
UC San Diego
Technical Reports

Title
The Phoenix Recovery System: Rebuilding from the ashes of an Internet 
catastrophe

Permalink
https://escholarship.org/uc/item/8947q5nh

Authors
Junqueira, Flavio
Bhagwan, Ranjita
Marzullo, Keith
et al.

Publication Date
2003-01-13
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8947q5nh
https://escholarship.org/uc/item/8947q5nh#author
https://escholarship.org
http://www.cdlib.org/


The Phoenix Recovery System: Rebuilding from the ashes of an

Internet catastrophe

Flavio Junqueira Ranjita Bhagwan Keith Marzullo Stefan Savage
Geoff Voelker

University of California, San Diego Dept. of Computer Science & Eng.

January 10, 2003

1 Introduction

The Internet today is highly vulnerable to Internet catas-

trophes: events in which an exceptionally successful In-

ternet pathogen, like a worm or email virus, causes data

loss on a significant percentage of the computers con-

nected to the Internet. Incidents of successful wide-scale

pathogens are becoming increasingly common on the In-

ternet today, as exemplified by the Code Red and re-

lated worms [MS02] and LoveBug and other recent email

viruses. Although they have caused severe denial of ser-

vice costing billions of dollars [Com], we are fortunate

that these kinds of pathogens have yet to cause significant

data loss. However, given the ease with which someone

can augment such Internet pathogens to erase data on the

hosts that they infect, it is only a matter of time before

Internet catastrophes occur that result in large-scale data

loss.

In this paper, we explore the feasibility of using data re-

dundancy, a model of dependent host vulnerabilities, and

distributed storage to tolerate such events. In particular,

we motivate the design of a cooperative, peer-to-peer re-

mote backup system called the Phoenix recovery system,

and we argue that Phoenix is a compelling architecture

for providing a convenient and effective approach for tol-

erating Internet catastrophes for Internet users like home

broadband users. The usage model of Phoenix is straight-

forward: users specify what percent F of their disk space

the system can use, and the system protects a proportional

amount F=k of their data using storage provided by other

hosts.

In general, to recover the lost data of a host that was a

victim in an Internet catastrophe, there must be copies of

that data stored on a host or set of hosts that survived the

catastrophe. A typical replication approach [Sch90] cre-

ates t additional replicas if up to t copies of the data can be

lost in a failure. In our case, t would need to be as large

as the largest Internet catastrophe. As an example, the

Code Red worm infected over 340,000 computers, and so

t would need to be at least 340,000 for hosts to survive a

similar kind of event. Using such a large degree of replica-

tion would make cooperative remote backup useless for at

least two reasons. First, the amount of data each user can

protect is inversely proportional to the degree of replica-

tion, and with such a vast degree of replication the system

could only protect a minuscule amount of data per user.

Second, ensuring that such a large number of replicas are

written would take an impractical amount of time.

Our key observation that makes Phoenix both fea-

sible and practical is that an Internet catastrophe, like

any large-scale Internet attack, exploits shared vulner-

abilities. Hence, users should replicate their data on

hosts that do not have the same vulnerabilites. That is,

the replication mechanism should take the dependencies

of host failures—in this case, host diversity—into ac-

count [JM03]. The system can formally represent host at-

tributes, such as its operating system, web browser, mail

client, web server, etc. For each user’s data, the system

can then use the attributes of all hosts in the system to

determine how many replicas are needed to ensure re-

coverability, and on which hosts those replicas should be

placed, to survive an Internet catastrophe that exploits one

of its attributes. For example, for hosts that run a Mi-

crosoft web server the system will avoid placing replicas

on other hosts that run similar servers so that the replicas

will survive Internet worms that exploit bugs in the server.

If necessary, the system can naturally be extended to toler-

ate simultaneous catastrophes using multiple exploits, al-

though at the cost of a reduced amount of recoverable data

that can be stored. Using a simulation model we show

that, by doing informed placement of replicas, a Phoenix

recovery system can provide highly reliable and available

cooperative backup and recovery with low overhead: with

as few as 2 replicas, the system can backup and recover at

least the equivalent of 20% of storage contributed by each

host in the system.

