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Abstract 

Recent empirical studies have affirmed the fundamental role 
of attention and memory processes in statistical word learning 
tasks. These processes interact in complex ways to guide 
spontaneous looking behaviors of learners as well as 
determine their overall learning performance. On the 
modelling side, studies have made it clear that computational 
models must provide process-based rather than only 
computational accounts of word learning, because these can 
connect to the empirically observed behaviors at a moment-
to-moment timescale. Thus, here we present a neurally-
grounded process model of word learning called WOLVES 
(Word-Object Learning Via Visual Exploration in Space) that 
integrates visual dynamics and word-object binding across 
multiple timescales. WOLVES integrates multiple established 
dynamic neural field models to allow fine-grained indexing of 
component processes driving the looking-learning loop. We 
report simulation results for three empirical cross-situational 
word learning experiments to validate the model.  

Keywords: cross-situational word learning; dynamic neural 
field theory; DFT; attention and memory 

Introduction 

Word learning is at the core of language acquisition. A 

central challenge in this domain is referential uncertainty 

(Quine, 1960): a speaker’s word can refer to many possible 

referents in a given visual scene, and a learner must identify 

the correct referent intended by the speaker. Though making 

such inferences seem impossible theoretically, children are 

quite adept at resolving referential uncertainty. One possible 

explanation is that children use statistical learning over 

multiple experiences. That is, while a single naming 

scenario may be referentially ambiguous, this ambiguity is 

gradually resolved as a learner tracks the co-occurrence 

statistics of words and referents across multiple naming 

events in time. This is commonly called cross-situational 

word learning and many recent studies, using force-choice 

tests in adults (Yu & Smith, 2007; Yurovsky, Yu, & Smith, 

2013) and preferential looking tasks in infants (Smith & Yu, 

2008; Yu & Smith, 2011), have confirmed that learners can 

extract correct word-object mappings cross-situationally 

over multiple ambiguous events. 

What mechanisms underlie this form of word learning? 

Computational models have employed different conventions 

such as rule-based compositionality (Siskind, 1996), 

probabilistic inferences (Fazly, Alishahi, & Stevenson, 

2010), associative matrices (Kachergis, Yu, & Shiffrin, 

2012), associative connectionism (McMurray, Horst, & 

Samuelson, 2012), fast mapping (Trueswell, Medina, Hafri, 

& Gleitman, 2013) and others to explain the results from 

various cross-situational word learning experiments. Many 

of these studies are motivated by a debate over whether 

learners accumulate graded statistical information of all 

referents for each word (associative learning; McMurray et 

al., 2012) or propose and verify only a single referent per 

word (hypothesis-testing; Trueswell et al., 2013). Recent 

work suggests, however, that this debate is not well formed 

because these accounts reside at a ‘computational’ level and 

not at the ‘algorithmic’ level (or below) where they might 

shed light on the mechanisms underlying word learning 

(Smith, Suanda, & Yu, 2014). Other papers recommend 

further that (a) models should incorporate primary 

psychological processes such as attention and memory that 

are fundamental to learning words (Smith et al., 2014; Vlach 

& DeBrock, 2017); and (b) explicitly capture moment-by-

moment and trial-by-trial looking and learning behavior of 

learners in cross-situational word-learning tasks (Yu, 

Zhong, & Fricker, 2012).  

Consistent with these later recommendations, the present 

report describes a process-based modelling account of cross-

situational word learning and validates this neurally-

grounded, non-linear statistical learner in different cross-

situational word learning tasks. The model uses the 

framework of Dynamic Field Theory (DFT) (Schöner, 

Spencer, & The DFT Research Group, 2015) to simulate the 

moment-to-moment visual dynamics as the learning process 

unfolds in time. In this article, we provide simulation results 

of experiments from three recent empirical studies on cross-

situational word learning in support of the model. 
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Dynamic Field Theory 

DFT proposes that cognition arises from neurocomputations 

within dynamic neural fields (DNFs) that simulate the 

dynamics of neural populations. Expressed using differential 

equations, these fields are receptive to metric dimensions 

such as color, shape, space etc. Neurons within a field 

interact temporally with one another or with the incoming 

input stimuli to form peaks that act as stable states of the 

field. These peaks are stabilized by excitatory and inhibitory 

neural interactions within the field. Self-sustaining peaks 

survive even if input is removed due to strong recurrent 

activations and thus act as a form of working memory to 

maintain information (Amari, 1977).  

