (A.1.15), we can immediately write down the canonical form of
2In the achiral sign-flip-four space, xABijy ą 0 is automatically satisfied once we impose the

‘external’ inequalities. More details about these spaces and their fixed brackets are summarized in
appendix A.2.
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Ω
p2q,`
ij ,

Ω
p2q,`
ij “ ` ´

(A.1.16)

where the sum over octagons includes all degenerations. Using this formula for the

six-point example we find

“ ´

Ω
p2q,`
36 “ ` ´

(A.1.17)

As we discussed earlier in section 2.4, there are a few special cases of sign-flip-two

regions. The most special case is the chiral sign-flip-two region with only a single

minus sign eq. (2.4.13) which is an empty space with vanishing canonical form.

In this degenerate case, for the opposite chirality S
p2q,´
ij , we can triangulate the

space using exactly the same procedure, only with different boundary data: the region

where all n ´ 3 ‘+’ signs are replaced by ‘˘’ has vanishing form (as it only has three

boundaries) and also the sign-flip-four regions are achiral rather than chiral. Therefore,

the forms which appear on the right hand side are parity odd combinations of octagons

(and descendants).
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Triangulation of sign-flip-zero region

As argued earlier in section 2.3.3, there is no external triangulation of MHV or

MHV Amplituhedra in terms of simple building blocks. However, this is not true for the

achiral sign-flip-zero region eq. (2.4.7) which is defined by xABii`1y ą 0 inequalities

only. There are many ways to triangulate the Sp0q region externally. The simplest

(though certainly not the most efficient) is to fix four plus signs and marginalize over

all other signs. In light of our earlier discussions, such a region has vanishing canonical

form, but when we expand ˚ “ ` ‘ ´ we find the sign-flip-zero region of interest
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together with many sign-flip-two and four regions.

zero-form space
hkkkkkkkkkkkikkkkkkkkkkkj

“

achiral sf0 space
hkkkkkkkkkkkikkkkkkkkkkkj

`

achiral sf2 spaces
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

` ` ¨ ¨ ¨

`

achiral sf4 spaces
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

` ` ¨ ¨ ¨

`

empty sf6 and higher spaces with zero form
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkj

` other empty regions .

(A.1.18)

We already calculated the necessary canonical forms for all regions appearing in eq. (A.1.18)

before in eqs. (2.4.28) and (A.1.16), which allows us to write the form for the sign-flip-

zero space Sp0q eq. (2.4.7) more explicitly in terms of known quantities. Note that all

sign-flip-two and four regions are achiral, so we must use the relevant parity-odd forms

associated to those spaces by combining both chiralities in eqs. (2.4.28) and (A.1.16).

Having discussed the canonical forms of all sign-flip spaces, we now revisit to the
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chiral pentagon expansion of eq. (2.2.45), together with the parity-odd one-loop am-

plitude given as the difference of the MHV and MHV amplitudes. In the parity-odd

case, the local expansion involves parity-odd pentagons, eq. (2.3.10), which can be

associated to simple achiral spaces defined by only five inequalities (see our discus-

sion earlier in this section) where the signs of these inequalities did not matter to get

the correct parity-odd pentagon canonical form. The question is whether or not the

parity-odd pentagon expansion eq. (2.3.10) can be understood geometrically as an ex-

ternal triangulation of some well-defined space. In other words: can we triangulate the

sign-flip-zero space eq. (2.4.7) not via eq. (A.1.18), but in terms of spaces with five

boundaries only? The answer is yes, and in the following we give a straightforward

description of such a triangulation:

1. We start with the sign-flip-zero region Sp0q and triangulate it externally via the

space with the sign of xAB12y marginalized,

“ ´ (A.1.19)

2. For the region with xAB12y “ ˚ (i.e., xAB12yż0 does not have a fixed sign), we

continue by marginalizing over the sign of xAB23y leaving us with two spaces,

one where xAB23y “ ˚, and one where xAB23y ă 0.

“ ´ (A.1.20)
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Whenever we encounter a space with a minus sign we stop, if we have ˚’s only we

continue. This procedure results in a collection of spaces Si defined by

Si :“ txAB12yż0, . . ., xABi´2i´1yż0, xABi´1iyă0,

xABii`1yą0, . . ., xAB1nyą0u, i P t2, . . ., n´3u ,
(A.1.21)

where, in the boundary case i “ 2, we start with xAB12yă 0. Pictorially, Si is

represented by the following circle diagram

Si “ . (A.1.22)

This procedure stops at i “ n ´ 3 because we reach the end of the circle. Going

beyond this point simply generates spaces with less than five boundaries that

have vanishing form (and are therefore irrelevant for the purpose of obtaining the

canonical form).

