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Abstract

We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all
possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These
symmetries include D4 and �(54). We find that the symmetries of the couplings are always larger than
the symmetries of the compact space. This is because they are a consequence of the geometry of the orb-
ifold combined with the space group selection rules of the string. We also study possible breaking patterns.
Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important issues in contemporary particle physics is to understand the quark
and lepton flavor structure, i.e. the origin of the number of generations, the observed mass
hierarchies as well as the mixing angles. Many attempts to understand flavor are based on sponta-
neously broken Abelian [1] and non-Abelian flavor symmetries [2], such as S3(≈ D3) [3], S4 [4],
A4 [5], D4 [6], D5 [7], Q6 [8], �-subgroups of SU(3) [9–11], governing Yukawa couplings for
quarks and leptons. Discrete symmetries are not only useful to understand flavor issues (e.g.
the observed large mixing angles in the lepton sector) but also to control soft supersymmetry
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breaking terms, in particular to suppress dangerous flavor changing neutral currents. However,
the origin of these discrete symmetries remains obscure in the framework of 4D field theory.

It is not surprising that compactifications of higher-dimensional field theories offer an expla-
nation for the appearance of non-Abelian discrete flavor symmetries, because the latter are sym-
metries of certain geometrical solids. The symmetries of internal space give rise to symmetries
of the interactions between localized fields, which may eventually become flavor symmetries. To
be able to evaluate the couplings, and to identify their symmetries, requires the specification of a
framework.

We base our analysis on superstring theory, which is a promising candidate for a unified de-
scription of nature, including gravity. Consistent (super-)string theories have, in addition to 4D
Minkowski space–time, six extra dimensions. An important aspect of string compactifications is
that phenomenological features, such as the number of generations and the structure of Yukawa
couplings, are determined by geometrical properties of the 6D compact space. 4D string mod-
els often enjoy Abelian discrete ZN symmetries, which govern the allowed couplings. On the
other hand, non-Abelian discrete flavor symmetries derived from string theory have not yet been
studied extensively in the literature. The purpose of the present study is to fill this gap.

Among the known string constructions, heterotic orbifold models [12,13] have a particularly
simple geometric interpretation, and an encouraging phenomenology. The selection rules for
heterotic orbifolds are well known [14–16], but little attention has been paid to the emerging non-
Abelian flavor symmetries. Recently, explicit string compactifications, based on the Z6 − II =
Z2 × Z3 heterotic orbifold, with a D4 flavor symmetry have been constructed [17–20]. In these
models, the three generations are comprised of a singlet and a doublet under the D4 symmetry.
This D4 flavor symmetry has important phenomenological implications [18,21].

In this paper we study which types of non-Abelian discrete flavor symmetries can appear in
heterotic orbifold models. We classify all the possible non-Abelian discrete symmetries which
can arise from heterotic orbifold models, and explore which representations appear in the zero-
modes.

The paper is organized as follows. In Section 2, we collect some basic facts on strings on orb-
ifolds. Sections 3 and 4 are dedicated to a classification of all the possible non-Abelian discrete
flavor symmetries. Their breaking patterns are discussed in Section 5. Section 6 is devoted to
conclusions and discussion. In Appendix A we outline the calculation of coupling strengths on
orbifolds. Appendices B and C deal with group-theoretical aspects of D4 and �(54).

2. Strings on orbifolds

2.1. Review of basic facts

Let us start with a brief introduction to strings on orbifolds [12,22] (for recent reviews see
[18,20,23]). A d-dimensional orbifold emerges by dividing a d-dimensional torus T

d by its
symmetry, represented by an automorphism (‘twist’) θ . T

d is obtained as R
d/Λ, where Λ is

a d-dimensional lattice, and the twist θ is the finite-order automorphism of Λ, i.e. θΛ = Λ and
θN = 1. The orbifold is then denoted as T

d/ZN . In other words, T
d emerges from R

d through
the identification

(1)xi ∼ xi + nae
i
a,
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where na is integer and {ei
a} is the lattice basis of Λ. Furthermore, one identifies points related

by θ ,

(2)(θx)i ∼ xi + nae
i
a,

on the orbifold. We are specifically interested in 6D orbifolds which preserve N = 1 supersym-
metry in 4D. For those it is convenient to diagonalize the twist θ , i.e. parametrize T

6 by three
complex coordinates zi w.r.t. which

(3)θ = diag
(
exp(2π iv1), exp(2π iv2), exp(2π iv3)

)
.

Hereby vi = ni/N (ni ∈ Z) and
∑

i vi = 0.
Among the Abelian orbifolds, only certain constructions lead to N = 1 supersymmetry in

4D. There are, first of all, nine classes of ZN orbifolds [12] which are surveyed in Table 1(a).
Here the second column shows vi as introduced in (3). Moreover, there are ZN × ZM orbifolds
which have two independent twists, θ and ω with θN = 1 and ωM = 1 (cf. [24]). Nine classes
of ZN × ZM orbifold models lead to N = 1 SUSY. Their twists are shown in Table 1(b) as θ =
diag(e2π iv1

1 , e2π iv1
2 , e2π iv1

3 ) and ω = diag(e2π iv2
1 , e2π iv2

2 , e2π iv2
3 ). Note that the Z2 ×Z3 orbifold is

equivalent to the Z6 − II orbifold.
Zero-modes, described by string coordinates Xi , of an orbifold arise from closed strings,

satisfying the boundary conditions

(4)Xi(σ + π) = (
θkX

)i
(σ ) + nae

i
a.

These boundary conditions can be either untwisted, i.e. k = 0, or twisted, i.e. 1 � k � N − 1.
Correspondingly, the Hilbert space of (massless) states decomposes in an untwisted and various
twisted sectors, denoted by U and Tk , respectively. The states from the untwisted sector are bulk
fields in the effective field theory whereas the twisted states are brane fields living at the fixed
points or planes. More specifically, the center-of-mass coordinates of twisted sector zero-modes
satisfy an analogous condition to (4),

(5)xi = (
θkx

)i + nae
i
a,

and are therefore in one-to-one correspondence to the fixed points or fixed planes of the orbifold.
It is common to denote the fixed points or planes by the corresponding space group element

Table 1
(a) ZN and (b) ZN × ZM orbifold twists for 6D ZN orbifolds leading to N = 1 SUSY

(a) ZN (b) ZN × ZM

Orbifold Twist Orbifold v1 v2

Z3 (1,1,−2)/3 Z2 × Z2 (1,0,−1)/2 (0,1,−1)/2
Z4 (1,1,−2)/4 Z2 × Z3 (1,0,−1)/2 (0,1,−1)/3
Z6 − I (1,1,−2)/6 Z2 × Z4 (1,0,−1)/2 (0,1,−1)/4
Z6 − II (1,2,−3)/6 Z2 × Z6 (1,0,−1)/2 (0,1,−1)/6
Z7 (1,2,−3)/7 Z2 × Z

′
6 (1,0,−1)/2 (1,1,−2)/6

Z8 − I (1,2,−3)/8 Z3 × Z3 (1,0,−1)/3 (0,1,−1)/3
Z8 − II (1,3,−4)/8 Z3 × Z6 (1,0,−1)/3 (0,1,−1)/6
Z12 − I (1,4,−5)/12 Z4 × Z4 (1,0,−1)/4 (0,1,−1)/4
Z12 − II (1,5,−6)/12 Z6 × Z6 (1,0,−1)/6 (0,1,−1)/6
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(θk, nae
i
a). The product of two space group elements, (θk(1)

, �(1)) and (θk(2)
, �(2)), is defined by

(6)
(
θk(1)

, �(1)
)(

θk(2)

, �(2)
) = (

θk(1)+k(2)

, θk(1)

�(2) + �(1)
)
.