A DNF architecture consists of 1- and 2-dimensional 

fields (see blue rectangles in Figure 1) that interact along 

shared dimensions through unidirectional or bidirectional 

projections. Fields can also use a variant of Hebbian 

learning at a slower timescale that allows neural populations 

to learn and encode statistical information across trials. This 

type of memory trace enables specific neural regions in the 

field to become more strongly activated, increasing the 

likelihood that a peak will form in that region of the field. 

This results in a ‘pre-shaping’ effect, facilitating recognition 

of familiar inputs. 

In the context of word learning, DFT offers two core 

strengths. First, it has already been used to test predictions 

regarding component processes such as early visual 

processing, attention, spatial cognition and working 

memory, at behavioral and brain levels. Second, DFT scales 

up allowing integration of multiple models into large-scale 

systems to explain and predict behavioral data. Exploiting 

these strengths, this article integrates multiple previously-

established DFT models of the component processes 

involved in word learning; one on word-object mapping 

(Samuelson, Smith, Perry, & Spencer, 2011) and the others 

on visual attention and memory (Perone & Spencer, 2013; 

Schneegans, Lins, & Spencer, 2015) to provide a formal 

account of cross-situational word learning. 

WOLVES: The Model 

Word-Object Learning via Visual Exploration in Space 

(WOLVES): The WOLVES model is composed of multiple 

1D and 2D neural fields as shown in Figure 1. Higher 

dimensional fields are not used due to computing limits. 

Going from the right side in Figure 1, the model has two 2D 

visual fields (A, B) that share a visual spatial dimension 

within a retinal reference frame. Note that we model only a 

single spatial dimension and it encodes relative rather than 

absolute spatial locations of objects. When object stimuli are 

presented to the model, these two fields respond to the 

detection of color and shape of objects at corresponding 

locations in the visual field. These fields are coupled to a 1D 

spatial attention field (C) that receives activation reflecting 

object locations in the visual field. Each visual field passes 

activation to three 1D fields along the feature pathway in the 

model: feature-attention fields (H, I), contrast fields (F, G), 

and working memory (WM) fields (D, E). Feature-attention 

fields are reciprocally coupled to visual and contrast fields, 

while the contrast and WM fields are mutually inhibitory.  

Figure 1 depicts a case where two stimuli are in the 

visual display (see right top corner). The feature-space fields 

(A, B) have formed peaks of activation for a blue square on 

the left and a red circle on the right. This input causes peaks 

to grow at the corresponding locations of the spatial 

attention field (C) and at the corresponding feature values in 

the fields along the feature pathway (D-I). The three 

attention fields (C, H, I) work in a winner-take-all mode 

such that the first peak to breach the interaction threshold 

(red line in each field) will suppress all other inputs 

currently vying for attention. Then, through reciprocal 

coupling between the visual and attention fields, the model 

will selectively attend to a single item on the visual field. In 

Figure 1, the model is currently attending to the left object, 

with a peak on the left side of the spatial attention field (C), 

at the blue hue value in the color attention field (H), and at 

the square shape value in the shape attention field (I). 

The contrast fields (F, G) serve as novelty detectors 

where novelty is defined as any feature that is not currently 

being actively maintained in WM. For instance, in Figure 1, 

the model has a robust WM of the circle feature (in E) 

because it previously attended to the red circle. Thus, the 

circle feature is not currently novel—there is no contrast 

peak at the circle value in G; rather, the square feature is 

novel (G). This novelty peak helps to stabilize attention to 

this feature via feedback to the shape attention field (I).  

Like 1D fields in the feature-pathway, the model has 

three 1D fields in the spatial pathway—a spatial attention 

field, (J) a spatial contrast field (K) and a spatial WM field 

(L). Respectively, these serve to create spatially “bound” 

representations of the attended object in an allocentric 

frame, detect changes in object locations and build WMs for 

the locations of objects, analogous to fields in the feature 

pathway. This dichotomous information-flow at the visual 

front-end of the model is guided by the functional and 

anatomical separation of the mammalian visual system into 

dorsal (“where”) and ventral (“what”) streams. 

On the left side of the figure, the model has a 1D field—

word input (M) and multiple 2D fields—a word-color (N), a 

word-shape (O), and two scene attention fields (P, Q) with 

space-feature dimensionality (two additional WM fields are 

not shown for simplicity). Fields are reciprocally connected 

such that activation passes along the four shared 

dimensions: words (N↔M↔O), space (P↔J↔Q), color 

(N↔P), and shape (O↔Q). Activations related to the 

attended object in the feature attention fields (H, I) are 

passed on to the scene attention fields (P, Q) [see the 

horizontal ‘ridges’ of activation]. Similarly, activation 

related to the spatial position of the attended object (J) is 

passed along the spatial dimension into the scene attention 

fields [see vertical ridges of activation]. In Figure 1 panels P 

and Q, these ridges cross, creating a “bound” object 

representation—a pattern of peaks representing a specific 

color and shape at a leftward location. Similar coupling 

across the word dimension (peak in M; vertical ridge in N, 
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O), binds a word with associated features. The 1D spatial 

and feature WM fields are coupled to two 2D WM fields 

(not shown). These fields have the same dimensionality as 

the scene attention fields (P, Q), but they can maintain 

multiple peaks. 

