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Hui-Shin Vivien Soon
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Northeastern University, 161 Cullinane Hall

Boston, MA 02115, USA
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Abstract

Most inheritance systems which use hierarchi-
cal representation of knowledge, do not consider
learning. In this paper, a concept hierarchy net-
work model based on adaptive resonance theory
is proposed for inheritance systems, which ex-
plicitly includes learning as one of its major de-
sign goals. By chunking relations between con-
cepts as cognitive codes, concept hierarchy can
be learned/modified through experience. Fur-
thermore, fuzzy relations between concepts can
be represented by weights on links connecting
them. It is shown that by a spreading activation
process based on code firing, and competition be-
tween conflicting concepts, the model is able to
exhibit property inheritance and to resolve such
conflicting situations as exceptions and conflict-
ing multiple inheritance.

Introduction

Formulating concepts about objects is the ba-
sis for human commonsense reasoning. In repre-
senting objects, inheritance systems (Fahlman,
1979; Touretzky, 1986) which use hierarchical
organization of knowledge, is able to abstract
low level information by property inheritance.
However, besides simply adding/deleting links
of networks, most inheritance systems are gen-
erally hard-wired, and even in their connection-
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ist implementation (Shastri, 1988), often do not
include learning mechanism. One of the main
difficulties in learning as mentioned by Feldman
(1989), is to create new concepts and new mem-
ory structure dynamically. The problem is ag-
gravated by the slow learning nature of most
neural network algorithms. Another limitation
of most inheritance systems is that strict, non-
fuzzy relationships are used to represent the rela-
tions between classes, as well as between a class
and its properties. This results in rigid reasoning
and is not suitable for processing commonsense
knowledge.

In this paper, a concept hierarchy network
(CHN) model is proposed for implementing in-
heritance systems. The model is based on
supervised learning adaptive resonance theory
(ART) networks (Carpenter et al., 1992; Tan,
1992) which are able to self-organize knowledge
structure using fast stable learning. As sug-
gested by the name of concept hierarchy, the ap-
proach adopted here is an intensional one rather
than extensional. Roughly speaking, while most
other inheritance systems perform inheritance on
classes of objects that fit into various concepts,
this paper builds inheritance systems based on
the meanings or semantics of concepts. The
knowledge system that we are concerned with, is
a common knowledge pool which interacts with
sensory memory of various types including ver-
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Figure 1. Schematic Diagram of Knowledge Hi-
erarchy.

bal, auditory and visual. A schematic diagram
of such a system is shown in Figure 1.

The sensory memory can be viewed as a mi-
crofeature layer which forms the distributed rep-
resentation of concepts. The concept hierarchy
network comprises a concept layer and a coding
layer. In the concept layer, a node is used to
represent a concept. By organizing the micro-
feature layer and the concept layer in an ART
network, new concept node can be created when-
ever a novel activity pattern is activated across
the microfeature layer. In coding of concept hier-
archy, no direct connection is used between con-
cept nodes. Instead, relations between concepts
are learned as cognitive codes represented in the
coding layer. The details of the learning proce-
dure is given in the next section. The operations
in the model are strictly local interactions be-
tween nodes across layers. Using a spreading ac-
tivation procedure which propagates activations
from concepts to concepts through code firing,
the system is able to perform an important sub-
class of commonsense reasoning including recog-
nition and inheritance. In this paper, we shall
focus on the latter, showing that the model is
able to exhibit basic form of property inheritance
including top-down and bottom-up inheritance.
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By pre-organizing conflicting concepts in com-
petitive fields, the system provides a solution for
cancellation of inheritance and conflicting multi-
ple inheritance.

Concept Hierarchy Formation

A concept hierarchy is composed of a set of re-
lations, each associates the meaning of a con-
cept to its defining lower level concepts. The ap-
proach taken here is to learn each such relation
using a cognitive code represented in the cod-
ing layer. Given a relation [C:D] denoting that
a concept C is defined in terms of a list of other
concepts D, we say that C is a hyper-concept of
concepts in D, and concepts in D are element-
concepts of C. To enable real-time encoding of
relations, a fuzzy Adaptive Resonance Associa-
tive Map (Tan, 1992) architecture which per-
forms fast, stable associative learning, is used to
implement concept hierarchy (Figure 2). The F;
coding layer allocates a node to learn a novel re-
lation between a concept and its definitive lower
level concepts. Two identical copies of working
memory fields F¢ and F}? which form the con-
cept layer, are connected to the coding layer by
bidirectional conditionable links. They are used
for matching the conditions for code firing and
for readout of code activation. When coding a
relation, the concept to be learned is represented
in F} and its lower level concepts are represented
in F{.

