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Structural damage assessment under external loading, such as earthquake excitation, is an important issue in structural safety 

evaluation. In this regard, an appropriate data analysis and system identification technique is required to interpret the measured 

data and to identify the state of the structure. Generally, the recursive system identification algorithm is used. In this study, 

the recursive subspace identification algorithm based on the matrix inversion lemma algorithm with oblique projection 

technique (RSI-Inversion-Oblique) is applied to investigate the time-varying dynamic characteristics. The user-defined 

parameters used in the RSI-Inversion-Oblique technique are carefully discussed, which include the size of the data Hankel 

matrix (i), model order to extract the physical modes, and forgetting factor (FF) to detect the time-varying system modal 

frequencies. Response data from the Northridge earthquake from the Sherman Oaks building (CSMIP) is used as an example 

to examine a systematic method to determine the suitable user-defined parameters in RSI. It is concluded that the number of 

rows in the data Hankel matrix significantly influences the identification of the time-varying fundamental modal frequency 

of the structure. An algorithmic model order selection method using the eigenvalue distribution of RSI-Inversion can detect 

the system modal frequencies at each appending data window without causing any abnormality. 

 

KEYWORDS  

 

State space model, Recursive subspace identification, forgetting factor, building seismic response, time-varying modal 

frequencies. 
 

INTRODUCTION 

 

During the last two decades, state space subspace system identification (4SID) methods have attracted substantial interest 

in the system identification and control communities as the method can identify the system matrices of the state space model 

directly from the input and output data. Several well-known subspace identification algorithms including CVA, N4SID, 

MOESP, and IV-4SID [1-5] have been developed. Since the traditional subspace identification method is not suitable for 

online computations due to the computational complexity of singular value decomposition (SVD) and an inability to detect 

time-varying systems, several recursive subspace identification (RSI) algorithms have been proposed that involve the 

determination of a mathematical model representing the underlying time-varying dynamics. Kameyama et al. [6] proposed a 

recursive 4SID-based identification algorithm with fixed input-output data size and developed the RSI algorithm to avoid the 

use of repetitive LQ decomposition. The recursive update algorithm PI-MOESP (Past-Input/Past Output Multivariable 

Output-Error State sPace) was proposed by Tamaoki et al. [7] to determine the order and parameters of a time-varying system. 
The RSI-BonaFide algorithm was derived from LQ decomposition applied in PO-MOESP to estimate system matrices and 

modal parameters recursively at each time step. One of the applications of the RSI algorithm in the civil engineering field is 

to identify the dynamic characteristics of a structure during strong earthquake excitation and provide online tracking of the 

modal parameters of structures. Some preliminary studies have reported using the RSI algorithm to track structural modal 

parameters from a building’s seismic response [8, 9]. 

 

For the application of subspace identification to building structural dynamic characteristics, it is necessary to use 

stabilization diagrams implemented with some criteria to remove spurious modes. These criteria include the mode shape 

assurance criterion, phase collinearity, etc. It will be time-consuming if the stabilization diagram and spurious modes removal 

criteria need to be applied at each recursive time step. Therefore, a further analysis on the development of the Hankel matrix 

as well as its projection analysis can be implemented in advance to remove the spurious modes. In this study, the following 

three user-defined parameters for RSI will be discussed: size of the Hankel matrix (i), model order selection, and forgetting 
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factor. Through the building seismic response data, a detailed discussion on the determination of these three user-defined 

parameters in RSI will be presented. 

 

BASIC THEORY OF RECURSIVE SUBSPACE IDENTIFICATION (rsi) 

 

During the past decade, several recursive subspace identification algorithms have been studied. In the present study, a 

brief description is given of RSI using the matrix inversion lemma renewing method on orthogonal projection (RSI-Inversion-

Orthogonal) as well as oblique projection (RSI-Inversion-Oblique). To derive matrix-input-output equations for subspace 

identification, input and output measurements should be arranged in the form of a “data Hankel matrix”, i.e. 
m i j

p

U R  is 

defined as the “past input data Hankel matrix” and 
m i j

f

U R  is the “future input data Hankel matrix”. Similarly, 
l i j

p

Y ¡  

and 
l i j

f

Y ¡  are the “past output data Hankel matrix” and “future output data Hankel matrix”, respectively. Here, m is the 

number of inputs, l is the number of outputs, n is the modal order of system,  j is the number of columns, and i is the number 

of data points in each block row for each record in the data Hankel matrix, which is a user-defined parameter. Additionally, 

2 1WL i j= + −  is the number of available samples in a Hankel matrix defined as the window length (WL). It is important to 

define an instrumental variable (IV) matrix 
pΞ , which is crucial to subspace identification, consisting of both past input and 

past output data Hankel matrices: 

 ( )p m l i j

p

p

+ 
 

=  
 

U
Ξ

Y
¡ . (1) 

 

The original state-space model can be transformed into “Matrix Input-Output Equations” as [10] 

 

 
f f

p i p i p i p p

i i i

f

f f f

i

p pid

= +  +  +

= +  +  +

= +







Y Γ X H U G W V

Y Γ X H U G W V

X A X Δ U

 (2) 

 

with 
- -  1 2 2L ?i i n mi

i d d d d d d d
Δ B A B A B BA

     

 

                                        (2a) 

 

where iΓ  is the extended observability matrix that contains information of system matrices (i.e. dA  and cC ) and is the 

primary outcome of the subspace identification. Xp and Xf is past and future state sequences. Two different geometric 

projection methods can be implemented in subspace identification and will be briefly introduced in this section: (a) orthogonal 

projection, and (b) oblique projection. One can choose either orthogonal or oblique projection for extracting the extended 

observability matrix. Based on the format of the projection matrix one can use SVD (Orthogonal projection) or ED (Oblique 

projection) to decide model order and the dimension of the extended observability matrix of the target system, from which 

the extended observability matrix iΓ  can be obtained. 
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Besides the offline subspace identification, the online system identification is also needed to detect the time-varying 

structural system. For the transformation from offline SI toward online RSI, two projection categories (orthogonal projection 

and oblique projection) can be used for conducting data-driven subspace identification. 