 

Figure 1: WOLVES model architecture. Rectangles A-R 

represent component DNFs and arrows represent uni- /bi-

directional (green: excitatory, red: inhibitory) connectivity 

in the model. See text for figure description. 

 

Object binding is based on a winner-take-all attention 

system that spans J, P, and Q. This selects objects in 

allocentric space that are the focus of attention, binds the 

associated features to spatial positions, and supports the 

consolidation of items in WM. The transformation between 

visual/retinal (C) and allocentric (J) space is handled by a 

transformation system (grey diamond). For simplicity we 

use a one-to-one mapping transformation between the visual 

(C) and allocentric fields (J), although more rigorous DFT 

variants of such transformations have been proposed before 

(Schneegans & Schöner, 2012). Note that all the spatial 

attention layers—attention in the visual (C) and allocentric 

spatial (J) frames, and the object attention system (J, P, 

Q)—are all reciprocally coupled (bi-directional green 

arrows). This keeps WOLVES oriented in space as it shifts 

attention between frames of reference. The Inhibition of 

Return (IOR) field (R) is driven by the formation of peaks in 

the object attention system: the system can release attention 

once the features of the current object have been bound.  

All WM and contrast fields have memory traces that 

influence the current activity in these fields according to 

their histories of neural decisions (or peak formations). 

These memory traces enable habituation to the locations of 

objects in P & Q, becoming familiarized with visual features 

in D & E and importantly, 

enable trial-to-trial learning 

of which objects are where 

and what features go with 

each word, building a 

vocabulary of word-object 

mappings in N & O. The bi-

directional coupling between 

word-feature associations 

and feature-based attention 

(see green arrow from O to I; 

comparable coupling would 

link N and H) is key to 

supporting these mappings. It 

also enables word-feature 

associations to bias selective 

attention—a central aspect of 

the model that drives looking 

as the system learns word-

object mappings.  

The full architecture can 

shift attention back and forth 

autonomously among a set of 

objects, learning about their 

visual features. The initial 

selection of an object is 

influenced by salience (via 

the strength of inputs to the visual field), novelty (via peaks 

in the contrast fields), and by random fluctuations (i.e., 

noise). As memory traces of object-word mappings build, 

words come to drive the model’s attention to the object that 

has been mapped to the current word input. 

Results 

WOLVES allows in-the-moment representation and 

measurement of visual attention dynamics as a task unfolds 

trial by trial. This makes WOLVES well-suited for 

modelling infant studies where eye-tracking and preferential 

looking are used to quantify behavior. In the following, we 

begin by reporting simulations of infant studies on cross-

situational word learning (Simulation Study A). Studies B 

and C apply the model to recent empirical experiments on 

adults and older children respectively. 

Simulation Study A: Smith & Yu (2008) and Yu & 

Smith (2011) 

Smith and Yu published two studies investigating cross-

situational learning in 12- and 14-month old infants. Both 

studies used the same preferential looking task to show that 

infants seem to learn words by tracking co-occurrences over 

time. In this task (Smith & Yu, 2008), infants saw two novel 

objects on a slide that lasted for 4 seconds and heard two 
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novel words, one after the other as the slide was presented. 

Across a training period composed of 30 such slides, infants 

were exposed to six words-object pairs in random 

combinations with two pairs per slide. Immediately after 

training, word-object mappings were tested via preferential 

looking; two objects were presented for 8 seconds along 

with a single word. Infants’ looking to the two objects was 

recorded using eye-tracking. Greater looking to the object 

previously paired with the heard word was taken to indicate 

learning. Each mapping was tested twice.   

Yu & Smith (2011), used the same task to explore the 

relationship between selective attention and learning in 

infants. The authors categorized infants that looked more at 

target objects than distractors as Strong learners and the 

other infants that looked more to distractors as Weak 

learners. The authors then reported multiple measurements 

of Strong/Weak infant looking dynamics and learning 

behavior (see Table 1) to look for relationships. 

