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Abstract 
Learning names for novel objects has been shown to be 
impacted by the context in which they appear. Manipulations of 
context, therefore, provide a key pathway to explore these 
learning dynamics. Here we use a neural process model that 
instantiates the details of ‘context’ to generate novel, 
counterintuitive predictions about how similarity in object 
properties influence learning. Specifically, we use a dynamic 
field model, WOLVES, to simulate and predict learning in a 
cross-situational word learning task in two conditions: one 
where the two objects presented on each learning trial are 
metrically similar in a property (‘NEAR’) and another 
condition where the two objects are always dissimilar (‘FAR’). 
WOLVES predicts—counterintuitively—that participants 
should learn better in the ‘NEAR’ condition (where objects are 
potentially confusable) than in ‘FAR’ condition (where objects 
are distinctive). We then tested this prediction empirically, 
finding support for the novel prediction. This study shows the 
utility of process models which instantiate the details of 
‘context’ during learning and provides support for WOLVES. 
We know of no other theory of cross-situational word learning 
that captures these novel findings. 

Keywords: cross-situational word learning; dynamic neural 
model; DFT; metric similarity; attention and memory; learning 

 
Introduction 

A central issue in cognitive science is how learning is  
affected by the context in which it occurs. One area in which 
this has been demonstrated recently is Cross-Situational 
Word Learning (CSWL). CSWL refers to tasks in which 
word object mappings are learned via accumulation of 
information gained over successive, individually ambiguous, 
trials. In a classic demonstration of CSWL with children, 
Smith and Yu (2008) presented infants with 30 trials 
composed of two objects and two words. On each trial, it was 
unclear which word mapped to which object, but every time 
a given object appeared, its associated word was heard. Thus, 
over trials the correct word-object mappings could be 
inferred. In a preferential looking test, two objects were again 
presented, but with only one word. Infants looked more to the 

object that had most-often occurred with that word for 4 of 
the 6 tested words, suggesting learning.  

Subsequent studies have confirmed CSWL in adults and 
children under a variety of task manipulations designed to 
examine the limits of and possible mechanisms supporting 
learning (see Roembke, Cimonetti & Koch, 2023). An active 
literature presents an ongoing debate about the mechanisms 
supporting learning and includes multiple computational 
models examining the mechanisms and processes involved 
(see Bhat, Spencer & Samuelson, 2022 for review). 
Manipulations of various aspects of the learning context, such 
as the number of other objects presented on a trial, have 
contributed to the understanding of CSWL.  

Suanda and Namy (2012) assigned objects to trials 
randomly such that some objects occurred together more 
often than with other objects. They found that the these 
spurious correlations during training reduced learning. 
Kachergis, Shiffrin and Yu (2009) demonstrated that 
increased contextual diversity (e.g., appearing with more 
items across trials) supported learning of pairs presented less 
frequently over trials. These studies suggest learners encode 
aspects of the context such as what other objects were present 
during individual CSWL trials.   

Other studies have examined the influence of similarity 
between the presented words. Mulak, Vlach and Escudero 
(2019) found that using pairs of words that differed by one 
vowel or one consonant reduced learning accuracy overall, 
compared to other studies using more dissimilar words. 
Tuninetti, Mulak and Escudero (2020) further showed that 
the similarity of novel auditory stimuli to participants’ native 
language impaied learning. These studies demonstrate the 
influence of auditory context on CSWL and additionally that 
the similarity of stimuli to known words can reduce learning. 

 
The Current Study 

The current work sheds light on how multiple cogntive 
processes come together to support word learning using a 
neural process model of CSWL. We test a unique a priori 
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prediction from a recent model of CSWL to both gain insight 
on the role of local context in word learning and as a probe 
of this specific model. In contrast to prior CSWL studies that 
have manipulated local context in terms of the co-occurrence 
rates of objects, we examine how the similarity of the objects 
presented on a trial influences learning, akin to work using 
minimal auditory pairs. This is possible because the process 
model we use—Bhat et al.’s (2022) Word-Object Learning 
via Visual Exploration in Space (WOLVES)—is unique 
amongst models in its ability to represent similarity relations 
between objects and their neural interactions. Investigating 
systematic variations in object properties in CSWL is crucial 
for better understanding of the cognitive processes 
underlying language acquisition.   