 

 

RSI using the Matrix Inversion Lemma renewing method on Orthogonal Projection (RSI-Inversion-Orthogonal) 

 

RSI-Inversion-Orthogonal is a projection matrix renewing algorithm mathematically based on matrix inversion lemma 

numerically expanding the inverse operation. The transformation from offline SI toward RSI is first achieved by computing 

the projection. Considering the matrix input-output equation fY  (shown in Eq. (2)), the future input Hankel matrix can be 

eliminated by projecting the whole equation onto the orthogonal component of the future input matrix. The orthogonal 

projection matrix, ( )

Orthogonal

kO , is defined as 

 
( )) ( )( )( f kf

Orthogonal T

k p kk

⊥=
U

O ΞY Π . (3) 

where the subscript (k) indicated the k-th time step in recursive identification 
( )f k

⊥

UΠ  is a geometric operator that projects the 

row space of a matrix onto the orthogonal complement of the row space of the matrix ( )f kU . Then, the resultant projection 

matrix can be derived from the above-mentioned procedure, which contains the target extended observability matrix. 

 

 ( ) ( )( )( ) ( ) ( )( )

1

( ) ( ) ( ) ( ) (( ) () )) (( )

f k f k

Orthogonal T T

f k i f k

T T

f k f k f k

k p k

f k f k f

p k

T T

p kk p k

−

⊥ ⊥= 

= − 

U U
Y Γ X

Y Y U U U U

O Π Ξ Π Ξ

Ξ Ξ
 (3) 

 

( ) ( ) ( ) ( )

1 1

1

( ) ( ) ( ) ( )

1 1

k k
T T

f g p g f g f g

g k j g k j

k k
T T

f g f g f g p g

g k j g k j

= − + = − +

−

= − + = − +

   
= −   
   

   
    
   

 

 

y ξ y u

u u u ξ

 (4) 

 

where yf(g), uf(g), and 𝛏p(g), are g-th column of the matrices Yf, Uf, and Ξp. The column space of iΓ  can be estimated by the 

column space of the projected matrix ( )

Orthogonal

kO , which can be obtained by SVD. 

 

Then the enlarged window is used in RSI-Inversion-Orthogonal, which keeps appending new data points rather than 

using a fixed-length moving window; therefore, a forgetting factor can be introduced in this algorithm to eliminate the 

influence of previous measurements to identify the latest state of the system. An exponential forgetting factor λ  (smaller 

than one) is added in the expanding projection matrix operation as mentioned above, which is multiplied in front of the data 

vector product at each time step. 

 

 

( ) ( ) ( ) ( ) ( )

1 1

1

( ) ( ) ( ) ( )

1 1

k k
Orthogonal k g T k g T

k f g p g f g f g

g k j g k j

k k
k g T k g T

f g f g f g p g

g k j g k j

 

 

− −

= − + = − +

−

− −

= − + = − +

   
=  −    
   

   
      
   

 

 

O y ξ y u

u u u ξ

 (5) 

For 

 
1 1 1

1

( 1) ( 1) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1)

T T T T

k f k f k f k f k f k f k k f k f k

− − −
−

+ + + + + + +
     = = + = +     R U U U U u u R u u , (6) 

 

The matrix inversion lemma [11]  can be implemented as 

 

 

1
1 1

( ) ( 1) ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( 1) ( )

( ) ( 1) ( ) ( 1) ( 1) ( )

(1 )T T T

k f k f k k f k k f k k f k f k k

T

k k k f k f k k

−
− −

+ + + + + +

+ + +

 + = − +  

= − 

R u u R u R u R u u R

R R u u R

. (6a) 
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Now given the new incoming data vectors ( 1)f k+u , ( 1)f k+y , and ( 1)p k+ξ , the following recursive computation elements can be 

constructed: 

 

1

( 1) ( 1) ( ) ( 1)

( 1) ( 1) ( ) ( ) ( ) ( 1)

( 1) ( ) ( ) ( ) ( 1) ( 1)

( )T

k f k k f k

T

k f k f k f k k f k

T

k p k f k k f k p k

  −

+ + +

+ + +

+ + +

= +

= −

= −

u R u

β y Y U R u

γ Ξ U R u ξ

. (7) 

 

The orthogonal projection matrix ( )

Orthogonal

kO  is then updated to ( 1)

Orthogonal

k+O , following Eq. (4), given by 

 

 

( 1)

( )

( 1) ( 1) ( 1)

( ) ( ) ( 1) ( 1) ( 1)

( ) ( 1) ( 1) ( 1)

f k

f k

Orthogonal T

k f k p k

T T

f k p k k k k

Orthogonal T

k k k k

  

  

+

⊥

+ + +

⊥

+ + +

+ + +

=

=  −   

=  −   

U

U

O Y Π Ξ

Y Π Ξ β γ

O β γ

. (8) 

 

Only the initial data window is necessary to be constructed and computed following the definition of orthogonal 

projection, then the projection matrix at each time step can be computed by the recursive formulae when a set of new data 

points are appended. Singular value decomposition (SVD) is applied on each newly updated projection matrix to estimate the 

dominant subspace from the distribution of singular values to obtain the extended observability matrix. RSI-Inversion-

Orthogonal is categorized as a projection updated method. It is noted that the time-consuming process of explicitly and 

repeatedly calculating an orthogonal projection with different data Hankel matrices with large dimensions is avoided; however, 

SVD at every time step is required in this algorithm for modal parameter identification. A basic derivation of the RSI-

Inversion-Orthogonal can be found in [7]. 