In the rest of this paper, we discuss various approaches

for tolerating Internet catastrophes and motivate the use of

1



a cooperative, peer-to-peer recovery system like Phoenix

for surviving them. Section 3 then describes our model for

dependent failures and how we apply it to tolerate catas-

trophes. In Section 4, we explore the design space of the

amount of available storage in the system and the redun-

dancy required to survive Internet catastrophes under var-

ious degrees of host diversity and shared vulnerabilities.

Finally, Section 5 outlines our requirements for designing

and implementing a prototype of Phoenix.

2 Motivation

There are two high-level approaches for tolerating Inter-

net catastrophes, mitigating them and tolerating them.

1) Mitigating catastrophes. The first class of approaches

focuses on mitigating the cause of the catastrophe itself.

Prevention technologies [CPM+98, WFBA00, Nec97]

that increase system security and reduce vulnerabilities

can limit the extent of a catastrophe by reducing the vul-

nerable population. Treatment technologies like virus de-

tectors [Sym] and operating system update features [Mic]

can also reduce the vulnerable population, as well as re-

duce the rate at which a catastrophe occurs. Finally, con-

tainment technologies like firewalls, content filters, and

routing blacklists [MVS03] can significantly abate, or po-

tentially halt, a catastrophe as it occurs.

Although these technologies are an important and valu-

able aspect of protecting the Internet against catastrophe,

they are also unlikely to completely eliminate the Inter-

net’s vulnerability to catastrophe. Given current software

engineering practices, widespread software vulnerabili-

ties will persist for the foreseeable future and make pre-

vention difficult. Treatment can be effective on a long-

term basis, but is reactive in nature and primarily useful

only after a catastrophe has occurred. Containment is a

promising approach, but is challenging to implement with

wide-spread effectiveness [MVS03].

2) Tolerating catastrophes. The second class of ap-

proaches uses redundancy to mask data loss caused by

an Internet catastrophe. Rather than preventing hosts

from becoming victims, they enable victims to survive the

catastrophe. We know of three approaches in this class:

Local backups: Local backup is the most common ap-

proach for recovering from data loss, and it has many ad-

vantages. Users and organizations have complete control

over the amount and frequency with which data is backed

up, and tape and optical storage is both inexpensive and

high capacity.

However, local backup does have its price in terms of

the money and time required to perform it. Large or-

ganizations have large amounts of data and have to em-

ploy personnel to provide the backup service. Individ-

ual home users can afford the equipment and media for

home backup, but often do not use it because of the time

and hassle of doing so. If the degree to which hosts re-

mained vulnerable to the Code Red worm months after

the outbreak are any measure of the attention users pay

to administrative tasks [MS02], then home backup sys-

tems both remain underutilized and home systems remain

highly vulnerable to exploit and potential data loss.

Remote backup service: Another approach is use to a

commercial remote backup service , such as DataThought

Consulting [Datom] and Protect-Data.com [Proom]. The

primary advantage of this approach is convenience, but of

course this convenience comes at a cost. Currently, one

can contract for automatic backup via a modem or the In-

ternet of 500Mb of data for around $30-$125 a month.

Cooperative remote backups: Cooperative remote backup

services provide the convenience of a commercial backup

service but at a more attractive price. In a cooperative ser-

vice, instead of paying money, users relinquish a fraction

of their computing resources (disk storage, CPU cycles

for handling requests, and network bandwidth for propa-

gating data) for the common good. Pstore [BBST01] is an

example of such a service. However, its primary goal is

to tolerate local failures such as disk crashes, power fail-

ures, etc. Pastiche [CN02] also provides similar services,

while trying to minimize storage overhead by finding sim-

ilarities in data being backed up. Its aim is also to guard

against localized catastrophes, by storing one replica of

all data in a geographically remote location.

The Phoenixrecovery system.

We argue that a cooperative, peer-to-peer system is a

compelling architecture for providing a convenient and

effective approach for tolerating Internet catastrophes. It

would be an attractive system for individual Internet users,

like home broadband users, who do not wish to pay for

commercial backup service or do not want the hassle of

making their own local backups. Users of Phoenixwould

not need to exert any significant effort to backup their

data, and they would not require local backup systems.