WOLVES is a neural model implemented within Dynamic 
Field Theory (DFT) (Schöner, Spencer & The DFT Research 
Group, 2015; for a comprehensive model description, refer to 
Bhat, et al, 2022). Before describing the simulations, 
prediction, and empirical test, we provide a concise overview 
of DFT and a description of WOLVES.  

 
Dynamic Field Theory 

Dynamic Field Theory (DFT) posits that cognitive 
processes emerge from neural processes occurring within 
dynamic neural fields (DNFs), which simulate the dynamics 
of neural populations. These fields are organised based on 
cortical tuning curves into metric dimensions such as color, 
shape, and space. Neurons within a field interact recurrently 
with each other according to a local excitation, lateral 
inhibition function leading to the formation of peaks that 
serve as stable states of the field (Amari, 1977). 

A DNF architecture comprises fields (see Figure 1) which 
interact along shared dimensions through unidirectional or 
bidirectional projections (shown as arrows in Figure 1). 

Fields can also incorporate a form of Hebbian learning at a 
slower timescale, allowing neural populations to learn and 
encode statistical information across trials. This ‘memory 
trace’ (the leftmost 2D field in Figure 1) creates a local boost 
for repeatedly active sites , enhancing the likelihood of peak 
formation in those regions. 

 
WOLVES: The Model 

A visual representation of WOLVES is presented in Figure 
1. For simplicity this figure only shows fields processing 
objects’ color; objects’ shape is processed in a similar manner 
by adding another row of fields tuned the shape features. 
Each box, excluding the visual display in the upper right, 
shows a dynamic field. Starting with the fields on the right, 
the model captures processing related to visual exploration in 
space (Perone & Spencer, 2013; Schneegans, Spencer & 
Schöner, 2016). Visual inputs (e.g., the red circle and blue 
square in Figure 1) are presented to a visual field (far right in 
Figure 1), encoding features such as color and shape, along 
with their respective locations on the visual field. This 
information is processed along two pathways: a dorsal 
pathway for spatial information (horizontal 1D fields in 
Figure 1) and a ventral pathway for feature information 
(vertical 1D fields in Figure 1). The dorsal pathway 
represents the location of objects in the world, creating a 
spatial working memory for crucial locations within the 
current scene. The ventral pathway represents object features 
(like color), including a visual working memory for specific 
features. The scene attention field combines this information 
into a scene representation, discerning 'what is where' 
(Treisman & Gelade, 1980).  

The word-object learning portion of the model (Samuelson, 
Smith, Perry & Spencer, 2011) is on the left of Figure 1. 

Word

C
olor

Word Space Space

Figure 1. The WOLVES model neural architecture. The one-dimensional (1D) and two-dimensional (2D) dynamic fields 
(DFs) in the model are responding to the visual display in the top right. Arrows represent uni/bidirectional connectivity (blue: 
excitatory, red: inhibitory). Only one feature dimension, and some working memory and memory trace fields are not shown 
for simplicity. 1D fields show activation profile in blue and above-threshold neural activity in red. 2D fields visual and scene 
fields show activation representing specific colors in specific spatial locations, with higher activation in ‘hotter’ colors. The 
2D word-feature and word-feature memory trace field show binding of specific words and the object color feature.   
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Auditory inputs are presented to the word field, representing 
the provided word labels. Words and object features are then 
integrated in the word-feature (binding) field. Over time, 
memory traces grow in the memory trace layer, supporting 
the recognition of word-object mappings and guiding 
attention to familiar items through top-down connectivity. 

Figure 1 illustrates neural activation in WOLVES at a 
moment when the model recalls a word-object mapping and 
directs attention to the corresponding object in the visual 
field. Understanding the model involves considering three 
autonomous cycles of action in WOLVES: the visual 
exploration in space cycle, the word-object learning cycle, 
and the top-down attention cycle. 