 

 RSI using the Matrix Inversion Lemma renewing method on Oblique Projection (RSI-Inversion-Oblique) 

 

RSI-Inversion-Oblique is a projection matrix renewing algorithm that is similar to RSI-Inversion-Orthogonal; however, 

this algorithm carries out a more sophisticated oblique projection instead of using orthogonal projection as its identification 

strategy. The projection matrix implemented here is the product of the original projection matrix ( )

Oblique

kO  and its transpose, or 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) (

( ) ( ) ( ) ( )

)

( / ) / ( / ) /

( ) ( )

( )

f k k

f k

f

f k

T

T T

f k p k f

Oblique

k f k p k f k f k p k f k

T

k

Orthogonal Orthogonal T

k

k

p

k

k

k

⊥ ⊥

⊥ ⊥

  

=

=

= 
   

 

 

U U

U U
Y Π Ξ

O Y Ξ U Y Ξ U

Ψ

O Ψ O

Y Π Ξ  (9) 

 

with the recursive computation elements ( )kR , ( ) ( )

T

f k f kY U , ( ) ( )

T

p k f kΞ U , ( )kΨ  defined as 

 

 

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( )

1

,
k k

T k g T T k g T

k f k f k f g f g f k f k f g f g

g k j g k j

k
T k g T

p k f k p g f g

g k j

 



−

−
− −

= − + = − +

−

= − +

 
 = =  =   

 

= 

 



R U U u u Y U y u

Ξ U ξ u

  

 

  

1

( ) ( )

1
1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

( ) ( )

(

1

( ) ( ) ( ) ( )

)

1 1

( )

fk p k

T T

p k f k f k f k f k

k k
k g T k g T

p g p g p g f g

g k j g k j

k k
k g T k g T

f g f g f g p g

g k j g k j

T

k p k

T

p k

 

 

−
⊥

−
−

− −

= − + = − +

−

− −

= − + = − +

 =
 

 =  −  

   
 −    

   
=

 
    
 

 



U
Ψ Ξ

Ξ I U U U U

ξ ξ ξ u

u u

Π Ξ

Ξ

u ξ

1−

 
 
 
 

  
  
  


. (10) 
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where 
( )( ) ( )/

f kf k p kU
Y Ξ  denotes the operator that projects the row space of a matrix Yf(k) along the row space of matrix Uf(k) 

onto the row space of the matrix Ξp(k) . 

In this way, as shown in Eq. (9), SVD is now replaced by an eigenvalue decomposition (ED) that is applied on the re-

formulated oblique projection matrix ( )

Oblique

kO  to estimate the dominant subspace required for obtaining the extended 

observability matrix. RSI-Inversion-Oblique shares some procedures with RSI-Inversion-Orthogonal, since the projection 

matrix ( )

Orthogonal

kO  also appears in the formulation for ( )

Oblique

kO . Therefore, the updating technique will be divided into two parts: 

updating the orthogonal projection matrix ( )

Orthogonal

kO  as per RSI-Inversion-Orthogonal, and updating the matrix ( )kΨ  when a 

set of new input/output data vectors are appended. Then, the product of these two renewed terms will derive the target 

projection matrix ( )

Oblique

kO  of the latest state for each time step. Based on this update technique, a series of recursive formulae 

can be built, which is similar to the RSI-Inversion-Orthogonal algorithm. By combining an exponential forgetting factor added 

at each time step due to its enlarging time window, and applying the oblique projection matrix ( )

Oblique

kO  at each time step, one 

can recursively obtain the dynamic properties of the system during the excitation process. Figure 1 shows the flowchart of 

the RSI-Inversion-Oblique computation. Detailed derivation of RSI-Inversion-Oblique can be found in [12, 13]. 

 

Through applying the on-line RSI algorithm to the seismic response of buildings, the identification may provide 

ambiguous system dynamic characteristics due to the selection of different user-defined parameters for the RSI method. These 

user-defined parameters in RSI include the size of the data Hankel matrix, the determination of model order (similar to the 

criteria to remove spurious modes) and the forgetting factor. To have a consistent estimation of system dynamic characteristics, 

discussions on the determination of user-defined parameters for RSI are important. In the following section, three important 

user-defined parameters are discussed. 

 

 

 
Figure 1: Flowchart on the computation of RSI-Inversion-Oblique. 
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DISCUSSIONS ON THE USER-DEFINED PARAMETERS IN RSI 

 

Seismic response data collected from the Sherman Oaks building is used as an example to examine the user-defined 

parameters on the identification of system modal frequencies using the subspace identification technique. In 1977, the 

building was instrumented with fifteen accelerometers on five levels (under CMSIP). This building was retrofitted with 

friction dampers after the 1994 Northridge Earthquake. Figure 2 shows the instrument layout in the building. In the present 

study, data collected from this building during the Northridge earthquake is used for the experimental study. Since the 

seismic response data collected from the structure may contain the pre-event memory data before the trigger level, to enhance 

the accuracy of RSI the ambient vibration signal needs to be removed from the recorded data. Therefore, the method to select 

the duration of seismic response data for SI (or RSI) must be defined. The initial time from the recorded seismic response 

data can be determined from the concept of P-wave picker through [14] through the following equation 

 

 ( ) log(var( [1: ])) ( 1) log(var( [ 1: ]))AIC t t a t N t a t N= + − + + , (11) 

 

where AIC is Akaike information criterion, t is the time moving window length and N is total number of data points, and 

var(a[1:t]) is the variance of the recorded data a(t) from the first data point to time t. Then the initial starting P-wave arrival 

time can be determined from the slope of the information criteria AIC, which begins to change dramatically. To determine 

the end point of the recorded data, one can plot the normalized Arias Intensity and select the data point at a time of 99.5%. 