Since the orbifold identification implies Λ ∼ θkΛ, space group elements (θk, �) are only defined
up to translations in the sublattice Λk = (1 − θk)Λ, i.e. (θ, �) � (θ, � + (1 − θk)λ) with λ ∈ Λ.
In other words, the space group elements appear in conjugacy classes (θk, � + (1 − θk)Λ), and
each conjugacy class corresponds to an independent fixed point or plane.

2.2. Couplings on orbifolds

Unlike in the field-theoretic case, coupling strengths are not free parameters in string theory
but calculable. In what follows, we give a brief review on Yukawa couplings as well as n-point
couplings [14,15,25].

First of all, couplings in heterotic orbifolds are dictated by selection rules [14–16,18,20].
Apart from gauge invariance and H -momentum conservation, allowed couplings are subject to
the space group selection rules. An n-point coupling among string states corresponding to fixed
points (θk(j)

, �(j)) (j = 1, . . . , n) is allowed only if their product includes the identity,

(7)
n∏

j=1

(
θk(j)

, �(j)
) � (1,0).

Moreover, the coupling strength between localized fields is a function of geometrical features
such as the distance between the fields. We review the computation of coupling strengths in
Appendix A. The important fact for the subsequent discussion is that, if the geometrical settings
of two couplings coincide, the coupling strengths coincide as well. In the next sections we shall
study the implications of this statement and the space group rule (7).

3. Non-Abelian flavor symmetries of building blocks

In many cases, the torus T
6 factorizes in tori of smaller dimensions, i.e. the lattice Λ decom-

poses in orthogonal sublattices. One is then lead to consider the building blocks

(8)S
1/Z2, T

2/Z3, T
2/Z4, T

2/Z6, T
4/Z8, T

4/Z12, T
6/Z7,

which arise from the 6D orbifold by projection.1 These building blocks play an important role
when discussing orbifold GUT limits [17,18,20,23,26], where one considers the effective field
theory describing anisotropic orbifolds for energies between different compactification scales.

An important property of the space group rule (7) is that, if the torus factorizes, it can be ex-
pressed in terms of independent subconditions that have to be fulfilled separately for the building
blocks. In what follows, we will explain this statement in more detail and study the consequences
of rule (7). The discrete flavor symmetries of combinations of building blocks will be studied in
Section 4.

1 One should, however, use these building blocks with caution. For instance, the Z6 − II orbifold based on the root

lattice of G2 × SU(3) × SO(4) [17,18,20,26], (T2
G2

× T
2
SU(3)

× T
2
SO(4)

)/Z6, is clearly not equivalent to (T2
G2

/Z6) ×
(T2 /Z3) × (T2 /Z2) since the twist θ acts on the three two-tori simultaneously.
SU(3) SO(4)
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3.1. S
1/Z2 orbifold

In the 1D orbicircle, i.e. the S
1/Z2 orbifold (Fig. 1), there are two independent fixed points,

which are denoted by their corresponding space group elements,

(9)(θ,me).

Here θ is the Z2 twist (reflection), m = 0,1 and the e is the unit vector defining S
1, i.e. we

identify x ∼ x + e on R
1. The sublattice (1 − θ)Λ is spanned by 2e. That implies that there are

two conjugacy classes corresponding to (θ,me) with m odd and even. The above space group
elements with m = 0,1 are their representatives.

Consequently, there are two types of twisted strings corresponding to the above independent
fixed points (θ,me) with m = 0,1 (Fig. 1). In the field-theoretic description, these are brane
matter fields living on these fixed points. Let us study the selection rule for allowed n-point
couplings among twisted states corresponding to (θ,m(j)e) for 1 � j � n. Their couplings are
allowed when

(10)
n∏

j=1

(
θ,m(j)e

) = (
1, (1 − θ)Λ

)
.

The product on the l.h.s. evaluates to

(11)
n∏

j=1

(
θ,m(j)e

) �
(

θn,

n∑
j=1

m(j)e

)
.

Thus, n localized states with the localization described by (θ,m(j)e) can only couple if n and∑
m(j) are even. The latter condition can be understood as a Z2 symmetry where the twisted

state |(θ,m(j)), . . .〉 (the omission indicates further quantum numbers) has Z2 charge m(j). The
Z2 transformation can be represented by

(12)σ3 =
(

1 0

0 −1

)
,

Fig. 1. S
1/Z2 orbifold. Points which are related by a reflection on the dashed line are identified. The fundamental region

of the orbifold is an interval with the fixed points sitting at the boundaries.
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in a basis where localized states appear as doublets (|(θ,0), . . .〉, |(θ, e), . . .〉). The requirement
that the number n of involved states be even leads to a second Z2 which acts as −1 on the above
doublets.

Consider, for example, states xi localized at m = 0, yj localized at m = 1 and bulk fields bk .
The symmetries discussed so far restrict allowed couplings to the form

(13)xi1 · · ·xinx
yj1 · · ·yjny

bk1 · · ·bknb
,

with nx and ny even. As we shall discuss in the following, one obtains further relations between
the coupling strengths from geometry.

These additional relations hold if the background fields (Wilson lines) vanish. Then the two
fixed points at m = 0,1 are equivalent. As a consequence, the Lagrangian is invariant under
relabeling m = 0 ↔ 1. This relabeling can be interpreted as an S2 permutation of matter fields
localized at the fixed points, and is represented by

(14)σ1 =
(

0 1

1 0

)

in the basis introduced above. This symmetry relates the coupling strengths, i.e. forces the cou-
pling strength of a term of the structure (13) to coincide with an analogous term where x ↔ y.
Thus, the flavor symmetry appearing from S

1/Z2 is the multiplicative closure of S2 and the Z2s,
which is denoted by S2 ∪ (Z2 × Z2). In the case under consideration, the subgroup Z2 × Z2,
generated by σ3 and −1, is normal.2 One can hence write the flavor symmetry as the semi-direct
product S2 � (Z2 × Z2). The product of the generators of the two Z2s and the S2 leads to the
following elements of the non-Abelian discrete flavor symmetry group:

(15)±1, ±σ1, ±iσ2, ±σ3.

This discrete group is known as D4 ≡ S2 � (Z2 × Z2), which is the symmetry of a square.
What we have found so far is that, due to string selection rules and geometry, superpotential

terms enjoy a discrete D4 symmetry where localized states living at two equivalent fixed points
transform as D4 doublets (2-plets). Bulk fields are trivial D4 singlets. Clearly, the introduction
of a (discrete) Wilson line breaks this symmetry explicitly to Z2 × Z2.

In conclusion, one can trade the space group selection rule and invariance under relabeling for
requiring the Lagrangian to respect a D4 ‘flavor’ symmetry. It is important to note that the sym-
metry of the Lagrangian is larger than the symmetry of internal space. We proceed by applying
analogous reasoning to the remaining building blocks (8).

