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Ultrasound has been used to manipulate cells in both humans and animal models. While intramembrane cavitation and lipid clustering have
been suggested as likely mechanisms, they lack experimental evidence. Here we use high-speed digital holographic microscopy (kHz order) to
visualize the cellular membrane dynamics. We show that neuronal and fibroblast membranes deflect about 150 nm upon ultrasound stimulation.
Next, we develop a biomechanical model that predicts changes in membrane voltage after ultrasound exposure. Finally, we validate our model
predictions using whole-cell patch clamp electrophysiology on primary neurons. Collectively, we show that ultrasound stimulation directly de-
fects the neuronal membrane leading to a change in membrane voltage and subsequent depolarization. Our model is consistent with existing
data and provides a mechanism for both ultrasound-evoked neurostimulation and sonogenetic control.

1 Introduction

Existing methods to stimulate neural activity include electrical [1, 2, 3, 4, 5], optical [6] and chemical tech-
niques [7]. They have enabled the development of novel therapies that are used in clinical settings [8], in
addition to helping understand aspects of neural function [9] and disease mechanisms [10]. Despite their
beneficial impact, these approaches are fundamentally limited. Electrical stimulation is invasive, requir-
ing direct contact with the target of interest. Inserting electrodes into the brain may lead to inflammation,
bleeding, cell death [11], and local cytokine concentration increases in microglia that precipitate astrocyte
formation around the electrodes that, in turn, reduce long-term effectiveness [12]. In addition, it may have
non-specific effects depending on the electric field generated by the electrodes and the stimulation param-
eters used [13]. Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (tMS)
are new and non-invasive, yet they have poor spatial resolution on the order of 1 cm [14, 15]. Furthermore,
approaches combining genetic tools with light or small molecules achieve cellular specificity. Optogenetics,
which involves the use of light and genetically encoded membrane proteins [16], has enabled elucidation of
cellular circuits in animal models. However, it remains an invasive technique and applications are limited
by the depth of penetration of light in tissue. By contrast, chemogenetics, using small molecule sensitive de-
signer receptors, is limited by poor temporal resolution and is unfortunately impractical for many neural ap-
plications that require millisecond response times [17].

Ultrasound can overcome the limitations of these methods. It is non-invasive and has a high spatiotemporal
resolution in comparison to existing techniques. Improvements in the spatial resolution through transfec-
tion of mechanosensitive proteins currently come at the cost of a minimally-invasive procedure to directly
inject the vector into the target tissue [18], though there may soon be non-invasive alternatives [19]. The spa-
tial resolution of ultrasound is governed by the wavelength of operation and is about 1.5 mm at 1 MHz in tis-
sue. The temporal resolution is dependent on the pulse duration of stimulation and may be as short as a sin-
gle time period, T = 1/ f where f is the operating frequency. The frequency choice is dictated by the depth
and size of the target region in traditional focused ultrasound neuromodulation [20]. Harvey [21] was one of
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the first to utilize these advantages over ninety years ago on frog ventricular heart tissue. Recent advances in
describing the suppression of epileptic activity in patients [22] are an indicator the method is still being con-
sidered in clinical applications.

Despite these recent experimental and clinical developments, and progress in exploring the sonogenetic and
ultrasonic-to-chemical action mechanisms, there is no convincing, overarching explanation for the observa-
tions. Some of the proposed mechanisms include cavitation [23], indirect auditory signalling in vivo [24] and
increased lipid clustering resulting in a change in the membrane tension [25]. These studies have either been
conducted on time scales that are orders of magnitude larger than those used for ultrasound neuromodula-
tion, lack robust imaging techniques that operate at timescales relevant to the frequency of stimulation, or
use incorrect stimulation thresholds that are orders of magnitude lower than values reported in experimental
work [26]. Additionally, studies often treat surface tension, membrane composition, and membrane stresses
as a single term, membrane fluidity [25]. This term lacks rigorous physical description and is assigned a value
based on relative fluorescence intensity changes. The imprecision of this description makes it difficult to
isolate the influence of the measurable physical mechanisms of which it is comprised. A model using mem-
brane fluidity leaves the explanation of the biophysical phenomenon incomplete.

More broadly, action potentials are known to appear in phase with the cell membrane’s deflection [27, 28].
Pivotal work by Lee et al. [29] investigated neuronal displacement using high-pressure ultrasound sufficient
to induce cavitation believed to be responsible for the observed effects. However, Lee et al. [29] acknowl-
edged that it may not play a role in neuromodulation, contrary to impressive models put forth in the past [23].
Instead, Lee et al. postulate that neuromodulatory effects may be driven by acoustic radiation forces1, hint-
ing at the results we later demonstrate in this paper. These and more recent studies into the thermodynamic
effects associated with the generation of action potentials [30] point to transmembrane voltage changes be-
ing more than just an electrical phenomenon, they are possibly influenced by physical motion of the mem-
brane and its components.

All that noted, a key limitation in validating existing models is the inability to measure physical motion across
the vast differences in spatiotemporal scales. The ultrasound signal is on the order of 1 MHz and is three or-
ders of magnitude faster than the electrical response of a cell. The wavelength of ultrasound in tissue at these
frequencies is on the order of ∼10 µm, much larger than the membrane thickness. Existing methods to mea-
sure cell deflection include contact-based atomic force microscopy (AFM) [31, 32], which has high spatial
resolution but poor temporal resolution and lacks the ability to simultaneously scan multiple points [33].
Optical tweezers have been used for over twenty years, but only produce results from slow to static deforma-
tion of cells and often require attachment of beads or other structures that reduce the measurement to just a
few spatial points [34]. Traditional digital holographic imaging [35] is slow but offers high spatial resolution
across a large field of view.