The visual exploration in space cycle starts when the model 
observes visual input, generating activation peaks in the 
visual field. The color and spatial features are then conveyed 
to the contrast fields, which detect visual novelty. Peaks in 
the visual working memory fields can suppress contrast layer 
peaks, distinguishing between 'known' and novel elements. 
Peaks in the contrast fields transmit activation to the attention 
fields. These 'winner-take-all' fields support a single peak—
the focus of attention. The attention peak amplifies activation 
in the visual field, selecting the focused element and 
enhancing spatial attention. After consolidation in working 
memory field, the information enters the 2D scene field, 
binding feature and spatial inputs. The inhibition of return 
field detects the consolidated item, suppressing spatial 
attention and releasing the item from the attentioanl focus. 
The cycle repeats as the model explores the next item. 

The word-object learning cycle starts when an auditory 
word is presented, creating a peak in the word field. This peak 
influences the word-feature field, where attended visual 
features are also projected. If a word is presented while an 
object is attended, the combined inputs build a peak in the 
word-feature field, binding the word to the attended visual 
features and leaving a trace in the memory trace layer. These 
traces grow over subsequent presentations allowing the 
model to learn word-feature mappings. 

The top-down attention cycle starts when word input 
intersects a strong memory trace for a word-feature mapping. 
This causes a peak in the word-feature fields, passing a 'top-
down' signal to the contrast field. This signal activates the 
associated feature, directing attention to the object via 
interactions with the feature attention fields. 

These cycles emerge over various timescales as neural 
activation propagates in the model. On a real timescale of 
milliseconds and seconds, the model autonomously shifts 
attention between visible objects and recognizes words. 
Visual habituation emerges as strong memory traces alter the 
visual exploration in space cycle, causing the model to 
swiftly release fixation from 'known' items and spend more 
time exploring novel items. Learning occurs over a longer 
timescale, as repeated attention to objects in the presence of 
words builds stronger memory traces. As learning progresses, 
it will affect subsequent processing. The word-object 

learning cycle can help the model build correct word-object 
associations because robust word-object traces can block the 
formation of new incorrect associations. Learning also 
impacts the top-down attention cycle, as strong memory 
traces direct attention to labelled objects. 

Together these processes allow WOLVES to 
autonomously allocate attention to the objects in the visual 
field on the real timescale of milliseconds and seconds and 
build associations over trials that grow to allow recognition 
of words. This real-time behaviour aligns with participants' 
looking behaviour, enabling the model to be embedded in the 
exact same experiments as participants using identical visual 
and auditory inputs as those in CSWL tasks. 

 
CSWL with WOLVES 

Since WOLVES autonomously generates looking data, 
adaption to preferential-looking CSWL tasks such as Smith 
& Yu (2008) is direct. Each object presented to the model is 
represented by a specific color-shape feature pair. To present 
an object to the model we input a gaussian-shaped stimuli 
pair at the corresponding feature values of the model’s visual 
field. Words were locally represented with distinct Dirac 
functions randomly located across the word dimension. 
Following presentation of inputs, activation evolves 
autonomously during each training and testing trial.  

As in typical CSWL studies, two objects are presented to 
the model on each training trial along with two words. The 
duration of trials and stimuli onset and offset are made to 
exactly match the target experiment. For example, in 
simulations of Smith & Yu, 2008 (Bhat et al., 2022) training 
trials were 4000ms long with the first word turned on at 
500ms and off at 1500ms and the second turned on at 3500ms 
and off 1000ms later. Learning in WOLVES can be assessed 
in two ways. Because the model autonomously explores 
objects during training and test, behavioral measures such as 
time looking to the target can be taken, just as in studies with 
child and adult participants. In addition, the model’s internal 
processing can be anlayzed, examining measures such as the 
strength of memory traces in word-feature fields as a measure 
of the correct/incorrect associations learned by the model.  

