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ABSTRACT OF THE DISSERTATION 
 

Computational Network Models of Neocortical Seizures 
 

by 
 

Flavio Frohlich 

Doctor in Philosophy in Biology / Specialization in Computational Neurobiology 

University of California, San Diego, 2007 

Professor Terrence J. Sejnowski, Chair 

 
Epilepsy is a common neurological disorder that is characterized by bouts of 

synchronized hyperactivation of neuronal networks. The development of new 

treatment modalities is highly desirable but unfortunately hindered by our limited 

understanding of the pathophysiology of epileptic seizures. The complexity of 

neuronal dynamics make computational models an important tool in the research 

aimed at unraveling the mechanisms underlying epileptogenesis and epileptic seizures. 

In this dissertation, computational network models were used to study the dynamics of 

(1) pathological cortical network reorganization and (2) cortical seizures. We found 

that changes in synaptic properties by homeostatic plasticity after partial 

deafferentation can explain clinical electroencephalographic observations associated 

with diffuse and focal central nervous system pathologies. We then show that 

initiation, maintenance, and termination of cortical seizures can be explained by the 

dynamic interaction between neural activity and extracellular potassium concentration. 

Together, this dissertation provides a comprehensive set of specific hypotheses that 

can now be tested in experiments to further our understanding of neural 

pathophysiology. 



 

1 

INTRODUCTION 

This dissertation describes our computational modeling studies aimed at 

contributing to an improved understanding of the pathophysiology of cortical 

neurological disorders. Computational models do not replace animal models and 

clinical studies of epilepsy but rather complement them by providing powerful tools 

for the study of the underlying pathological dynamics. We focus on general 

mechanisms that may apply to epileptogenesis and seizure dynamics in many different 

clinical manifestations of aberrant synchronous cortical network activity. 

 

Chapter 1 describes our studies on pathological reorganization that may make 

cortical networks seizure-prone. Specifically, we investigated the role that homeostatic 

plasticity may play in response to loss of afferent input. In case of activity decrease by 

deafferentation, we found that homeostatic scaling of recurrent excitatory synapses 

recovered target activity levels but caused the occurrence of qualitatively different 

network dynamics. In Section 1-1, we present the network dynamics shaped by 

homeostatic synaptic scaling in response to deafferentation of a random subpopulation 

of neurons. In these models, we found a threshold for network reorganization in terms 

of the relative fraction of cells deafferented for which aberrant synchronized network 

dynamics occurred after synaptic scaling. This pathological network reorganization 

was characterized by periodic network-wide activation with bursts in individual cells 

and impaired information transmission capabilities. These results led us to suggest that 

periodic electroencephalographic (EEG) complexes in a broad range of central 
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nervous system (CNS) may have homeostatic plasticity in response to the decrease in 

afferent input as a shared underlying mechanism. In Section 1-2, we introduce 

“structured deafferentation” where we removed the afferent input to a contiguous 

subpopulation of neurons to model cortical undercut that is commonly used to study 

posttraumatic epileptogenesis. In agreement with experimental data (e.g. Nita et al., 

2006), we found that homeostatic plasticity introduced synchronous periodic 

activation of the intact subpopulation and aperiodic network-wide activation that 

originated at the border between intact and deafferented subnetworks. We suggest that 

these network-wide discharges may correspond to interictal discharges during 

posttraumatic epileptogenesis. In summary, the first part of this dissertation shows that 

homeostatic synaptic scaling may be the underlying mechanisms for several clinically 

ubiquitous EEG phenomena that have so far lacked an explanation. 

 

Importantly, however, the findings presented in Chapter 1 do not explain 

cortical seizures but rather explain how networks reorganize and may become seizure-

prone. Chapter 2 then addresses the dynamics and underlying mechanisms of cortical 

seizures. In Section 2-1 we discuss in depth the merits of a historic hypothesis 

concerning seizures, the so-called “potassium accumulation hypothesis” (e.g. Fertziger 

and Ranck, 1970). This hypothesis puts positive feedback interaction between neural 

activity and extracellular potassium concentration [K+]o in the limelight as an 

explanation for seizure initiation, propagation, and termination. This hypothesis has 

failed to gain widespread support until few years ago when new studies on animal 
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models of epilepsy and human tissue began to implicate aberration of the [K+]o 

homeostasis apparatus in cortical epilepsies. Initial computational models of single 

cells that included ion concentration homeostasis mechanism (Kager et al., 2002, 

2000) further contributed to a revived interest in the role of [K+]o dynamics in 

epilepsy. In our own work, we studied the more complex scenario of a cortical 

network that included [K+]o dynamics (Frohlich et al., 2007b). Based on our results, 

we propose a more subtle but similarly comprehensive role of [K+]o in cortical 

epilepsies. In Section 2-2, we then recast the common dynamic model of cortical 

seizures as instabilities by providing evidence for our hypothesis that the occurrence 

of seizures in fact is the result of the switching to an additional stable network state. 

Interestingly, this stable seizure state only occurred in models that included the [K+]o 

regulation apparatus. Section 2-3 is concerned with the evolution of seizures, in 

particular of neocortical seizures that are characterized by slowly alternating epochs of 

spike-wave (bursting) activity and fast runs (tonic firing). We show that a bistability 

between bursting and tonic firing for intermediate levels of [K+]o in pyramidal cell 

models is the underlying mechanism that causes these slow state transitions to occur. 

In Section 2-4, we provide more detailed mathematical insight into both the intrinsic 

burst mechanism in our models and the bifurcation landscape that mediates this 

bistability between tonic firing and bursting. Finally, in Section 2-5, we show how 

activity-dependent changes in synaptic properties can mediate seizure termination in 

our potassium model of cortical seizures. In summary, we here present a 
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comprehensive model of cortical seizures that are mediated by the dynamic interaction 

between neural activity and [K+]o.  

 

In the appendix, we present experimental work unrelated to the study of 

epilepsy. We developed a novel recording technique based on multisite extracellular 

recording electrodes to monitor the action potential firing of a population of neurons 

with single-unit resolution in the acute hippocampal slice preparation. This method 

may serve as the important link between more traditional in vitro studies concerned 

with single-cell dynamics and population-oriented in vivo physiology. 

 

It is our hope that the computational modeling work presented in this 

dissertation further motivates an increased and rejuvenated effort to better understand 

the pathophysiological dynamics of both epileptogenesis and seizures. Throughout this 

dissertation, we try to clearly state the predictions derived from our modeling work 

and to what extent they have already been confirmed by previous experiments and to 

what extent new experiments are required for further probing of the dynamic 

mechanisms we propose. Tightly integrated into the broader field of epilepsy research, 

we hope to eventually contribute with our work to the development and application of 

new treatment modalities for the prevention, treatment, and cure of the epileptic 

condition. 



 

5 

1 Pathological Cortical Network Reorganization 

In this first part, we used cortical deafferentation as a model system to 

investigate cortical network reorganization that may lead to pathological firing 

patterns in CNS disease. Our key hypothesis was that homeostatic plasticity - in 

response to deafferentation - induces changes in the network structure that lead to 

pathological synchronized discharges by a shift from afferent to recurrent excitation. 

In the first section of this chapter, we investigate how homeostatic plasticity after 

deafferentation of a random subset of cortical cells can lead to periodic discharges 

similar to the periodic EEG discharges observed in a multitude of CNS disorders 

associated with diffuse cell loss. In the second section of this chapter, we then study 

deafferentation of a contiguous subset of neurons as a model of partial deafferentation 

by cortical undercut. After recovery of the target activity level by homeostatic 

plasticity, the network exhibited periodic activation in the intact subnetwork and 

aperiodic network-wide bursts of activity that originated at the border between intact 

and deafferented cortex and that qualitatively resembled interictal spikes. In summary, 

the work in this chapter suggests that homeostatic plasticity may play a key role in 

pathological cortical network reorganization and may explain several EEG phenomena 

associated with CNS disorders that have so far lacked a mechanistic explanation. 
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1.1 Pathological Effect of Homeostatic Synaptic Scaling on Network 
Dynamics in Diseases of the Cortex 

Slow periodic EEG discharges are common in central nervous system (CNS) 

disorders. The pathophysiology of this aberrant rhythmic activity is poorly understood. 

We used a computational model of a neocortical network with a dynamic homeostatic 

scaling rule to show that loss of input (partial deafferentation) can trigger network 

reorganization that result in pathological periodic discharges. Decrease in average 

firing rate in the network by deafferentation was compensated by homeostatic synaptic 

scaling of recurrent excitation among pyramidal cells. Synaptic scaling succeeded in 

recovering the network target firing rate for all degrees of deafferentation (fraction of 

deafferented cells), but there was a critical degree of deafferentation for pathological 

network reorganization. For deafferentation degrees below this value, homeostatic 

upregulation of recurrent excitation had minimal effect on the macroscopic network 

dynamics. For deafferentation above this threshold, however, slow periodic oscillation 

appeared, patterns of activity were less sparse, and bursting occurred in individual 

neurons. Also, comparison of spike-triggered afferent and recurrent conductances 

revealed that information transmission was strongly impaired. These results suggest 

that homeostatic plasticity can lead to secondary functional impairment in case of 

cortical disorders associated with cell loss. 
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INTRODUCTION 

Repetitive low frequency discharges is the most common 

electroencephalographic (EEG) abnormality in a broad spectrum of diseases with 

central nervous system (CNS) manifestation (e.g. encephalitis, tumors) (Bauer and 

Pieber, 1974; Niedermeyer, 2005). These periodic EEG patterns at low frequencies 

occur over prolonged epochs, in contrast to epileptic seizures that are usually transient 

and evolving (Kuroiwa and Celesia, 1980). Although periodic complexes are a typical 

clinical finding in encephalopathies associated with structural cerebral damage (Fisch, 

1999), the underlying pathophysiology remains unknown (Brenner and Schaul, 1990; 

Niedermeyer, 2005). Understanding the cellular and network basis of this aberrant 

EEG state may facilitate the development of clinical intervention approaches to reduce 

disruption of neuronal function during cortical disease. 

 

The cortex is endowed with feedback control mechanisms (i.e. homeostatic 

plasticity) that maintain activity levels of neurons and neural circuits (Davis, 2006). In 

particular, fast excitatory synaptic transmission is enhanced by synaptic scaling in 

response to prolonged activity blockage (Desai, 2003; Rich and Wenner, 2007; 

Turrigiano, 2007). We here used computational modeling to investigate how 

homeostatic plasticity reorganizes network dynamics in response to decrease in 

afferent input caused by transient or irreversible loss of presynaptic neurons. In our 

model, global homeostatic plasticity upregulates the recurrent excitatory synaptic 

conductances to compensate for deafferentation of a random subset of neurons (partial 
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deafferentation). We hypothesized (1) that the average firing rate of the network is 

recovered, and (2) that the distribution of firing rates across cells and the fine temporal 

structure of the spike patterns in individual cells differ from before deafferentation. 

According to our hypothesis, these changes in network dynamics are due to the shift in 

balance between afferent and recurrent excitatory inputs caused by partial 

deafferentation (reduced afferent excitation) and synaptic scaling (increased recurrent 

excitation, Houweling et al. 2004). Of particular interest is the interaction between 

deafferented and intact cells during this homeostatic reorganization process. Our 

hypothesis is motivated (1) by recent studies of homeostatic plasticity in vivo (Mrisc-

Flogel, 2007; Goeal et al. 2007; Desai et al. 2002) and (2) by observation of gradual 

recovery of activity levels over weeks with altered EEG patterns in response to 

cortical deafferentation (Nita et al., 2006, 2007; Topolnik et al., 2003a, b). 

 

In our simulations, we found a critical degree of partial deafferentation 

(fraction of neurons deafferented) that determined the final outcome of homeostatic 

network reorganization. For deafferentation degrees below this threshold, network 

dynamics recovered without any qualitative reorganization that would predict 

macroscopic EEG aberrations. At the critical deafferentation degree, however, a 

relative abrupt change in network dynamic reorganization occurred with the following 

key characteristics that were absent in the intact and moderately deafferented network: 

(1) prominent periodic network activation, (2) decreased sparseness, (3) bursts of 

action potentials in individual cells, and (4) strongly nonlinear recovery time-course of 
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average firing rate. On the basis of these results, we suggest that the clinically 

ubiquitous periodic complexes in CNS disorders with cortical manifestation may be 

caused by a paradoxical inability of homeostatic plasticity to maintain sparse, 

asynchronous network activity in case of change in input structure by partial 

deafferentation. 

 

METHODS 

We used two-compartment conductance-based neuron models (Mainen and 

Sejnowski, 1996) as previously described in detail elsewhere (Frohlich and Bazhenov, 

2006; Frohlich et al., 2006) Briefly, neurons consisted of two electrically coupled 

compartments, the dendritic and axo-somatic compartment. The coupling strength of 

these two compartments determined the firing pattern of the cells in response to a 

depolarizing current injection (regular spiking for pyramidal cells, PYs, and fast-

spiking for inhibitory interneurons, INs). Each compartment was endowed with a set 

of ionic conductances to model a specific complement of ion channels. The axo-

somatic compartment contained transient voltage-gated sodium and delayed-rectifying 

potassium channels for spike generation (GNa = 3000 mS/cm2
, GKv = 200 mS/cm2), 

persistent sodium channels (GNaP = 4.0 mS/cm2) and voltage-independent potassium 

leak channels (GKl = 0.1 mS/cm2). The dendritic compartment included high-threshold 

calcium, calcium-activated potassium, slowly-activating potassium, persistent sodium, 

hyperpolarization-activated depolarizing mixed cationic, potassium leak, and mixed 

cationic leak ion channels (GHVA = 0.016 mS/cm2, GKCa = 3.5 mS/cm2
, GKm = 0.01 
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mS/cm2, GNaP = 4.0 mS/cm2, Gh = 0.05 mS/cm2, GKl = 0.01 mS/cm2, GL = 0.033 

mS/cm2). INs had a similar ion channel complement (different values for: GNa = 2500 

mS/cm2, GNaP = 0.0 mS/cm2 in both compartments, dendritic leak conductance GKl = 

0.005 mS/cm2, GHVA = 0.01 mS/cm2, GKCa = 0.3 mS/cm2, GKm = 0.0 mS/cm2). 

Equations and parameters for these ion channels and intracellular calcium dynamics 

were previously described in detail (Frohlich and Bazhenov, 2006). Network 

heterogeneity was introduced by drawing random values for the potassium leak 

conductance from a normal distribution (mean 0.01 mS/cm2, STD 0.001 mS/cm2 for 

PYs; mean 0.005 mS/cm2, STD 0.0005 mS/cm2 for INs). 

 

The cortical network model consisted of 80 PYs and 20 INs. Similar to 

previously studied network configurations (Bazhenov et al., 2002; Frohlich et al., 

2006), synaptic connectivity in the model was local such that each PY projected to 

five neighboring PYs on each side (both AMPA and NMDA receptor channels). Also, 

each PY targeted three neighboring INs (both AMPA and NMDA receptor channels) 

that in turn backprojected to eleven neighboring PYs (GABAA receptor channels). In 

addition, all PYs and INs received independent afferent input that was modeled by a 

100 Hz Poisson process. Postsynaptic receptor channels were modeled with a 

simplified first-order kinetic scheme of binding and unbinding of neurotransmitter 

described by instantaneous rise and exponential decay of synaptic conductances 

(Destexhe et al., 1994). To increase computational efficiency, each cell had a single 

synaptic conductance that was updated by the according change in conductance each 
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time a spike in one of the presynaptic cells occurred. Maximal total synaptic 

conductances per cell were chosen such that (1) both afferent input and network input 

contributed to the firing before deafferentation and (2) average cross-correlogram was 

flat before deafferentation. Synaptic conductances for connections within the network 

were gAMPA(PY-PY) = 3.2 nS, gNMDA(PY-PY) = 0.32 nS, gAMPA(PY-IN) = 3.0 nS, gNMDA(PY-IN) 

= 0.30 nS, gGABA(IN-PY) = 4.0 nS. These maximal synaptic conductances were divided 

by the number of synapses targeting a given cell to determine the unitary 

conductances. AMPAergic synapses between PYs included short-term depression with 

use constant U = 7% per action potential and exponential recovery with time-constant 

τ = 700 msec (Tsodyks and Markram, 1997). Afferent AMPAergic input conductances 

were set to gPY = 0.5 nS and gIN = 1.0 nS for PYs and INs, respectively.  

 

We modeled neuronal dysfunction with partial deafferentation. In case of 

deafferentation, the frequency of the afferent excitatory Poisson input was reduced 

from 100 Hz to 5 Hz. Afferent input was simultaneously reduced for all deafferented 

cells. We simulated networks with different fractions of neurons subject to 

deafferentation as a model of disease severity (deafferentation degree D with values 

between 10% and 100%). For example, a deafferentation degree D = 40% indicated 

that a random 40% of both PYs and INs were subject to reduced afferent excitatory 

synaptic input. The subset of deafferented cells was random. We simulated four 

different random deafferentation patterns for each deafferentation degree. Firing rate 

analysis was based on the average of these four simulations. In all simulations, firing 
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rate of the network was computed every four seconds by averaging over all PY spikes 

in the preceding four second interval. AMPA conductances G between PYs were then 

updated at these checkpoints by adding 

∆ G = ε (f*-f) G, 

where ε is the scaling rate (here ε = 0.05), f* is the target firing rate (5 Hz), and f is the 

current average firing rate. This homeostatic scaling rule ensured multiplicative 

scaling of the synapses. In the limit where the activity mismatch f*-f is small, our 

homeostatic plasticity rule represents a discrete time implementation of a first-order 

exponential recovery scheme. If not stated otherwise, time-points in the figures 

correspond to the checkpoints where the firing rate was computed and the synaptic 

conductances were updated based on this homeostatic scaling rule. The choice of the 

nature of this updating rule was motivated by (1) the computational impossibility to 

implement the biological time-scale for homeostatic scaling in such a model (hours to 

days) and (2) the fact that homeostatic regulation of synaptic conductances is 

sufficiently slower than the effect of a change in conductance on the firing behavior. 

We therefore separated the two time-scales and approximated the slow synaptic 

regulation with a discrete-time update scheme. Intervals between update time-points 

can therefore be considered of arbitrary length in time and are only meaningful in 

comparison to other simulations with the same update rule (e.g. different 

deafferentation degrees). 
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Simulated local field potential (lfp) was computed by averaging PY spike 

trains smoothed with a Gaussian kernel (STD 20 msec). For presentation purposes, the 

lfp trace was filtered with a fifth order Butterworth bandpass filter (0.5 Hz, 400 Hz). 

The spectrogram of the lfp trace was determined by the Matlab (The MathWorks, 

Natick, MA) function specgram with five second window size and two second overlap 

between windows. Spectrogram was smoothed by ten-fold oversampling and two-

dimensional linear interpolation. Averaged cross-correlograms were calculated by 

computing the cross-correlation between all possible pairs of 40 randomly selected PY 

smoothed spike trains. Mean cross-correlograms are shown in black and the 

corresponding SEM in gray. Burst index quantifies the relative fraction of interspike 

intervals (ISIs) shorter than 50 msec in all PYs for a given four second interval. If not 

noted otherwise, figures show mean values (error bars: SEM) that were determined by 

pooling the four simulations with different random deafferentation patterns for a given 

degree of deafferentation. All analysis was performed with custom written Matlab 

(The MathWorks, Natick, MA) routines. 

