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The Knotted Sky I: Planck constraints
on the primordial power spectrum

Grigor Aslanyan,a Layne C. Price,a Kevork N. Abazajian,b and
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aDepartment of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand
bDepartment of Physics, University of California at Irvine, Irvine, CA 92697

E-mail: g.aslanyan@auckland.ac.nz, lpri691@aucklanduni.ac.nz, kevork@uci.edu,
r.easther@auckland.ac.nz

Abstract. Using the temperature data from Planck we search for departures from a power-
law primordial power spectrum, employing Bayesian model-selection and posterior probabil-
ities. We parametrize the spectrum with n knots located at arbitrary values of log k, with
both linear and cubic splines. This formulation recovers both slow modulations and sharp
transitions in the primordial spectrum. The power spectrum is well-fit by a featureless,
power-law at wavenumbers k > 10−3 Mpc−1. A modulated primordial spectrum yields a
better fit relative to ΛCDM at large scales, but there is no strong evidence for a departure
from a power-law spectrum. Moreover, using simulated maps we show that a local feature
at k ∼ 10−3 Mpc−1 can mimic the suppression of large-scale power. With multi-knot spectra
we see only small changes in the posterior distributions for the other free parameters in the
standard ΛCDM universe. Lastly, we investigate whether the hemispherical power asymme-
try is explained by independent features in the primordial power spectrum in each ecliptic
hemisphere, but find no significant differences between them.
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1 Introduction

The first cosmological data analysis by the Planck Science Team [1] confirmed the con-
ventional ΛCDM model of cosmology with unprecedented precision. In particular, a scale-
invariant primordial power spectrum (PPS) is excluded at > 5σ. Simple models of single-field
inflation generically yield an almost scale-invariant PPS, but no inflationary models are yet
favoured by Bayesian evidence relative to ΛCDM [2–5]. Conversely, models with relatively
complex spectra, including oscillations or localized amplifications, are consistent with current
cosmological data [6–11].

While it is clear that the Harrison-Zel’dovich spectrum does not provide an optimal fit
to the data, it does not follow that the power-law PPS is preferred over all other possible
forms. Furthermore, as cosmological constraints become sensitive to increasingly delicate
signals in the PPS, it is important to check whether constraints on these parameters depend
on the assumed form of the PPS. Model-independent approaches to reconstructing the PPS
have been widely studied [12–39], and the approached used here closely parallels that of
Ref. [36], which examines the seven year WMAP dataset.

We revisit this problem using Planck data, Bayesian model-selection based on evidence
(or marginalized likelihood) ratios [33–38] and a flexible specification for the PPS. We use
this formalism to test whether Planck constraints on cosmological parameters are weakened
when permit a generic PPS, rather than usual, almost–scale-invariant power-law formulation.
While parameter degeneracies with the PPS could, in principle affect the posteriors on other
cosmological variables (e.g., [40]), we find that the constraints on these parameters do not
change significantly when we allow generic forms of the PPS. Secondly, we use this formalism
to determine whether the observed large-scale hemispherical asymmetry in the two ecliptic
hemispheres can be attributed to differences in the form of the PPS. We find no difference
in the structure of the power spectrum in the two hemispheres, either qualitatively or in the
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Figure 1. We illustrate the linear-spline LSn and cubic-spline CSn models for the primordial power
spectrum, where n is the number of knots between the two endpoints. The white region denotes
the range of k for which the spectrum is defined, with kmin = 10−6 Mpc−1 and kmax = 1.0 Mpc−1.
There are 2n+ 2 degrees of freedom for each choice of spline, since we vary the amplitude ∆2

ζ at the

endpoints and allow the knots to move in both ∆2
ζ and k.

evidence ratios. Finally, the algorithm described here was implemented in Cosmo++ [41],
which is publicly available.

We compare Bayesian evidence for the non–power-law models to the evidence for the
red-tilted PPS of ΛCDM. As we add more parameters to the PPS the Bayesian evidence does
not change significantly, indicating the data cannot substantially distinguish between these
models. However, most of the extra knots appear in the long wavelength section of the power
spectrum, with k . 10−3 Mpc−1, suggesting that smaller scales are indeed well described by
a power-law PPS.

Since no model-selection method can be completely non-parametric, we check our anal-
ysis by obtaining posterior probabilities for two different styles of non–power-law PPS. We
compare both a linear- and a cubic-spline interpolation model, which capture sharp and
smooth features in the PPS, respectively. The two models are illustrated in Fig. 1 and ex-
plained in detail in Section 2.3. We allow variation in the number of knots, their amplitudes,
their positions in k-space, and the endpoint amplitudes. We see the maximum increase in
evidence is ∆ lnZ = 0.7 for the one knot linear spline model with varying foregrounds and
∆ lnZ = 2.2 for the five knot linear spline, albeit with the foreground parameters in the
Planck likelihood fixed to their best-fit values.

To test the effectiveness of our PPS parametrizations we attempt to recover nontrivial
signals in simulated CMB temperature maps. The method clearly finds even small added
features in the PPS, while the evidence ratio strongly favors models with added interior knots
when the simulated feature is large enough. The analysis here considers only Planck data. In
a separate paper we will consider the implications of the recent BICEP2 B-mode polarization
detection [42, 43] for the scalar power spectrum using the knot-spline techniques developed
here.
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2 Modeling the primordial power spectrum

2.1 Bayesian evidence and model-selection

Cosmological data is intrinsically stochastic, so overfitting is a key danger for empirical
reconstructions of the PPS. While many strategies have been suggested to prevent “fitting
to noise”, the Bayesian approach naturally disfavors models that yield a small region with
high likelihood in a much larger multidimensional parameter space.