3. In the third step, we continue the same procedure for each space Si but leave

xABii`1y ą 0 untouched, marginalizing over xABi`1i`2y

“ ´ . (A.1.23)

We again keep the spaces with two minus signs and marginalize further over the

spaces where we have ˚. As a result we generate a collection of spaces Sij,

Sij “ , i P t2, . . . , n´3u, j P ti`2, . . . , n´1u. (A.1.24)
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For each region Sij the signs of txABjj`1y, . . . xAB1nyu are all positive. However,

we can freely replace all but the xABjj`1y and xAB1ny positive signs by ` Ñ ˚.

This is because Sij already has two non-adjacent minus signs; therefore, spaces

where we introduce additional minus signs leads to empty sign-flip-six (or higher)

regions, e.g.,

example of an empty region: . (A.1.25)

As a result, we triangulate the sign-flip-zero region Sp0q in eq. (2.4.7) in terms of spaces

with five boundaries only,

“ , (A.1.26)

which, at the level of canonical forms, corresponds to the parity-odd pentagon expansion

eq. (2.3.10). Note that on the right-hand side of eq. (A.1.26) we are suppressing spaces

with zero-form which are necessary for the geometric triangulation, but unnecessary for

the purposes of computing the canonical form. Geometrically, each space appearing in

eq. (A.1.26) is equivalent to that of a pentagon where we forget about the signs of the

last two brackets in eq. (2.3.19) (see also eq. (A.1.10)). The zero-form spaces implicit

in eq. (A.1.26) demonstrates that while we were successful in interpreting the pentagon

expansion eq. (2.3.10) geometrically, spaces with vanishing form had to be added in

order to construct a full triangulation.

The natural question is why we can not use the same procedure to triangulate the

MHV or MHV Amplituhedra. The problem arises due to additional inequalities (such
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as xABijy ą 0 in eq. (2.2.32)) that are required in the definition of the MHV Ampli-

tuhedron. While these additional inequalities do not correspond to any boundaries in

the original MHV space, if we attempt to externally triangulate the MHV space by

marginalizing over the signs of xABii`1y brackets as ` Ñ ˚, the resulting spaces now

have xABijy as boundaries. The corresponding canonical forms have spurious poles

which can only be cancelled by adding additional spaces. Thus, this simple marginal-

ization procedure does not extend straightforwardly to the chiral component spaces

relevant for the MHV and MHV Amplituhedra.

A.2 Fixed signs in sign-flip-zero, two and four spaces

In this appendix, we discuss in more detail the sign-flip regions of section 2.4 and

A.1. As shown in the main text, each achiral sign-flip region is defined by imposing

fixed signs for certain xABii`1y brackets only. There is a nice hierarchy of these spaces

based on the number of sign-flips in the txABii`1yu sequence. The only non-empty

spaces are the ones with zero, two, or four sign flips. As we argued in (2.4), the sign-flip-

zero space is the most complicated, as measured by the number of boundaries and the

complexity of the associated canonical form eqs. (2.4.7) and (A.1.18). The complexity

of the sign-flip-two spaces is reduced (see section 2.4), and even more so for the sign-

flip-four regions of section 2.4 which have at most eight boundaries. The corresponding

logarithmic form is linked to the chiral octagon integrals, eq. (2.4.28), introduced in

[123]. Besides the achiral spaces alluded to above, each geometry can be cut into two

chiral components by imposing further constraints on additional brackets xABXy ż 0.

Let us start our exposition with the achiral sign-flip-zero region Sp0q, eq. (2.4.7),

Sp0q : xABii`1y ą 0, i “ 1, . . . , n Ø (A.2.1)
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No other signs of brackets are fixed inside Sp0q besides the ones indicated in eq. (A.2.1).

We can cut this achiral region into two chiral components, which correspond to MHV

and MHV one-loop amplitudes by imposing the inequalities of eq. (2.2.31) and eq. (2.2.32),

respectively. We denote the corresponding chiral spaces by S
p0q

MHV and S
p0q

MHV
. Con-

cretely, the MHV component S
p0q

MHV
can be defined by imposing additional n´3 condi-

tions eq. (2.2.32),

S
p0q

MHV
:

$

&

%

xABii`1y ą 0 i P p1, . . . , n´1q

xAB1iy ą 0 i P p3, . . . , n´1q

,

.

-

Ø (A.2.2)

Alternatively, imposing fixed signs for any sequence of brackets txAB2iy ą 0u etc.

leads to an equivalent definition of Sp0q

MHV
. While a given set of only n ´ 3 fixed sings

for the additional brackets (such as txAB2iy ą 0u in eq. (A.2.2)) is sufficient to define

the MHV region, in fact all brackets xABijy ą 0 (for i ă j) are fixed inside the S
p0q

MHV

region. Let us note that no signs of any other brackets are fixed inside S
p0q

MHV
.