We employ high-speed digital holographic microscopy (DHM), a unique method established in our group
and reported for the first time here. It provides much higher resolution in both space and time than previ-
ous methods, and is therefore better suited to the study of dynamics of the cell membrane due to ultrasound.
To illustrate this, we provide the first three-dimensional visualization of cell membrane deflection due to an
ultrasound stimulus using the high-speed DHM. We use current clamp electrophysiology in the challenging
environment of intense ultrasound to monitor ultrasound-driven, real-time changes in voltage across the
membrane in single neurons in vitro. Furthermore, we have devised an analytical model to predict neuronal
depolarization driven by membrane deflection from applied ultrasound stimulus. The experimental results
confirm the predictions made by the biophysical model, both with regard to membrane deflection and volt-
age changes. These findings provide insight into the effects of ultrasound on cells and cell signaling, the un-
derstanding of which is vital to sonogenetics and its clinical application.

1See the Limitations section in their paper.
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2 Results

2.1 Digital holographic imaging of cell membrane deflection

High resolution imaging approaches employing phase-contrast [36] and differential contrast [37] are com-
monly used to image biological specimens. These techniques transform phase differences to amplitude dif-
ferences in an image, but they lack quantitative phase information. High-speed digital holographic micro-
scopy (DHM) [38] is a cutting-edge method that produces three-dimensional holograms at high frame rates.
We use transmission DHM, which measures transparent media based on quantifying phase disparities in-
duced by the measured sample. In short, this approach works by comparing phase differences induced in the
coherent light transmitted through the sample with reference light traversing an unobstructed path. Digi-
tal holographic microscopy has several advantages in comparison to conventional microscopic techniques.
Numerical processing of the wavefront transmitted through the sample permits simultaneous computation
of intensity and phase distribution [39]. The holographic measurements also make it possible to focus on
different object planes without relative movement between the stage and the lens [40] and enables numer-
ical lens aberration correction [41]. Our unique DHM system operates at high frame rates (40,000 frames per
second) and consists of a custom-built perfusion chamber with a built-in ultrasound transducer (Fig. 1a).
A heated stage keeps the media at a constant temperature over the duration of the recording. The system
reconstructs phase images of cells that are then analyzed to determine the baseline profile (prior to ultra-
sound), during exposure to ultrasound, and afterwards. This enables us to accurately visualize the maximum
displacement of the membrane from the mean position under the influence of ultrasound.

The measurements of apical cellular membrane deflection due to ultrasound consisted of a 25 ms baseline
recording, followed by a 50 ms ultrasound stimulus and a 25 ms post-stimulus dwell (Fig. 1b), leading to a
median deflection of 214 nm for human embyronic kidney (HEK293) cells and 159 nm for neurons, with a
range of 100 nm to 550 nm across the two tested cell types (Fig. 1c and Supplementary Videos 1 and 2). These
stimulation parameters are consistent with prior studies for calcium imaging in vitro and in vivo [18] and
are consistent with recommendations from past important work [42]. Sample reconstructed phase images
of HEK cells, neurons and neuronl clusters are shown in Fig. 1d-f. The baseline deflection for these samples,
including a 95% confidence interval, had a range of ±20 nm, inclusive of both random thermal fluctuations
across the cell membrane and potential noise introduced to the system due to the imaging arrangement (Fig. 1g-
i). Sample displacement baseline membrane profiles are illustrated in Fig. 1g–h (see Supplemental Videos
as well) for HEK cells and neurons, and Fig. 1i represents the deflection profile for a cluster of neurons. The
cluster was imaged to confirm deflection in a group of neurons and help provide insight into the in vivo mech-
anisms of activation. Results from the neuronal cluster show that the magnitude of deflection remains roughly
the same for a group of cells as for a single neuron. The larger deflection at the edges of the cluster is due to
the neurons at the edges being less constrained in comparison to the ones in the center.

Membrane deflection during the generation of action potentials has been observed in the past [43], but the
converse phenomenon of membrane deflection leading to the generation of action potentials has not been
explored at the level of an individual neuron using clinically relevant stimulation pressures. As described be-
fore, other imaging techniques have been reported for measuring cell membrane deflection, but are unable
to match the spatiotemporal capabilities of the high-speed DHM technique. Overall, our experimental setup
allows us to confirm membrane deflection due to ultrasound at a single cell resolution and we relate these
results to a mathematical model in the following section.

2.2 Membrane deflection model

Based upon the results from the experiments, with cells cultured on a surface and surrounded by media, the
membrane is assumed to be fixed at the periphery. A similar case occurs in vivo, where the extracellular ma-
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2.2 Membrane deflection model
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Figure 1: High-speed DHM imaging of membrane deflection. The deflection of the membrane under the influence of ultrasound
was visualized using (a) high-speed digital holographic microscopy (DHM). The DHM setup included a lithium niobate transducer
driven by a signal generator and an amplifier at 6.72 MHz. The cells were mounted on a coverslip and placed in a custom perfusion
chamber maintained at 37◦C. The DHM enables the (b) quantitative reconstruction of phase images acquired by the high-speed
camera at 40,000 frames per second. Each recording began with 25 ms of no stimulus as a baseline, followed by a 50 ms ultrasound
stimulus, and ended with a 25 ms baseline. (c) The maximum deflection from the mean position was found to be 100–400 nm,
with a median deflection of 214 nm for HEK293 cells and 160 nm for neurons (N = 30 for each cell type). Reconstructed phase pro-
files are shown for different cell types: (d) HEK293 cells, (e) neurons and (f) neuronal clusters. Displacement was measured as a
function of distance along the green lines provided in the (d–f) contour plots and were (g–i) plotted with (red line plot, max dis-
placement during stimulus) and without (green plot, Baseline) ultrasound stimulus. A distance of “zero” in (g–i) is at the left end
of the green line in (d,e) and at the bottom of the green line in (f). For the (green) baseline displacement, note the mean and 95%
confidence intervals are provided. The maximum variation throughout all baseline responses was less than ±20 nm.
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2.2 Membrane deflection model

