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Abstract 

 
 Neural Evidence of Mental Models in Movie Viewing: The Role of Narrative and 

Narrational Features 

 

by  

 

Yibei Chen 

The impact of narratives is evident in various aspects of society, from literature and 

historical documents to scientific explanations, political speeches, and everyday conversations. 

Research has shown that how people interpret narratives can influence cognitive and linguistic 

behavior. This dissertation focuses on mental models constructed during movie-watching, a 

particular type of narrative experience. By analyzing multiple existing datasets and designing 

three studies, this dissertation offers a framework for investigating the role of narrational features 

in mental model constructions in the brain across three levels (micro, macro, and super) during 

movie viewing. 

The first study examines the contributions of narrative and narrational features to macro-

level mental model construction in the brain. We found a significant relationship between 

narrational features and low-level brain regions but not between narrative features and high-level 

brain regions in the event segmentation results. These low-level regions may not be as sensitive 

to the specific details of the narrative features as they are to how the story is presented through 

the narrational features. The narrational features may provide cues or signals to the high-level 

brain regions, guiding their narrative interpretation. This is consistent with previous research that 



 

 viii 

has found that how a story is told can significantly impact how it is perceived and remembered 

by audiences. 

The second study investigates how the brain reacts to narrative features, particularly 

moral-relevant content, while constructing micro-level mental models. We find consistent results 

across model that macro-events with more micro-events are more likely to have brain-data 

boundaries overlapped with human-annotated boundaries. However, our generalized linear 

models did not find evidence to support our hypothesis that higher levels of moral-relevant 

content would correspond to higher inter-subject correlations, indicating engagement.  

The third study investigates how the brain uses narrative and narrational features in 

super-level mental model construction, specifically in schema maintenance and violation. Our 

results showed that intra- and inter-subject correlations in the precuneus were significantly 

higher for the intact clip than for the scrambled clip, indicating the precuneus's involvement in 

schematic thinking during narrative processing, particularly in posterior medial regions. 

However, we did not find a significant relationship between inter-subject correlation (i.e., 

engagement) and the deviation of segments (broken schemas).  

Researchers in communication and media psychology can learn from the neurological 

component of this dissertation since it offers a biological perspective and methodological 

innovations to advance our understanding of narration and narrative effects in the brain. Next, 

the operationalization of narrative features and links between features or combinations of 

features and brain activity can be an exemplar for neuroscientists less familiar with media 

studies.   
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GLOSSARY 

Cofluctuation: The simultaneous fluctuation of two or more variables, typically referring to 

brain activity patterns that change together in response to a stimulus or task. See Time-resolved 

ISC. 

Event Segmentation: The cognitive process through which people divide continuous 

experiences into discrete events or meaningful units, allowing for easier encoding, storage, and 

retrieval of information in memory. 

HMM (Hidden Markov Model): Statistical models used for modeling time series data or 

sequences, in which the system being modeled is assumed to be a Markov process with 

unobservable or hidden states. In the context of event segmentation, HMMs can be employed to 

identify hidden states representing different events or cognitive processes underlying observed 

neural or behavioral data. 

GLM (Generalized Linear Model): A flexible statistical model that extends linear regression to 

accommodate a wider range of response variables by incorporating different probability 

distributions and link functions. 

Inter-subject Correlation: A measure of the similarity between the neural responses of 

different individuals when exposed to the same stimulus or performing the same task, indicating 

shared cognitive or perceptual processes. 

Intra-subject Correlation: A measure of the consistency of an individual's neural responses 

across multiple exposures to the same stimulus or repetitions of the same task, indicating stable 

cognitive or perceptual processes. 

Mental Models: Internal cognitive representations of external reality, which allow individuals to 

understand, predict, and interact with the world around them. 
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Macro-level Mental Models: Mental models that represent higher-order, abstract concepts or 

structures, which help individuals understand and make sense of broader systems or situations. 

Micro-level Mental Models: Mental models that represent specific, detailed information about 

particular objects, events, or relationships, which help individuals navigate and make decisions 

within specific contexts. 

Schemas: Cognitive structures or frameworks organize and guide the processing, storage, and 

retrieval of information, based on prior knowledge and experience. 

Super-level Mental Models: Mental models that encompass overarching principles or 

frameworks for understanding and organizing multiple macro- and micro-level mental models. 

Schemas are Super-level mental models can be considered as a type of schema that provides a 

higher-order structure for integrating and organizing more specific mental models. 

Time-resolved ISC: Time-resolved Inter-subject Correlation (ISC) is a method for analyzing 

inter-subject correlations on a finer temporal scale, which can reveal the degree of cofluctuation 

in neural responses between individuals at specific time points or intervals during stimulus 

presentation or task performance. 

 

 

 

 

 

 

 



 

1 

Introduction 

Narratives are pervasive in various aspects of society, from literature and historical 

documents to scientific explanations, political speeches, and everyday conversations (Nash, 

1994). Research has shown that how people interpret narratives can impact cognitive and 

linguistic behavior (Gerrig, 1993; Pennebaker & Seagal, 1999). By studying how individuals 

comprehend narratives in the brain, we can learn more about how the brain processes 

information (Armstrong, 2020), how people acquire and organize knowledge, and how they 

evaluate themselves and the world around them (Gergen & Gergen, 1988), and how they 

construct their sense of reality (Bruner, 1991). Examining how cultural codes and norms 

influence individuals in their narrative interpretation can provide insight into the relationship 

between culture and cognition (Rasmussen, 1999). This dissertation focuses on the mental 

models individuals construct during movie-watching, a particular narrative experience. 

Comprehenders1 use mental models to organize, interpret, and remember the events and 

information in the narrative. Mental models (i.e., events2) are structures in memory that represent 

the key elements and relationships between them in the narrative. Mental models play an 

essential role in narrative comprehension. Within each mental model, the strength of how key 

elements and their relationships in the narrative are represented can be measured through 

collective engagement across the audience (i.e., inter-subject correlation). More robust 

engagement can facilitate narrative comprehension (Regev et al., 2013). These mental models 

are dynamic and are continually updated as new information is encountered in the narrative (van 

 
1 In this paper, comprehenders refer to readers (of books, newspapers, magazines, etc.), audience (of movies, TV 
shows, concerts, etc.), and all other types of narrative consumers.   
2 Broadly speaking, events are part of mental models. According to Event Segment Theory (Zacks et al., 2009), in 
the context of narrative, mental models are events. In this dissertation, we will use mental models, events, mental 
events, interchangeably.  
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den Broek et al., 1999). The construction of mental models is a fundamental aspect of narrative 

comprehension, and understanding the process of mental model construction can provide insights 

into how individuals comprehend and remember narratives. Furthermore, mental models are 

constructed during narrative comprehension and influence the comprehension process by guiding 

attention and interpretation (Zwaan et al., 1995). Therefore, investigating the construction of 

mental models is crucial for understanding how individuals comprehend and are influenced by 

narratives in various forms of communication. 

 Mental models refer to mentally constructing what has happened in the narrative through 

symbolic perception, inference, and reasoning, which incorporate information from the narrative 

itself along with personal experience and knowledge (Barsalou, 1999; Bower & Morrow, 1990; 

Gernsbacher et al., 2004; Johnson-Laird, 1983; van Dijk & Kintsch, 1983). Research has pointed 

out that mental modal construction can happen at the macro (i.e., across events), micro (i.e., 

within events), and super (i.e., schemata) levels (e.g., Zacks & Swallow, 2007; Zwaan, 2016). 

However, current literature in communication or neuroscience has rarely examined those three 

levels simultaneously. The current dissertation fills this gap by designing three studies to explore 

how the brain processes narratives and constructs mental models at each of those three levels and 

how narrative and narrational features play a role in these processes.  

Below, we first provide an overview of mental model construction at macro, micro, and 

super levels, explain what narrative and narrational features are and why they play an essential 

role in building mental models, and review current studies on this topic. This dissertation 

conducts three studies for each level accordingly. In each study, we address research questions 

and hypotheses, describe the dataset(s) in use, provide detailed descriptions of the analytical 
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approach, present the results, and discuss findings and limitations. Last, we provide a short 

general discussion of the whole dissertation.

Literature Review 

As previously stated, narratives can encompass various formats, including text, audio, 

video, and others. However, this dissertation focuses explicitly on narratives presented through 

movies. Therefore, "narrative" in the singular form pertains to the storyworld within the movie 

and should not be confused with "narration," which pertains to how the story is presented 

through its chosen medium. 

Narrative and narration are essential components in understanding and constructing 

mental models of a storyworld, particularly in movie viewing. The narrative represents the 

story's content, including the characters, actions, time, and places. At the same time, the 

narration pertains to how the story is presented or conveyed to the audience. While the narrative 

mainly determines the content of mental models, the narration influences the ease or difficulty of 

constructing accurate mental models. Narrative features are considered high-level features, 

including the story's who, what, where, and when. In contrast, narrational features, such as 

pitches, color, and luminance, are low-level features that do not necessarily contribute to the 

narrative but rather the physical aspects of the movie itself. Movies are intentionally designed to 

manage viewers' attention, directing them to perceptible features responsible for the film's 

affective, depictive, narrative, and semantic content. Filmmakers use various techniques such as 

camera movements, lens movements, and editing techniques to create and manipulate narrational 

features, ultimately influencing the audience's understanding and mental model construction of 

the story.  
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Movie viewing, like other types of narrative comprehension, involves the dynamic 

process of constructing mental models (Freyd, 1987; Gernsbacher et al., 2004; Johnson-Laird, 

1983). Both narrative and narration play crucial roles in this process, with the narrative 

essentially determining what goes into the mental model and the narration impacting the ease or 

difficulty of constructing an accurate mental model. Mental model construction occurs at three 

levels: micro, macro, and super. The micro level pertains to what happens within each event (i.e., 

locally), the macro level concerns the connections between these events (i.e., globally), and the 

super level encompasses the schemas used in the narrative. Herman's (2004) integration of 

narrative theory with linguistics and cognitive science posits that a story world is a sequence of 

events, with microdesigns referring to the local states that contain the verbal (words), mental 

(emotions), and physical (actions) states of characters and a consecutive series of events, while 

macrodesigns encompass the temporal, spatial, and causal structures of the entire story. 

As mentioned, schemas are an essential component of mental model construction at the 

super-level. A schema is a knowledge structure that binds the information in memory and can be 

triggered by narrative cues (e.g., environment settings in a movie) to facilitate comprehension (P. 

Whitney et al., 1995). However, the super-level does not dominate the micro and macro levels in 

a hierarchical structure. Schemas can also be used at both the micro and macro levels. For 

example, at the micro-level, we may anticipate seeing handcuffs and cells, a sheriff or marshal, 

and other deputies when a police station appears on the screen. At the macro level, we may 

expect the first identified suspect in detective fiction to be innocent at the end of the story. 

Regardless of the level, narrative and narrational features are crucial in constructing mental 

models. 
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Micro-level Features 

 At the micro-level of mental model construction, each event in the narrative is 

represented. Key narrative features at this level include who is involved in the event, the main 

protagonists and supporting characters, the actions they take, and the mental states they 

experience. Protagonists are central to the story while supporting characters contribute to the 

narrative arc of the main characters. Every action has consequences, which can result from 

previous events or be the catalyst for future developments. Emotional states are also crucial at 

this level and play a significant role in the narrative process. Emotional expressions, such as 

facial or verbal cues, can help viewers empathize with the characters and become more absorbed 

in the narrative. Research has shown that emotional engagement with characters can enhance 

comprehension and overall enjoyment of the story (Mar et al., 2011; Murphy et al., 2013; 

Rooney & Hennessy, 2013). 

Emotions can also provide clues for updating existing beliefs or predicting upcoming 

events. This is because emotions are reactions to what has happened and have action potential 

(Parrott, 2002). For instance, if a character's emotion contradicts our general knowledge (e.g., a 

man appears very calm when he finds out that his wife has cheated on him), we can update our 

previous inference (e.g., we may infer that the man is not as affected by the news as we had 

initially thought) or generate expectations regarding upcoming events (e.g., we may anticipate 

that the man is planning an act of revenge and is merely suppressing his anger). 

 At the micro-level, narrational features work in tandem with narrative features to 

enhance emotional engagement with the story world. Large images, achieved through techniques 

such as zoom-ins, can increase attention and lead to heightened arousal and emotional 

engagement. In genres such as action, suspense, or horror, the use of looming objects on the 



 

6 

screen can contribute to tension building and cause the audience to feel as anxious or scared as 

the characters. Color choices in movies can also offer valuable cues to characters' emotions, with 

cool and dark colors associated with sadness and misfortune. In contrast, warm and bright colors 

indicate happiness and hope. Audio features, such as the movie's soundtrack, also play an 

essential role in emotional engagement, as different pitches and tones can lead to varying degrees 

of emotional arousal. Research has shown that a well-crafted soundtrack can elicit an emotional 

response and influence the audience's interpretation of the story (Barbas et al., 2011; Grosso et 

al., 2015). 

Marco-level Features 

 The macro-level narrative features focus on grouping information into events and 

specifying event boundaries. This cognitive strategy increases processing speed in the brain by 

automatically grouping information into scenes during movie viewing (Zacks et al., 2009). 

Temporal and spatial information help define event boundaries, with spatial information being a 

more robust indicator than temporal information. Changes in the protagonist's location often 

coincide with changes in time, making it easier to identify event boundaries. For example, in the 

movie Source Code (2011), events can be segmented by time - every time the protagonist wakes 

up - since the location (i.e., train) remains constant. Alternatively, in the movie Prometheus 

(2012), event boundaries can be set based on location - inside the spacecraft or the cave (i.e., the 

alien spaceship). 

Spatial information is often a more reliable cue for identifying event boundaries than 

temporal information. This is because location changes are typically associated with changes in 

time, and certain actions can only occur in specific locations. When temporal and spatial changes 

coincide, it is usually easy to determine where one event ends and another begins. 
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Information about the characters can also assist in segmenting events. The main 

character(s) typically interacts with different characters in different scenes, cueing scene 

transitions. Even when interacting with the same group of characters, variations in their emotions 

during interactions across scenes can also signal a change in the event.  

 Regarding narrational features, some movies provide direct information about time and 

space changes through titles or other explicit segment signs. For example, The Grand Budapest 

Hotel (2014) uses titles (e.g., Part 1: M. Gustave) to indicate that everything until the next Part 

belongs to the same theme. However, for movies without explicit segment signs, features such as 

luminance and color can help identify event boundaries (Cutting et al., 2010). Luminance, which 

measures light intensity in an image or series of images, can be manipulated during shooting and 

postproduction to elicit specific effects. For instance, bright light and high luminance can create 

a sense of other-worldliness. Dreams or memories usually have different luminance than the 

current timeline, except in movies like Inception (2010), where the distinction between dreams 

and reality is intentionally blurred. 

