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Top-Down Modulation of Neural Responses in Visual Perception:
A Computational Exploration

Michael C. Mozer andAdrian Fan
{michael.mozer,adrian.fan}@colorado.edu

Department of Computer Science and Institute of Cognitive Science
University of Colorado, Boulder, CO 80309-0430

Abstract

Visual perception is typically performed in the context of a task
or goal. Nonetheless, visual processing has traditionally been
conceptualized in terms of a fixed, task-independent hierarchy
of feature detectors. We explore the computational implica-
tions of allowing early visual processing to be task modulated.
Using artificial neural networks, we show that significant im-
provements in task accuracy can be obtained by allowing the
weights to be modulated by task. The primary benefits are ob-
tained under resource-limited processing. A relatively modest
task-based modulation of weights and activities can lead to a
large performance boost, suggesting an efficient means of in-
creasing effective cortical capacity.

Keywords: neural networks, top-down processing, visual per-
ception, control

Introduction
Individuals typically perceive the world around them with a
task or goal in mind. Despite the active nature of percep-
tion, the traditional theoretical perspective, exemplified by
the early work of Marr (1982), casts the visual system as
a static, passive sensory structure that constructs a veridical
representation of all facets of the environment, regardless of
immediate goals. The neural architecture that embodies this
perspective is a rigid hierarchy of feature detectors, which
constructs a representation of the visual scene that can be
used by subsequent decision making and action systems.

An alternative perspective is beginning to emerge that char-
acterizes visual information processing as dynamic, flexible,
and specialized to current goals. According to this perspec-
tive, these goals modulate the nature of the visual analysis
that is performed, the flow of information within the visual
system, and the resulting representations that are constructed.
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Figure 1: Two visual processing architectures: (a) bottom-up
architecture in which visual processing is task independent;
(b) top-down architecture in which visual processing is task
dependent.

These two contrasting perspectives are depicted in Fig-
ure 1. We use the termsbottom upand top downto refer
to the perspectives in which dynamics of visual processing
is task independent or task dependent, respectively. Bottom
up simply implies that processing is guided from the outside
world, and top down implies that processing is guided from
higher cortical regions. When we refer to ’bottom up’ and
’top down’, refer only to processing dynamics, and not to
learning, which surely must have a top-down component; and
we do not deny that goal-independent processing might well
exploit some type of top-down feedback.

The vast majority of cognitive neuroscience models in vi-
sion adopt an essentially bottom-up perspective. Although
an exciting recent development has been to consider the role
of top-down processing (e.g., Bar et al., 2006), “top down”
refers primarily to knowledge, expectations, and temporal
and spatial context.

In this work, we focus specifically on top-down influence
of current goals and the task being performed, and we use
“top down” as a synonym for task or goal dependent. We
investigate the continuum of possible models by varying the
strength of top-down modulation of visual processing based
on current goals and tasks. Surely, specializing an architec-
ture for a task at hand should facilitate processing—i.e., it
should yield more accurate results given a fixed amount of
neural hardware, or it should require less neural hardware to
achieve a given level of accuracy. Our exploratory study goes
further and investigates the following issues: the magnitude
of the benefit of top-down modulation, the conditions under
which a benefit is obtained, and the types of top-down modu-
lations that yield benefits. Our research aims to test the viabil-
ity of the hypothesis that top-down cortical feedback serves to
tune the perceptual system to the task at hand.

Evidence for top-down modulation
In this section, we review evidence from neuroscience, neu-
roimaging, and psychology concerning the top-down modu-
lation of visual processing.

Tasks and goals can influence processing in multiple ways.
On a slow time scale, practice on a task leads to learning of
new representations. For example, Lee et al. (2002) recorded
neural activity while a monkey performed visual search with
shape-from-shading stimuli. V1 and V2 neurons show pop-
out response to targets that increased with experience and
skill. On a somewhat shorter time scale, Zemel et al. (2002)
demonstrated that human participants showed an immediate
reorganization of perceptual grouping after being exposed to
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a set of novel shapes. These studies can be explained by
long-term perceptual learning, rather than a dynamic change
in neural response properties when the task changes.