The MHV chiral component is traditionally defined by a certain sign-flip constraint

on the sequence txAB1iyu, see the k “ 0 instance of eq. (2.2.12), but we can equivalently

impose the n´3 conditions of eq. (2.2.31), txAB1iy ą 0u , i P p3, . . . , n´1q

S
p0q

MHV :

$

&

%

xABii`1y ą 0 i P p1, . . . , n´1q

xAB1iy ą 0 i P p3, . . . , n´1q

,

.

-

Ø , (A.2.3)

where we used dotted lines in the circle figure eq. (A.2.3) to denote the positivity of

the respective xAB1iy. While this set of signs suffices to fix the MHV region, in fact

all xABijyą0 (for iăj) are positive inside Sp0q

MHV, but no other signs of brackets are fixed.
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The achiral sign-flip-two space S
p2q

ij of eq. (2.4.14) is defined by a set of inequalities

on xABii`1y brackets only that we graphically represent as

S
p2q

ij Ø (A.2.4)

No other signs are fixed in S
p2q

ij . Compared to the sign-flip-zero space where we needed

to impose n´3 additional signs to chiralize the space, the achiral sign-flip-two region

can be cut into two chiral components by fixing a single sign of the bracket xABijy.

This bracket is extremely natural and involves the two positions i and j where the two

sign-flips occur,

S
p2q,`
ij : teq. pA.2.4q, xABijy ą 0u Ø , i ă j,

S
p2q,´
ij : teq. pA.2.4q, xABijy ă 0u Ø , i ă j.

(A.2.5)

In the S
p2q,`
ij region we have a fully positive index space for certain brackets involving

pj, j`1, . . . i´1, iq. By this we mean that all signs of the following brackets are fixed to

be positive:

S
p2q,`
ij : txABpqy ą 0, xABpqy ą 0u , for p ă q P ti, i`1, . . . , j´1, ju, (A.2.6)

where the inequalities on p, q are to be understood in the cyclic sense. In contrast, for

S
p2q,`
ij , arbitrary non-adjacent brackets of the “negative region” do not have fixed signs.
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Similar to the discussion for S
p2q,`
ij , for S

p2q,´
ij we have

S
p2q,´
ij : txABpqy ă 0, xABpqy ă 0u, , for p ă q P ti, i`1, . . . , j´1, ju, (A.2.7)

in the fully negative region involving pi, i`1, . . . , j´1, jq the same set of brackets are

fixed to be negative and the non-adjacent brackets in the “positive region” do not have

a fixed sign. Note that the sign-inequalities eq. (A.2.6) and eq. (A.2.7) also apply for

q “ p`1 where both xABpqy and xABpqy collapse to xABpp`1y (up to a positive

bracket of external twistors).

The sign-flip-four space S
p4q

ikℓj eq. (2.4.6) is given by four patches of positive and

negative xABaa`1y brackets, graphically represented as

S
p4q

ikℓj Ø . (A.2.8)

In addition to these basic signs which define S
p4q

ikℓj, there are many more signs which are

fixed automatically just from the xABaa`1y conditions alone even before cutting the

achiral space into its chiral sub-components. In fact, the four patches in index space

are either fully positive or fully negative. This means that all signs of the following

brackets are fixed

txABpqy ą 0, xABpqy ą 0u , for

»

–

p ă q P tj, j`1, . . . , i´1, i u

p ă q P tk, k`1, . . . , ℓ´1, ℓu

fi

fl

txABpqy ă 0, xABpqy ă 0u , for

»

–

p ă q P ti, i`1, . . . , k´1, ku

p ă q P tℓ, ℓ`1, . . . , j´1, ju

fi

fl

(A.2.9)

Cutting S
p4q

ikℓj into two chiral components can be accomplished by specifying a single

sign of one of the diagonals, xABiℓy, or xABkjy. The first chiral component,Sp4q,`
ikℓj ,
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has both signs xABiℓy, xABkjy ą 0 positive, while the second component, Sp4q,´
ikℓj has

both signs xABiℓy, xABkjy ă 0 negative. But, in both cases fixing one sign implies the

other. Hence we can represent the chiral components as:

S
p4q,`
ikℓj Ø , S

p4q,´
ikℓj Ø ,

iăkăℓăj

(A.2.10)

For each chiral component in eq. (A.2.10) the signs of many other brackets are au-

tomatically fixed. In addition to the signs eq. (A.2.9) that were already fixed in the

achiral space S
p4q

ikℓj, we have

S
p4q,`
ikℓj :

»

–

xABpqy ą 0, for p P tj, j`1, . . . , i´1, iu, q P pk, k`1, . . . , ℓ´1, ℓq

xABpqy ă 0, for p P pi, i`1, . . . , k´1, kq, q P pℓ, ℓ`1, . . . , j´1, jq

fi

fl .