Relations can be directly encoded in the sys-
tem by fast learning. Alternatively, given many
sample cases, salient relations can be extracted
and represented by the model. Let us consider
learning the concept of elephant by seeing many
elephants. Depending on the particular instance
of elephant, a slightly different activity pattern
of concepts can be obtained across the F{ field.
For example, seeing a big elephant will activate
big but not small, and vice versa. However,
those characteristic features of elephant such as
big-ear, long-nose etc are bound to appear on



ong- bls srav

lephant

e

\ ELEPHANT X
J
S -

— -

Figure 2.  Learning of concept elephant.
Solid/Empty circles indicate activated/inactive
concepts. Solid/Dotted lines indicate pathways
with non-zero/zero connection strengths.

each and every elephant, and will activate the
corresponding concepts consistently. The goal of
the learning procedure is thus to form a tem-
plate vector containing salient element-concepts
in Ff and associate it to elephant represented
in Ff. Other relations can be learned in a sim-
ilar fashion. Concept hierarchy is obtained by
the chaining effect of relations represented. For
example, given a new relation: [royal-elephant:
elephant, white, wear-clothes], another cognitive
code can be created to learn it, which together
with the first cognitive code, form a 3-level con-
cept hierarchy. Figure 3 shows the relations, the
concept hierarchy encoded and its actual coding
in the model.

The mathematics of the system dynamics is
described below. The learning procedure takesin
a relation or a sample case at a time. A learning
cycle involves code activation, code competition
and template learning. Competitive learning and
template matching achieve code compression and
abstraction of concept relations.

Code Activation: Let A% and .A° be the activ-
ity vectors in the concept layer fields F¢ and F}
respectively. Let W# and W} be the weight vec-
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Figure 3. Coding of Concept Hierarchy. (Top)
Concept hierarchy encoded; (Center) The ele-
phant hierarchical relationships; (Bottom) Ac-
tual coding of relations in the model. Only non-
zero connections are shown.

tors associated with a node j in the coding layer
for coding concepts in ' and F} respectively.
The activity of node j is computed as follows:

[A* A WE |A® A Wj?]

b=t (=) (1)
aﬂ-+le| ab+[wjl

where a, and a; are small constants, v is a con-
trol parameter (0 for recall, 1 for recognition,
typically set to 1/2 for learning and spreading
activation), the fuzzy AND operation A is de-
fined by (z A y) = min(z,y) and the norm |.| is
defined by |x| = M, z;.

Code Competition: To ensure that only one
code can be fired at a time, all F nodes have
to undergo a code competition process in which
the eligibility for activation, E; of a node j is
evaluated as follows:

1 if T; = maz{T;: for all node J}
and T; > p
0 otherwise

E; = (2)



where p is a vigilance parameter specifying the
minimum match required for code firing.

Template Learning: Once a node j is selected,
the weight vectors W? and W? are modified by
the following learning rule: For F = a,b

WF = (1-8)WF 4 BAF AWE)  (3)

where ( € [0,1] is the learning rate.

Property Inheritance
by Spreading Activation

The most common type of property inheritance
is super-class to sub-class inheritance or top-
down inheritance, in which properties of a sub-
class are inherited from its superclasses. Shas-
tri (1988) and Sun (In press) also described a
type of bottom-up inheritance (percolation of in-
heritance) in which some properties of a super-
class can be, to a certain extent, inferred from
the properties of its sub-classes. The functional
behaviors of these two types of inheritance are
translated into the concept hierarchy formalism
to serve as the design constraints for our model.
For a generic concept hierarchy as depicted in
Figure 4, the following properties must hold.

PROPERTY 1 (Top-down Inheritance): Let
A be a concept, B be an element-concept of A,
and that B has an element-concept Y which is
not in A. If A is activated, Y should be activated.

PROPERTY 2 (Bottom-up Inheritance):
Let A be a concept, B be an element-concept of
A, and that A has an element-concept X which is
not in B. If B is activated, X should be somewhat
activated.

In the concept hierarchy network, property
inheritance is performed by a spreading activa-
tion process in which code firing in the F, layer
modifies the memory contents in F{ and Ff. A
single spreading activation cycle involves code
activation, code competition (as in learning) and
readout of activities. Readout into F} corre-
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Figure 4. A generic concept hierachy for illus-
trating property inheritance and conflict resolu-
tion.

sponds to propagation of activities down a con-
cept hierarchy and readout into F} denotes up-
ward flow of activities.

