Lawrence Berkeley National Laboratory

 Recent WorkTitle
PROPERTIES OF THE ALPHA-PARTICLES EMITTED IN THE SPONTANEOUS FISSION OF Cf252

Permalink

https://escholarship.org/uc/item/8925k813

Authors

Fraenkel, Z.
Thompson, S.G.
Publication Date
1964-09-01

University of California

Ernest O. Lawrence Radiation Laboratory

PROPERTIES OF THE ALPHA-PARTICLES EMITTED IN THE SPONTANEOUS FISSION OF Cf ${ }^{252}$

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory Berkeley, California
AEC Contract No. W-7405-eng-48

PROPERTIES OF THE ALPHA - PARTICLES EMITTED IN THE SPONTANEOUS FISSION OF Cf 252
Z. Fraenkel and S. G. Thompson

September 1964

Properties of the Alnha-particles Emitted in the Spontaneous Fission of Cf $\mathrm{f}^{252^{*}}$
Z. Fraenkel.* and S. G. Thompson

Lawrence Radiation Laboratory
University of California
Berkeley, California
*Research performed under the auspices of the U. S. Atomic Energy Commission.

```
*On leave of absence from the reizmann Institute of Science Present address: Weizmann Institute of Science, Rehovoth, Israel.
```

The properties of the alpha narticles emitted in the spontaneous fission of $C f^{252}$ have been examined in a three-parameter correlation experiment. The experimental apnaratus consisted of a fission chamber containing two fixed semiconductor detectors (for the two fission fragments), one movable semiconductor detector (for the aloha narticle) and a $1.5 \cdot 10^{7}$ fission/min Cf f^{252} source on a $100,4 \mathrm{~g} / \mathrm{cm}^{2} \mathrm{Ni}$ foil backing. A $16 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Au}$ foil was placed in front of the alpha particle detector in order to prevent the 6.1 MeV alpha particles from the alpha decay of Cf^{252} and fission fragments from reaching the detector. The Au foil could be replaced by a thick Es ${ }^{253}$.Am 241 source which served for the, energy calibration of the alpha narticle detector. The energy calibration of the two fission fragments detectors was done by comnaring the single-fragment energy distribution with that obtained by a time-of-flight method by Fraser et al. ${ }^{(1)}$ The opening angle subtended by each detector $\left(\pm 5^{\circ}\right)$ was large enough to make
negligible any corrections in the counting efficiency for different values of the aloha particle energy and angle and the fission fragment mass ratio (all affecting the angle between the two fission fragments). Trinle coincidence events were orocessed by a multidimensional analyzer and stored on tape. The data were then analyzed in various ways with the aid of a comnuter. A total of $2 \hat{0} 10^{5}$ trinle coincidence events were analyzed in this fashion. In our experiment we only detected alphá particles of energy.greater than 10 MeV . This cut-off was chosen so as to exclude from our analysis accidental coincidences of binary fission events with 6.1 MeV alpha particles from Cf^{252} contamination of the alpha counter assembly. Such events would be indistinguishable from true triple coincidence events involving 9.5 MeV alpha particles which have traversed the Au foil. The angle of the alpha particlc detector was varied between 60° and 120° with respect to either fission counter. We present here first a brief summary of our main results. A more detailed description of the apparatus and experimental results will be published elsewhere.

The angular distribution (corrected for finite detector size and finite extension of the source) of the alnha particles is, neaked at an angle of 81° with respect to the direction of the light fragment. It is approximately symmetric with respect to this angle and we obtain for this distribution a width of 32° (FWHM). (The true width may be somewhat narrower. See below). The energy spectrum of the alpha particles when messured at an angle of 90°. with respect to the two fission fragment counters is peaked at 14 MeV and falls to one half its peak value at 20 MeV . When the alpha particle spectrum is measured
without regard to its angle with the direction of the fission fragments (by measuring the energy distribution without coincidence), the most nrobable energy is 15 MeV and the half-maximum value at 21.5 MeV . These values are in essential agreement with previous measurements of the alnha particle angular and energy distributions although our value for the most nrobable alpha particle energy is somewhat lower than the values obtained by nrevious authors.