Specifying what data to protect can be made as easy as

specifying what data to share on a file sharing peer-to-

peer system. Further, a cooperative architecture has little

cost in terms of time and money; instead, users relinquish

a small fraction of their disk, CPU, and network resources

to gain access to a highly resilient backup service. Users

specify what percent F of their disk space is to be used by

the system, and the system would protect a proportional

amount F=k of their data. In addition, the system would

limit the network bandwidth and CPU utilization to mini-

mize the impact of the service on normal operation.

To our knowledge, Phoenix is the first effort to build a

cooperative backup system resilient to wide-scale Internet

catastrophes.

2



3 Taking Advantage of Diversity

Traditionally, reliable distributed systems are designed us-

ing the threshold model: out of n components, no more

than t are faulty at any time, where t < n. Although this

model can always be applied when a total failure can not

occur, it is only capable of expressing the worst-case fail-

ure scenario. The value of t bounds the largest subset of

components that can fail, but there may sets of less than t

components that are unlikely to fail together. This will be

true if the failures of components are correlated.

Failures of hosts in a distributed system can be corre-

lated for several reasons. Hosts may run the same code or

be located in the same room, for example. In the former

case, if there is a vulnerability in the code, then it can ex-

ploited in both, and in the latter case, a power outage can

crash both hosts.

As a first step towards the design of a backup system,

we need a concise way of representing failure correlation.

Junqueira and Marzullo proposed an abstraction called

core for this purpose [JM03]. A core is a reliable min-

imal subset of components: the probability of having at

least one component in a core not failing is high. Deter-

mining the cores of a system depends on the failure model

assumed and desired degree of reliability for the system.

To determine the cores of a system, it is necessary to

characterize the correlation of the failure of components;

in our case, of hosts. We do this by assigning attributes

to hosts. The attributes represent characteristics of the

host that can make it fail prone. For example, the oper-

ating system a host runs is a point of attack: an attack that

targets Linux will probably not be effective against hosts

running Windows XP or Solaris. We could represent this

point of attack by having an attribute that indicates the

operating system, where the value of the attribute is 0 for

Linux, 1 for Windows XP, 2 for Solaris, and so on. Equiv-

alently, we could represent the operating system with a set

of binary-valued attributes, one for each operating system.

If two hosts have an attribute a with the same value, then

we assume that they share a vulnearability that can cause

both to fail. Similarly, if two systems do not have any

attribute with the same value, then the two systems fail

independently. We assume that the same set of attributes

A is associated with each host.

4 Skewed Diversity

If one knew the probability of attack for each vulnerabil-

ity, then given a target system reliability one could enu-

merate minimal cores with that target reliability. In our

case, it isn’t clear how one would determine such proba-

bilities. Instead, we define a core Core(C) for a host C

to be a minimal set of processes that contains C and, for

each attribute a 2 A, there are two hosts in C that have

different values of a. Core(C) is a core if we assume that

in any Internet catastrophe, the attack targets only one at-

tribute value. It is not hard to generalize this definition to

allow for attacks targeted against multiple attribute values.

Smaller cores means less replication, which is desirable

for better performance. A core will contain between 2 and

jAj hosts. If the hosts’ attributes are well distributed, then

the smallest cores will be small: for any host C, it is likely

that there is a host C 0 that has different values of each of

the attributes, and so C and C

0 constitute a core. If there

is less diversity, though, then the size of the smallest cores

may grow, hurting performance.

A lack of diversity, especially when trying to keep core

sizes small, can lead to a more severe problem. Suppose

there are n hosts fC
1

; C

2

; : : : C

k

g that all have the same

attribute values, and there is ony one host C that differs

in all of it attributes’ values. The smallest core for each

host C
i

contains C, meaning that C will maintain copies

for all of the C
i

. Since the fraction C donates for storing

replicas is fixed, each C

i

has only 1=k of this space. In

other words, if each host donates F for common storage

then each C

i

can back up only F=k data. Note that k need

only be less than the number of hosts, and so F=k can be

minuscule.