Activity Readout: After each code firing, the
activities in F{ and F} are updated as follows:

A® = A*V F(A 3 WST;E)) (4)
A = APV F(Y_WIT;E))) (5)

where the fuzzy OR operation V is defined by
(z Vy) = maz(z,y), A € (0,1) is an attenua-
tion parameter to prevent infinite propagation
of activities down the concept hierarchy, and
F is a threshold-linear function with an iden-
tity range in [0,1]. The memory contents in
F¢ and F} then update each other as follows:
A® = A = A° v Ab. To prevent perservative
firing of a code, a fired node is forbidden from
getting fired again in a single inferencing task.

It can be verified that the spreading activa-
tion process satisfies the constraints delineated
above. For simplicity, all computations assume
a, =a, =0,p=0,7 = 1/2 and unit weights
for all non-zero connections. A, denotes the ac-
tivity of a concept c¢. M, denotes the number of
element-concepts of a concept c.

Top-down Inheritance: A4 = 1.0 = Ap =



A/2 and Ay = A?/4. Thus Y is activated.
Bottom-up Inheritance: Ap = 1.0 2> A4 =
1/2M4 and Ax = A\/2M 4. Thus X is activated.

Conflict Resolution by Competition

It is important to ensure that properties are only
inherited in the proper context. In the elephant
example, activating royal-elephant should only
activate white but not gray. Before we look
into cancellation of inheritance, first consider a
more general property called selective attention
in which more relevant concepts are more acti-
vated than others. For example, when elephant
is activated, long-nose and big-ear should be
more activated than wear-clothes. In general,
the property of selective attention can be stated
as follows:

PROPERTY 3 (Selective Attention): Let A
be a concept, B be an element-concept of A, A
has a element-concept X and B has a element-
concept Y. [a] If A is activated, X should be more
activated than Y. [b] If B is activated, Y should
be more activated than X.

By using the same spreading activation pro-

cedure, selective attention can be achieved by
noting that the attenuation parameter A is less
than 1 and M, is usually greater than 1:
[a) A4 = 1.0 = Ag = A/2, Ax = A\/2 and
Ay = A\?/4. With0 < A < 1, wehave Ay > Ay.
[b] Ap = 1.0 = Ap = 1/2M4, Ax = A/2M,4
and Ay = A/2. With M4 > 1, we have
Ay > Ax.

PROPERTY 4 (Cancellation of Inheritance):
Let A be a concept, B be an element-concept
of A, A and B have element-concepts X and Y
respectively, and that X and Y are contradictory.
(a] If A is activated, X should squash the activity
of Y. [b] If B is activated, Y should squash that
of X.

Cancellation of Inheritance can be achieved
by pre-organizing sets of conflicting concepts
into competitive fields (Grossberg, 1973). In
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a competitive field where every node competes
with each other for activities, the behavior
can be winner-take-all or contrast-enhancing.
By grouping conflicting concepts such as gray,
white, red, and blue into a winner-take-all
pool, only one of which has the strongest activity
will survive. From property 3, X is more acti-
vated than Y in Case [a] and Y is more activated
than X in Case [b]. Through competition, X will
win in case [a] and Y will win in case [b].

In general, when properties are inherited
through multiple paths, inheritance conflicts
could occur. A typical example of multiple in-
heritance problem is the Nixon example shown
below. By using fuzzy connection strengths,
the concept hierarchy network is able to resolve
such multiple inheritance conflict. Suppose that
Nixon is a 90% Quaker and a 100% Republican,
these fuzzy relationships can be captured in their
template weights. Assuming non-fuzziness for
other relations, it can be verified that the ac-
tivation of pacifist is 0.9A2/4 and that of non-
pacifist is \?/4, which means that Nixon is more
likely to be a non-pacifist. In this problem,
the use of fuzzy connection strengths provides
an extra degree of freedom in resolving subtle
situations.

Boz 1. The Nixon Multiple Inheritance Prob-
lem: Is Nixon a pacifist or non-pacifist ?

Nixon : Quaker Quaker : pacifist

Nixon : Republican Republican : non-pacifist

Concluding Remarks

We have shown how an adaptive resonance the-
ory (ART) based model can be used to repre-
sent and learn object concept hierarchy. By a
spreading activation procedure and by organiz-
ing conflicting concepts into competitive fields,
the model is capable of performing property
inheritance and resolving inheritance conflicts.
The work presented here, of course, only serves




as a starting point in understanding and mod-
eling semantic knowledge from an adaptive cod-
ing approach. The model faces an immediate
and more challenging question on how to repre-
sent structural concepts which involves handling
of role/filler relationships. It is the authors’ in-
tention that by extending from a more intuitive
model which has captured some flavors of human
knowledge learning, one has a better chance of
modeling human intelligence.
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