A dynamic case, occurring on a time scale of seconds, is
the influence of selective attention in the ventral pathway.
Attention to a stimulus attribute—location, orientation, di-
rection of motion, etc.—raises the gain of neural responses
(Kastner & Ungerleider, 2000). In V4, 25% of neurons show
a statistically reliable difference in response depending on a
target orientation (Maunsell et al., 1991).

Attentional modulation primarily yields greater sensitivity
without much change in selectivity (Maunsell, 2004). Some
support has been documented for changes in selectivity. Us-
ing binocular rivalry displays, Logothetis and Schall (1989)
found neurons in the superior temporal sulcus that reflected
the monkey’s perception, not the retinal stimulation. Crist,
Li, and Gilbert (2001) found an influence of contextual stim-
uli placed outside the classical receptive field of V1 cells that
was consistent with a trained discrimination, but only when
the monkey was performing the task.

Evidence for task-based modulation is also found in hu-
mans. PET studies show that the same retinal input can ac-
tivate different extrastriate areas, or even the dorsal versus
the ventral stream, depending on whether the task being per-
formed is detection or discrimination (Fias et al., 2002; Or-
ban et al., 1996). In a behavioral study, Schyns and Oliva
(1991) found that the perceptual features extracted from im-
ages of faces depend on their diagnosticity for the task at
hand: With hybrid stimuli combining images at two differ-
ent spatial scales, a primary discrimination task (gender, ex-
pression, or identity) determines which scale is used to make
secondary judgments.

The high-density feedback projections found in each layer
of the visual hierarchy are naturally interpreted as providing
a top-down signal. Beyond the projections to carry the sig-
nal, top-down modulation requires the ability to influence cell
response properties. Steriade (2004) has argued that slight
changes to membrane potential can have dramatic effects: fir-
ing patterns can transform a neuron from one response type
(regular spiking, fast spiking, fast rhythmic bursting, intrinsi-
cally bursting) to another.

Modeling top-down modulation of visual processing
Having summarized the neuroscientific evidence indicating
that tasks and goals influence visual information processing,
we now discuss what we mean by “influence” in terms of
computational models. We adopt the artificial neural net-
work (ANN) paradigm, because ANNs are arguably closer
to the underlying neurobiology than are other machine learn-
ing models. We acknowledge that ANNs are still quite an
abstraction from true neural architectures and dynamics, but
past research has been successful in using the ANN paradigm
to draw inferences and make predictions concerning the oper-
ation of biological systems (e.g., Zipser & Anderson, 1988).

To provide a concrete framework for addressing task-based
vision, we focus on visual search: determining the presence
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Figure 2: (a) a generic single-task neural network architec-
ture; (b) a bottom-up multitask architecture; (c) a top-down
multitask architecture

or absence of a target in a single-item display. Each different
target corresponds to a task. For example, with single-digit
displays, one could define ten tasks, corresponding to: “Is a 0
present in the display?”, “Is a 1 present in the display?”, etc.

Figure 2a depicts a generic neural net to perform a spe-
cific task, i.e., answer a specific visual search question. The
input represents the visual field, and the output a binary
present/absent decision. The hidden layer allows for a flexi-
ble task-appropriate re-representation of the input. This sim-
ple model is not meant to have any isomorphism to the visual
system, but is only meant as a functional architecture that per-
forms the same I/O mapping as the visual system (more on
this topic in the Discussion section).

Figure 2b embeds the network of Figure 2a into a pure
bottom-up architecture. In this architecture, the input is clas-
sified into one ofn object categories, and following classifi-
cation, task selection chooses the appropriate output unit to
answer the present/absent question associated with the task.
In contrast, the top-down architecture in Figure 2c switches
the processing that is performed on an input conditional on
the task. In this Figure, then hidden layers are a shorthand
for then task-specific analyses that could be performed on the
input. Essentially Figures 2b and 2c differ in that the bottom-
up architecture utilizes a hidden representation—specifically
the weights from the input to the hidden layer—that is task in-
dependent, whereas the top-down architecture utilizes a dif-
ferent hidden representation for each task, allowing for an
extreme sort of task dependence.