 

RESULTS 

Homeostatic plasticity of excitatory synapses may control overall activity 

levels in neural circuits. Decrease in activity level caused by partial loss of excitatory 

input can be compensated by synaptic scaling of the remaining excitatory synapses. 

We studied how a dynamic homeostatic scaling rule for recurrent excitatory synapses 

reorganizes network dynamics in case of input loss by partial deafferentation. In our 
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computational model of a cortical circuit, homeostatic synaptic scaling succeeded in 

recovering target average frequency of pyramidal cells for all deafferentation degrees 

tested (D = 10% to 100%). We found, however, substantial reorganization of fine 

temporal structure of spike trains, network synchronization, and firing rate 

distributions as a function of deafferentation degree. The interplay between cells with 

intact input and deafferented cells shaped the dynamics of the recovery from 

deafferentation. While in reality homeostatic plasticity occurs on the time-scale of 

many hours to days, we had to artificially warp time in our model (i.e. recovery of 

target firing rate occurs faster than in reality) due to technical constraints. The 

underlying approximation of separation of time-scales is well justified by the fact that 

the effect of changes in synaptic conductances on firing rates is immediate while 

homeostatic scaling triggered by changes in activity levels occurs on a much slower 

time-scale (see also Methods section). 

 

Severe deafferentation (D = 90%) of a cortical network model composed of 

pyramidal cells (PYs) and fast-spiking inhibitory interneuron (INs) caused an initial 

drop in activity level (Figure 1-1, arrow head) with subsequent recovery of activity by 

upregulation of recurrent synaptic excitation (Membrane voltages of PYs and INs 

color-coded in Figure 1-1A, local field potential (lfp) in 1-1B, smoothed time-

dependent frequency decomposition in 1-1C). Before deafferentation, the network 

exhibited asynchronous firing (low amplitude lfp, mean firing rate of PYs 5.03 Hz, 

STD 3.77 Hz) in response to independent Poisson input to all PYs and INs (frequency: 
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100 Hz). After deafferentation, as recovery of activity level by synaptic scaling 

progressed, slow periodic activation of the network occurred (oscillations in lfp in Fig. 

1-1B and red band around 1 Hz in spectrogram of lfp in Fig. 1-1C). Eventually, 

average PY firing rate recovered to 5.02 Hz (STD 2.83 Hz). In contrast to before 

deafferentation, individual PYs fired bursts of action potentials (Figure 1-2: zoom in 

of network activity after scaling from Fig. 1-1A, sample membrane voltage trace in 

Figure 1-2B, dominant peak for small interspike intervals in Figure 1-2D “after 

scaling”). The different temporal fine-structure of the network activity before 

deafferentation and after synaptic scaling is reflected in the averaged cross-

correlograms (Figure 1-2C, average in black, gray lines delimit SEM). Before 

deafferentation, network activity was asynchronous (flat trace). After synaptic scaling, 

the cross-correlogram revealed periodic modulation of firing activity with an 

approximate period of 950 msec (measured from central peak to first sideband peak, 

oscillatory cross-correlogram). Synaptic scaling changed not only the spiking patterns 

but also the distribution of firing rates across PYs. Before deafferentation, the 

distribution of resting potentials defined a decaying distribution of firing rates with a 

peak for cells with firing rate below 1 Hz (Figure 1-2E left). After scaling, the peak in 

distribution of firing rates was shifted to higher rates (Figure 1-2E right). 
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Figure 1-1 Network reorganization after partial deafferentation (deafferentation degree 
D = 90%). (A) Activity map of all 80 PYs (top) and 20 INs (bottom). Cool and hot 
colors indicate hyperpolarization and depolarization, respectively. Deafferentation 
with consecutive drop in network activity (arrow head). Recovery of target firing rate 
by homeostatic scaling. Prominent periodic network activation. (B) Simulated local 
field potential (lfp). Same time-scale as in (A). High-frequency activity with low 
amplitude before deafferentation. Drop in lfp level after deafferentation (arrowhead). 
Recovery of activity level is characterized by slow high-amplitude lfp oscillations. (C) 
Spectrogram of lfp. Same time-scale as in (A). Cool and hot colors indicate low and 
high power on arbitrary logarithmic scale, respectively. Drop in power after 
deafferentation (arrowhead). Prominent peak in power around 1 Hz after homeostatic 
scaling (dark red band). 
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Figure 1-2 Network activity after deafferentation (D = 90%) and homeostatic synaptic 
scaling (zoom in of Fig. 1-1A, after synaptic scaling). Average firing frequency across 
network matched target rate f* = 5 Hz. (A) Strong periodic activation of entire PY 
population (bands of lighter color). (B) Sample membrane voltage trace exhibits low 
frequency bursting. Some action potentials are truncated due to finite sampling of 
membrane voltage. Same time-scale in (A) and (B). (C) Average cross-correlogram 
for PY activity before deafferentation (flat line) and after homeostatic scaling 
triggered by deafferentation (oscillatory trace). (D) Histogram of interspike intervals 
(ISIs) before deafferentation (left) and after homeostatic scaling in response to 
deafferentation (right). Dominant peak for short ISI after scaling indicates bursting in 
individual cells. (E) Firing rate distribution across the network. Peak for very low 
firing rate before deafferentation (left) is shifted to higher frequencies and less 
prominent after synaptic scaling (right). 
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We expected the steady-state network dynamics after synaptic scaling to 

depend on the deafferentation degree. Therefore, we simulated the same network for 

different deafferentation degrees (Figure 1-3A rastergrams, Figure 1-3B average 

cross-correlograms; network dynamics after synaptic scaling). For weak 

deafferentation (D = 20%, top row), we found no oscillatory firing (flat average cross-

correlogram). Very mild oscillatory modulation of instantaneous firing rates occurred 

for moderate deafferentation (D = 40% and D = 60%, middle rows). For strong 

deafferentation (D = 80% and D = 100%, bottom rows), however, we observed 

pronounced synchronized periodic network activation. In summary, cross-

correlograms progressively showed more oscillatory structure with growing period for 

increasing deafferentation degree (Figure 1-3B, from top to bottom). Thus, the more 

severe the deafferentation, the slower and the more pronounced the periodic activation 

patterns of the network became. Interestingly, the oscillatory structure of the cross-

correlograms did not increase linearly with deafferentation degree. Instead, we 

observed a rather abrupt transition between D = 60% (low amplitude cross-

correlogram) and D = 80% (high amplitude cross-correlogram). 
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Figure 1-3 (A) Rastergrams for PYs after homeostatic scaling in response to different 
deafferentation degrees (D = 20% to D = 100% from top to bottom). (B) Average 
cross-correlograms show very little oscillatory activity up to D = 60%, however for D 
= 80% and D = 100% strong pronounced oscillations occurred. Oscillation frequency 
decreased for increasing degree of deafferentation. 
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So far, we have discussed the “steady-state” network dynamics after recovery 

of the target firing rate by synaptic scaling. Now, we consider the temporal evolution 

of activity during synaptic scaling (Figure 1-4). The following key observations 

become evident: (1) Firing rates as a function of time for increasing degrees of 

deafferentation (color coded in Figure 1-4A, D = 20% to D = 100% panels from left to 

right) show that recovery of overall activity levels by synaptic scaling is shaped by 

cells with high firing rate before deafferentation (continuous horizontal bands of hot 

colors in Figure 1-4A). After synaptic scaling, non-zero firing rates occurred 

preferentially in cells in close proximity to these highly excitable cells. (2) For strong 

degrees of deafferentation (D = 80% and D = 100%), network-wide activation 

occurred and cells that were silent before deafferentation became active (decreased 

sparseness in comparison to before deafferentation).The observed reorganization of 

global network dynamics in response to partial deafferentation by homeostatic 

synaptic scaling is a result of interplay between excitability of deafferented and intact 

PYs cells. We therefore compared the initial firing rates α before deafferentation 

(measure of excitability because all cells received the same amount of afferent input), 

firing rates β immediately after deafferentation, and firing rates γ after recovery of 

target activity level by synaptic scaling.  
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Figure 1-4 (A) Firing rates as a function of time for 80 PYs (panels correspond to 
increasing degrees of deafferentation from left to right). Hot colors indicate high firing 
rates; cool colors indicate low firing rates. For severe deafferentation, network-wide 
activation occurred (D = 80% and D = 100%). Arrow heads indicate three time points 
considered in panels (B) and (C): firing rates α before deafferentation, firing rates β 
shortly after deafferentation and firing rates γ after homeostatic scaling in response to 
deafferentation. (B) Scatter plots with firing rates β immediately after deafferentation 
as a function of firing rates α before deafferentation. Red squares represent firing rates 
of deafferented cells, blue triangles indicate intact cells (not subject to 
deafferentation). Black lines denote identity lines (no change in firing rate caused by 
deafferentation). Intact cells showed increasing decreases in firing rate for 
progressively more severe degrees of deafferentation (from left to right) as indicated 
by blue triangles falling below identity line. Deafferented cells fell silent if they 
exhibited low firing rate before deafferentation (red squares on abscissa). (C) Same 
representation as in (B) but with firing rates γ after synaptic scaling on ordinate. Intact 
cells show recovery and overcompensation (blue triangles above unit line). 
Deafferented cells partially recovered their prior firing rate α before deafferentation 
(red squares closer to unity line than in (B). For severe degrees of deafferentation, 
however, less excitable cells with low firing rates before deafferentation showed 
overcompensation (red squares above unity line for D = 80% and 100%). 
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We next established the relative contributions of deafferented and intact cells 

to the recovery of the target firing rate as function of their excitability. In theory, it is 

conceivable that reorganization is mediated by (1) intact cells increasing their firing 

rate, (2) deafferented cells recovering their firing rate, or (3) a combination of the 

latter two mechanisms in any temporal order. To test which hypothesis is correct, we 

separated intact (blue triangles) from deafferented cells (red squares) and plotted firing 

rate β (immediately after deafferentation) and firing rate γ (after synaptic scaling), 

respectively, as a function of initial firing rate α (before deafferentation) (from left to 

right in Figure 1-4B and C, from 20% to 100% deafferentation; β as a function of α in 

Figure 1-4B, γ as a function of α in Figure 1-4C). Intact cells (blue) suffered little loss 

of activity for mild to moderate deafferentation (firing rates β crowded along the 

diagonal). For stronger deafferentation, however, rates of PYs with intact input fell 

consistently below the diagonal (e.g. Figure 1-4B, D = 80%). Quite in contrast, the 

drop in firing rate for deafferented cells (shown in red) depended on their intrinsic 

excitability (i.e. firing rate α before deafferentation). Specifically, PYs with low α 

turned silent in response to deafferentation and thus clustered on the x-axis. Other PYs 

(i.e. those with relatively high firing rate α before deafferentation) also suffered from a 

decrease in firing rate, but stayed active after deafferentation. After homeostatic 

scaling (Figure 1-4C), PYs with intact afferent input assumed firing rates γ above 

initial firing rates α for all degrees of deafferentation (blue triangles above diagonal). 

For deafferented PYs, we found two distinct patterns of behavior depending on the 

degree of deafferentation. Relatively little increase in firing rates caused by synaptic 
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scaling occurred in case of weak to moderate deafferentation (by comparison of Panels 

B and C). In case of strong deafferentation, however, we observed complete recovery 

of initial firing rates for some fraction of deafferented cells (red squares on and above 

diagonal for D = 80% and D = 100%). 

 

Next, we quantified the temporal dynamics of the activity levels of intact and 

deafferented cells. Specifically, we considered the case of 80% deafferentation in 

more details in order to determine the time-course and relative order of changes in 

firing frequency in (1) intact cells, (2) deafferented cells with initial firing frequency 

below target rate (α < f*), and (3) deafferented cells with initial firing frequency above 

target firing rate (α > f*). We computed the frequency shift for each cell by 

subtracting α from β and γ, respectively (histograms of frequency shifts in Figure 1-

5A). As expected, the peaks of these distributions shift towards more positive values 

as time progressed (by comparison of top to bottom row in Panel A). Time-courses of 

mean values determined from frequency shift histogram fits exhibited sigmoid shapes 

for all three subpopulations (Figure 1-5B). Half-maximum frequency shift occurred 

almost simultaneously for cells with intact input (blue triangles) and deafferented cells 

with α > f* (red diamonds). Only with a marked delay, however, deafferented cells 

with α < f* increased their firing rates (red squares in 5B). Thus, the more excitable 

deafferented cells (α > f*) contributed to the early increase in activity levels after 

deafferentation and the less excitable cells (α < f*) mostly mediated the later increase  
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Figure 1-5 Recovery time-course of firing rates as a function of their input (intact in 
blue, deafferented in red) and of their excitability (low excitability with initial firing 
rate α below target firing rate f*, high excitability with initial firing rate α above target 
firing rate f*). Frequency shift represents the arithmetic difference between firing rate 
at a given time-point and the firing rate α before deafferentation (negative and positive 
values indicate undercompensation and overcompensation, respectively). (A) 
Distribution of frequency shifts β-α after deafferentation (top row) and frequency 
shifts γ - α after scaling (bottom row). Lines indicate Gaussian distribution fits. Both 
intact (left) and less excitable deafferented cells (middle) showed overcompensation 
(peak in distribution for positive frequency shifts). (B) Same analysis as in (A) for all 
time-points from deafferentation (time-point 6) to steady-state after homeostatic 
scaling (time-point 20). Plots show mean frequency shifts determined by Gaussian 
distribution fits as in (A). Vertical dashed lines indicate 50% of maximal shift 
determined from logistic functions fits. Both intact (blue triangles) and more excitable 
cells (red squares) reached 50% recovery at very similar time points. However, less 
excitable deafferented cells (red diamonds) reached 50% recovery at a later time-point 
(D = 80%, left). In case of D = 40% (right panel), however, less excitable cells 
contributed very little to recovery of the target firing (flat line for red diamonds). 
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in activity levels. In contrast, for D = 40% (Figure 1-5C), recovery of target activity 

level was almost exclusively mediated by intact PYs and deafferented PYs with α > 

f*. In summary, instead of further upregulating the firing rate of the more excitable 

cells in more deafferented networks (e.g. D = 80%), the scaling process recruited PYs 

that were silent or displayed only low activity level before deafferentation. We 

therefore found that reorganization of cortical network dynamics by synaptic scaling 

consists of several distinct processes occurring in a well-defined sequence as a 

function of the severity of partial deafferentation. 

 

So far, we have established that recruitment of less excitable deafferented cells 

constituted a major difference between moderate and severe deafferentation by 

comparison of the time-courses of the respective mean firing rates for different 

deafferentation degrees. We therefore expected different firing rate distributions after 

synaptic scaling as a function of deafferentation degree. Specifically, our previous 

analysis suggests that strong deafferentation degree will reduce the fraction of silent 

cells (decreased sparseness). We quantified the time-course of firing rates on a cell-by-

cell basis by plotting the time-dependent frequency histograms for D = 20% to 100% 

(Figure 1-6A, panels from left to right, black boxes indicates date re-plotted in Panels 

B and C). We had chosen the initial distribution of PY membrane voltages such that 

for intact afferent input a limited fraction of cells remained silent (hot colored patches 

in top left corners of panels in Figure 1-6A). 
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Figure 1-6 (A) Distribution of firing rates as a function of time for different 
deafferentation degrees (from 20% to 100%, from left to right). Black boxes indicate 
data that are replotted in (B) and (C). (B) Fraction of silent cells (firing rate below 1 
Hz) as a function of time (intact cells in blue, deafferented cells in red). (C) Firing rate 
histograms after recovery of target firing rate by synaptic scaling. 
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Deafferentation transiently increased the number of silent cells. Indeed, while 

for mild to moderate deafferentation the fraction of silent cells recovered (in fact, in 

some cases to values higher than before deafferentation), more severe deafferentation 

qualitatively changed the firing rate distribution of the network such that all cells were 

active, resulting in a shift of the peak of the firing rate distribution as a function of 

time (Figure 1-6A, right most panel). We next considered the time-course of silent 

cells (split into two subpopulations, cells with intact input and deafferented cells, in 

blue and red, respectively, Figure 1-6B). In case of mild deafferentation, we observed 

a quite linear decrease in silent cells during synaptic scaling, mostly mediated by 

intact cells (blue band becomes narrower and red band assumes constant width as time 

progresses). This indicates that the network recovered its target activity level in part 

by activating cells with intact input that were silent right after deafferentation. Yet, for 

more severe deafferentation, we found a strongly nonlinear time-course of fraction of 

silent cell. In particular, the fraction of silent cells (average firing rate below 1 Hz) 

sharply increased after deafferentation, but then decreased to values lower than before 

deafferentation (vertical slice in Figure 1-6A, time-courses in Figure 1-6B). Thus, 

most of the silent cells, including the deafferented ones, became active during 

recovery of target activity level. Accordingly, frequency histograms after synaptic 

scaling exhibited a decrease in fraction of silent cells and a sharpening of the 

distribution (Figure 1-6C) in case of severe deafferentation. 
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Figure 1-7 (A) Average PY network firing rate as a function of time. Each line 
corresponds to a deafferentation degree from D = 10% to D = 100%. The higher D, the 
stronger the initial drop of activity after deafferentation at time-point 5. Linear 
recovery time-course in gray, nonlinear recovery time-course in black. (B) Time-
course of normalized PY-PY coupling (crosses: data, lines: logistic function fits) for D 
= 10% to D = 100%. Gray and black shading as in (A). More severe deafferentation 
causes more rapid scaling of recurrent excitatory synapses. (C) Time-course of 
fraction of silent cells for D = 10% to D = 100%. Gray and black shading as in (A). 
Similar clustering into linear and nonlinear time-course as in (A). (D) Average 
network frequency as a function of fraction of silent cells. Scatter plot of all time-
points in (A) and (C). (E) Burst index (fraction of ISIs smaller 50 msec) as a function 
of time for D = 10% to D = 100%. Sample membrane voltage traces for D = 10% 
(single spikes) and D = 100% (bursts of spikes), respectively (2 sec). (F) Steady-state 
value of burst index (dark filled circles) and fraction of silent cells (open squares) as a 
function of D. 
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The average firing rate of the network as a function of time (Figure 1-7A) 

permitted a similar classification into more linear and more nonlinear time-courses 

(shown in gray and black, respectively). Specifically, for deafferentation degrees up to 

60% (curves in gray), the network firing rate recovered with approximately even rate 

with only modest fluctuations in slope. In case of more severe deafferentation (D = 

70% and higher), however, an initially relative flat time-course is followed by an 

epoch of high slope recovery (curves in black). In other words, we found linear firing 

rate time-course for weak to moderate deafferentation and nonlinear firing rate time-

course for strong deafferentation. The deafferentation degrees for which this strong 

nonlinearity occurred corresponded to the values of deafferentation for which we 

found pronounced network oscillations after synaptic scaling (Figure 1-3). These two 

distinct recovery modes were not a simple consequence of how the PY-PY coupling 

was scaled by the dynamics of the homeostatic plasticity rule. Time-courses of the 

recurrent AMPA conductance on PYs were well fitted with sigmoids for all degrees of 

deafferentation (Figure 1-7B) independent from whether the firing rate time-course 

was linear or not. Therefore, the scaling rule itself was not the direct source of the 

non-linear recovery behavior for severe deafferentation. Rather, the time-course of the 

fraction of silent cells (Figure 1-7C, summary plot from data in Figure 1-6B, for D = 

10% to 100%), exhibited strong similarity to the time-courses of the average network 

firing rate (Figure 1-7A). A scatter plot of average network firing rates and fraction of 

silent cells indeed exhibited tight correlation (Figure 1-7D). Thus, the two different 

network behaviors for mild/moderate and severe deafferentation, respectively, are 
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driven by the differential recruitment of additional cells that resulted in decreased 

fraction of silent cells (i.e. sparseness) after severe deafferentation. 