To compare two models Mi and Mj given data D, we evaluate the ratio of their posterior
probabilities

Kij =
P (Mi |D)

P (Mj |D)
=
P (Mi)Zi(D)

P (Mj)Zj(D)
, (2.1)

where Zi is the Bayesian evidence, or marginalized likelihood, given in terms of parameters
θ and the data likelihood Li(D | θ) ≡ P (D | θ,Mi) by

Zi(D) ≡ P (D |Mi) =

∫
P (θ |Mi)Li(D | θ)dθ. (2.2)

The prior probabilities P (Mi) and P (θ |Mi) ≡ Pi(θ) incorporate our a priori information
about the model Mi and the model’s parameters θ, respectively. The evidence ratio or Bayes
factor Bij = Zi/Zj , is the ratio of the posterior model odds divided by the prior model
odds and measures the extent to which the data “prefers” Mi over Mj . If the model priors
are equal, Bij = Kij and the Bayes’ factor directly measures the posterior model odds.
Generically, the integral in Eq. (2.2) is numerically challenging, but it is rendered tractable
by multimodal nested sampling. We implement this algorithm using the MultiNest package
[44–46], which is widely employed for this purpose within cosmology.

Evidence ratios can be judged qualitatively using the Jeffreys’ scale [47] or a more
conservative “cosmology scale” [48], collated in Table 1. Negative evidences can be assessed
by inverting the ratio before taking the logarithm in Eq. (2.1). Bayesian model-selection
is typically more conservative than frequentist hypothesis testing [49]. For example, it is
always possible to postulate a very complex PPS that will perfectly fit the data, thereby
trivially maximizing L(D). In fact, it is possible to obtain a significant improvement in χ2 or
log-likelihood by letting the PPS have a lot of freedom [13, 17–19, 21–23, 25], but this usually
results in a complex power spectrum with many curious wiggles and oscillations. However,
in these circumstances it is likely that the best fit corresponds to a small subregion of the
overall parameter space, and Bayesian evidence penalizes scenarios of this form.

While the Bayes factor quantifies the relative evidence between two models, it is not
an “all-purpose tool.” Bayesian model selection is often characterized as an implementation
of Occam’s razor, as it penalizes models with many parameters. In fact, a close inspection
of Eq. (2.2) shows that it penalizes models that do not give sufficiently high likelihood over
the integration volume. If a model adds parameters θ′ that are only weakly-constrained by
the likelihood L(θ′) ∼ 1, the integrals over θ′ in Eq. (2.2) factorise and cancel when evidence
ratios are computed. Furthermore, if we make the common choice that the prior probabilities
for the models are equal, Bayesian model selection is not testing against a “null hypothesis”,
but comparing two models; a Bayes factor |Bij | . 1.0 simply expresses the fact that the
data used to construct the likelihood has no strong preference for either model. The simpler
model, i.e., the one with fewer parameters, is only preferred if we give it more a priori weight.
In this paper we report both our quantitative calculations for Bij and a qualitative analysis
of the posterior probabilities on the model parameters.
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lnKij Kij Jeffreys Scale Cosmology Scale

0.0 to 1.0 1.0 to 2.7 Not worth more than a bare mention

1.0 to 2.5 2.7 to 12.2 Substantial Weak

2.5 to 5.0 12.2 to 148.4 Strong Significant

> 5 > 148.4 Decisive Strong

Table 1. Rough guideline for Bayesian evidence interpretation with the Jeffreys scale [47] and the
re-scaled “cosmology scale” from Ref. [48]. Assuming two models Mi and Mj have the same prior
probability, the Bayes factor Bij is equivalent to the ratio of posterior probabilities Kij and can
be interpreted directly as the posterior betting odds for Mi over Mj . The more conservative scale
emphasizes that in cosmology there is often substantial uncertainty in the choice and form of model
priors and the resulting evidences should therefore be interpreted more carefully.

While the Bayes factor Bij is one tool we can use to perform model-selection, our
parameterization of the non–power-law model still plays a major role in the Bayesian evidence
integral of Eq. (2.2). An ideal non–power-law PPS parameterization needs to be able to
construct any type of possible deviation from a power-law PPS. This is not practical, since
this requires an infinite-dimensional parameter space. There are too many possible forms for
the PPS to explore and we inevitably must truncate the allowed degrees of freedom. Instead,
we have to settle for a model that can reconstruct a wide range of probable PPS features.
This clearly depends on what features we expect to be present in the data, which introduces
the possibility of confirmation bias into the analysis.

2.2 The power-law power spectrum

As reviewed in Ref. [50], the primordial scalar perturbations can be expressed in terms of the
gauge invariant curvature perturbations ζ(x) in real space. In Fourier space they become

ζ(k) =

∫
d3x e−ik·xζ(x) . (2.3)

If the perturbations are statistically homogeneous, the two-point correlation function is

〈
ζ(k)ζ∗(k′)

〉
= (2π)3δ3(k− k′)

(
2π2

k3
∆2
ζ(k)

)
(2.4)

where δ3 denotes the delta-function in three dimensions and ∆2
ζ is the dimensionless primor-

dial power spectrum (PPS).
If the perturbations are Gaussian, they are fully described by Eq. (2.4). Given that no

primordial non-Gaussianity has been detected [1, 51] we restrict our analysis to the Gaussian
case. In the standard ΛCDM model the PPS is described by a simple power law with two
free parameters

∆2
ζ(k) = As

(
k

k∗

)ns−1
, (2.5)

where As is the amplitude of the scalar perturbations; ns is the scalar spectral index; and
k∗ is the pivot scale. The latest CMB temperature data from Planck [1], CMB polarization
data from WMAP [52], small scale temperature data from ACT [53] and SPT [54], as well
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as the large scale structure data are all in excellent agreement with this assumption. These
data sets in combination [1] put the following bounds on the PPS parameters: ln(1010As) =
3.091± 0.025, ns = 0.9608± 0.0054 at k∗ = 0.05 Mpc−1.