Bhat et al. (2022) used WOLVES to capture data from 7 
adult and 5 child studies of CSWL, capturing more data than 
two competitor models with good quantitative fits. WOLVES 
also generalized better to three “held-out” experiments. The 
developmental account of CSWL instantiated in WOLVES, 
the only such account to date, demonstrates how changes in 
memory processes from infancy to adulthood influence task 
performance. Further WOLVES sheds light on the processes 
supporting CSWL, showing how visual exploration and 
selective attention in CSWL are dependent on and also 
indicative of learning and how learning is driven by the real-
time synchrony of words and gaze and dynamically 
constrained by memory processes. Here we seek additional 
insight on how relations between stimuli influence the 
learning process by simulating conditions of high and low 
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similarity between objects to make an a priori prediction that 
is then tested empirically. 

 
Simulation and Experiment Design1 

A unique feature of DNF models and thus WOLVES is the 
use of metrically organised dimensions to represent object 
stimuli and experimental features such as the space in which 
objects are presented. Practically, this means that the 
representations of a red circle and pink oval presented 
simultaneously to WOLVES would be closer together on the 
color and shape dimensions than a red circle and a green 
triangle. Further, the interaction kernel governing how sites 
in WOLVES’s feature fields interact is such that sites close 
to each other in color and shape have excitatory interactions 
while those farther apart have inhibitory interactions.  

Combined, these aspects of WOLVES mean that we expect 
the relative similarity of the two objects presented on a 
CSWL trial will matter for the representations the model 
develops over the course of a trial and for learning outcome. 
Indeed, such effects have previously been documented in 
DNF models. Johnson, Spencer, Luck & Schöner (2009) used 
a change detection task to look at the effect of stimulus 
similarity on working memory. They found that when 
participants were asked to consolidate similar colors or 
orientations in working memory, they were better able to 
discriminate a feature change presented at test, compared to 
when stimuli were far apart in color or orientation space.  

These prior findings lead to the counterintuitive prediction 
that learning in CSWL may be improved if similar object 
pairs are presented together during training. To test this 
prediction, we designed a CSWL stimulus set that allowed 
precise control of the relative similarity of the stimuli.  
 
Object Stimuli 

 
1 The design and qualitative predictions were pre-registered on OSF: 
https://osf.io/d9zeq/ 

We created a set of novel stimuli by combining metric 
variations of object shapes and colors. Object shapes were 
defined by radial frequency components (Zahn & Roskies, 
1972, Figure 2 top left),  providing  an  evenly  parameterized  
similarity  space  without  category boundaries. Object 
colours were sampled equidistantly from a 360° continuous 
colour space (CIELab, 1976). Twelve Beastie stimuli were 
created by first selecting two mutually exclusive sets of 
equidistant feature values. In Set 1 feature values were forty 
degrees apart: 105, 145, 185, 225, 265, 305, 345. In Set 2 
features were 10 degrees apart: 20, 30, 40, 50, 60, 70. A 35-
degree gap separated stimuli in the two sets (e.g., from 70 to 
105; and from 345 to 20). These values were then combined 
as shown in Table 1 (column ‘Feature value-pair’) to create 
the twelve Beasties (Figure 2, bottom). We added legs and 
eyes to highlight shape differences and help maintain 
participant interest. The resulting “Beasties” were generated 
in Matlab and presented a on uniform grey background.  
 

 
Word Stimuli 

Twelve disyllabic nonwords consistent with the 
phonological probabilities of the English Language were 
recorded in isolation by a female British speaker (Table 1). 
Each sound was 1000 ms long in duration. 

 
Design 

Both   the   empirical   study   and   simulations used an 
independent measures design, with different groups (of 
people/simulations) in two learning conditions, NEAR and 
FAR. Based on Smith & Yu (2008), each condition involved 
two phases, learning and test. The learning phase consisted of 
30 trials each presenting two objects for 4000 ms. During this 
time, two words were played through the speaker for 
participants or turned on for the model with the timing 
matching that of Smith and Yu (2008). A test phase of 12 

 
 

Figure 2. Top: Beasties and 360° color and shape spaces. 
Bottom: Stimuli objects used. Note that the objects in the 
top row are similar in color but have dissimilar shapes and 
vice versa for the objects in the bottom row. 
 