3.2. T
2/Z3 orbifold

Let us now consider the T
2/Z3 orbifold which emerges by dividing the torus T

2
SU(3) by its

Z3 rotational symmetry, i.e. the discrete rotation by 120◦. Here T
2
SU(3) = R

2/ΛSU(3) with ΛSU(3)

denoting the SU(3) root lattice spanned by two simple roots ei (i = 1,2). The Z3 twist θ acts on
the lattice vectors as

(16)θe1 = e2, θe2 = −e1 − e2.

2 Recall that a subgroup N of a group G is called normal subgroup if it is invariant under conjugation; that is, for each

element n ∈ N and each g ∈ G, the element gng−1 is still in N . For further details see e.g. [27–29].
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The sublattice (1 − θ)Λ is spanned by e1 − e2 and 3e1. There are three independent fixed points
under θ , which are represented by

(17)(θ,m1e1),

with m1 = 0,1,2. The vector m1e1 is defined up to translations in the sublattice (1 − θ)Λ.
These twisted states residing on the three equivalent fixed points are degenerate unless the

equivalence of the fixed points is lifted by the introduction of non-trivial Wilson lines. Let us
consider an n-point coupling of twisted matter fields corresponding to (θ,m

(j)

1 e1) (1 � j � n).
According to (7), this coupling can only be allowed if the product of space group elements,

(18)
n∏

j=1

(
θ,m

(j)

1 e1
) �

(
θn,

n∑
j=1

m
(j)

1 e1

)
,

is equal to (1, (1 − θ)Λ). That requires

(19)n = 3 × (integer),
n∑

j=1

m
(j)

1 = 0 mod 3.

The first condition is equivalent to demanding that the Lagrangian be invariant under

(20)

⎛
⎝ |(θ,0), . . .〉

|(θ, e1), . . .〉
|(θ,2e1), . . .〉

⎞
⎠ →

⎛
⎝ω 0 0

0 ω 0

0 0 ω

⎞
⎠

⎛
⎝ |(θ,0), . . .〉

|(θ, e1), . . .〉
|(θ,2e1), . . .〉

⎞
⎠ ,

with ω = e2π i/3. The latter condition in (19) corresponds to a Z3 symmetry where the states with
|(θ,m1e1), . . .〉 have the Z3 charge m1. That is, one requires that the Lagrangian be invariant
under the Z3 transformation

(21)

⎛
⎝ |(θ,0), . . .〉

|(θ, e1), . . .〉
|(θ,2e1), . . .〉

⎞
⎠ →

⎛
⎝1 0 0

0 ω 0

0 0 ω2

⎞
⎠

⎛
⎝ |(θ,0), . . .〉

|(θ, e1), . . .〉
|(θ,2e1), . . .〉

⎞
⎠ .

Furthermore, the effective Lagrangian has an S3 permutation (or relabeling) symmetry of the
degenerate matter fields living on the three fixed points. Therefore the combination of selection
rules and relabeling symmetry leads to a discrete flavor symmetry given by the multiplicative
closure S3 ∪ (Z3 × Z3). As Z3 × Z3 is a normal subgroup, we can write the flavor symmetry
group as S3 � (Z3 ×Z3). This group has 54 elements and is known as �(54) in the literature (cf.
[30]).

Matter fields in the Z3 orbifold models consist of the untwisted sector U and θ -twisted sector
T1. The θ2-twisted sector T2 contains the anti-particles of T1, so that one does not need to treat it
separately. The untwisted matter fields transform trivially under �(54). The T1 states transform
as 3-plet (while the T2 states transform as 3).

In conclusion, the T
2/Z3 orbifold (or building block) without Wilson lines enjoys a �(54)

flavor symmetry where untwisted and T1 states transform as singlet and 3, respectively.
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(a) T
2
�/Z4 construction (b) T

2
�/Z4 triangle

Fig. 2. (a) T
2
SO(5)

is defined by two orthonormal vectors e1 and e2. There are two θ fixed points, which are indicated by

(blue) squares. In addition one has two θ2 quasi-fixed points (red bullets). The fundamental region of the torus consists
of the shaded region, the fundamental region of the orbifold is one quarter thereof. One can fold the fundamental region
along the dashed line and identify adjacent edges to obtain a triangle with a fore- and a backside (b). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3. T
2/Z4 orbifold

To construct the T
2/Z4 orbifold we use the torus T

2
� which is defined by the two orthonormal

torus translations e1 and e2.3 The Z4 twist acts on e1 and e2 as

(22)θe1 = e2, θe2 = −e1.

There are two independent Z4 fixed points corresponding to the space group elements

(23)(θ,m1e1),

with m1 = 0,1 (Fig. 2).
The twisted states decompose into T1 and T2 twisted sectors, corresponding to the space group

elements (θ,m1e1) and (θ2,
∑2

i=1 miei).4 Let us first discuss T1. Consider an n-point coupling

of twisted matter fields corresponding to (θ,m
(j)

1 e1) (1 � j � n). This coupling is allowed only
if the product of space group elements,

(24)
n∏

j=1

(
θ,m

(j)

1 e1
) �

(
θn,

n∑
j=1

m
(j)

1 e1

)
,

is equal to (1, λ) where λ ∈ (1 − θ)Λ. That requires

(25)n = 4 × (integer),
∑
j

m
(j)

1 = 0 mod 2.

These conditions imply that the Lagrangian is invariant under the two Z4 and Z2 transformations

(26)

( |(θ,0), . . .〉
|(θ, e1), . . .〉

)
→

(
i 0

0 i

)( |(θ,0), . . .〉
|(θ, e1), . . .〉

)
,

3 We could also have used the torus TSO(5) , obtaining the same results.
4 Note that the T3 contains only the anti-particles of T1, and does therefore not have to be treated separately.
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(27)

( |(θ,0), . . .〉
|(θ, e1), . . .〉

)
→

(
1 0

0 −1

)( |(θ,0), . . .〉
|(θ, e1), . . .〉

)
,

respectively. The former is the Z4 transformation generated by i1, while the latter is the Z2

transformation generated by σ3. Furthermore, the effective Lagrangian has an S2 permutation
symmetry generated by σ1. Thus, the flavor symmetry for θ twisted states is the multiplicative
closure of {i1, σ1, σ3}, denoted by S2 ∪ (Z4 × Z2). It is quite similar to D4, which is the flavor
symmetry on S

1/Z2. The difference is that the above algebra includes Z4 elements i1 and −i1,
and their products with D4 elements. Note that the element of the Z4 algebra, −1 = (i)21 is
included in the D4 algebra. Thus, the flavor symmetry of θ twisted matter fields is (D4 ×Z4)/Z2.
The division by Z2 implies that we have to identify the D4 element −1 with the Z4 element (i)21.
This identification has an important meaning for allowed Z4 charges of D4 doublets. If the flavor
symmetry was just D4 × Z4, D4 doublets could have an arbitrary Z4 charge. However, since our
flavor symmetry is (D4 ×Z4)/Z2, the Z4 charges of D4 doublets must be equal to 1 or 3, but not
0 or 2 (mod 4). Hence, the two T1 states correspond to 21 under (D4 × Z4)/Z2. Here, the index
denotes the Z4 charge. There is an ambiguity to assign Z4 charge 1 or 3 for the T1 states, but
both assignments are equivalent. With the above assignment, the two T3 states correspond to 23

under (D4 × Z4)/Z2.
Let us now study the T2 states. There are four fixed points under the twist θ2,

(28)
(
θ2,m1e1 + m2e2

)
,

with m1,m2 = 0,1, and there are four corresponding θ2 twisted states,

(29)
∣∣(θ2,m1e1 + m2e2

)
, . . .