2.3 Relaxing the power-law

The goal of this paper is to explore the consequences of relaxing the assumption expressed
by Eq. (2.5). We wish to let the PPS have a model independent form and reconstruct it from
experimental data, and implement a version of the ”knot-spline” reconstruction method
developed in [36]. This approach is described qualitatively in in Fig. 1. Specifically, we
assume that P (log k) is either a linear or cubic spline with n knots, defined between fixed
endpoints. In the absence of knots, this model is functionally equivalent to a power-law, given
that we are interpolating in log k. We systematically add knots to allow for more complex
features.1

The spectrum is generated via the following algorithm:

1. We fix kmin = 10−6 Mpc−1 and kmax = 1.0 Mpc−1, allowing the PPS to vary only in
amplitude ∆2

ζ(k) at the endpoints.

2. Add n knots, chosen with a uniform prior on ln k, in the range ln kmin < ln ki < ln kmax

and a uniform prior on −2 < Ai < 4 for Ai ≡ ln(1010∆2
ζ(ki)), with i = 1, 2, ..., n. We

then order the set of knots so that ki−1 ≤ ki.

3. Interpolate between the endpoints and the n ordered knots by a linear spline (LSn) or
cubic spline (CSn). Perform the interpolation in logarithmic space for both k and ∆2

ζ .

The endpoints adopted here define an overall range of k that maps to angular scales
from l = 2 to l ≈ 14000, with the rough relationship l ∼ kL0, where L0 ≈ 14.4 Gpc is the
distance to the last scattering surface. The high-end of this range is well past the l-values
accessible by Planck or any other current or near-future experiment. However, this range
coincides with the convention typically used in the Boltzmann-solvers CLASS [55, 56] and
CAMB [57], even when Cl’s less than l ∼ 2000 are not evaluated. The logarithmic priors on
the knots ki and their amplitudes Ai indicate that these is no preference for the amplitude
and location of any feature(s) and knots with arbitrary locations in k-space can capture both
local features and gradual modulations in the PPS.

As Fig. 1 shows, different choices for the interpolation scheme between knots can result in
wildly different power spectra. The linear-spline interpolation (LSn) constructs a continuous
but not differentiable PPS by connecting the endpoints and knots by simple line segments. On
the other hand, the cubic spline interpolation (CSn) constructs a PPS with continuous first
and second derivatives, connecting knots and endpoints with segments of cubic polynomials.
This lets us use the knot-interpolation approach to model and reconstruct many possible
features, although a P (k) with many turning points (such as a rapid modulation) would
require a prohibitive number of knots. The linear-spline technique is best suited to sharp
transitions in the PPS, while the cubic-spline models smooth deviations from the simple

1The simplest case with only one parameter, i.e., a constant PPS is the familiar Harrison-Zel’dovich
spectrum, and is disfavored by Planck at > 5σ [1].
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power law case.2 Since the positions of the knots are not fixed, they can recover step-like
features anywhere in k-space, especially with LSn, as well as a cut-off PPS (e.g., Ref. [35]).

We have stipulated ki−1 ≤ ki, so the volume of parameter space corresponding to the
knot locations is

Vn =
1

n!
(∆ ln k)n . (2.6)

If we had not rank-ordered the knot positions we would have n! combinations of ki and the
corresponding parameter region would be an n-cube with volume n!Vn. However, in this case
the marginalized likelihood integral splits into a sum of n! identical terms after appropriate
relabelings of the ki and the two factors of n! cancel. Consequently, the evidence values do
not depend on whether the ki are assumed to be ordered, but the posterior distributions of
the individual ki will depend strongly on this choice.

With no knots (n = 0) the PPS is described by only two parameters: the amplitudes
of the PPS at the endpoints kmin and kmax. In this limit, both choices LS0 and CS0 are
equivalent to the power-law PPS of Eq. (2.5). This makes it very easy to compare the
Bayesian evidence for the primordial power spectra with features to the standard power law
case. Each additional knot adds two extra degrees of freedom to the model, its location ki
and its amplitude Ai, yielding 2n+ 2 total parameters in each PPS parameterization.

3 Data, likelihoods and basic checks

The remaining cosmological parameters Ωbh
2, Ωch

2, h, and τ have uniform priors in the
ranges [0.020, 0.025], [0.1, 0.2], [0.55, 0.85], and [0.02, 0.20], respectively. Here, Ωb denotes the
dimensionless baryon density, Ωc is the dimensionless cold dark matter density, h defines the
Hubble parameter H via H = 100 km/s/Mpc, and τ is the reionization optical depth.