Figure 2: Prediction of membrane deflection due to ultrasound. Ultrasound results in (a) membrane deflection that triggers a
transmembrane electrical response. The cell membrane bilayer stretches, increasing its area, and the outer leaflet of the bilayer
will likely deflect more than the inner leaflet due to the the presence of cytoskeletal components such as actin and microtubules
that anchor the inner leaflet. Two of the factors that affect membrane displacement are surface tension of the lipid membrane and
the length under consideration. The model (b) predicts displacements between 100–400 nm for dimensions that correspond to
the size of a cell (5–20 µm) and is within the limits observed using the DHM. The response is (c) dynamic, with snapshots of the
predicted deflection at different times (in ms) across a 10 µm wide membrane section that is anchored at the ends. The maximum
deflection occurs when the stimulus is first provided and there is a balance between viscous dissipation and conservative effects
of inertia and surface tension [see 4.4 in methods and section 2.2] which lead to sustained wavemodes on the membrane at the
millisecond timescale (observed response). A low-pass temporal filter of the membrane’s center displacement at 5 µm indicates (d)
an oscillatory deflection over the stimulus duration of 5 ms.
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trix holds individual cells in place and provides anchoring locations for sections of the membrane [44]. Cel-
lular anchoring is important because it imposes a characteristic distance over which the range of permissible
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2.2 Membrane deflection model

deflection wavemodes may occur [see methods]. Its deflection is restricted in the analysis to a single direc-
tion, perpendicular to the plane of the membrane and parallel to the direction of propagation of sound. The
model does not take into account the restoring effects of the actin cytoskeleton, which is difficult to estimate
and likely plays an important role in restoring the membrane to its original equilibrium position.

The stimulus provided to the cells is in the form of a sinusoidal burst, a short-term continuously oscillat-
ing ultrasound signal of constant amplitude and frequency. In a burst, a sinusoidal electrical signal is typ-
ically applied across the piezoelectric material used in a transducer, which transforms this signal into a si-
nusoidally varying pressure field in the fluid medium at the frequency of excitation. This is rather different
than the approach used by Prieto et. al [26], where the ultrasound is modeled as a step increase in hydro-
static pressure from zero to a fixed positive value at t = 0. In our approach [see methods], the burst signal
oscillates at the ultrasound frequency, and an analytical solution for the slower time scale of the membrane
mechanics is found in response to this harmonic ultrasound excitation. This solution is then used in a nu-
merical model to produce the solution for the deflection of the fixed membrane, resolving the discrepancy
between the timescales of ultrasonic stimulation (∼0.1 µs) and the experimentally verified membrane de-
flection occurring on the order of milliseconds. This hybrid approach was chosen because a numerical sim-
ulation of the entire phenomena from ultrasound to membrane deflection would be extremely difficult due
to the vastly different spatiotemporal scales, even with state-of-the-art computational resources. Finally, the
hydrostatic pressure included by Prieto et. al [26] is discarded here, because it is orders of magnitude lower
than the ultrasonic radiation pressure.

The damped wave equation describing the deflection, u, of the membrane in response to ultrasonic pres-
sure, PUS, is written as

ρ∂2
t u = 2η

∂3u

∂x2∂t
+ (2γ∂2

xu +PUS)
(π

d

)
, (1)

where ρ and η are the dynamic viscosity and density of the surrounding fluid, both assumed to be the same
as water as used in prior studies [45, 46]); γ is the surface tension between the membrane and media; and d
is the characteristic length of the membrane between anchor points. Equation (1) was solved by the method
of eigenfunction expansion [methods]. Figure 1 provides results representative of the analysis, with a 1 MPa
pressure supplied to the membrane using a 7 MHz transducer in the form of a sine wave over a period of
5 ms. The mechanical index for the parameters listed in this study is 0.37, well below the oft-cited mechan-
ical index threshold for cavitation onset of 0.7 in bubble-perfused tissue [47]. However, our study uses no
bubbles. In this case, the U.S. Federal Drug Administration’s mandated clinical safety threshold index of 1.9
without introduced microbubbles [48, 49] is more appropriate. These data suggest that we are unlikely to
cause cavitation and cell viability remains unaffected as shown by prior work with similar stimulus param-
eters [18].

Maximum membrane deflection occurs when the ultrasound stimulus is applied (Fig. 2a), followed by de-
cay due to viscous losses to the host medium. The magnitude of deflection depends on the stimulation fre-
quency and peak pressure, with lower frequencies and higher pressures producing greater membrane de-
flection. The critical parameters that influence the deflection magnitude are the characteristic membrane
anchor length and surface tension, as shown in Fig. 2b. The deflection predicted by the model for dimen-
sions relevant to the size of a cell are between 100 nm to 400 nm, irrespective of the value of surface tension
for an anchor length ranging from 5 - 20 µm based on the average size of the soma [50] and average diam-
eter of HEK cells [51]. We modelled membrane deflection due to a range of surface tension values reported
in the literature [26, 52]. Maximum membrane deflection occurs at the midpoint of the axisymmetric mem-
brane model. This is portrayed in Fig. 2c, where we provide graphical “snapshots” of the ultrasonically-forced
membrane over time. The closed-form displacement solution to Eq. (1) allows us to link the fast ultrasonic
timescales (on µs order, or, total response) to phenomena occurring at observable timescales (on ms order,
or, observed response), as shown in Fig. 2d. The character of the membrane “slow time” response—that is, its
ability (or lack thereof) to sustain oscillations—is governed by the value of the Ohnesorge number, Oh. The
term is defined in this way because the membrane oscillations typically occur slowly: at a frequency far less
than the incident ultrasound.
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2.3 Model prediction of action potentials and electrophysiology

The nondimensional parameter Oh characterizes the importance of dissipative viscous forces relative to the
combined interaction of conservative inertial and surface tension forces. In other words, Oh characterizes,
on average, the extent to which the membrane dissipates or conserves mechanical energy. Typical Oh values
for neurons range from ∼0.06 to ∼0.45 based on values of surface tension, viscosity and membrane length
considered in this work. This implies that inertial and surface tension forces dominate over viscous forces:
the slow time membrane response is characteristically oscillatory. This behavior results from the membrane’s
tendency toward retaining mechanical energy in the form of sustained oscillations when Oh < p

2/π ≈ 0.8.
This is explicitly derived in the detailed analysis [see methods] and suggests that the slow time oscillations of
the ultrasonically actuated membrane is implicated in the changes in the membrane capacitance as detailed
in the following sections.