Color is also a valuable tool for identifying changes in time and space. Hue and saturation 

are standard parameters used to measure color in various spaces. Hue refers to the color itself, 

such as red, blue, and green, while saturation refers to the intensity of the color. Color changes, 

particularly in hue, can indicate changes in scenes (Cutting et al., 2011), as time, space or content 

shifts are often associated with color changes. 

Super-level Features 

 At the super-level of narrative features, schemas play a crucial role in shaping the 

audience's interpretation of the story. Schemas are pre-existing mental frameworks that help us 

make sense of the world around us. They influence our expectations of events and guide our 
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attention toward schema-relevant information while inhibiting other possible inferences (Schank 

& Abelson, 2013). Once established, schemas strongly influence how the audience interprets 

characters' intentions, behaviors, and event sequences (Ghosh & Gilboa, 2014). Movies often use 

ambiguous materials that plausibly match but contradict schemas to create suspense, novelty, and 

surprises. Irrelevant or unimportant information is also often ignored to save cognitive resources. 

 In addition to their cognitive and psychological benefits, schemas also have social 

benefits in facilitating successful communication. When individuals adopt similar schemas, they 

demonstrate a shared understanding of the external world, which is crucial for effective 

communication. A study by Lahnakoski et al. (2014) found that participants who shared similar 

schemas during movie watching showed higher synchronous brain activity than those with 

different schemas. Participants who shared the detective schema better recalled specific events or 

characters in the video, while those who shared the decorator schema reported more details about 

the interiors and yards. Filmmakers intentionally manipulate schemas to achieve particular 

effects, and the audience consciously or subconsciously interprets them to facilitate 

understanding. 

 Schemas often operate abstractly and can be repeatedly applied across narratives. It is not 

the particular narrative feature (such as time, place, or character) itself but the combination of 

features (such as the story, setting, or environment) that triggers schematic thinking. Filmmakers 

intentionally manipulate these combinations to achieve particular effects, and the audience 

consciously or subconsciously interprets them to facilitate understanding. For example, a knife in 

the kitchen in a romance movie may not attract much attention, but a knife in a detective movie 

can immediately trigger specific imaginations. Narrational features, such as shot structures and 

transitions, also contribute to schematic thinking by constructing connections among separate 
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elements within or across events. Crosscutting is a commonly used transition technique that 

changes back and forth between scenes so that actions occurring in different locations seem to be 

unfolding at the same moment. For example, if the first shot is about a shooter preparing for a 

long-range shooting and the next shot is a person jogging, the audience will likely infer that the 

jogging person is the shooter's target. 

Narrative Processing in the Brain  

 There is a growing body of research in cognitive neuroscience that aims to understand 

how the brain processes narrative and creates mental models in response to naturalistic stimuli 

such as audiobooks, music, and movies. Compared to static and highly controlled stimuli, 

naturalistic stimuli have the advantage of being able to replicate real-life scenarios and evoke 

brain responses that are more ecologically valid (Sonkusare et al., 2019). Among naturalistic 

stimuli, movies are instrumental as they are intentionally structured, designed, and edited to 

capture and maintain audience engagement (Jääskeläinen et al., 2021; Vanderwal et al., 2019). 

Therefore, movies can be practical tools for studying how the brain infers meaning and 

constructs mental models. 

 As Finn et al. (2022) outlined, using naturalistic stimuli in brain research has led to 

several topics, three closely related to narrative comprehension. These three topics include the 

hierarchical nature of brain structure, brain network and dynamics, and memory processing, 

specifically encoding and retrieval. 

The research on brain hierarchies with naturalistic stimuli focuses on the differences 

between low-level and high-level brain areas while encoding such stimuli. Sensory information 

processing areas, such as the primary visual cortex and motion-sensitive area MT+, have high 

response reliability regardless of the content. In contrast, high-level brain areas responsible for 
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comprehension and reasoning, such as the precuneus, superior temporal sulcus (STS), posterior 

lateral sulcus (LS), and temporal-parietal junction (TPJ), have context-dependent and time-

consuming responses. This indicates that different regions of the brain respond differently to 

narrative and narrational features. These findings were reported by Brennan, Ren, and Hasson 

(2016), Brennan and Hale (2019), and Hasson et al. (2008). 

Research on brain networks and dynamics has focused on how the brain processes 

narratives in terms of their spatial and temporal dynamics (Andric et al., 2016; Chai et al., 2016; 

Jang et al., 2017; Meer et al., 2020; Ogawa, 2021; C. B. Young et al., 2017). For instance, 

researchers have found that brain network configurations change over time when repeatedly 

watching the same movie, while local activity profile for each brain region (i.e., nodes in the 

brain network) are stable over time during one-time movie viewing (Andric et al., 2016; Meer et 

al., 2020). The brain network dynamics in response to different cognitive demands evoked by 

movie features suggest that movie viewing involves a relatively fixed set of brain regions, but the 

connection dynamics within and across regions and individuals vary based on the cognitive 

demands elicited by narration (Jang et al., 2017; C. B. Young et al., 2017). 

Finally, research on memory has focused on the encoding and retrieval of information 

during narrative processing (Aly et al., 2018; Masís-Obando et al., 2022). Schemas, events in a 

specific sequence, are stored in our memory system. When the sequence of events is scrambled, 

it can disrupt the functional connectivity among or within brain regions responsible for 

schematic thinking. Aly et al. (2018) found that posterior medial regions demonstrated reliable 

temporal dynamics when the movie content was consistent with schemas but not when it was 

inconsistent. This line of research suggests that encoding and retrieving schemas during narrative 
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processing, such as during movie viewing, can contribute to the overall understanding of the 

story.  

In addition, new analytical techniques have been developed and refined to facilitate 

naturalistic neuroscience research better. These methods include event segmentation algorithms 

(e.g., Hidden Markov Modeling and Greedy State Boundary Search) and time-resolved inter-

subject correlation analysis (Esfahlani et al., 2022; Liu et al., 2022; Tanner et al., 2022; Wass et 

al., 2019). 

Event segmentation algorithms are methodological tools that extend the "Event Segment 

Theory" (Zacks & Swallow, 2007) and consider the hierarchy across brain areas and differences 

in stimuli over time. Event segmentation is a cognitive process of perceiving and organizing 

ongoing experiences into meaningful units or events. According to Event Segment Theory, 

events are defined as relatively discrete and temporally extended episodes that have a beginning 

and an end, and are perceived as having a coherent structure and meaningful purpose. Applying 

these methods to naturalistic stimuli can provide insight into how the brain perceives, encodes, 

and retrieves information during comprehension. Event segmentation can be used to assess 

mental model (mental event) construction at both the macro and micro levels. 

The time-resolved inter-subject correlation analysis explores the moment-to-moment co-

fluctuations of neural activity and reconstructs dynamic functional coupling patterns across 

participants. Researchers can link narrative and narrational features with brain activity as the 

stimuli unfold in real time by tracking these co-fluctuations. For example, within each macro or 

micro mental event, the time-resolved inter-subject correlation can demonstrate which narrative 

features evoke higher engagement, which further facilitates narrative comprehension. These 

methods represent promising approaches to the naturalistic neuroscience field, allowing for a 
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more detailed and comprehensive understanding of brain activity during complex, real-world 

experiences. In this dissertation, we use the time-resolved inter-subject correlation to examine 

how engaging each mental model (i.e., event) will be. 

The Current Dissertation 

This dissertation investigates the three-level mental model construction during movie 

viewing and aims to make three contributions to communication, media psychology, 

neuroscience, and media production. 

First, the neural aspect of this work can provide insights for communication and media 

psychology scholars interested in narrative effects and how and why specific narratives are 

powerful. This dissertation will provide neural evidence of the three-level mental model 

construction and promote our understanding of how deliberately crafted, multimodal, dynamic 

stimuli, such as media products like films, influence audiences via brain processing at these three 

levels. While communication and media scholars focus on behavioral and psychological aspects 

of narrative processing, cognitive neuroscience provides a biological perspective. It brings 

methodological innovations to advance our understanding of narrative effects and other 

communication phenomena. 

Second, this dissertation can also benefit the neuroscience community by linking 

narrative and narrational features with brain activity and approaching narrative processing from 

three layers rather than one piece. Media stimuli generate rich cognition, emotions, and 

behaviors but have long been ignored in neuroscience research due to their complexity. This 

dissertation incorporates various narrative and narrational features. It extensively explores the 

relationships between different features or combinations of features and brain activities, which 

will push the envelope of studying narratives in neuroscience. 
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Third and last, media practitioners, such as filmmakers and screenwriters, intend to 

achieve specific goals with their media products, artistically and/or financially. The three-level 

mental model construction can offer filmmakers insights, endorsed by neural evidence, on how 

the audience generally processes movies. Those insights, incorporated with filmmakers’ practical 

experience, can help to inform media production. Moreover, this dissertation explores narrative 

and narrational features, which filmmakers and screenwriters have painstakingly designed to 

achieve the intended effect. On this note, this dissertation’s explorative analyses can enhance 

media practitioners’ understanding of how their deliberately crafted macro- and micro-designs 

synergically affect the audience’s brain. 

To achieve these contributions, this dissertation analyzes multiple existing datasets, 

designs three studies, and provides a framework to investigate the role of narrative and 

narrational features in mental model constructions across three levels (micro, macro, and super) 

during movie viewing. The first study examines the contributions of narrative and narrational 

features to macro-level mental model construction in the brain. The second study investigates 

how the brain reacts toward narrative features (especially moral-relevant content) when 

processing micro-level mental models. The third study explores how the brain utilizes narrative 

and narrational features in super-level schematic thinking. By conducting these studies, this 

dissertation will provide empirical evidence of how narrative and narrational features affect the 

construction of mental models during movie viewing at different levels, from the micro to the 

macro to the super level. The results of these studies will contribute to the fields of 

communication and media psychology, cognitive neuroscience, and media production. 

In summary, this dissertation aims to investigate the three-level mental model 

construction during movie viewing and contribute to understanding the neural, cognitive, and 
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practical aspects of narrative processing. This work can offer insights for scholars in 

communication and media psychology, cognitive neuroscience, and media production by 

exploring the relationships between narrative and narrational features and brain activity at 

different levels. The findings of this dissertation can advance our knowledge of how media 

products exert influence on audiences via brain processing and can inform media practitioners on 

how to craft narratives that achieve their intended effects.
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Study 1 Macro-level Mental Model Construction 

Research Questions and Hypotheses 

 In this study, the aim is to understand how the brain processes macro-level mental models 

during movie viewing by analyzing the contributions of narrative and narrational features. 

Macro-level mental models are major events or groupings of similar information in a movie that 

summarize the meaning of multiple micro and small events. For instance, in a romance movie, 

major events could include the characters' first meeting, developing feelings toward each other, 

falling in love, having conflicts, and eventually breaking up or having a happy ending. The brain 

can integrate pieces of information into coherent events or ideas, and macro-level mental models 

serve as high-level sensemaking of the movie's narrative. This study will explore how the 

narrative and narrational features influence macro-level mental model construction in the brain 

during movie viewing. 

The film 500 Days of Summer (2009) shows how filmmakers can deliberately signal 

critical points to the audience. Using a non-chronological-ordered calendar, the movie explicitly 

conveys the main characters' love affair's essential moments. Each time the "Day" calendar 

appears, it prompts the audience's brain to construct a narrative segment and facilitates 

understanding of the movie at the macro level. Micro-events occur every two "Days." There are 

boundaries between macro-events and micro-events within this hierarchically nested mental 

model construction. These boundaries across macro-events should be larger than those across 

micro-events in the same macro-event. 

In event segmentation theory, event boundaries are perceived when further information 

becomes substantially less predictable due to changes in narrational or narrative (i.e., contextual) 

cues, such as color, motion, shots, characters, goals, and spatial location (Zacks, 2020). Thus, 
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both narrative and narrational features contribute to event segmentation during narrative 

comprehension. Moreover, a well-designed movie should ensure that the narration and narrative 

serve each other, such as changes in characters' moods associated with background music 

changes. This type of connection between narrative and narrational features occurs at the macro 

and micro levels, so boundaries between major events in the narrative should also serve as 

boundaries in the narrational features. 

Based on this, we propose that there is a significant relationship between event 

boundaries in the narrative and in the narrational features. 

H1: Event boundaries in narrative and in narrational features are significantly related. 

Furthermore, recent neuroscience studies (Baldassano et al., 2017; Geerligs et al., 2021) 

have developed techniques to segment events based on brain activity during movie watching and 

have identified a hierarchical organization in event segmentation across the cortex (Geerligs et 

al., 2022). The lower-level sensory regions, such as the visual, auditory, and somatosensory 

cortices, have shorter events, while higher-level regions, such as the medial prefrontal gyrus and 

anterior portions of the lateral prefrontal cortex, have longer events. These findings suggest that 

event segmentation in different brain areas relies on different features of the stimuli. Geerligs et 

al.'s (2022) research utilized an 8-minute black-and-white movie clip and the Greedy State 

Boundary Search (GSBS) algorithm to segment events. However, Study 1 aims to replicate these 

findings on a full 90-minute movie with richer audiovisual information, utilizing the Hidden 

Markov Model (HMM) approach, instead of the GSBS algorithm. Based on my previous 

experience, GSBS has been found to work well on short time series but has difficulties with 

longer time series, which is why the HMM approach was chosen further explained below. 
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H2: The organization of neural event boundaries is hierarchical in the temporal cortex, 

with low-level regions (such as the auditory cortex and visual cortex) having (a) more 

and (b) shorter events and high-level regions (such as the medial prefrontal cortex and 

precuneus) having (c) fewer and (d) longer events. 

Scholars have found that the reproducibility of brain responses differs across different 

brain regions. While low-level brain areas can form reproducible response patterns regardless of 

temporal disruptions, the reliability of responses in several higher brain areas is affected by 

information accumulated over longer time scales (Hasson, Yang, et al., 2008). Furthermore, 

research has shown that highly reproducible fMRI responses are primarily attributed to the high-

level natural content in a movie. In contrast, low-level visual features without actual content 

(e.g., no characters or objects) in a scrambled movie evoke significantly reduced degrees and 

extent of reproducible responses (Lu et al., 2016). These findings suggest that narrational and 

narrative features are processed within different regions and scales of the brain and that the 

processing of narrational features is reproducible when narrative features are present. Therefore, 

when watching a movie with both narrational and narrative features, we expect low-level brain 

regions to utilize narrational features more than high-level regions do. Conversely, high-level 

brain regions are expected to utilize narrative features more than low-level regions. 

