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We have developed a spiking neural network simulator, which is both easy to use and com-
putationally efficient, for the generation of large-scale computational neuroscience models.
The simulator implements current or conductance based Izhikevich neuron networks, hav-
ing spike-timing dependent plasticity and short-term plasticity. It uses a standard network
construction interface. The simulator allows for execution on either GPUs or CPUs. The
simulator, which is written in C/C++, allows for both fine grain and coarse grain specificity
of a host of parameters. We demonstrate the ease of use and computational efficiency of
this model by implementing a large-scale model of cortical areas V1, V4, and area MT. The
complete model, which has 138,240 neurons and approximately 30 million synapses, runs
in real-time on an off-the-shelf GPU.The simulator source code, as well as the source code
for the cortical model examples is publicly available.

Keywords: visual cortex, spiking neurons, STDP, short-term plasticity, simulation, computational neuroscience,

software, GPU

INTRODUCTION
The mammalian nervous system is a network of extreme size
and complexity (Sporns, 2011), and understanding the princi-
ples of brain processing by reverse engineering neural circuits and
computational modeling is one of the biggest challenges of the
Twenty-first century (Nageswaran et al., 2010), see also (National
Academy of Engineering-Grand Challenges for Engineering1).
Thus, there is a need within the computational neuroscience com-
munity for simulation environments that can support modeling at
a large-scale, that is, networks which approach the size of biologi-
cal nervous systems. In particular, we consider large-scale network
models of spiking neurons. Spiking models can demonstrate tem-
poral dynamics, precise timing, and rhythms that are important
aspects of the neurobiological processing of information (Vogels
et al., 2005). Moreover, spiking models, with their digital signaling
and sparse coding, are energy efficient and amenable to hardware
application development (Mead, 1990; Laughlin and Sejnowski,
2003).

There are several spiking simulators, which are currently avail-
able, that fall into different categories based on their level of
abstraction and on the computer hardware in which they reside
(for a recent review see Brette et al., 2007). Simulators, such as
GENESIS and NEURON, incorporate molecular, detailed com-
partmental models of axons and dendrites from anatomical obser-
vations, and various ion channels to biophysical details (Hines and
Carnevale, 1997, 2001; Bower and Beeman, 2007). A major goal of
these models is to study detailed ionic channels and their influence
on neuronal firing behavior. While these models are biologically
accurate, they incur tremendous computational costs for simula-
tion. Typically, these neuronal models are multi-compartmental to

1 http://www.engineeringchallenges.org/cms/8996/9109.aspx

take into consideration dendritic morphology and distribution of
ionic currents across the neuron. All of these components are mod-
eled with differential equations having time steps less than 1 ms.
Hence, large-scale simulation of the brain is extremely challenging
at this level.

Neuromorphic designs, such as NEUROGRID, and SPIN-
NAKER, are efficient enough to run large-scale networks of spiking
neurons, but require specialized hardware (Boahen, 2005, 2006;
Navaridas et al., 2009; Rangan et al., 2010). Therefore, these sys-
tems are not readily available to the computational neuroscience
community.

Simulation environments, such as the neo cortical simulator
(NCS; Drewes et al., 2009; Jayet Bray et al., 2010), Brian (Goodman
and Brette, 2008, 2009), Neural Simulation Tool (NEST; Gewaltig
and Diesmann, 2007), and NeMo (Fidjeland and Shanahan, 2010)
are specifically designed for developing spiking neuron networks.
However, each simulator environment has different tradeoffs in
speed, realism, flexibility, maximum network size, etc. For exam-
ple Brian is extremely flexible but incurs a performance penalty for
that flexibility. NCS is powerful and can run on computer clusters,
but does not incorporate a standard interface.

Our approach is to design a simulator that is easy to use and yet
provide significant computational performance. We achieve this
by using a PyNN-like interface and abstraction (Davison et al.,
2008). PyNN is a common programming interface developed by
the neuronal simulation community to allow a single script to run
on various simulators. Although our simulator is not compliant
with the PyNN API, we chose a similar interface since it is easy to
use, and will be familiar to many users. For the neuron model, we
use the Izhikevich neuron model, which is an efficient model that
supports a wide-range of biophysical dynamics, but has very few
open parameters (Izhikevich, 2004). To model synaptic plasticity,
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we use standard equations for spike-timing dependent plasticity
(STDP; Song et al., 2000) and short-term plasticity (STP; Markram
et al., 1998; Mongillo et al., 2008). Finally, to ensure our simulator
can be supported on a wide-range of machines, our simulator runs
on both generic x86 CPUs and NVIDIA GPUs under Windows and
Unix operating systems.

In prior work, we developed and released a GPU implemen-
tation of current-based spiking neural networks (SNN) that was
26 times faster than a CPU version (Nageswaran et al., 2009). For
simulations of 10 million synaptic connections and 100 K neurons,
the GPU SNN model was only 1.5 times slower than real-time.
That is, the time to calculate 1 ms of time in the differential equa-
tions describing the neurons and synapses was equivalent to 1.5 ms
of wall clock time. In this prior work, we introduced optimiza-
tion techniques for parallelism extraction, mapping of irregular
communication, and network representation for effective simu-
lation of SNNs on GPUs. Comparing responses against a CPU
version validated the computational fidelity of the GPU simula-
tion, and comparing the simulated neuronal firing rate, synaptic
weight distribution, and inter-spike interval with electrophysio-
logical data validated the neurobiological fidelity. We made the
simulator publicly available to the modeling community so that
researchers would have easy access to large-scale SNN simulations.
There have been other recent, notable spiking simulators, which
use GPUs to accelerate computation (Fidjeland and Shanahan,
2010;Yudanov et al., 2010). However, NeMo,Yudanov et al. (2010),
and our previous simulator had shortcomings, with respect to
synaptic dynamics, that limited the biological accuracy of network
simulations.

Therefore, in the present paper, we extend our prior model to
include: (1) a better, more flexible interface for creating neural
networks, (2) equations for AMPA, GABA, and NMDA conduc-
tance (Izhikevich et al., 2004), (3) equations for STP (Markram
et al., 1998; Mongillo et al., 2008), and (4) an efficient implemen-
tation of a motion energy model for generating motion selective
responses (Simoncelli and Heeger, 1998). As in our prior work,
the goal is to make large-scale, efficient SNN simulations read-
ily available to a wide-range of researchers. Although the SNN
simulator is written in C++, only some familiarity with C/C++
is necessary to use our simulator. We illustrate the power and
ease of use of the simulation environment with several examples
below.