10mV 
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b
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f
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Electrode

Feedback resistor

Operating
 amplifier

Ultrasound

Initial spike

Figure 3: Displacement driven capacitance changes result in action potential generation. (a–e) Simulations help inform the de-
velopment of stimulus parameters, in terms of time and pressure amplitude. (a–b) represent the capacitance changes occurring
over the stimulus duration (5 ms) for (a) 0.5 MPa and (b) 1 MPa with the corresponding area changes that cause (c) capacitance
fluctuations. The capacitance fluctuations produce depolarization at 1 MPa, but not at 0.5 MPa, indicating (d) the presence of a
pressure threshold to stimulate neurons. (e) Over a longer 50 ms stimulus, the action potential evolves quite differently over time
for the two acoustic pressures. At lower pressures, longer stimuli may be necessary to produce action potentials. (f) In-vitro cur-
rent clamp electrophysiology was used to verify the predictions of the model and shows that the presence of a preliminary spike
followed by oscillations in voltage across the membrane.

2.3 Model prediction of action potentials and electrophysiology

To model the electrical output of a neuron under the influence of ultrasound, a modified version of the origi-
nal Hodgkin-Huxley equations is first used[53],

dVm

d t
=− 1

Cm

[
Iapp + INa + IKd + IM + Ileak

]
. (2)

In this equation, the membrane potential of the neuron, Vm , changes over time with respect to the mem-
brane capacitance, Cm , and the underlying currents, Iapp, INa, IKd, IM, and Ileak. At rest, Vm =−71.9 mV is the
well-known membrane potential of the cell and, notably, the action potential generation is controlled by the
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presence of an applied current, Iapp, while the other currents are based on the membrane morphology and
chemistry and are detailed in the methods. The increase of Iapp beyond a certain threshold produces spiking
behavior typical of neurons.

The capacitance, Cm , may also fluctuate due to a morphological change in the membrane. Such a modifi-
cation is not modeled in the original representation of this equation, but it may be included. The voltage
change as described in eqn. (2) includes a time-dependent capacitive current, Iapp ≡ Vm

dCm
d t . With this in-

cluded in eqn. (2), it is possible to solve the differential equation for the voltage and gating variables while
incorporating the capacitance change due to membrane deflection. Membrane deflection is constrained
to a certain extent due to parts of the cell that are adherent to the substrate or the extracellular matrix. This
causes an increase in area between the adherent locations and with sufficient deflection, this produces a de-
polarization across the membrane. The value of the transmembrane voltage is dependent on the magnitude
and duration of the applied stimulus. Figure 3 indicates the change in capacitance due to 6.72 MHz ultra-
sound at 0.5 MPa (Fig. 3a) and 1 MPa (Fig. 3b) with the corresponding area fluctuations that bring about the
change in capacitance represented in Fig. 3c. In order to compute the time-dependent membrane area vari-
ation, we extract the slow time output of Eq. (1) for use with the axisymmetric area integral. The capacitance
of the membrane is then determined by treating it as a dielectric between charged surfaces. This produces
a slow time capacitive response, bearing an order of magnitude equivalence to the ion channel relaxation
times in the modified Hodgkin-Huxley model [54].

The stimulus of 1 MPa results in depolarization as indicated in Fig. 3d, while the lower pressure does not re-
sult in the generation of an action potential over the stimulus duration. Reported values of baseline mem-
brane capacitance have been shown to vary [55], and we show that longer stimuli will result in the genera-
tion of action potentials as a cumulative effect of capacitance change over the duration of the stimulus. Fig-
ure 3e represents transmembrane voltage changes for a stimulus of 50 ms. We notice that depolarization
takes place in both cases. However, initial spikes are delayed by up to 20 ms in the lower pressure case, in-
dicating the need for increased stimulus durations for lower pressures. Our model also shows a lower spike
frequency for the 0.5 MPa case in comparison to 1 MPa. The simulation output of our model for the lower
pressure and longer stimulus duration case were experimentally verified using voltage clamp electrophysiol-
ogy (Fig. 3f) and shows an initial spike corresponding to the delivery of the ultrasound stimulus, followed by
oscillations.

3 Discussion

We model how ultrasound results in membrane deflection and eventually leads to transmembrane voltage
changes. In a first, we demonstrate real-time membrane deflection due to ultrasound using high-speed DHM
imaging (Supplementary Videos 1 and 2). We leverage the Hodgkin-Huxley equations, which are a set of phe-
nomenological equations describing action potential generation in a squid axon and are one of the most im-
portant neuronal models. However, observations of mechanical deflection accompanying action potentials
[43] show that the underlying assumptions of the Hodgkin-Huxley model may need to be revisited, as there
are mechanical phenomena involved. In the context of ultrasound neuromodulation, our model presents
insights into the the generation of action potentials due to mechanical deflections and is theoretically sup-
ported by models such as the ones put forth in the past few years [30, 56]. The deflection due to the applied
ultrasound stimulus results in a net area change of the membrane between the two pin locations that rep-
resent an adherent cell. The area changes take place elastically while maintaining constant volume. This
results in a change in capacitance that, when incorporated in the Hodgkin-Huxley model, results in trans-
membrane voltage changes. Capacitance of the membrane can be modeled using an expression for a parallel
plate capacitor [57], and an increase in area results in a proportional increase in capacitance [see methods].