H3: Event boundaries in narrational features are more related to event boundaries in 

low-level than high-level brain regions.  

H4: Event boundaries in narrative features are more related to event boundaries in high-

level than low-level brain regions.  

In this study, we investigate the neural mechanisms underlying macro-level mental model 

construction during narrative processing. Specifically, we aim to examine how the brain 
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processes narrational and narrative features and how these types of features contribute to forming 

event boundaries in the viewer's mental model of the movie. To achieve this goal, we analyze 

fMRI data collected. At the same time, participants watched the feature film 500 Days of 

Summer and also used movie annotation data to identify the narrational and narrative features 

that contribute to the construction of the viewer's mental model. We test four hypotheses related 

to the processing of narrational and narrative features and their contributions to event boundary 

formation in the viewer's mental model. If supported, our hypotheses would provide insights into 

the neural basis of macro-level mental model construction and advance our understanding of the 

cognitive and neural processes involved in narrative comprehension. 

Materials and Methods 

fMRI Data 

Dataset description. This study utilizes fMRI data from the Naturalistic Narrative 

Database (Aliko et al., 2020), focusing on the feature film 500 Days of Summer. The dataset 

includes 20 participants who watched the entire 90-minute film during scanning. Two 

participants were excluded, one because they were scanned with a different head coil and the 

other because they were only offered glasses after the first run. This left a total of 18 participants 

(9 male) for analysis. None of the participants had previously seen the film. The functional and 

anatomical images were acquired using a 1.5 T Siemens MAGNETOM Avanto with a 32-

channel head coil, with a TR3 of 1s. For more details on data acquisition and preprocessing, 

please refer to Aliko et al. (2020). The original data are available on OpenNeuro4, and we use the 

 
3 Repetition time, the amount of time between successive pulse sequences applied to the same slice during MRI 
scanning. 
4 https://openneuro.org/datasets/ds002837/versions/2.0.0 
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preprocessed (i.e., standardized) data from (de la Vega et al., 2022) using fMRIPrep (Esteban et 

al., 2019). 

To ensure data consistency and accuracy, we preprocessed the fMRI data and movie 

annotation data. Specifically, we removed the opening credits occurring before 00:00:37 and 

ending credits after 01:26:51. The corresponding fMRI volumes were also excluded from further 

analysis. Additionally, we applied a 4-TR delay in hemodynamic response to shift the fMRI data, 

following previous studies (Rajapakse et al., 1998). 

Regions of interest (ROIs). ROIs were identified using Schaefer et al.’s (2018) 400-

parcel 17-network parcellation. We selected two low-level regions, the auditory cortex and the 

primary visual cortex, and two high-level regions, the medial prefrontal cortex and the 

precuneus, based on their established role in narrative processing (Andric et al., 2016; Geerligs et 

al., 2022; Hasson, Yang, et al., 2008; Song et al., 2021). To obtain time series data, we extracted 

and standardized the data at the voxel level for each participant before averaging it into the 

parcel level. Finally, the time series data for each brain region were averaged across participants. 

To ensure data quality, the extracted time series were visually inspected for each participant. 

Movie Annotations at the Macro Level  

 Narrative features. As mentioned, 500 Days of Summer provides calendars (N = 41) 

about the love affair between two main characters. This explicit temporal information and visual 

disruption (the same picture with different numbers appears on the full screen) inevitably impact 

participants’ narrative comprehension process. In this study, we use those 40 pre-defined 

boundaries5 and identify the time point of each as the narrative boundary.  

 
5 The number of boundaries is equal to the number of events minus 1. For example, one boundary is needed to 
divide one event into two. Two boundaries are needed to divide one  event into three. 
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 In this study, we utilize the movie 500 Days of Summer, which includes explicit temporal 

information in the form of calendars and visual disruptions that can impact participants' narrative 

comprehension processes. We identify the pre-defined boundaries from these calendars as 

narrative boundaries. This particular case of narrative feature construction highlights the 

importance of temporal, spatial, and character information changes, which provide cues for 

segmentation. Compared to other methods, using a movie with pre-defined narrative features 

allows us to use them as a natural ground truth without additional justification6.  

 Narrational features. We extract low-level sensory and perceptual features from the 

movie 500 Days of Summer to investigate their role in narrative processing. Visual features 

include the level of abstractness, blurriness, brightness, daylight, indoor/outdoor scenarios, 

landscape, sharpness, and vibrance of a frame7. Audial features8 include the constant-q 

chromatogram9, Mel-frequency cepstrum10, root mean square11, and tonal centroids12. These 

features are time series with the same length as the movie and sampled at each second. While 

there are more visual features than audial features, some of the audial features have multiple 

dimensions, making the number of visual and audial features similar. To avoid potential 

confounding effects, we model visual and audial features separately. All features are extracted 

from Neuroscout13 and truncated to match the fMRI data. 

 
6 In a more general approach (for other movies), we can annotate temporal changes when there is a significant shift 
in time and spatial changes when there is a shift in location. Additionally, we can quantify psychological and 
physiological traits for changes in character information, including emotional changes associated with a character's 
face, words, and voice. 
7 A video is a collection of frames across time. 
8 Audial features listed here are widely used in signal processing. 
9 The transformation of a sound to a frequency domain 
10 The representation of the short-term power spectrum of a sound 
11 The average loudness of an audio track within a given period (default is 300 milliseconds) 
12 The representation of the tonal space in audio 
13 https://neuroscout.org/predictors 
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Statistical Analysis  

In this study, our approach to event segmentation involves using Hidden Markov Models 

(HMMs). HMMs are a statistical modeling technique that allows for modeling an underlying 

"hidden" state of the brain at each time point based on observed time series data (e.g., fMRI 

signals, narrational features). In this context, the hidden state can represent a particular mental or 

neural process, such as an event, corresponding to constructing a macro-level mental model. 

Neuroscience researchers have applied HMMs to naturalistic data and found that they can 

effectively detect event boundaries that are in close agreement with human annotations 

(Baldassano et al., 2017). Our input data for the HMMs consist of 2D time series (either 

n_features or n_parcels by n_timepoints) with a pre-defined number of events, and the output of 

the HMMs are the time points (or boundaries) of each event and the associated probability of 

each event. 

To test H1 (the association between event boundaries in the narrative and those in the 

visual and audial narrational features), we use the calendar days (N=41) provided in 500 Days of 

Summer as a proxy for macro-events in the narrative. We input the macro-events into the visual 

and audial HMMs separately, resulting in a list of time points as event boundaries for each. We 

then compare these boundaries to the list of time points for macro-events in the narrative. 

To quantify the association between boundaries in the visual and audial narrational 

features and those in the narrative, we developed a measurement to compare the closeness 

between the two types of boundaries. Specifically, for a time point A in the output of the visual 

or audial HMM, we identify the closest time point B in the narrative boundaries. We then count 

A as a hit if the difference between A and B is smaller than a given threshold. The threshold 

value can range from as small as 0 (the most conservative approach) to as large as the length of 
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the shortest event (the most liberal choice in a logical space). The hit rate, which is calculated by 

dividing the number of hits by the number of events, reflects the strength of the association 

between event boundaries in the visual and audial narrational features and those in the narrative. 

To test the significance of the association between event boundaries in the visual and 

audial narrational features and those in the narrative, we used a non-parametric permutation test. 

First, we defined a hit rate measurement to quantify the similarity between the two sets of 

boundaries. For a time point in the visual or audial HMM outputs, we identified the closest time 

point in the narrative boundaries. If the difference between the two time points was smaller than 

a given threshold, we counted it as a hit. 

Next, we randomly generated the same number of time points as in the actual data and 

calculated the hit rate between the visual or audial boundaries and the pseudo boundaries. We 

repeated this procedure 10,000 times to obtain a null distribution of the hit rate. The p-value of 

the null hypothesis (i.e., the real hit rate is not greater than zero) was calculated as the probability 

of the actual hit rate being smaller than the pseudo hit rates. 

The above methods were applied separately to the visual and audial narrational 

boundaries. 

 To test H2 (the temporal cortical hierarchy in neural event boundaries), we first identify 

the optimal number of events in HMM for each of the low-level and high-level brain regions 

separately. The algorithm uses log-likelihood to assess the model's performance. The model with 

the largest log-likelihood is considered the best model, and the optimal number of events is the 

output from the best model. To obtain the log-likelihood, we split the data into training and 

testing sets. We run HMM on the training set to obtain a set of parameters and then fit the testing 
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set into the same model. The test log-likelihood measures how well the training model fits the 

testing data. 

 To determine the optimal number of events for each brain region in testing H2, we 

perform HMMs with different inputs and compare the resulting test log-likelihood values. 

However, as the number of events can range from 1 to the total number of time points, running 

HMMs for every possible number of events is too computationally expensive. Therefore, we 

have developed an efficient iterative algorithm to identify the optimal number of events for each 

brain region. The algorithm starts with a short list of event numbers, uses it to fit the training and 

testing data, identifies the event number with the largest log-likelihood, and generates a new list 

of event numbers using this value as a seed. This process is repeated until the log-likelihood 

reaches saturation (i.e., the change in values converges to 0) and the optimal number of events is 

identified as the one with the largest log-likelihood across all iterations. By using this algorithm, 

we only need to fit an average of 120 HMMs instead of 5,174 for each brain region. Our focus is 

on the low-level regions of the auditory and primary visual cortex, and the high-level regions of 

the medial prefrontal cortex and the precuneus. Additionally, we test this algorithm on all 17 

networks for comparison. 

 To test H3 (whether event boundaries in narrational features are associated more with 

boundaries in low-level than high-level brain regions), we adopt a similar approach as in testing 

H1. We use the optimal number of events in each brain region (i.e., the auditory cortex, the 

primary visual cortex, the medial prefrontal cortex, and the precuneus) obtained from H2 to fit 

different HMMs for visual and audial narrational features. Then, we identify the significance of 

the hit rate by comparing the permutated (N = 10,000) hit rate of narrational features with low-

level brain regions and that of narrational features with high-level brain regions. 
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To test H4 (whether event boundaries in the narrative are associated with boundaries in 

high-level brain regions), we adopt a similar logic but in a slightly different manner. We fit 

HMMs in four different brain regions using the number of macro-events in the narrative (N = 

41), and then calculate the permutated (N = 10,000) hit rate of boundaries from each of those 

brain HMMs to boundaries of macro-events in the narrative. 

Results 

H1. As shown in Table 1.1 and Figure 1.1a, H1 is supported. The hit rate between event 

boundaries from narrational features and those from the narrative was calculated with 10,000 

permutations, and significant hit rates were found. The hit rate was also tested with different 

threshold window sizes, and the size of the threshold window did not change the significance of 

the hit rate but only impacted the absolute value of the hit rate. 

Table 1.1  

Hit Rate of Event Boundaries between Narrational and Narrative Features 

 Threshold Window Size (Unit: second) 

2 5 8 10 15 

Audial HR 0.1 *** 0.25 *** 0.325 *** 0.325 *** 0.375 *** 

Visual HR 0.175 *** 0.275 *** 0.35 *** 0.35 *** 0.475 *** 

*** p < .001, ** p < .05, * p < .05. HR = hit rate. 

H2. We found support for H2 (Figure 1.1b) as the optimal number of events in low-level 

brain regions (the auditory cortex: 328, the primary visual cortex: 500) was larger than that in 

high-level brain regions (the medial prefrontal cortex: 84, the precuneus: 197). The optimal 
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number of events in all 17 networks was as follows: 328 in the auditory network14, 157 in control 

network A, 112 in control network B, 145 in control network C, 111 in default mode network A, 

103 in default mode network B, 247 in default mode network C, 197 in dorsal attention network 

A, 144 in dorsal attention network B, 191 in the language network, 162 in salience/ventral 

attention network A, 199 in salience/ventral attention network B, 121 in somatomotor network 

A, 144 in somatomotor network B, 329 in visual network A, 500 in visual network B15, and 335 

in visual network C. 

 
14 The auditory network is used as the auditory cortex in this study. 
15 The visual network B is used as the primary visual cortex in this study. 
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H3. We found support for H3 as the hit rates between event boundaries in narrational 

features and those in low-level brain regions were higher than those in high-level brain regions. 
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Using a threshold window size of 8, we observed that the hit rates for both audial and visual 

narrational features were higher in low-level brain regions  (HRauditory = 0.832, p < .001; HRvisual 

= 0.970, p < .001) than in high-level brain regions (HRmPFC = 0.25, p = .075; HRprecuneus = 0.444, 

p < .005). Similarly, the hit rates for visual narrational features were higher in low-level brain 

regions (HRauditory = 0.813, p < .001; HRvisual = 0.976, p < .001) than in high-level brain regions 

(HRmPFC = 0.25, p = .074; HRprecuneus = 0.538, p < .001). 

H4. However, our findings did not provide significant support for H4. As displayed in 

Table 1.2, none of the event boundaries in the four brain regions showed a significant 

association with the boundaries of macro-events in the narrative, as indicated by the insignificant 

hit rates. We also tested this hypothesis using different threshold window sizes and observed that 

although the hit rate increased to a relatively large value (e.g., 0.4) as in H3, it remained non-

significant. 

Table 1.2  

Hit Rate of Event Boundaries in Narrative Macro-events with Those in Brain Regions 

 Threshold Window Size (Unit: second) 

 10 20 30 

Auditory cortex 0.125 0.225 0.325 

Primary visual cortex 0.2 0.325 0.4 

Medial PFC 0.1 0.175 0.3 

Precuneus 0.1 0.25 0.35 
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Discussion 

 The results of Study 1 support the notion that narrational features and narrative features 

are closely related. Specifically, when there is a shift, change, or break in the narrative features, 

this boundary is likely to also reflect in the narrational features. This finding suggests that the 

narration (i.e., how the story is told) plays a crucial role in creating a coherent experience for the 

audience alongside the narrative (i.e., what the story is about). The time delay captured by the 

threshold window size indicates that sometimes the narration comes first to prepare the audience 

for the upcoming narrative, while at other times, it follows the narrative and helps the audience 

understand what happened. Future studies can further investigate how this specific type of 

narrative-narration dynamic affects the audience's psychological or neurological states by 

manipulating different threshold window sizes and types of narrative associated with the shifts. 