The present simulation environment, which incorporates opti-
mizations used in our prior work and optimizations for the new
functionality, allows for efficient implementation of large-scale
SNNs. GPU execution times can be faster than real-time for even
moderate to large-scale networks (on the order of 100,000 neurons
with 1,000 synapses each). In one of examples below, we introduce
a network with 138,000 neurons and 30 million synapses that runs
in real-time.

In the sections below, we will highlight the benefits of our sim-
ulator as well as provide an outline for how custom models can be
implemented in the simulator. Table 1 lists the complete function-
ality of the simulation environment. We will provide examples for
some of the more commonly used functions and options. Specif-
ically, we will discuss how to define groups and connections, how
to specify inputs to and get outputs from the networks, and how
to store the network state.

Table 1 | Functionality of the simulation environment.

Functionality Level of specificity Notes

STDP enable/disable,

parameters

Group Defined post-synaptically

STP enable/disable,

parameters

Group Defined pre-synaptically

Plastic or not plastic

synapses

Connection

Izhikevich

parameters

Group or neuron Uses a callback to specify

per neuron

Synaptic weights Group or neuron pair Specified when making a

connection

Maximum synaptic

weight

Group or neuron pair Specified when making a

connection

Synaptic delays Group or neuron pair Specified when making a

connection

Conductance time

constants

Group

Spike monitoring Group Specified per group but

provides information per

neuron

Spike injection Neuron Via a user-defined callback

Poisson rate Neuron

Maximum firing rate Simulation To determine a maximum

buffer size

Table lists the different functions the user can specify, and the level of speci-

ficity. The Group level specifies neuronal populations. The Neuron level specifies

individual neurons. The Neuron Pair level specifies a connection between two

individual neurons. The Simulation level includes all Groups, Neurons, and their

connections.

In the last section, we describe a large-scale model of cortical
areas V1, V4, and MT, developed with our simulator, that demon-
strates its ease of use, and computational power. Further, using
these medium level visual processing simulations may benefit
other researchers in their model development.

The source code for the simulator,networks,and analysis scripts
can be obtained in the supplemental file: “http://www.socsci.
uci.edu/∼jkrichma/Richert-FrontNeuroinf-SourceCode.zip.”The
main code to run the examples described below can be found in
the “examples” directory and MATLAB scripts to analyze the sim-
ulation results can be found in the “scripts” directory within the
supplemental source code directory. MATLAB is not necessary to
use the simulator. In general, any program can be used to ana-
lyze the simulation results. The MATLAB scripts are provided for
demonstration purposes and can easily be translated to the user’s
preferred analysis tool.

MATERIALS AND METHODS
MODEL CAPABILITIES
Our simulator was first published in (Nageswaran et al., 2009), but
has been greatly enhanced to improve functionality and ease of use.
The present simulator uses the four parameter Izhikevich point-
neurons (see Eq. 1) and all four parameters can be specified per
neuron or per group. The simulator supports synaptic currents or
conductances. Currently, four conductances are supported: AMPA
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(fast decay), NMDA (slow decay and voltage dependent), GABAA

(fast decay), GABAB (slow decay). All time constants are config-
urable. The model also supports standard implementations of the
nearest neighbor formulation of STDP [see Eq. 2, (Song et al.,
2000)] and STP [see Eq. 3, (Markram et al., 1998; Mongillo et al.,
2008)].

The Izhikevich neuron is a dynamical systems model that can
be described by the following update equations:

dv

dt
= 0.04v2 + 5v + 140 − u + I

du

dt
= a (bv − u)

(1)

If v=30 mV then v=c, u = u + d

Where, v is voltage, u is the recovery variable, I is the input cur-
rent, and a, b, c, d are open parameters that have different values
for different neuron types.

Spike-timing dependent plasticity is a biological synaptic plas-
ticity rule that takes into consideration the relative timing of pre-
and post-synaptic spikes:

Δw =
{

Δt > 0, A+e−Δt/τ+

Δt � 0, −A−eΔt/τ− (2)

Where A+ and A− determine the height of the STDP curves, and
τ+, τ− are time constants, and Δt is the time of the post-synaptic
spike minus the time of the pre-synaptic spike.

Short-term plasticity is a faster scale synaptic plasticity rule, on
the order of 100 ms, that contributes to synaptic facilitation and
synaptic depression and is based on pre-synaptic activity:

st = xt ut

dx

dt
= 1 − x

tD
− uxδ

(
t − tspk

)
du

dt
= U − u

tF
+ U (1 − u) δ

(
t − tspk

) (3)

Where δ is the Dirac function, t spk is the time of the pre-synaptic
spike, x and u recover to their baseline levels (x = 1 and u = U )
with time constants t D (depressing) and t F (facilitating), respec-
tively, and st is the STP scale factor applied to the synaptic weight
at time t.

Table 1 lists the functionality of the simulator. Functionality
can be enabled or disabled, such as one group of neurons can have
STDP while another group in the same simulation does not have
STDP. Most operations are specified at the Group (i.e., neuronal
population) level. Many options can be specified at the level of
Neuron but to have that level of control the user must create a
callback mechanism as described below.

Calculations in the simulation used the forward Euler method
with dt = 1 ms for synaptic plasticity equations and dt = 0.5 ms
for the neuronal activity equations.

BUILDING AND RUNNING A SIMULATION
In the following sections, we outline step-by-step instructions on
how to set up, construct, and execute a simulation.

Setting up a simulation
To begin a simulation, the user must import the simulator and
create an instance:

#include "snn.h"
…
CpuSNN sim("My Simulation");

Similar to PyNN and many other simulators, our simulator uses
groups and connections as an abstraction to aid defining synaptic
connectivity.

A group is composed of one or more neurons and is used for
organizational convenience. Two types of groups are supported:
Izhikevich neurons and spike generators. Spike generators are
pseudo-neurons that have their spikes specified externally either
defined by a Poisson firing rate or via a spike injection mecha-
nism. Spike generators can have post-synaptic connections with
STDP and STP, but unlike Izhikevich neurons, they do not receive
any pre-synaptic inputs. Spike generators can be used to convert
inputs, such as an image, into spike trains.