Two earthquake event datasets from the Chino Hills and Northridge earthquakes as recorded from the Sherman Oak building 

are used as examples to determine the strong motion duration for RSI, as shown in Figure 3. Almost all of the recorded data 

from the Northridge earthquake will be used while the Chino Hill earthquake response data has a long pre-event memory 

data that needs to be removed before the implementation of RSI. Based on the proposed criteria, the entire recorded dataset 

from the Northridge earthquake will be used for RSI. 

 

To identify the system modal frequencies using the subspace identification technique, besides the determination of the 

record duration as well as the selection of criteria to remove the spurious modes (such as using mode shape assurance criteria, 

phase collinearity among different model order, etc.) [15], the user-define parameters to generate the system A-matrix from 

using either the SI or RSI algorithm need to be carefully selected. In the following sections, the determination of the three 

user-defined parameters in RSI are discussed: (1) the number of rows “i” in the block data Hankel matrix, (2) the method for 

model order estimation, and (c) the forgetting factor. 

 

 

    
 

Figure 2: Photo and layout of strong motion instrumentation of the Sherman Oaks 13-story building (CSMIP). 
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Chino Hill earthquake                                               Northridge earthquake 

 
 

Figure 3: Plot the AIC and normalized Arias intensity to identify the strong motion duration from two different 

seismic event data recorded from Sherman Oaks building (the initial and the ended data point of strong motion 

duration are identified). 

 

Determining the number of rows “i” in the block data Hankel matrix  

 

The number of rows and columns of the block data Hankel matrix must be determined first. Caicedo suggested the 

number of columns of the block data Hankel matrix shall be four times the number of expected modes [16]. To assure the 

complete waveform of the longest period of the structure can be included in each column of the data Hankel matrix, in this 

study, the number of block rows in the data Hankel matrix (consider only single output record) should be larger than the 

sampling frequency divided by two times the fundamental frequency of the structure, i.e. 

 

 
Sampling Rate (Hz)

2 Fundamental freqeuncy (Hz)
i =


. (12) 

 

The most economic number of columns “j” in the block Hankel matrix is chosen so that the Hankel matrix remains square, 

therefore   2 ( )j i m l=  + , and sometimes for convenience of computing WL in integers, j is assigned as   2 ( ) 1j i m l=  + + , 

where m is the number of input records and l is the number of output records. Once i and j are determined, the initial number 

of data points arranged in a Hankel matrix can be calculated from 2 1WL i j= + − , i.e. the initial window length for the moving 

time window using RSI is decided. It is obvious that a larger i will create a longer initial window length, which may remove 

the ability to detect the dynamic characteristics of the time-varying system. 

 

On the contrary, if a large number of response measurements are installed in the structure, then the initial window length 

will be very long, which may also obscure the identification of time-varying dynamic characteristics of the structure in the 

initial time window. Therefore, for selecting the number of rows in the block Hankel matrix, one can at least choose the data 

length with a duration that covers half of the fundamental dominant period of the structure. It should be noted that a smaller i 

may obscure the identification of lower modes while it may increase the ability to detect the higher modes of the structure 

(which will be demonstrated below).  

 

Determining the Model Order for RSI 
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The model order decides the dimension of subspace 
1U  for estimating the extended observability matrix after U is 

obtained from SVD or ED of the projection matrix, as shown by 

 

   1 1

1 2

2 1

T

T

T

  
= =   

   

S 0 V
H USV U U

0 S V
. (13) 

 

The singular values obtained from SVD or eigenvalues from ED of the projection matrix will be arranged in descending order 

as shown by 

  (13a) 

 

The number shown in Eq. (13) can be defined from the percentage of the singular value to be removed (i.e. percentage of 

noise to be excluded:  2 1 2100 diag( ) diag( ) diag( ) +S S S ). Generally, a fixed percentage of noise will be pre-assigned, 

from which one can decide the model order to extract subspace U1 from SVD. For each impending new dataset, the fixed 

noise percentages remain constant through the recursive analysis. The estimation of the subspace dimension will be taken at 

the position corresponding to singular values (or eigen-value) starting from the largest one to the pre-assigned value of Csvd 

percentage multiplied by the maximum singular value, as shown by 

 

 1 1N svd Ns C s s +   . (14) 

 

This method lacks a theoretical definition, particularly, on how to determine the percentage of noise or the value of Csvd. 

Therefore, different approaches to determine the model order will be discussed in the following section. 

  

A simple way to calculate the change of singular value (sj), from Eq. (13a), by calculating the difference between each 

pair of singular values is given by 

 

                             𝑁𝐷𝑖 =
𝑠𝑖−𝑠𝑖+1

𝑠𝑖
         𝑖 =  1, 2, ⋯   , 𝑗                            . (15) 

 

where ND is the normalized difference of singular values. Then the sum of NDi can be calculated and defined as Ak, or 

 

 . (16) 

where k is the searching step. Through the recursive subspace identification technique, one can determine the steep descent 

of Ak to estimate the model order at the location of steep descent. To use this method for model order estimation in each time 

window, the level of noise in the recorded data needs to be identified. Then, the signal to noise (S/N) ratio of the recorded 

data can be determined, from which the maximum reference S/N ratio is given, and thus the model order can be determined 

(Method-1). Figure 4 presents a flowchart for the procedure to estimate the model order. 

