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Abstract

The induction of rules by making queries is a dynamical
process based on seeking information. Experimenters
typically look for one dominant strategy that is used by
subjects, which may or may not agree with normative
models of this psychological process. In this study we
approach this problem from a different perspective, re-
lated to work in learning theory (see for example Baum
1991, Freund et al. 1995). Using information theory
in a Bayesian framework, we estimated the information
gained by queries when the task is to find a specific rule
in a hypothesis space. Assuming that at each point sub-
jects have a preferred working hypothesis, we considered
several possible strategies, and determined the best one
so that information gain is maximized at each step. We
found that when the confidence in the preferred hypoth-
esis is weak, "Confirmation Queries” result in maximum
information gain; the information gained by ”Investiga-
tion Queries” is higher when the confidence in the pre-
ferred hypothesis is high. Considering the dynamical
process of searching for the rule, starting with low con-
fidence in the preferred hypothesis and gradually raising
confidence, there should be a transition from the "Con-
firmation Strategy” to the "Investigative Strategy”, as
the search proceeds. If we assume that subjects up-
date their beliefs regarding the task, while performing,
we would expect that the " Positive Confirmation Strat-
egy” would yield more information at low confidence
levels while the "Negative Confirmation Strategy” (sim-
ple elimination) would be more informative at higher
confidence levels.

We tested subjects performance in such a task, using a
paradigm introduced by Wason (1960). All subjects first
assumed a hypothesis and then made positive confirma-
tion queries. Upon receiving confirmation, half the sub-
jects presented negative confirmation queries and later,
half switched into investigative queries before attempt-
ing to guess the experimenter’s rule. Also, the frequency
of queries in the more 'advanced’ strategies went down
as the confidence level required to evoke the strategy
went up. We conclude that subjects appear to be us-
ing different strategies at different stages of the search,
which is theoretically optimal when queries are guided
by a paradigm that maximizes information gain at each
step.

iris@salk.edu

Introduction

Investigating the induction of rules by making queries is
an active area of research. One of the pioneering studies
in this field was by Wason (1960) who presented sub-
jects with a rule induction task and found that subjects
tended to make queries that conformmed to the rule they
have in mind, counter to the ’normative’ approach sug-
gesting that subjects should try to _.jrove their hy-
potheses. More recent studies (Klayman & Ha, 1987),
(Oaksford & Chater, 1994) suggested that under some
conditions it may be better to use a confirmation strat-
egy rather than the disproving one.

In general, the information gained at each step of the
search depends on the hypothesis space in which the
search is conducted and on the apriori beliefs regard-
ing the probability for each hypothesis in this space to
be the target hypothesis. An additional factor is how
the beliefs are updated given new information. In this
study, we present a theoretical framework for a search
in a large hypothesis space and study the information
gained by several search strategies. Although the space
is large, we study strategies that consider explicitly a
small number of working hypotheses, while making very
general assumptions regarding the rest of the space.

We predict that different strategies will be adopted at
different stages of the search, as the confidence in the
working hypotheses increases. We compare our theo-
retical results with behavior of subjects in a modified
experiment along the lines of the ’triples guessing game’
suggested by Wason (1960).

Theory

Here we present and analyze a theoretical model for the
rule induction problem. We suggest an optimal behav-
ior based on maximization of the information gained by
individual queries. We define four types of queries and
find under which conditions it is best to use which strat-
egy. We begin with definitions. The search is conducted
in a hypothesis space {H} which we assume contains N
independent hypotheses. Each hypothesis, h,,, defines a
unique subsets over a data space {D}. Each hypothe-
sis can be represented by a binary function which has
value 1 at data points that lie within the specific sub-
set, and value 0 at other data points in {D}. One of
the hypotheses, hy, is chosen to be the target hypoth-
esis which an ’optimal seeker’ needs to find by making
queries. With each query, the seeker chooses a point d
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in {D} and is then informed whether this data point
belongs to the target subspace or not. At each point
in the search, the knowledge that the seeker has about
the solution is represented by assigning each one of the
hypotheses a probability that it is the target hypoth-
esis, plha] = plhn = hi]. The result is a probability
distribution over the hypothesis space which reflects the
knowledge or uncertainty of the seeker. The entropy S
of the probability distribution over the hypotheses space
is a measure of uncertainty:

N
S(P) = — Y _ plhn] log (p[hn)) (1)
n=1

where P is the probability distribution P = {p(h,)}.
The entropy increases with the uncertainty, which can
be easily demonstrated by two extreme cases: (a) When
the target hypothesis is known and there is no uncer-
tainty, plh;] = 1 and all other probabilities are 0. It is
easy to see that in this case the entropy is 0. (b) When
the uncertainty is at its maximum, all hypotheses are
equiprobable, p[h,] = 1/N. The corresponding entropy
is log (N), which is the maximum value the entropy can
have in this case. Normally, there is some knowledge re-
garding the probability distribution and the entropy will
have intermediate values. Prior to choosing a query d,
there is a prior probability distribution over the hypothe-
ses space, P° = {p°[h,]} with a corresponding entropy
S(P°) as defined by (1). Upon receiving the informa-
tion h¢(d), the seeker updates the probabilities and the
result is a set of posterior probabilities PP = {p”[h,]}.
Basically, any hypothesis hn such that h,(d) # hi(d) is
ruled out, i.e. p?[h,/] = 0. We assume that the proba-
bilities of the remaining (surviving) hypotheses, are up-
dated according to Bayes rule. The uncertainty changes
to S(PP). This change depends on the value that will
be obtained in reply to the query, which is not known in
advance. Thus, the expected uncertainty after making
the query is given by the expected entropy

ES(PP) = plhi(d) = 1]S(P?|hy(d) = 1)
+p[he(d) = 0]S(PP]hi(d) = 0)

The difference between the prior entropy and the poste-
rior expected entropy is the information gained by the

query:
EIG = S(P°) — ES(PP) (3)

The posterior probabilities may be updated using dif-
ferent rules, but in this study we choose to update the
beliefs using Bayes’ rule. Therefore,

_ p[ht(d)lhn}p[hn]
pp[h,,’h, (d)] = P[ht(d)]

where h;(d) can be equal to 1 or 0. Under these condi-
tions it is easy to see that the expected information gain
is equal to the entropy of the information source h.(d),
since the hypotheses are deterministic functions over the
data set {D}:

EIG =

(2)

(4)

—plhi(d) = 1] log (p[h:(d) = 1])

_plhe(d) = 0]log (plhe(d) = 0]). O
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In order to compute the expected information gained
by any query, one needs to estimate the prior probabil-
ity of the possible values of h;(d) and the best strategy
would be to choose queries that are expected to yield 0
or 1 with probability of 0.5. In other words choosing the
query that is least predictable will yield the maximal in-
formation gain. In order to do so, however, one needs to
know the values of many hypotheses at each data point,
an ability that requires a large memory capacity when
dealing with a large space, see (Freund et al. 1995).
Since humans have a limited capacity for working mem-
ory, the strategies used by subjects will probably not be
optimal, leading perhaps to the use of more than one
strategy at different times, in a way that approximates
the optimal strategy.

We now apply this for the special case of rule induc-
tion. One of the main limiting factors is the memory
capacity, which translates in this case to the number
of hypotheses subjects can consider simultaneously. We
consider strategies that involve a small number of ex-
plicit working hypotheses; other hypotheses are consid-
ered implicitly by assuming that there is some average
probability for a random’ hypothesis to have a value 1
at any specific data point

r = plha(d) = 1]. (6)
This is equivalent to assuming that there is a typical
size of the subsets corresponding to the hypotheses in
the space. We define four different strategies, but our
analysis could be easily expanded to more.

The first two types of strategies are the ”Confir-
mation Strategies”, which can be positive or negative.
When subjects have one working hypothesis, and do not
consider any alternatives, they can make two types of
queries. The " Positive Confirmation Strategy” (PCS)
queries are those data points that conform to the work-
ing hypothesis, in other words: theses are the ’classical’
confirmation queries (see [Wason 1960]). The ” Negative
Confirmation Strategy” (NCS) queries are those which
yield a negative reply with respect to the working hy-
pothesis. In both cases, subjects consider only THE
WORKing hypothesis, and no alternative hypotheses,
as a guide to the queries that they make.

Let h,, be the working hypothesis, then this implies
that

Plhe=h] > plha=h), n#w. (1)
Since we assume that all other hypotheses are equi-
probable, the probability of all other hypotheses is

pan=(1-pu)/(N=1), n#w (8)
There are two possible types of queries: the Positive
Confirmation query, with a data point dp. for which
hw(dpe) = 1 and the Negative Confirmation query, with
a point dy, for which hy(dp.) = 0. When choosing a
Positive Confirmation query, d,., we can estimate the
prior probability p[h,(dp.) = 1]. If the working hypothe-
sis is correct, hy, = h,, the reply will be 1. There is also
a fraction r of the hypotheses for which h,/(dp.) = 1
defined in (6). The probability that the reply will be 1

is:
plhe(dpe) = 1] = puw + (1 = pu)r 9)