To create a group of Izhikevich neurons, simply specify a name
(e.g., “excitatory”), the number of neurons (e.g., 100), and a type:

int gEx=sim.createGroup("excitatory", 100,
EXCITATORY_NEURON);

Where EXCITATORY_NEURON denotes that the neurons in this
group are glutamatergic and the group ID (used to refer to this
group for later method calls) is returned and stored in the variable
gEx. The name can be anything and is written to the network data
file (see section Storing and retrieving the network state) to make
it easier for the user to identify groups.

Next, specify the Izhikevich parameters:

sim.setNeuronParameters(gEx, 0.02f, 0.2f,
-65.0f, 8.0f);

Where 0.02f, 0.2f, −65.0f, and 8.0f correspond respectively to the
a, b, c, and d parameters of the Izhikevich neuron.

To create a group of spike generators, the user also specifies a
name, size, and type:

int gIn=sim.createSpikeGeneratorGroup
("input", 10, EXCITATORY_NEURON);

Where gIn is group ID, “input” is the name of the group, 10 is the
number of neurons, and EXCITATORY_NEURON denotes that
the neurons in this group are glutamatergic.

To implement groups of neurons in CUDA, the groups were
reordered such that groups and neurons of similar types are local-
ized, however, only one kernel is used. The kernel looks up the
group identity of each neuron, as well as other information specific
to each neuron.

Making connections
Pre-defined connection types. Once the neuron groups have
been defined, the synaptic connections between them can be

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 19 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Richert et al. Modeling large-scale cortical processing

defined. The simulator provides a set of primitive connection
topologies for building networks: (1) All-to-all, (2) One-to-one,
and (3) Random. All-to-all, also known as “full,” connectivity
specifies that all neurons in the pre-synaptic group should be
connected to all neurons in the post-synaptic group. One-to-one
connectivity denotes when neuron i in the pre-synaptic group
is connected to neuron j in the post-synaptic group; both pre-
and post-synaptic groups should have the same number of neu-
rons. Random connectivity denotes when a group of pre-synaptic
neurons are randomly connected to a group of post-synaptic
neurons with a probability p; where the user specifies p. For all
pre-defined connection types the user specifies an initial synap-
tic weight, a maximum synaptic weight, and a range of synaptic
delays.

Creating connections with the pre-defined types is quite sim-
ple. The following statement creates a random connection pattern
from group gIn to group gEx with an initial weight of 1.0, a max-
imum weight of 1.0, a 10% (0.10) probability of connection, a
synaptic delay uniformly distributed between 1 and 20 ms, and
static synapses (SYN_FIXED):

sim.connect(gIn,gEx,"random", 1.0, 1.0,
0.10f, 1, 20, SYN_FIXED);

User-defined connections. The pre-defined topologies described
above are useful for many simulations, but are insufficient for
constructing networks with realistic neuroanatomy. In order to
provide arbitrary and flexible connectivity, we introduce a call-
back mechanism. In the callback mechanism, the simulator calls
a method on a user-defined class in order to determine whether
a connection should be made or not. The user simply needs to
define a method that specifies whether a connection should be
made between a pre-synaptic neuron and a post-synaptic neuron
and the simulator will automatically call the method for all pos-
sible pre-, and post-synaptic pairs. The user can then specify the
connection’s delay, initial weight, maximum weight, and whether
or not it is plastic.

To make a user-defined connection, the user starts by making a
new class that derives from the Connection Generator class:

class MyConnection: public
ConnectionGenerator { …

Inside this new class, the user defines a connect method. The fol-
lowing statements show a simple example that creates random
connections with a 10% probability:

void connect(CpuSNN* net, int srcGrp,
int src, int destGrp, int dest,

float& weight, float& maxWt,
float& delay, bool& connected)
{

connected = getRand()<0.10;
weight = 1.0;
maxWt = 1.0;
delay = 1;

}

Once the class has been defined, simply call connect on the
simulator as follows:

sim.connect(gIn, gEx, new MyConnection(),
SYN_PLASTIC);

Running a simulation
Once a network has been specified running the network is quite
simple. The user need only call:

sim.runNetwork(sec, msec, mode);

Where the simulation will run for sec∗1000 + msec milliseconds
and mode can be either CPU_MODE or GPU_MODE to specify
which hardware to run the simulation on: CPU or GPU.

INTERACTING WITH THE SIMULATION
To interact with the simulation, the user defines spike generators
for injecting inputs and spike monitors for retrieving outputs.
The simulator provides a simple mechanism to define Poisson fir-
ing rates, and an easy-to-use mechanism to define spike times via
a user-defined callback. To retrieve outputs, a spike-monitoring
callback mechanism is used. The user registers a custom method
and then the spike monitor, which is automatically called once a
second, specifies the neuron and the time it fired during the last
second.

Generator groups
There are two types of input groups supported and both are
called spike generators. The first group type is the Poisson Gener-
ators, which generates Poisson spike trains based upon a specified
average firing rate. The second group type is the Spike Injection
Generators, in which spike times are specified via a user-defined
callback.

Poisson generators. The simulator supports specifying the mean
firing rate for each neuron within a generator group. Furthermore,
the rates can be changed at every time step (1 ms) for extremely
fast input modulation.

To make a Poisson generator, the user first specifies the firing
rates for each neuron by creating a Poisson Rate object of the same
size as the Poisson group, and then fills in the values for each
neuron:

PoissonRate ramp(10);
for (int i=0;i<10;i++) ramp.rates[i] = 1+i;

Once the firing rates have been specified simply call setSpikeRate:

sim.setSpikeRate(gIn,&ramp);

Spike injection generators. For more fine-grained control over
spike generation, individual spike times can be specified per neu-
ron in each group. This is accomplished by using a callback
mechanism, which is called at each time step, to specify whether a
neuron has fired or not.

In order to specify spike times, a new class is defined that derives
from the Spike Generator class:
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class MySpikes: public SpikeGenerator { …

The user must then define a nextSpikeTime method. The follow-
ing is a simple example that generates a spike every 100 ms for each
neuron in the group.

unsigned int nextSpikeTime(CpuSNN* s,
int grpId, int nid, unsigned int
currentTime)
{

return currentTime + 100;
}
…
sim.setSpikeGenerator(gIn,new MySpikes());

Spike monitoring
In order to calculate basic statistics, store spike trains, or perform
more complicated output monitoring, the user can specify a spike
monitor. Spike monitors are registered for a group and are called
automatically by the simulator every second. Similar to an address
event representation (AER), the spike monitor indicates which
neurons spiked by using the neuron ID within a group (0 is the
first neuron in a group) and the time of the spike. Only one spike
monitor is allowed per group. Therefore, if the user desires having
multiple monitors running on a single group, the user must call
additional monitors from within their own spike monitor.