We use the publicly available code Cosmo++ [41] for our analysis. The CMB power
spectra are calculated using the CLASS package [55, 56] and we use the multimodal nested
sampling, implemented in the publicly available code MultiNest [44–46], to compute pos-
teriors and Bayesian evidence. The publicly available Planck likelihood code [58] is used
for the PPS reconstruction in Section 5. We use the high-l CamSpec likelihood, the low-l
Commander likelihood, and the lensing likelihood, thus incorportating all available Planck
data, but do not include information from any other sources. The hemispherical analysis in
Section 5.2 uses the SMICA map [59] and the Cosmo++ likelihood code, which is also used
in Section 4 for analyzing simulated maps. The analysis presented here was carried out using
Cosmo++ package [41], and the knot-spline PPS is available in the current version of this
package.

We test our tool-chain by estimating parameters for the power-law PPS, Eq. (2.5), using
the Planck likelihood code with lensing. We find excellent agreement with the corresponding
Planck constraints:3 Ωbh

2 = 0.02219± 0.00032, Ωch
2 = 0.1185± 0.0030, h = 0.684± 0.015,

τ = 0.089± 0.030, ns = 0.9625± 0.0090, As = 3.085± 0.054. With no knots the LS0 and the
CS0 are both equivalent to the standard case and, as expected, the parameter constraints for
these models are almost indistinguishable from the constraints given above.

2The PPS is numerically represented as a cubic spline of a large number of sample points for either case.
This means that the sharp corners of the linear spline interpolation will be smoothed out. This helps avoid
numerical problems that could arise because of the discontinuity of the first derivative of the PPS for the
linear spline case.

3In particular, compare these results to those of Table 9 in Ref. [1].
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n A′s = 1× 10−10 A′s = 3× 10−10

0 0.0 0.0

1 0.3 51.0

2 0.8 51.7

Table 2. Change in Bayesian evidence ∆ lnZ with respect to ΛCDM as a function of the number of
knots for two simulated maps. The maps have an artificial sinusoidal primordial power spectrum of
amplitude A′s. The errors on lnZ are smaller than ±0.3 in all cases.

The Planck likelihood code includes 14 nuisance parameters, which mostly relate to
unmodelled foregrounds [58]. For the LSn scenarios we have done the analysis with the
foreground parameters both varying and fixed to the central values with a power law PPS.
We have verified that the shapes of the posteriors do not change significantly when the
foreground parameters are fixed. The computational cost of our procedure is substantially
higher for the cubic spline than the linear spline and for convenience the cubic spline analysis
was performed with the nuisance parameters fixed.

4 Should we trust our reconstruction?

Before we apply our approach to Planck data, we investigate its ability to recover a non-
power-law PPS from a temperature map with an injected non–power-law PPS signal in the
form of a sinusoidal modulation to the standard power-law PPS

∆2
ζ,sim(k) = As

(
k

k∗

)ns−1
+A′s cos

(
2π ln k

lnλ′

)
. (4.1)

For simplicity we use the standard ΛCDM parameters at Planck best-fit values: Ωbh
2 =

0.022032, Ωch
2 = 0.12038, h = 0.6704, τ = 0.0925, As = 2.2154 × 10−9, ns = 0.9619,

k∗ = 0.05 Mpc−1. For the modification, we use the wavelength λ′ = 0.01 Mpc and two
different values for the amplitude: A′s = 1× 10−10 and A′s = 3× 10−10.

Our simulated maps have similar characteristics to the SMICA map from Planck [59].
We set the HEALPix parameter Nside = 2048 and add white noise to the simulated maps
which is similar to the instrumental noise in SMICA. We combine the low-l pixel space likeli-
hood code in the COSMO++ package [41] with the high-l likelihood code in Cl space. The
pixel space code is used for l = 2 → 30 and the Cl-space code is used for l = 31 → 1750.4

For the pixel space analysis we reduce the resolution of the simulated maps to HEALPix
Nside = 16 by first transforming the maps to harmonic space with the anafast routine from
HEALPix, then smooth with a Gaussian kernel with a FWHM of 10◦ using the alteralm

routine, and finally transform back to pixel space with a lower resolution using synfast. For
the high-l likelihood calculation we first derive the Cl values from the data using the imple-
mentation of the MASTER algorithm [60] in COSMO++ [41]. We combine the SMICA,
NILC, and SEVEM masks by Planck to get an approximation of the U73 mask, which is not
publicly available. For the pixel space analysis we reduce the resolution of the mask by first

4The simulated maps become noise dominated after l ≈ 1750, like the SMICA map.
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Figure 2. The reconstructed primordial power spectrum (PPS) with simulated data. The columns
correspond to (left) A′s = 1× 10−10 and (right) A′s = 3× 10−10. The number of knots increases from
0 to 2 from top to bottom. The black solid lines show the best-fit PPS, the red lines are the PPS in
the 68% CI, and the light blue lines are the PPS in the 95% CI. The blue solid line shows the modified
PPS used for the simulation. Linear spline interpolation is used for all of the plots.

smoothing it with a Gaussian kernel with a FWHM of 10◦, then downgrading it with the
ud grade routine from HEALPix, then masking out all the pixels with a final value lower
than 0.8.

We apodize the combined mask with a 30′ cosine function for the high-l Cl calculation.
We use this mask for the simulated maps to make the analysis similar to the real SMICA
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map analysis. The priors on all of the parameters are the same as in Section 3, except for
the optical depth of reionization τ . Since no polarization or lensing data is included in this
analysis, we use an informative prior of τ = 0.0851 ± 0.014. This follows the analysis of
foreground cleaned temperature maps for Planck [59].

The posterior probability distributions for the knot positions, amplitudes, and the best-
fit PPS, are shown in Fig. 2. With no knots (equivalent to the power law PPS) the best fit
spectrum is a good match to the simulated spectrum at small scales, i.e., k >∼ 10−3 Mpc−1.