〉
.

Note that two fixed points (θ2, e1) and (θ2, e2) are not fixed points under the θ twist, but they are
transformed into each other, while the other two fixed points are fixed points under the θ twist.
Thus, for states located at (θ2, e1) and (θ2, e2) one has to take linear combinations to obtain θ

eigenstates as [12,16]

(30)
∣∣(θ2, e1

)
, . . .

〉 ± ∣∣(θ2, e2
)
, . . .

〉
.

These four space group elements, (θ2,m1e1 + m2e2), can be obtained as products of two space
group elements (θ,m

(1)
1 e1) and (θ,m

(2)
1 e1) according to

(
θ2,0

) = (θ,0)(θ,0),
(
θ2, e1

) = (θ, e1)(θ,0),

(31)
(
θ2, e2

) = (θ,0)(θ, e1),
(
θ2, e1 + e2

) = (θ, e1)(θ, e1).

Since the selection rules for allowed couplings including both θ twisted states and θ2 twisted
states are controlled by the space group, the above products determine how four θ2 twisted states
transform under (D4 × Z4)/Z2. The two θ twisted states |(θ,m1e1), . . .〉 with m1 = 0,1 trans-
form as 21 under (D4 × Z4)/Z2, and the product of two such doublets yields

(32)21 × 21 = (1A1)2 + (1B1)2 + (1A2)2 + (1B2)2,



144 T. Kobayashi et al. / Nuclear Physics B 768 (2007) 135–156
where 1A1,B1,A2,B2 denote the four types of D4 singlets (see Appendix B). Thus, four θ2 twisted
states can be expressed in terms of four types of D4 singlets,

(33)

(1A1)2:
∣∣(θ2,0

)
, . . .

〉 + ∣∣(θ2, e1 + e2
)
, . . .

〉
,

(1B2)2:
∣∣(θ2,0

)
, . . .

〉 − ∣∣(θ2, e1 + e2
)
, . . .

〉
,

(1B1)2:
∣∣(θ2, e1

)
, . . .

〉 + ∣∣(θ2, e2
)
, . . .

〉
,

(1A2)2:
∣∣(θ2, e1

)
, . . .

〉 − ∣∣(θ2, e2
)
, . . .

〉
.

If we consider couplings including only θ2 twisted states and untwisted states, the flavor
symmetry of θ2 twisted states is the same as the discrete symmetry for T1 states on T

2/Z2, i.e.
(D4 × D4)/Z2 (we will discuss this further in Section 4.1). However, couplings including both
θ and θ2 twisted states enjoy only (D4 × Z4)/Z2.

As an example, let us consider the allowed 3-point couplings, T1T1T2. To obtain them, we
decompose the product of two T1 doublets

(34)|21,1〉 =
( |(θ,0),1〉

|(θ, e1),1〉
)

and |21,2〉 =
( |(θ,0),2〉

|(θ, e1),2〉
)

according to (32) into four singlets,

(35)

1A1 :
∣∣(θ,0),1

〉∣∣(θ,0),2
〉 + ∣∣(θ, e1),1

〉∣∣(θ, e1),2
〉
,

1B2 :
∣∣(θ,0),1

〉∣∣(θ,0),2
〉 − ∣∣(θ, e1),1

〉∣∣(θ, e1),2
〉
,

1B1 :
∣∣(θ,0),1

〉∣∣(θ, e1),2
〉 + ∣∣(θ, e1),1

〉∣∣(θ,0),2
〉
,

1A2 :
∣∣(θ,0),1

〉∣∣(θ, e1),2
〉 − ∣∣(θ, e1),1

〉∣∣(θ,0),2
〉
.

Now seek for invariant product with T2 states. Only the following products are invariant:

(36)A1 A1, A2 A2, B1 B1, B2 B2.

From A2
1 and B2

2 we find the following allowed superpotential terms (we are using the states as
synonyms for the superfields)

a
[∣∣(θ,0),1

〉∣∣(θ,0),2
〉 + ∣∣(θ, e1),1

〉∣∣(θ, e1),2
〉][∣∣(θ2,0

)〉 + ∣∣(θ2, e1 + e2
)〉]

,

(37)b
[∣∣(θ,0),1

〉∣∣(θ,0),2
〉 − ∣∣(θ, e1),1

〉∣∣(θ, e1),2
〉][∣∣(θ2,0

)〉 − ∣∣(θ2, e1 + e2
)〉]

.

We can re-arrange the couplings above and obtain for the couplings of physical states

W ⊃ c1
[∣∣(θ,0),1

〉∣∣(θ,0),2
〉∣∣(θ2,0

)〉 + ∣∣(θ, e1),1
〉∣∣(θ, e1),2

〉∣∣(θ2, e1 + e2
)〉]

(38)+ c2
[∣∣(θ,0),1

〉∣∣(θ,0),2
〉∣∣(θ2, e1 + e2

)〉 + ∣∣(θ, e1),1
〉∣∣(θ, e1),2

〉∣∣(θ2,0
)〉]

with c1 = a + b, c2 = a − b. From B2
1 and A2

2 we get

W ⊃ c
[∣∣(θ,0),1

〉∣∣(θ, e1),2
〉 + ∣∣(θ, e1),1

〉∣∣(θ,0),2
〉][∣∣(θ2, e1

)〉 + ∣∣(θ2, e2
)〉]

(39)+ d
[∣∣(θ,0),1

〉∣∣(θ, e1),2
〉 − ∣∣(θ, e1),1

〉∣∣(θ,0),2
〉][∣∣(θ2, e1

)〉 − ∣∣(θ2, e2
)〉]

.

The re-arrangement of couplings then analogously reads

W ⊃ c3
[∣∣(θ,0),1

〉∣∣(θ, e1),2
〉∣∣(θ2, e1

)〉 + ∣∣(θ, e1),1
〉∣∣(θ,0),2

〉∣∣(θ2, e2
)〉]

(40)+ c4
[∣∣(θ,0),1

〉∣∣(θ, e1),2
〉∣∣(θ2, e2

)〉 + ∣∣(θ, e1),1
〉∣∣(θ,0),2

〉∣∣(θ2, e1
)〉]
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with c3 = c + d , c4 = c − d . The higher-dimensional allowed couplings can be obtained anal-
ogously. From the geometry of the setup one infers that c3 = c4 such that d = 0 in (39).5 The
vanishing of the d-term can also be inferred from gauge invariance. This will be discussed in
detail elsewhere.

3.4. T
2/Z6 orbifold

The 2-dimensional Z6 orbifold is obtained as T
2
SU(3)/Z6.6 The Z6 twist is defined for the

SU(3) simple roots e1 and e2 as

(41)θe1 = e1 + e2, θ(e1 + e2) = e2, θe2 = −e1.

The sublattice (1 − θ)ΛSU(3) is the same as ΛSU(3). That implies that there is a single (indepen-
dent) fixed point under the Z6 twist θ . That is, this orbifold model does not include a non-Abelian
flavor structure.

Notice that couplings involving higher twisted sectors only do enjoy non-Abelian discrete
symmetries. Analogously to the Z4 case, these symmetries disappear as soon as T1 states enter
the couplings.