We then determined how this finding related to the observed bursting for 

strong deafferentation (Figure 1-2) by computing the relative fraction of interspike 

intervals smaller than 50 ms (burst index) as a function of time after deafferentation 

for D = 10% to 100%. Similar in time-course to the fraction of silent cells, burst index 

strongly increased for D > 60 % (Figure 1-7E). A comparison of steady-state values of 

fraction of silent cells and burst index after recovery of target firing rate as a function 

of deafferentation shows that, as the fraction of silent cells falls below the value before 

deafferentation, cells in the network fire bursts of action potentials (Figure 1-7F). We 

therefore found a transition point that determines whether the network recovered with 

limited pathological consequences (no bursting, sparseness maintained, no pronounced 

oscillation with synchrony) or not. In our case, this transition point occurred between 

D = 60% and 70%.  

We expected pathological reorganization by homeostatic plasticity after severe 

deafferentation to have a negative impact on the network ability to respond to afferent 

input. We quantified and compared the impact of afferent and recurrent excitatory 

input on spiking in PYs by calculating the spike-triggered average afferent and 

recurrent excitatory conductance. This measure allows for a direct quantitative 

comparison of the role of afferent and recurrent excitation in driving spiking of 

postsynaptic cells. For example, if recurrent excitation is sufficiently weak that the 

afferent input alone determines when a postsynaptic cell spikes, we would expect in 



  31 

 

average a flat, low-amplitude spike-triggered conductance for recurrent excitation and 

a pronounced transient increase in spike-triggered afferent conductance. In other 

words, a comparison of the peak values of the spike-triggered conductances serves as 

a measure for the relative importance of afferent and recurrent excitation in 

determining the network dynamics. Here, afferent excitation was dominant before 

deafferentation (Figure 1-8A, left; total excitatory conductance in black, afferent 

excitatory conductance in red, recurrent excitatory conductance in blue) and after 

synaptic scaling in response to deafferentation for moderate degrees of deafferentation 

(Figure 1-8A, middle, D = 40%). Recurrent excitation, however, dominated after 

synaptic scaling in case of more severe deafferentation (Figure 1-8A, right, D = 80%). 

Integrated spike-triggered total excitatory conductances for different degrees of 

deafferentation were fairly constant (Figure 1-8B, black line) The more deafferented 

the network was, however, the stronger the integrated recurrent excitatory 

conductance was (Figure 1-8B, blue line). A comparison of the peak values further 

emphasized the critical degree of deafferentation between 60% and 70% (Figure 1-

8C). At this point, the peak recurrent excitation exceeded the peak afferent excitation. 

Thus, pathological network reorganization was mediated by a shift between afferent 

and recurrent excitation that resulted in poor information transmission in case of 

severe deafferentation since the influence of the afferent input on spiking was very 

limited (low amplitude spike-triggered conductance). This shift, therefore, may 

explain deficiency of normal cortical function as a result of brain disorders associated 

with cell loss. 
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Figure 1-8 Spike-triggered conductances. (A) Afferent excitatory (red), recurrent 
excitatory (blue), and total (black) spike-triggered synaptic conductance for PYs (left: 
before deafferentation; middle: D = 40%; right: D = 80%). (B) Integrated spike-
triggered afferent (red), recurrent (blue), and total (black) excitatory conductance. (C) 
Peak values of spike-triggered afferent (red) and recurrent (blue) excitatory 
conductance. 
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DISCUSSION 

Homeostatic plasticity describes the regulation of synapses and intrinsic 

properties to counteract changes in activity levels and to maintain overall stability of 

synaptic strength (Turrigiano, 2007; Turrigiano et al., 1998; Turrigiano and Nelson, 

2004). Here, we studied homeostatic plasticity as a putative mechanism for cortical 

network reorganization that occurs during CNS disorders associated with neural 

dysfunction. We assumed (1) that the loss of inputs that occurs in cortical disorders 

with structural damage is random, (2) that a homeostatic rule scales the recurrent 

excitatory synapses on PYs to match the average firing rate of the network before 

disease onset, and (3) that disease severity can be modeled by varying fractions of 

deafferented cells. On the basis of these assumptions, we simulated cortical network 

models subject to different deafferentation degrees and found a critical threshold for 

pathological network reorganization. For deafferentation more severe than this critical 

value, we observed periodic network-wide discharges with bursts of action potentials 

in individual cells after homeostatic scaling of recurrent excitatory synapses. Our 

findings therefore represent an unexpected and seemingly paradoxical effect of 

homeostatic plasticity. In fact, the target frequency of the whole network was indeed 

recovered in our model but the spike timing was substantially altered such that there 

were periods of high activity interleaved with epochs of relative quiescence in case of 

severe deafferentation (periodic EEG complexes). As a result of this pathological 

network reorganization, representation of afferent input in the spiking of the network 
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was severely diminished since the network dynamics were dominated by recurrent 

excitation (Figure 1-8). 

 

Computational network models of homeostatic plasticity have almost uniquely 

focused on the role of synaptic scaling in regulating and stabilizing overall synaptic 

excitability in presence of Hebbian learning (Lazar et al., 2007; Rabinowitch and 

Segev, 2006a, b; Toyoizumi et al., 2007; Triesch, 2007). Computational models of 

tinnitus suggested involvement of homeostatic plasticity (Dominguez et al., 2006; 

Schaette and Kempter, 2006), but there has been little work that examines the role of 

homeostatic plasticity in more realistic, conductance-based models of cortical 

networks. In a previous computational modeling study (Houweling et al., 2004), 

cortical deafferentation was simulated to examine homeostatic plasticity as a potential 

cause of posttraumatic epilepsy. A recent study with cultured hippocampal slices 

provided further support for this hypothesis (Trasande and Ramirez, 2007). In contrast 

to this previous modeling work, we have now studied the time-course of network 

reorganization after partial deafferentation in order to understand the specific roles of 

intact and deafferented cells as function of time after disease onset. Since we here 

studied disorders of the cortex that incapacitate a presumably random fraction of 

neurons, the partial deafferentation scheme is different from the one previously used to 

investigate posttraumatic epilepsy (Houweling et al., 2004) where all cells in the 

network were subject to the same degree of reduction in input. 
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A priori, the heterogeneity of input levels introduced by partial deafferentation 

permits two orthogonal strategies of recovering target network activity levels. In the 

first scenario, intact cells carry the burden of recovering target activity levels by 

increasing their firing rate above their initial activity level before partial 

deafferentation. In the second scenario, deafferented cells recover their firing rate. In 

our simulations, we found the two scenarios to occur in a well-defined temporal 

sequence. In case of mild to moderate deafferentation, we only observed concurrent 

upregulation of firing rates of both intact cells and more depolarized deafferented 

cells. Only in case of severe deafferentation, less excitable deafferented cells also 

became active. Thus, network reorganization in response to partial deafferentation is 

not a linear process. Rather, we found a non-linear regime that essentially mediated a 

threshold for pathological reorganization in case of more severe deafferentation. 

 

The goal of our work is to provide hypotheses to experimentalists and 

clinicians about the underlying mechanism of aberrant brain activity in response to 

CNS disorders. As for any computer simulation, the conclusions drawn are inherently 

limited by the accurateness and sophistication of our model. We purposefully did not 

attempt to closely match any specific experimental data set in order to keep the model 

as general as possible. Rather, we used a modified version of a standard cortical 

network model that consisted of locally connected, conductance-based pyramidal cells 

and inhibitory interneurons. Nevertheless, two novel aspects of our model deserve 

closer scrutiny. First novelty in our model was the choice of homeostatic scaling rule. 
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Most likely, homeostatic plasticity describes a range of different phenomena at 

different spatial scales and with different expression loci (Turrigiano, 2007). Activity 

levels could be sensed and regulated at the synapse, cell, or network level. We 

modeled homeostatic plasticity at the network level [e.g. mediated by a diffusible 

factor as in (Stellwagen and Malenka, 2006)] by designing a simple rule that 

prescribed incremental scaling of synaptic conductances proportional to their size and 

to the mismatch between target and current average frequency. Exploratory 

simulations indicated that more local homeostatic rules are likely to result in different 

patterns of network reorganization after partial deafferentation. In vitro studies of 

neural cultures exposed to activity blockage showed concurrent upregulation of 

AMPA synapses and downregulation of GABAA synapses (Kilman et al., 2002; 

Mody, 2005; Turrigiano et al., 1998). Little is known, however, about homeostatic 

scaling of inhibition in vivo (Echegoyen et al., 2007; Mody, 2005) and we therefore 

did not include such a mechanism in our model. Second novel design choice was the 

random pattern of partial deafferentation as a model of the effect of cortical disease on 

neural firing. This choice is based on the phenomenological approximation that a 

broad class of CNS disorders cause diffuse random cell loss and thus partial 

deafferentation of postsynaptic circuits. Although our model certainly represents a 

simplification of the underlying processes, it is sufficiently refined and accurate to 

provide new hypotheses and insights about the pathophysiology of slow periodic 

discharges in a broad range CNS disorders affecting cortex. 
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There is little in vivo data available on the dynamics of cortical circuits in CNS 

disease at the cellular and synaptic level. The findings from our modeling work 

therefore represent predictions that require comprehensive experimental testing. 

However, there exists ample literature on EEG patterns in patients with CNS disorders 

[reviewed in (Niedermeyer, 2005)] that we used to qualitatively assess our model 

simulation results. Our model predicts the following EEG characteristics: (1) slow 

periodic discharges in severely deafferented networks (Figure 1-1 and 1-2), (2) 

decrease in frequency of periodic discharges during disease progression (Figure 1-3), 

and (3) delayed onset of network reorganization in comparison to disease progression 

(Figure 1-7). The clinical EEG literature confirms all three predictions. Periodic 

discharges at low frequencies are a hallmark of many types of CNS disorders 

associated with transient and permanent cell loss (Niedermeyer, 2005). Delayed onset 

and recovery of EEG during recovery from CNS disease has been observed for 

example in case of herpes simplex infections (Illis and Taylor, 1972; Upton and 

Gumpert, 1970).  

 

Little progress has been made in the debate about the nature of periodic 

discharge types and mechanisms (Chong and Hirsch, 2005; Hirsch et al., 2005; Jirsch 

and Hirsch, 2007). The variety of structural damages has hindered the development of 

a unifying theory about the pathophysiology (Gurer et al., 2004; Kalamangalam et al., 

2007; Yemisci et al., 2003). We found that homeostatic plasticity is a very likely 

candidate mechanism underlying pathological reorganization of cortical network 
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dynamics in CNS disease. Hopefully, our findings on reorganization dynamics and 

critical value of disease progression for occurrence of pathological macroscopic 

oscillations will serve as a starting point for the development of early intervention 

approaches to prevent secondary cortical dysfunction caused by homeostatic plasticity. 
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1.2 Interictal Discharges Originate at the Border between Intact and 
Deafferented Cortex 

INTRODUCTION 

Traumatic brain injury (TBI) is a common cause of epilepsy. Although certain 

risk factors for posttraumatic epilepsy (PTE) have been identified, the 

pathophysiology of PTE remains unknown (D'Ambrosio and Perucca, 2004; Garga 

and Lowenstein, 2006). Interestingly, interictal discharges start to occur early after 

TBI but spontaneous seizures with clinical manifestation usually appear only 

significantly later (Staley and Dudek, 2006). Interictal discharges represent 

synchronous bursts of action potentials (paroxysmal depolarizing shift) by neurons in 

epileptic cortical networks and have served as clinical EEG marker for many decades. 

The possible role of interictal discharges in epileptogenesis after TBI remains unclear. 

 

Deafferentation by cortical undercut is used to study cortical network 

reorganization in response to a substantial decrease in afferent input by injury 

(Bazhenov et al., 2007). Surgically isolated cortical slabs (“islands”) developed 

paroxysmal bursting over the time-course of hours to days (Echlin and Battista, 1963; 

Sharpless and Halpern, 1962). Slices from deafferented cortex (Hoffman et al., 1994) 

revealed changes in both intrinsic properties (Prince and Tseng, 1993) and excitatory 

synaptic transmission (Li and Prince, 2002) (formation of new excitatory circuits by 

axonal sprouting (Jin et al., 2006; Salin et al., 1995) and enhanced release probability 

(Li et al., 2005)). Recently, in vivo recordings over several weeks after partial 
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deafferentation in chronically implanted animals showed an increase in spontaneous 

seizure occurrence (Nita et al., 2006, 2007). The possible confounder that spontaneous 

seizures also occur in absence of cortical undercut in case of ketamine-xylazine 

anesthesia was eliminated by recordings in the unanaesthetized head-fixed animal 

(Nita et al., 2007). 

 

Despite these advances in the development of animal models of TBI and PTE, 

the mechanisms that turn a network silenced by (partial) deafferentation into a 

network that exhibits hypersynchronous paroxysmal activity have remained unclear. 

Based on a computational model of an isolated cortical slab, we previously suggested 

that homeostatic plasticity (Rich and Wenner, 2007; Turrigiano, 2007) may be a key 

player in posttraumatic epileptogenesis (Houweling et al., 2005). This counter-

intuitive pathological effect of homeostatic plasticity resulted from the upregulation of 

recurrent excitatory synapses to compensate for the loss in afferent excitatory input by 

simulated axotomy. As a consequence of this shift from afferent to recurrent 

excitation, paroxysmal periodic network activation occurred for uniform 

deafferentation of the entire cortical network (Houweling et al., 2005). More recently, 

we found similar periodic activity after deafferentation of a random subpopulation of 

cells (Chapter 1.1). So far, these computational models have not taken into account the 

geometry of partial deafferentation in experimental cortical undercuts. 
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We here studied the effect of homeostatic plasticity on the border zone 

between intact and deafferented cortex in a computational network model with local 

synaptic connectivity. We found two distinct types of posttraumatic network dynamics 

after homeostatic scaling. In cases of mild to moderate lesion sizes, the deafferented 

cortex remained quiet and the intact cortex compensated for the loss in activity. For 

larger lesions, we additionally found irregular network-wide bursts that qualitatively 

resemble interictal spikes. These discharges were initiated at the border to the injured 

cortex and propagated through the deafferented cortex. 

 

METHODS 

The computational model used in this study has been previously described in 

details elsewhere (Frohlich and Bazhenov, 2006; Frohlich et al., 2006; Mainen and 

Sejnowski, 1996). Briefly, the network consisted of two-compartment conductance 

based models of pyramidal cells (PYs) and fast-spiking inhibitory interneurons (INs). 

The axo-somatic compartment of both PYs and INs included a voltage-gated sodium 

(PY: GNa = 3000 mS/cm2, IN: GNa = 2500 mS/cm2), a delayed-rectifier potassium (GKv 

= 200 mS/cm2), and a leak conductance (GKl = 0.1 mS/cm2). The dendritic 

compartment was endowed with high-threshold calcium, calcium-activated potassium, 

slowly-activating potassium, persistent sodium, hyperpolarization-activated 

depolarizing mixed cationic, potassium leak, and mixed cationic leak conductances 

(PY: GHVA = 0.016 mS/cm2, IN: GHVA = 0.01 mS/cm2; PY: GKCa = 3.5 mS/cm2
, IN: 

GKCa = 0.3 mS/cm2; PY: GKm = 0.01 mS/cm2, IN: GKm = 0.0 mS/cm2; PY: GNaP = 4.0 
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mS/cm2, IN: GNaP = 0.0 mS/cm2; Gh = 0.05 mS/cm2; PY: GKl = 0.01 mS/cm2, IN: GKl 

= 0.005 mS/cm2; GL = 0.033 mS/cm2). Synaptic transmission was modeled with a 

simplified first-order kinetic scheme with immediate rise and exponential decay of 

synaptic conductances. All excitatory connections had a fast AMPA and a slow 

voltage-dependent NMDA component (total conductances: gAMPA(PY-PY) = 3.2 nS, 

gNMDA(PY-PY) = 0.32 nS, gAMPA(PY-IN) = 3.0 nS, gNMDA(PY-IN) = 0.30 nS). Inhibition was 

mediated by fast GABAA synaptic conductances (gGABA(IN-PY) = 4.0 nS). Synaptic 

connectivity was local (footprint radii: PY-PY: 5; PY-IN: 1; IN-PY: 5). AMPA 

synapses were endowed with short-term depression (7% use constant; 700 msec 

recovery time-constant). 

 

Both PYs and INs received random afferent input (Poisson process with rate 

100 Hz; conductances: gPY = 0.5 nS and gIN = 1.0 nS). At deafferentation, input 

frequency of a contiguous block of both PYs and INs was reduced to 10 Hz. A simple 

homeostatic scaling rule scaled GPY-PY such that the average firing rate of all PYs in 

the network eventually matched the target frequency f* = 5 Hz. Here, we only discuss 

the steady-state network dynamics after f* was recovered. 
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RESULTS 

We used a one-dimensional network of 80 PYs and 20 INs to study 

“posttraumatic network reorganization” mediated by homeostatic scaling of recurrent 

excitatory PY-PY synapses after partial deafferentation. In our model, a contiguous 

block of cells were deafferented (lesion size measured in fraction of deafferented cells 

D). Synaptic coupling strengths were set such that both the random afferent input and 

the recurrent connections within the cortical network contributed to the random firing 

behavior before deafferentation (average firing rate f = 5 Hz). 