With A′s = 1 × 10−10 we recover a power-law with ns = 0.924, while for A′s = 3 × 10−10

we get ns = 0.900. The added modulation increases the tilt on small scales, making both
spectra redder than Planck ’s. With a single knot we detect the local maximum in Eq. (4.1)
at k ≈ 10−2 Mpc−1 or l ∼ 150. Adding more knots makes less qualitative difference to
the posterior distributions as there is only one local maximum on small scales. However,
models with knots give posterior probabilities that indicate a suppression of the PPS for
k . 10−3 Mpc−1 for both simulations, although the assumed PPS in Eq. (4.1) has no such
feature. The model reconstructs the slight depression at 10−3 Mpc−1 . k . 10−2 Mpc−1,
but is not able to capture the small-k behavior, due to cosmic variance. Consequently, a
preference for PPS suppression at k . 10−3 Mpc−1 (or l . 15) can be degenerate with a
strong, local feature at scales that are better constrained by the likelihood.

Table 2 shows Bayesian evidence ratios for the simulated maps. For a very mild modu-
lation (A′s = 1×10−10) Bayesian evidence is not able to distinguish between models with 0, 1,
or 2 knots. However, for a stronger modulation (A′s = 3× 10−10) adding a single knot yields
a large increase in evidence, ∆ lnZ = 51, conclusively favoring the one knot reconstruction.
However models with two or more knots do not give significant extra improvement, due to
cosmic variance on large scales.

These simulated maps show that our method can detect features in the power spectrum,
even if the features are relatively small. Bayesian evidence clearly distinguishes between
models with and without features for the case of the large modulation. However, we have
deliberately chosen an uninformative prior, which allows a weakly constrained search but
dilutes the ability of the evidence calculation to confirm the presence of smaller modulations.5

Finally, we must be careful when interpreting posterior probabilities for the PPS that show a
decrease in power for k < 10−3 Mpc−1 as this suppression can be mimicked by a local feature.

5 Reconstructing with Planck

5.1 Primordial power spectrum

Figure 3 gives the posterior probability distributions for the “knot-spline” primordial power
spectrum (PPS) reconstruction. We use the linear-spline (LSn) model with up to n = 5
knots and the cubic-spline (CSn) model with up to n = 4 knots6 and show the best-fit PPS
in black. The 68% and 95% CI are shown in red and light blue, respectively. The constraints
on the positions of the knots are given in Fig. 4 and the numerical values are given explicitly
in Table 3 of Appendix A.

None of the posteriors show any features beyond k & 2×10−3 (roughly l & 30), which is
the region best-constrained by the Planck likelihoods. The position of maximum likelihood

5See Ref. [3] for a discussion of this problem in the context of inflationary model selection.
6The cubic-spline reconstruction is computationally more expensive. For this reason we restrict our analysis

with this model up to 4 knots.
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Figure 3. The reconstructed primordial power spectrum (PPS) from the Planck data. The columns
correspond to (left) linear-spline interpolation with n knots (LSn), while varying the foreground
cosmology parameters; (middle) LSn with fixed foreground parameters; and (right) cubic-spline in-
terpolation with fixed foreground parameters. The number of knots increases from 0 to 5 from top
to bottom. The black solid lines show the best-fit PPS, the red lines are the PPS in the 68% CI, and
the light blue lines are the PPS in the 95% CI.

– 10 –



10-11

10-10

10-9

10-8

∆
2 ζ
(k
)

10-11

10-10

10-9

10-8

∆
2 ζ
(k
)

10-11

10-10

10-9

10-8

∆
2 ζ
(k
)

10-11

10-10

10-9

10-8

∆
2 ζ
(k
)

10-11

10-10

10-9

10-8

∆
2 ζ
(k
)

10-610-510-410-310-210-1100

k (Mpc−1 )

10-610-510-410-310-210-1100

k (Mpc−1 )

10-11

10-10

10-9

10-8

∆
2 ζ
(k
)

10-610-510-410-310-210-1100

k (Mpc−1 )

Figure 4. Constraints on the location of knots for the non–power-law primordial power spectrum at
the 68% CI. There are n knots, whose location varies in ki and ∆2

ζ , and two endpoints that vary only

in ∆2
ζ . The columns are: (left) a linear-spline (LSn) and varying foreground parameters; (middle) LSn

with fixed foreground parameters; and (right) cubic-spline (CSn) with fixed foreground parameters.
The number of knots increases from 0 to 5 from top to bottom.
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Figure 5. Change in Bayesian evidence ∆ lnZ with respect to ΛCDM as a function of the number of
knots in the primordial power spectrum model. The blue squares correspond to a linear-spline (LSn)
without fixing the foreground parameters; the green circles correspond to LSn with fixed foreground
parameters; and the red triangles correspond to a cubic-spline (CSn) with fixed foreground parameters.

for the last knot is relatively stable at k ∼ 5× 10−3 Mpc−1, implying there is little evidence
for global features. Furthermore, we do not see any pair of knots (or knot/endpoint) that
consistently retains its position as more knots are added, indicating that there are no localized
features in the PPS for scales that are well-constrained by data.

However, most of the reconstructed power spectra give preference to suppressed power
below k . 10−3 Mpc−1, in agreement with previous results [12, 36]. The cosmic variance,
however, is largest on these large scales. Furthermore, as described in Section 4, even if there
were significant evidence in favor of a non–power-law model, this low-k suppression should
be treated with care, since it could also indicate a local feature near k ∼ 10−3 Mpc−1.