There are several options for spike monitoring. The following
code will print basic information to the screen about the group’s
activity, such as the average firing rate and current time of the
simulation:

s.setSpikeMonitor(gIn);

Instead of printing basic information to the screen, the following
code creates a file that stores all spikes generated by the group:

s.setSpikeMonitor(gIn,"spikes.dat");

The file format is simply a list of Neuron ID and spike time (in
ms) pairs, each stored as unsigned 32 bit integers. In general, any
programming language can be used to read and analyze these files.
In Section “A MATLAB Function to Read the Spike Data Files” in
Appendix, we present an example, using MATLAB code, of how
these spike data files can be read.

A user can create custom spike monitors by creating a new
class that derives from Spike Monitor and by defining an update
method. For example, the following statements show a custom
spike monitor that prints a message when neuron 50 fires:

class MyMonitor: public SpikeMonitor {…

void update(CpuSNN* s, int grpId,
unsigned int* NeuronIds, unsigned int*
timeCounts)
{

int pos = 0;

for (int t=0; t < 1000; t++) {
for(int i=0; i< timeCounts [t];i++,

pos++) {
int id = NeuronIds [pos];
if (id == 50) cout << "Neuron

ID 50 spiked at " << t << "ms.\n";
}

}
}

The update method is passed two arrays: NeuronIds and time-
Counts. NeuronIds stores a list of Neuron IDs within a group
which have spiked. TimeCounts is an array of length 1000, which
corresponds to 1000 ms. TimeCounts [0] indicates how many neu-
rons spiked in the first time bin (0 ms) and timeCounts [1] for the
second time bin (1 ms), etc., up to timeCounts [999] which is for
999 ms. So, if there have not been any spikes in the past 1000 ms,
the array timeCounts would contain all zeros.

The example code above works by using a variable “pos” which
stores the current position into the NeuronIds array and looping
through all 1000 time bins. The inner for-loop then loops through
the number of neurons that spiked in time bin “t ” and increments
“pos” simultaneously. Then the neuronID can be extracted at posi-
tion “pos” and stored in variable “id.” In the example above, if a
neuron with the id of 50 fires, then an output message is generated
indicating when it spiked within this 1000 ms block.

STORING AND RETRIEVING THE NETWORK STATE
Once all connections have been specified and the network has
been instantiated, the network state can be stored in a file for
later processing or for restoring a specific network. The network
state consists of all the synaptic connections, weights, delays, and
whether the connections are plastic or fixed. Furthermore, the net-
work can be stored after synaptic learning has occurred in order
to externally analyze the learned synaptic patterns.

The following code stores a network:

FILE* nid = fopen("network.dat","wb");
sim.writeNetwork(nid);
fclose(nid);

After a network has been stored, following code will reload the
network:

FILE* nid = fopen("network.dat","rb");
sim.readNetwork(nid);
//don’t fclose nid here, call
sim.runNetwork() first

The network file can be read by the MATLAB code shown in
Section “A MATLAB Function to Read the Stored Network Files”
in Appendix.

However, writing the network state to file is not the only method
provided to access this information; one can retrieve the weight
and delay information for a specific neuron by calling getWeights()
or getDelays() respectively. For example, the following code will
output the weight value of a particular synapse:
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int Npre, Npost;
float* weights = sim.getWeights(gIdPre,
gIdPost, Npre, Npost);
cout << "The weight of the synapse between
presynaptic neuron 3 and

postsynaptic neuron 5 is<<
weights[5+Npre*3]<< endl;

GPU VS. CPU SIMULATION MODES
One of the main features of the simulator, beyond its ease of
use, is the computational efficiency of the code base. The sim-
ulator has been implemented to be able to run on either standard
x86 CPUs or off-the-shelf NVIDIA GPUs. Aside from specify-
ing which architecture to run the simulator on (sim.runNetwork
(. . .,CPU_MODE) vs. sim.runNetwork(. . .,GPU_MODE)), there
are no code modifications required from the user.

The ability to run on either architecture allows the user to
exploit the advantages of both. The CPU is more efficient for small
networks, or allows for running extremely large networks that do
not fit within the GPU’s memory. The GPU is most advantageous
for large networks (1 K to approximately 100 K neurons) and has
been demonstrated on our hardware (Core i7 920 @2.67 GHz and
NVIDIA C1060) to run up to 26 times faster than CPU and allow
for approximately real-time performance for a simulation of 100 K
neurons (Nageswaran et al., 2009).

RESULTS
In the following sections we provide several complete examples
of the SNN developed with our simulation environment. We
demonstrate a complete Spiking Neural Network that demon-
strates typical spike dynamics found in random networks having
the appropriate balance of excitatory and inhibitory neurons, and
STDP. We also describe the construction of a large-scale network
for cortical visual processing. The network includes cortical areas
V1, V4, and MT. We demonstrate that the color, orientation, and
motion selectivity of neurons in the network are comparable to
electrophysiological and biophysical data.

The source code to run all the simulations described below
can be obtained at: http://www.socsci.uci.edu/∼jkrichma/Richert-
FrontNeuroinf-SourceCode.zip.

A COMPLETE EXAMPLE
In Section “Simple Source Code to Make a Randomly Con-
nected Network Capable of Sustained Activity and Learning” in
the Appendix contains example source code of a randomly con-
nected network with STDP. The network contains 1,100 neurons
and approximately 68,000 excitatory synapses and approximately
16,000 inhibitory synapses. The conductances of the model and
STDP parameters are set to physiologically realistic values and are
taken from (Izhikevich, 2006). The network is a simple 80/20 net-
work (i.e., 80% excitatory and 20% inhibitory neurons) that has
been used to generate random asynchronous intermittent neural
(RAIN) activity (Vogels and Abbott, 2005; Vogels et al., 2005; Jayet
Bray et al., 2010), but with an additional group (gIn or “input”)
to generate spontaneous activity. The simulation runs for 10 s,
stores the spikes from group g1 in a file named “spikes.dat,” and
the final network state is stored in a file named “network.dat.” The
source code for this example can also be found in the file titled
“main_random.cpp.”