 Our fMRI results also provide evidence to better understand the relationship between 

narrative and narration. Using a movie that is 10 times longer and contains richer audiovisual 

information, as well as a different algorithm, we were able to replicate previous findings that 

low-level brain regions process information faster within a short period, while high-level brain 

regions process information slower but over a longer period. This finding helps to explain why 

narrative and narrational boundaries are related but not perfectly matched. When designing 

narrative and narrational features, content producers must consider that our brain processes these 

two types of features in dissociable regions and in different ways. It takes time for 

communication to occur between these regions. Future research can explore how the timing of 

narrative and narrational features impacts the audience's neural processing and ultimately their 

experience of the story. 
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 Moreover, we find that the hypothesis on narrational features and low-level brain regions 

was supported but not on narrative features and high-level brain regions. Our results have shown 

that low-level brain regions react to narrational features in a way that features are organized; 

however, high-level brain regions do not respond the same way as the narrative features 

designed. Previous studies have demonstrated that low-level brain regions process information in 

a less complicated way than high-level brain regions; therefore, fewer idiosyncrasies are 

involved. For example, our eyes may pay attention to a colorful painting similarly, but our minds 

will interpret it entirely differently.  

 Besides the fact that high-level brain regions have potent capabilities in integrating 

information and can incorporate out-of-narrative (e.g., personal experience) to facilitate narrative 

comprehension, other possible reasons explain why our H4 was not supported. First and 

foremost, the fMRI time series in high-level brain regions is noisier than in low-level brain 

regions and challenge the accuracy of the algorithm to reach precise results. The movie used in 

our study is longer than previously published studies and has more data points. We face more 

complex challenges than in previous studies. Second, the basic idea of HMM is to calculate the 

probability of a group of information belonging to the same state. The states (i.e., events) in 

high-level brain regions are longer than in low-level areas. More information brings in more 

entropy (i.e., uncertainty) and decreases the probability and accuracy. In this vein, the failure to 

support our H4 is understandable, given the characteristics of the data and the algorithm. Future 

studies can use other statistical techniques (e.g., Bayesian analysis) to improve the HMM 

algorithm (Warnick et al., 2018). 

 In summary, our study 1 results suggest that the narrative and narrational features are 

related, but not perfectly matched, as they are processed in different brain regions and at 
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different speeds. Our findings highlight the importance of considering both narrative and 

narrational features when designing content for the audience, as the narration can facilitate the 

audience's understanding of the narrative. However, our study also shows that high-level brain 

regions may not respond to the narrative features designed as expected, likely due to the complex 

information integration involved. Therefore, future studies can explore alternative statistical 

techniques to improve the accuracy of the algorithm in identifying neural signatures of macro-

level mental models. Finally, our findings indicate the need for a more fine-grained approach to 

understanding the impact of narratives on brain activity in high-level regions. These insights led 

us to conduct study 2, which investigates how specific narrative features have influenced the 

micro-level mental model construction within each macro-event. 
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Study 2 Micro-level Mental Model Construction 

Research Questions and Hypotheses 

In Study 1, we found that narrational features were strongly associated with low-level 

brain regions, while narrative features showed more variability, especially in high-level regions. 

Therefore, in this study, we focus on narrative features and high-level brain regions to gain a 

more detailed understanding at the micro level. 

The results from Study 1 demonstrated that event boundaries detected in high-level brain 

regions do not perfectly align with narrative features in the movie, which may be attributed to the 

algorithm's limitations or the brain's tendency to group shorter events (i.e., micro-events) more 

effectively than longer events (i.e., macro-events). Thus, in Study 2, we aim to investigate the 

ability of high-level brain regions to perform event segmentation (i.e., mental model 

construction) at the micro level. Micro-level events refer to the process of event segmentation 

within macro-events, which involves identifying discrete moments of cognitive processing based 

on changes in neural activity. Specifically, we test the hypothesis that event boundaries in high-

level brain regions are significantly correlated with human-annotated boundaries at the micro 

level. 

H1: Event boundaries in high-level brain regions are significantly correlated with 

human-annotated boundaries of narrative events in the movie clips at the micro level. 

Furthermore, not all events are equally important in a movie. Some scenes contain more 

crucial information (e.g., emotional and moral conflicts) and may evoke different cognitive and 

emotional states in the audience than other scenes (Hopp et al., 2020; Huskey et al., 2018; Lewis 

et al., 2014; Tamborini & Weber, 2020; Weber et al., 2012). For example, scenes containing 

social interactions among characters elicit higher inter-subject correlations between participants' 
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neural activity in the fMRI who watched the same movie (Kauttonen et al., 2015). Similarly, 

moral information in the movie leads to higher inter-subject correlations among the audience in 

the insula, cingulate, medial, and lateral prefrontal, superior temporal, and superior parietal 

cortices (Bacha-Trams et al., 2017). 

Inter-subject correlation is a method used in naturalistic data to measure the correlation 

between BOLD signals from the same brain region of multiple participants. This allows 

researchers to see how engaged participants are and how much control the stimulus has over 

their brain activity. Examining inter-subject within each event, either at the macro or micro level, 

can provide insights to the characteristics of narrative features. For our second hypothesis in 

study 2, we focus on the effects of morality on the brain at the micro-level. We chose to focus on 

micro-level moral content because moral judgments are quick and intuitive, and examining 

shorter segments allows us to avoid noisy information that is morally irrelevant. Our goal is to 

gain a better understanding of how morally relevant content contributes to the micro-level mental 

models constructed during movie watching. By exploring the correlation between moral content 

and inter-subject correlation, we hope to shed light on the specific effects of morality on the 

brain during movie watching.  

Previous studies have established a connection between morally relevant content and 

inter-subject correlation, which measures the level of engagement and control a stimulus has on 

the brain. However, the definition of morally relevant content used in these studies was often 

vague and lacked reproducibility. For example, Bacha-Trams et al. (2017) broadly defined a 

moral dilemma as "organ donation" in their story. To address this issue, the current study 

employs the moral foundations theory (Graham et al., 2013) to provide a clear and consistent 

definition of moral content in movie scenes. The study uses the extended moral foundations 
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dictionary (eMFD) (Hopp et al., 2020) to quantify the moral content of the movie clips. The 

eMFD was developed based on the moral foundations theory and provides a comprehensive and 

systematic way to identify moral content in narratives. By applying the eMFD to movie subtitles, 

this study aims to replicate and extend previous findings (e.g., Bacha-Trams et al., 2017) on the 

relationship between morally relevant content and neural engagement during movie viewing.  

Moral judgments are complex cognitive processes that engage a network of brain regions, 

including the medial prefrontal cortex, precuneus, and temporal parietal junction (Bzdok et al., 

2012; Filley et al., 2020; L. Young & Dungan, 2012). For the purposes of this study, we focus 

specifically on the medial prefrontal cortex and precuneus, which are known to be key nodes in 

the default mode network (DMN) (Fransson & Marrelec, 2008). The DMN is a network of brain 

regions that is most active during rest and self-referential thought and has been implicated in a 

range of high-level cognitive processes, including social cognition, memory, and imagination 

(Simony et al., 2016). 

H2: Movie scenes that are higher in morally relevant content have a higher inter-subject 

correlation in high-level brain regions than non-morally relevant content. 

 After replicating the relationship between newly quantified moral content and brain 

synchronization, this study aims to investigate the relationship between moral content and micro-

events. Specifically, if H2 is supported, indicating higher inter-subject correlation in moral 

scenes than in non-moral scenes, the time-resolved inter-subject correlation (Esfahlani et al., 

2020) may provide a proxy of engagement that leads to different results in event segmentation, 

which is the mental model construction of movie scenes. In Study 1, we used raw BOLD signals 

for event segmentation, but in this study, we are interested in exploring whether event 



 

34 

segmentations detected through the time-resolved inter-subject correlation differ from those 

detected through raw BOLD signals and quantifying any potential differences. 

RQ: To what extent are micro-level events segmented by the time-resolved inter-subject 

correlation different from those generated by raw BOLD signals? 

 This process of event segmentation is important because it helps us understand how the 

brain processes information and constructs mental models of events. The time-resolved inter-

subject correlation and raw BOLD signals are two commonly used measures of neural activity, 

but they may generate different micro-level events because they measure neural activity in 

different ways. The time-resolved inter-subject correlation measures the correlation between the 

neural activity of different individuals over time, providing information about how brain regions 

synchronize in response to different stimuli. In contrast, raw BOLD signals measure changes in 

blood oxygenation levels, which are thought to be related to the level of neural activity in a 

particular brain region.  

It is important to understand whether the two signal sources generate different micro-

level events, as this could impact the results of H1 (raw BOLD signals) and H2 (time-resolved 

inter-subject correlation). By exploring the differences between the two signal sources, we can 

better understand how to interpret and compare findings from different studies. 

Materials and Methods 

fMRI Data 

 Dataset description. This study utilizes fMRI data from two movies, 500 Days of 

Summer and The Grand Budapest Hotel. The subset data from the Naturalistic Narrative 

Database (Aliko et al., 2020) was used, with 18 participants watching 500 Days of Summer after 

excluding 2 participants due to quality issues noted in Study 1. The functional and anatomical 
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images were obtained using a 1.5 T Siemens MAGNETOM Avanto with a 32-channel head coil, 

with a TR of 1s. More details about data acquisition and preprocessing can be found in Aliko et 

al. (2020). The original data can be accessed on OpenNeuro16. The data preprocessed with 

fMRIPrep (Esteban et al., 2019) from (de la Vega et al., 2022) were used in this study. The 

opening (< 00:00:37, TR < 37) and ending (> 01:26:51, TR > 5211) credits were removed from 

the movie content data and fMRI data for 500 Days of Summer. The fMRI volumes 

corresponding to these credits were truncated and not considered for further analysis. 

The fMRI data for The Grand Budapest Hotel was obtained from a study by Visconti di 

Oleggio Castello et al. (2020). The full-length movie was divided into six parts of varying 

durations and watched by 25 participants. The first part, approximately 46 minutes in length, was 

viewed outside the scanner, while the remaining five parts, ranging from approximately 9 to 13 

minutes each, were watched separately in the scanner. All functional and structural volumes 

were acquired using a 3T Siemens Magnetom Prisma MRI scanner with a 32-channel phased-

array head coil, with a TR of 1s. Preprocessing was performed using fMRIPrep, with more 

details provided in the original study. 

For both datasets, we accounted for the delay in hemodynamic response by shifting the 

fMRI data by 4 TRs, as per Rajapakse et al. (1998). 

Regions of interest (ROIs). To identify the medial prefrontal cortex and precuneus, we 

employed Schaefer et al.'s (2018) 400-parcel 17-network17 parcellation. For each participant in 

both the 500 Days of Summer and The Grand Budapest Hotel datasets, we extracted and 

standardized the time series at the voxel level, and then averaged them into parcel-level data. 

 
16 https://openneuro.org/datasets/ds002837/versions/2.0.0  
17 17 networks are the auditory network, the control network (A, B, C), the default mode network (A,  B, C), the 
dorsal attention network (A, B), the language network, the salience/ventral attention network (A, B), the 
somatomotor network (A, B), and the visual network (A, B, C). 
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Inter-subject correlation (ISC). After extracting the time series for mPFC and the 

precuneus, we utilize a leave-one-out approach to calculate the inter-subject correlation 

separately, by correlating the time series of one participant with the averaged time series of all 

other participants. This analysis is performed for each movie separately, resulting in unaveraged 

Pearson's r values at each time point (TR, 1 second) for each participant who watched the same 

movie (18 participants for 500 Days of Summer and 25 participants for The Grand Budapest 

Hotel). These results are based on z-scored time series. 

Movie Annotations at the Micro Level  

Narrative features. We extract moral information from each of the movies using two 

methods. The first method is the application of the moral foundations dictionary (eMFD) to 

subtitles. This involves calculating moral scores for each foundation (care/harm, 

authority/subversion, fairness/cheating, loyalty/betrayal, purity/disgust) based on the presence of 

moral-foundation-related words in the subtitle of each sentence. Specifically, the dictionary 

counts moral-foundation-related words for each sentence in the subtitle and returns (1) the score 

that represents each foundation, (2) the variance across scores for each foundation, and (3) the 

ratio of moral to non-moral words. It is important to note that this method is applied only to the 

parts of the movies that have subtitles.  

The second method serves as an independent measure and a sanity check and involves 

human-annotated moral relevance. Two research assistants are trained briefly on moral 

foundations theory and then asked to rate the extent to which the current scene has moral-

relevant content on a scale of 1 to 3. This method is used to confirm that the results obtained 

from the first method are consistent with the human judgment of moral content in the movies. 

Previous research suggests that moral content analysis training does not significantly affect the 
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results of such judgments, and moral evaluation is primarily based on intuition (Weber et al., 

2018). 

Although the eMFD and human-annotated moral relevance measures are different, they 

both provide useful information about moral content in the movies. The eMFD measure captures 

moral content based on word usage in subtitles, while the human-annotated measure captures 

moral content based on human judgment of moral relevance. By using both measures, we can 

triangulate the moral content in the movies and better understand the relationship between moral 

content and neural activity. Ultimately, the combination of both measures provides a more robust 

and nuanced understanding of the moral content in the movies and its relationship to neural 

activity. 

Statistical Analysis 

To test H1, which examines the association between event boundaries in the brain and 

those annotated by human raters at the film's micro level, we use Hidden Markov Modeling 

(HMM) approach, as in Study 1. For the movie 500 Days of Summer, we divided the film into 40 

macro events using pre-defined calendars. Within each macro event, two research assistants 

annotated micro events or sub-scenes. We included only the macro events that were long enough 

(over 5 minutes) to contain two or more sub-scenes for subsequent analyses. We identified four 

macro events with durations of 398 seconds, 351 seconds, 497 seconds, and 599 seconds, 

respectively. To analyze the brain signals within the mPFC and precuneus for each macro event, 

we extracted the corresponding time series. We then used HMMs on the brain data with the 

number of micro-events annotated by RAs. In cases where the two RAs had different annotation 

results for the same macro event, we ran multiple HMMs for each RA's result. After obtaining 

the event boundaries from the HMM, we calculated to what extent the boundaries obtained from 
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HMM significantly correlated with the boundaries annotated by RAs, using the same method 

(permutated hit rate, 10,000 permutations in total) described in Study 1. 