Table 1. Word-referent pairings and corresponding object 
feature value pairings for stimuli used in the study. 
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trials followed, wherein participants/simulations were 
exposed to two objects and a single word on each trial, for a 
duration of 8000 ms each. One object, the target, had always 
been presented with the tested word during learning. The 
other object served as a distractor.  

The same stimul were used for both conditions, but paired  
differently (Table 2). In the NEAR condition, paired objects 
were just 10 degrees apart on one of the dimentions. In the 
FAR condition, objects were were 35 degrees apart on both 
dimensions. See Figure 3 for example trials.  

The 10 object pairings were repeated three times to make 
up 30 training trials. Trial order, right/left position of objects, 
and order of first/second word presentation was randomized 
separately in each block. Note that the design also leads to 
equal contextual uncertainty (number of co-occurring 
objects) for each object in both conditions. 

The same test trials were used for the NEAR and FAR 
conditions, one for each object/word. The selection of 
distractors and their side/location in the test trials was 
randomized as was the order of the test trial presentations. 

 
Simulation Study 

We situated WOLVES in the exact experiment and 
examined its preferential looking to the target at test in each 
condition. Based on prior findings of Johnson et al. (2009), 
we expected the local excitation/lateral inhibition function in 
the feature fields would cause stimuli in the NEAR condition, 
which are highly similar on one dimension, to interact in an 
excitatory fashion. This should affect working-memory 
formation, change looking dynamics, and thereby modify 
learning. Critically, because the same objects are used in both 
conditions; it is just the NEAR/FAR pairing that creates 
metric differences in the moment.  

A visual inspection of the looking/learning dynamics in 
WOLVES revealed that in the (FAR) condition, as working 
memory traces of objects bult over training, the model 
became more efficient at consolidating objects and switching 
attention. This resulted in quicker release of fixations and, 
consequently, habituation—meaning less time spent looking 

at the objects over time. This habituation reduced looking and 
contributed to a decline in the opportunity to learn correct 
word-object associations (see also, Smith & Yu, 2013). In 
contrast, in the NEAR condition, the overlap of similar 
stimuli peaks created a broad WM trace, allowing a WM peak 
to persist even after the model shifted attention to the other 
object. This lingering scene-WM activity hindered the swift 
formation of a new scene representation. This extended the 
time needed to consolidate new objects, leading to prolonged 
fixation and longer looks at the NEAR objects.  

 
Simulation Methods 

Simulations were conducted in MATLAB 2016b via the 
COSIVINA framework, a modeling package for designing 
DF models (Schneegans, 2012; Schöner et al., 2015). Two 
machines both using Intel i5 processors were used to run all 
the simulations: a PC with 36 parallel processing cores and a 
High- Performance Cluster with 28 parallel processing cores. 
Time was scaled such that each simulation step equaled eight 
real-time milliseconds. Simulation results were aggregated 
over 300 runs (i.e., 300 individuals). Model parameters 
matched those used by Bhat et al. (2022) to capture adult data.  

 
Results 

The left panel of Figure 4 presents WOLVES’ preferential 
looking to the target for the two conditions out of the total 
trial length (scaled  to 8s). As can be seen, the model’s 
looking to the target on test trials was higher when trained 
using stimuli pairs that were highly similar (NEAR condition; 

Table 2: Object pairings in training trials 
 

Figure 3. Object 8 v. Object 9 in the NEAR condition (left, 
similar shape, different colour); Object 8 v. Object 2 in the 
FAR condition (right, dissimilar in both shape and colour). 

 

Figure 4. Total looking to target in WOLVES model (left 
panel) and adult participants (right panel) at test for the two 
conditions with standard deviation bars.  

 

 
 
  

ADULTS 
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M=4.26s, SD=0.38s) than when trained with stimuli pairs 
that were more dissimilar (FAR condition; M=3.52s, 
SD=0.62s).  