 

The first approach to determine the model order is proposed and describe below. An example to demonstrate the 

estimation of model order is shown in Figure 5 for time t = 19.98 s and at time t = 39.98 s. First, the difference between two 

consecutive eigenvalues is plotted with respect to the sequence number of eigenvalues. Then, Ak as defined in Eq. (16) is 

plotted, from which a model order of 14 (t = 19.98 s) and 8 (t = 39.98 s) can be identified, as the point at which Ak begins to 

decrease can be selected as the model order. 
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Figure 4: Flowchart for estimating the model order using the difference of eigenvalue (Method-1). 

 

 
(a) at time t=19.98 sec.                                        (b) at time t=39.98 sec 

 

Figure 5: Plot the difference of eigenvalues and cumulative of NDi (Eq.(15)) at time t=19.98 sec and t=39.98 sec, 

respectively, from which the model order can be estimated (used =0.99, i =45). 
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Instead of using the normal scale of the singular value to determine the model order, the logarithms of the singular values 

from Eq. (13a) can also be used, as shown by  

 

⟨ 𝐿𝑜𝑔𝑆𝑉 ⟩  =  < 𝑙𝑜𝑔10(𝑠1), 𝑙𝑜𝑔10(𝑠2), ⋯ , 𝑙𝑜𝑔10(𝑠𝑗) > 

                                                                   = ⟨𝑙𝑠𝑣1 , 𝑙𝑠𝑣2, ⋯   , 𝑙𝑠𝑣𝑗⟩                                                                              (17) 

 

This method was originally proposed by [7] to determine the model order. Since the singular value (si) shown in Eq. (13a) 

will be arranged in descending order, therefore, 𝑙𝑠𝑣𝑖 shown in Eq. (17) will also in descending order. To avoid the negative 

value in the element of ⟨ 𝐿𝑜𝑔𝑆𝑉 ⟩ , the element in the Eq. (17) is subtracted by the smallest element, among singular values, 

defined as  lsvmin ,  then the equation can be revised to 

 

⟨ 𝐿𝑜𝑔𝑆𝑉𝑝 ⟩  = ⟨𝑙𝑠𝑣1− 𝑙𝑠𝑣𝑚𝑖𝑛+ ,   𝑙𝑠𝑣2− 𝑙𝑠𝑣𝑚𝑖𝑛+  , ⋯   , 𝑙𝑠𝑣𝑗− 𝑙𝑠𝑣𝑚𝑖𝑛+  ⟩ 

                                                  =  ⟨  𝑙𝑠𝑣𝑝1   𝑙𝑠𝑣𝑝2     ⋯      𝑙𝑠𝑣𝑝𝑗 ⟩                                                                                 (18) 

 

where   is an arbitrary positive constant and all element in ⟨ 𝐿𝑜𝑔𝑆𝑉𝑝  ⟩ are positive.  

 

       To determine the significant difference between two consecutive singular values in the element of ⟨ 𝐿𝑜𝑔𝑆𝑉𝑝 ⟩  , the 

sequential difference between two consecutive values of ( 1)ps jlsv −  and psjlsv is calculated and given as 

 

< 𝐿𝑆𝑉𝑝𝑠 > = <
(𝑙𝑠𝑣𝑝1 − 𝑙𝑠𝑣𝑝2)

𝑙𝑠𝑣𝑝1

   
(𝑙𝑠𝑣𝑝2 − 𝑙𝑠𝑣𝑝3)

𝑙𝑠𝑣𝑝2

   ⋯   
(𝑙𝑠𝑣𝑝(𝑗−1) − 𝑙𝑠𝑣𝑝𝑗)

𝑙𝑠𝑣𝑝(𝑗−1)
 > 

                                                     = <  𝑙𝑠𝑣𝑝𝑠1  𝑙𝑠𝑣𝑝𝑠2   ⋯    𝑙𝑠𝑣𝑝𝑠(𝑗−1) >                                                                                (19) 

 

Furthermore, all the element in  < 𝐿𝑆𝑉𝑝𝑠 >  can be normalized with the largest value of psjlsv  (defined as _ maxpslsv ), and 

defined as: 

< 𝑁𝐿𝑆𝑉𝑝𝑠 > = <  
𝑙𝑠𝑣𝑝𝑠1

𝑙𝑠𝑣𝑝𝑠_𝑚𝑎𝑥

   
𝑙𝑠𝑣𝑝𝑠2

𝑙𝑠𝑣𝑝𝑠_𝑚𝑎𝑥

    ⋯     
𝑙𝑠𝑣𝑝𝑠(𝑗−1)

𝑙𝑠𝑣𝑝𝑠_𝑚𝑎𝑥

 > 

                                                                        = <  𝑛𝑙𝑠𝑣𝑝𝑠1   𝑛𝑙𝑠𝑣𝑝𝑠2    ⋯     𝑛𝑙𝑠𝑣𝑝𝑠(𝑗−1)   >                                                 (20) 

 

The other approach to estimate the model order is based on Eq. (20). Instead of directly using the eigenvalue differences, 

from< 𝑁𝐿𝑆𝑉𝑝𝑠 >, the position with a value in the element of < 𝑁𝐿𝑆𝑉𝑝𝑠 > equal to 1 is the model order. Since by using nlsvpsj 

=1 might still be too conservative, therefore, it is accepted that a higher model order is better for some data windows that can 

include more modes in the analysis. Therefore, the order at the second largest value from the element of  < 𝑁𝐿𝑆𝑉𝑝𝑠 > can 

also be selected as the decided model order. 