LARGE-SCALE EXAMPLE OF CORTICAL VISUAL PROCESSING
In order to demonstrate the power and ease of use of our sim-
ulator, we have built a large-scale, spiking network to simulate
models of area V4 color and orientation selectivity, and motion
selectivity of area MT (see Figure 1). All models use a V1 level, rate-
based preprocessor, which calculates color opponency responses
(De Valois et al., 1958; Livingstone and Hubel, 1984), as well as
motion energy responses (Simoncelli and Heeger, 1998). These
rate-based responses are converted to Poisson spike trains and fed
into the network. All excitatory neurons are Regular Spiking and
all inhibitory neurons are Fast Spiking, as defined by Izhikevich
et al. (2004). For most simulations, an input image resolution of
32 by 32 pixels was used; and this resolution was then used for
every layer in the network.

FIGURE 1 | Architecture of the cortical model. In the V1 color layer,
there are four color opponent (center+/surround−) responses
corresponding to green+/red−, red+/green−, blue+/yellow−, and
yellow+/blue−. The V4 color layers are composed of six color responses
with both excitatory and inhibitory neurons for each color. For clarity, only
the connections for Yellow are shown. V4 Yellow excitatory and inhibitory
populations receive input from yellow center, blue surround cells in area
V1 (normal arrow), and the V4 yellow inhibitory population inhibits the

Magenta and Cyan excitatory groups (arrows with circular heads). The
feed-forward connectivity is similar for Red, Green, and Blue. Cyan and
Magenta receive feed-forward connections from two V1 layers: Green,
Blue and Red, Blue (respectively). The V1 space–time orientation layer
contains 28 space–time oriented filters at three spatial resolutions at
each spatial location. These filters are converted into Poisson spike trains
and project to MT and V4 Orientation neurons. See text for connectivity
details.
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The cortical model presented here not only showcases many
of the simulator capabilities, but it also provides a starting point
for computational neuroscientists to develop more complex sim-
ulations of cortical visual processing. The simulations below show
examples of how to input images or videos into the model. Using
the API described above, modelers can add more details to the
current areas, such as the connectivity and cell classes found in
layered neocortex, or add other areas. Moreover, the biologically
inspired model of V1 motion selectivity, which has been optimized
for GPUs, can be used with SNN or in other applications.

Cortical model of color selectivity
Using our simulator environment, we construct a model of
color selectivity based on known V1 to V4 connectivity and the
opponent-color theory (De Valois et al., 1958; Livingstone and
Hubel, 1984). Following the opponent-color theory, we construct
a rate-based model of area V1 where we have center-surround
units that are selective to (1) red center, green surround; (2) green
center, red surround; (3) yellow center, blue surround; and (4)
blue center, yellow surround. The opponent receptive fields are
made of 2-D Difference of Gaussians with a center SD of 1.2 pixels
and a surround of 1.6 pixels. These 2-D Difference of Gaussians
filters were then convolved with the input image. Color opponent
signals are then converted to spike trains using Poisson spike gen-
erators (see Spike Generators specified above) and connected to
populations that are selective to one of six colors: red, green, blue,
yellow, magenta, and cyan. Each color has both an excitatory and
inhibitory group, for a total of 12 V4 color groups. Each group in
V1 and V4 has 1,024 (32 by 32) neurons.

Each population of V4 Red, Green, Blue, and Yellow V4 neu-
rons receives input from the corresponding V1 color neurons (e.g.,
Red V4 receives input from Red V1). However, Magenta and Cyan,
being secondary colors and not represented in area V1 were dif-
ferent; Magenta received equal input from both V1 Red and V1
Blue, whereas, Cyan received input from Green and Blue. All V4
receptive fields were 2-D Gaussian shaped from the V1 layers
with a SD of 1.7 neurons (pixels). This feed-forward connectiv-
ity from the V1 layer to the V4 layer is shown in Figure 1. Each
box represents both excitatory and inhibitory neurons for each
color. The inhibitory population inhibits the excitatory popula-
tions (Figure 1, arrows with circular head). The inhibition causes
responses to peak at their appropriate color. Without inhibition,
the secondary colors (magenta, cyan, and yellow) would respond
maximally to a broad range of colors and not have a peak at the
desired spectral location.

The color selectivity profiles are shown in Figure 2, where the
response of a single neuron is shown as a function of color input.
The inputs were cycled between all combinations of RGB (Red–
Green–Blue) values that summed to a constant value of 1, the far
left corner corresponds to pure green, the far right is pure red, and
the near corner is pure blue. The relative RBG values are converted
to spike rates using a Poisson Spike Generator. The V4 responses
shown in Figure 2 reveal that the neuronal units have selectivity to
their preferred colors and the appropriate broad tuning to a range
of hues (see Figure 2), and are similar to those found in macaque
V4 (Kotake et al., 2009). For example, the panel labeled Red has
highest firing rate for pure red, but responds to a lesser degree to

purple and orange. The source code for this example can be found
in the file titled “main_colorcycle.cpp” and the MATLAB script to
analyze the results can be found in “colorcycle.m.”

To further demonstrate the performance of the V4 color model,
we simulate the response of this network to color-blindness test
images, shown in Figure 3. A standard colorblind test image was
used that contained the number 6. The color content of this image
was then modified so as to maximally activate different color pop-
ulations (Figure 3 top row). In order to resolve the number 6 with
sufficient resolution, we increased the input image size to 250 by
250 and adjusted the V4 populations accordingly. The firing rate
responses of the six neural populations are shown in Figure 3
(Rows 2–7) as a gray scale image: black is no response and white is

FIGURE 2 | V4 color selectivity. Shown are responses of six excitatory V4
color units to a color stimulus cycling through all combinations of RGB
(Red–Green–Blue) values that sum to a constant value of 1. The X - and
Y -axes correspond to the color shown: the far left corner corresponds to
pure green, the far right is pure red, and the near corner is pure blue. The Z
axis represents the firing rate of the neuron in Hertz. One can clearly see
that for example the Red unit (upper left tile) responds maximally to a pure
red stimulus, and each unit responds maximally to its corresponding pure
color.