3.5. T
4/Z8 orbifold

The 4-dimensional Z8 orbifold can be obtained as T
4
SO(9)/Z8, where T

4
SO(9) is the 4-torus

based on the SO(9) Lie lattice, which is spanned by the basis vectors ei (i = 1,2,3,4). The Z8
twist transforms the latter

(42)θe1 = e2, θe2 = e3, θe3 =
3∑

j=1

ej + 2e4, θe4 = −
4∑

j=1

ej .

The sublattice (1−θ)Λ is spanned by e1, e2, e3 and 2e4. Thus, there are two fixed points under θ ,

(43)(θ,m4e4),

for m4 = 0,1.
The flavor symmetry of T1 on T

4/Z8 is quite similar to the flavor symmetry of T1 on T
2/Z4.

The former is the closure algebra, S2 ∪ (Z8 × Z2), where Z8 transforms as

(44)

( |(θ,0), . . .〉
|(θ, e4), . . .〉

)
→

(
ρ 0

0 ρ

)( |(θ,0), . . .〉
|(θ, e4), . . .〉

)
,

with ρ = eiπ/4. In addition, S2 and Z2 transformations are represented in the above basis by σ1
and σ3, respectively. Thus, the flavor symmetry is written as S2 ∪ (Z8 × Z2) = (D4 × Z8)/Z2,
where the division by Z2 implies that we identify the D4 element −1 with the Z8 element ρ41.
Therefore, the two T1 states correspond to 21 under (D4 × Z8)/Z2, where the index denotes Z8
charge.

5 We thank P. Vaudrevange for pointing this out to us.
6 We could have considered the G2 lattice, obtaining the same result.
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In addition, the θ2-twisted sector T2 has four independent fixed points,

(45)
(
θ2,m3e3 + m4e4

)
,

with m1,m2 = 0,1. Through a discussion similar to Section 3.3, we find that four T2 states on
the above fixed points correspond to four types of singlets,

(46)(1A1)2 + (1B1)2 + (1A2)2 + (1B2)2,

under (D4 × Z8)/Z2.
The θ3-twisted sector T3 has the same structure of fixed points as the θ -twisted sector. Thus,

the two T3 states correspond to 23 under (D4 × Z8)/Z2.
Moreover, the θ4-twisted sector T4 has 16 independent fixed points,

(47)

(
θ4,

4∑
i=1

miei

)
,

with mi = 0,1. The corresponding 16 T4 states must be D4 singlets with the Z8 charge 4. From
the D4 multiplication law

(1A1 + 1B1 + 1B2 + 1A2) × (1A1 + 1B1 + 1B2 + 1A2)

(48)= 4 × (1A1 + 1B1 + 1B2 + 1A2)

it follows that the 16 T4 states correspond to

(49)4 × (
(1A1)4 + (1B1)4 + (1B2)4 + (1A2)4

)
.

If we consider couplings involving only T2 or T4 states, the flavor symmetry would be larger, but
it gets broken if T1 states enter.

3.6. T
4/Z12 orbifold

There is only one fixed point on the T
4/Z12 orbifold. Thus, the situation is the same as in

T
2/Z6, i.e. there is no non-Abelian flavor symmetry.

3.7. T
6/Z7 orbifold

For completeness let us consider the T
6
SU(7)/Z7 orbifold. It is obtained as R

6/(ΛSU(7) × Z7),
where ΛSU(7) denotes the SU(7) root lattice spanned by six simple roots, ei (1 � i � 6). The Z7
twist transforms these roots as

(50)θei = ei+1, e6 = −
6∑

j=1

ej ,

for 1 � i � 5. The sublattice (1 − θ)Λ is spanned by ei − ei+1 and 7e1, and there are seven
independent fixed points under θ ,

(51)(θ,me1),

with 0 � m � 6. The other Tk sectors with k �= 0 have the same fixed point structure.
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Table 2
Non-Abelian discrete flavor symmetries of the building blocks

Orbifold Flavor symmetry Twisted sector String fundamental states

S
1/Z2 D4 = S2 � (Z2 × Z2) untwisted sector 1

θ -twisted sector 2
T

2/Z2 (D4 × D4)/Z2 = (S2 × S2) � Z
3
2 untwisted sector 1

θ -twisted sector 4
T

2/Z3 �(54) = S3 � (Z3 × Z3) untwisted sector 1
θ -twisted sector 3
θ2-twisted sector 3̄

T
2/Z4 (D4 × Z4)/Z2 untwisted sector 1

θ -twisted sector 2
θ2-twisted sector 1A1 + 1B1 + 1B2 + 1A2

T
2/Z6 Trivial

T
4/Z8 (D4 × Z8)/Z2 untwisted sector 1

θ -twisted sector 2
θ2-twisted sector 1A1 + 1B1 + 1B2 + 1A2
θ3-twisted sector 2
θ4-twisted sector 4 × (1A1 + 1B1 + 1B2 + 1A2 )

T
4/Z12 Trivial

T
6/Z7 S7 � (Z7)6 untwisted sector 1

θk-twisted sector 7
θ7−k-twisted sector 7̄

The flavor symmetry is obtained in a way similar to the extension of the Z3 orbifold. That is,
the states at these seven fixed points have Z7 charges, and the effective Lagrangian has a permu-
tation symmetry of S7. Therefore, the flavor symmetry of the Z7 orbifold is the multiplicative
closure of S7 and the Z7. To determine the dimension of this group, it is useful to rewrite it as a
semi-direct product. It is easy to see that the diagonal matrices corresponding to Z7 transforma-
tions are obtained as products of the following six matrices:

diag
(
1, ρ,ρ2, ρ3, ρ4, ρ5, ρ6), diag(ρ,ρ,ρ,ρ,ρ,ρ,ρ),

diag
(
ρ1, ρ6, ρ2, ρ3, ρ4, ρ5,1

)
, diag

(
1, ρ,ρ6, ρ3, ρ4, ρ5, ρ2),

diag
(
1, ρ2, ρ,ρ6, ρ4, ρ5, ρ3), diag

(
1, ρ3, ρ2, ρ,ρ6, ρ5, ρ4),

where ρ = e2π i/7. With these generators, the flavor symmetry can be expressed as S7 � (Z7)
6.

Its order is equal to 7! · 76, and it is quite large. The Tk matter fields correspond to septets, and
T7−k fields correspond to their conjugates. The results of this section on the flavor symmetries of
the building blocks are summarized in Table 2.

4. Flavor symmetries of ‘factorizable’ orbifolds

If the torus T
d of an orbifold factorizes, the orbifold is often called ‘factorizable’ in the lit-

erature although it cannot be regarded as a direct product of lower-dimensional orbifolds. The
symmetries of such orbifolds can be obtained by combining flavor symmetries of the building
blocks. However, the resulting flavor symmetries are generally not direct products of the sym-
metries of the building blocks, since orbifolds do not really factorize. We discuss the subtleties
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in the case of T
2/Z2, and give an overview of how to obtain the flavor symmetries of ‘products’

of building blocks in other higher-dimensional orbifolds.

4.1. T
2/Z2 as a ‘product’ of two S

1/Z2 orbifolds

4.1.1. Generic situation
The T

2/Z2 orbifold is obtained by dividing the torus by the reflection at the origin. The 2D
torus is defined by a 2D lattice which is spanned by ei (i = 1,2). The Z2 twist θ acts then on the
ei as

(52)θei = −ei .