The model does not take into account restoring effects of the actin cytoskeleton, whose influence will lower
the membrane deflection and cause the inner leaflet to deflect less than the outer leaflet. However, this can-
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not account for the ∼100 nm deflection experimentally observed in this work, and only plays a minor role
in bringing about capacitance changes according to previous studies [23]. The model and the use of high-
speed DHM imaging present opportunities for exploring the influence of ultrasound on native neurons and
HEK293 cells, as presented here. The DHM can also be used to image cells that have been engineered to ex-
press membrane proteins that are sensitive to ultrasound stimuli, in other words using sonogenetics [58].
At a cellular level, there are two proposed models for the activation of a mechanically-gated ion channel:
the force from lipid model and the force from filament model. The force from lipid model was put forth by
Martinac et al. [59] and proposes that changes in membrane tension or local membrane curvature result in
opening or closing of channels. In the force from filament model [52], the stimulus is transferred to tethers
that connect the membrane to the cytoskeleton. Conformational changes in the tethers result in opening or
closing of the channel. In reality, both models play a part in opening and closing a given channel.

Although it is difficult to estimate the relative contribution of these mechanisms, it is possible to estimate the
deflection of the cell membrane as highlighted in the preceding sections. This is of particular significance
when we consider the membrane-bound proteins such as TRPA1, MsCL [60], Piezo [61] and their interaction
with the actin network. Disruption of the actin cytoskeleton has been shown to reduce mechanosensitive ac-
tivity of such ion channels [62] and it is possibly due to decreased separation between the leaflets of the bi-
layer when the actin network is disrupted. In addition to quantifying the deflection due to mechanosensitive
proteins, there is potential to quantify the forces on the cell due to ultrasound using FRET (Förster resonance
energy transfer) force sensors [63].

Our model also predicts the generation of action potentials from capacitive changes that occur when the ad-
herent cell is exposed to ultrasound. Charge across the membrane is maintained by a gradient in ion concen-
tration across the cell membrane, with Na+ ions on the outside and Cl- ions on the inside, resulting in a net
negative resting potential. As the membrane deflects, it is partially constrained by the adherent regions, re-
sulting in an increase in area of the membrane between the adherent locations. An increase in the area of the
membrane directly increases its capacitance (see eqn. (19) in Methods). This relationship between area, ca-
pacitance and transmembrane voltage change has also been indicated in prior publications that investigate,
outside the context of ultrasound neuromodulation, the capacitive properties of biological membranes [57].

We demonstrate transmembrane voltage changes for two cases, a pressure of 0.5 MPa and 1 MPa and ob-
serve that voltage changes only take place for the higher pressure case for lower stimulus durations, defining
a pressure threshold dependent upon the duration of stimulus. We also investigate the influence of longer
stimulus durations on the generation of action potentials for different values of baseline capacitance. As ver-
ified by a current clamp electrophysiology study in the whole cell configuration, increased stimulus dura-
tions even at at lower pressures result in action potential generation, though with lower spike rates. The pa-
rameters used in this study are similar to prior work in vivo [18] and deflection has been shown by other groups
to occur in vivo by Lee et al. [29], although at much higher pressures and with cavitation.

One of the limitations with performing single cell current clamp electrophysiology while using ultrasound at
amplitudes sufficient to drive a physiological response is the loss of a seal between the membrane and the
patch pipette due to the membrane’s deflection. There are, however, reports of current clamp electrophysi-
ology results with ultrasound using microbubbles [64] and at much higher frequencies [65] or with devices
[66]. In each of these three cases, there is reason to believe that while the stimulation techniques or device
may work for in vitro work, they will not be suitable for in vivo work. One potential way to overcome this is-
sue would be to perform electrophysiological recordings for cells encased in matrigel that would limit the
movement of the recording pipette with respect to the membrane.

Until now, the mechanisms underlying ultrasound neuromodulation have lacked explanation and existing
models lack experimental data. Taken together, our results offer valuable insight into the underlying effects
of ultrasound on cell membranes, as well as insight into how these effects translate to transmembrane volt-
age changes. The predictions of our model were confirmed using a novel, high-speed imaging technique. We
were able to visualize and quantify membrane deflection in real-time and predict depolarization due to the
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imposed ultrasound stimulus.

4 Methods

4.1 HEK293 cell culture

Human embryonic kidney (HEK293) cells (CRL-1573, ATCC, Manassas, Virginia, USA) were cultured using
standard procedure in DMEM supplemented with 10% fetal bovine serum (FBS) and 20 mM glutamine in a
37◦C and 5% CO2 incubator. Cells beyond passage 30 were discarded and a new aliquot was thawed. For ex-
perimental plating, 18 mm coverslips were coated with poly-d-lysine (PDL; 10 g/L, minimum 2 hours, P6407,
Sigma-Aldrich, St. Louis, Missouri, USA), and HEK293 cells were seeded at 150K, 200K, or 250K cells/mL for
24 hours before the experiment. Cells were allowed to grow over 24 hours and a balance was struck between
an increase in the cell density to improve cell health and the need to perform observations with the DHM
that improve as the cell density is decreased. The cells are healthier at a higher density, but the DHM relies
on contrast between a given cell and its environment, which is reduced as the cell density increases. For imag-
ing, coverslips were mounted on a specialized chamber featuring an ultrasound transducer approximately
2 mm below the coverslip and a 10 mL reservoir of media above the coverslip. Once cells were in focus, a
6.72 MHz ultrasound pulse of 50 ms duration was delivered while imaging with an immersion objective as
described in following sections, and a cell membrane profile was reconstructed and analyzed.

4.2 High-speed digital holographic microscopy

HEK cells and neurons were observed through a 40X, 0.8 NA (numerical aperture) water immersion micro-
scope objective. The field of view used for the setup was 60.5 µm × 60.5 µm, with a vertical accuracy and
repeatability of 4 nm and 0.08 nm respectively [67]. Holograms were recorded using a high-speed camera
(Nova S12, Photron, San Diego, California, USA). Acquisition and reconstruction were performed using cus-
tom software (Koala, Lynceé-tec Inc., Lausanne, Switzerland) on a computer workstation. Data were recorded
on a separate computer equipped with a solid-state drive, with each 100 ms recording equating to ∼ 20 giga-
bytes of data. The observations reported in this study represent a combined analysis of 1.4 terabytes of data.
The data were reconstructed after each batch of six coverslips was processed in order to reduce the time be-
tween trials and to ensure optimum cell health. The setup consisted of a custom perfusion chamber that
was built to accommodate a lithium niobate transducer operating at 6.72 MHz. The perfusion chamber was
housed on a stage maintained at 37◦C (Fig. 2a) using a heated stage (Bioscience Tools TC-100s).