FIGURE 3 | V4 responses to colorblind test images. Six versions of the
same test image with the number 6 are used (top row). The color
composition is varied so as to activate different color populations. The
response of the six color regions (rows) to the six test images (columns) is
shown in gray scale: no response is black and highest response is white. As
one can see, under most configurations the number “6” pops-out in the
neural responses.
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FIGURE 4 | Simulation of Random Dot Kinematigram task (RDK). (A) The
stimulus is composed of random moving dots. The coherence is varied
between 0 and 100% and the direction of motion is either to the left or right.
(B) The response of the network to an example stimulus. The firing rate of
each unit is shown the heat of the color; blue is no response and red is high
response. In the bottom of panel (B), the firing rate of the decision neurons

(PFC) clearly show that the unit corresponding to leftward motion is
responding maximally. (C,D) Comparison of the network response and human
data for different levels of coherence dot movement. (C) Correct
decision-making as a function of motion coherence. (D) Reaction time as a
function of motion coherence. Human psychophysical data was adapted from
(Resulaj et al., 2009).

high response. The number “6” clearly “pops-out” in the network
responses in nearly all of the configurations. The source code for
this example can be found in the file titled “main_colorblind.cpp”
and the MATLAB script to analyze the results can be found in
“colorblind.m.”

Cortical model of motion and orientation selectivity
To generate motion selective responses, we used the Simoncelli
and Heeger motion energy model for V1 (Simoncelli and Heeger,
1998). We re-implemented the motion energy model to run on the
GPU. The code, (see “v1ColorME.cu” in the simulator source code
directory), can be used as an efficient, standalone implementation
of motion selectivity.

The Simoncelli and Heeger model uses an array of 28 space–
time oriented filters (Third derivative of a Gaussian) at three
spatial resolutions for a total of 84 filter responses. These filter
responses are half rectified and squared to construct complex cell
responses. The resulting complex cell responses are normalized by

the response of all space–time orientations. Note that for the V1-
complex cell normalization step, we normalize by the responses
within a large Gaussian envelope instead of across the entire
population as originally implemented by Simoncelli and Heeger.
This was done to be more biologically realistic and has the effect of
having spatially localized normalization instead of a single global
normalization. These 84 complex filter responses can then be used
to construct MT receptive fields that are selective to different direc-
tions and speeds of motion. The 84 rate-based responses were
converted to Poisson spike trains using a Poisson spike generator
(see Spike Generators above).

MT motion processing. The neurons in our MT model responded
preferentially to one of eight different directions and three differ-
ent speed preferences at a spatial location. The response of the MT
neuron’s receptive field was based on connectivity from the V1
motion selective neurons. The connections from the 84 V1 units
at a given pixel location to the MT neuron’s receptive field are quite
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complicated. Simply stated, the probability of a connection is pro-
portional to the projection of the V1 cell’s receptive field onto a
plane in the spatial frequency–temporal frequency domain. The
slope of this plane defines the speed preference of the resulting
MT cell and the rotation of the plane around the time axis defines
the direction preference. For more information see Simoncelli and
Heeger (1998).

To test the behavior of this model, we developed a paradigm
equivalent to the random dot kinematogram (RDK) experiments
performed with monkeys and humans (Roitman and Shadlen,
2002; Resulaj et al., 2009). We constructed a simple decision cri-
terion, in which eight decision neurons (one for each of the eight
directions of motion) sum all the MT responses selective to a direc-
tion of motion (see Figure 4; PFC). The decision rule was the first
PFC neuron (corresponding to a direction) to spike 10 times sig-
nals a choice for that direction. The RDK stimulus was constructed
out of 100 random dots on a 32 by 32 input movie. The motion
in the stimulus was varied between 0 and 100% coherence and
was one of two directions: left or right. Each stimulus frame was
shown for 10 ms of simulation time and each coherence/direction
configuration was shown for a total of 32 frames before another
coherence and direction were chosen. For the RDK experiment
we compared rightward responses to leftward responses and the
results, which are shown in Figure 4, are comparable to human
psychophysical experiments (Resulaj et al., 2009). The source code
for this example can be found in the file titled “main_rdk.cpp”
and the MATLAB script to analyze the results can be found in
“rdk.m.”

V4 orientation. The motion energy responses can also be used
to generate orientation selective responses. Since there are units in
the 28 space–time filters that are more selective to orientation than
motion, their responses can be used to generate a population of V4
orientation selective units. To qualitatively test the performance
of the orientation selectivity, we constructed a simple stimulus
composed of oriented gratings. We used four orientations and
presented them to the network using a 32 by 32 resolution input
image. The results show strong selectivity of V4 neurons to their
preferred orientations (see Figure 5). Shown on the left hand side
was the input image (four rows one for each orientation) and the
corresponding response of the network is shown on the right hand
side (four columns). Each column corresponds to a neural pop-
ulation selective to a different orientation. Each orientation has
a total of 1,024 (32 by 32) neurons. The firing rate of each neu-
ron is shown in pseudo-color; blue is no response and red is high
response. The halos observed in many of the responses were due to
edge effects of the motion energy filters. The source code for this
example can be found in the file titled “main_orientation.cpp”
and the MATLAB script to analyze the results can be found in
“orientation.m.”

COMPUTATIONAL PERFORMANCE
We measured the computational performance of both the ran-
domly connected network, given in Section “Simple Source Code
to Make a Randomly Connected Network Capable of Sustained
Activity and Learning” in the Appendix, and the cortical model
described in the previous section. GPU simulations were run on a

FIGURE 5 |The response of the V4 orientation filters to different

oriented stimuli. The four stimuli presented to the network are shown on
the left. On the right are the neural responses of the four different
orientation populations: right diagonal (RD), horizontal (H), left diagonal (LD),
and vertical (V). Each population has 1024 neurons (32 by 32) and the firing
rate of each neuron is shown in pseudo-color with blue being no response
and red being high response. The corresponding firing rates are given by
the color bar to the right of the neural populations. As one can see the
strongest activity of each population corresponds to the stimuli
corresponding to its preferred orientation.

NVIDA Tesla C1060 using CUDA, and CPU simulations were run
on an Intel(R) Core(TM) i7 CPU 920 at 2.67 GHz.