In response to deafferentation of 80% of all PYs and INs (D = 80%), the 

average firing rate of the network dropped to 1.4 Hz (not shown). The homeostatic 

plasticity rule then scaled the excitatory PY-PY synapses (AMPA-type) such that the 

average target firing rate f* = 5Hz was eventually recovered. Although the average 

network firing rate was the same after homeostatic scaling as before deafferentation, 

we found substantial reorganization of network dynamics (Fig. 1-9A). Specifically, the 

firing behavior of intact (i.e. “non-deafferented”) and deafferented cells strongly 

differed (Fig. 1-9B). Intact cells fired rhythmic bursts of action potentials with a 

frequency of about 2 Hz (average cross-correlogram in Fig.1-9C, bottom panel). The 

deafferented subpopulation, however, was essentially silent with the occasional 

exception of massive network-wide burst discharges that occurred in irregular 

intervals (Fig. 1-9C, top panel). All of these bursts (“interictal spikes”) originated at 

the border between intact and deafferented cortex and invaded the deafferented cortex 

(cross-correlograms in Fig. 1-9D). 
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Figure 1-9 Increased activity in intact subpopulation and irregular network discharges 
in deafferented subpopulation after homeostatic scaling in response to partial 
deafferentation. (A) Activity map of 80 PYs (dark and hot colors correspond to 
hyperpolarized and depolarized membrane voltages, respectively); Top 80% PYs were 
subject to deafferentation; inputs to bottom 20% PYs remained intact. (B) Sample 
membrane voltage traces of PYs for same time interval (cell 16 with intact input, cells 
40, 60, and 80 were deafferented). (C) Average cross-correlograms for deafferented 
(top) and intact (bottom) subpopulation. S.E.M. shown in gray. (D) Cross-correlation 
of cell 16 at border between intact and deafferented cells with all deafferented (top) 
and intact (bottom) cells. 
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The appearance of these network-wide discharges depended on the relative 

fraction of deafferented cells D (i.e. lesion size). We found either of two distinct 

“posttraumatic” network-behavior types after homeostatic synaptic scaling. For D ≤ 

50%, homeostatic scaling recovered the target network firing rate without any 

significant suprathreshold activation of the cells silenced by deafferentation (Fig. 1-

10A, top panel, D = 50%). The intact cells exhibited synchronized periodic activation 

due to the increased excitatory PY-PY coupling. Thus, the injured cortex remained 

permanently quiet while the intact cortex compensated for the loss of activity caused 

by partial deafferentation. We call this outcome Type I Post-Traumatic Network 

Dynamics (rhythmic hyperactivity in intact subpopulation, silence in deafferented 

subpopulation). For deafferentation fraction D ≥ 60%, we found not only rhythmic 

bursts in intact cortex but also irregular network-wide bursts that propagated through 

the injured cortex (Type II Post-Traumatic Network Dynamics; Fig. 1-10A, middle 

panel, D = 60 %). For even larger lesions (e.g. D = 70% in Fig. 1-10A, bottom panel), 

the occurrence of these network-wide bursts remained irregular but increased in 

frequency. 
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Figure 1-10 Posttraumatic network reorganization as a function of fraction of 
deafferented cells (lesion size). (A) Raster plots of 80 PYs after homeostatic scaling in 
response to partial deafferentation. Top Panel: Top half of network is deafferented 
(intermediate lesion size, D = 50%). Recovery of target firing rate is almost 
exclusively mediated by intact cells. Middle Panel: Occasional burst of activity in 
deafferented subpopulation (“interictal discharge”) for D = 60%. Bottom Panel: 
Increased frequency of network-wide discharges (D = 70%) for larger lesions. (B) 
Average frequency of intact PY subpopulation. (C) Frequency of irregular discharges 
in deafferented network (determined over 10 sec window). (D) Average burst 
frequency in intact subpopulation. Determined from average cross-correlogram. (E) 
Scaling factor of recurrent AMPA-type PY-PY synaptic conductance GPY-PY. 
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We next quantified the firing behavior of the intact and deafferented 

subpopulations for relative deafferentation fractions D = 10% to D = 90%. Average 

firing rate of the intact subpopulation (Fig. 1-10B) increased with growing 

deafferentation fraction D as long as long as no network-wide bursts occurred (Type I, 

D ≤ 50%, Fig. 1-10C). The increased average firing frequency was not accompanied 

by a substantial increase in burst frequency in the intact subpopulation (Fig. 1-10D) 

but was rather mediated by activation of less excitable intact cells. For deafferentation 

fractions D that resulted in Type II network dynamics, however, intact firing rate grew 

very little for increasing deafferentation fractions D. In summary, network-wide bursts 

only occurred in case of large lesions for which the intact sub-network was incapable 

of fully recovering the target firings rate. 

 

These two different types of reorganization outcomes were also reflected in the 

amount of GPY-PY scaling that was required for recovering the target firing rate (Fig. 1-

10E). The slope of GPY-PY as a function of deafferentation fraction D was higher for 

Type I than for Type II. Thus, for excitatory synaptic conductances that were 

sufficiently strong to mediate network-wide bursts, minor additional scaling was 

sufficient to increase the frequency of network-wide bursts and recover the target 

network average. 

 

Importantly, we did not find the above discussed reorganization of a partially 

deafferented cortical network in case of weaker deafferentation where more of the 
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afferent input per deafferented cell was maintained (input frequency reduced to 50 Hz 

instead of 10 Hz). In the case of such weaker deafferentation, different network 

activity patterns emerged depending on the specific distribution of intrinsic 

excitabilities in a given simulation (two different cases, i.e. “Network 1” and 

“Network 2”shown in Figure 1-11). The average cross-correlograms of the spike trains 

of the deafferented cells exhibited different frequencies for the two networks (Figure 

1-11, Panel B). Despite these differences in reorganization outcome, we have never 

found consistent emergence of activity bursts that would have originated in the border 

zone and propagated through the deafferented subnetwork. Therefore, the model 

suggests that milder deafferentation may not have as devastating consequences as 

more severe deafferentation does. 
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Figure 1-11 (A) Two sample rastergrams of partially deafferented (D = 80%) networks 
in case of weaker deafferentation (i.e. more afferent input retained). Network 
dynamics differed from simulation to simulation depending on the specific random 
distribution of intrinsic excitability. Importantly, no consistent network-wide bursts 
emerged at the border between intact and deafferented subnetworks. (B) Average 
cross-correlograms for deafferented cells. Note the different oscillation frequencies. 
 



  50 

 

DISCUSSION 

Although the development of PTE appears to be a relatively slow process since 

first seizures may occur weeks to years after TBI, no successful clinical intervention 

has yet been found to hinder epileptogenesis after TBI. In particular, the prolonged 

prophylactic prescription of anti-epileptic drugs has mostly proven unsuccessful. The 

exact reasons for this disappointing finding remain unknown (D'Ambrosio and 

Perucca, 2004). 

 

Cortical undercut is a model of cortical deafferentation by TBI. We previously 

suggested homeostatic plasticity as a candidate mechanism for the development of 

paroxysmal rhythmic discharges in deafferented cortical networks. Computational 

models of uniformly deafferented cortex showed that homeostatic plasticity increased 

the excitatory recurrent synapses between PYs such that periodic network bursts 

occurred for severe deafferentation (Houweling et al., 2005). Recent experiments in 

vivo investigated the activity at the border between intact and deafferented cortex in a 

partially deafferented cortical gyrus (Nita et al., 2006, 2007). We here used a 

computational network model to study the spatio-temporal network dynamics at this 

border zone. We found two distinct types of posttraumatic network dynamics 

depending on the relative size of the deafferented population. The main difference 

between these two types of network dynamics was the occurrence of irregular bursts 

(interictal discharges) in the deafferented network for larger lesions. 
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Importantly, the direct comparison between experiment and computational 

model is hindered by the fact that our model does not replicate different natural 

oscillatory states (e.g. slow sleep oscillations). Nevertheless, two key qualitative 

features of the model are in agreement with the findings in the chronic deafferentation 

preparation (Nita et al., 2006, 2007): (1) development of enhanced activity in the 

relatively intact cortex next to the injury site and (2) activity propagation from the 

border between intact and deafferented cortex into the undercut gyrus. As for any 

computational model, the predictive power of our model is limited by the accurateness 

and level of details included. Although our model neglects many details about cortical 

fine structure, we are confident that the mechanism studied here is sufficiently general 

to be applicable in vivo. 

 

If homeostatic plasticity indeed plays a role in PTE it comes as little surprise 

that anti-epileptic drugs that reduce activity levels cannot prevent the development of 

PTE (Bazhenov et al., 2007). Rather, interventions that prevent homeostatic plasticity 

seem to deserve closer scrutiny as possible preventive measurements. In theory, both 

pharmacological interventions and electrical stimulation of deafferented networks may 

serve this purpose. Computational modeling as in this current study may become an 

important tool on the path towards a better understanding of PTE and the eventual 

development of effective prophylactic modalities. 
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2 Potassium dynamics in the cortex and epilepsy 

In this chapter, we present our studies on the role of extracellular potassium 

concentration [K+]o in cortical seizures. The first section provides a comprehensive 

review of the literature on the role of [K+]o seizure dynamics and links previous 

studies with more recent insights based on experiments and computational models. It 

concludes with a proposed research program to address a series of key unanswered 

questions. The remaining sections then present our original work on the topic. The 

second section focuses on seizure initiation and introduces a novel conceptual 

framework for seizure dynamics. The third section investigates tonic-clonic like 

transitions during cortical seizures. The fourth section describes the underlying 

dynamics of a pyramidal cell in elevated [K+]o. The fifth and last section contains 

material on a relevant but often ignored topic - seizure cessation. 
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2.1 New Insights on an Old Topic 

Although ion concentrations in the central nervous system are perturbed in a 

broad range of neurological disorders, the role of extracellular potassium 

concentration [K+]o in epilepsy has remained unclear. Historically, it was hypothesized 

that [K+]o is the causal factor for epileptic seizures. This so-called potassium 

accumulation hypothesis had initially been subject to substantial debate but has 

subsequently failed to find wide acceptance. However, recent studies on the 

pathophysiology of tissue from epileptic human patients and animal epilepsy models 

revealed aberrations in the [K+]o regulation apparatus. Computational models of 

cortical circuits that include ion concentration dynamics have acted as a catalyst for a 

renewed interest in the role of [K+]o in epilepsy. We here connect classical and more 

recent insights on [K+]o dynamics in cortex with the goal of providing starting points 

for a next generation of [K+]o research. Such research may ultimately lead to an 

entirely new class of anti-epileptic drugs that act on the [K+]o regulation system. 

 

Gradients between intracellular and extracellular ion concentrations are the 

basis for electrical signaling in the nervous system by means of transmembrane ion 

currents (Hille, 2001; Somjen, 2002). Since ion currents reflect net ion flux across the 

cell membrane, these concentration gradients would rapidly degrade in the absence of 

mechanisms to maintain intra- and extracellular ion concentrations. Although the 

central nervous system is endowed with powerful ion concentration homeostasis 

mechanisms, ion concentrations do not assume constant values in the living brain. 
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Rather, they change over time in an activity-dependent manner and therefore are 

dynamic variables. Aberrant ion concentration homeostasis has been linked to variety 

of severe neurological conditions that include epilepsy, stroke, hypoxic 

encephalopathy, and migraines (Hille, 2001; Somjen, 2002). 

 

As even minor fluctuations result in a measurable change in the K+ equilibrium 

potential and therefore K+ currents (Box 1), we here focus on extracellular potassium 

concentration [K+]o. Since K+-currents play an essential role in controlling neuronal 

excitability, it was initially hypothesized that [K+]o elevations are the cause of 

epileptiform activity (Fertziger and Ranck, 1970; Green, 1964). Measurements of 

[K+]o with K+ sensitive microelectrodes (KSMs, see Box 2) indeed showed increases 

in [K+]o of several millimolars during experimental seizures. These recordings, 

however, appeared not to meet criteria for a causal role of [K+]o in seizure initiation 

and termination since [K+]o increases seemed delayed relative to the seizure onset and 

[K+]o did not reach values where neurons would have been to depolarized to fire 

action potentials [see below, also e.g. (Somjen, 1979)]. As a consequence, interest in 

[K+]o dynamics and their role in epilepsy had mostly waned. 
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Intracellular potassium concentration [K+]i is high (ca. 130 mM) in comparison 
to the extracellular concentration [K+]o, which is typically around 3 mM in 
cortex. This concentration gradient defines the equilibrium potential EK (Nernst 
equation, top) for all potassium currents IK (bottom equation, GK is the 
conductance, Vm is the membrane potential). Changes in [K+]i have limited 
effect on the equilibrium potential (not shown) whereas changes in [K+]o can 
substantially depolarize the K+ reversal potential (right panel). 
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Box 2: Measuring [K+]o 

 

 
Typically, [K+]o is measured with potassium-ion selective 

microelectrodes (KSMs) (Neher and Lux, 1973; Vyskocil and Kriz, 1972; 

Walker, 1971). KSMs are usually double-barrelled glass electrodes. One barrel 

is filled with a column of potassium-selective ion exchanger and backfilled with 

KCl. The other barrel is filled with NaCl. The K+ dependent potential is 

determined by differential amplification of the signals from the two barrels. 

Half-max rise-time constants were measured to be smaller than 20 msec for a 

K+ source 10 µm away from the KSM (Lux and Neher, 1973). The tip of the 

KSM creates an unnatural deadspace in neural tissue and therefore the 

measured [K+]o values represent underestimates of the true values that would 

occur in the unperturbed case. Also, typically used K+ ion exchangers are 

sensitive to various neurotransmitters even in very low concentrations 

(Kuramoto and Haber, 1981). Recently, K+-selective fluorescent probes have 

been developed and applied to measure [K+]o dynamics during experimental 

spreading depression (Padmawar et al., 2005). Optical imaging represents an 

exciting new opportunity for non-invasive measurements of [K+]o signals. 
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Recently, however, an increasing number of studies on the pathophysiology of 

tissue from both animal epilepsy models and human epileptic patients have strongly 

pointed toward impairment of [K+]o homeostasis apparatus in a variety of epilepsies 

with different etiologies. These more recent results thus are in apparent conflict with 

the previous conclusion that denied [K+]o a significant role in cortical seizures. While 

many different explanations for these discrepancies are imaginable, we here argue that 

in-depth consideration of the interaction between [K+]o and neural activity 

demonstrates a crucial role of [K+]o in seizure dynamics. Indeed, computational 

models of cortical circuits that include ion concentration dynamics have provided 

novel insights in the complex interaction between neural activity and [K+]o. 

 

We structured the remainder of this review as follows. First, we briefly 

highlight some of the classical findings on [K+]o in cortex. We then review recent 

experimental and computational modeling findings on the role of [K+]o dynamics in 

epilepsy. The scope of this article is purposefully limited to hippocampal and 

neocortical networks since [K+]o dynamics in other preparations appear sufficiently 

distinct to deserve separate consideration. We conclude by proposing an integrated 

research approach to further clarify the role of [K+]o dynamics in epilepsy. 
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[K+]o MEASUREMENTS IN VIVO 

Initial studies on [K+]o were mostly performed in the anesthetized in vivo 

preparation (Lux and Neher, 1973; Moody et al., 1974; Prince et al., 1973). [K+]o 

increased in cortex in response to physiological stimuli. These findings indicated that 

[K+]o is not a parameter with a fixed value but rather a dynamic variable (Connors et 

al., 1979; Singer and Lux, 1975). Substantial [K+]o fluctuations were also found in cat 

suprasylvian cortex during slow oscillations under ketamine-xylazine anesthesia 

(Amzica and Steriade, 2000). Very few [K+]o recordings in the waking animal are 

reported in the literature. One group found surprisingly strong [K+]o transients in 

response to behaviorally relevant stimuli (Skinner and Molnar, 1983). The 

interpretation of these results, however, is hampered by the fact that KSMs are 

sensitive to even very low concentrations of neurotransmitters and neuromodulators 

(Kuramoto and Haber, 1981). Neurochemical changes in the awake animal in response 

to the stimuli used in that study (e.g. presentation of food or foot shocks) may have 

tainted the [K+]o recordings. During electrically or pharmacologically induced 

paroxysmal activity, [K+]o changed more substantially but never rose above a “ceiling 

value” of about 12 mM in the absence of spreading depression in the adult animal 

(Heinemann and Lux, 1977). 

 

According to the so-called “potassium accumulation hypothesis” (Fertziger 

and Ranck, 1970; Green, 1964), an initial [K+]o increase above a certain threshold 

triggers a positive feedback cycle that mutually boosts [K+]o and neural activity until 
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[K+]o reaches a value for which neurons are too depolarized to fire (Figure 2-1). 

However, the initial predications derived from this potassium accumulation hypothesis 

mostly eluded experimental verification. In fact, little evidence was found for the 

expected (1) [K+]o threshold for seizure initiation (but see Sypert and Ward, 1974), (2) 

monotonic increase in [K+]o during seizures, and (3) depolarization block of neurons at 

seizure cessation (Heinemann and Lux, 1977; Moody et al., 1974; Sypert and Ward, 

1974). Rather, dynamic changes in [K+]o appeared to be delayed in comparison to 

changes in neural activity. This delayed rise in [K+]o was interpreted as evidence for 

that increased [K+]o is result and not cause of cortical seizures. Also, [K+]o increased 

during tonic firing phases and decreased during clonic bursting phases of the 

electrographic seizure (Moody et al., 1974; Sypert and Ward, 1974) as shown Fig. 1C. 

Recently, the interpretation of these findings and the rejection of [K+]o as an important 

factor in seizure generation have been reconsidered in the light of methodological 

concerns and novel insights from computational models (Frohlich et al., 2007b; 

Somjen, 2004). 
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Figure 2-1 According to the potassium accumulation hypothesis, [K+]o fluctuates 
around a stable baseline (typically 3 mM) during physiological activity levels. A 
transient increase triggers the occurrence of a seizure during which [K+]o further 
accumulates. As a result, neurons become even more depolarized, fire more action 
potentials, and release even more K+ ions into the extracellular space. Eventually, 
these run-away dynamics (positive feedback) come to an end when the neurons are so 
depolarized that they can no longer spike due to sodium channel inactivation. At this 
point, the seizure terminates. Although the potassium accumulation hypothesis had 
originally been rejected, more recent computational studies of ion concentrations 
during seizures have provided more refined models that are partially based on such 
positive feedback dynamics. See also text. 
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IONIC MODELS OF EPILEPSY IN VITRO 

With the advent of the in vitro preparation, brain slices perfused with artificial 

cerebrospinal fluid (ACSF) mimicking the ionic composition as measured in vivo 

during seizures have become an important model system for the study of 

hypersynchronous activation (“ionic models”). While observations of in vitro 

“interictal” and “ictal” activity in ionic models do not represent a proof for a causal 

role of ionic disbalance in epileptogenesis, they show that changes of the extracellular 

ionic microenvironment are sufficient for network hyperactivation. Specifically, 

elevation of K+ concentration in the ACSF to 7.5 or 8.5 mM was sufficient to trigger 

both periodic network activation (“interictal spikes”) and in some cases events 

resembling electrographic seizures with a “tonic” firing and “clonic” bursting phase in 

hippocampus (Jensen and Yaari, 1997; Korn et al., 1987; Traynelis and Dingledine, 

1988). Furthermore, seizure-like events occurred in an all-or-none fashion depending 

on the degree of [K+]o increase evoked by extracellular electrical stimulation or focal 

potassium injection in a high [K+]o and low [Ca2+]o model (Konnerth et al., 1986; 

Yaari et al., 1986). These findings contrast with the presumed absence of a [K+]o 

threshold for seizure initiation in vivo. Also, brief [K+]o transients of 0.2 – 2.0 mM by 

focal K+ injection were sufficient to trigger fast network oscillations that lasted several 

seconds (LeBeau et al., 2002). 