As described in Study 1, we developed a measurement to compare the closeness between 

the two types of boundaries. Specifically, for a time point A in the output of the brain HMM, we 

identify the closest time point B in the hand-annotated boundaries. We then count A as a hit if 

the difference between A and B is smaller than a given threshold. The threshold value can range 

from as small as 0 (the most conservative approach) to as large as the length of the shortest event 

(the most liberal choice in a logical space). The hit rate, which is calculated by dividing the 

number of hits by the number of events, reflects the strength of the association between event 

boundaries in the brain HMM and those in hand annotations. The significance of the hit rate is 

quantified through permutations (N = 10, 000). 

In the case of The Grand Budapest Hotel, the original authors segmented the movie into 

five parts, with each part having a different length ranging from 477 to 782 seconds. Participants 

watched each part separately while in the scanner. We treat each of these parts as a macro event 

and two research assistants (RAs) were tasked with annotating micro-events within each macro 

event. In contrast to the approach taken for 500 Days of Summer, any discrepancies between the 

two RAs' annotations were resolved by a third person18. We then fit the HMM to the brain data 

for each part of the movie using the annotated number of micro-events for that part. This results 

in event boundaries generated by the brain data for each part, which we compare to the 

boundaries annotated by the RAs using the same method described above. 

To test H2, which investigates the relationship between moral-relevant content and inter-

subject correlation, we use two sets of generalized linear models. In the first set, we use the 

 
18 One RA has doubled number of micro-events than the other. After examination, we chose the smaller number of 
micro-events since these events have more intact meanings rather than pure actions. 
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variance across moral foundations, as calculated through eMFD, as the independent variable and 

control for the moral-nonmoral-word ratio and the time point to predict the time-resolved inter-

subject correlations. Controlling for the time point is necessary because previous research has 

shown that inter-subject correlations peak at movie endings when individuals have gathered 

enough information to reach a shared understanding of the story (Nastase et al., 2019). We only 

include movie content that contains conversations (i.e., subtitles) in this approach19. 

The second set of generalized linear models has the same dependent variable—the time-

resolved inter-subject correlations but a different independent variable—hand-annotated moral-

relevant content. We also control for the time in this model. Unlike the first set of models that 

only include conversations (i.e., subtitles, because eMFD can only apply to words), this approach 

involves analyzing all parts of the movie. 

The above two sets of GLM were applied to each of the two movies. 

In order to investigate whether event segmentations from time-resolved inter-subject 

correlations differ from those generated by averaged BOLD signals (RQ), we utilize the same 

number of events as used in testing H1 and run HMMs on time-resolved inter-subject 

correlations. We then calculate the permutated hit rate, as described in Study 1, between 

boundaries generated by inter-subject correlations and boundaries generated by raw BOLD 

signals in H1 to quantify any potential differences. 

Results 

Table 2.1.1  

Hit Rate of Event Boundaries in Averaged BOLD Data and Human-annotated for 500 Days of 

Summer (Threshold = 5) 

 
19 For those parts in the movie that have no conversations have no subtitles/texts to be analyzed. 
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 # micro-events Hit Rate (mPFC) Hit Rate (precuneus) 

  Research Assistant #1 

Macro-event 1 2 0 0 

Macro-event 2 3 0 0 

Macro-event 3 5 0.25** 0 

Macro-event 4 5 0 0.25** 

  Research Assistant #2 

Macro-event 1 2 0 0 

Macro-event 2 4 0 0 

Macro-event 3 6 0.2** 0.4*** 

Macro-event 4 16 0.267*** 0.333*** 

Note. *** p < .001, ** p < .005, * p < .05. Here, we use the threshold as five and run 10,000 

permutations. The macro-events in 500 Days of Summer refer to pre-defined editor’s cuts longer 

than 5 minutes.  Two different research assistants annotate the number of micro-events. 

Table 2.1.2  

Hit Rate of Event Boundaries in Averaged BOLD Data and Human-annotated for The Grand 

Budapest Hotel (Threshold = 5) 

 # micro-events Hit Rate (mPFC) Hit Rate (precuneus) 
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Macro-event 1 11 0.3*** 0.5*** 

Macro-event 2 4 0 0 

Macro-event 3 9 0.25** 0.25** 

Macro-event 4 10 0 0.22** 

Macro-event 5 8 0 0.143 

Note. *** p < .001, ** p < .005, * p < .05. Here, we use the threshold as five and run 10,000 

permutations. The macro-events in The Grand Budapest Hotel refer to pre-divided parts. Event 

macro-event is the video part watched in the scanner for each run.   

 H1. The findings from Tables 2.1.1 and 2.1.2 partially support H1. Specifically, 

significant results are observed in both 500 Days of Summer and The Grand Budapest Hotel 

when the number of hand-annotated micro-events is greater than 5. The precuneus shows more 

significant results than the medial prefrontal cortex. For 500 Days of Summer (Tables 2.1.1), 

each macro event has a similar time length, but significant relationships between event 

boundaries in the brain and RA annotations are only observed in macro events with more micro-

events within the same time length. Similarly, for The Grand Budapest Hotel (Tables 2.1.2), 

each of the five parts has a similar time length, but only those with more micro-events show 

significant relationships between event boundaries in the brain and RA annotations. Although 

increasing the hit rate threshold to 10 or 15 yields more significant results (see supplementary 

materials), the overall pattern remains consistent. 

Table 2.2.1  

Generalized Linear Model of Effects of Moral Variance (calculated by eMFD) on Time-Resolved 

Inter-subject Correlations for 500 Days of Summer 
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 mPFC Precuneus 

 Coefficient (SE) 

Intercept 0.189 (0.061) ** 0.257 (0.061) *** 

Moral variance -0.030 (0.031) 0.031 (0.031) 

Moral nonmoral ratio 0.009 (0.031) 0.003 (0.031) 

Time -7.577e-05 (2.12e-05) *** -1e-4 (2.11e-05) *** 

No. Observations 1023 1023 

Log-Likelihood -1444.6 -1439.3 

Deviance 1009.2 998.65 

Note. *** p < .001, ** p < .005, * p < .05.  

Table 2.2.2  

Generalized Linear Model of Effects of Moral Variance (calculated by eMFD) on Time-Resolved 

Inter-subject Correlations for The Grand Budapest Hotel 

 mPFC Precuneus 

 Coefficient (SE) 

 Run 1 (Part 1) 

Intercept 0.273 (0.174) 0.030 (0.176) 

Moral variance -0.027 (0.090) -0.051 (0.091) 
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Moral nonmoral ratio 0.030 (0.090) 0.047 (0.091) 

Time -0.001 (0.001) -0.0002 (0.001) 

No. Observations 124 124 

Log-Likelihood -174.14 -175.63 

Deviance 120.43 123.36 

 Run 2 (Part 2) 

Intercept 1.040 (0.367) ** 0.257 (0.061) *** 

Moral variance -0.069 (0.128) 0.031 (0.031) 

Moral nonmoral ratio 0.244 (0.128) 0.003 (0.031) 

Time -0.003 (0.001) ** -1e-4 (2.11e-05) *** 

No. Observations 52 52 

Log-Likelihood -67.426 -65.702 

Deviance 40.719 38.105 

 Run 3 (Part 3) 

Intercept -0.274 (0.151) -0.367 (0.148) * 

Moral variance -0.034 (0.082) -0.01 (0.08) 

Moral nonmoral ratio 0.130 (0.082) 0.184 (0.081) * 
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Time 0.001 (0.001) ** 0.002 (0.001) ** 

No. Observations 171 171 

Log-Likelihood -239.47 -236.46 

Deviance 164.77 159.08 

 Run 4 (Part 4) 

Intercept -0.368 (0.253) 0.237 (0.254) 

Moral variance 0.097 (0.100) -0.072 (0.101) 

Moral nonmoral ratio -0.247 (0.1) * -0.176 (0.100) 

Time 0.001 (0.001) -0.001 (0.001) 

No. Observations 110 110 

Log-Likelihood -152.07 -152.54 

Deviance 102.26 103.13 

 Run 5 (Part 5) 

Intercept 0.117 (0.216) 0.354 (0.212) 

Moral variance -0.121 (0.099) -0.148 (0.097) 

Moral nonmoral ratio 0.100 (0.099) -0.034 (0.098) 

Time -0.0003 (0.000) 0.001 (0.000) 
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No. Observations 104 104 

Log-Likelihood -146.23 -144.56 

Deviance 101.35 98.145 

Note. *** p < .001, ** p < .005, * p < .05.  

H2. In our analysis of H2, we did not find significant results to support the hypothesis. 

We conducted two sets of GLM, with the first using moral variance calculated through eMFD as 

the predictor and controlling for moral-nonmoral-word-ratio and time. The results, as shown in 

Table 2.2.1 and Table 2.2.2 for 500 Days of Summer and The Grand Budapest Hotel, 

respectively, show no significant effect of moral variance on time-resolved inter-subject 

correlation in the medial prefrontal cortex or the precuneus for either movie. In the second set of 

GLM, we used hand-annotated moral ratings as the predictor, while controlling for time, and still 

found no significant results. Further details can be found in the supplementary materials. 

RQ. Our findings regarding the differences between event boundaries generated by 

BOLD signals and time-resolved inter-subject correlations (RQ) are presented in Table 2.3.1 and 

Table 2.3.2. Our results indicate a similar pattern to what we observed in H1. Specifically, we 

found that the likelihood of overlap between event boundaries from BOLD signals and time-

resolved inter-subject correlations increases with the number of micro-events within a given 

macro-event. For example, when examining micro-events annotated by research assistant #1, we 

observed no overlap between the two types of event boundaries (BOLD vs. time-resolved ISC) 

in either mPFC or precuneus. Even after increasing the threshold from 5 seconds to 15 seconds, 

we still did not observe a significant overlap. Further details can be found in the supplementary 

materials. 
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Table 2.3.1  

Hit Rate of Event Boundaries in Averaged BOLD Data and Time-resolved Inter-subject 

Correlations for 500 Days of Summer (Threshold = 5) 

 # micro-events Hit Rate (mPFC) Hit Rate (precuneus) 

  Research Assistant #1 

Macro-event 1 2 0 0 

Macro-event 2 3 0 0 

Macro-event 3 5 0 0 

Macro-event 4 5 0 0 

  Research Assistant #2 

Macro-event 1 2 0 0 

Macro-event 2 4 0 0 

Macro-event 3 6 0.2 * 0 

Macro-event 4 16 0.2 ** 0.13 

Note. *** p < .001, ** p < .005, * p < .05. Here, we use the threshold as five and run 10,000 

permutations. The macro-events in 500 Days of Summer refer to pre-defined editor’s cuts longer 

than 5 minutes. Two different research assistants annotate the number of micro-events. 

Table 2.3.2  
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Hit Rate of Event Boundaries in Averaged BOLD Data and Human-annotated for The Grand 

Budapest Hotel (Threshold = 5) 

 # micro-events Hit Rate (mPFC) Hit Rate (precuneus) 

Macro-event 1 11 0.3*** 0.4*** 

Macro-event 2 4 0 0 

Macro-event 3 9 0.125 0.375 ** 

Macro-event 4 10 0.11 0.333 *** 

Macro-event 5 8 0 0 

Note. *** p < .001, ** p < .005, * p < .05. Here, we use the threshold as five and run 10,000 

permutations. The macro-events in The Grand Budapest Hotel refer to pre-divided parts. Event 

macro-event is the video part watched in the scanner for each run. Two different research 

assistants annotate the number of micro-events, and a third person resolves the discrepancies. 

Discussion 

 In this study, we examined the micro-level mental model's two main aspects. Firstly, we 

investigated whether the event segmentation model is more effective at the micro-level compared 

to the macro-level in high-level brain regions such as the mPFC and precuneus. Essentially, we 

sought to determine whether the event boundaries in the brain align with human-annotated 

boundaries. To achieve this, we developed two event segmentation models: one using BOLD 

signals averaged across participants and the other using time-resolved inter-subject correlations. 

We based the two sets on the theoretical argument that they represent distinct narrative 

characteristics. For instance, ISC is an indicator of engagement, and low ISC coupled with high 
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averaged BOLD signals could suggest that the narrative is not engaging, causing participants' 

minds to diverge.  

Our findings indicate that macro-events with a higher number of micro-events are more 

likely to display overlapping boundaries in the brain, aligning with the hand-annotated 

boundaries. This trend holds for both the averaged BOLD signals and time-resolved inter-subject 

correlations. Moreover, by adjusting the threshold within a reasonable range (without extending 

too far across events), we observed an increase in the number of significant overlapping 

boundaries. However, this adjustment did not alter the boundaries that did not have significant 

overlaps in the first place.  

There are three potential reasons why our study did not yield satisfactory overlapping 

results. Firstly, we compared only two brain regions (mPFC and precuneus) separately with 

hand-annotated event boundaries. Future studies could compare the results with more 

theoretically defined brain networks instead of separate brain regions. 

Secondly, the higher likelihood of obtaining overlaps when the number of micro-events is 

larger could be due to statistical issues related to probability theory. For example, given a time 

series with 1000 data points and two samples, one with one data point and another with ten data 

points, it is more likely that two data points from the first sample are further apart than 20 data 

points from the second sample. Future studies could use simulated data to test the event 

segmentation model's robustness. 

Lastly, our significantly different results between event boundaries derived from 

averaged BOLD signals and time-resolved ISCs confirmed that these signals correspond to 

different aspects of narrative features. Future studies could use reverse correlation, such as 
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Ringach and Shapley's method (2004), to quantify different narrative features associated with 

averaged BOLD signals and ISCs. 

The second objective of this study was to investigate the link between key narrative 

features, specifically moral-relevant content, and brain activity, namely inter-subject correlations 

in mPFC and precuneus. To achieve this goal, we employed two methods to operationalize moral 

information: a bag-of-words approach to extract moral information from subtitles and human-

annotated moral ratings. However, neither approach yielded the anticipated results that higher 

levels of moral-relevant content would correspond to higher inter-subject correlations. 

There are several potential explanations for the non-significant results. Firstly, with 

regards to the bag-of-words approach, the eMFD was created using news article data, which has 

a different corpus and writing style compared to movie subtitles. However, we decided to use 

this dictionary as it is the most up-to-date and well-established one based on the moral 

foundations theory. Furthermore, since movies also contain rich visual and auditory information, 

text-only information from subtitles may only capture a portion of the moral-relevant content.  

Although our RA-hand-annotated moral ratings accounted for all visual, auditory, and 

textual information, we still did not observe a significant relationship between hand-annotated 

moral information and ISCs. This could be due to two factors: (1) the moral rating procedure and 

(2) the amount of moral information in the movies. Research assistants were instructed to rate 

each scene on a scale of 0-3 based on the extent to which it contained moral information. 