The bottom-up and top-down architectures are endpoints of
a continuum that represents thestrengthof top-down modu-
lation. We explore the continuum by manipulating the degree
to which hidden unit weights and activities can be modulated
by task. No modulation leads to task-independent weights
and a bottom-up architecture; arbitrary modulation leads to
task-dependent weights and a strong top-down architecture.
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We useα to denote the parameter that controls the strength
of task modulation, whereα = 0 andα = 1 correspond to
the bottom-up and top-down architectures, respectively, and
α plays the following role. In the bottom-up case, we have a
single set of input-to-hidden weights, denotedw̄. In the top-
down case, we have a distinct set of weights for each taskt,
denotedŵt . Interpolating between these two cases obtains
actual weights used for taskt, wt , defined as:

wt = (1−α)w̄+αŵt , (1)

wherew̄ = ∑u ŵu/n andn is the number of distinct tasks.
Just as the connectivity of the model is not intended to have

any neurobiological reality, neither isα. We are simply de-
signing a model that has the necessaryfunctionalcharacteris-
tics: α allows us to manipulate the degree of top-down modu-
lation. Using an ANN model for this exploration allows us to
manipulate properties of the model—namely, activation and
weights—that at least have a rough correspondence to actual
neural hardware.

Research questions
Having proposed a simplistic but concrete architecture to ex-
amine the role of top-down modulation of information pro-
cessing, we turn to questions we hope to answer with this line
of research. In general, the questions concern the benefit of
top-down modulation. Although the neuroscientific and psy-
chological data mentioned earlier provide clear evidence of
top-down modulation, cognitive neuroscience has little com-
putational understanding of the magnitude of the benefit, the
conditions under which a benefit is obtained, and what types
of top-down modulations yield benefits. Consider the follow-
ing issues.

1. Suppose the bottom-up architecture (Figure 2b) is given
the same number of free parameters (weights) as each of
the task-specific subnets of the top-down architecture (Fig-
ure 2c). This situation corresponds to the case in which
top-down modulation has the ability to arbitrarily rewire
the network connectivity. Because the top-down architec-
ture benefits from ann-fold expansion in representational
and computing power, one would be surprised if it did not
win out.

2. Suppose the top-down and bottom-up architectures are
matched on total number of free parameters (weights). By
matching, we mean that a top-down architecture withh
hidden units is compared to a bottom-up architecture with
roughlynhhidden units. Two early ANN studies offer con-
flicting predictions in this situation. Caruana (1997) stud-
ied multitask learning in neural nets and found a benefit for
sharing of hidden representations among tasks, as would
occur with the bottom-up architecture. Rueckl et al. (1989)
found that partitioning hidden units to handle specific tasks
helped performance. The difference between these two
studies was the amount of similarity among tasks. Caru-
ana studied similar tasks, whereas Rueckl et al. studied
tasks that appeared to have little overlap with one another.

3. What strength of top-down modulation is necessary to ob-
tain a benefit over the pure bottom-up architecture? That
is, for what value ofα do we find a benefit? Because
the neurobiological evidence suggests a limited modulation
due to top-down influences, one would have to question
whether top-down modulation played the role suggested
by our framework if a benefit is obtained only forα values
close to 1. In contrast, if an intermediate strength of top-
down modulation (i.e., 0< α < 1) outperforms theα = 0
andα = 1 cases, it would provide a computational ratio-
nale for the sort of weak top-down modulation observed in
the brain.

4. How does the strength of top-down modulation (α) inter-
act with: (a) the amount of processing resources (hidden
units) available, (b) the noise level in the input, and (c) the
amount of training data. All three of these variables in-
fluence the difficulty of performing each task, and in these
performance-limited cases, the benefit of top-down mod-
ulation may be more apparent. Such a finding would be
consistent with the neuroscientific finding that attentional
modulations are larger when displays are cluttered or noisy
(e.g., Maunsell, 2004).