Table I compares the light and heavy fragment neak nositions $\left(\bar{E}_{L}\right.$ and $\left.\bar{E}_{H}\right)$ and widths (σ_{L} and $\left.\sigma_{H}\right)$ of the single fragment energy distribution in fission accomnanicd by the emission of high enexgy alpha particles (aloha fission for short) and binary fission as obtained in our experiment. For comnarison we also show the results of Fraser et al ${ }^{(1)}$ for ${ }^{(1)}$ inary fission. (The veak positions for binary fission in our measurement are of course identical with those of fraser et al since these were our calibration points). The values of $\bar{E}_{L}, \overline{E_{H}}, \sigma_{L}$ and σ_{H} shown in Table I (including those of Fraser et al were obtained by fitting the exnerimental distribution to two Gaussian distributions. Also shown in Table I are the average value and width (standard deviation) of the combined energy E_{F} of the two fission fragments. The average total kinetic enexgy in alpha fission (including the energy of the alpha particle) \Longrightarrow in our experiment $185.2 \pm 0.1 \mathrm{MeV}$ and the width (S.D.) of the distribution ${ }^{\text {was }} 2.7 \pm 0.1 \mathrm{MeV}$. However, since our measurement included only alpha particles above 10 MeV the actual total kinetic energy in aloha fission may be lower by as much as one MeV. The errors stated are statistical exrors only. The average kinetic energy ratio, R, of the two fission fragments is 1.323 ± 0.002 and the
width of the distribution is 0.142 ± 0.001 as compared to 1.330 ± 0.001 and 0.150 ± 0.001 for binary fission (statistical errors only). All the above values for alpha fission-fission were obtained for an alpha narticle angle of 90° with respect to the two fission fragment detectors.

In the rest of this letter we wish to discuss the results of the analysis of the angular distribution of the alnha particles as a function of the energy ratio R of the two fission fragments. This ratio corresponds to the mass ratio of the fragments at scission (primary mass ratio) except for corrections due to neutron emission. In Fig. 1 we show the angular distribution of the alpha narticles for seven energy ratio intervals of the fission fragments. The angular distributions have been corrected for finite detector size ${ }^{(4)}$ and finite extension of the source ${ }^{(5)}$. Due to uncertainties in these corrections the wings of the distributions cannot be trusted and the actual distributions are probably somewhat narrower than those shown in fig. 1 . Because of the essentially symmetric shape of the distributions the position of the peaks is almost unaffected by the corrections.

The most striking feature of Fig. 1 is the shift of the most probable direction of the alpha varticle towards the direction of the heavy fragment as the energy ratio R increases. Thus the most probable value of θ_{L} (the angle between the direction of the alpha particle and the direction of the light fragment) for almost symmetric fission ($1.0 \leq R<1.1$) is 72° whereas for very asymmetric fission ($2.0 \leq R$) the peak of the angular distribution is shifted towards the heavy fragment $\left(\theta_{\mathrm{L}}\right.$ (peak) $=9.9^{\circ}$).

The systematic shift of the most probable angle with mass ratio may be explained in the following way: The angular distribution of the alpha particles is predominantly due to the Coulomb . force between the two fission fragments and the alpha particle which is emitted in the "neck" region connecting the two fission fragments before scission. If the alnha particles are emitted from a point very much closer to fragment a than to fragment b
the Coulomb force of fragment a will predominate and the angular distribution of the alpha narticles will be shifted towards the dircction of fragment h. The gradual shift of the most probable angle in Fig. 1 towards the heavy fragment as the mass ratio increases indicates that the most probable noint of emission of the alpha particle is strongly dependent on the mass ratio: This noint is close to the heavy fragment for almost symmetric fission and close to the light fragment for large mass ratios R. The shift of the most probable angle with R would also be expected if in almost symmetric fission the heavy fragment is nearly snherical whereas the light fragment is highly deformed and the deformation of the heavy fragment incresses and that of the light fragment decreases with increasing R until at very high mass ratios the light fragment is almost spherical and the heavy fragment is highly deformed. (If the point of emission were independent of R, the shift of the most probable angle would be opposite to that shown in Fig. 1 due to the larger Coulomb force of the heavier fragment). Assuming the alpha narticle to be emitted at the scission point ${ }^{(6)}$ (i.e. the point at which the "neck" between the two fragments rupturesbe arrive at the following conclusion: The scission point is close to the heavy fragment for almost symmetric fission and its shifts towards the light fragment as the mass ratio increases. For a mass ratio $R=2$ the scissior point is already close enough to the light fragment to cause most of the alpha particles to be emitted towards the direction of the heavy fragment.

The results shown in Fig. 1 imnly a discontinuity in the variation of the most probable angle $\theta_{\alpha}(A)$ with respect to the direction of a given fragment of miass A at a fragment mass corresponding to symmetric fission. The function $\theta_{\alpha}(A)$ is shown in Fig. 2. It can be obtained
from Fig. 1 by neglecting the effect of neutron emission (i.e assuming $E_{1} / E_{2}=A_{2} / A_{1}$ for the relation between the initial. fragment masses A_{1} and A_{2} and the measured fragment energies E_{1} and E_{2}). Since our results (Fig. 1) were obtained for comparatively large R intervals the error due to this approximation is small. The discontinuity of $\theta_{\alpha}(A)$ at $A \approx 124$ is similar to the "discontinuity" in the average number of neutrons as a function of fragment mass $\bar{\beta}(A)$ in binary fission. Fig. 2 also shows the function $\mathcal{S}(A)$ for binary fission of $C f^{252}$ as obtained by Bowman et al. (7) Similar curves were nublished by Whetstone (8) and Terrell. (9) (It should be noted that a given value of θ_{α} for a fragment of mass A also determines the complimentary angle ($180^{\circ}-\theta_{\alpha}$) as the most nrobable angle of the comnlimentary fragment of mass 248-A. Hence only one half of the function $\theta_{\alpha}(A)$ as plotted in Fig. 2 conveys new information. The other half is redundant and was plotted here only for sake of convenience. This is not true for the function $\bar{j}(\mathrm{~A})$.)