A similar analysis holds for the negative confirmation
query, for which

plhi(dne) = 0] = (1 - pu)r (10)

Two other types of strategies considered here are "In-
vestigative Strategies” in which the seeker considers a
working hypothesis and an alternative hypothesis simul-
taneously. Any query which conforms to one hypothe-
sis but does not conform to the other, will enable the
subject to rule out one of these hypotheses. We de-
fine the "Positive Investigation Strategy” (PIS) when
a query conforms to the working hypothesis and does
not conform to he alternative hypothesis. Similarly, de-
fine the " Negative Investigation Strategy” (NIS) when a
query conforms to the alternative hypothesis and does
not conform to the working hypothesis. Note that the
only difference between the Confirmation Strategies and
the Investigative Strategies is the existance of an alter-
native hypothesis.

Formally, we define the alternative hypothesis, h,, as
the hypothesis which is less favorable than h, but is
preferable to other hypotheses in the space.

P’lhu] > p°[ha] > P°[ha] (11)

The Positive Investigation query dp; is defined by
hu(dpi) = 1, ha(dpi) = 0. The probability that the reply
will be 1 is:

P[h!(dpi) =1 =(1 = puw = Pa)r + Pu (12)

The Negative Investigation is similar to the Positive In-
vestigation only it has the opposite values with respect
to hy and h, and the probability that the reply will be

1 is:

plhi(dni) = 1] = (1 = py — Pa)™ + Pa (13)
One can generalize our analysis to the case where there
is more than one alternative; the results do not change
significantly.

In summary, the strategies are defined by two criteria:

First, how many favorable hypotheses are being consid-
ered simultaneously? A working hypothesis is always
considered, but subjects may or may not consider an
alternative hypothesis. Secondly, Is the favorable hy-
potheses positive or negative at the query point?
The factor that determines the informativeness of the
query is the predictability of the reply, which we can es-
timate for each strategy. The average information gained
by the different queries, using eqs. (3) & (5) is:

EIG = plhi(d) = 1]log (p[h:(d) = 1])
+(1 = plhi(d) = 1]) log (1 — plh(d) = 1)) "

n#w,a.

where p[h¢(d) = 1] is the probability of the reply to query
d to be 1, and the closer plh¢(d) = 1] is to 0.5, the more
informative the query is. We summarize the results in
the following table:
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Query Type [ Data Point | p[h,(d) = 1]

Pos. Conlf. d=d, (1= pu)r+ pu

Neg. Conf. d=dy. | (1=pu)r

Pos. Inv. d=dy (1=pw = pa)r + pPu
Neg. Inv. d=dni | (1=puw—pd)r+Ppa

Table 1. Predictability of queries: probability of reply
equals 1.

These conditions lead to a number of predictions, as-
suming that the optimal strategy is adopted. Regard-
less of what r is, the confirmation strategies are al-
ways preferable to the investigative strategies at low con-
difence py, < 0.5 + par/2 and the other way around
when the confidence is high. Up to this critical value,
Ip[hf(dpc,nc) =1-05/< Ip[hl(dpi,ni) == l] - 0.5/, and
then the relation is reversed. From a similar compari-
son of the positive and negative confirmation strategies,
when r < 0.5 the positive confirmation is always bet-
ter than the negative confirmation and when r > 0.5
the negative confirmation is preferable to the positive
confirmation. Although we have no direct measure of
the subjective value of r using the current experimental
paradigm, we assume that subjects update their subjec-
tive estimate of r along the search, from a low value
at the start to a higher value after receiving frequent
replies of 1, due to the specific design of the Wason test.
In summary, we predict:

e Different strategies will be used by subjects according
to the following order: positive confirmation, negative
confirmation and last, investigation

e The later strategies, corresponding to higher confi-
dence levels, will be less frequent since subjects guess
the rule at different subjective confidence levels,

¢ Confirmation strategies should be correlated with low
confidence, and investigative strategies with high con-
fidence.

Experimental Paradigm

Subjects were asked to discover a mathematical rule that
applies to triples of numbers by writing down sets of
three numbers along with the reasons for the choice.
They were also asked to write down their best guess of
the unknown rule at this point and their confidence that
this may be the correct rule. In addition, they were
asked to note their prediction of what will be the experi-
menter’s reply and their confidence in their best guess as
well as the predicted reply. The confidence was rated as
Low, Medium, High or Very High. Subjects were given
one confirming example to begin the process, and all
replies were kept on a form (Figure 1). Subjects were
given only one chance to explicitly guess the rule, after
which the process terminated. We analyzed the data ac-
cording to the definitions of the strategies given in Table
1. which are demonstrated in Figure 2. We assumed that
the best guess at each point was the working hypothesis
of subjects.