Methodology
We studied four data sets, summarized in Table 1. Sets A,
C, and D are from the UCI Machine Learning Repository
(pendigits, letter-recognition, and isolet, respec-
tively), and Set B is derived from the MNIST database and
available at yann.lecun.com/exdb/mnist/index.html.
Sets A-C are visual images, utilizing three different feature
representations: stroke based, pixel based, and statistical mo-
ments and edge counts. Set D uses the 26 spoken letters of
the alphabet. Because our modeling is at an abstract level, it
did not seem unreasonable to include a non-visual data set.
Our primary goal in picking data sets was to find a diverse
collection using different representations.

For anyα, the training procedure involved a search in the
model’s underlying parameter space,{ŵt}. These parame-
ters are translated into weights used in the activation dynam-
ics, {wt}, via Equation 1. The logic of this procedure is to
obtain weights whose strength of task-specific modulation is
related toα. The training procedure and the{ŵt} are not
meant to have any neurobiological reality; they simply pro-
vide a means of obtaining sets of weights with given func-
tional properties.

Training was performed via on-line steepest descent in the
underlying parameter space,{ŵt}, using a mean-squared-
error objective function. For each training example on each
epoch, gradients were computed with respect to each task’s
underlying parameters, and weights were updated. An adap-
tive learning rate was used, which increased by a small con-
stant if the error dropped from one epoch to the next, and
decreased by a constant of proportionality if the error rose.
To ensure that the network was trained to a local minimum,
we used a conservative criterion that terminated training only
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Table 1: Data sets used in simulations

label description source input dim # tasks # examples evaluation # hid

A Pen-Based Handwritten Digits UCI 256 10 10992 70% train / 30% test 2

B Pixel-Based Handwritten Digits MNIST 196 10 5000 5-fold cross validation 2

C Distorted-Font Letters UCI 16 26 20000 3-fold cross validation 15

D ISOLET Spoken Letters UCI 617 26 7797 80% train / 20% test 4

when the epochwise mean squared-error dropped by less than
1% over 100 epochs. For each value ofα, each hidden-layer
size, and each train/test split, we performed 3-8 replications
of training with different random weight initializations. (The
number of replications was inversely related to the number of
data splits, ensuring a roughly fixed number of total runs.)

For each training run, an ROC curve was computed for the
test/validation set, and the area under the ROC curve (AROC)
was determined. AROC is a measure of a model’s intrinsic
ability to perform a two-way discrimination—present versus
absent in the case of our tasks. The AROC measure ranges
from 0.5, indicating chance discrimination, to 1.0, indicating
perfect discrimination. An AROC score is obtained for each
task, and we compute the mean AROC score across tasks.

Results and Discussion

Figure 3 shows results for data sets A-D, with one row per
data set. The first column of the Figure plots AROC discrim-
ination performance as a function of the size of the hidden
layer, both for the pure bottom-up net (α = 0, dashed line) and
the strong top-down net (α = 1, solid line). The error bars in-
dicate +/- 1 standard error of the mean. AROC discrimination
performance improves as the network size increases, at least
for the range of network sizes we studied. The x-axis of the
graph indicates both the hidden layer size of the bottom-up
net, and the hidden layer size for each task in the top-down
net. Thus, comparing the bottom-up and top-down AROC
values for a given value on the x-axis allows a factor ofn
more free parameters for the top-down net. This assumption
is sensible if top-down modulation can completely rewire the
available hidden units for each task. At this extreme, it’s not
surprising that the top-down net outperforms the bottom-up
net.

At the other extreme, when no rewiring can take place, the
natural comparison is between nets matched on total hard-
ware: a top-down net withh units per task versus a bottom-
up net withnh units. The first column of Figure 3 implies—
assuming that performance remains at asymptote as the num-
ber of hidden units is increased—little or no advantage for the
top-down net in this case. Thus, the benefit of task-specific
modulation of unit responses arises in conditions where hard-
ware resources are limited and can be effectively reused by
top-down modulation. For this reason, in all subsequent sim-
ulations, we selected a particular hidden layer size for each
data set, such that resource constraints arose. The size of the
hidden layer for each data set is shown in Table 1.
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Figure 3: AROC performance on data sets A-D. The graphs
are explained in detail in the text. In the first column of
graphs, the number of hidden units is varied. In columns 2-4,
the number of hidden units is fixed, as described in the text.