Characterizing the diversity of a set of hosts is a chal-

lenging task. There is a large number of possibilities, and

considering all of them is not feasible. So, we define a

measure f that condenses the diversity of a system into a

single number. According to our definition, a system with

diversity f is one in which f% of the servers are char-

acterized by (1 � f)% of the combinations of attributes.

Although this metric is coarse and does not capture all

possible scenarios, it is expressive enough to enable one

to observe how the behavior of a backup system is affected

by skewed diversity. Note that f is in the interval [0:5; 1).

The value f = 0:5 corresponds to a uniform distribution,

and a value of f close to 1 indicates a highly skewed di-

versity.

We used this metric to determine the degree of replica-

tion and resilience for systems with varying diversity. The

degree of replication is determined by the size of the core

a host uses to backup data. The problem of finding an

optimal core, however, is NP-hard (reduction from SET-

COVER). For this reason, we used a randomized heuristic

to find cores. This heuristic finds a core for a host C as

follows:

1. It tries to find hosts that have a fully disjoint set of

attributes. If there is more than one host, then it picks

one randomly;

2. If there is no host found in the previous step, then it

randomly chooses hosts that have at least one differ-

3



ent attribute until a core is constructed or it can not

find any more hosts to choose.

This is a very simple heuristic, but it may not be the

best; we have not yet done a careful study of heuristics

for finding cores. The results we present below, however,

indicates that it is not a bad heuristic in terms of the sizes

of the cores it computes.

We created a set of attribute values, each representing

a fictitious host. On the Internet, most of the hosts run

some version of Windows and use Internet Explorer as

their web browsers [One], and so we biased the attribute

distribution towards having some fixed prefix. The length

of prefix depends on the value f chosen for the diversity

of the system. Assuming that all of the attributes have

values from domains with y values, we have:

1

y

i

� (1� f) �

1

y

i+1

(1)

for some integer i, i � n, where n is the number of at-

tributes. The length of the prefix is i.

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 0.6 0.7 0.8 0.9 1

C
or

e 
S

iz
e

Diversity

Figure 1: Core sizes as a function of diversity.

Using this scenario construction, we obtained the re-

sults shown in Figures 1 and 2. The system we assumed

has 1,000 hosts, and eight attributes with four possible

values each. We only show the results for one sample

generated for each value of f , but we did not see signif-

icant variation across samples. Figure 1 shows the core

size averaged over cores for all of the hosts for different

values of the diversity parameter f . We also show in this

graph the maximum and the minimum core sizes for every

value of f . Note that the average core size remains around

2 for all the values of f . From this observation, we con-

clude even when the system presents low diversity, the de-

gree of replication necessary to cope with vulnerabilities

is small. Low diversity, however, may impact reliability.

For f = 0:999, many of the cores do not cover all of the

attributes because the attribute space is so highly skewed

(there is only one host that need not share the common

prefix). For all the other values of f , including f = 0:95,

all of the cores obtained covered all the attributes.

Figure 2 show the amount of storage available for dif-

ferent values of f . The y axis plots the largest value of k

such that there is a host that must be in k cores given the

core compositions that we computed. This means that that

there will be hosts that will be able to backup only F=k

data. As expected, k increases as f approaches 1, but for

f = 0:995 the load drops because not all attributes could

be covered, and so the reliability is lower.

0

10

20

30

40

50

60

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 S
to

ra
ge

Diversity

Figure 2: Storage load as a function of diversity.

To determine a bound on f for a real system, [One]

claims that over 93% of the hosts that access a popular

web site run some version InternetExplorer. This is the

most skewed distribution of software they report (the sec-

ond most skewed distribution is the percent of hosts run-

ning some version of Windows, which is 90%). There

are vulnerabilities that attack all versions of InternetEx-

plorer [Sec], and so f for such a collection of hosts can be

no larger than 0:93.

Note that as one adds attributes that are less skewed,

they will contribute to the diversity of the system and re-

duce f . If we consider a system with only two attributes:

web browser (with 14 values, from the list at [One]) and

operating system (with 11 values, again from [One]) then

for this value of f we have an average core size of 2:03, a

maximum core size of 3, and k = 5.