To evaluate the integrated likelihood for the non–power-law models, we report the
Bayesian evidence in Fig. 5. We use the Bayesian evidence for the PPS models with no
knots as a reference, since this case corresponds to the standard power-law PPS of Eq. (2.5)
and the ΛCDM model. There is a slightly increased evidence for the linear-spline model with
one knot (LS1), both with and without varying the foreground parameters, with a maximum
of ∆ lnZ = 0.7. For more knots, the Bayesian evidence is smaller than the power-law PPS
for the cubic-spline model and the linear-spline model with varying foreground parameters.
The CSn reconstruction gives smaller Bayes factors compared to the standard case for any n.
When a linear-spline interpolation is used with fixed foreground parameters, we see a slightly
increased evidence for a higher numbers of knots. However, in this case we are ignoring
the impact of marginalising over the foreground parameters, which introduces a nontrivial
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uncertainty into Bayesian evidence calculation. When the foreground parameters are varied,
this evidence does not increase with n. Therefore, we conclude that we see no significant
preference for a higher number of knots.

A frequentist search for broad features in the power spectrum using Planck temperature
data was performed in Ref. [14]. The authors used binned power spectra with a fixed value
of ns with up to four bins, and a varying ns with up to two bins. Their two-bin Model-C
reconstruction is equivalent to our linear spline reconstruction with 1 knot. Our best-fit LS1

power spectrum agrees very well with the best-fit case of [14] and the overall conclusions of
[14] are consistent with with our Bayesian results.

Figure 6 presents the posterior probabilities for the standard parameters Ωbh
2, Ωch

2,
h, and τ for both the linear-spline (LSn) and cubic-spline (CSn) models. The constraints
on the parameters do not change significantly when more freedom is given to the PPS.
The constraints with fixed foreground parameters are in good agreement with those found
when they are free to vary; the error bars shrink slightly with fixed foreground parameters,
as expected. We do not see any significant changes in the constraints of the cosmological
parameters with up to 5 knots in the PPS, implying that the parameter constraints by Planck
[1] are robust and do not depend sensitively on the strong power-law assumption on the form
of the PPS.

5.2 Hemispherical power asymmetry

The latest results from Planck [61] confirm the presence [62, 63] of a power asymmetry in
different ecliptic hemispheres of the sky. Only about 4 simulations out of 500 have a higher
level of power asymmetry than that found in the data [61]. While some authors (see e.g.,
Ref. [64]) have questioned the significance of the power asymmetry on small scales, it is a
persistent anomaly on large scales. There are many suggestions [65–70] as to how such an
asymmetry might arise, and we study the possibility of the power asymmetry resulting from
having more structure in the primordial power spectrum (PPS) in one hemisphere compared
to the other.

Using the SMICA map from Planck [59] we reconstruct the PPS in each hemisphere,
including the mask as described in Section 4. The likelihood is computed using the same
process employed with the simulated maps in Section 4. The apodized masks for the two
hemispheres used in our analysis are shown in Fig. 7 and we test our mask and statistical
methods by reproducing the Planck power spectra on different hemispheres of the SMICA
map (cf. Fig. 28 in Ref. [61]). We also made a full analysis of the SMICA map with our
combined mask and a standard power-law PPS as in Eq. (2.5). The resulting constraints on
the cosmological parameters are very similar to those obtained by Planck [59] (see Ref. [41]
for a detailed comparison).

We reconstruct the PPS on the full sky, as well as the northern and the southern
ecliptic hemispheres, using linear-spline interpolation (LSn) with n ≤ 5 knots. The resulting
posterior distributions for the PPS are shown in Fig. 8, and the Bayesian evidence ratios as
a function of the number of knots are shown in Fig. 9. Although small differences are seen
in the posterior distributions of the PPS and the best-fit PPS between the two hemispheres,
Bayesian evidence does not give significant preference to extra features in either hemisphere.
The evidence ratios for the two hemispheres are very close to each other, and to the full sky
case. The largest evidence value seen is ∆ logZ = 2.3 for the northern hemisphere but this
was found with the foreground cleaned SMICA map. Given that the fixing of the foreground
parameters for Planck led to a spurious increase in evidence on the full sky, we interpret
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Figure 6. Cosmological parameter constraints as a function of the number of knots n at the 68%
CI. The blue squares correspond to a power spectrum linear-spline interpolation and varying fore-
ground parameters, the green circles correspond to a linear-spline interpolation with fixed foreground
parameters, and the red triangles represent the results with a cubic-spline interpolation and fixed
foreground parameters.

these results as indicating that there is no difference in the structure of the PPS in the two
hemispheres.

6 Summary

We have applied the “knot-spline” reconstruction method [36] to the Planck temperature
data. This paper breaks new ground by checking the algorithm’s ability to recover the PPS
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Figure 7. Apodized masks for the southern (left) and northern (right) ecliptic hemispheres.

from simulated maps with artificially introduced features and by confirming that cosmolog-
ical parameter constraints obtained from the Planck data are not diluted when the usual
assumptions about the form of the primordial power spectrum are relaxed. Furthermore, we
investigate whether the hemispherical power asymmetry visible in the WMAP and Planck
temperature maps is correlated with differences in the primordial power spectrum recovered
from each hemisphere, finding that the two power spectra are in good agreement. Finally,
the numerical tools needed to reproduce or extend this analysis are now included with the
Cosmo++ library [41].