 

Together, these ionic models illustrate that elevated [K+]o is clearly sufficient 

to trigger synchronized oscillatory activity at various frequencies in the hippocampal 
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networks in vitro. Nevertheless, it has remained mostly unclear how the observed 

epileptiform dynamics correspond to the in vivo situation. This limitation is of 

heightened concern when the activity-dependent changes of ion concentrations are 

studied since it is unknown how the presence of a practically infinite K+ source/sink in 

the form of the perfused ACSF affects the ion concentration dynamics. Clearly, ion 

concentrations are not tightly controlled by the perfusion as activity-dependent [K+]o 

fluctuations are routinely measured in vitro. Therefore, the interpretation of the above 

described findings as absolute levels of ionic concentrations required for initiation of 

epileptiform activity are difficult to justify in their direct application to the in vivo 

situation. While elevated [K+]o and decreased [Ca2+]o are most certainly useful models 

of the ionic microenvironment during epileptic seizures, manipulations such as the 

omission of magnesium in the ACSF or the pharmacological blockade of inhibition 

are more difficult to interpret in terms of their applicability in vivo. 

 

EFFECTS OF [K+]o ON NEURAL ACTIVITY 

The slice preparation provides a relatively controlled environment to study the 

dependence of intrinsic and synaptic properties on [K+]o. While we are far from 

having a complete picture of how the parameters of neurons and synapses depend on 

[K+]o, it is well established that a [K+]o increase in the range observed in vivo during 

electrographic seizures depolarizes neurons, decreases input resistance, and - 

importantly - can activate latent intrinsic bursting mechanisms in cortical pyramidal 

neurons. The changes in intrinsic firing properties have been best studied in 
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hippocampus where pyramidal cells in both CA1 and CA3 (Frohlich and Bazhenov, 

2006; Jensen et al., 1994) but not stratum oriens inhibitory interneurons (McBain, 

1994) can burst in the presence of elevated [K+]o. Further regional and cell-type 

specific variations can be expected but have not been explored. Elevated [K+]o also 

affects action potential propagation (Hablitz and Lundervold, 1981; Meeks and 

Mennerick, 2004; Poolos et al., 1987). For example, activity-dependent increases in 

[K+]o from postsynaptic cell firing modulates fiber recruitment and action potential 

propagation in the presynaptic Schaffer collaterals in hippocampus CA1 (Poolos et al., 

1987). This effect was first described in the cerebellum (Kocsis et al., 1983; Malenka 

et al., 1981). Interestingly, elevated [K+]o affects action potential propagation and thus 

transmitter release differently in glutamatergic and GABAergic axons in hippocampus 

(Meeks and Mennerick, 2004). 

 

Increases in [K+]o also directly affect synaptic inhibition. The reversal potential 

of GABA(A)-type inhibitory synapses depolarizes in elevated [K+]o (Jensen et al., 

1993; Thompson and Gahwiler, 1989) due to the reduced electrochemical driving 

force for the KCC2 co-transporter that extrudes chloride from the cytoplasm at low 

levels of [K+]o (DeFazio et al., 2000; Payne et al., 2003). However, in the case of low 

intracellular chloride concentration [Cl-]i and elevated [K+]o, KCC2 switches transport 

direction and aids [K+]o homeostasis by transporting  K+ ions back into cells at the 

price of intracellular Cl- accumulation (DeFazio et al., 2000; Jarolimek et al., 1999; 

Payne, 1997; Staley and Proctor, 1999). In addition to the KCC2-mediated change in 
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equilibrium potential, depolarization of postsynaptic cells by elevated [K+]o increased 

the GABAergic conductance due to inward rectification of the GABA(A) receptor 

channels (Jensen et al., 1993). 

 

Since KCC2 provides a key link between [K+]o and fast synaptic inhibition, it 

is particularly interesting that deficient KCC2 expression has been related to different 

types of cortical hyperactivity. For example, Depolarizing GABA(A) currents were 

found in human epileptic tissue from the subiculum (Cohen et al., 2002) and 

associated with reduced or absent KCC2 expression in subicular pyramidal cells 

(Huberfeld et al., 2007; Munoz et al., 2007; Palma et al., 2006). Also, impaired KCC2-

dependent Cl- extrusion ability was found in epileptic tissue in a model of injury 

induced epileptogenesis (Jin et al., 2005). Sustained activity in hippocampal slices 

downregulated KCC2 expression level by endogenous brain-derived neurotrophic 

factor (BDNF) action on tyrosine receptor kinase B (TrkB) (Rivera et al., 2004). 

Although the exact impact of KCC2 downregulation on [K+]o dynamics is not clear, 

the above findings implicate [K+]o in changes of fast inhibitory synaptic transmission. 

 

REGULATION OF [K+]o 

Mechanisms that contribute to [K+]o homeostasis under physiological 

conditions have been recently reviewed in detail (Kofuji and Newman, 2004). While 

the relative individual contributions are not fully known for cortex, it is clear that 

transporters (Na+/K+ ATPase, KCC2, and NKCC) on both neurons and astrocytes 
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(Kofuji and Newman, 2004), passive uptake through inward-rectifying potassium 

(Kir) channels on astrocytes (Butt and Kalsi, 2006), and diffusion in the extracellular 

space (Fisher et al., 1976; Lux and Neher, 1973; Nicholson et al., 2000) contribute to 

extracellular potassium homeostasis. The question whether [K+]o is regulated locally 

(K+ uptake) or whether K+ is moved to sites of low [K+]o by K+-currents through the 

glial syncytium (spatial buffering) is one of considerable debate and may depend on 

brain region (Kofuji and Newman, 2004). Simultaneous dual glial recordings 

combined with KSM measurements suggest the presence of spatial buffering in cortex 

in vivo during slow sleep oscillations and electrographic paroxysmal activity (Amzica 

et al., 2002). Such nonlocal K+ transport by glial cells may contribute to the spatial 

propagation of synchronized neural activity (Steriade, 2003b). The dissection of [K+]o 

homeostasis into its individual components has been hampered by the fact that activity 

levels are usually not controlled for, by the lack of specificity of the applied 

pharmacology, and by the technical pitfalls concerning selectivity of KSMs. 

 

Despite the experimental difficulties listed above, alterations of the potassium 

homeostasis apparatus represent an appealing hypothesis for explaining the 

pathophysiology of epilepsy given the role of [K+]o in regulating excitability (Pollen 

and Trachtenberg, 1970). While early measurements in artificially induced glial 

scarring remained inconclusive (Heinemann and Dietzel, 1984), there is now 

accumulating evidence for glial dysfunction in epileptic tissue from patients with 

temporal lobe epilepsies (Binder and Steinhauser, 2006). Density and inward 
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rectification of potassium current through glial Kir channel are reduced in patients 

with temporal lobe epilepsy accompanied by Ammon’s horn sclerosis (Hinterkeuser et 

al., 2000; Schroder et al., 2000). This finding is in agreement with previous, less direct 

studies that showed that barium, a Kir channel antagonist, had a reduced effect on 

[K+]o dynamics in slices from pilocarpine-treated rats and epileptic patients with 

sclerosis (Gabriel et al., 1998; Jauch et al., 2002; Kivi et al., 2000). 

 

The Tsc1GFAPCKO mouse model of tuberous sclerosis complex (TSC), a 

genetic disorder associated with multiple seizure types, was found to exhibit reduced 

Kir channel expression and accordingly decreased Kir current amplitudes in astrocytes 

(Jansen et al., 2005). Decreased glial Kir channel expression and reduced potassium 

buffering capacity were also found in an animal model of blood-brain barrier 

disruption (Ivens et al., 2007). A link between altered [K+]o homeostasis mediated by 

changes in Kir channels on astrocytes and posttraumatic epilepsy has also been 

suggested (D'Ambrosio et al., 1999), although this study has been questioned by some 

on methodological grounds (Santhakumar et al., 2003). Na+/K+ ATPase also 

contributes to [K+]o clearance. Ouabain application hindered clearance of stimulation 

induced [K+]o increases in olfactory cortex (Ballanyi et al., 1987) and hippocampus 

(D'Ambrosio et al., 2002). Although the exact roles of Na+/K+ ATPase with neuronal 

and glial location has not yet been fully determined, differential affinity for K+ suggest 

that mostly glial Na+/K+-ATPase is responsible for clearance of activity dependent 

changes in [K+]o. In samples from human epileptic patients, overall activity of Na+/K+-
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ATPase was reduced and K+ sensitivity of glial Na+/K+-ATPase was lost (Grisar et al., 

1992). Loss of function mutations of the ATP1A2 gene that codes for the alpha 2 

subunit of the Na+/K+ ATPase were found in families with familial hemiplegic 

migraine and benign familial infantile convulsions (Vanmolkot et al., 2003). Recent 

evidence suggest that the glial water channel aquaporin-4, AQP4, (Amiry-Moghaddam 

and Ottersen, 2003) may also play a role in [K+]o homeostasis. Clearance of elevated 

[K+]o after orthodromic stimulation was slower and hyperthermia-induced epileptic 

seizures were of higher intensity in alpha-syntrophin knockout mice that exhibited 

disrupted AQP4 localization (Amiry-Moghaddam et al., 2003). Similarly, prolonged 

seizure duration and extended [K+]o transients during seizures (Padmawar et al., 2005) 

and spreading depression (Binder et al., 2006; Padmawar et al., 2005) were observed 

in AQP4 -/- knockout mice. Measurements of changes in extracellular volume fraction 

in neocortical slices by intrinsic imaging combined with KSM measurements 

(Niermann et al., 2001) further support the link between water transport and [K+]o 

clearance. 

 

In summary, there is an increasing number of studies suggesting an important 

link between aberrant [K+]o regulation and epileptogenesis in a broad variety of human 

epilepsies and animal models. While it is unclear whether the observed alterations are 

a cause or an effect of epileptiform activity, there is little doubt that the further study 

of [K+]o may be key to a better understanding of epileptogenesis. 
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UNDERSTANDING THE DYNAMICS 

The original consideration of [K+]o as a key element in epileptogenesis was 

mostly based on the question of whether increases in [K+]o are a cause or an effect of 

epileptiform activity. This conceptual framework seems ill posed as neural activity 

and [K+]o are intimately linked through complex feedback loops. Unfortunately, 

however, feedback dynamics are notoriously hard to study in experimental set-ups. 

Computational models, however, have recently played a central role in the analysis of 

such feedback interactions. We here review some of the main modeling results to 

illustrate the power of computational models in studying the role of [K+]o dynamics in 

epileptic seizures. 

 

Historically, computational models mostly served the study of [K+]o dynamics 

by focusing on mechanisms of extracellular K+ clearance. These initial models did not 

consider the effect of activity-dependent [K+]o increases on neural activity (but see 

Whisler and Johnston, 1978 for a pioneering exception) and therefore avoided the 

complexity of feedback dynamics (e.g. Dietzel et al., 1989; Gardner-Medwin, 1983; 

Odette and Newman, 1988; Vern et al., 1977). Although the conclusions in these 

studies were not uniform, these models contributed to the important insight that 

mechanisms different from diffusion must also be involved in [K+]o regulation (see 

discussion above). Nevertheless, the exact role of K+ diffusion is not yet fully clear. 

For example, in vitro experiments suggest that K+ diffusion can synchronize otherwise 

unconnected neural populations (e.g. Lian et al., 2001). Models of neuronal coupling 
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via K+ transients in the absence of synaptic transmission (Lebovitz, 1996; Park and 

Durand, 2006) support the relevance of extracellular spatial structure. 

Compartmentalization of the extracellular space and inhomogeneity of potassium 

channel localization may require more detailed modeling of microenvironments with 

explicit consideration of electrodiffusion (Qian and Sejnowski, 1990). 

 

More recent models include the feedback between neural activity and [K+]o 

(Bazhenov et al., 2004; Frohlich and Bazhenov, 2006; Frohlich et al., 2006; Kager et 

al., 2002, 2000). In these models, individual neurons are endowed with ion channels 

described by the commonly used conductance-based formalism (Hodgkin and Huxley, 

1952). This modeling approach allows the detailed quantification of K+ ions entering 

the extracellular space via ion channels. Additionally, each cell is surrounded by an 

extracellular compartment that includes a [K+]o regulation apparatus (Na+/K+-ATPase 

and glial buffer). Ion concentrations are dynamically updated and the corresponding 

equilibrium potentials computed. The first single-cell models with ion concentration 

dynamics (Kager et al., 2002, 2000) included detailed neuronal morphology but a 

limited number of ion-channel types (reviewed in Somjen, 2002). In response to 

stimulation, these model neurons exhibited sustained afterdischarges (bursting) in the 

case of weakened Na+/K+-ATPase capacity. The authors focused on different recovery 

time-constants of [K+]o and [Na+]i at the time-scale of individual burst as the 

underlying mechanism of these self-sustained “clonic” discharges since the model did 

not include ion channels mediating intrinsic bursting. In the case of enhanced inward 
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currents in the dendrites, self-sustained prolonged depolarization (“spreading-

depression-like”) occurred after a critical [K+]o level (“ignition point”) was reached. 

The key insight from this model was that the interaction dynamics between ion 

concentrations and neural activity can lead to self-sustained pathological neural 

activation even in the case of an isolated cell (in this case “clonic” bursting and 

“spreading-depression”). From a dynamic system viewpoint, the bursting represents a 

stable oscillatory state since it lasted infinitely. The spreading-depression-like episode, 

however, is the result of an unstable positive feedback loop, similar in nature to the 

original [K+]o accumulation hypothesis. The main limitations of these models are (1) 

the absence of a more realistic ion channel composition and (2) the lack of network 

interaction. 

 

These points were addressed by the incorporation of [K+]o regulation 

mechanisms in standard models of cortical pyramidal cells, PYs, and fast-spiking 

inhibitory interneurons, INs (Bazhenov et al., 2004). In comparison to the models 

discussed above, these PY and IN models were of simplified morphology but had a 

more comprehensive set of ion channels (Bazhenov et al., 2004; Frohlich and 

Bazhenov, 2006) such that intrinsic bursting occurred for elevated [K+]o in agreement 

with the experimental literature. Specifically, persistent sodium and high-threshold 

calcium ion channels were critical for the depolarization at the burst onset. This 

depolarization then caused a burst of action potentials before Ca2+-activated potassium 

current was sufficiently activated to mediate burst termination (Bazhenov et al., 2004; 
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Frohlich and Bazhenov, 2006). In this model, prolonged intense stimulation caused 

[K+]o to increase. After termination of stimulation, a single PY exhibited a transient 

after-discharge that was structured into two distinct consecutive phases, i.e. bursting 

and tonic firing (Bazhenov et al., 2004; Frohlich et al., 2006). Yet, in contrast to the 

single-cell model, a network of PYs and INs exhibited slow state transitions between 

bursting and tonic firing (Fig. 2-2A-C) that qualitatively resembled sequences of 

tonic-clonic discharges during seizures (Frohlich et al., 2006). [K+]o increased during 

tonic firing and decreased during bursting in agreement with the classic in vivo 

recordings (Moody et al., 1974; Sypert and Ward, 1974) and more recent in vitro ionic 

models of tonic-clonic seizures (Jensen and Yaari, 1997). Different firing rates and 

thus different loads on the [K+]o regulation apparatus for these two firing modes 

explain the different signs of the [K+]o gradient. 

 

The identification and eventual abstraction of dynamic principles of epileptic 

seizures carries the promise that the broad range of clinical manifestations associated 

with seizures can eventually be reduced to a few key pathophysiological mechanisms.  
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Figure 2-2 Slow state transitions in cortical network model. (A) The activity of five 
PYs is structured into alternating epochs of tonic firing and bursting. (B) [K+]o 
increases during tonic firing (positive feedback) but decreases during bursting 
(negative feedback). (C) Sample PY membrane voltage trace. Panels A-C adapted 
from (Frohlich et al., 2006). (D) Open loop analysis shows bistability between tonic 
firing and bursting for [K+]o between 5.0 and 5.4 mM (left). This bistability with 
hysteresis explains the slow state transitions in the closed-loop system. (right). 
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The differing time-scales of action-potential firing and changes in [K+]o 

(neglecting small amplitude transients following individual action potentials) provide 

the means to study [K+]o dynamics in computational models by opening the feedback 

loop (so-called “open loop” dynamics, see Figure 2-3). In practical terms, the behavior 

of the neuron is determined as a function of [K+]o that is treated as a constant 

parameter (Frohlich and Bazhenov, 2006; Frohlich et al., 2006; Hahn and Durand, 

2001). Application of this open-loop analysis (also called bifurcation theory) on the 

above discussed single-cell PY model revealed (1) the existence of four distinct 

activity patterns as a function of [K+]o, i.e. silence, tonic firing, bursting, and 

depolarization block, and (2) a bistability with hysteresis between tonic firing and 

bursting for elevated [K+]o levels (Frohlich and Bazhenov, 2006; Frohlich et al., 

2006). This bistability found by open-loop analysis explains the occurrence of 

transitions between tonic firing and bursting (Fig. 2-2D). Specifically, neurons 

remained in tonic-firing mode while [K+]o increased up to the level where they were 

forced to switch to bursting mode (upper endpoint of hysteresis). Conversely, neurons 

remained in bursting mode while [K+]o decreased until the lower endpoint of the 

hysteresis was reached where they were forced to switch back to tonic-firing mode and 

the next cycle began. In other words, although it was originally assumed that only 

positive feedback between [K+]o and neural activity occurred during seizures, these 

modeling results show the alternating occurrence of positive (tonic firing) and 

negative (bursting) feedback. Thus, these slow transitions were essentially the result of 

slow alternations between two meta-stable states, tonic firing and bursting. The 
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existence of this bistability and therefore the occurrence of slow state transitions were 

robust to changes in model parameters but depended on the high-threshold Ca2+ 

conductance. 

 

Thus, the relatively detailed nature of the model permitted novel insights into the 

possible involvement of specific ion channel types in mediating tonic-clonic seizure 

dynamics. Also of note is the fact that even if a different mechanism were to provide 

such a bistability with hysteresis between tonic firing and burst mode, we would 

expect the same slow patterning of the epileptiform activity. 

The different responses of the single cell and the network to a potassium 

transient (transient after-discharge versus sustained tonic-clonic sequences) showed 

that the nature of the paroxysmal-like activity crucially depended on the network 

interaction. This finding further emphasizes the importance of network simulations to 

investigate the role of [K+]o in cortical dynamics. The model predicts in vivo neural 

dynamics during tonic-clonic seizures that have previously lacked an explanation. 

Also, the [K+]o time-course is in qualitative agreement with the original [K+]o 

recordings in vivo (Moody et al., 1974; Sypert and Ward, 1974). Slow state transitions 

as discovered in the network model resemble electrographic neocortical seizures that 

are patterned into epochs of “fast runs” (tonic discharge) and “slow bursting” 

(Frohlich et al., 2006).  
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WAYS FORWARD 

Aberrant [K+]o regulation has recently begun to resurface as a potential player 

in epileptogenesis. Most studies on epileptic tissue cannot entirely exclude that 

reduced [K+]o homeostasis capabilities are rather a consequence than the primary 

cause of repetitive seizures. Nevertheless, the accumulating evidence for disturbances 

in the [K+]o regulation apparatus discussed here warrants renewed research efforts to 

unravel the role of [K+]o dynamics in physiological brain activity and epileptogenesis. 