4.3 Modeling of deflection and transmembrane voltage changes

As the pressure wave propagates through the fluid and contacts the adherent cell, the region of the cell mem-
brane between adhesion zones deflects. This deflection leads to a change in area of the membrane and causes
a capacitance change. The two-dimensional model assumes that the membrane has a known value of sur-
face tension [68]. The membrane is surrounded by a fluid, assumed to have the properties of water in this
case. The vertical displacement of the membrane is approximated to be equal to the displacement of the
fluid just above the membrane. We start with a simplified version of the Navier-Stokes equation,

ρ (∂t v + v ·∇v) = η∇2 v −∇P, (3)

where ρ and η are the density and viscosity of water, respectively. The expression ∇P is the pressure gradient
and v is the velocity. In Eq. (3), the convective acceleration is v · ∇v = 0 as the flow is unidirectional in z [69]
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4.3 Modeling of deflection and transmembrane voltage changes

and the fluid is assumed to be incompressible. The membrane is symmetric in x and y , allowing the viscous
term to be simplified as ∂x vz = ∂y vz . We are left with

ρ∂t vz = 2η∂2
x vz −∇P. (4)

The net pressure gradient in this case is a function of the time dependent pressure in the fluid due to ultra-
sound and the surface tension of the membrane, which resists deformation:

∇P =− (2γ∂2
x u +PUS)πd , (5)

where u is the displacement in z and PUS is the pressure due to an ultrasound source, typically acting in the
form of a sinusoidal pulse, PUS = P0 sin(ωt ), where ω = 2π f . By contrast, Prieto et al. [26] at this point chose
to represent the ultrasound as a step change in the pressure, from a static, zero relative pressure to a static
positive value at time t = 0 well below the pressure amplitudes used in experimental studies, typically 1 kPa
to 1 MPa. Prieto et al.’s representation is numerically attractive but difficult to reconcile with the harmonic
oscillatory pressure delivered by the transducer. In the absence of an analytical solution for the ultrasound
propagating through the medium and membrane, one would be forced to numerically represent the MHz-
order sinusoidal signal with sufficiently small spatiotemporal step sizes to satisfy the Nyquist criterion, and
do so for at least several hundred milliseconds to determine the response of the cell membrane to the ultra-
sound pressure oscillation, producing very large models with many millions to billions of temporal steps for
a single solution. Consequently, these past studies have been understandably forced to make spurious ap-
proximations2 to avoid impossibly prohibitive computation times.

Substituting this into Eq. (4) produces a partial differential equation for the displacement of the membrane
driven by ultrasound:

ρ∂2
t u = 2η

∂3u

∂x2∂t
+ (2γ∂2

xu +PUS)
(π

d

)
. (6)

The boundary conditions are the clamped conditions at the ends of the membrane and the initial displace-
ment condition,

u(0, t ) = 0, (7a)

u(d , t ) = 0, (7b)

u(x,0) = P0 x (d −x)

4γ
≡ u0(x), (7c)

∂t u(x,0) = 0. (7d)

If hydrostatic pressure is included, the initial condition for membrane displacement may be found by solving
Po +2γ∂2

x u = 0. The general soltuion to partial differential Eq. 6 was obtained with the method of eigenfunc-
tion expansion, as outlined further on. This is achieved using an orthogonal eigenbasis:

φn(x) = sin(
p
χn x), (8)

where χn = (nπ/d)2 corresponds to the nth wavemode for a membrane with diameter d . Expanding u gives
us

u(x, t ) =∑
n

un(x, t ) =∑
n

hn(t )φn(x), (9)

2One can use the analytical solution to show that the results from the noted study are spurious when the correct amplitudes and frequencies of the ultrasound
are used.
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4.3 Modeling of deflection and transmembrane voltage changes

so that clearly the even modes vanish and we may write n = 2k + 1, and k ∈ Z ≥ 0 where Z is an integer set.
Substituting this expression into (6), one has∑

n
(ḧn + c1χn ḣn + c0χn hn)φn(x) = f (t ), (10)

where c1 = 2η/ρ and c0 = 2πγ/ρd , are written in terms of the density of the surrounding fluid, ρ; the viscos-
ity of the surrounding fluid, η; the surface tension along the fluid-membrane interface, γ; and the membrane
diameter, d . By multiplying both sides by φm(x) (with m ∈Z+), integrating over x from 0 to d , and then lever-
aging the orthogonality of sines, we find that the time-dependent component for the nth eigenmode satisfies
the second-order ordinary differential equation

ḧn +b1,n ḣn +b0,n hn = f̂n(t ), (11)

where b1,n = c1χn , b0,n = c0χn , and

f̂n(t ) = 2

d

ˆ d

0
φn(x) f (t )dx = 2(1− (−1)n)

nπ
f (t ). (12)

The means for obtaining a solution to equations of the form (11) is well known. The homogeneous solution
and its coefficients are given by

h(h)
n (t ) = a(h)

+,n er+,n t +a(h)
−,n er−,n t (13)

(14)

where the coefficients a(h)
+,n and a(h)

−,n are

a(h)
+,n = r−,n

r−,n − r+,n
hn(0), (15a)

a(h)
−,n = r+,n

r+,n − r−,n
hn(0). (15b)

The inhomogeneous solution is

h(i )
n (t ) = 1

r+,n − r−,n

(
er−,n t I−,n(t )−er+,n t I+,n(t )

)
, (16)

where

I±,n(t ) =
ˆ t

0
e−r±,nτ f̂ (τ)dτ. (17)

The total waveform solution is then numerically implemented by taking a finite-term approximation of (9).