 

At some specific time-window, if the value at the second largest singular value is chosen as the model order, one may 

include too many higher modes, which may also obscure the fundamental modes. Therefore, to prevent this phenomenon from 

occurring on a time step, a constraint needs to be added. Since the major elements in the normalized [LSVps] are preferred for 

determining the model order, one can use the normalized [LSVps] data as a signal and calculate the cumulative signal energy 

of nlsvpsj values. 90% of the cumulative signal energy values of nlsvpsj can be used as a threshold to avoid selecting too many 

trivial nlsvpsj and thus including too many higher modes. Then, the model order can be determined from the minimum location 

between the number of the second largest singular value and the index of 90% of the cumulative value of nlsvpsj (Method-2): 

 

 
nd. No. of the 2 largest singular value, 90% of the signal energy value of psjMin nlsv    

  

As an example, consider time t = 20 s and t = 50 s. Figure 6 shows the distribution of singular values at these two discrete 

times. The normalized difference in the singular value lsvpsj as well as the percentage of the cumulative signal energy values 

is also plotted. Based on the proposed Method-2, at t = 20 s, the 2nd largest singular value lsvpsj is located at 14, while 90% of 

the cumulative signal energy values of nlsvpsj is located at 28, therefore, for t = 20 s the model order is determined as 14. 

Alternatively, at t = 40 s the 90% of the cumulative signal energy of nlsvpsj is located at 28 and the second largest nlsvpsj is 

located at 8, and therefore, at t = 40 s the model order is decided as 8. 
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Figure 6: Model order estimation using the minimum location of the 2nd largest singular value and the location of 

90% of the cumulative value of 𝑛𝑙𝑠𝑣𝑝𝑠𝑖; (a) at time t=20 sec, (b) at time t=40. Sec. 

 

 
 

Figure 7: The weighting factor on data (from time t=0.0 to 9.0 sec and from time t=0.0 to 25.0 sec) 

using different forgetting factor (initial window length is 9.0 sec). 

 

Influence of the forgetting factor in RSI 

 

The purpose of using the forgetting factor (FF) is to reduce the weight of data (or fading memory) that are far away from 

the current time step on the modal parameter estimation. The weighting factor of the fading memory data is changed by using 

a different forgetting factor. If a smaller forgetting factor is used then more weight is given to the current time step, as shown 

in Figure 7. In Figure 7, two time steps are considered, at t = 9.0 s and at t = 25.0 s. To estimate the modal parameters at t = 

9.0 s the weighting for the time window from 0.0 s to 9.0 s is used and to estimate the modal parameters at t = 25.0 s the 

weighting for the time window data is from 0.0 s to 25.0 s is used. If a lower FF is used then the fading memory becomes 

more significant for data away from the estimated time step. Therefore, for estimating the abrupt change of modal parameters 

(such as the abrupt reduction of floor stiffness) one can select a lower FF, as the fading memory on the past data will be more 

significant then when using a larger FF. For the reinforced concrete structure, due to the inelastic hysteretic behavior of the 

restoring force, which is different from an abrupt change of stiffness, the FF will be set near 0.99 as the fading memory cannot 

be so significant. Detailed experimental study results will be presented in the following section. 
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EXAMINE THE USER-DEFINED PARAMETERS IN RSI USING BUILDING SEISMIC RESPONSE DATA 

 

It has been pointed out that by using different user-defined parameters in RSI will create different results on tracking the 

structural dynamic modal properties. An example is used to implement the proposed algorithm to building seismic response 

data. A discussion on using different combinations of i and the model order selection method on using RSI to identify the 

time-varying modal parameters of the Sherman Oaks building during the Northridge earthquake is presented below. The 

inputs and outputs in transverse, longitudinal, and vertical directions can be used to identify the modes simultaneously; 

however, the number of inputs and outputs will increase together, increasing the windows length dramatically and delaying 

the online system identification eventually. Considering that the torsion effect in the examination is less significant, the 

identification of transverse and longitudinal data is performed separately. Furthermore, a sensitivity analysis on using different 

combinations of i value to construct data Hankel matrix (i = 20 or 45) and different methods on model order estimation 

(Method-1 and Method-2) will be presented. 

 

Using single input single output versus single input multiple output on system fundamental frequency estimation 

 

For the seismic response data of the Sherman Oaks building, the data sampling rate is 50 Hz and base on the Fourier 

amplitude spectrum of roof response the target fundamental frequency of the building is approximately 0.325 Hz; therefore, 

based on Eq. (12) the suggested the i value is 75. First, if only the roof response data is considered for RSI (single-input and 

single-output case) and using i = 75 with initial window length of 9.0sec, Figure 8b shows the identified time-varying 

fundamental frequency of the building in the transverse direction. Second, instead of using the roof response data only as the 

output, but all the floor response measurements are used as output (multiple output) in RSI. In order to use the same initial 

time window in RSI using single-output measurement (as shown in Figure 8b), the i = 45 was selected to construct the data 

Hankel matrix for multiple output measurement. Figure 8c shows the identified modal frequency using all the measurement 

data with i=45. From the comparison between these two results (SISO vs SIMO), the identified fundamental modal frequency 

is similar. Since i = 45 (data length = 0.02 s x 2i = 1.8 s) does not cover the structural fundamental period (~2.9 s), but with 

the consideration of multiple output measurements, there is enough energy contribution from all measurement that can 

contribute to the fundamental mode. Thus, by using multiple outputs one can select a smaller i while maintaining strong 

identification on the fundamental frequency of the structure. Therefore, it is summarized that to have a better identification 

on time-varying modal parameters, the i (number of rows), the number of measurements and the initial time window length 

need to be considered. 