We therefore conclude by outlining an integrated research approach based on recent 

methodological developments that should render it possible to overcome the 

limitations of previous generations of [K+]o studies. Specifically, we propose the use of 

non-invasive optical techniques to control and measure activity of neural populations 

combined with fluorometric and KSM-based [K+]o measurements to dissect the 

interaction between neural activity and [K+]o. In conjunction, advanced patch-clamp 

recording techniques combined with genetic labeling can be used to obtain more 

specific information about how [K+]o modulates synaptic and intrinsic properties of 

individual cell types. Below, we outline how in vivo, in vitro, and computational 

modeling methods can be combined to tackle the challenge of understanding the role 

of [K+]o in cortical dynamics. 
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Figure 2-3 In computational models, feedback interaction between [K+]o and neural 
activity can be studied by treating [K+]o as a parameter. With this “open-loop” method, 
the modulation of [K+]o by neural activity is artificially removed and therefore the 
feedback removed (top). By choosing different values for [K+]o, the corresponding 
activity patterns for each value of [K+]o can be determined (“open loop” dynamics). 
The behavior of the entire system with feedback (“closed loop” dynamics) is then 
predicted by stringing together the activity patterns as determined by open loop 
analysis (bottom). This approximation is valid since (1) the macroscopic time-course 
of [K+]o is slow in comparison to the time-scale of action potential firing and (2) most 
effects of changes in [K+]o on neural dynamics are instantaneous. 
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While [K+]o time-courses during cortical seizures in the anesthetized 

preparation have been thoroughly documented in the early in vivo studies, we know 

very little about [K+]o dynamics in the awake and naturally sleeping animal. For 

example, active cortical states and synchronized sleep oscillations may be associated 

with significant fluctuations in [K+]o. Crucially, [K+]o recordings in vivo need to be 

accompanied by simultaneous quantification of neural activity ideally with single unit 

resolution (Heinemann and Lux, 1975; Sykova et al., 1974). Such quantification of 

physiological [K+]o fluctuations will provide an important baseline for the eventual 

design of therapeutic interventions that enhance the power of the [K+]o regulation 

apparatus. Since the uncoupling of the feedback loop between [K+]o and neural 

activity will remain a challenge in vivo, the in vitro preparation remains the model 

system of choice to study the effects of [K+]o levels on intrinsic and synaptic 

properties. So far, most studies of that kind in cortical preparations have focused on 

the effect of strong [K+]o elevations on hippocampal fields CA3 and CA1. Since 

substantial [K+]o fluctuation were also found in neocortex in vivo, it is essential to 

understand the resulting modulation of neural behavior independent from whether 

epileptiform activity can be elicited by elevated [K+]o in neocortical slice. Moreover, 

since most studies have been restricted to studying intrinsic excitability and synaptic 

transmission by extracting average pre- and postsynaptic behavior from field 

recordings, we know very little about how different cell types are affected by changes 

in [K+]o. Therefore, patch-clamp recordings from dendrites, somata, and axon 
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terminals of identified cells and synaptically coupled neuron pairs will provide crucial 

new insight into specific effects of different levels of [K+]o. 

 

Recent computational models of neuronal networks with incorporated ion 

concentration dynamics were successful at providing new insights and predictions 

concerning cortical seizure dynamics. Therefore, we propose that such models can 

serve as the essential and so far neglected link between in vitro results on specific 

properties and in vivo results on global network dynamics. In fact, the complexity of 

[K+]o dynamics is best tackled with tools derived from systems theory and 

computational neuroscience that have begin seeing widespread application in many 

other subfields of neuroscience. We thus hope that this combined approach of 

experiments and computational models will eventually lead to the development of a 

new generation of antiepileptic drugs that specifically target the [K+]o regulation 

system and therefore might be free from the current limitations of pharmacotherapy 

for epilepsy (Duncan et al., 2006). 
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2.2 Extracellular potassium mediates transitions between physiological 
and pathological cortical network dynamics 

Epileptic seizures are commonly considered unstable runaway dynamics of 

neuronal networks. Specifically, it has been suggested that positive feedback 

interaction between extracellular potassium concentration [K+]o and neural activity 

mediates cortical seizures. This potassium accumulation hypothesis has been initially 

rejected but recently reconsidered. We here used a computational model of a cortical 

circuit with afferent input to investigate the role of [K+]o in seizure dynamics. In our 

model, sparse physiological and synchronous pathological activity occurred for the 

same input level. Perturbations in the afferent input switched the network between 

these two stable states. Therefore, epileptic seizures may be the manifestation of an 

additional stable network state co-existing with the normal physiological state instead 

of a network instability. 

 

INTRODUCTION 

Epilepsy is a common, disabling neurological disorder that is characterized by 

recurring bouts of synchronous neuronal hyperactivity. Currently available 

pharmacotherapy represents no perfect solution to this problem (Duncan et al., 2006) 

since (1) a substantial fraction of patients fails to achieve seizure control even with 

multidrug therapy and (2) several first-line treatment options are associated with 

severe side-effects. The development of novel pharmacological agents with different 

modes of action is hampered by the fact that relatively little is known about the 
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underlying pathophysiology of epileptic seizures. We here revisit the question whether 

extracellular potassium concentration [K+]o dynamics play a relevant role in the 

pathophysiology of cortical seizures. 

 

Historically, it was hypothesized that cortical seizures are mediated by 

increases in [K+]o (Fertziger and Ranck, 1970; Green, 1964). According to this so-

called potassium accumulation hypothesis, an elevation in [K+]o depolarizes neurons 

and therefore increases their activity level. As a result, further accumulation of [K+]o 

occurs. Based on this positive-feedback model, it was hypothesized (1) that there is 

critical value of [K+]o for which seizures are triggered, (2) that [K+]o monotonically 

increases during seizures, and (3) that seizures terminate when [K+]o is sufficiently 

elevated to induce depolarization block. In vivo measurements of [K+]o during 

electrographic seizures with K+ selective ion microelectrodes, however, failed to 

provide convincing evidence in support of these hypotheses (Somjen, 1979) 

 

Recently, we found seizure-like discharge patterns in computational models 

implementing [K+]o dynamics (Bazhenov et al., 2004; Frohlich et al., 2006). Also, 

there is accruing evidence for aberrations in the potassium regulation apparatus in 

tissue from human patients with epilepsy (Binder and Steinhauser, 2006; Hinterkeuser 

et al., 2000; Schroder et al., 2000) and animal models of epilepsies with different 

etiologies (Grisar et al., 1992; Ivens et al., 2007; Jansen et al., 2005). Considered 
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together, this new evidence suggests a need to reconsider the role of [K+]o in cortical 

epileptic seizures. 

 

The complexity of the interaction between neural activity and [K+]o makes 

computational models a valuable tool for studying the resulting network dynamics. 

We here introduce a large cortical network model with [K+]o dynamics and afferent 

input to test the original predictions derived from the potassium accumulation 

hypothesis. While our simulations support the key role of [K+]o in cortical seizures, we 

found that a substantial revision of the conceptual framework of seizure dynamics may 

be required. 

 

METHODS 

The computational models used in this study were similar to the ones 

previously described in detail elsewhere (Frohlich and Bazhenov, 2006; Frohlich et 

al., 2006). Briefly, both pyramidal cells (PYs) and fast-spiking inhibitory interneurons 

(INs) were modeled as two-compartment, conductance-based neurons. The axo-

somatic compartment was endowed with a voltage-gated sodium (PY: GNa = 3000 

mS/cm2, IN: GNa = 2500 mS/cm2), a delayed-rectifier potassium (GKv = 200 mS/cm2), 

and a leak conductance (GKl = 0.1 mS/cm2). The dendritic compartment had high-

threshold calcium, calcium-activated potassium, slowly-activating potassium, 

persistent sodium, hyperpolarization-activated depolarizing mixed cationic, potassium 

leak, and mixed cationic leak conductances (PY: GHVA = 0.016 mS/cm2, IN: 
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GHVA = 0.01 mS/cm2; PY: GKCa = 3.5 mS/cm2
, IN: GKCa = 0.3 mS/cm2; PY: GKm = 

0.01 mS/cm2, IN: GKm = 0.0 mS/cm2; PY: GNaP = 4.0 mS/cm2, IN: GNaP = 0.0 mS/cm2; 

Gh = 0.05 mS/cm2; PY: GKl = 0.01 mS/cm2, IN: GKl = 0.005 mS/cm2; GL = 0.033 

mS/cm2). The network used in this study consisted of 200 PYs and 40 INs. Synaptic 

connectivity was random (connection probability p =0.1) with doubled value of p 

within local footprint (radii: PY-PY: 5; PY-IN: 1; IN-PY: 5). All excitatory 

connections had a fast AMPA and a slow voltage-dependent NMDA component (total 

conductances: gAMPA(PY-PY) = 9.6 nS, gNMDA(PY-PY) = 0.96 nS, gAMPA(PY-IN) = 3.0 nS, 

gNMDA(PY-IN) = 0.30 nS). Inhibition was mediated by fast GABAA synaptic 

conductances (gGABA(IN-PY) = 9.6 nS). Afferent excitatory input (GPY = 0.9 nS, GIN = 

0.9 nS) was modeled with a Poisson process with frequency f = 140 Hz for both PYs 

and INs. Perturbations to switch between network states were modeled with a transient 

increase of the PY afferent input to f = 150 Hz. 

 

Each cell was surrounded by an extracellular compartment that modeled the 

[K+]o dynamics in the interstitial space (Bazhenov et al., 2004; Kager et al., 2000). 

[K+]o was determined by the interaction of he neuronal potassium currents IΣK, Na+/K+ 

ATPase activity (IKPump = Imax /(1+([K+]o(eq)/[K+]o))2; [K+]o(eq) = 3.5 mM; dendrites: Imax 

= 5mA/cm2, soma: Imax = 40 mA/cm2), K+ buffering G (d[B]/dt = k1([B]max-[B])-k2 

[K+]o [B], G = k1([B]max-[B])/k1N-k2 [K+]o [B]; k1 = 0.008; k2 = k1/(1+exp(([K+]o-

[K+]o(th))/-1.15)); soma: [K+]o(th) = 15 mM; dendrites: 9 mM; k1N = 1.1), and lateral 
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diffusion between neighboring compartments (D = δ∆x([K+]o1-2[K+]o2 + [K+]o3), δ = 4 

10-6 cm2/sec; ∆x = 100µm): 

d[K+]o/dt = (k/Fd) (IΣK + IKPump) + G +D,  

where k = 10 denoted a conversion factor, F = 96489 C/mol was the Faraday constant, 

and d determined the ratio of the volume of the extracellular compartment to the 

surface area. Equilibrium potentials were continuously updated under the assumption 

that diffusion-drift equilibrium was reached immediately and that all other ion 

concentrations remained constant (Na+]o = 130 mM, [Na+]i = 20 mM, [Cl-]o = 130 

mM, [Cl-]i = 8 mM): 

EK = 26.64 mV ln([K+]o/[K+]i).  

Eh = 26.64 mV ln([K+]o + 0.2 [Na+]o)/( [K+]i + 0.2 [Na+]i)  

EL = 26.64 mV ln([K+]o + 0.085 [Na+]o + 0.1 [Cl-]i)/([K+]i + 0.085 [Na+]i + 0.1 [Cl-]o). 

 

RESULTS 

A comprehensive description of cortical seizure pathophysiology requires 

understanding of how seizures are initiated, how pathological hyperactivity evolves 

during seizures, and how seizures terminate. In a previous study, we showed that 

computational models of cortical networks consisting of few neurons without afferent 

input robustly reproduced tonic-clonic activity patterns when [K+]o dynamics were 

included (Frohlich et al., 2006). The underlying dynamics were described in (Frohlich 

and Bazhenov, 2006). Here, we now present a network model with afferent input (200 
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PYs and 40 INs) that exhibited both asynchronous, sparse (“physiological”) activity 

and seizure-like (“pathological”) hyperactivity.  

 

For the baseline afferent input used in this study, the model exhibited 

asynchronous firing with low average firing rate accompanied by minor [K+]o 

fluctuations initiated by action potential firing (activity map in Fig. 2-4A, [K+]o map in 

Fig. 2-4B). Throughout the simulations, the network activity remained stable with 

average frequencies of 1.18 Hz and 9.96 Hz for PYs and INs, respectively (firing 

frequency distribution histograms in Fig. 2-4C). The [K+]o fluctuations in the 

extracellular compartment surrounding a given cell (e.g. PY2 in Fig. 2-4D) were 

primarily determined by the action potential firing of the corresponding cell but action 

potentials in neighboring cells also contributed by K+ diffusion. With these 

simulations we established the model’s capability to exhibit stable physiological 

activity in presence of [K+]o dynamics. We next studied the stability of this 

physiological state in response to transient increases in afferent input. 
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Figure 2-4 Physiological activity in network with [K+]o dynamics. (A) Color-coded 
activity map of 200 PYs (cool and hot colors indicate hyperpolarization and 
depolarization, respectively). (B) Color-coded [K+]o map corresponding to activity 
shown in Panel A. (C) Firing rate histograms for pyramidal cells and inhibitory 
interneurons. (D) Top: Overlaid membrane voltage traces of three neighboring 
pyramidal cells (PY 1, PY2, and PY 3 in blue, black, and red, respectively). Bottom: 
[K+]o in extracellular compartment surrounding PY 2. Minor deflections stem from 
action potentials in neighboring cells PY 1 and PY 2 (diffusion), major deflection 
from action potentials in PY 2. 
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A transient increase (duration ∆T = 10 sec) in the afferent input 

(“perturbation”) to the PY subpopulation resulted in an almost immediate increase in 

the average PY firing rate (histogram in Fig. 2-5A, duration of perturbation denoted by 

horizontal bar). Quite in contrast, [K+]o (averaged over network, red line in Fig. 2-5A) 

gradually increased by activity-dependent accumulation of K+ ions in the extracellular 

space over the entire interval of elevated afferent input. At the offset of the input 

perturbation, [K+]o only slowly recovered back to its resting value (Fig. 2-5B, color-

coded [K+]o for entire network as a function of time). Thus, this perturbation of the PY 

firing did not elicit seizure-like activity since the network eventually returned to the 

stable physiological activity state. For such perturbations, [K+]o alterations followed 

changes in the activity level due to the relatively slow rate of [K+]o accumulation. In 

case of more prolonged perturbations (∆T = 20 sec), however, sufficiently elevated 

[K+]o prevented the network from returning to physiological state at the offset of the 

input perturbations (Fig. 2-5C, firing histogram and average [K+]o; Fig. 2-5D, color-

coded [K+]o). Rather, both [K+]o and activity levels further increased until sequences 

of tonic-clonic activity started to occur. In contrast to shorter perturbations, [K+]o 

preceded the increase in neural activity after the perturbation offset in this case (Figure 

2-5C). 
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Figure 2-5 Transition from “physiological” to “pathological” activity. (A) Left 
Average PY firing frequency (black histogram) and average [K+]o trace (red) for 10 
second perturbation. Average frequency increased instantaneously while [K+]o 
increased and decreased only gradually. (B) Color-coded [K+]o map. (C) Same 
representation as in (A) but for 20 second perturbation. While [K+]o increase initially 
lagged activity increase, [K+]o became driving force in positive-feedback, “runaway” 
dynamics. (D) Color-coded [K+]o map. 
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These results suggest that the duration of increased PY activity determined 

whether a seizure occurred. Since we found [K+]o to increase during the input 

perturbation, we tested if there is indeed a corresponding elevation of [K+]o above 

which seizure-like activity is elicited as previously predicted by the potassium 

accumulation hypothesis. We therefore systematically varied the duration ∆T of 

elevated afferent input to achieve different peak [K+]o values at the offset of the 

perturbation (average [K+]o traces in Fig. 2-6A). For ∆T ≤ 15 sec, the network returned 

back to physiological activity (traces labeled “no seizure” in Fig. 2-6A). For inputs 

longer than that, however, increased afferent synaptic input invariable initiated 

seizure-like discharge patterns (traces labeled “seizure” in Fig. 2-6A). Therefore, [K+]o 

values indeed had to reach a critical value for the transition into the seizure state to 

occur (threshold indicated by dashed line in Fig. 2-6B). Interestingly, however, the 

average [K+]o values at the offset of the elevated input (Fig. 2-6B, zoom in of region 

of interest from Fig. 2-6A) were initially very similar for values of ∆T that failed and 

succeeded in eliciting seizure-like discharge. We then considered the individual [K+]o 

values in the extracellular compartments around individual cells instead of the average 

across the entire network. In agreement with the average traces (Fig. 2-6A and B), the 

histogram of these values (averaged over 1 second after offset of perturbation) for 

∆T = 15 (no seizure) and ∆T = 16 (seizure) strongly overlapped (Fig 2-6C). This may 

explain the experimental difficulty to identify a threshold value from a single local 

[K+]o measurement (Sypert and Ward, 1974). In order to further establish the causal 

role of [K+]o in the seizure initiation process, we ran control simulations where we 
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froze all [K+]o values well in advance of the input perturbation. With [K+]o dynamics 

absent, activity levels increased and decreased in close temporal alignment with the 

change in afferent input (Fig. 2-6D). Independent of the duration of the perturbation, 

the network always returned to the physiological state. 