5 Further Work

In this paper, we have explored the feasibility of us-

ing a cooperative remote backup system called Phoenix

as effective approach for surviving Internet catastrophes.

Phoenix uses data redundancy, a model of dependent host

4



vulnerabilities, and distributed storage in a cooperative,

peer-to-peer system. Using a simulation model we have

shown that, by performing informed placement of repli-

cas, Phoenix provides highly reliable and available coop-

erative backup and recovery with low overhead: with as

few as 2 replicas, the system can backup and recover at

least the equivalent of 20% of storage contributed by each

host in the system for a rich distribution of potential host

exploits.

To implement Phoenix in practice, however, we must

address a number of design issues. Phoenix needs to se-

cure replicated data to ensure data privacy using encryp-

tion; in contrast to file sharing systems and other peer-to-

peer backup systems, Phoenix does not share data across

users. It needs to ensure fairness of storage allocation

across users. We need to more carefully model the set

of vulnerabilities and allow for dynamically adding and

removing attributes. Finally, Phoenix itself needs to be

protected from large-scale attack. We are currently work-

ing on addressing these issues in a prototype design and

implementation of Phoenix.

References

[BBST01] C. Batten, K. Barr, A. Saraf, and S. Treptin.

pstore: A secure peer-to-peer backup system.

Unpublished report, December 2001.

[CN02] L. P. Cox and B. D. Noble. Pastiche: mak-

ing backup cheap and easy. In Proceedings

of Fifth USENIX Symposium on Operating

Systems Design and Implementation, Boston,

MA, December 2002.

[Com] Computer Economics. 2001 Economic

Impact of Malicious Code Attacks.

http://www.computereconomics.

com/cei/press/pr92101.html.

[CPM+98] Crispan Cowan, Calton Pu, Dave Maier,

Jonathan Walpole, Peat Bakke, Steve Beat-

tie, Aaron Grier, Perry Wagle, Qian Zhang,

and Heather Hinton. StackGuard: Automatic

Adaptive Detection and Prevention of Buffer-

Overflow Attacks. In Proceedings of the 7th

USENIX Security Conference, pages 63–78,

San Antonio, Texas, January 1998.

[Datom] Datathought website,

http://www.datathought.com.

[JM03] F. Junqueira and K. Marzullo. Synchronous

consensus for dependent process failures. In

Proceedings of the ICDCS 2003, to appear,

2003.

[Mic] Microsoft Corporation. Microsoft windows

update. http://windowsupdate.

microsoft.com.

[MS02] David Moore and Colleen Shannon. Code-

Red: a Case Study on the Spread and Vic-

tims of an Internet Worm. In Proceedings of

the 2002 ACM SICGOMM Internet Measure-

ment Workshop, pages 273–284, Marseille,

France, November 2002.

[MVS03] David Moore, Geoffrey M. Voelker, and Ste-

fan Savage. Internet Quarantine: Require-

ments for Containing Self-Propagating Code.

In Proceedings of IEEE Infocom 2003, April

2003.

[Nec97] George C. Necula. Proof-Carrying Code.

In Proceedings of the 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Pro-

gramming Languages (POPL ’97), pages

106–119, Paris, France, January 1997.

[One] OneStat.com. Provider of web analytics.

http://www.onestat.com.

[Proom] Protect-data website, http://www.protect-

data.com.

[Sch90] F. B. Schneider. Implementing fault-tolerant

services using the state machine approach: a

tutorial. ACM Computing Surveys, Decem-

ber 1990.

[Sec] SecurityFocus. Vulnerability database.

http://securityfocus.com.

[Sym] Symantec. W32.nimda.a@mm. http:

//www.symantec.com/avcenter/

venc/data/w32.nimda.a@mm.html.

[WFBA00] David Wagner, Jeffrey S. Foster, Eric A.

Brewer, and Alexander Aiken. A First

Step towards Automated Detection of Buffer

Overrun Vulnerabilities. In Proceedings of

the Network and Distributed System Secu-

rity Symposium, pages 3–17, San Diego, CA,

February 2000.

5