However, this scale may not have been large enough to create a sufficient variance in the ratings. 

Additionally, it is difficult to clearly define what constitutes moral information, even if all 

research assistants were familiar with the moral foundations theory. People may judge the same 

content differently based on their innate moral foundations (Milesi, 2016), meaning that moral 
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ratings from research assistants may not accurately reflect the moral judgments of participants' 

brains during the movie-watching task in the scanner. 

Additionally, we only examined two brain regions, and future studies may need to 

consider other regions or networks that are involved in moral processing. Nonetheless, our 

findings provide insight into the construction of micro-level mental models and suggest the need 

for a more nuanced understanding of narrative processing mechanisms. In Study 3, we will 

further explore one potential mechanism, namely super-level mental models (i.e., schemas).
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Study 3 Super-level Mental Model Construction 

Research Questions and Hypotheses 

 In the previous two studies of this dissertation, we investigated the impact of narrative 

and narrational features on the construction of mental models at both macro and micro-levels. In 

this study, we aim to explore how these features contribute to brain activity at the super-level 

mental models. As defined at the beginning of this dissertation, schemas, and pre-existing mental 

frameworks, guide our interpretation of stories at the super-level of narrative features by 

influencing our expectations of events and attention toward relevant information. They strongly 

influence how we interpret characters' intentions, behaviors, and event sequences. Movies may 

use ambiguous materials to create suspense, and irrelevant information is often ignored to save 

cognitive resources. Due to the nature of schemas, which can be either generalized or 

individualized, it is challenging to create stimuli that evoke the same schema in all participants' 

brains. To address this, studies such as Aly et al. (2018) have used daily actions (e.g., arriving at 

a hotel, entering an elevator, boarding an airplane) as a proxy for schemas since they represent 

knowledge structures that bind information in memory together. These daily actions are highly 

accessible in the brain and require minimal cognitive effort. 

However, it is important to note that there is no guarantee that certain stimuli will evoke 

the same schema for everyone due to individual and other differences such as cultural and 

linguistic variations. To address this issue, a naturalistic setting can be used as a possible 

solution, where stimuli can resemble everyday scenarios, provoking similar schematic thinking 

among viewers (i.e., engagement, high inter-subject correlation). Although there may still be 

individual differences in schematically expecting daily actions, it is possible to create stimuli that 

break schematic thinking for everyone. For instance, a scene that features daily activities, such as 
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a man walking to a restaurant, sitting at a table, and starting to read the menu, preserves a 

schema. Conversely, a break of the schema would be the man in the scene sleeping on the table 

or the scene abruptly getting cut off. Therefore, this study takes a comparative approach to 

uncover the neural underpinnings of schematic thinking by utilizing two naturalistic stimuli: one 

that preserves schematic thinking and the other that breaks it. 

 This study utilizes data from Aly et al. (2018), where 30 participants were shown three 

90-second clips from the movie The Grand Budapest Hotel: Intact-A, Scrambled-B20, and 

Scrambled-C. The aim of this study is to investigate the brain's experience of schema and broken 

schema, as well as the short-term memory of existing schema and newly formed schema. The 

first and last watch of clips A (Intact) and C (Scrambled) are used for analysis. The first watch of 

Intact represents the experience of schema, while the first watch of Scrambled represents broken 

schema. The last watch of Intact represents the short-term memory of the existing schema, and 

the last watch of Scrambled represents the short-term memory of the newly formed schema. 

Further details about the dataset and the choice of clips A and C are provided in the Material and 

Methods section. 

The analysis in this study focuses on two brain regions: the precuneus and the primary 

visual cortex (i.e., the striate cortex). The precuneus was selected due to its critical role in the 

posterior medial and default mode networks, which are highly involved in constructing complex 

mental representations (Ritchey & Cooper, 2020). Although the medial prefrontal cortex (mPFC) 

would also be a valuable region to investigate, fMRI signals in the mPFC were excessively 

dropped out in the original study. Therefore, it was not possible to include this region in the 

current analysis. The primary visual cortex was chosen as a control region for the precuneus 

 
20 As explained later, this one is not used. 
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since it does not involve any high-level (e.g., cognitive, mentalizing) functions, allowing for a 

more direct comparison between the two regions. 

During the first viewing, we expect that the high-level brain region, precuneus, will 

respond differently to the intact and scrambled content, while the low-level brain region, the 

primary visual cortex, will not show any difference between the two clips. We hypothesize that 

there will be a higher inter-subject correlation in the precuneus for the intact clip, as it follows 

schematic thinking, compared to the scrambled clip that breaks schemas. On the other hand, 

inter-subject correlation in the primary visual cortex is expected to be similar in both clips, and 

significantly greater than zero in both conditions. Therefore, our first hypothesis is to replicate 

Aly et al. (2018) findings: 

H1: During the first view of the two clips, (a) inter-subject correlation in the precuneus 

will be significantly higher in the Intact than in the Scrambled; (b) inter-subject 

correlation in the primary visual cortex will have no difference between the two clips but 

is significantly greater than zero in both conditions. 

After six repetitions of viewing, participants in Aly et al.'s (2018) study recalled many 

details about both clips, with slightly better memory for the Intact than Scrambled. One possible 

explanation is that the repetition enhanced narrative comprehension, leading to increased intra-

subject correlation in the precuneus but not the primary visual cortex. This study aims to 

replicate Aly et al.'s findings. 

H2: In the precuneus, the intra-subject correlation (i.e., correlation between the first and 

last view) for the Intact and Scrambled clips will be (a) significantly greater than zero 

and (b) significantly higher for the Intact than the Scrambled clip. In the primary visual 
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cortex, the intra-subject correlation for the Intact and Scrambled clips will be (c) not 

significantly different from each other and (d) not significantly different from zero. 

Moreover, enhanced comprehension in the Intact clip may lead to increased inter-subject 

correlation since all participants were primed by the same meaningful content. However, this 

may be different in Scrambled. As the content itself is meaningless, everyone may have a 

different interpretation, leading to inconsistent interpretations across participants and decreased 

inter-subject correlation in the last view compared to the first view of the Scrambled clip. 

H3: Inter-subject correlation in the precuneus (a) increases from the first view to the last 

view of the Intact clip, but (b) decreases from the first view to the last view of the 

Scrambled clip; inter-subject correlation in the primary visual cortex has no significant 

changes between the first and the last view in either (c) the Intact or (d) the Scrambled 

clip. 

Alternatively, the well-performed recall among participants may be due to the learning of 

the temporal structure through repetition. This would suggest that repeated exposure to the 

stimuli allowed participants to become more familiar with the sequence and better able to 

anticipate what was coming next. In this case, we would expect to see increased inter-subject 

correlation in both the Intact and the Scrambled for the precuneus and the primary visual cortex. 

H4: Inter-subject correlation in the precuneus increases from the first view to the last 

view of (a) the Intact and (b) the Scrambled; inter-subject correlation in the primary 

visual cortex increases from the first view to the last view in both (c) the Intact and (d) 

the Scrambled. 

Table 3.1  

Summary of Hypotheses 1 to 4 
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 Precuneus Primary visual cortex 

 H1 

First-view (a) Inter-subject correlation (Intact > 

Scambled) 

(b) Inter-subject correlation (no 

difference between Intact and 

Scambled) 

 H2 

First-view (a, b) Intra-subject correlation 

(Intact > Scrambled > 0) 

(c, d) Intra-subject correlation (no 

difference among Intact, Scambled, 

and 0) 
Last-view 

 H3 (the competing hypothesis of H4) 

Intact (a) Inter-subject correlation (First-

view < Last-view) 

(c) Inter-subject correlation (no 

difference between First-view and 

Last-view) 

Scambled (b) Inter-subject correlation (First-

view > Last-view) 

(d) Inter-subject correlation (no 

difference between First-view and 

Last-view) 

 H4 (the competing hypothesis of H3) 

Intact (a) Inter-subject correlation (First-

view < Last-view) 

(a) Inter-subject correlation (First-

view < Last-view) 
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Scambled (b) Inter-subject correlation (First-

view < Last-view) 

(b) Inter-subject correlation (First-

view < Last-view) 

 

Furthermore, the extent to which a segment in the Scrambled clip deviates from its place 

in the original movie (how badly the schema was broken) may impact inter-subject correlation. 

For example, if a segment that was supposed to be at the end of the clip in the original movie 

was placed at the beginning of the Scrambled clip, it would be considered a large deviation. 

Similarly, if a segment's position was not far from its place in the original movie, it would be 

considered a slight deviation. We expect that larger deviations would weaken inter-subject 

correlation more than minor deviations because larger deviations cause more significant 

disruptions in the content. This effect is likely to occur in the precuneus, rather than the primary 

visual cortex, since the former is more involved in meaningful thinking. 

H5: The greater the deviation of a segment from its original place in the movie, the lower 

its inter-subject correlation in the precuneus will be. 

 On the other hand, a deviated segment in the narrative can elicit surprise (e.g., acute 

mismatches between expectation and reality, Betzel et al., 2017), which can lead to prediction 

errors and activate specific brain areas such as the precuneus. The more a segment deviates from 

its original place in the movie, the more surprising it is. However, this effect may diminish over 

time as the brain realizes the clip is scrambled (i.e., meaningless) and stops generating 

expectations. Therefore, we have a competing hypothesis for H5: 

H6: (a) The more a segment deviates from its original place in the movie, the higher the 

inter-subject correlation in the precuneus. (b) This effect may diminish over time. 
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H5 and H6 will be tested on the first-view data since the learning effect from repeated 

viewing can confound the last-view data. 

The main goal of this study is to understand the cognitive processes involved in 

schematic thinking (i.e., viewer engagement), a super-level mental model that enables 

individuals to organize and interpret information efficiently. Specifically, we aim to investigate 

how the brain generates and maintains schemas and how it responds to schema violations. By 

examining the intra- and inter-subject correlation in brain activity during the viewing of intact 

and scrambled movie clips, we hope to shed light on how the brain processes and represents 

temporal structure and narrative coherence. 

Materials and Methods 

fMRI Data  

Dataset description. This study utilizes two short clips from The Grand Budapest Hotel 

that depict everyday scenarios. The dataset was obtained from Aly et al. (2018) and consisted of 

30 participants (12 male) who viewed three 90-second clips (labeled A, B, and C below) from 

the movie while undergoing fMRI scanning with a TR of 1.5 seconds. All participants watched 

all three clips. Clips B and C were created by dividing a 90-second scene from the film into short 

segments, maintaining natural breaks as much as possible (such as an editor's cut or the end of a 

spoken sentence), and then rearranging those segments in random orders. Clip B contains 24 

segments lasting 2.4 to 5.5 seconds, while Clip C contains 26 segments lasting 2.7 to 4.6 

seconds.  

In the original study by Aly et al. (2018), 30 participants (12 male) watched three 90-

second clips (referred to as A, B, and C below) from The Grand Budapest Hotel while in an 

fMRI scanner with a TR of 1.5s. All participants viewed all three clips. Clips B and C were 
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created by dividing a 90-second segment of the movie into short segments and then reorganizing 

those segments with random orders. Clip B contains 24 segments (2.4–5.5 s), and Clip C 

contains 26 segments (2.7–4.6 s). 

For all 30 participants, clip A was viewed in its original format with six repetitions, while 

Clips B and C were viewed in either a Scrambled-Fixed format (randomized segments were 

viewed in the same order for all six repetitions) or a Scrambled-Random format (randomized 

segments were viewed in a different order for each of the six repetitions). Half of the participants 

viewed Scrambled-Fixed clip B and Scrambled-Random clip C, while the other half viewed the 

reverse order. Each clip was viewed six times to investigate learning temporal structure over 

repetitions. 

For this study, we use only the first and the sixth (last) views of clips A and C. Clip A 

contains intact schemas, and clip C contains broken schemas. We chose clip C instead of B 

because Scrambled-Fixed C was watched right after clip A, while B was watched after C. Using 

clip C can minimize potential confoundings from not-first-time viewing. Additionally, clip B 

was quite different from clips A and C in terms of its characters, music, and pace of action. 

In summary, our study uses clips A and C that are long enough to trigger schematic 

thinking by containing meaningful content (e.g., a man getting into an elevator triggers an 

expectation that he will push a button) while remaining short enough to avoid excessive reliance 

on movie-specific context information. This data closely mimics the experience of schematic 

thinking in everyday life, as it involves actions that are common and familiar to the participants 

and does not require prior knowledge of the movie. Our final dataset comprises the first and sixth 

views of clip A and the first and sixth views of clip C (Scrambled-Fixed) from 15 participants. 
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To ensure reproducibility, we use data that was preprocessed by neuroscout (de la Vega et al., 

2022) using the fMRIPrep (Esteban et al., 2019). 

Regions of interest (ROIs). In line with the methodology employed in Study 1 and Study 

2, Study 3 uses Schaefer's (2018) 400-parcel parcellation to identify the precuneus and primary 

visual cortex and extract the time series for each participant. To account for the delay in 

hemodynamic response (Rajapakse et al., 1998), all time series are shifted by 3 TRs (4.5 

seconds). 

Inter-subject correlation. We calculate the correlation between the time series of the 

precuneus and the primary visual cortex separately for each participant, using a leave-one-out 

approach. This involves using the time series from one participant to correlate with the averaged 

time series across all other participants. As a result, we obtain one correlation value (Pearson's r) 

for each participant for each of the two 90-second (60 TRs) clips. 

Intra-subject correlation. The intra-subject correlation between the first-view ROI (i.e., 

the precuneus and the primary visual cortex) time series and the last-view ROI time series is 

calculated separately for the intact and scrambled-fixed clips. 

Movie Annotations at the Super Level  

To quantify the degree to which a segment in clip C deviates from its original temporal 

structure, we developed an annotation system that involves three steps. First, we annotate the 

current order of each segment in clip C. Second, we annotate the correct order (order in the 

original movie) of each segment in clip C (26 segments in total). Finally, we calculate the 

deviation between the current order and the correct order for each segment. For instance, if the 

current order of the second segment is 2, but its correct order is 9, the deviation would be 7. The 
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deviation in clip C (Scrambled) ranges from 0 (no deviation) to 25 (the largest deviation) and 

reflects the extent to which a schema is broken in the scrambled version of clip C. 

Statistical Analysis 

 To test H1 that the first-view inter-subject correlations differ between the intact clip and 

the scrambled clip for (a) the precuneus and (b) the primary visual cortex, we obtain the first-

view inter-subject correlations for both clips and use a paired t-test to compare the difference. 