(A.2.11)

Note that these inequalities also cover the signs of the diagonals xABiℓyą0, xABkjyą0,

and also xABiℓyă0, xABkjyă0 so that in fact any single of these signs would be enough

to specify the chiral subspace S
p4q,`
ikℓj .

The other chiral subspace S
p4q,´
ikℓj has a corresponding set of fixed brackets

S
p4q,´
ikℓj :

»

–

xABpqy ă 0, for p P tj, j`1, . . . , i´1, iu, q P pk, k`1, . . . , ℓ´1, ℓq

xABpqy ą 0, for p P pi, i`1, . . . , k´1, kq, q P pℓ, ℓ`1, . . . , j´1, jq

fi

fl ,

(A.2.12)

which also covers the boundary cases such as xABiℓy ă 0 which is enough to define

S
p4q,´
ikℓj . Note that both set of signs for Sp4q,`

ikℓj and S
p4q,´
ikℓj are related by parity conjugation

xABpqy Ø xABpqy; this is a consequence of the chiral nature of these spaces.
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As usual, all the signs in this appendix are to be understood in the context of

the usual twisted flips associated to the twisted cyclic symmetry. This means that

xABijy ą 0 is valid for 1 ď i ă j ď n but we have to flip the sign if j passes n and

now becomes smaller than i. Our sign-flip regions do not have an index space origin

so that n can in principle be anywhere. For the explicit sign-flip regions appearing in

the main text, we always fixed xAB1ny ą 0, which forced the points n and 1 to be in

a fully positive region.
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A.3 Gluing local geometries from two-dimensional projections

In this appendix, we summarize in detail how demanding a consistent geometry

for the collection of local integral spaces selects a unique choice for the one-mass box,

two-mass-hard box and chiral pentagons. This will be done by demanding that all

spurious boundaries on various codimension-two projections cancel. The result of this

exercise led us to the proposed spaces in section 2.5.3.

Five-point discussion

First, let us look at the boundary when pABq passes through the point Z2. On

this cut surface, only the pentagon P24 and the box B45 in the expansion of the one-

loop integrand in eq. (2.5.1) contribute. In eq. (2.5.11) we can identify the regions

corresponding to the four options for the box B45 eq. (2.5.3) as well as the two different

options for the pentagon eqs. (2.5.4)–(2.5.5). The B12 box does not contribute on this

boundary. Using the labeling introduced in subsection 2.5.1, the options for the B45

spaces are:

xAB34y xAB45y xAB15y xAB13y

B
p1q

45 ` ` ` `

B
p2q

45 ` ` ` ´

` ´ ` ´

B
p3q

45 ´ ` ` `

´ ´ ` `

B
p4q

45 ´ ` ` ´

´ ´ ` ´

(A.3.1)

Note that all four distinct regions B
piq
45 have three vertices, p12q, p23q and p13q, which

are the leading singularities of the box integral accessible from the codimension-two cut
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surface shown in eq. (2.5.7). The two choices for the pentagon spaces eqs. (2.5.4)–(2.5.5)

correspond to the regions

xAB34y xAB45y xAB15y xAB13y

P
p1q

24 ´ ` ` `

´ ` ` ´

P
p2q

24 ` ´ ` ´

(A.3.2)

In this case both pentagon spaces have three vertices, p24q, p25q and p13q. As discussed

throughout section 2.5.3, not all sign patterns which constitute a local integral neces-

sarily contribute on a given cut surface; in this case, the space P
p1q

24 is composed of four

sign patterns, only two of which have the boundary pABq “ pA2q.

For our purposes, we require that upon combining the two pictures in eqs. (A.3.1)

and (A.3.2) the spaces for B45 and P24 must be such that the spurious leading singu-

larities p13q and p123qXp245q cancel geometrically (however, since p123qXp245q was not

present in individual integrals in the first place, we do not get any constraints from

this spurious leading singularity). There are multiple ways of cancelling the spurious

vertex p13q. The first way of cancelling this point is by simply covering it twice with

an overlapping region; an example of this is given by combining B
p2q

45 and P
p2q

24 as shown

in the left of eq. (A.3.3). Alternatively, we can cancel the spurious point by adding an

additional region on one of the “other sides” of the vertex; an example of this is given
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by combining B
p1q

45 and P
p2q

24 , which is illustrated in the right of eq. (A.3.3).

and

(A.3.3)

In the first example, we see that after cancelling overlapping regions we are left with

exactly the same region t`,`,`,´u as the original MHV Amplituhedron, while in the

latter we are left with a different region which has the same boundaries. In fact, it

is easy to see that any combination of the box and pentagon spaces will cancel this

spurious boundary in a rather trivial fashion. The final result of any combination is

equivalent to the MHV region, up to the addition of a region with zero form. The same

argument holds for any other two-dimensional projection of the form pABq “ pAiq, so

these pictures do not yield any constraints.