The change in area, A, of the membrane then be calculated once the time-dependent membrane deflection
is obtained:

A =
ˆ d

0
2π

√(
1+ (∂xu)2)d x. (18)

By extension, this allows us to determine the change in membrane capacitance, C , due to the area change,

C = ε0εA

L
, (19)

where we have regarded the membrane as a dielectric between two charged surfaces. In this case, L is the
thickness of the bilayer and has values between 4nm and 9nm, and the relative permittivity, ε, has a value
of 2 [70].
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4.3 Modeling of deflection and transmembrane voltage changes

The above value of capacitance change is coupled with the modified Hodgkin-Huxley neuronal model, where
the capacitive current is defined as Iapp ≡ Vm

dCm
d t . This model contains a voltage-gated sodium current and

delayed-rectifier potassium current to generate actions, a slow non-inactivating potassium current to reca-
pitulate the spike-frequency adaptation behavior seen in thalamocortical cells, and a leakage current.

Equation (20) defines the voltage-gated Na+ current where ḡNa = 56mS/cm2 is the maximal conductance
and ENa = 50mV is the Nernst potential of the Na+ channels. The parameter Vth = −56.2mV sets the spike
threshold

INa = ḡNa ·m3 ·h · (Vm −ENa) (20)

where the gating variables m and h vary with time according to

dm

d t
=αm · (1−m)−βm ·m, (21a)

dh

d t
=αh · (1−h)−βh ·h, (21b)

αm = −0.32 · (Vm −Vth −13)

exp[−(Vm −Vth −13)/4]−1
, (21c)

βm = 0.28 · (Vm −Vth −40)

exp[(Vm −Vth −40)/5]−1
, (21d)

αh = 0.128 ·exp[−(Vm −Vth −17)/18] , (21e)

βh = 4

1+exp[−(Vm −Vth −40)/5]
. (21f)

The delayed rectifier K+ current is
IKd = ḡKd ·n4 · (Vm −EK) , (22)

where ḡKd = 6mS/cm2 is the maximal conductance of the delayed-rectifier K+ channels and EK = −90mV is
the Nernst potential of the K+ channels, and with n evolving over time as

dn

d t
=αn · (1−n)−βn ·n, (23a)

αn = −0.032 · (Vm −Vth −15)

exp[−(Vm −Vth −15)/5]−1
, (23b)

βn = 0.5 ·exp[−(Vm −Vth −10)/40] , (23c)

A slow non-inactivating K+ current may be defined as

IM = ḡM ·p · (Vm −EK) , (24)

where ḡM = 0.075mS/cm2 is the maximal conductance and τmax = 608ms is the decay time constant for
adaptation of the slow non-inactivation K+ channels. The parameter p is such that

d p

d t
= p∞−p

τp
, (25a)

p∞ = 1

1+exp[−(Vm +35)/10]
, (25b)

τp = τmax

3.3 ·exp[(Vm +35)/20]+exp[−(Vm +35)/20]
. (25c)

The leakage current is
ILeak = ḡLeak · (Vm −ELeak) , (26)

where ḡLeak = 0.0205mS/cm2 is the maximal conductance and ELeak =−70.3mV is the Nernst potential of the
non-voltage-dependent, non-specific ion channels.
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4.4 Sustaining oscillations on the membrane

We set the following initial conditions for the gating terms:

m0 = αm

αm +βm
, (27a)

h0 = αh

αh +βh
, (27b)

n0 = αn

αn +βn
, (27c)

p0 = p∞. (27d)

Equations (20) through (25) are solved with initial conditions (27) to obtain the transmembrane voltage change
of a neuron when subjected to ultrasound stimuli.

4.4 Sustaining oscillations on the membrane

A better understanding of the membrane wave propagation can be obtained by considering the decay tran-
sience of the constituent wavemodes within the context of the solution to Eq. (11). Each wavemode will have
a solution of the form

hn(t ) = h(h)
n (t )+h(i )

n (t ), (28)

where h(h)
n is the homogeneous solution and h(i )

n is the inhomogeneous solution for the forced wavemode
propagation initialized from zero initial conditions. The general form of the former can be used to character-
ize the decay transience,

h(h)
n (t ) = a(h)

+,n er+,n t +a(h)
−,n er−,n t , (29)

where the coefficients a(h)
±,n are determined by the initial conditions and r±,n are the eigenvalues of the left

side of (11) (the roots of the characteristic equation):

r±,n =−1

2

(
b1,n ±

√
b2

1,n −4b0,n

)
. (30)

Then the discriminant determines the character of the wavemode:

b2
1,n −4b0,n


> 0, r±,n ∈R, two distinct roots,

= 0, r±,n ∈R, two degenerate roots,

< 0, r±,n ∈C, two conjugate roots.

(31)

The physical conditions for degeneracy require an exacting degree of marginality rarely (if ever) encountered
in real systems, so that we may safely ignore this solution type (degeneracy corresponds to algebraic growth
at small times that is mediated by exponential decay at long times).

Rewriting the conditions (31) in terms of physical parameters, one finds that

n

>
√

2
π Oh−1, r±,n ∈R, strictly decaying wavemode,

<
√

2
π Oh−1, r±,n ∈C, oscillatory decaying wavemode,

(32)

where

Oh = η√
ργd

(33)
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4.5 Ultrasound transducer fabrication

is the Ohnesorge number characterizing the balance between the dissipative viscous effects and the conser-
vative effects resulting from interaction between inertia and surface tension. There exists a condition for os-
cillation of the unforced membrane and this condition is Oh < p

2/π. When Oh ≥ p
2/π, no oscillatory un-

forced wavemodes are permitted and the unforced membrane will not oscillate. When the condition is sat-
isfied, one observes that oscillation can be attributed exclusively to wavemodes with the “smallest” mode
numbers, and that these will always include the fundamental mode. Fig. S3 represents the change in Oh for a
range of surface tensions and membrane length.