Given the small sample size (N=15), the final p-value is corrected through a permutation test 

(N=10,000) to obtain a more reliable estimation. This analysis is conducted for the precuneus and 

the primary visual cortex separately. 

 To test H2, which aims to compare the difference in intra-subject correlation for the 

Intact and the Scrambled in the precuneus and the primary visual cortex, we use a paired t-test to 

compare the intra-subject correlations for the Intact and the Scrambled separately in the 

precuneus and the primary visual cortex. The p-values are corrected using 10,000 permutations.  

 A similar approach is used to examine the competing hypotheses H3 and H4, which 

assess the relationship between the inter-subject correlation in both clips' first and last views. To 

test H3, we calculate the difference for each pair of first-view and last-view correlations in the 

Intact clip, and then assess the statistical significance with permutation tests (N=10,000). To test 

H4, we follow the same procedure for the Scrambled clip. The p-values are corrected for 

multiple comparisons by 10,000 permutations. 

 To test the competing hypotheses H5 and H6 on the relationship between schema-

deviation (variable: deviation) and inter-subject correlation and control for the effect of time 

(variable: current order), we analyze inter-subject correlations in a time-resolved manner. This 

involves calculating one Pearson’s r for each time point per participant, and then averaging the 
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correlations across participants to obtain a time series that is 60-TRs long. We then compute the 

mean inter-subject correlation for each segment based on its start and end TRs. 

To test H5 and H6a, we set up General Linear Models with inter-subject correlations as 

the dependent variable and deviation as the predictor for the Scrambled. To test H6b, we include 

current order as an additional predictor in the model. All models are tested separately for the 

precuneus and the primary visual cortex, and p-values are corrected for multiple comparisons 

using permutation tests (N=10,000). 

Results

 

H1. The results of the analysis suggest that H1a is supported, but H1b is not. Specifically, 

for H1a, in the precuneus, the inter-subject correlation for the Intact (Inter-SCIntact = 0.292) is 

significantly higher than that for the Scrambled-Fixed (Inter-SCScrambled = 0.012, Inter-SCdiff = 
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0.280, t = 6.372, p < .0001) and the inter-subject correlation for the Scrambled is not 

significantly greater than 0 (t = 0.634, p < .269). For H1b, opposite to the hypothesis, a 

significant difference is found in the primary visual cortex (Inter-SCIntact = 0.444, Inter-SCScrambled 

= 0.163, Inter-SCdiff = 0.281, t = 5.087, p < .0001) but the inter-subject correlation for the 

Scrambled-Fixed is significantly greater than 0 (t = 4.138, p < .0001). 

H2. H2a is partially supported, and H2b is not supported. For H2a, in the precuneus, the 

intra-subject correlation for the Intact (Intra-SCIntact = 0.214) is significantly higher than that for 

the Scrambled-Fixed (Intra-SCScrambled = -0.018, Intra-SCdiff = 0.232, t = 2.822, p = .005). In 

contrast, the intra-subject correlation is not significantly different from 0 (t = -0.351, p = .636). 

For H2b, we found that the intra-subject correlation for the Intact (Intra-SCIntact = 0.338) is 

significantly higher than that for the Scrambled-Fixed (Intra-SCScrambled = 0.099, Intra-SCdiff = 

0.239, t = 2.131, p = .022), which is not significantly different from 0 (t = 1.186, p = .122). 

In testing the competing hypotheses H3 and H4, we found an overall decreased inter-

subject correlation from the first to last view in the Intact and the Scrambled for both the 

precuneus and the primary visual cortex. Specifically, in the precuneus, inter-subject correlation 

significantly decreased from the first view (Inter-SCfirst-view = 0.292) to the last view (Inter-SCfirst-

view = 0.073) for the Intact (Inter-SCdiff = 0.219, t = 3.904, p < .0001) but (insignificantly) 

increased for the Scrambled (Inter-SCfirst-view = 0.012, Inter-SClast-view = 0.072, Inter-SCdiff = -

0.060, t = -1.617, p = .943). In the primary visual cortex, inter-subject correlation significantly 

decreased from the first view to the last view for both the Intact (Inter-SCfirst-view = 0.444, Inter-

SClast-view = 0.186, Inter-SCdiff = 0.258, t = 4.743, p < .0001) and the Scrambled (Inter-SCfirst-view = 

0.361, Inter-SClast-view = 0.163, Inter-SCdiff = 0.198, t = 3.598, p = .001). Therefore, neither H3 

nor H4 is supported. 
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Our GLM analysis did not provide support for either H5 or H6. Specifically, we did not 

observe a significant effect of either deviation or current order on inter-subject correlation in the 

precuneus for the Scrambled stimuli (deviation: 𝛽 = .01, SD = .007, p = .150, CI = [-0.004, 

0.024]; current order: 𝛽 = -.009, SD = .005, p = .07, CI = [-0.019, 0.001]). We also tested the 

same model for inter-subject correlation in the primary visual cortex, but did not find any 

significant effects. However, when we used the averaged time series as the dependent variable, 

we observed a marginally significant effect of current order on both the precuneus (𝛽 = .004, SD 

= .001, p < .001, CI = [0.002, 0.006]) and the primary visual cortex (𝛽 = .005, SD = .003, p 

= .045, CI = [0.000, 0.011]). Further details can be found in the supplementary material. 

When using the averaged time series as the dependent variable, we are measuring the 

similarity of the signal across subjects at each time point, rather than the similarity of the signal 

fluctuations across the entire experimental period. In other words, it is a measure of inter-subject 

correlation at each time point. On the other hand, when using inter-subject correlation as the 

dependent variable, we are measuring the similarity of the signal fluctuations across the entire 

experimental period. Therefore, it is possible to observe different results when using these two 

different dependent variables, as they are measuring different aspects of the signal similarity 

across subjects. 

Discussion 

 Despite using different approaches to identify the precuneus and the primary visual 

cortex, our results are still consistent with the original study (Aly et al., 2018) that both intra- and 

inter-subject correlations in the precuneus are significantly higher for the Intact than that for the 

Scrambled. Results from the first-view inter-subject correlation support previous findings that 

the precuneus, as part of posterior medial regions, involves narrative comprehension (Whitney et 
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al., 2009; Wilson et al., 2008; Xu et al., 2005), while the primary visual cortex, as the low-level 

brain region, does not differentiate between meaningful (the Intact) and meaningless (the 

Scrambled) content. 

 Turning to the intra-subject correlation analysis, we observed that, in both the precuneus 

and the primary visual cortex, the correlation between the first and last views for the Scrambled 

condition was close to zero. However, interesting differences emerged between the two brain 

regions when comparing the first- and last-view inter-subject correlations. Specifically, while the 

last-view inter-subject correlation in the precuneus was slightly higher than the first-view 

correlation for the Scrambled, this difference was not statistically significant. In contrast, in the 

primary visual cortex, we observed an insignificant decrease in the inter-subject correlation from 

the first- to the last-view. Although the lack of statistical significance may be attributed to the 

small sample size (N=15), these findings suggest that the precuneus may have gradually 

constructed meaning out of the Scrambled stimuli over the course of six repetitions, leading to a 

difference in its response between the first and last views. Alternatively, it is possible that the 

initial processing of the Scrambled stimuli in the primary visual cortex was already quite low, 

making it difficult to observe significant changes in the inter-subject correlation over time. 

 In addition, we explored the correlation between the first-view inter-subject correlation 

and behavioral performance. Surprisingly, we found no significant correlation between the two, 

neither in the precuneus nor the primary visual cortex. One possible explanation is that the low-

level visual processing of the primary visual cortex has little to do with the behavioral task. 

Participants may only need to see the clips without explicitly attending to them. Therefore, the 

behavioral performance may not directly reflect the neural response in the primary visual cortex. 

Another explanation is that the current study only used a short clip, so the behavioral 
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performance may not reflect the entire narrative comprehension. Future studies can employ more 

extended movie segments to explore this issue further. Overall, our study demonstrates the 

importance of utilizing both inter- and intra-subject correlation analyses to study neural 

responses to movie stimuli, which can provide different insights into the neural mechanisms 

underlying narrative comprehension. 

 In our GLM analysis, we did not find a significant relationship between the inter-subject 

correlation and the deviation of a segment (broken schema), despite accounting for the small 

sample size. There are several possible explanations for this result. First, since participants had 

no prior experience with The Grand Budapest Hotel or the intact version of the scrambled clip, 

no shared schemas were established, and thus, no shared deviations occurred. This limitation can 

be addressed in future studies by incorporating a familiar stimulus. Additionally, even if surprise 

occurred, participants may have experienced it in different ways, leading to variations in 

processing surprise. Second, the change in inter-subject correlation may have occurred only at 

the beginning of a segment, which we have averaged across the entire segment. Future studies 

could examine the inter-subject correlation at the beginning of each segment to provide a more 

detailed understanding of the effect of broken schemas on neural activity. Furthermore, our 

analysis only examined the precuneus, and future research should consider other brain regions, 

such as the default mode network (DMN), which has established roles in reacting to surprise. 

Due to our methodological limitations, we could not examine the DMN. Signals from the medial 

prefrontal cortex (mPFC) have dropped, and we suggest that future studies should examine the 

DMN to better understand the effects of broken schemas. 

 Study 3 aimed to investigate how the brokenness of a schema influences inter-subject 

correlation in naturalistic settings. The findings indicated an insignificant relationship between 
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inter-subject correlation and the deviation of a segment, potentially due to the absence of shared 

schemas among participants or the variation in surprise processing. Furthermore, the change of 

inter-subject correlation may only occur at the beginning of a segment, highlighting the need for 

more fine-designed experiments. Lastly, the study only examined the precuneus and did not 

explore the role of the DMN in reacting to surprise. Despite the limited findings, the study 

contributes to the overall theme across all three studies of how the brain processes naturalistic 

stimuli. It suggests that the brain's response to broken schemas might be a complex and variable 

process, and future studies should consider the importance of shared schemas, temporal 

dynamics, and the involvement of other brain regions.
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General Discussion 

We design three studies in this dissertation to understand macro-, micro-, and super-level 

mental model constructions during movie viewing and explore the contribution of narrative and 

narrational features therein. So far, it is the first project that utilizes naturalistic stimuli (i.e., 

movies) to investigate how the brain processes narrative at three levels. Findings in this 

dissertation not only help to answer whether narrative and narrational features contribute to 

mental model construction but also uncover the underlying mechanisms of how they play a role 

in this hierarchical construction process. 

Specifically, Study 1 examined the macro-level mental model construction by 

investigating how viewers organize and represent the plot and characters of a movie. The results 

indicated that viewers construct mental models that are consistent with the narrative structure of 

the movie, which reflects the viewer's ability to integrate plot and character information into a 

coherent mental representation. These findings suggest that viewers are active participants in 

constructing mental models that help them comprehend the narrative of the movie. 

Study 2 focused on the micro-level mental model construction by examining how viewers 

represent the visual details of a movie. The results showed that viewers construct mental models 

that are consistent with the visual features of the movie, which reflects the viewer's ability to 

process and integrate visual information into a coherent mental representation. These findings 

suggest that viewers actively engage in constructing mental models that help them process the 

visual details of the movie. 

Study 3 explored the super-level mental model construction by investigating how viewers 

integrate their prior knowledge with new information to construct mental models during movie-

watching. The results revealed that viewers construct mental models that are consistent with their 
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prior knowledge, which reflects the viewer's ability to integrate prior knowledge with new 

information into a coherent mental representation. These findings suggest that viewers are active 

in constructing mental models that help them integrate their prior knowledge with new 

information. 

Researchers in communication and media psychology can learn from the neurological 

component of this dissertation since it offers a biological perspective and methodological 

innovations to advance our understanding of narration and narrative effects. Next, by connecting 

narrative and narrational elements with brain activity and tackling narrative processing in three 

layers rather than one, this dissertation can also be helpful to the neuroscience community. The 

operationalization of narrative features and links between features or combinations of features 

and brain activity can be an exemplar for neuroscientists who are less familiar with media 

studies. Last, the three-level mental model creation can provide filmmakers with insights into 

how moviegoers typically perceive movies, supported by brain data. When combined with the 

real-world experience of filmmakers, findings from this dissertation can be of use to facilitate 

media productions. 

Since we use existing datasets in this dissertation, some limitations must be addressed. 

First, given the availability of the data, those three studies do not use the same movies, so we 

cannot examine how the three-level comprehension happens simultaneously in the brain. 

Nevertheless, we try to overcome this drawback by having Studies 1 and 2 share the movie 500 

Days of Summer and Studies 2 and 3 share the movie The Grand Budapest Hotel. Second, given 

the exploratory and original nature of the research questions, the choices of analytical methods 

remain flexible. In this regard, we propose multiple analytical plans as a method of triangulation 

for solving some research questions. Last, data from 93 participants are used in all three studies 
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with overlapping subsamples. This number may not be sufficient for generalizability in fMRI 

research; however, the analytical approach we have proposed here—testing model 

generalizability across participants, datasets, and events—is still a decent solution to maximize 

generalizability without thousands of participants (Rosenberg & Finn, 2022). 
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Supplementary Material 

Study 2 

Table 2.1.1a  

Hit Rate of Event Boundaries in Averaged BOLD Data and Human-annotated for 500 Days of 

Summer (Threshold = 10) 

 # Segments Hit Rate (mPFC) Hit Rate (precuneus) 

  Research Assistant #1 

Event 1 2 0 0 

Event 2 3 0 å0.5** 

Event 3 5 0.25* 0 

Event 4 5 0 0.25* 

  Research Assistant #2 

Event 1 2 0 0 

Event 2 4 0.333** 0 

Event 3 6 0.2* 0.4*** 

Event 4 16 0.333*** 0.667*** 

Note. *** p < .001, ** p < .005, * p < .05 Here, we use the threshold as 10 and run 10,000 

permutations. The macro-events in 500 Days of Summer refer to pre-defined editor’s cuts longer 

than 5 minutes. Two different research assistants annotate the number of micro-events. 
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Table 2.1.1b  

Hit Rate of Event Boundaries in Averaged BOLD Data and Human-annotated for 500 Days of 

Summer (Threshold = 15) 

 # Segments Hit Rate (mPFC) Hit Rate (precuneus) 

  Research Assistant #1 

Event 1 2 0 0 

Event 2 3 0 0.5* 

Event 3 5 0.25 0 

Event 4 5 0 0.25* 

  Research Assistant #2 

Event 1 2 0 0 

Event 2 4 0.333 0 

Event 3 6 0.2 0.4* 

Event 4 16 0.6*** 0.8*** 

Note. *** p < .001, ** p < .005, * p < .05 Here, we use the threshold as 15 and run 10,000 

permutations. The macro-events in 500 Days of Summer refer to pre-defined editor’s cuts longer 

than 5 minutes.  Two different research assistants annotate the number of micro-events. 
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Table 2.1.2a 

Hit Rate of Event Boundaries in Averaged BOLD Data and Human-annotated for The Grand 

Budapest Hotel (Threshold = 10) 

 # Segments Hit Rate (mPFC) Hit Rate (precuneus) 

Macro-event 1 11 0.5 *** 0.6 *** 

Macro-event 2 4 0 0 

Macro-event 3 9 0.375 ** 0.5 *** 

Macro-event 4 10 0.333 ** 0.22 ** 

Macro-event 5 8 0.429 *** 0.143 

*** p < .001, ** p < .005, * p < .05. Here, we use the threshold as 10 and run 10,000 

permutations. The macro-events in The Grand Budapest Hotel refer to pre-divided parts. Event 

macro-event is the video part watched in the scanner for each run. 
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Table 2.1.2b 

Hit Rate of Event Boundaries in Averaged BOLD Data and Human-annotated for The Grand 

Budapest Hotel (Threshold = 15) 

 # Segments Hit Rate (mPFC) Hit Rate (precuneus) 

Macro-event 1 11 0.6 *** 0.6 *** 

Macro-event 2 4 0 0 

Macro-event 3 9 0.5 ** 0.5 *** 

Macro-event 4 10 0.444 *** 0.333 ** 

Macro-event 5 8 0.429 *** 0.286 * 

Note.*** p < .001, ** p < .005, * p < .05. Here, we use the threshold as 15 and run 10,000 

permutations. The macro-events in The Grand Budapest Hotel refer to pre-divided parts. Event 

macro-event is the video part watched in the scanner for each run. 