 

Besides, the forgetting factor also needs to be discussed in advance. Figure 9 shows the identified modal frequency by 

using two forgetting factors (0.99 and 0.995) and two i values (i = 20 and i = 45). Figure 9 demonstrates that for smaller FF 

(=0.99) the fading memory applied to each data point is more significant than that using FF (=0.995); therefore, larger FF 

value will have less fluctuation on the identified modal frequency because of less fading memory. If one needs to detect the 

time-varying system, the FF needs to have a smaller value so as to detect the system natural frequency change with respect to 

time. In the following analysis on the model order estimation method, the FF is 0.99. 

 

Comparison of RSI result using different model order estimation technique 

  

As described above, i = 45 will be used in the following RSI and the initial time window will need 2i+2i(m+l)−1 = 

245+245(1+3)−1 = 449 data points, which is 8.98 s. In such a case, due to the longer initial window length, the tracking 

ability of time-varying modal properties for data in the initial time window may be lost by using RSI. Thus, a lower i is also 

considered. If i = 20 and the square data Hankel matrix is also used, the number of column of the Hankel matrix is j = 2ix(m+l) 

= 2x20x(1+3) = 160 data points. Then the initial window length is WL= 2i+2i(m+l)−1 = 220+220(1+3)−1= 199 points 

= 3.98 s, which is shorter for initial time window than using i = 45 (WL = 8.98 s). Therefore, a comparison of the RSI analysis 

results from using two different values of i (i = 20 and i = 45) is made. 

 

First, consider the method from [7] for model order estimation with two different i (20 and 45). Based on the normalized 

difference of a maximum value of lsvps (i.e. _ maxpslsv ), as shown in Eq. (20), the position with the value equal to one (or  

𝑛𝑙𝑠𝑣𝑝𝑠𝑗  = 1 ) is selected as the model order [7]. Figure 10 compares the result of identification from data of both longitudinal 

and transverse directions. It is observed that by using smaller values of i, the initial time window is shorter (cannot include 

the period of the 1st mode), therefore, the component energy from higher modes will be enhanced relatively. As shown in 

Figure 10a, the fundamental frequency of the structure cannot be identified from the data between 0.0 sec and 11.0 sec). 
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However, for i = 45 the initial window length is 8.98 sec, the identification of higher modes is poor than using i =20. In 

summary, if the position of nlsvpsj = 1 is used to select the model order, no matter high or low i value be used it, the method 

on identifying time-varying modal frequencies have its drawback. Of course, the result may change when using a different 

model order selection method. A discussion on using different model selection methods for RSI is given in the following 

section.  

 
Figure 8: 

(a) Recorded seismic response data (basement and roof), 

 (b) Using i=75 for case of RSI with single input (basement data) and single output (roof response data), 

(c) Using i=45 for case of RSI with single input (basement data) and multiple (all floor response data). 

 

 
(a) Forgetting factor =0.995                                    (b) Forgetting factor =0.99 

 

Figure 9: Plot of time-varying modal frequency using two different i values (i=20 and i=45); 

(a) with forgetting factor =0.995, (b) with forgetting factor =0.99. 
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(a) Transverse Direction                                                           (b) Longitudinal Direction 

 

Figure 10: Identified time-varying model frequencies of Sherman Oaks building during Northridge earthquake 

excitation using model order from Ref.7 and with i=20 and i=45; 

(a) Longitudinal direction, (b) Transverse direction. 

 

Different from using the traditional method [7] to select the model order, both Method-1 and Method-2 for model order 

selection are used to identify the time-varying modal frequencies of the system. Figures 11a and 11b show the comparison 

on the identified time-varying modal frequencies using two different model order selection methods using i = 20. By using 

smaller i value, the energy contribution from higher modes is stronger than the contribution from fundamental mode, therefore, 

more higher modes can be identified. Besides, the initial window length is also short, one can detect the modal frequencies 

earlier than using longer initial time window (as shown in Figures 11c and 11d for i = 45). Using shorter initial time window 

one can have a better adaptability on the identification of system nonlinearity. A comparison between the identification results 

using Method-1 and Method-2 for model selection is also shown in Figure 11. It is challenging to judge which method is 

better for identifying the time-varying modal frequencies. Figure 12 shows the comparison on the estimated model order 

using two different methods. In general, Method-2 provides a lower number of model order estimation than Method-1, but 

the difference is not so significant. If only the fundamental modal frequency is concerned, selection a suitable row number of 

data Hankel matrix is much important than using different method of model order estimation. Figure 13 shows that the 

difference on the estimation of fundamental frequency is minor by using two different model order estimation if i = 45 is used. 