There are four fixed points (θ,m1e1 + m2e2) where mi = 0,1 (Fig. 3).
From the space group rule (7) one infers that a coupling involving n localized states

|(θ,m
(j)

1 e1 + m
(j)

2 e2), . . .〉 can be allowed only if

n is even,

(53)
n∑

j=1

m
(j)
i is even, i = 1,2.

As before, the selection rules can be rewritten in a different way. In a basis where the localized
states appear as 4-plets, |4〉 = (|(θ,0), . . .〉, |(θ, e1), . . .〉, |(θ, e2), . . .〉, |(θ, e1 + e2), . . .〉), the se-
lection rules (53) allow couplings only if they are invariant under |4〉 → A|4〉 with

(54)A ∈ {P,Q,R} =
{(

σ3 0

0 σ3

)
,

(
12 0

0 −12

)
,

(−12 0

0 −12

)}
.

Again, in the absence of Wilson lines, the fixed points are equivalent. Hence the Lagrangian
is invariant under relabeling

(55)mi → mi + 1 mod 2, i = 1,2.

This relabeling corresponds, as before, to a permutation symmetry. Here, we have two separate
permutations that can be represented as |4〉 → S|4〉 and |4〉 → S′|4〉 where

(56)S =
(

σ1 0

0 σ1

)
, S′ =

(
0 12

12 0

)

Fig. 3. T
2/Z2. Points which are related by a reflection at the origin are identified. The fundamental region of the orbifold

(dark gray region) is half of the fundamental region of the torus (gray region). By folding it along the dashed line and
identifying the edges one obtains a ‘ravioli’ (or ‘pillow’) with the fixed points being the corners.
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(a) T
2
SU(3)

/Z2 (b) Tetrahedron

Fig. 4. If the T
2 lattice vectors have equal length and enclose 120◦ , one can also fold the fundamental region of T

2/Z2
to a tetrahedron.

in the above basis.
The connection between the generators {σ1, σ3} of the flavor symmetry for S

1/Z2 and that for
T

2/Z2 can be seen from

Q = σ3 ⊗ 12×2, S′ = σ1 ⊗ 12×2,

(57)P = 12×2 ⊗ σ3, S = 12×2 ⊗ σ1,

where ⊗ denotes the Kronecker product. This construction can easily be generalized to other
higher-dimensional orbifolds.

The non-Abelian symmetry group arising from T
2/Z2 is hence comprised of the multi-

plicative closure of the above matrices P , Q, R, S and S′. We obtain a flavor symmetry
(S2 ×S2)� (Z2 ×Z2 ×Z2). This symmetry group has 32 elements, and is a subgroup of D4 ×D4
which has 64 elements. It is very similar to the Dirac group (see, e.g., [28]). The reason for hav-
ing less symmetry than what one would have for the product space (S1/Z2) × (S1/Z2) (i.e.
D4 × D4) is that in T

2/Z2 the automorphism θ reflects both ei simultaneously. Therefore one
has a Z2 less, and correspondingly half as many elements, as it should be. Because both D4 fac-
tors have a common (‘diagonal’) Z2, we call the flavor symmetry group (D4 ×D4)/Z2. Note that
the ‘would-be’ (2,2) under D4 × D4 transforms as an irreducible 4-dimensional representation
under (D4 × D4)/Z2.

4.1.2. Symmetry enhancement
An interesting situation arises when the torus T

2 has special symmetries. Consider the case
where e1 and e2 have the same length, and enclose an angle of 120◦. Then the symmetry gets
enhanced since the distances between all orbifold fixed points coincide. One may now envisage
the orbifold as a regular tetrahedron (Fig. 4) with the corners corresponding to the fixed points
[15] (this observation has been recently revisited [31]).

Clearly, the tetrahedron is invariant under a discrete rotation by 120◦ about an axis that goes
through one corner and hits the opposite surface orthogonally. This operation is represented by

(58)T =

⎛
⎜⎜⎝

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

⎞
⎟⎟⎠ , T S, T S′, T SS′.

The full relabeling symmetry includes the symmetry of the tetrahedron, i.e. A4. A4 arises as
multiplicative closure of the Z2 and Z3 groups with elements {1, S} and {1, T ,T 2}, respectively.
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However, A4 is not the full relabeling symmetry because the geometric relations between the
fixed points do not change upon reflections (which, however, change the orientation, and are
therefore not symmetries of the solid). The full relabeling symmetry is therefore S4. As before,
the flavor symmetry group is to be amended by the symmetries arising from the space group rules,
i.e. one has to include the elements P , Q and R. The flavor symmetry gets therefore enhanced
to S4 � (Z2 × Z2 × Z2), which is known as SW4 in the literature [32], and has 4! · 23 = 192
elements.7 As before, the symmetry of the Lagrangian is larger than the symmetry of internal
space. Recently an A4 subgroup of the tetrahedral compactification symmetry SW4 has been
considered in the framework of neutrino mixing matrices in [31].

Another interesting case with enhanced symmetries is if (i) e1 and e2 enclose an angle of 90◦
and (ii) e1 and e2 have equal length. The orbifold can then be envisaged as a perfect square with a
fore- and a backside. One now has a relabeling symmetry consisting of cyclic permutations (Z4),
generated by

(59)S′ ′ =

⎛
⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞
⎟⎟⎠ ,

plus the flips generated by S and S′. The multiplicative closure of the operations represented by
P , Q, R, S, S′ and S′ ′ is D4 � (Z2)

3, and has 64 elements. It has 16 conjugacy classes, two four-
dimensional, six two-dimensional and eight one-dimensional irreducible representations. From
the construction, it is obvious that this order 64 group is a subgroup of the above-mentioned
SW4. Clearly, it contains the order 32 symmetry of the generic T

2/Z2 as a subgroup.
An important remark, applicable to both cases above, concerns the symmetry breakdown oc-

curring when the angle between e1 and e2 and/or their length ratio changes. Both the angle and
the ratio are parametrized by a field Z, called complex structure modulus in the literature. Hence
symmetry breakdown can be described by a departure of the vacuum expectation value (VEV)
of Z from its symmetric value. That is, the couplings between localized states are Z-dependent,
and the coupling strengths respect an enhanced symmetry if Z takes special values.

4.2. Other combinations of building blocks

From the above discussion it is clear how to obtain the flavor symmetries of other combina-
tions of building blocks. In general, these emerge as products of the flavor symmetries of the
building blocks with a common (‘diagonal’) Zn subgroup identified. As an example consider
T

4/Z2 where the flavor symmetry is (D4 ×D4 ×D4 ×D4)/(Z2)
3 = (S2 ×S2 ×S2 ×S2)� (Z5

2).
Exceptions to this statement occur if independent twists act on the building blocks. An exam-

ple for such a situation is the Z6 − II = Z3 × Z2 orbifold which enjoys a �(54)× (D4 ×D4)/Z2
symmetry coming from the building blocks T

2/Z3 and T
2/Z2.

We note that such large flavor symmetry groups would not be expected in realistic models
because they only arise in the absence of Wilson lines, where one often obtains too many families.
Moreover, Wilson lines are generically needed in order to reduce the gauge symmetry to the
standard model gauge group (amended by a ‘hidden sector’).