The parity conjugate configuration where pABq Ă p123q depicted in eq. (2.5.12)

also leads to a trivially correct space, no matter which combination of box and pentagon

spaces we take. This is a consequence of the fact that only a single local integral, B45,

contributes on this cut. The chiral wavy-line numerator of the pentagon vanishes here.

Let us now consider the configuration pABq Ă p234q, which corresponds to the

on-shell function of eq. (2.5.17), where we have the spurious boundary when pABq cuts
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the line p15q,

, (A.3.4)

which must be absent in the final space. For the boxes B12, B45 and pentagon we have,

respectively, the contributions

xAB45y xAB15y xAB12y xAB35y

B
p1,3q

12 ´ ` ` `

B
p2,4q

12 ´ ` ` ´

´ ` ´ ´

(A.3.5)

xAB45y xAB15y xAB12y xAB35y

B
p1,3q

45 ` ` ´ `

B
p2,4q

45 ` ` ´ ´

´ ` ´ ´

(A.3.6)
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xAB45y xAB15y xAB12y xAB35y

P
p1q

24 ` ` ´ `

` ` ` ´

´ ` ` `

P
p2q

24 ´ ` ´ ´

(A.3.7)

In these pictures the entire line xAB15y “ 0 is spurious i.e., it is not a boundary of

the Amplituhedron; therefore, it cannot be a boundary of the Amplituhedron-Prime

either. Note that both regions for the boxes B12 and B45, as well as the pentagon

regions do have access to the xAB15y “ 0 boundary. As we have seen throughout

chapter 2, the geometric cancellation of this spurious boundary is a stronger constraint

than what is naïvely observed at the level of adding canonical forms. There are two

ways to combine these spaces to get the correct form: either we honestly cancel the

boundary so it disappears from the full space, or we cover the entire line. In the latter

case the codimension-three line xAB15y “ 0 is a geometric boundary of the space,

although the codimension-four points p234qXp351q, p35q and p13q on this line are not.

This is unacceptable for our purposes here because geometrically it does not faithfully

represent the correct boundary structure. In fact, such a combination can be seen

explicitly by considering the following spaces: B
p1,3q

12 , B
p1,3q

45 and P
p2q

24 . The union of

these spaces has the same vertices p23q, p24q, p34q as the Amplituhedron, but also has
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the entire line xAB15y “ 0:

xAB45y xAB15y xAB12y xAB35y

B
p1,3q

12 ´ ` ` `

B
p1,3q

45 ` ` ´ `

P
p2q

24 ´ ` ´ ´

(A.3.8)

If instead we use the space P
p1q

24 , we cancel the spurious boundary:

xAB45y xAB15y xAB12y xAB35y

B
p1,3q

12 ´ ` ` `

B
p1,3q

45 ` ` ´ `

P
p1q

24 ` ` ´ `

` ` ` ´

´ ` ` `

(A.3.9)

Going through the eight possible combinations of spaces in eqs. (A.3.5)–(A.3.7), we see

that only the following combinations cancel the spurious line xAB15y “ 0:

B
p1,3q

12 , B
p1,3q

45 , P
p1q

24 , and B
p2,4q

12 , B
p2,4q

45 , P
p1q

24 . (A.3.10)
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Remarkably, we see that there is no uniform choice for the box spaces which cancels

the spurious contributions of P p2q

24 on this cut!

There are three remaining configurations pABq Ă p345q, p451q, p512q to check. The

p345q projection is trivially matched by any space for B12 as no other term contributes.

For the p451q projection, only the box B12 and the pentagon contribute. In terms

of the labeling above, on this cut surface the box choices p1, 4q and p2, 3q become

indistinguishable, respectively. The box B12 and pentagon correspond to the regions

xAB12y xAB23y xAB34y xAB35y

B
p1,4q

12 ` ` ´ `

B
p2,3q

12 ` ` ´ ´

´ ` ´ ´

(A.3.11)
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xAB12y xAB23y xAB34y xAB35y

P
p1q

24 ´ ` ` `

` ´ ` `

P
p2q

24 ´ ` ` ´

(A.3.12)

Demanding the cancellation of the boundary xAB23y “ 0 we see that only two of the

remaining four choices in eq. (A.3.10) survive,

B
p2q

12 , B
p2q

45 , P
p1q

24 , and B
p3q

12 , B
p3q

45 , P
p1q

24 . (A.3.13)

Following exactly the same procedure for the final configuration pABq Ă p512q we find

that both choices once again cancel the spurious boundary xAB34y “ 0.