The PPS reconstruction method used here allows the location of the knots to vary in
both k-space and amplitude, and allows us to capture both gentle variations in the spectrum
as well as a broad class of localized features. Increasing the possible complexity of the PPS
necessarily improves the fit to the data, and we must guard against the “look-elsewhere”
effect or “fitting the noise”. Determining the optimal number of knots can be posed as a
model selection problem, and we use Bayesian evidence ratios to safeguard against overfitting.

We applied our methods to simulated maps with Planck characteristics to check the reli-
ability of the method, and to estimate the amplitude of possible features in the PPS that the
method can detect. We were able to recover modulations which modified an underlying power
law spectrum by less than 5%. Typically, specific modulations have well-defined thresholds
above which they are very easy to detect; for example, a long wavelength modulation with
an amplitude a factor of three beyond the threshold of detectability yields an improvement
in evidence of ∆ lnZ = 51. Because the Planck likelihoods are more sensitive to features at
k > 10−3 Mpc−1, the posteriors on the knots’ positions (Fig. 2) show a decrement of power at
k < 10−3 Mpc−1, although this is not a feature of the simulated data, and cautions us against
over-interpreting an apparent decrement in large scale power in the actual sky maps. More
generally, the weak evidence computed for the smaller modulation is partly driven by the use
of “uninformative” priors for the modulated spectrum [3]. Consequently, Bayesian evidence
does not permit a strictly algorithmic solution to cosmological model-selection problems and
with maximum entropy priors similar to those used here, and nuanced physical analyses of
the improvement in the maximum likelihood along with cross-checks against other datasets
will remain important.

Having tested our methods, we reconstructed the PPS from Planck CMB temperature
and lensing data. We found no evidence for deviations from the standard power law PPS on
scales with k & 10−3 Mpc−1. Although on larger scales the data is not able to distinguish
between models with or without features due to cosmic variance, the extensions to ΛCDM do
not have sufficient Bayesian evidence to favor them over a standard power-law PPS. Further-
more, the posteriors for the “standard” cosmological parameters did not differ substantially
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Figure 8. The reconstructed primordial power spectrum (PPS) on the full sky compared to different
ecliptic hemispheres. The columns correspond to (left) the full sky; (middle) the southern hemisphere;
and (right) the northern hemisphere. The number of knots increases from 0 to 5 from top to bottom.
The black solid lines show the best-fit PPS, the red lines are the PPS in the 68% CI, and the light
blue lines are the PPS in the 95% CI. All of the plots have been obtained from the SMICA map from
Planck using the linear-spline interpolation model with n knots.
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Figure 9. Change in Bayesian evidence ∆ lnZ with respect to ΛCDM as a function of the number
of knots used in the primordial power spectrum reconstruction. The blue squares correspond to the
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SMICA map from Planck using the linear-spline interpolation model with n knots.

from the power-law case did not change significantly when a more general PPS was allowed
and we can conclude that the Planck constraints on these parameters are robust. Finally,
we performed a PPS reconstruction on each individual hemisphere, but found no systematic
difference between the results showing that any “hemispherical anomaly” is not associated
with differences in the underlying power spectrum.

This paper is the first in a sequence of analyses of non-standard power spectra. In
particular we will investigate the implications of the recent detection of B-mode polarization
by the BICEP2 telescope [42, 43] for the scalar power spectrum [71], and in a third paper we
will study whether permitting a non–power-law PPS changes the estimated values of derived
parameters such as σ8 or modifies estimated constraints on the neutrino sector.
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A Numerical data

In this appendix we present tables of numerical values to further quantify our analysis.
Table 3 reports the numerical values for the posterior probabilities on the location of knots
in the reconstructed primordial power spectrum in Figs 3 and 4. Table 4 shows the constraints
on the cosmological parameters in Fig. 6.
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LSn var. LSn fixed CSn fixed