 

Therefore, the inclusion of [K+]o dynamics had resulted in the existence of a 

second stable state. Input perturbations of sufficient length to increase [K+]o above a 

critical value caused a transition from the physiological to the pathological network 

state. Above this [K+]o threshold value, neural activity and [K+]o were indeed linked in 

a positive feedback loop that caused this transition into a seizure. 
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Figure 2-6 (A) Average [K+]o traces for perturbation durations ∆T = 5, 10, and 15 
seconds (no seizure-like activity induced) and ∆T = 16, 17, 18, 19, 20 seconds 
(runaway dynamics, transition into seizure-like activity). (B) Same as in (A) but with 
increased temporal resolution. (C) Histograms of [K+]o at perturbation offset (averaged 
over 2 seconds) for ∆T = 15 and 16 seconds (“no seizure” and “seizure”). (D) Network 
with frozen [K+]o exhibited constant activity level during perturbation. No runaway 
into seizure-like state due to absence of [K+]o dynamics. 
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Together, the above discussed simulations provide evidence for an important 

role of [K+]o dynamics in seizure initiation. When [K+]o runaway dynamics were 

triggered, the network converged to slow state transition between tonic firing (“fast 

run”) and slow “clonic” bursting (Fig.2-7A, before afferent input was reduced). These 

alternating epochs of two distinct oscillatory firing regimes were synchronized across 

the entire network and lasted several seconds each. We previously showed that a [K+]o 

-mediated bistability between tonic firing and clonic bursting explains these transition 

dynamics in small networks without afferent input (Frohlich et al., 2006). As a 

consequence of this bistability with hysteresis, [K+]o increased during tonic firing and 

decreased during bursting. We here now found the same mechanism in larger 

networks driven by afferent input. Importantly, these slow state transitions between 

tonic firing and bursting occurred for the same level of afferent input as the 

asynchronous activity state. Therefore, the network exhibited either of two stable 

activity modes: physiological activity or pathological tonic-clonic sequences. A 

sufficiently long perturbation in the afferent input was amplified by positive feedback 

dynamics between neural activity and [K+]o that succeeded in switching the network 

from the physiological to the pathological state. We emphasize that also the 

pathological state is stable in the sense that without further perturbation the network 

remains in an infinite loop of alternating epochs of tonic firing and bursting. Thus, 

neither did [K+]o monotonically increase nor did the seizure-like activity terminate by 

depolarization block. 
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Figure 2-7 Termination of seizure-like activity by inducing switch back to 
physiological state. (A) Top: Color-coded PY activity map. Middle: Sample PY 
membrane voltage trace. Bottom: Corresponding [K+]o trace. Plots show alternating 
epochs of tonic firing and slow bursting interrupted by reduction in afferent input 
(indicated by vertical arrow). At the onset of input reduction, the network switched to 
bursting and [K+]o returned back to baseline. (B) Average [K+]o traces for three 
different levels of input perturbations (reduction in frequency of afferent input to f = 
100, 80, and 60 Hz, respectively, color-coded in red, blue, and black). Left: 
Perturbation applied during bursting. Right: Perturbation applied during tonic firing. 
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In order to induce seizure termination, the frequency of the afferent input had 

to be reduced to below baseline. Since the epileptiform activity was essentially 

mediated by elevated [K+]o, any perturbation that succeeded in seizure termination had 

to be sufficiently long such that no further positive feedback reaction was triggered at 

the offset (data not shown). At the moment when the input was reduced (labeled arrow 

in Fig. 2-7A), the network switched from tonic firing to bursting mode during which 

[K+]o monotonically decreased. At [K+]o = 4.85 mM (network average), the network 

became silent and [K+]o returned back to baseline with accelerated pace (PY activity 

map in Fig. 2-7A, top panel; sample membrane voltage and corresponding [K+]o trace 

in middle and bottom panels, respectively). Seizure-like activity in our model therefore 

ended with an epoch of bursting. We next addressed the question whether seizure 

termination by input reduction preferably occurred during either slow bursting or tonic 

firing (average [K+]o traces in Fig. 2-7B). For the values tested here (afferent input 

frequencies f = 60, 80, 100 Hz), we found no difference in degree of input reduction 

required for seizure termination. Rather, independent from whether the input decrease 

occurred during tonic firing (left panels) or bursting (right panels), the seizure-like 

activity exhibited the previously found stereotyped termination behavior (bursting 

followed by silence, black traces for f = 60 Hz in Fig. 2-7B). This finding is in 

agreement with the in vivo observation that spike-and-wave seizures in anesthetized 

cats always terminate in bursting mode (Igor Timofeev, personal communication). For 

input reductions that were not sufficient to terminate the seizure-like activity (f = 80 
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and 100 Hz in blue and red, respectively), the slow state transitions persisted but at 

slower frequency. 

 

DISCUSSION 

Key finding of our current study is that a cortical network driven by afferent 

input exhibited a bistability between a physiological and a pathological activity state 

when [K+]o dynamics were included. In agreement with the potassium accumulation 

hypothesis (Fertziger and Ranck, 1970; Green, 1964), we found that positive feedback 

dynamics mediated the transition from the physiological to the pathological state. 

Importantly, however, we established several discrepancies to the predictions derived 

from the potassium accumulation hypothesis. First, we found that [K+]o followed 

instead of preceded increases in activity at the onset of transient changes in the 

afferent input that elicited seizure-like activity. Second, the pathological state 

consisted of alternating epochs of tonic firing and bursting. As a result of this 

switching between these two meta-stable states, [K+]o did not exhibit unstable 

runaway dynamics that would have led to depolarization block and seizure 

termination. Rather, reduction in afferent input mediated termination of the 

pathological activity. 

 

In summary, our findings suggest that [K+]o plays a crucial role in the 

pathophysiology of cortical seizures. Based on our result that including [K+]o 

dynamics caused the emergence of two stable network states (physiological and 
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pathological activity), we suggest a revised framework of seizure dynamics. We 

propose that seizures are not considered network instabilities (as for example in the 

original potassium accumulation hypothesis) but rather manifestations of a second 

stable network state. The basin of attraction of this “pathological” state may vary 

between healthy and epileptic brains. An increase of this basin in patients suffering 

from epilepsy would reduce the threshold for transitions from the physiological to the 

pathological state. The proposed model may explain the relatively random occurrence 

of most seizures. In the epileptic brain, fluctuations would more easily drive the 

network into the basin of attraction of the seizure state due to its increased size. In 

contrast, such transitions may never occur in the non-epileptic brain. In this 

framework, seizure initiation and termination are two possibly symmetric processes, 

namely the switching between two stable network states that coexist. This bistability 

mediated by [K+]o dynamics may be a fundamental property of epileptic networks and 

deserves further research. 
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2.3 Slow State Transitions of Sustained Neural Oscillations by Activity-
Dependent Modulation of Intrinsic Excitability 

Little is known about the dynamics and mechanisms of transitions between 

tonic firing and bursting in cortical networks. Here, we use a computational model of a 

neocortical circuit with extracellular potassium dynamics to show that activity-

dependent modulation of intrinsic excitability can lead to sustained oscillations with 

slow transitions between two distinct firing modes - fast run (tonic spiking or fast 

bursts with few spikes) and slow bursting. These transitions are caused by a bistability 

with hysteresis in a pyramidal cell model. Balanced excitation and inhibition stabilizes 

a network of pyramidal cells and inhibitory interneurons in the bistable region and 

causes sustained periodic alternations between distinct oscillatory states. During spike-

wave seizures, neocortical paroxysmal activity exhibits qualitatively similar slow 

transitions between fast run and bursting. We therefore predict that extracellular 

potassium dynamics can cause alternating episodes of fast and slow oscillatory states 

in both normal and epileptic neocortical networks. 
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INTRODUCTION 

Neural oscillations are a hallmark of cortical network dynamics (Buzsaki and 

Draguhn, 2004). Sustained oscillatory activity can be broadly classified as either tonic 

firing or bursting. Neurons in a number of brain structures including thalamus 

(Jahnsen and Llinas, 1984a, b) and neocortex (Connors and Gutnick, 1990; 

McCormick et al., 1985) exhibit either tonic firing or bursting in a state-dependent 

way. One of the most dramatic examples of global transitions between bursting and 

tonic spiking regimes is the transition from slow-wave sleep to REM sleep or waking 

in the thalamocortical system (McCormick, 1992; Steriade and McCarley, 2005; 

Steriade et al., 1993a; Steriade et al., 2001; Timofeev et al., 2001b). Slow transitions 

between a slow-wave state and a fast-wave state were also observed in olfactory 

cortex (Murakami et al., 2005). Coexistence of bursting and tonic spiking regimes is 

not limited to vertebrates (Lechner et al., 1996; Turrigiano et al., 1996); (Shilnikov et 

al., 2005). Different levels of synaptic excitatory drive, activation of intrinsic 

conductances by neuromodulation, and changes in the extracellular ionic environment 

control the state-dependent oscillatory regime (Gil et al., 1997; McCormick, 1992; 

Steriade and McCarley, 2005). Many of these mechanisms modulating neural 

excitability are activity-dependent themselves and therefore work in a feedback 

manner. However, the interaction between intrinsic or network oscillatory dynamics 

and activity-dependent feedback control mechanisms in cortical networks is poorly 

understood. In particular, little is known about how these mechanisms can lead to (1) 
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sustained neural activity in the absence of external input and (2) slow transitions 

between different oscillatory regimes (Steriade, 2004b). 

 

Intrinsic excitability depends on the reversal potential for potassium-mediated 

currents which is a function of extracellular potassium concentration [K+]o. 

Extracellular potassium accumulates during sustained neural activity (Amzica et al., 

2002; Heinemann et al., 1977; Moody et al., 1974; Timofeev et al., 2002a). In turn, 

elevated [K+]o increases intrinsic excitability, leading to spontaneous neural activity 

(Rutecki et al., 1985); (Traynelis and Dingledine, 1988). Thus, [K+]o dynamics 

modulate intrinsic excitability in a positive feedback manner. It is well established that 

[K+]o increases during paroxysmal activity (Heinemann et al., 1977; Moody et al., 

1974); however, whether elevated [K+]o is the primary factor eliciting seizures or is a 

byproduct of increased firing remains unknown. Glia cells play an important role in 

the regulation of [K+]o by effectively acting as a potassium buffer (Kofuji and 

Newman, 2004; Kuffler et al., 1966; Orkand et al., 1966). 

 

Here, in a realistic neocortical network model with potassium dynamics 

(Bazhenov et al., 2004), we investigate complex cellular and the network behavior 

caused by activity-dependent changes in extracellular potassium concentration. We 

show that a model of neocortical circuitry which includes the interaction between 

extracellular ion concentration and intrinsic excitability exhibits slow state transitions 
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between two distinct oscillatory firing modes (tonic spiking and bursting) which have 

been observed in vivo but still lack theoretical explanations. 

 

 

METHODS 

COMPUTATIONAL MODELS 

We used a mathematical model of a cortical network consisting of cortical 

pyramidal (PY) cells and inhibitory interneurons (INs) to study the effect of 

extracellular potassium dynamics on oscillatory firing regimes. Each model neuron 

(Bazhenov et al., 2004; Mainen and Sejnowski, 1996) incorporated both intrinsic and 

synaptic currents and was composed of an axo-somatic compartment with membrane 

voltage VS governed by 

 g(VS-VD) = - IS
int

, (1) 

and a dendritic compartment with membrane voltage VD governed by: 

 Cm dVD/dt = -gL(VD-EL) - g(VD-VS) - ID
int - Isyn, (2) 

where g is the coupling conductance, IS
int and ID

int are the intrinsic currents in the two 

compartments, Cm is the membrane capacitance, gL and EL are the conductance and 

reversal potential of the leak current, respectively. As in previous studies (Mainen and 

Sejnowski, 1996), we have omitted the axo-somatic capacitance since axo-somatic 

currents are sufficiently strong to change the somatic membrane voltage almost 

immediately. Assuming these very fast dynamics to be instantaneous by setting the 

somatic conductance to zero permitted the use of a larger integration step size 
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resulting in increased computational efficiency. The ratio of dendritic to axo-somatic 

area r was chosen to mimic regular spiking neuron (r = 165) for PY and fast spiking 

neuron (r = 50) for IN. Both active and passive biophysical mechanisms regulate 

potassium in the extracellular space. In the model, [K+]o was continuously computed 

and the reversal potential for channels permeable to potassium accordingly updated. 

We studied the behavior of a single PY cell, a small globally connected network, and a 

larger one-dimensional two-layer (PY and IN) network. In order to investigate the 

effects of changes in [K+]o on the firing behavior, we explicitly controlled and varied 

[K+]o in a subset of simulations (bifurcation analysis). 

 

INTRINSIC CURRENTS 

Intrinsic ionic currents were mediated by a set of Hodgkin-Huxley type 

conductances. Fast inactivating Na+ channels (high and low density in axo-somatic 

and dendritic compartment, respectively) and fast delayed rectifier K+ channels (axo-

somatic compartment) formed the basis of action potential generation. Further, 

persistent sodium conductance GNaP, slow voltage-gated K+ conductance GKm, slow 

calcium-activated K+ conductance GKCa, high-threshold Ca2+ conductance GCa, 

hyperpolarization-activated depolarizing conductance Gh were included in the 

dendritic compartment and K+ leak conductance GL was introduced in both axo-

somatic and dendritic compartments (Bazhenov et al., 2004; Timofeev et al., 2000). In 

a previous study (Bazhenov et al., 2004), many of these conductances were 

systematically varied to establish model robustness for parameter variations. The 
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relative balance of intrinsic currents was altered by varying the maximal 

conductances. Here, we considered GCa = 0.012 – 0.018 mS/cm2, GKCa = 1.5 – 3.5 

mS/cm2, GNaP = 3.0 - 4.0 mS/cm2, and Gh = 0.0 – 0.1 mS/cm2. 

 

SYNAPTIC CURRENTS 

Synaptic transmission was modeled by a first-order kinetic scheme of 

neurotransmitter binding and unbinding to postsynaptic receptors which was shown to 

well fit experimental data (Destexhe et al., 1994). We assumed neurotransmitter 

release time courses to be of rectangular shape, reducing the time-course of the 

fraction of open-receptors [O](t) after a presynaptic spike to a single exponential. All 

synaptic currents Isyn were governed by 

 Isyn = gsyn[O](V-Esyn), (3) 

where gsyn is the maximal conductance (gAMPA(PY-PY) = 0.20 µS, gNMDA(PY-PY) = 0.013 

µS, gAMPA(PY-IN) = 0.010 µS, gNMDA(PY-IN) = 0.014 µS, gGABA(IN-PY) = 0.05 µS) and Esyn 

the reversal potential (EAMPA = 0 mV, ENMDA = 0 mV, EGABAA = -80 mV). Dependence 

of NMDA receptors on postsynaptic membrane voltage Vpost was modeled by 

1/(1+exp(-(Vpost - Vth)/σ)) with Vth = -25 mV and σ = 12.5 mV. 

 

Synapses incorporated short-term depression described by a depression 

variable D ≤ 1 which was multiplied with the maximal synaptic conductance 

(Markram et al., 1998; Tsodyks and Markram, 1997). D was adjusted with factor R = 
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0.93 (7% resources per action potential) from its previous value Di after a presynaptic 

spike at time ti with recovery time constant τ = 700 ms: 

 D = 1-(1-DiR)exp(-(t-ti)/τ). (4) 

Depression D accounts for short-term use-dependent weakening of synaptic 

strength after subsequent stimulation and recovery thereof. To study the role of 

synaptic interaction, the balance of excitation and inhibition was altered in a subset of 

simulations by multiplying the maximal conductances of the corresponding synapses 

by the factors 0.8, 0.9, 1.1, and 1.2 (scaling factors PY-PY for excitatory coupling 

between pyramidal cells and IN-PY for inhibitory coupling, respectively). 

 

POTASSIUM DYNAMICS 

[K+]o was computed for extracellular volumes surrounding each cell. Our 

model of extracellular potassium dynamics followed a previously developed model 

(Bazhenov et al., 2004) where parameters were systematically varied to study the 

robustness of the model. Processes affecting [K+]o were channels permeable to K+, K+ 

pumps, and glial K+ uptake (buffering) G: 

 d[K+]o(D,S)/dt = (k/Fd) IΣK + G, (5) 

where k = 10 denotes a conversion factor, F = 96489 C/mol the Faraday constant, and 

d the ratio of the volume of the extracellular compartment to the surface area. The 

total potassium current IΣK is the sum of all potassium currents (fast rectifying IK, 

calcium-activated IKCa, voltage-dependent non-inactivating IKm, and leak current IL) 

and the current IKPump mediated by K+ pumps: 
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 IΣK = IK + IKCa + IKm + IL + IKPump. (6) 

The K+ current IKPump established by K+ pumps was an inward current which 

had a sigmoidal dependence on the ratio of steady-state [K+]o(eq) = 3.5 mM to current 

[K+]o and saturated at Imax, which was chosen to balance K+ leak current (dendritic 

compartment Imax = 5mA/cm2, somatic compartment Imax = 40 mA/cm2): 

 IKPump = Imax /(1+([K+]o(eq)/[K+]o))2. (7) 

Glial K+ uptake current G was modeled by a free buffer (total buffer [Bmax] = 

500 mM) with concentration [B], which bound and unbound from K+ with according 

on- and off-rates k1 = 0.008 and k2 = k1/(1+exp(([K+]o-[K+]o(th))/-1.15)) governed by 

first order kinetics: 

 d[B]/dt = k1([B]max-[B])-k2 [K+]o [B], G = k1([B]max-[B])/k1N-k2 [K+]o 

[B]. (8) 

Threshold concentrations [K+]o(th) (15 mM for somatic compartment, 9 mM for 

dendritic compartment) and k1N = 1.1 were chosen such that K+ concentration 

equilibrated both for silent and tonic firing mode (Bazhenov et al., 2004). 

Changes in [K+]o changed the reversal potential for all conductances modeling 

ion channels permeable to K+. The Nernst equation described the reversal potential for 

pure K+ conductances: 

 EK = 26.64 mV ln([K+]o/[K+]i). (9) 

The reversal potential for Gh and GL which are ion channels permeable to 

several ion types were updated according to the Goldman-Hodgkin-Katz equation 
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taking into account the different ionic concentrations ([Na+]o = 130 mM, [Na+]i = 20 

mM, [Cl-]o = 130 mM, [Cl-]i = 8 mM) and degrees of permeability: 

 Eh = 26.64 mV ln([K+]o + 0.2 [Na+]o)/( [K+]i + 0.2 [Na+]i) (10) 

 EL = 26.64 mV ln([K+]o + 0.085 [Na+]o + 0.1 [Cl-]i)/ 

([K+]i + 0.085 [Na+]i + 0.1 [Cl-]o).  (11) 

 

CALCIUM DYNAMICS 

Intracellular calcium concentration [Ca2+]i was computed for the dendritic 

compartment where the calcium-activated potassium channels were located. Calcium 

influx through high-threshold calcium channels was counteracted by exponential 

return to baseline concentration [Ca2+]i(eq) modeling pumps extruding calcium from the 

cytosol: 

 d[Ca2+]i/dt = k ICa/(2 F) + ([Ca2+]i(eq) - [Ca2+]i)/τCa, (12) 

where k and F are constants as described above, [Ca2+]i(eq) = 0.0001 mM is the 

equilibrium concentration, and τCa = 500 ms is the recovery time constant. 

 

NETWORK TOPOLOGY 

To dissociate the effect of synaptic coupling from the effect of intrinsic cellular 

responses to depolarized K+ reversal potentials, we first studied the behavior of a 

single PY cell. Then, we used a small network of five PY cells and one IN with global 

connectivity where each PY cell was connected to every other PY cell by excitatory 

synapses (AMPA and NMDA). The IN received excitatory synapses from all PY cells 
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(AMPA and NMDA) and projected back to all PY cells (GABAA). This compact 

network was a direct extension of the case of an isolated PY cell since no localized 

spatial patterns of activity arose and all neurons exhibited synchronous transitions in 

their firing regimes. We studied the effect of changes in excitatory and inhibitory 

coupling by systematically varying the maximal conductance for AMPA and NMDA 

or GABA mediated synaptic currents respectively. We further used a larger network 

model composed of two one-dimensional layers formed by 60 PY cells and 15 IN 

respectively. Each PY cell was connected to five neighboring PY cells on both sides, 

each PY cell connected to three neighboring INs, and each IN projected back to a total 

of eleven neighboring PY cells. 