 

  



 

87 

Table 2.2.1a  

Generalized Linear Model of Effects of Moral Rating on Time-Resolved Inter-subject 

Correlations for 500 Days of Summer (RA1) 

 mPFC Precuneus 

 Coefficient (SE) 

Intercept -0.049 (0.237) 0.157 (0.237) 

Moral ratings -0.096 (0.126) -0.108 (0.126) 

Time 0.000 (0.000) 0.000 (0.000) 

No. Observations 66 66 

Log-Likelihood -93.286 -93.039 

Deviance 65.276 64.790 

Note. *** p < .001, ** p < .005, * p < .05.  
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Table 2.2.1b  

Generalized Linear Model of Effects of Moral Rating on Time-Resolved Inter-subject 

Correlations for 500 Days of Summer (RA2) 

 mPFC Precuneus 

 Coefficient (SE) 

Intercept 0.063 (0.188) 0.152 (0.187) 

Moral rating 0.174 (0.100) 0.183 (0.100) 

Time 0.000 (0.000) 0.000 (0.000) 

No. Observations 100 100 

Log-Likelihood -140.34 -139.9 

Deviance 96.945 96.092 

Note. *** p < .001, ** p < .005, * p < .05.  
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Table 2.2.1c  

Generalized Linear Model of Effects of Moral Rating on Time-Resolved Inter-subject 

Correlations for The Grand Budapest Hotel 

 mPFC Precuneus 

 Coefficient (SE) 

 Run 1 (Part 1) 

Intercept 0.098 (0.115) 0.240 (0.113) * 

Moral rating -0.015 (0.047) 0.101 (0.047) * 

Time -0.013 (0.015) -0.033 (0.014) * 

No. Observations 578 578 

Log-Likelihood -819.72 -810.91 

Deviance 577.15 559.82 

 Run 2 (Part 2) 

Intercept 0.805 (0.621) 0.939 (0.619) 

Moral rating 0.057 (0.046) 0.088 (0.046) 

Time -0.058 (0.045) -0.068 (0.045) 

No. Observations 478 478 
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Log-Likelihood -676.50 -675.00 

Deviance 474.54 471.53 

 Run 3 (Part 3) 

Intercept -0.707 (0.388) -1.197 (0.387) 

Moral rating -0.035 (0.048) 0.046 (0.048) 

Time 0.037 (0.020) 0.062 (0.020) 

No. Observations 515 515 

Log-Likelihood -727.75 -725.85 

Deviance 509.04 505.28 

 Run 4 (Part 4) 

Intercept -1.934 (0.506) *** -0.375 (0.507) 

Moral rating -0.027 (0.041) -0.146 (0.041) *** 

Time 0.068 (0.018) *** 0.013 (0.018) 

No. Observations 598 598 

Log-Likelihood -841.23 -842.26 

Deviance 583.59 585.60 

 Run 5 (Part 5) 
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Intercept 1.571 (0.697) * 2.691 (0.691) *** 

Moral rating -0.065 (0.036) 0.056 (0.036) 

Time -0.046 (0.020) * -0.078 (0.020) *** 

No. Observations 783 783 

Log-Likelihood -1107.3 -1101.3 

Deviance 775.61 763.85 

Note. *** p < .001, ** p < .005, * p < .05.  
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Table 2.2.2a  

Generalized Linear Model of Effects of Moral Variance (calculated by eMFD) on Time-Resolved 

Inter-subject Correlations for 500 Days of Summer 

 mPFC Precuneus 

 Coefficient (SE) 

Intercept 2.776e-17 (0.031) -4.944e-17 (0.031) 

Moral variance -0.029 (0.031) 0.031 (0.031) 

No. Observations 1023 1023 

Log-Likelihood -1451.1 -1451.1 

Deviance 1022.1 1022.0 

Note. *** p < .001, ** p < .005, * p < .05.  

 

  



 

93 

Table 2.2.2b  

Generalized Linear Model of Effects of Moral Nonmoral Ratio (calculated by eMFD) on Time-

Resolved Inter-subject Correlations for 500 Days of Summer 

 mPFC Precuneus 

 Coefficient (SE) 

Intercept 2.776e-17 (0.031) -5.291e-17 (0.031) 

Moral nonmoral ratio 0.015 (0.031) 0.015 (0.031) 

No. Observations 1023 1023 

Log-Likelihood -1451.5 -1451.5 

Deviance 1022.8 1022.8 

Note. *** p < .001, ** p < .005, * p < .05.  
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Table 2.2.2c 

Generalized Linear Model of Effects of Moral Variance (calculated by eMFD) on Time-Resolved 

Inter-subject Correlations for The Grand Budapest Hotel 

 mPFC Precuneus 

 Coefficient (SE) 

 Run 1 (Part 1) 

Intercept 2.29e-16 (0.091) 4.163e-17 (0.090)  

Moral variance -0.015 (0.091) -0.051 (0.090) 

No. Observations 124 124 

Log-Likelihood -175.91 -175.79 

Deviance 123.92 123.68 

 Run 2 (Part 2) 

Intercept -9.714e-17 (0.141) -6.245e-17 (0.141) 

Moral variance -0.089 (0.141) -0.1030 (0.141) 

No. Observations 52 52 

Log-Likelihood -73.578 -73.507 

Deviance 51.588 51.4 
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 Run 3 (Part 3) 

Intercept -7.286e-17 (0.077) 1.388e-17 (0.077) 

Moral variance 0.006 (0.077) 0.046 (0.077) 

No. Observations 171 171 

Log-Likelihood -242.64 -242.45 

Deviance 170.99 170.63 

 Run 4 (Part 4) 

Intercept -1.492e-16 (0.096) 2.359e-16 (0.095) 

Moral variance 0.045 (0.096) -0.149 (0.095) 

No. Observations 110 110 

Log-Likelihood -154.97 -154.84 

Deviance 109.78 107.55 

 Run 5 (Part 5) 

Intercept  -7.633e-17 (0.098) 8.674e-17 (0.098) 

Moral variance -0.114 (0.098) -0.142 (0.098) 

No. Observations 104 104 

Log-Likelihood -146.89 -146.50 
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Deviance 102.64 102 

Note. *** p < .001, ** p < .005, * p < .05.  
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Table 2.2.2d 

Generalized Linear Model of Effects of Moral Nonmoral Ratio (calculated by eMFD) on Time-

Resolved Inter-subject Correlations (without controlling) for The Grand Budapest Hotel 

 mPFC Precuneus 

 Coefficient (SE) 

 Run 1 (Part 1) 

Intercept 2.22e-16 (0.090) 3.469e-17 (0.090)  

Moral nonmoral ratio 0.033 (0.090) 0.0474 (0.090) 

No. Observations 124 124 

Log-Likelihood -175.88 -175.81 

Deviance 123.86 123.72 

 Run 2 (Part 2) 

Intercept -9.714e-17 (0.137) -7.633e-17 (0.137) 

Moral nonmoral ratio 0.243 (0.137) 0.258 (0.137) 

No. Observations 52 52 

Log-Likelihood -72.203 -71.992 

Deviance 48.930 48.535 
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 Run 3 (Part 3) 

Intercept -7.286e-17 (0.077) 2.082e-17 (0.076) 

Moral nonmoral ratio 0.099 (0.077) 0.155 (0.076) 

No. Observations 171 171 

Log-Likelihood -241.79 -240.56 

Deviance 169.32 166.90 

 Run 4 (Part 4) 

Intercept -1.492e-16 (0.094) 2.359e-16 (0.094) 

Moral nonmoral ratio -0.189 (0.094) -0.216 (0.094) 

No. Observations 110 110 

Log-Likelihood -154.08 -154.45 

Deviance 106.07 104.85 

 Run 5 (Part 5) 

Intercept  -7.633e-17 (0.099) 9.368e-17 (0.099) 

Moral nonmoral ratio 0.089 (0.099) -0.059 (0.099) 

No. Observations 104 104 

Log-Likelihood -147.15 -147.39 
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Deviance 103.17 103.63 

Note. *** p < .001, ** p < .005, * p < .05.  
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Figure 2.1 
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Table 2.3.1a 

Hit Rate of Event Boundaries in Averaged BOLD Data and Time-resolved Inter-subject 

Correlations for 500 Days of Summer (Threshold = 10) 

 # Micro-events Hit Rate (mPFC) Hit Rate (precuneus) 

  Research Assistant #1 

Macro-event 1 2 0 0 

Macro-event 2 3 0 0 

Macro-event 3 5 0 0.25 

Macro-event 4 5 0 0 

  Research Assistant #2 

Macro-event 1 2 0 0 

Macro-event 2 4 0 0 

Macro-event 3 6 0.4 * 0 

Macro-event 4 16 0.267 ** 0.467 *** 

Note. *** p < .001, ** p < .005, * p < .05. Here, we use the threshold as 10 and run 10,000 

permutations. The macro-events in 500 Days of Summer refer to pre-defined editor’s cuts longer 

than 5 minutes. Two different research assistants annotate the number of micro-events. 
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Table 2.3.1b 

Hit Rate of Event Boundaries in Averaged BOLD Data and Time-resolved Inter-subject 

Correlations for 500 Days of Summer (Threshold = 15) 

 # Micro-events Hit Rate (mPFC) Hit Rate (precuneus) 

  Research Assistant #1 

Macro-event 1 2 0 0 

Macro-event 2 3 0 0 

Macro-event 3 5 0 0.5 ** 

Macro-event 4 5 0.25 0.25 

  Research Assistant #2 

Macro-event 1 2 0 0 

Macro-event 2 4 0 0 

Macro-event 3 6 0.4 * 0.6 *** 

Macro-event 4 16 0.533 *** 0.6 *** 

Note. *** p < .001, ** p < .005, * p < .05. Here, we use the threshold as 15 and run 10,000 

permutations. The macro-events in 500 Days of Summer refer to pre-defined editor’s cuts longer 

than 5 minutes. Two different research assistants annotate the number of micro-events. 
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Table 2.3.2a 

Hit rate of event boundaries in averaged BOLD data and human-annotated for The Grand 

Budapest Hotel (Threshold = 10) 

 # Micro-events Hit Rate (mPFC) Hit Rate (precuneus) 

Macro-event 1 11 0.6 *** 0.5 *** 

Macro-event 2 4 0 0 

Macro-event 3 9 0.375 *** 0.5 ** 

Macro-event 4 10 0.444 *** 0.444 *** 

Macro-event 5 8 0 0.286 ** 

Note. *** p < .001, ** p < .005, * p < .05. Here, we use the threshold as 10 and run 10,000 

permutations. The macro-events in The Grand Budapest Hotel refer to pre-divided parts. Event 

macro-event is the video part watched in the scanner for each run. Two different research 

assistants annotate the number of micro-events, and a third person resolves the discrepancies. 
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Table 2.3.2b 

Hit rate of event boundaries in averaged BOLD data and human-annotated for The Grand 

Budapest Hotel (Threshold = 15) 

 # Micro-events Hit Rate (mPFC) Hit Rate (precuneus) 

Macro-event 1 11 0.7 *** 0.5 *** 

Macro-event 2 4 0.333 * 0.333 

Macro-event 3 9 0.625 *** 0.5 *** 

Macro-event 4 10 0.667 *** 0.556 *** 

Macro-event 5 8 0 0.429 ** 

Note. *** p < .001, ** p < .005, * p < .05. Here, we use the threshold as five and run 10,000 

permutations. The macro-events in The Grand Budapest Hotel refer to pre-divided parts. Event 

macro-event is the video part watched in the scanner for each run. Two different research 

assistants annotate the number of micro-events, and a third person resolves the discrepancies. 
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Study 3 

Table 3.1.1  

The Effect of Schema Deviation on Inter-subject Correlation in Precuneus 

 First-view Last-view  

 Coefficient (SE) 

Intercept  0.056 (0.086) 0.044 (0.135) 

Deviation  0.010 (0.007) 0.006 (0.011) 

Current order  -0.009 (0.005) -0.001 (0.008) 

No. Observations 26 26 

Log-likelihood 8.370 -3.463 

Deviance 0.800 1.987 

Note. *** p < .001, ** p < .005, * p < .05.  
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Table 3.1.2  

The Effect of Schema Deviation on Inter-subject Correlation in Primary Visual Cortex 

 First-view Last-view  

 Coefficient (SE) 

Intercept  0.253 (0.143) 0.144 (0.157) 

Deviation  -0.009 (0.011) -0.002 (0.013) 

Current order  0.012 (0.008) 0.003 (0.009) 

No. Observations 26 26 

Log-likelihood -4.816 -7.367 

Deviance 2.205 2.683 

Note. *** p < .001, ** p < .005, * p < .05.  

 