Results

We analyzed data from 20 subjects, generating a total
of 99 queries. We consideried the best guess to be the
working hypothesis.

Confidence levels were transformed to numbers be-
tween 1-4. The most frequent strategy was the posi-
tive confirmation: 19/20 subjects used it at some point.
The secondary most frequent was the negative confirma-
tion: 10/20 subjects used it. The least frequently used is
the investigation strategy: 5/20. This perfectly matched
our theoretical predictions, although other explanations
can be given for the same data. Since the Investigative
strategies were much rarely used, we pooled data from
the Positive and Negative Investigation queries together.

We consider each query to be an independent event.
The confidence level was found to be correlated with
the different types of strategies that are used (Figure
3). However, the two confirmation strategies were not
significantly different, probably due to a small sample
size. The investigative strategies were found to be used
at significantly higher confidence levels with p < 0.05.

A similar analysis was performed for the ordering of
the different strategies. Each query was given an order-
ing label within each subject’s game, according to its se-
quential numbering normalized by the number of queries
asked by each individual. That is, each query received
a label between 0 and 1. There is a correlation between
the type of strategy and the ordering (Figure 4). The
Positive Confirmation strategy which is more commonly
used in the beginning of the game, was found signifi-
cantly different from the Negative Confirmation which is
used at more advanced sequencing, with p < 0.06. The
investigative strategy was found to be used at higher
sequencing, and is significantly distinct from the Confir-
mation strategies with p < 0.05.

It was interesting that 16/20 subjects started their
guesses by a positive confirmation query to which they
expected a negative reply. This suggests that subjects
initially expect that the probability of a random query to
yield a positive reply is low, in accordance with our as-
sumption that r < 0.5. 2/8 subjects who found the cor-
rect rule used only positive confirmation queries. These
subjects performed a series of spontaneous changes in
their working hypothesis.

Summary

We have presented a theoretical analysis of informa-
tion search in a large hypothesis space. We have shown
that subjects used different search strategies at different
stages of the search, in a way that was correlated with
confidence in their working hypothesis. The confidence
level appears as a significant parameter in theoretically
determining the best search strategy, as well as in pre-
dicting the behavior of subjects,

An important factor in our analysis is the assumption
that subjects updated their subjective beliefs regarding
the reply to a random query, a direction we intend to
explore in the future.

In addition, one can easily show, using the paradigm
we have presented, that as the hypothesis space becomes
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larger, it is less valuable to consider alternative hypothe-
ses. Evidence for this notion was found by (Van Wal-
lendaeland and Hastie, 1990) who showed that when the
number of possible alternative hypotheses was large, sub-
jects tended to update their beliefs regarding one work-
ing hypothesis only. As the space size was reduced (in
that study the space is quite small), subjects began to
update their belief in more than one hypothesis.

In our theoretical analysis we assumed that the sub-
jects updated their beliefs about the likelihood of receiv-
ing positive (or negative) answers during the task, which
is equivalent to the presumed size of the target subset.
This correlates with the anchoring effect (Kahneman and
Tversky, 1974): information that is explicitly not rele-
vant to the task subjects are required to perform still
affects the behavior of subjects.
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Figure 1: The form used in the experiment.

! Three : Reasons for : Best guess of
Query Type | Numbes ! Choice ! Rule at this point
L SPTUPI (, | e nuntes
Confirmation | ' ¢ increasing by 2
2 Mg loag | mamnie
Confimation | i ' increasing by 2
3, Positive : 81012 : rule out possbility thal ! even numbers
lnvestigaion | ' numbers are multiples © increasing by 2
: : of the first number
4, Negaire : 26,10 : perhapsall tnples | even numbers
Investigation | of increasingevens | increasing by 2

Figure 2: Definition of four different types of queries.
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Figure 3: Correlation between strategy and confidence
level. n is the number of queries that correspond to
each strategy. The error bars represent the standard
deviation of the distributions and not the deviations of

the means.
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relative
position
LT
sequence
. itive ive ———
strategy: P Degatly investigation
confirmation confirmation
n=T4 n=12 n=13

Figure 4: Order of strategies. n is the number of queries
that correspond to each strategy. The error bars repre-
sent the standard deviation of the distributions and not

the deviations of the means.
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