Thus, at five points we are forced to choose the space, eq. (2.5.4), for the pentagon,

and can cancel all spurious boundaries using two different choices for the boxes. Both

choices are completely satisfactory at this multiplicity. However, only one of these

solutions generalizes to higher points. This can be seen directly at six points, where an

additional constraint arises: our five-point choice must be compatible with (at least)

one of the two spaces in eqs. (2.3.22)–(2.3.23) for the two-mass hard box.

Six-point discussion

Let us examine the natural extensions of the five-point solutions in eq. (2.5.16)

relevant for the two-dimensional projection pABq Ă p234q, where the box and pentagon
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spaces are

B
p2q

456 “ , and B
p3q

456 “ . (A.3.14)

P
p1q

24 “ ` ` ` ,

(A.3.15)

For the two-mass-hard box B12,56 we have two choices, see eqs. (2.3.22)–(2.3.23):

B
p1q

12,56 “ , and B
p2q

12,56 “ . (A.3.16)
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Filling in the corresponding regions in eq. (2.5.20), the result for the one-mass box,

pentagon and two-mass hard spaces are:

xAB45y xAB56y xAB16y xAB12y xAB35y

B
p2q

456 ` ` ` ´ `

´ ` ` ´ ´

´ ´ ` ´ ´

B
p3q

456 ` ` ` ´ `

P
p1q

24 ` ` ` ´ `

` ` ` ` ´

´ ` ` ` `

´ ´ ` ` `

P
p2q

24 ` ´ ´ ` `

` ` ´ ` `

B
p1q

12,56 ´ ` ` ` `

´ ´ ` ` `

B
p2q

12,56 ´ ` ` ` ´

´ ´ ` ` ´

´ ` ` ´ ´

´ ´ ` ´ ´

(A.3.17)
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Demanding the boundaries xAB56y “ 0 and xAB16y “ 0 cancel fixes the choice of the

two-mass hard box for both solutions:

B
p3q

456, P
p1q

24 , B
p1q

12,56, and B
p2q

456, P
p1q

24 , B
p2q

12,56. (A.3.18)

We claim that while the first option works on all two-dimensional projections, the

second option is incompatible with the cut surface where pABq Ă p345q. Indeed,

repeating the above exercise, on this boundary the one-mass box B123, pentagon P35

and two-mass hard box contribute. Using the second option for the two-mass hard box

B
p2q

12,56 we find:

xAB45y xAB56y xAB16y xAB12y xAB35y

B
p2q

123 ´ ´ ` ` `

´ ´ ´ ` `

` ` ` ` ´

P
p1q

35 ` ` ` ` ´

´ ` ` ` `

` ` ` ´ `

` ` ´ ´ `

B
p2q

12,56 ` ´ ` ` `

` ´ ´ ` `

´ ´ ` ` `

´ ´ ´ ` `

(A.3.19)

We see that although the boundary xAB12y“0 is cancelled, the entire xAB16y“0

boundary is present in the final space. This selects the union of P p1q

35 B
p2q

456 and B
p1q

12,56 as

the unique (subject to the assumption that we make uniform choices for all boxes and

pentagons, respectively) candidate space whose boundary structure is identical to the

original Amplituhedron on this cut surface. At six points, we have verified that this
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combination (together with the other local integrals which did not contribute on the

p234q, p345q boundaries) is free of all spurious boundaries.
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Appendix B

Complete Bubble Power-Counting
Integrand Basis B

p4q

2

Following the general strategy of prescriptive unitarity, constructing a bubble power-

counting basis of integrands requires the specification of a spanning set of contours

tΩju. Once this is done, diagonalization results in a basis such that
ű

Ωj
Ii “ δi,j. In

this appendix, we give complete details regarding our choice of integration cycles tΩju,

the integrands tIiu to which they are dual, and the integrals that result.
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B.1 Spanning-Set of Integration Contours Defining the Basis

Ωi
A,B,C,D:“

$

’

’

’

’

&

’

’

’

’

%

A

B C

Dℓ“ℓ˚
1

1 ,

A

B C

Dℓ“ℓ˚
2

2

,

/

/

/

/

.

/

/

/

/

-

, Ωi
a,B,C,D:“

$

’

’

’

’

&

’

’

’

’

% a

B C

Dℓ“ℓ˚
1

1 ,

a

B C

Dℓ“ℓ˚
2

2

,

/

/

/

/

.