For the randomly connected network, we ran simulations of
various sized networks having a mixture of 80% excitatory and
20% inhibitory neurons. This allowed us to quantitatively com-
pare the performances of GPU simulations to CPU simulations,
and qualitatively compare the present simulation to our prior
simulator (Nageswaran et al., 2009). The number of neurons in
these simulations ranged from 1,000 to 300,000 neurons, plus an
additional 10% of Poisson generator neurons. The Poisson spike
generator neurons were used to drive the networks at an average
firing rate of approximately 7 and 13 Hz. The synapses per neuron
ranged from 100 to 500 connections. In the larger simulations, the
GPU execution time was 12–18 times faster than the CPU at both
firing rates (see Figures 6A,C). In our previous spiking neural net-
work simulator, we reported that a random network with 100,000
neurons and a 100 connections per neuron was 1.5 times slower
than real-time (Nageswaran et al., 2009). In the present simula-
tor, networks with 110,000 neurons and 100 synaptic connections
per neuron took roughly 2 s of clock time for every second of
simulation time at both 7 and 13 Hz activity (see Figures 6B,D).
More synapses per neuron incurred a computational cost at higher
firings rates. For example, networks of 110 K neurons with 500
connections per neuron took 6 s of clock time per second of sim-
ulation time at 7 Hz activity and 10 s of clock time per second of
simulation at 13 Hz activity (see Figures 6B,D). Some of the dif-
ferences in performance between our previous simulator and the
present one were due to the addition of conductance equations
and the extra Poisson spiking neurons. In the prior simulator,
which was current-based, spontaneous activity was achieved by
simply injecting current generated spiking activity. In the present
simulator, spiking activity is generated by Poisson generator input
neurons. Despite the additional features and new programming
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FIGURE 6 | Evaluation of computational performance in randomly

connected networks of 80% excitatory and 20% inhibitory

neurons. An additional 10% of the neurons were Poisson spike
generators that drove network activity. The number of neurons in the
networks tested were 1,100, 11,000, 27,500, 55,000, 110,000, 220,000,
and 330,000. M denotes the number of synapses per neuron. (A)

Speedup, which is given as the ratio of CPU to GPU execution time, for

networks with an average firing rate of 7 Hz. (B) Simulation speed,
which is given as the ratio of GPU execution time over real-time, for
networks with an average firing rate of 7 Hz. (C) Speedup, which is
given as the ratio of CPU to GPU execution time, for networks with an
average firing rate of 13 Hz. (D) Simulation speed, which is given as the
ratio of GPU execution time over real-time, for networks with an
average firing rate of 13 Hz.

interface, the present simulator is similar in performance to the
earlier spiking network simulator.

We ran further performance metrics on the cortical model of
color selectivity introduced in Section “Cortical Model of Color
Selectivity” (see source code given in main_colorcycle.cpp) to
quantitatively compare the performances of GPU simulations to
CPU simulations. The network sizes ranged from 16 × 16 image
frames (4,368 neurons) to 240 × 240 image frames (1,114,368 neu-
rons). Note that the image height and width were increased by
powers of two, except for the 240 × 240 network, which was the
largest network that could be fit on the GPU card. The GPU sim-
ulations showed impressive performance gains over the CPU sim-
ulations, especially as the network size increased (see Figure 7A).
The execution time of the cortical color model was slightly faster
than real-time for the 32 × 32 image (69,696 neurons) network
(see Figure 7B).

The complete model, which combined area MT, V4 color selec-
tivity, and V4 orientation selectivity has 138,240 neurons and
29,547,000 synapses at a spatial resolution of 32 by 32. Running
these 138 K neurons on a single NVIDIA C1060 GPU runs in
approximately 0.95 of real-time; meaning it runs slightly faster

than real-time. For the 64 by 64 input resolution, this network
currently does not fit on a single GPU and as such required being
run on the CPU which was approximately 36 times slower than
real-time. The 64 by 64 network contains 552,960 neurons and
118,188,000 synapses.

DISCUSSION
We have presented a simulation environment that supports
the construction of large-scale models of SNN. The present
paper serves two purposes: (1) Provide a simulation environment
that can benefit the neuroscience community. To that end, we have
given step-by-step instructions on how to construct networks of
spiking neurons, and have made available the source code for run-
ning and analyzing these networks. (2) Present cortical models of
visual processing that can be used for computational neuroscience
experiments. The responses of neurons in the cortical visual pro-
cessing model were comparable to electrophysiological results (De
Valois et al., 1958; Livingstone and Hubel, 1984; Simoncelli and
Heeger, 1998; Roitman and Shadlen, 2002), and the behavioral
responses were in agreement with psychophysical data (Resulaj
et al., 2009). The model can be readily expanded or parts may
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FIGURE 7 | Evaluation of computational performance in the cortical

model of color selectivity. The number of neurons in the networks tested
were 4,368, 17,440, 69,696, 278,656, 979,440, and 1,114,368. (A)

Speedup, which is given as the ratio of CPU to GPU execution time. (B)

Simulation speed, which is given as the ratio of GPU execution time over
real-time.

be extracted for specific computational models. For example, the
efficient implementation of a V1 model of motion energy (Simon-
celli and Heeger, 1998), which is rate-based, may be used as a
standalone model in motion selectivity experiments.

The main features of the model are: (1) A flexible interface for
creating neural networks. (2) Standard equations for the Izhike-
vich neuron (Izhikevich, 2004). This neuron model is very popular
among the computational neuroscience community for being
efficient, with only a few open parameters, yet supporting a wide-
range of biophysically accurate dynamics. (3) Standard equations
for AMPA, NMDA, and GABA conductances (Izhikevich et al.,
2004). (4) Standard equations for STDP (Song et al., 2000). (5)
Standard equations for STP (Markram et al., 1998; Mongillo et al.,
2008). (6) An efficient implementation on either CPU or GPU
environments.

The current implementation extends our previous work with
new functionality, configurability, as well as eliminating some of
the limitations of the previous implementation. Current GPU
cards limit the size of the simulations due to memory constraints.
To address these limitations, future work on GPU implementa-
tions will include: (1) interfacing our simulation environment
with AER-based neuromorphic devices (Lichtsteiner et al., 2006),
(2) exploiting new capabilities the GPU FERMI architecture, such
as L2 cache, concurrent kernel execution, (3) and multi-GPU
peer-to-peer communication (NVIDIA 2010). In the future, we
plan to support more neuron models, such as integrate and fire
models with adaptation (Jolivet et al., 2004; Brette and Gerstner,
2005; Gerstner and Naud, 2009; Kobayashi et al., 2009; Rossant
et al., 2011), as well as other spike dependent plasticity rules

(Van Rossum et al., 2000; Brader et al., 2007; Morrison et al.,
2007; Urakubo et al., 2008). Given the modular code structure,
we believe that these additions can be incorporated in such a
way that users will be able to mix and match these models and
learning rules as best fits their simulations. Furthermore, future
versions of our simulator environment may take advantage of
recent code generation tools such as NineML2, LEMS – Low
Entropy Model Specification3, and the Brian simulator’s code gen-
eration package (Goodman, 2010) to facilitate the construction of
simulations.