7 We would like to thank C. Hagedorn for making us aware of Ref. [32] and for pointing out its relevance for our
investigations.
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It is also clear that symmetry enhancement occurs in various orbifolds. In Table 1(a), there are
three more cases where the flavor symmetry can be enlarged: T

4/Z4, T
4/Z3, T

6/Z3. A similar
analysis as above shows that for the T

4/Z4 orbifold, in the case that an S4 permutation symmetry
is realized between the states at the four fixed points of the four dimensional sublattice, the full
flavor symmetry will again be SW4.

For the generic case of the T
4/Z3 orbifold we find a flavor symmetry group (S3 ×S3)� (Z3)

3.
If the geometric set-up allows an enlargement of the relabeling symmetry from S3 × S3 to S9,
this group becomes even larger and can be written as S9 � (Z3)

8. Similarly, for T
6/Z3, the flavor

symmetry could be enhanced to include the permutation symmetry S27.
We can also study discrete non-Abelian flavor symmetries at enhancement points in 6D ZN ×

ZM orbifold models. Certain classes of ZN × ZM orbifold models at such enhancement points
[33] are equivalent to Gepner models [34]. Therefore, our analysis is available to such types of
Gepner models.

5. Comments on symmetry breaking

An important question concerns the symmetry breaking patterns of the above flavor sym-
metries. As mentioned, the symmetries are explicitly broken by the introduction of non-trivial
discrete Wilson lines. That is, in this case the degeneracies of mass spectra on different fixed
points are lifted, and no non-Abelian subgroups remain.

On the other hand, when one scalar field in a multiplet of a non-Abelian symmetry acquires
a VEV, a non-Abelian subgroup remains unbroken. Let us consider, for example, the 2D T

2/Z3
orbifold. It has �(54) = S3 � (Z3 × Z3) flavor structure, and degenerate matter fields at three
independent fixed points correspond to a triplet. Suppose that a scalar field at one of the fixed
points, e.g. (θ,0), develops a VEV.8 In this case, S3 of S3 � (Z3 ×Z3) is broken as S3 → S2, and
(Z3 ×Z3) is broken as Z3 ×Z3 → Z3. Hence, the remaining flavor symmetry is the D3 = S2 �Z3
symmetry, which consists of the 6 elements(

1 0

0 1

)
,

(
0 1

1 0

)
,

(
ω 0

0 ω2

)
,

(
ω2 0

0 ω

)
,

(60)

(
0 ω

ω2 0

)
,

(
0 ω2

ω 0

)
.

Here, the θ -twisted states |(θ, e1)〉 and |(θ,2e1)〉 correspond to a D3-doublet. The D3 symmetry
is the only non-Abelian group obtained from �(54) by a VEV of the 3 as shown in Appendix C.
Recall that only triplets as well as trivial singlets appear as string fundamental states. However,
products of triplets include other non-trivial representations. If condensates of such modes form,
this could give rise to other breaking patterns. In Appendix C, all subgroups of �(54) are shown.

Similarly, we can study breaking patterns of the flavor symmetry S7 � (Z7)
6, which appears in

Z7 orbifold models. A similar type of breaking would lead to the flavor symmetry, Sn � (Z7)
n−1

with n < 7.
Let us now comment on how frequent non-Abelian discrete flavor symmetries arise in realistic

orbifold models. The most obvious possibility to accommodate the observed repetition of fami-
lies is to construct a model where some or all families stem from equivalent fixed points. As we

8 Giving VEVs to certain scalar fields has a deep geometrical interpretation in terms of blowing up of the orbifold
singularities, i.e. moving in moduli space from the orbifold point to certain classes of Calabi–Yau manifolds (see [14,15]
for the case of standard embedding).
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have seen, this leads to a permutation symmetry which, when combined with the other (stringy)
symmetries, gives rise to a non-Abelian flavor symmetry. This symmetry is exact at the orbifold
point, where the expectation values of all (charged) zero modes vanish. However, the orbifold
point is, in general, not a valid vacuum of the model because of Fayet–Iliopoulos D-term. Can-
cellation of the D-term requires certain fields (which have to be SM singlets for the model to
be realistic) to acquire VEVs. These VEVs lead generically to a spontaneous breakdown of the
non-Abelian discrete flavor symmetries. Another common feature of realistic orbifold models
seems to be the existence of vector-like pairs of SM representations and anti-representations
(cf. [19,20]). The SM families mix with these states so that the chiral states observed at low
energies are linear combinations of the states transforming under the non-Abelian discrete fla-
vor symmetries with flavor singlets (while orthogonal linear combinations of vector-like matter
get large masses). This mixing might be important in order to reproduce the observed flavor
pattern [20,35]. Altogether, we expect non-Abelian discrete flavor symmetries to be generic to
realistic orbifold models. These symmetries are usually spontaneously broken in the vacuum,
and the pattern of observed Yukawa couplings is also affected by the mixing of the chiral SM
representations with vector-like states.

We also expect these symmetries to play an important role in understanding the structure of
soft supersymmetry breaking terms. For example, degeneracy due to non-Abelian flavor sym-
metry would be useful to suppress dangerous flavor changing neutral currents (see, e.g., [21,
36]). It appears possible to arrive at a situation where in the Kähler potential, and therefore in
the soft terms, the non-Abelian discrete symmetries survive while the Yukawa couplings receive
important modifications from spontaneous symmetry breakdown.

6. Conclusions and discussion

We have studied the origin of non-Abelian discrete flavor symmetries in string theory. We
have classified all the possible non-Abelian discrete flavor symmetries which can appear in het-
erotic orbifold models. We find that these symmetries exist in many orbifolds, and have a very
simple geometric interpretation. In particular, they are always present in constructions where the
repetition of SM families is explained by the multiplicity of equivalent fixed points. A crucial in-
gredient is the permutation symmetry of such equivalent fixed points which, together with other
symmetries from the space-group selection rule, generates non-Abelian flavor symmetries such
as D4 and �(54), as well as their direct products. A key property of the flavor symmetry is that
it is always larger than the geometrical symmetry of the compact space. We have also seen that
the flavor symmetries can get enhanced if the internal space respects certain symmetries beyond
the orbifold twist. We have further discussed how flavor symmetries can be broken to smaller
non-Abelian flavor symmetries such as D3. At this point, we would like to remind the reader
that the symmetry emerging from the space group is to be amended by symmetries coming from
gauge invariance and H -momentum conservation. That is, there are in general additional gauge
factors (e.g. U(1) factors) and discrete R-symmetries restricting the couplings. Besides, from
non-Abelian gauge factors one may, in principle, obtain further non-Abelian discrete symmetries
which have not been discussed here.

It should be interesting to repeat our analysis in non-factorizable orbifolds, which were re-
cently constructed [37]. Furthermore, our analysis could be extended to string models with
other types of backgrounds, e.g. Gepner manifolds and more general Calabi–Yau manifolds.
For example, some of the Gepner models are equivalent to certain classes of orbifold models
at enhancement points of moduli spaces. On the other hand, blowing-up orbifold singularities
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would lead to certain classes of Calabi–Yau manifolds, and such procedure corresponds to a
spontaneous breakdown of (non-Abelian) discrete flavor symmetries, as discussed before.