n ln ki Ai ln ki Ai ln ki Ai

0 −13.8 3.493+0.064
−0.067 −13.8 3.466+0.054

−0.056 −13.8 3.466+0.054
−0.056

0.0 2.967+0.078
−0.073 0.0 2.987+0.067

−0.064 0.0 2.987+0.067
−0.064

1 −13.8 1.2+1.8
−2.1 −13.8 1.8+1.7

−2.5 −13.8 2.91+0.49
−0.56

−10.2+2.9
−2.4 3.35+0.11

−0.11 −9.7+8.1
−2.8 3.32+0.11

−0.23 −7.5+2.8
−2.5 3.157+0.077

−0.146

0.0 2.970+0.074
−0.071 0.0 2.981+0.097

−0.166 0.0 3.000+0.065
−0.059

2 −13.8 1.0+2.0
−1.9 −13.8 1.1+1.9

−2.0 −13.8 1.1+1.6
−1.8

−11.7+1.9
−1.4 1.3+1.7

−2.0 −11.4+2.3
−1.6 2.42+0.97

−2.81 −10.0+2.0
−1.8 2.84+0.31

−0.65

−8.5+1.6
−2.3 3.298+0.089

−0.069 −7.8+6.8
−2.6 3.253+0.099

−0.233 −5.1+2.1
−2.6 3.153+0.064

−0.085

0.0 2.974+0.076
−0.071 0.0 2.97+0.11

−1.62 0.0 3.004+0.063
−0.061

3 −13.8 1.1+2.0
−2.1 −13.8 1.0+2.0

−1.9 −13.8 1.1+1.8
−1.9

−12.2+1.6
−1.0 1.0+1.9

−2.0 −12.1+1.8
−1.1 1.2+1.8

−2.1 −12.07+1.16
−0.84 1.3+1.4

−1.8

−10.3+1.5
−1.7 1.5+1.5

−2.3 −9.8+1.8
−1.9 3.07+0.29

−3.00 −9.4+1.5
−1.4 2.75+0.41

−0.90

−8.1+1.4
−1.7 3.278+0.069

−0.060 −7.0+6.3
−2.2 3.219+0.094

−0.219 −5.6+1.9
−1.7 3.168+0.056

−0.068

0.0 2.976+0.073
−0.068 0.0 2.95+0.12

−2.60 0.0 2.999+0.055
−0.061

4 −13.8 1.0+1.9
−1.9 −13.8 1.1+1.9

−2.0 −13.8 0.9+1.8
−1.8

−12.62+1.26
−0.73 0.9+2.0

−1.9 −12.47+1.34
−0.87 1.1+1.9

−2.0 −12.62+0.96
−0.64 1.0+1.8

−1.7

−11.2+1.4
−1.3 1.0+2.0

−1.9 −10.9+1.6
−1.4 1.3+1.7

−2.1 −10.9+1.2
−1.1 1.6+1.2

−1.9

−9.7+1.2
−1.4 1.7+1.4

−2.3 −9.0+1.4
−1.8 3.19+0.16

−2.56 −8.9+1.4
−1.2 2.80+0.37

−0.95

−8.0+1.5
−1.3 3.274+0.059

−0.060 −5.0+4.4
−3.3 3.14+0.15

−0.15 −5.6+2.0
−1.5 3.170+0.052

−0.073

0.0 2.972+0.075
−0.073 0.0 2.91+0.16

−2.94 0.0 3.003+0.063
−0.058

5 −13.8 1.0+1.9
−1.9 −13.8 1.0+1.9

−2.0

−12.53+1.27
−0.78 1.0+2.0

−1.9 −12.65+1.29
−0.74 1.0+1.9

−2.0

−11.1+1.4
−1.3 1.0+1.9

−1.9 −11.4+1.4
−1.2 1.0+1.9

−2.1

−9.6+1.2
−1.4 1.7+1.4

−2.4 −10.0+1.3
−1.5 1.4+1.7

−2.2

−8.0+1.5
−1.2 3.274+0.057

−0.056 −8.5+1.2
−1.6 3.22+0.14

−1.96

−0.84+0.52
−0.58 3.010+0.075

−0.066 −1.54+1.00
−6.65 3.10+0.18

−0.11

0.0 1.1+1.9
−2.0 0.0 2.90+0.18

−3.08

Table 3. Numerical values for the constraints on the location of knots. Companion to Figs 3 and 4.
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n Ωbh
2 Ωch

2 h τ

0.02218+0.00031
−0.00032 0.1186+0.0029

−0.0030 0.684+0.015
−0.013 0.087+0.031

−0.029

0 0.02225+0.00027
−0.00025 0.1182+0.0027

−0.0029 0.686+0.013
−0.012 0.092+0.028

−0.027

0.02225+0.00027
−0.00025 0.1182+0.0027

−0.0029 0.686+0.013
−0.012 0.092+0.028

−0.027

0.02217+0.00031
−0.00030 0.1186+0.0028

−0.0029 0.684+0.014
−0.013 0.089+0.030

−0.029

1 0.02226+0.00025
−0.00025 0.1182+0.0029

−0.0028 0.686+0.013
−0.013 0.091+0.029

−0.026

0.02241+0.00029
−0.00026 0.1173+0.0026

−0.0026 0.691+0.013
−0.012 0.107+0.029

−0.027

0.02220+0.00031
−0.00030 0.1184+0.0028

−0.0028 0.685+0.014
−0.013 0.091+0.029

−0.030

2 0.02226+0.00023
−0.00024 0.1181+0.0025

−0.0026 0.687+0.012
−0.012 0.094+0.027

−0.026

0.02233+0.00032
−0.00033 0.1179+0.0028

−0.0028 0.688+0.014
−0.013 0.101+0.033

−0.029

0.02220+0.00031
−0.00030 0.1184+0.0028

−0.0028 0.685+0.014
−0.013 0.091+0.029

−0.028

3 0.02225+0.00023
−0.00024 0.1183+0.0025

−0.0028 0.686+0.012
−0.011 0.093+0.027

−0.026

0.02230+0.00029
−0.00032 0.1180+0.0027

−0.0025 0.688+0.012
−0.013 0.101+0.026

−0.028

0.02219+0.00031
−0.00030 0.1186+0.0029

−0.0029 0.684+0.014
−0.013 0.090+0.030

−0.029

4 0.02225+0.00024
−0.00024 0.1181+0.0026

−0.0025 0.687+0.011
−0.012 0.094+0.028

−0.027

0.02232+0.00029
−0.00030 0.1178+0.0029

−0.0027 0.688+0.013
−0.013 0.102+0.030

−0.029

0.02220+0.00032
−0.00030 0.1184+0.0028

−0.0029 0.685+0.014
−0.013 0.092+0.031

−0.027

5 0.02225+0.00026
−0.00024 0.1180+0.0027

−0.0028 0.687+0.013
−0.012 0.096+0.027

−0.026

Table 4. Cosmological parameter constraints as a function of the number of knots n at the 68%
CI. For each value of n the first line corresponds to linear-spline interpolation (LSn) with varying
foreground paramters, the second line is LSn with fixed foreground parameters, and the third line is
cubic-spline interpolation (CSn) with fixed foreground parameters. Companion to Fig. 6.
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