We simulated the full cross-situational word learning 

task with WOLVES using Gaussian inputs to represent the 

color and shape features of objects, presented to the visual 

field, and word stimuli presented to the word field. Time in 

the model is scaled such that each simulation timestep 

equals eight seconds of real experimental time across all 

studies. The model can autonomously attend to the input 

stimuli. Over time, as the model attends to the presented 

objects and words, it forms working memories of visual 

scenes and accumulates word-object co-occurrence statistics 

over multiple presentations into memory traces. Later once 

strong word-object mappings are built, this results in 

selective attention to objects. These interactive dynamics in 

the looking-learning loop evolve as the task unfolds. 

Because we simulate the same preferential looking task 

presented to infants, we can directly compare the same 

behaviors across simulations and infants (see Table 1). 

 

 Table 1: Infant and Model looking and learning results  

 

 Smith 

& Yu 

(2008) 

Yu & 

Smith 

(2011) 

WOLVES 

Model 

Mean # of words 

learned (out of 6) 

4 3.5 3.6 

Mean looking 

time to objects at 

test (8s trial) 

5.85 sec 5.92 5.1 

Mean looking 

time at Target vs 

Distractor 

3.4  

vs  

2.45 sec 

3.25  

vs  

2.67 

2.9  

vs  

2.3 

Mean duration 

looking at objects 

training (4s trial) 

3.14 sec 

 

Strong 2.96 

Weak 3.07 

2.6 

Mean # of 

fixations per trial 

NA Strong 2.75 

Weak 3.82 

2.6 

Mean fixation 

duration (in sec) 

NA Strong 1.69 

Weak 1.72 

1.6 

 

Overall, the model behavior is in close proximity to that 

of the reported infant behavior in the task. Like the 

empirical studies, the model also gives rise to Strong and 

Weak learners (in some cases (e.g., Table 1) even for 

parametrically same model instances). Most measures of 

looking and learning from the empirical studies and the 

model correlate well. A key insight from our model results 

was that the individual differences in the behavior of 

different model learners (or infants) did not necessitate 

different parametric instantiations (or cognitive conditions) 

but simply resulted from the differences in the order of 

stimuli presentations, internal noise of the learning system, 

and the non-linear interactions between these factors. 

Simulation Study B: Yurovsky, Yu & Smith (2013) 

Experiment 1. 

In this study, the authors explored competitive mechanisms 

involved in cross-situational word learning. The hypothesis 

was that on a single presentation trial, learning multiple 

referents for one word should be difficult because of the 

local competition between word-object mappings. To 

examine this, adult participants were exposed to six single 

words (words mapped correctly to a single referent in a 

trial) and six double words (words mapped to two different 

referents in a trial) over a learning session of 27 randomized 

trials. At test, participants heard one of the twelve words 

and ranked four presented objects (by clicking on them) in 

the order of their likelihood of being the referent. 

Participants were credited with knowing the correct referent 

for a single word, if it was their first guess (‘single’ bars in 

Figure 2). Participants were credited with knowing a double 

word if they selected either of the correct referents as first 

guess (‘either’ bars in Figure 2). If participants selected both 

the referents as first and second guesses, they were credited 

with knowing both referents (‘both’ bars in Figure 2).  

 
Figure 2: Adult and model accuracy at test for each word 

type. The model results closely match the empirical data. 

 

We simulated this experiment with WOLVES using the 

same procedure as in the empirical study but took our test 

measurements from the model’s preferential looking 

behavior during the first 1000 millisecond time window of 

word presentation. The model was credited with knowing 

the correct referent for a single word if it looked more to the 
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target than to the three distractors. The model was credited 

with knowing the correct referent for a double word if it 

looked at either of the correct referents more than the other 

three objects (‘either’ bars). If looking time to both the 

referents was more than looking time to the two distractors, 

the model was credited with knowing both the correct 

referents (‘both’ bars). The model learned at rates 

comparable to adult performance, within an RMSE of 

0.1228 in overall correct response proportions (Figure 2). 

Yurovsky et al., (2013) concluded that competition is 

involved in every trial with a double word because referents 

inhibit one another’s mapping to the word. They suggest 

learners divide their attention between the two referents on 

double word trials. WOLVES confirms that multiple 

referents put strain on limited attentional resources and that 

sometimes only one of the referents is well attended. 

However, even if both referents get attention, the memory 

trace of a word associated with object in early trials will 

inhibit formation of mappings between the word and a 

second referent by directing selective attention to the 

previously mapped object. In this way, the model reflects 

how selective attention and memory interact online to give 

rise to the observed behavior of adults and indicates that the 

explanation for such results may not require use of 

additional processes like competition or mutual exclusivity. 

Simulation Study C: Suanda, Mugwanya & Namy 

(2014) Experiment 1. 