The estimated modal damping of the building is also shown in Figure 14, which shows that both methods can have a similar 

result. 
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(I) Transverse direction                                            (II) Longitudinal direction 

 

 
(a) result of RSI using i=20 and method-1 for model order estimation 

 

 
(b) result of RSI using i=20 and method-2 for model order estimation 

 

 
(c) result of RSI using i=45 and method-1 for model order estimation 

 

 
(d) result of RSI using i=45 and method-2 for model order estimation 

 

Figure 11: Identified time-varying model frequencies of Sherman Oaks building during  

Northridge earthquake excitation using: 

(a) method-1 for model order selection and with i=20  

(d) method-2 for model order selection and with i=20 

(c) method-1 for model order selection and with i=45 

(d) method-2 for model order selection and with i=45 
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(a) Estimated model order using i=20 

 

 

 
(b) Estimated model order using i=45 

 

Figure 12: Comparison on the estimated model order using two different method and two different i values. 
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(a) Result from RSI using method-1 for model order estimtion and i=20 

 

 
(b) Result from RSI using method-2 for model order estimtion and i=20 

 

 
(c) Result from RSI using method-1 for model order estimtion and i=45 

 

 
(d) Result from RSI using method-2 for model order estimtion and i=45 

 

Figure 13: Comparison on the identified fundamental modal frequency with two different i values  

(i=20 & i=45) using method-1 and method-2 for model order estimationand. 
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(I) Transverse direction                                                (II) Longitudinal direction 

 
(a) Result from RSI using method-1 for model order estimation and i=20 

 

 
(b) Result from RSI using method-1 for model order estimation and i=45. 

 

 
(c) Result from RSI using method-2 for model order estimation and i=20. 

 

 
(d) Result from RSI using method-2 for model order estimation and i=45. 

 
Figure 14: Identified time-varying model damping ratio;  

(a) using method-1 for model order selection and with i=20, (b)  using method-1 for model order selection and with 

i=45, (c) using method-2 for model order selection and with i=20, (d) using method-2 for model order selection and 

with i=45. 

 

CONCLUSIONS 

 

Recursive subspace identification (RSI) is an efficient on-line method to identify the time-varying modal frequencies of 

a structure during earthquake excitation. For application of RSI, the user-defined parameters, such as the size of data Hankel 

matrix and model order selection, et al., need to be carefully selected otherwise some wrong message may be interpreted after 

identification. Among these user-defined parameters, in this paper the number of rows in the data Hankel matrix as well as 

the selection of model order, based on the distribution of eigenvalues of the oblique projection matrix ( ( )

Oblique

kO ), are carefully 

discussed for RSI analysis of seismic response of building structure. From the study of seismic response data using RSI the 

following conclusions are made: 
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1. The number of rows (2i) to construct the data Hankel matrix needs to have enough length to cover the fundamental period 

of the structure (2 × 𝑖 × ∆𝑡 ≥  𝑇1(1𝑠𝑡  𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑎 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)). Since RSI considers the measurement from all sensing 

nodes (multi-output measurement), then the number of rows in data Hankel matrix will be 2 × 𝑖 × (𝑚 + 𝑙).  

2. Once the number of rows in the data Hankel matrix is decided (2i), if the square data Hankel matrix is used for RSI, then 

the initial time window for identification is found ( 2 1WL i j= + − ). A larger i–value will create a longer initial time window, 

which may not provide the recursive identification of time-varying modal frequencies within the initial time window. This 

situation is even worse if multiple input and multiple output measurement are included in the analysis (2i+2i(m+l)−1). To 

enhance the applicability of recursive identification in the initial window, reduce the number of rows in data Hankel matrix 

is acceptable.  

3. To determine the model order to extract the structural modes, either Method-1 or Method-2 can provide a good estimation 

on the lower structural modes. To use Method-1 for model order estimation, the S/N ratio of the recorded data must be 

determined. Therefore, data from the pre-event memory is required to determine the S/N value. As for Method-2, the 

minimum value of the number of eigenvalues between the second largest normalized eigenvalue difference is selected and 

90% of the cumulative signal energy is used (treating the normalized eigenvalue difference value as a signal). 

4. From the RSI analysis on the earthquake response data (Northridge earthquake) of the Sherman Oaks Building, i = 45 is 

selected which is less than the fundamental period of the structure (should be i=75 to cover the fundamental period). Since 

multiple input and output measurements are included in RSI, for system identification, there are enough energy to enhance 

the fundamental frequency of the structure. Without loss of generosity, smaller i value can be used for RSI. 

5. In the case study on seismic response data of the Sherman Oaks (Northridge earthquake), the initial window length is 8.98 

sec, within that window length the RSI can not be applied (too long for initial window). As described before, one can reduce 

the initial time window by selecting smaller number of i. To compensate for this un-identified time window at the beginning 

of the earthquake excitation, the RSI-BonaFide algorithm was used. The RSI-BonaFide algorithm is derived from LQ 

decomposition applied in PO-MOESP to estimate system matrices and modal parameters recursively at each time instant 

step [6]. It is a fixed time window RSI method. The data contribution for each time window is shown in Figure 7 (trapezoid 

shape). Considering a time window of 5.0 s without a forgetting factor and with a sliding window shift length of 0.1 s, 

Figure 15 shows the result of RSI using the BonaFide algorithm (for response data from 0.0 s to 20.0 s). A comparison of 

the identified first fundamental frequency of the structure in the transverse direction using RSI-BonaFide [8] and RSI-

Inversion-Oblique is also shown in Figure 15. The result of identification from both methods for data after 9.0 s is very 

similar. But using RSI-Inversion-Oblique the estimation can only begin at 9.0 s, while with the implementation of the RSI-

BonaFide algorithm, the identification can begin from 5.0 s (see shaded area of Figure 15). The trend on the identified 

fundamental frequency between 5.0 s and 9.0 s looks lower than the trend of the identified frequency after 9.0 s because of 

the significant response of the structure. 

 

 

 
Figure 15: Comparison on the identified 1st modal frequency of Sherman Oak Building during Northridge 

earthquake (0.0 sec ~ 20 sec) using RSI-Inversion-Oblique and BonaFide algorithms. 
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