 

To further assess learning, we measured the strength of 
correct associations learned in both the conditions. As shown 
in Figure 5 (left), the memory traces of correct associations 
are stronger in the NEAR condition than in the FAR 
condition, confirming that the model learned word-object 
mappings better in the NEAR condition. We also looked at 
the overall entropy in the memory traces of the association 
matrix. Higher entropy is an estimate of more incorrect and 
random associations. Figure 5 (right) plots the entropy in 
word-object association memory traces in the two conditions. 
Entropy values are higher in FAR condition suggesting 
formation of a larger proportion of random/incorrect 
associations between words and features.  

Thus, the model predicts better learning when similar 
objects are presented together (NEAR condition) than when 
dissimilar objects are presented together (FAR condition).  

 
Empirical Study 

The simulation data from WOLVES make the 
counterintuitive prediction that when presented with highly 
similar stimuli in a two-item CSWL task, adults will learn 
better than when stimuli are less similar. To test this 
prediction, we ran the same experimental design in two 
groups of adult participants.  
 
Methods  

Thirty adult participants (23 Females) with a mean age of 
20 (sd = 5.1) were randomly assigned to the NEAR and FAR 
conditions (15 each). Color-blindness was used as an 
exclusion criterion. An eyelink 1000 eyetracker was used to 
measure looking behavior during training and test.  

 
Results  

Dwell times to the target and distractor on each testing trial 
were compiled from the raw eyetracking data and averaged 
across participants within each condition. As can be seen in 

the right panel of Figure 6, participants proportion looking to 
the target out of total looking on a trial was higher in the 
NEAR (M = 3.88s, SD = 0.74s) compared to the FAR (M = 
3.28s, SD = 0.84s condition; t(28) = 2.1, p = 0.045. The mean 
distractor looking times were also significantly different for 
the NEAR (M = 2.74s, SD = 0.91s) and FAR (M = 3.38s, SD 
= 0.65s) conditions; t (28) = -2.21, p = 0.035. These findings 
support  WOLVES’ prediction of better learning in the 
NEAR condition than the FAR condition. Target looking in 
the simultations closely fits empirical means with 
RMSE=0.32 and MAPE=8.62.  

 
Discussion 

This work sheds light on the representations and processes 
supporting CSWL by examining a neural model’s predictions 
about the effects of stimulus similarity on learning. Bhat et 
al.’s (2022) WOLVES model has previously been used to 
capture a range of CSWL data. Here we capatalized on a 
unique feature of WOLVES—metrically organized object 
feature dimensions—to examine the influence of object 
similarity in learning. Prior work with similar DF models 
suggested that the local excitation/laterial inhibition function 
that governs how object representations interact would, 
counterintuitively, lead to better learning with highly similar 
stimuli. Indeed, model simulations using a metrically-
controlled set of stimuli led to the prediction that adults 
would learn better when exposed to similar pairs on each 
learning trial, compared to training that used the same stimuli 
but presented dissimilar pairs on each trial. An empirical 
study confirmed this prediction.  

This finding is particularly interesting in light of work 
suggesting that highly similar auditory stimuli make CSWL 
harder. Malek et al. (2019) found that word pairs that only 
differed in one vowel or one consonant were harder to learn 
in CSWL. Future work that directly compares the impact of 
auditory versus object stimulus similarity on learning will be 
critical to unpack the bases for the apparent differences 
between the current work and that of Malek et al. However, 
one current limitation of WOVES, is that words are 
represented locally and without metric features. 

WOLVES is currently the only model to capture 
developmental changes in CSWL. Thus it will be important 
to examine wither WOLVES predictions hold in studies of 
infants and children. In addition, examination of the interplay 
of similarity and object presentation order (c.f., Carvalho & 
Goldstone, 2015) would be revealing of the interaction of the 
multiple timescales on which representations build in 
WOLVES. Finally, future analyses will examine changes in 
looking, including patterns of habituation and novelty 
detection, over the course of learning. These future directions 
notwithstanding, the current study represents a strong test of 
WOLVES that complements recent work generalizng the 
model to new tasks (Bhat et al., 2023).  

 

Figure 5. Strength of the memory traces for ‘correct’ 
associations in the word-feature field (left) and entropy in 
memory traces associations in the word-feature field (right). 
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