The similarity between the two functions plotted in Fig. 2 is not fortuitous. The experimentally observed variation of $\bar{\mu}(A)$ with fragment mass as seen in Fig。 2 has been taken as evidence that a shift in the position of the scission point docs also occur in binary fission. (8)(10) The arguments are well known and will be given here only very briefly: A small value of $\bar{\mu}(A)$ for a given fragment indicates that the average excitation energy of this fragment is small and hence the deformation energy of the fragment at the moment of scission must also have been small (since the deformation energy at the moment of scission is later transformed into excitation energy). A small deformation energy implies that the fission fragment was almost spherical at the moment of scission, i.e. the scission point was close to the center of the fragment.

We may therefore conclude that if the scission point is close to a given fragment the value of $\bar{\gamma}$ for this fragment in binary fission will be small and the angle of the alpha particle with resnecto to the direction of this fragment in alpha fission will be large. This anticorrelation between $\bar{p}(A)$ in binary fission and $\theta_{\alpha}(A)$ in alnha fission is evident in Fig. 2. It indicates that a simjlar shift occurs in the position of the scission point as a function of R in binary and alpha fission. It also lends further support to the supposition that the configuration of the nucleus at (and before) scission in alpha fission closely resembles the configuration in binary fission.

This work was carried out while one of the authors (Z.F.) was a. guest of the Lawerence Radiation Laboratory, Berkeley. He wishes to thank prof. I. Perlman for his hospitality. The authors also wish to thank Prof. I. Perlman and H. R. Bowman for their invaluable support and help during all nhases of the experiment. Finally they wish to acknowledge many valuable discussions with Dr. W. J. Swiatecki, Profs. I. Halpern and I. Dostrovsky.

TABLE I. Mean values and standard deviations of the kinetic energy of the light and heavy.fragments ($\left.\bar{E}_{H}, \sigma_{H}, \bar{E}_{L}, \sigma_{L}\right)$ fitted to two Gaussian distributions, and the kinetic energy of the two fission fragments for alpha fission ($\theta_{L}=90^{\circ}$) and binary fission. Also shown are the values obtained by fraser et al (Ref. 1) for binary fission. (In MeV). The errors stated are statistical errors only.

| Alpha | 74.3 ± 0.1 | 7.16 ± 0.06 | 97.3 ± 0.1 | 5.75 ± 0.05 | 169.0 ± 0.1 | 12.57 ± 0.10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Binary | 78.8 ± 0.2 | 8.89 ± 0.12 | 104.1 ± 0.1 | 6.22 ± 0.09 | 181.1 ± 0.1 | 13.51 ± 0.06 |
| FMBT | 78.8 | 9.10 ± 0.01 | 104.1 | 6.14 ± 0.01 | 182.1 | 15.2 |

REPERENCES

1. J. S. Fraser, J. C. D. Milton, H. R. Bowman and S. G. Thompon, Can. J. Phys. 41, 2080 (1963).
2. M. L. Muga, II. R. Bowman and S. G. Thompson, Phys. Rev. 121, 270 (1961)。
3. R. A. Nobles, Phys. Rev. 126, 1508 (1962).
4. M. E. Rose, Phys. Rev. 91, 610 (1953).
5. A. M. Feingold and S. Frankel, Phys. Rev. 97. 1025 (1955).
6. I. Halpern "Alpha particle Emission in Fission "CERN, 1963 unpublished.
7. H. R. Bowman, J. C. D. Milton, S. G. Thompson and W. J. Swiatecki Phys. Rev. 129, 2133 (1963).
8. S. L. Whetstone, Jr., Phys. Rev. 114, 581 (1959).
9. J. Terrell, Phys. Rev. 127, 880 (1962).
10. V. V. Vladimirski, Zh. Eksperim i. Teor. Fiz。 32, 822 (1957). [Translation: Soviet Phys, JETP 5, 673, (1957)].

FIGURE CAPTIONS

(1) Angular distribution of the alnha narticles for seven intervals of the fission fragment mass ratio R. θ_{L} is the angle with respect to the direction of the light fragment.
(2) Most probable angle θ_{α} of the alpha particles with respect to the direction of the fission fragment in alpha fission and average number of neutrons in binary fission as a function of fragment mass. $\bar{u}(A)$ was taken from Bowman et al (Ref. 6).

Fig. la.

FIg. 1 b .

Fig. 2.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

$$
\infty
$$