The second column of Figure 3 plots the AROC as a func-
tion of training α. Individual runs—each with a different
weight initialization and/or train/test split—are marked with
an “x”. The data points are fit with a fourth or fifth or-
der polynomial to give a sense of the relationship. As the
strength of top-down modulation of the weights (α) increases,
so does performance. Interestingly, in three of the four data
sets, an intermediate strength of top-down modulation, e.g.,
α = 0.5 yields reliably better performance than independence
of the weights across tasks,α = 1 (A: t(14) = 4.15, p< .001;
B: t(14) = 1.35, p > .10; C: t(14) = 4.62, p < .001; D:
t(14) = 4.066, p < .002). And importantly, even weak top-
down modulation obtains performance improvements. We in-
terpret these results as strong support for the computational
benefits of task-dependent modulation of unit responses.

We have treatedα as if it controls the degree to which hid-
den weights and responses are allowed to vary from one task
to the next. However,α is primarily a parameter of training,
because forα > 0, any arbitrary set of weights,{wt}, can be
obtained via Equation 1 and appropriate selection of{ŵt}.
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Thus, it is necessary to assess the strength of task modulation
in other ways.

One measure of task-specific modulation is how much in-
dividual hidden-unit weights vary from one task to another.
For some hidden uniti having weightswti for taskt, the vari-
ance isEt [|wti −Et ′ [wt ′ i ]|2]. We compute the expected vari-
ance over weights, and normalize this quantity with respect
to the variance within a task, across hidden units:

Vw = Ei,t [|wti −Et ′ [wt ′ i ]|2]/Et,i [|wti −Ei′ [wt ′ i′ ]|2]. (2)

If Vw = 0, we have a pure bottom-up net in which the weights
do not vary across tasks. IfVw = 1, a particular weight varies
as much from one task to the next as the weights for a par-
ticular task vary from one connection to another. The third
column of Figure 3 plots the AROC value of each run as a
function of its correspondingVw value. For data sets A, B,
and C, the best AROC value is obtained forVw in the neigh-
borhood of 0.5, 0.33, and 0.5, respectively. Thus, to achieve
optimal performance, top-down modulation must vary the
weights from task to task, but the amount of adjustment is
far less than the variation one observes over different units.

A second measure of task-specific modulation is analogous
to the first, but uses relativeactivation variance instead of
weight variance. The measureVa, depicted in the fourth col-
umn of Figure 3, is the expected variance in the activity of
a particular hidden unit across tasks, relative to the expected
variance in a particular tasks across all hidden units. When
Va = 0, we have a pure bottom-up net which yields no vari-
ance in the hidden activations across tasks. WhenVa = 1, a
particular hidden unit’s activity varies as much across tasks
as activity varies for a particular task across units. Similar to
theVw graphs, we find that a a relatively small task-dependent
modulation yields significant improvements in AROC;Va val-
ues in the neighborhood of 0.5 yield optimal performance.

Theα, Vw, andVa graphs all point to the same conclusion:
anydegree of top-down modulation of responses yields a sig-
nificantly increased discriminative ability of the ANN. Al-
though this conclusion is hardly startling, what is surprising
and interesting is (a) the slope of the curves, i.e., how sharply
performance improves with even small modulations, and (b)
the magnitude of improvement that can be obtained by top-
down modulation. The slopes on data set D are somewhat
shallower than on the other three data sets. This slope cannot
be attributed to the number of tasks, because both C and D
involve 26 tasks. It might be attributed to the high input di-
mensionality of set D, which allows any degree of task modu-
lation to affect a large number of weights, consistent with the
finding that Set D’sVw curve is shallower than itsVa curve.

We performed additional simulations exploring con-
strained top-down influences of hidden unit activity involv-
ing only the gain or bias of a unit. That is, the net input to
hidden unit j is defined as netj = gt(∑i w ji xi)+ bt , wherex
is the input vector,bt is a task-specific bias, andgt is a task-
specific gain. We allowed eitherbt or gt to vary with task
during training, providing additive or multiplicative contri-
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Figure 4: AROC performance on task B for different types
of constrained top-down modulation. Modulation of biases,
gains, or biases+gains led to only moderate improvements in
performance. Error bars show one standard error of the mean.

butions to the otherwise task-independent net input to a hid-
den unit. These constrained modulations correspond to a sub-
class of responses observed in neural activity (e.g., Maunsell,
2004).