/

/

/

/

-

Ωi
a,b,C,D:“

$

’

’

’

’

&

’

’

’

’

% a

b C

Dℓ“ℓ˚
1

1 ,

a

b C

Dℓ“ℓ˚
2

2

,

/

/

/

/

.

/

/

/

/

-

, Ωi
a,B,c,D:“

$

’

’

’

’

&

’

’

’

’

% a

cB

Dℓ“ℓ˚
1

1 ,

a

cB

Dℓ“ℓ˚
2

2

,

/

/

/

/

.

/

/

/

/

-

ΩI
A,B,C :“

$

’

’

’

’

&

’

’

’

’

%

A

B

C1

ℓ˚Ñ8
(odd)

,

A

B

C2

ℓ˚
1Ñ8

(double-pole)
(odd)

,

A

B

C3

ℓ˚
2Ñ8

(double-pole)
(even)

,

/

/

/

/

.

/

/

/

/

-

ΩI
a,B,C :“

$

’

’

’

’

&

’

’

’

’

%

a

B

C1 ,

a

B

C2

ℓ˚
1Ñ8

(double-pole)

,

a

B

C3

ℓ˚
2Ñ8

(double-pole)

,

/

/

/

/

.

/

/

/

/

-

ΩI
a,b,C :“

$

’

’

’

’

&

’

’

’

’

%

a

b

C1 ,

a

b

C2

ℓ˚
1Ñ8

(double-pole)

,

a

b

C3

ℓ˚
2Ñ8

(double-pole)

,

/

/

/

/

.

/

/

/

/

-

ΩA,B :“

#

A B

ℓ˚Ñ8
(single-poleñdouble-pole)

+

, Ωa,B :“

#

a BB

ℓ˚Ñ8
(double-pole)

+

Table B.1. A complete specification of contours to which the integrand basis B
p4q

2 is dual.
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B.2 Explicit Numerators for Basis Integrands in B
(4)
2

A

B C

D

ℓb

ℓc

ℓd

ℓa

i

ni=1
A,B,C,D:= [[pA, ℓb, ℓc, pC ]]−1

2
sABsBC

(
1−u−v−∆

)
+1

2

[
[[pB, pC ]] ℓ

2
a− [[pAB, pC ]] ℓ

2
b− [[pBC , pA]] ℓ

2
c+ [[pB, pA]] ℓ

2
d

]
ni=2
A,B,C,D:= [[ℓb, ℓc, pC , pA]]−1

2
sABsBC

(
1−u−v−∆

)
+1

2

(
[[pB, pC ]] ℓ

2
a− [[pAB, pC ]] ℓ

2
b− [[pBC , pA]] ℓ

2
c+ [[pB, pA]] ℓ

2
d

)
where ∆ :=

√
(1−u−v)2−4u v, u := sA sC/(sAB sBC), v := sB sD/(sAB sBC)

a

B C

D

ℓb

ℓc

ℓd

ℓa

i

ni=1
a,B,C,D := [[pa, ℓb, ℓc, pC ]] +

1
2

(
[[pB, pC ]] ℓ

2
a− [[pa,B, pC ]] ℓ

2
b

)
ni=2
a,B,C,D := [[ℓb, ℓc, pC , pa]] +

1
2

(
[[pB, pC ]] ℓ

2
a− [[pa,B, pC ]] ℓ

2
b

)

a

b C

D

ℓb

ℓc

ℓd

ℓa

i

ni=1
a,b,C,D := [[pa, ℓb, ℓc, pC ]]−1

2
[[pa,b, pC ]] ℓ

2
b

ni=2
a,b,C,D := [[ℓb, ℓc, pC , pa]] +

1
2
[[pa,b, pC ]] ℓ

2
b

a

cB

D

ℓb

ℓc

ℓd

ℓa

i

ni=1
a,B,c,D := [[pa, ℓb, ℓc, pc]]

ni=2
a,B,c,D := [[ℓb, ℓc, pc, pa]]

A

B

Cℓb

ℓc

ℓa

I

nI=1
A,B,C :=−1

2
sC

√
(1−u−v)2−4u v, where u := sA/sC , v := sB/sC

nI=2
A,B,C := 1

2

(
[[pA, ℓa, pC , pX ]]− [[pX , pA, ℓa, pC ]]

)
/ [[pB, pX ]]

nI=3
A,B,C := 1

2

(
[[pA, ℓa, pC , pX ]] + [[pX , pA, ℓa, pC ]] +sA [[pC , pX ]]

−ℓ2a [[pA−pC , pX ]]−ℓ2b [[pC , pX ]]−ℓ2c [[pA, pX ]]
)
/ [[pA, pX ]]

a

B

Cℓb

ℓc

ℓa

I

nI=1
a,B,C := sB−sC

nI=2
a,B,C :=−

(
[[ℓa, ℓb, pB, pX ]] + [[ℓb, ℓa, pC , pX ]]