In this paper, we have focused on the derivation and classification of non-Abelian discrete
symmetries. It should be interesting to study phenomenological applications of our results, such
as the understanding of the observed Yukawa matrices of quarks and leptons in terms of spon-
taneously broken flavor symmetries, taking into account the mixing with vector-like states. The
identification of phenomenologically successful flavor symmetries might lead to the identifica-
tion of geometries which are particularly useful for obtaining realistic string compactifications.
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Appendix A. Couplings on orbifolds

In this appendix we outline the calculation of coupling strengths on orbifolds. Let us start with
trilinear couplings. Yukawa couplings are obtained by calculating 3-point functions including
three vertex operators corresponding to massless modes. In heterotic orbifold models, vertex
operators consist of a 4D space–time part, a 6D orbifold part, a gauge part and a bosonized
fermion part. The vertex operators for the 6D orbifold part, the so-called twist fields, are relevant
to our study on flavor symmetries.9 One twist field σ(θk,�)(z) is assigned to each mode on the
fixed point (θk, �), that is, each massless mode corresponding to the boundary condition (θk, �).
Thus, Yukawa couplings corresponding to three fields on fixed points (θk(j)

, �(j)) (j = 1,2,3)

are obtained through the calculation of 〈σ
(θk(1)

,�(1))
σ

(θk(2)
,�(2))

σ
(θk(3)

,�(3))
〉. It can be decomposed

as the sum of classical solutions and quantum fluctuations around them, that is,

(A.1)
〈
σ

(θk(1)
,�(1))

σ
(θk(2)

,�(2))
σ

(θk(3)
,�(3))

〉 = Zqu

∑
Xcl

e−Scl ,

where Zqu is the quantum part, Xcl denotes classical solutions and Scl is its classical action. The
quantum part Zqu is independent of locations of fixed points, but locations of fixed points are
relevant to Scl. The classical solution (world-sheet instanton) is obtained as

(A.2)∂Zi
cl = ai(z − z1)

−1+k(1)v(1),i

(z − z2)
−1+k(2)v(2),i

(z − z3)
−1+k(3)v(3),i

,

9 In this appendix, we do not consider 6D oscillator modes.
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where Zi = X2i−1 + X2i and zi is the inserted point of ith vertex operator σ
(θk(j)

,�(j))
on the

complex coordinate of the string world-sheet. The constants ai are determined by the global
monodromy condition, e.g. for the contour around z1 and z2 as

(A.3)ai = C
(
k(1)v(1),i , k(2)v(2),i

)(
f (1),i − f (2),i

)
,

where C(k(1)v(1),i , k(2)v(2),i ) is a constant depending only on k(1)v(1),i and k(2)v
(2),i and f (a),i

denotes the fixed point corresponding to σ
(θk(a)

,�(a))
in the complex basis Zi . We substitute this

solution into the action,

(A.4)Scl = 1

4πα′

∫
d2z (∂Zcl ∂̄Z̄cl + ∂̄Zcl ∂Z̄cl),

then we can calculate the classical action. Here we take the solution ∂̄Zcl = 0. Otherwise, the
action does not become finite and does not contribute to the above amplitude. As a result, the
magnitude of Yukawa coupling is obtained as

(A.5)Y ∼ e−A,

where A is the area which the string sweeps to couple. This result is the same when we use
another contour for the global monodromy condition, e.g. the contour around z2 and z3. Note
that the fixed point (θk(a) , �(a)) is equivalent to (θk(a) , �(a) + (1 − θk(a) )Λ). Thus, we have to sum
over classical solutions belonging to the same conjugacy classes, although the classical solution
corresponding to the shortest distance is dominant and the others lead to larger classical actions
and subdominant effects.

Similarly one can estimate magnitudes of generic n-point couplings [38].10 As before, the
n-point function decomposes into a quantum part and a classical part. Classical solutions have
more variety and become complicated. For example, solutions with ∂̄Z �= 0 also lead to any rate,
the classical actions only depend on distances between fixed points f (a) − f (b) as well as angles
between distance vectors, f (a) − f (b) and f (c) − f (d).

Appendix B. D4 symmetry

The D4 discrete group has five representations including a doublet D, a trivial singlet A1 and
three non-trivial singlets B1, B2, A2. Table 3 lists the characters of these five representations.11

Table 3
Character table for D4

Representations 1 −1 ±σ1 ±σ3 ∓iσ2

Doublet-D 2 −2 0 0 0
Singlet-A1 1 1 1 1 1
Singlet-B1 1 1 1 −1 −1
Singlet-B2 1 1 −1 1 −1
Singlet-A2 1 1 −1 −1 1

10 For similar calculations on n-point coupling in intersecting D-brane models see [39].
11 Recall that the character of a group element for a given representation is defined as the trace of the representation
matrix of the group element (cf. [40], Chapter 1.13).
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Table 4
Character table of the group �(54) (with ω = e2π i/3). The second row gives the number of elements in the certain class
and the second column the dimension of the representation

irrep 1a
(1)

6a
(9)

6b
(9)

3a
(6)

3b
(6)

3c
(6)

2a
(9)

3d
(6)

3e
(1)

3f
(1)

11 1 1 1 1 1 1 1 1 1 1
12 1 −1 −1 1 1 1 −1 1 1 1
21 2 0 0 2 −1 −1 0 −1 2 2
22 2 0 0 −1 −1 −1 0 2 2 2
23 2 0 0 −1 −1 2 0 −1 2 2
24 2 0 0 −1 2 −1 0 −1 2 2
3′ 3 −ω̄ −ω 0 0 0 −1 0 3ω̄ 3ω

3̄′ 3 −ω −ω̄ 0 0 0 −1 0 3ω 3ω̄

3̄ 3 ω ω̄ 0 0 0 1 0 3ω 3ω̄

3 3 ω̄ ω 0 0 0 1 0 3ω̄ 3ω

Table 5
Decomposition of the 3 of �(54) into irreps of the particular subgroup under the breaking

Subgroup Decomposition of 3 Subgroup Decomposition of 3

�(27) 3 S3 2 + 11
S3 � Z3 22 + 14 Z2 2 · 11 + 12
Z3 × Z3 12 + 13 + 14

A product of two doublets decomposes into four singlets,

(B.1)(D × D) = A1 + B1 + B2 + A2.

More explicitly, we consider two D4 doublets SA and S̄A (A = 1,2). Their product SAS̄B can be
decomposed in terms of A1,B1,B2,A2,

S1S̄1 + S2S̄2 ∼ A1, S1S̄2 + S2S̄1 ∼ B1,

(B.2)S1S̄1 − S2S̄2 ∼ B2, S1S̄2 − S2S̄1 ∼ A2.

Appendix C. �(54) symmetry

Group-theoretical aspects of �(54) can be found in [30,41]. It is a discrete subgroup of SU(3),
i.e. the group �(6n2) (with n = 3) and order 54 (= 3! · 32). The generators of �(54) are given
by the set

(C.1)

⎛
⎝0 1 0

0 0 1

1 0 0

⎞
⎠ ,

⎛
⎝ eiα 0 0

0 eiβ 0

0 0 e−i(α+β)

⎞
⎠ ,

⎛
⎝ eiα 0 0

0 0 eiβ

0 e−i(α+β) 0

⎞
⎠ ,

with α = 2πj/3, β = 2πk/3 and j, k integers. In general, it has four three-dimensional ir-
reducible representations 3, 3̄, 3′, 3̄′, four two-dimensional ones 21, 22, 23, 24 and two one-
dimensional ones 11, 12. Their characters are summarized in Table 4. The subgroups of �(54)

are given in Table 5.
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