We found modest benefits for top-down modulation of bi-
ases and gains. The largest effect was in data set A, where
AROC rose from .76 to .83 (t(28) = 1.99, p< .05). Effects of
bias and gain modulation on data set B are shown in Figure 4.
The improvements are small relative to what we observed
by allowing task modulation of individual connections. In
biological neurons, bias and gain changes are observed in
the context of priming phenomena and attentional phenom-
ena, respectively. We speculate that the reason our simula-
tions showed little benefit of these modulations is because our
tasks did not involve sequential effects—in which case prim-
ing is useful—or multiple-object displays—in which case at-
tentional selection is useful.

In a final set of simulations, we explored the interaction
between top-down modulation and input noise. During train-
ing and testing, we added Gaussian noise to each input unit
i with mean zero, and standard deviationλσi , whereλ is a
noise level, andσi is the standard deviation of the input ac-
tivity in the training set. Figure 5 shows the outcome for
λ ∈ 0,0.25,0.5,1 and data sets A and B. Noise had little im-
pact onα = 0, most likely because the weights were con-
strained by all tasks in parallel, and the fewer degrees of free-
dom led to less overfitting of the training data. Nonetheless,
the benefits of top-down modulation over a pure bottom-up
model net are obtained for most levels of noise. Even in data
set A, where noise had a big impact, top-down modulation
leads to a sort of noise robustness: its AROC value forλ = 0
andα = 0 is comparable to that forλ = 0.5 andα = 0.2.

Conclusions and Future Work
Our simulations show a clear benefit of top-down task-based
modulation of neural responses. Although the architectures
we studied had little of the structure of the human visual sys-
tem, and the ANN is a highly idealized neural network, we
are confident that the results apply to neurobiological sys-
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Figure 5: Performance on data sets A and B as a function of
α for various noise levels.

tems. If anything, our results are probably conservative be-
cause the visual system is a multilayered hierarchy, and each
layer introduces nonlinearities. As a result, small modula-
tions to the response of neurons in an early layer can amplify
as they propagate forward.

Top-down modulation increases the effective resources of
a neural architecture, and is therefore most useful to over-
come resource limitations. However, our simulations showed
that top-down modulation may also be useful in overcoming
some amount of input noise. We observed that a moderate
top-down modulation (e.g.,α = 0.5) yielded better perfor-
mance than a pure bottom-up (α = 0) or a strong top-down
model (α = 1). In a sense this result should not be terribly
surprising. The bottom-up model is ideal if the tasks share
strong similarities, and therefore internal representations of
the input should be identical. The strong top-down model is
ideal if the tasks are unrelated, allowing for flexible represen-
tations from task to task. Because the best performance in the
tasks we studied was obtained for an intermediate strength of
top-down modulation, we can infer that the tasks we studied
have an intermediate degree of similarity.

A surprising and interesting finding of our simulations is
that even small task-based modulations yield significant per-
formance improvements, as evidenced by the steep slopes of
our AROC curves for theα, Vw, andVa graphs. Because simi-
lar tasks should utilize similar representations, it makes sense
that not much modulation is required to achieve a perfor-
mance boost. Our simulations provide a computational jus-
tification for observed task-dependent modulation of neural
activity, and suggest that experimental studies should be even
more sensitive to such modulations.

Our simulations are limited by the number of data sets we
explored. We also did not have the opportunity to explore an-
other possible benefit of top-down modulation: the ability to
generalize to novel tasks (Caruana, 1997). For example, sup-
pose one was asked to search for a target defined by a combi-
nation of color and shape. Previous experience with search-
ing for the color and/or the shape may facilitate search for
the novel combination via task-based modulation. Regardless
of how such an exploration might turn out, we have demon-
strated how task-based modulation can increase the effective
processing and representational capacity of a hardware lim-
ited system like the brain.
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