)
/ [[pa, pX ]]

nI=3
a,B,C :=−

(
[[pX , ℓa, ℓb, pB]] + [[pX , ℓb, ℓa, pC ]]

)
/ [[pa, pX ]]

a

b

Cℓb

ℓc

ℓa

I

nI=1
a,b,C :=−sC

nI=2
a,b,C :=−1

2

(
[[ℓa, ℓa+ℓb, pb, pX ]] + [[ℓb, ℓa, pC , pX ]]

)
/ [[pA−pB, pX ]]

nI=3
a,b,C :=−1

2

(
[[pX , ℓa, ℓa+ℓb, pb]] + [[pX , ℓb, ℓa, pC ]]

)
/ [[pA−pB, pX ]]

A B
ℓa

ℓb

nA,B := na,B := 1/2

Table B.2. Numerators for all box, triangle, and bubble integrands in B
(4)
2 .
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B.3 Integrals of Basis Integrands in Dimensional Regularization

A

B C

D

ℓb

ℓc

ℓd

ℓa

i

∫
I i=1,2
A,B,C,D= Li2(1−u)+Li2(1−v)−Li2(1)− log(1−u) log(1−v)

+1
2
log(u) log(v)

u := 1
2 (1+u−v−∆), vs := 1

2 (1−u+v−∆), ∆ :=
√
(1−u−v)2−4u v

with u := sA sC/(sAB sBC) and v := sB sD/(sAB sBC)

a

B C

D

ℓb

ℓc

ℓd

ℓa

i

∫
II=1,2
a,B,C,D= Li2

(
1− sB sD

saB sBC

)
−Li2

(
1− sB

saB

)
−Li2

(
1− sD

sBC

)
+
1

2

[
log

(
sB
saB

)
log

(
sC
sBC

)
+ log

(
sC
saB

)
log

(
sD
sBC

)]

a

b C

D

ℓb

ℓc

ℓd

ℓa

i

∫
II=1,2
a,b,C,D =−Li2

(
1− sC

sbC

)
−Li2

(
1− sD

sbC

)
−1

2

[
log

(
sD
sbC

)
log

(
sa b
sbC

)
−1

2
log

(
sD
sa b

)
log

(
sD
sbC

)]

a

cB

D

ℓb

ℓc

ℓd

ℓa

i

∫
II=1,2
a,b,C,D = Li2

(
1− sB sD

saB sB c

)
−Li2

(
1− sB

sB c

)
−Li2

(
1− sB

saB

)

−Li2

(
1− sD

sB c

)
−Li2

(
1− sD

saB

)
−1

2
log

(
saB
sB c

)2

A

B

Cℓb

ℓc

ℓa

I

∫
II=1
A,B,C =Li2(1−u)+Li2(1−v)−Li2(1)− log(1−u) log(1−v)+ 1

2 log(u) log(v)

u := 1
2 (1+u−v−∆), v := 1

2 (1−u+v−∆), ∆ :=
√

(1−u−v)2−4u v

with u := sA/sC and v := sB/sC∫
II=2
A,B,C =O(ϵ),

∫
II=3
A,B,C = −1

ϵ
+
1

2
log

(
sA sB
µ4

)
−2+O(ϵ)

a

B

Cℓb

ℓc

ℓa

I

∫
II=1
a,B,C =

1

ϵ
log

(
sC
sB

)
−1

2

[
log(sC)

2−log(sB)
2
]
−log(µ2)log

(
sB
sC

)
+O(ϵ)∫

II=2,3
a,B,C =

1

ϵ
−1

2
log

(
sB sC
µ2

)
+2+ log

(
sB
sC

)
1

2 [[pA, pX ]]

[
[[pB−pC , pX ]]−4 [[pB, pA, pC , pX ]] /(sB−sC)

]
+O(ϵ)

a

b

Cℓb

ℓc

ℓa

I

∫
II=1
a,b,C =− 1

ϵ2
+
1

ϵ
log

(
sC
µ2

)
−1

2
log

(
sC
µ2

)2

+O(ϵ)∫
II=2,3
a,b,C =

1

2

(
1

ϵ
− log

(
sC
µ2

)
+2

)
+O(ϵ)

A B
ℓa

ℓb ∫
IA,B =

1

2

(
1

ϵ
− log

(
sA
µ2

)
+2

)
+O(ϵ)

a B
ℓa

ℓb ∫
Ia,B = O(ϵ)

Table B.3. Integration results for all box, triangle, and bubble integrands in B
(4)
2 .
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