This experiment investigated how the diversity of learning 

contexts (i.e., the degree of word-referent cross-correlations) 

affected performance in 6-year old children. The hypothesis 

was that if children employ a cross-situational learning 

strategy, then they should be less successful in learning the 

correct mappings in lower contextual diversity conditions 

(i.e., when there are many strong word-referent cross-

correlations) than in situations with higher contextual 

diversity. To explore this, children were randomly assigned 

to three conditions: In a High Contextual Diversity (HCD) 

condition, the other word-object pairings seen were different 

in each of the four training trials (i.e. no cross-correlations 

between mappings) for an object-word pair. In the Moderate 

CD condition, word–picture pairings co-occurred with one 

word–picture pairing on two trials and two other word–

picture pairings on the other two trials, resulting in less 

diversity across trials. Finally, in the Low CD condition, 

word–picture pairings co-occurred with one word–picture 

pairing three times and another word–picture pairing once, 

so the diversity across trials was low (many cross-

correlations). First, the children were familiarized with the 

task for a separate set of words and objects. Then as per the 

CD condition assigned, children saw two pictures and heard 

two words corresponding to the two pictures per trial. Eight 

word-object pairs were presented over a session of 16 

training trials. Finally, on each force-choice test trial 

children were presented with a word and asked which of 

four displayed pictures the word referred to. Children’s 

performance decreased with decreasing contextual diversity 

(i.e. increasing cross-correlations made learning difficult, 

see Figure 3).  

We simulated the same experimental procedure in 

WOLVES and measured preferential looking behavior at 

test. If in the first 1000 milliseconds following the word 

presentation at test, the model looked more to the target than 

all the distractors, it was credited with knowing the correct 

mapping. As Figure 3 shows, the simulation results follow 

the same downward trend in mean proportion correct 

response across conditions as the empirical work with 

children with values within an RMSE of 0.1813. 

Suanda, Mugwanya, & Namy (2014) reported that the 

precise reason for why contextual diversity helps was 

unclear but suggested possibilities: (a) increasing variability 

of learning instances allows for more decontextualized 

representations; (b) variability allows for a greater number 

of potential cues at memory retrieval time; and (c) 

variability initially creates ‘desirable difficulties’ in learning 

that boosts the strength of learning in the long run. 

WOLVES provides clarity by highlighting the real-time 

interactions between memory trace formation and the 

selective attention these memories capture. In the HCD 

condition, memories for correct mappings are reinforced 

after every exposure to a highly diverse context while 

incorrect mappings are not. This allows the correct 

mappings to selectively guide the model to attend to the 

correct referent after a word is presented, leading to stronger 

correct mappings and therefore better learning. In the LCD 

condition, memories for both incorrect and correct 

mappings are reinforced on every exposure to the less 

diverse context. Thus, word-driven selective attention gets 

directed to incorrect referents more often, leading to less 

learning overall. 

 
Figure 3: Response accuracy of the model and children 

show a comparable descending pattern across levels of 

contextual diversity. 

Discussion 

In this article, we described the first neurally-grounded 

model of word learning that incorporates visual dynamics in 

the word-object learning processes and tested it in the 

context of cross-situational learning scenarios. Across three 

different cross-situational word-learning simulations, the 
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model successfully learned novel words and showed 

looking and learning behavior akin to that reported in 

empirical studies on infants, children and adults. Our 

simulations indicate that mechanisms including  memory 

trace consolidation, speed of visual processing, strength of 

working memories, top-down  and bottom up attentional 

influences  operate in non-linearly complex ways to give 

rise to a diverse range of learning trajectories, although we 

are still exploring the model behavior to come up with a 

unified theory of the word learning phenomena  

In contrast to existing computational models that focus 

on corpus analyses and hence avoid direct modelling and 

comparison to empirical results, the proposed model allows 

moment-to-moment behavioral modelling, analysis and 

prediction that we are pursuing in our ongoing work. For 

instance, WOLVES allows us to examine individual 

differences and to make inferences about individual learning 

trajectories. Similarly, modeling studies from different age 

groups will be important in drawing the developmental 

trajectory of learning and looking for the component 

processes that drive this development. 

Our ongoing work, seeks a comprehensive modeling 

account of cross-situational word learning by investigating 

the role of partial knowledge (Kachergis et al., 2012), 

effects of varying referential uncertainty and referent 

frequency (Yu & Smith, 2007), role of different memory 

subsystems (Vlach & DeBrock, 2017) and  the effect of 

novelty and selective attention on learning in cross-

situational scenarios (Yu et al., 2012). This larger set of 

simulations provides the basis to explore the parametric 

space of the model and the influence of these parameters on 

the model’s learning, attention and memory. 
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