Our prior model, which was made available to the public, was
an efficient implementation of the Izhikevich neuron on graph-
ics processors (Nageswaran et al., 2009). This implementation
was very popular among the research communities and demon-
strated an interest in implementations that support large-scale
modeling on generic computer platforms. The current implemen-
tation, which adds many important features, has only a slight
performance penalty compared to our previous simulation and
demonstrates efficient performance on both CPU and GPU plat-
forms (see Figures 6 and 7). We hope the current implementation,
which extends the functionality and usability of the original model,
will find similar popularity.
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APPENDIX
A MATLAB FUNCTION TO READ THE SPIKE DATA FILES
function s = readspikes(file, FrameDur)
if nargin<2

FrameDur=1;
end

fid=fopen(file,’r’);
nrRead=1000000;
d2=zeros(0,nrRead);
s=0;
i=0;

while size(d2,2)==nrRead
d2=fread(fid,[2 nrRead],’uint32’);
d=d2;
if ˜isempty(d)

if size(s,2)˜=max(d(2,:))+1 ||
size(s,1)˜=floor(d(1,end)/(FrameDur))+1,
s(floor(d(1,end)/(FrameDur))+1,max(d(2,:))+1)=0; end

s=s+full(sparse(floor(d(1,:)/(FrameDur))+1,d(2,:)+1,1,size(s,1),size(s,2)));
end
i=i+1;

end
fclose(fid);

A MATLAB FUNCTION TO READ THE STORED NETWORK FILES
function [groups, preIDs, postIDs, weights, delays, plastic, maxWeights] =
readNetwork (filename)

if ischar(filename)
nid = fopen(filename,’r’);

else
nid = filename;

end
version = fread(nid,1,’uint32’);
if version>1

error([’Unknown version number ’ num2str(version)]);
end

nrGroups = fread(nid,1,’int32’);
groups = struct(’name’,{},’startN’,{},’endN’,{});
for g=1:nrGroups

groups(g).startN = fread(nid,1,’int32’)+1;
groups(g).endN = fread(nid,1,’int32’)+1;
groups(g).name = char(fread(nid,100,’int8’)’);
groups(g).name = groups(g).name(groups(g).name>0);

end

nrCells = fread(nid,1,’int32’);
weightData = cell(nrCells,1);
nrSynTot = 0;
for i=1:nrCells

nrSyn = fread(nid,1,’int32’);
nrSynTot = nrSynTot + nrSyn;
if nrSyn>0
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weightData{i} = fread(nid,[18 nrSyn],’uint8=>uint8’);
end

end
if ischar(filename)

fclose(nid);
end

alldata = cat(2,weightData{:});
weightData = {};

preIDs = typecast(reshape(alldata(1:4,:),[],1),’uint32’);
postIDs = typecast(reshape(alldata(5:8,:),[],1),’uint32’);
weights = typecast(reshape(alldata(9:12,:),[],1),’single’);
maxWeights = typecast(reshape(alldata(13:16,:),[],1),’single’);
delays = alldata(17,:);
plastic = alldata(18,:);

SIMPLE SOURCE CODE TO MAKE A RANDOMLY CONNECTED NETWORK CAPABLE OF SUSTAINED ACTIVITY AND LEARNING
#include "snn.h"

#define N 1000

int main()
{

// create a network
CpuSNN s("global");

int g1=s.createGroup("excit", N*0.8, EXCITATORY_NEURON);
s.setNeuronParameters(g1, 0.02f, 0.2f, -65.0f, 8.0f);

int g2=s.createGroup("inhib", N*0.2, INHIBITORY_NEURON);
s.setNeuronParameters(g2, 0.1f, 0.2f, -65.0f, 2.0f);

int gin=s.createSpikeGeneratorGroup("input",N*0.1,EXCITATORY_NEURON);

// make random connections with 10% probability
s.connect(g2,g1,"random", -1.0f/100, -1.0f/100, 0.1f, 1, 1, SYN_FIXED);
// make random connections with 10% probability,
// and random delays between 1 and 20
s.connect(g1,g2,"random",0.25f/100,0.5f/100,0.1f,1,20,SYN_PLASTIC);
s.connect(g1,g1,"random",6.0f/100,10.0f/100,0.1f,1,20,SYN_PLASTIC);

// 5% probability of connection
s.connect(gin,g1,"random",100.0f/100,100.0f/100,0.05f,1,20,SYN_FIXED);

float COND_tAMPA=5.0, COND_tNMDA=150.0;
float COND_tGABAa=6.0, COND_tGABAb=150.0;
s.setConductances(ALL,true,COND_tAMPA,COND_tNMDA,

COND_tGABAa,COND_tGABAb);

// here we define and set the properties of the STDP.
float ALPHA_LTP = 0.10f/100, TAU_LTP = 20.0f;
float ALPHA_LTD = 0.12f/100, TAU_LTD = 20.0f;
s.setSTDP(g1, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD);

// log every 10 sec, at level 1 and output to stdout.
s.setLogCycle(10, 1, stdout);
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// put spike times into spikes.dat
s.setSpikeMonitor(g1,"spikes.dat");

// Show basic statistics about g2
s.setSpikeMonitor(g2);

//setup some baseline input
PoissonRate in(N*0.1);
for (int i=0;i<N*0.1;i++) in.rates[i] = 1;
s.setSpikeRate(gin,&in);

//run for 10 seconds
for(int i=0; i < 10; i++) {

// run the established network for a duration of 1 (sec)
// and 0 (millisecond), in CPU_MODE
s.runNetwork(1, 0, CPU_MODE);

}

FILE* nid = fopen("network.dat","wb");
sim.writeNetwork(nid);
fclose(nid);

// display the details of the current simulation run
s.printSimSummary();

return 0;
}
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