4.5 Ultrasound transducer fabrication

We used a set of custom-made single crystalline 127.86 Y-rotated X-propagating lithium niobate transducers
operating in the thickness mode, as previously described [71]. The fundamental frequency was measured to
be 6.72 MHz using non-contact laser Doppler vibrometry (UHF-120SV, Polytec, Waldbronn, Germany). The
transducers were coated with a 1 µm layer of Au atop 20 nm of Ti acting as an adhesion layer, using a direct-
current sputtering (Denton 635 DC Sputtering system) process was used to coat 4 inch diameter wafers in an
inert gas environment with a 2.3 mTorr pressure and rotation speed of 13 rpm, at a deposition rate of 1.5 A/s
for Ti and 7 A/s for Au. Devices were diced to size (12 mm × 12 mm) and built in to the in vitro test setup us-
ing an automated dicing saw (DISCO 3220, DISCO, Tokyo Japan).

4.6 Rat Primary Neuron Culture

Rat primary neuronal cultures were prepared from rat pup tissue at embryonic days (E) 18 containing com-
bined cortex, hippocampus and ventricular zone. The tissue was obtained from BrainBits (Catalog #: SDE-
HCV) in Hibernate-E media and used the same day for dissociation following their protocol.

Briefly, tissue was incubated in a solution of papain (BrainBits PAP) at 2 mg/mL for 30 min at 37◦C and dis-
sociated in Hibernate-E for one minute using one sterile 9” silanized Pasteur pipette with a fire-polished
tip. The cell dispersion solution was centrifuged at 1100 rpm for 1 min, and the pellet was resuspended with
1 mL NbActiv1 (BrainBits NbActiv1 500 mL). The cell concentration was determined using a haemocytome-
ter (TC20, Bio-Rad Labs, Hercules, California, USA) and neurons were plated in 12-well culture plates with
18-mm PDL-coated coverslips (GG-18-PDL, Neuvitro Corporation, Vancouver, Washington, USA) at a con-
centration of 1.3 million cells/well. Neurons were then incubated at 37◦C, 5% CO2, performing half media
changes every 3-4 days with fresh NbActiv1 supplemented with PrimocinTM (ant-pm-1, InvivoGen, San Diego,
California, USA). Cultures were incubated at 37◦C, 5% CO2 until day 10–12 and were used in DHM imaging
experiments.

4.7 In-vitro electrophysiology

A stable line of neurons using the protocol listed above were cultured on 18 mm round coverslips, at a seed-
ing density of ∼300k cells/well in a tissue-culture treated 12-well plate. Neurons were allowed to mature for
11-14 days in vitro prior to recording. Coverslips were transferred to a custom machined acrylic stage con-
taining a bath of external solution; NaCl (140 mM), KCl (4 mM), MgCl2 (2 mM), glucose (5 mM), and HEPES
(10 mM) with an osmolarity of ∼290 mOsm. Patch pipettes were pulled on a pipette puller (P-97, Sutter In-
struments, Novato, CA, USA) programmed to give 4-6 MΩ tips from filamented borosilicate glass (o.d. 1.5 mm,
i.d. 0.86 mm) and used with an internal solution comprising of a CsF and KF base (#08 3008 and #08 3007,
respectively, Nanion, Munich, Germany). A 40X water dipping lens (LUMPLFLN40XW, Olympus Corpora-
tion, Tokyo, Japan) with a numerical aperture (NA) of 0.8 was used in combination with a complementary
metal oxide semiconductor (cMOS) camera (01-OPTIMOS-R-M-16-C QImaging OptiMOS, Roper Technolo-
gies, USA) to visualize cells with Köhler or fluorescent illumination. Electrical signals were acquired using
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4.8 Statistical Analysis

an amplifier (Axon Instruments Multiclamp 700B, Molecular Devices LLC, California, USA) and digitized
(Axon Instruments Digidata 1550B, Molecular Devices LLC, California, USA) using an acquisition and con-
trol software (pClamp 11, Molecular Devices LLC, California, USA). Gap free recordings were conducted (typ-
ically holding the membrane potential at −70 mV) while delivering the ultrasound stimulus. The ultrasound
delivery rig used for patch clamp experiments was the same used for imaging experiments. Briefly, wave-
forms were programmed using an arbitrary function generator (33600A Series, Keysight, California, USA)
connected via BNC to an amplifier (TC2057574, Vox Technologies, Richardson, TX). Military communica-
tions grade BNC (Bayonet Neill–Concelman) cables (CA5512-36, Federal Custom Cable, California, USA) were
used to ensure impedance matching in our systems and reduce electrical interference. The amplifier was
connected to our custom-made lithium niobate transducer mounted on a dovetail sliding arm, and coupled
to the bottom of the recording chamber with ultrasound gel. Recordings were carried out in response to peak
pressures of 0.5 MPa as access resistance could not be maintained when high pressures were delivered. Upon
successful whole-cell access, baseline gap-free recordings in current clamp trials were obtained. Access resis-
tance during successful whole-cell recordings was maintained between 10 to 25 MΩ.

4.8 Statistical Analysis

The reconstructed holograms from the digital holographic microscope was exported using Koala (Lynceé-
tec Inc., Lausanne, Switzerland) and analyzed using custom code written using MATLAB (Mathworks, Natlic,
MA, USA) and ImageJ (National Institutes of Health, Bethesda, MD, USA). Line profiles along the length of
the cell were exported using ImageJ for every frame and the mean baseline profile was calculated for each
cell. The maximum deflection during the applied stimulus was then calculated for each cell by comparing
the profile during the stimulus to the mean profile before the stimulus. Fig. 2c represents the maximum de-
flections of each neuron and HEK cell from the baseline during the applied stimulus. Fig. 2d-f represent the
mean and maximum deflections when there is no ultrasound (green) and when the ultrasound stimulus is
delivered (red).
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