 

BIFURCATION ANALYSIS 

In order to study how extracellular K+ concentration, [K+]o, modulated neural 

activity, we held [K+]o constant in a subset of the simulations to determine the firing 

behavior as a function of [K+]o. This corresponds to opening the positive feedback 

loop between neural activity and [K+]o. Such analysis provided useful predictions for 

the case where [K+]o would freely evolve (i.e. closed feedback loop) because of the 

vastly different time-scales of the [K+]o dynamics (slow) and the dynamics of the ion 

conductances mediating neural activity (fast). In other words, we used the slow/fast 

analysis technique for systems with widely differing time scales (geometric singular 

perturbation theory, (Jones, 1994; Osinga and England, 2005; Rinzel, 1985; Rinzel 

and Lee, 1987)). Extracellular K+ concentration, [K+]o, which exhibited very slow 
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dynamics with time-scale corresponding to entire epochs of oscillatory firing at a 

given frequency, was treated as a parameter for bifurcation analysis. We used a 

combination of direct integration for different parameter values, continuation analysis 

(MATCONT software (Dhooge et al., 2003)), and Poincare maps (Kuznetsov, 2004) 

to trace and analyze bifurcations. 

 

IN VIVO EXPERIMENTS 

Experiments were conducted on cats anesthetized with ketamine-xylazine 

anesthesia (10-15 and 2-3 mg/kg i.m., respectively). The animals were paralyzed with 

gallamine triethiodide (20 mg/kg) after the EEG showed typical signs of deep general 

anesthesia, essentially consisting of slow oscillation (0.5-1 Hz). Supplementary doses 

of the same anesthetics (5 and 1 mg/kg) or ketamine (5 mg/kg) were administered at 

the slightest changes toward diminished amplitudes of slow waves. The cats were 

artificially ventilated with the control of end-tidal CO2 at 3.5-3.7%. Body temperature 

was maintained at 37-38oC and the heart rate was ~90-100 beats/min. For intracellular 

recordings, stability was ensured by the drainage of cisterna magna, hip suspension, 

bilateral pneumothorax, and filling the hole made for recordings with a solution of 4% 

agar. At the end of experiments, the cats were given a lethal dose of pentobarbital (50 

mg/kg i.v.). All experimental procedures were performed according to national 

guidelines and were approved by the committee for animal care of Laval University. 

Intracellular recordings from suprasylvian association areas 5 and 7 were performed 

using sharp glass micropipettes filled with a solution of 3 M potassium-acetate (KAc). 
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Field potentials were recorded in the vicinity of impaled neurons. All electrical signals 

were sampled at 20 kHz and digitally stored on Vision (Nicolet, Wisconsin, USA). 

Offline computer analysis of electrographic recordings was done with IgorPro 

software (Lake Oswego, Oregon, USA). 

 

RESULTS 

TRANSITION BETWEEN SLOW BURSTING AND TONIC FIRING IN A SINGLE CELL 

A brief increase in [K+]o was used to initiate activity in an otherwise silent 

pyramidal (PY) neuron. An isolated PY cell model (GCa = 0.015 mS/cm2, Gh = 0.1 

mS/cm2) with a spatially limited extracellular compartment responded to a brief [K+]o 

elevation with oscillatory firing before returning to rest. While [K+]o decreased to its 

resting value (3.5 mM), the PY cell exhibited several oscillatory modes: first slow 

bursting oscillations and then tonic firing (Fig. 2-8A, transition in Fig. 2-8B). For 

significantly elevated [K+]o > 5.6 mM, bursts with spike inactivation, pronounced 

after-hyperpolarization, and strong calcium influx occurred (Fig. 2-8C, left panel, 

phase space plot of a single burst). Calcium influx during the depolarized state caused 

the calcium-activated potassium conductance to activate which in turn mediated burst 

termination and subsequent after-hyperpolarization (Fig. 2-10). For [K+]o = 5.6 mM, 

however, there was a transition to bursts with reduced after-hyperpolarization and with 

minor spike inactivation (Fig. 2-8C, middle panel). For [K+]o = 5.5 mM, the cell 

switched to tonic firing (spike doublets, Fig. 2-8C, right panel) before it eventually 

returned to rest. Both during slow bursting and tonic firing, potassium efflux occurred 
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mainly through the fast delayed-rectifier (41% and 43% for bursting and tonic firing, 

respectively) and through the leak conductance (43% and 56%, respectively). This 

oscillatory firing patterns for elevated [K+]o are not a mere consequence of the 

depolarization of the neuron since an injected depolarizing current step caused only 

tonic firing with spike adaptation (Fig. 2-9). 

Since [K+]o changed on a very slow time-scale, we next treated [K+]o as a 

parameter to determine the cell’s firing behavior as a function of [K+]o  Therefore, all 

the mechanisms controlling [K+]o evolution in our model were blocked and the neuron 

behavior was analyzed for different fixed values of [K+]o within the physiological 

range. Specifically, we focused on the occurrence of different stable firing modes as a 

function of parameter [K+]o (Fig. 2-11). For low [K+]o, the neuron was at rest (Fig. 2-

11A, left). For increasing [K+]o, the resting potential became more depolarized as the 

driving force for potassium decreased. For [K+]o = 4.85 mM, the neuron switched to 

tonic firing by means of a saddle-node bifurcation (Type I neural oscillator 

(Ermentrout, 1996; Rinzel and Ermentrout, 1989), fixed point bifurcations in Fig. 2-

11C). Tonic firing and slow bursting coexisted for [K+]o between 5.45 and 6.35 mM. 

Slow bursting was the only stable state for [K+]o between 6.35 and 9.45 mM. At [K+]o 

= 9.46 mM, a new stable state corresponding to a depolarized state (Vm = -26.3 mV) 

appeared by means of a subcritical Hopf bifurcation (Fig. 2-11C). The depolarized 

state coexisted with the slow bursting regime in a narrow bistable region before it 

became the only stable state at [K+]o = 10.05 mM (Fig. 2-11A, right). 
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Figure 2-8 (A) A single PY neuron exhibits bursting and then tonic firing after a brief 
increase in extracellular potassium concentration ([K+]o) before returning to rest. (B) 
Membrane voltage (top) and [K+]o (bottom) time courses for the time interval 
underlined in (A). Transition from bursting to tonic firing (spike doublets) at [K+]o = 
5.6 mM. (C) Phase space plots ([K+]o, intracellular calcium [Ca2+]i, and membrane 
voltage Vm) for the three intervals underlined in (A). Arrow indicates direction of time. 
Single burst with minor spike inactivation and after-hyperpolarization (left), single 
burst without spike inactivation and reduced after-hyperpolarization (middle), and 
spike doublet (right). 
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Figure 2-9 Membrane voltage traces for depolarizing current step injection into model 
PY cell for three different current intensities (200%, 150%, and 100%) from top to 
bottom. 
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Figure 2-10 courses of membrane voltage Vm, calcium-activated potassium current 
IKCa, high-threshold calcium current ICa, and (in-)activation of ICa for [K+]o = 6.0 mM. 
Tonic firing (left column) and slow bursting (right column). Note the different time-
scales for the two columns. Bursts consisted of about 8 spikes at the onset, a sustained 
depolarization with spike inactivation lasting about 100 ms and a pronounced after-
hyperpolarization at the end (top panels). Dynamic interplay of high-threshold calcium 
current ICa and calcium-activated potassium current IKCa caused bursting (middle four 
panels). In comparison to the tonic firing mode, IKCa was stronger by an order of 
magnitude and terminated the burst. Similarly, ICa was more pronounced during 
bursting. Activation variable m and inactivation variable h of the high-threshold 
calcium conductance GCa are shown in bottom panels. During tonic firing, high firing 
frequency and lack of pronounced after-hyperpolarization prevented GCa from fully 
deinactivating (inactivation variable h ≈ 0.34, bottom left subpanel). This contrasted 
with the bursting regime where the lower burst frequency and the after-
hyperpolarization caused more complete deinactivation of GCa between bursts (h ≈ 
0.57, bottom right subpanel). As a consequence, the depolarizing effect of ICa was 
stronger and prevented the membrane voltage from returning to rest after the first 
spike in the burst. The resulting gradual depolarization after each spike maintained the 
depolarized state of the burst. The different levels of deinactivation of the high-
threshold calcium conductance GCa therefore mediate the bistability between tonic 
firing and bursting. 
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Figure 2-11 Bifurcation analysis of PY cell dynamics. (A) Maximum and minimum of 
membrane voltage as a function of [K+]o. Solid lines: stable fixed points. Circles: 
stable limit cycles. Four stable states are found - rest, tonic firing, slow bursting, and a 
depolarized state - with bistability occurring between tonic firing and slow bursting 
and between slow bursting and the depolarized state. (B) Poincare map. Intracellular 
calcium concentration for Vm = -20 mV as function of slowly increasing (top) and 
decreasing (bottom) [K+]o. Inset: Enlargement of transition from tonic firing to slow 
bursting. (C) Stable fixed points corresponding to rest and the depolarized state are 
connected via unstable fixed points. Transition from silent to tonic firing is a saddle-
node bifurcation. Transition from slow bursting to depolarized is a Hopf bifurcation. 
Insets illustrate eigenvalues at bifurcation point. (D) Three dimensional representation 
of excerpt from (B) showing transition from tonic firing to frequency modulated fast 
firing. Neimark-Sacker bifurcation of limit cycle leads to slow spike modulation for 
[K+]o > 6.33 mM. Color scheme: From blue to red for low to high values of [K+]o. 
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In order to further characterize the transition between tonic firing and slow 

bursting, we computed a Poincare map by calculating the values of intracellular 

calcium concentration [Ca2+]i each time the membrane potential crossed the threshold 

Vm = -20 mV; these values were plotted as a function of [K+]o (Fig. 2-11, Poincare 

map). In such a representation, periodic oscillations (corresponding to limit cycles) are 

represented as points defined by a threshold crossing of a trajectory. This approach 

allows the graphical representation of changes in the nature of an oscillatory (firing) 

behavior as a function of a parameter.  For a given value of [K+]o, a tonic spiking 

regime is represented on this Poincare plot by a single point since [Ca2+]i assumes the 

same value at Vm = -20 mV for every spike. During a burst, however, [Ca2+]i increases 

after each spike of a given burst. Therefore, a burst appears as a group of points each 

representing a single spike. In other words, a set of parallel lines in the Poincare plot 

(Fig. 2-11, Poincare map) illustrates a range of [K+]o values for which bursting 

occurred. We gradually increased and decreased [K+]o to reveal the complete tonic 

firing and slow bursting region, respectively. The bistability between tonic firing and 

slow bursting was associated with a hysteresis (compare top and bottom plots in Fig. 

2-11B). For increasing [K+]o, the cell stayed in tonic firing until slow bursting with 

spike inactivation became the only stable state at [K+]o= 6.40 mM. Decreasing [K+]o 

caused the cell to stay in slow bursting mode until tonic firing was the only stable state 

at [K+]o= 5.75 mM. For increasing [K+]o, the tonic firing region consisted of three 

subregions with single spikes, spike doublets, and single spikes, respectively (Fig. 2-

11B, top). Time courses for single spikes ([K+]o = 5.00 mM) and spike doublets ([K+]o 
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= 6.00 mM) are shown in Fig. 2-12A and B, respectively. Note that the left region 

with single spikes existed only in the case of a non-zero h-conductance (Gh = 0.05 

mS/cm2). At [K+]o = 6.39 mM, tonic firing started to exhibit slow modulation of the 

membrane voltage and the spiking frequency (Fig. 2-12C; see, also, spectrogram in 

Fig. 2-12D). Detailed bifurcation analysis revealed that at [K+]o = 6.39 mM, the limit 

cycle corresponding to the tonic spiking lost its stability by a supercritical Neimark-

Sacker bifurcation (Kuznetsov, 2004) leading to a stable invariant torus in the phase 

space representation of the dynamical system (Fig. 2-11D). This type of behavior was 

not found for decreasing [K+]o (Fig. 2-11B, bottom). Instead, two distinct bursting 

regimes - with and without spike inactivation - were found (see Fig. 2-12E and F). For 

these bursts, transition from silent state to spiking (burst onset) occurred through a 

saddle-node bifurcation of the fixed point corresponding to the silent (hyperpolarized) 

state. Return to the silent state (burst offset) occurred through a Hopf bifurcation of the 

fixed point corresponding to the depolarized (upper) state. Activation of IK(Ca) (slow 

variable) controlled the transitions between silent and oscillatory states during bursts 

(data not shown). 

 

The biophysical mechanism for the bistability with hysteresis between tonic 

firing and slow bursting was examined by (1) comparing the ionic currents in both 

regimes for [K+]o = 6.00 mM (Fig. 2-10) and (2) systematically varying the intrinsic 

conductances involved in burst generation (Fig. 2-12). We found that the different 

levels of deinactivation of the high-threshold calcium current ICa explain the hysteresis 
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between tonic firing and bursting. ICa reinforced bursting and therefore increased the 

range of [K+]o values for which the neuron stayed in bursting mode. In contrast, when 

the neuron was in tonic firing mode, insufficient ICa deinactivation between spikes 

prevented switching to the bursting mode unless [K+]o was strongly elevated (Fig. 2-

10, bottom panels). To confirm the role of ICa and to test the robustness of our model, 

we separately varied the three intrinsic conductances GCa, GNaP, and GKCa, involved in 

initiating, sustaining, and terminating bursts to study their impact on the bistability 

with hysteresis between tonic firing and bursting. Further, the effect of introducing a 

hyperpolarization-activated depolarizing conductance Gh was examined. As 

anticipated, the width of the hysteresis between tonic firing and bursting varied with 

GCa, whereas changes in the other conductances had minimal impact on the qualitative 

nature of the hysteresis (Fig. 2-12). These findings indicate the pivotal role of the 

high-threshold calcium conductance GCa in mediating bistability between the two 

oscillatory firing regimes. 
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Figure 2-12 Robustness analysis to variation of intrinsic conductances (parameter 
sensitivity analysis). Dependence of single cell hysteresis for transition between slow 
bursting and fast run on GCa (A), GK(Ca) (B), and GNaP (C) without (top row) and with 
(bottom row) hyperpolarization-activated depolarizing conductance Gh. The width of 
the hysteresis greatly depended on the choice of GCa. The hysteresis was robust to 
variations in GK(Ca). Increasing GNaP shifted the hysteresis to lower values of [K+]o. In 
all three cases, introducing Gh = 0.1 mS/cm2 decreased the value of [K+]o for which 
the neuron became active and narrowed the width of the hysteresis.



  118 

 

 
 
 
 

0.2 s

40 mV

Time [sec]

F
re

qu
en

cy
 [H

z]

0 0.2 0.4 0.6 0.8
50

100

150

0.25

0.5 

0.75

A

C

B

D

FE

 
 
 
Figure 2-13 Time course of membrane voltage (1 sec duration) for different values of 
[K+]o. (A) Spike doublets for [K+]o = 5.00 mM. (B) Fast tonic firing for [K+]o = 6.00 
mM (tonic firing branch, [K+]o increasing). (C) Fast tonic firing modulated by slow 
oscillation corresponding to Neimark-Sacker bifurcation of limit cycle and 
consecutive torus bifurcation with period doubling for [K+]o = 6.39 mM (tonic firing 
branch, [K+]o increasing). (D) Spectrogram of (C). Normalized arbitrary units. (E) 
Bursting with spike inactivation for [K+]o = 6.00 mM (slow bursting branch, [K+]o 
decreasing). (F) Bursting without spike inactivation for [K+]o = 5.75 mM (slow 
bursting branch, [K+]o decreasing). 
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SLOW TRANSITIONS BETWEEN OSCILLATORY STATES IN SMALL NETWORK 

In order to determine whether the hysteresis between tonic firing and slow 

bursting was maintained in a network of neurons, we studied a network consisting of 

five PY cells with all-to-all excitatory coupling and one IN, which mediated global 

inhibition. When [K+]o was held at various fixed values, four different states 

equivalent to those in the single cell model were found: silence, fast run, slow 

bursting, and a depolarized state (Fig. 2-14A, left, transition from fast run to slow 

bursting). Fast run (fast bursting with 2-4 spikes) corresponded to tonic firing found in 

the single cell model. Each of the three transitions between neighboring states was 

associated with a hysteresis, confirming that the hystereses found in the single cell 

model were indeed maintained in the small network. 

 

When [K+]o was released and continuously updated based on K+ currents, K+ 

pumps, and glial buffering (see Eq. 5), a major difference between the single cell 

model and the network model was found. For a single PY cell surrounded by an 

extracellular compartment, [K+]o decreased steadily during both tonic spiking and 

bursting. Thus, the hysteresis between tonic firing and slow bursting had no effect on 

neural dynamics triggered by elevated [K+]o since the cell never switched back from 

tonic firing to bursting. In the small network, however, the cells did not return to rest 

after the initial [K+]o injection but instead displayed self-sustained oscillations with 

periodic alternations between fast run and slow bursting (Fig. 2-14B, activity of all 5 

PY cells as a function of time for 40 seconds). [K+]o increased during fast run, which 
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caused a transition of the network to the slow bursting regime as predicted by the 

upper endpoint of the hysteresis found by bifurcation analysis (Arrow 1 in Fig. 2-14A, 

top right). If there were no hysteresis, this would lead to an immediate return to fast 

run since [K+]o decreased during slow bursting. Due to the hysteresis, however, slow 

bursting mode was maintained until the lower transition point for [K+]o back to fast 

run was reached where the cycle restarted (Arrow 2 in Fig. 2-14A, top right). By 

averaging over many periods during fast run and a single period during slow bursting, 

we determined the time derivative of extracellular potassium concentration as a 

function of [K+]o if it were free to change. This further illustrates the fact that [K+]o 

increased during fast run and decreases during slow bursting (Fig. 2-14A, bottom 

right, dashed line represents d[K+]o/dt = 0 “nullcline”). The dependence of the lower 

and upper transition points on whether [K+]o was increasing or decreasing matched the 

prediction from bifurcation analysis (Fig. 2-14A, end points of hysteresis). Thus, 

synaptic interaction stabilized the network in the hysteresis region between fast run 

and slow bursting ([K+]o between 5.0 and 5. 4 mM). Synchrony is not required for this 

mechanism to work as long as the time derivatives of potassium follow this general 

rule. Rather, overall excitation mediated by network interaction needs to provide 

sufficient excitatory drive for firing frequencies which enable potassium to increase 

during tonic firing (fast run) without causing a switch to the bursting regime. Note that 

a single PY cell with a self-excitatory synapse did not exhibit these transitions (data 

not shown): it either displayed bursting (for strong coupling) or tonic firing (for weak 

coupling). Because the inhibitory interneuron was active during epochs of fast run, the 
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spike structure of the fast run was different between the single cell and small network 

models. PY neurons from the network displayed fast oscillations with groups of spikes 

separated by short hyperpolarizing events mediated by IPSPs. When excitatory input 

to the inhibitory interneurons was reduced such that they became silent during fast 

run, PY neurons displayed tonic spiking activity similar to the single cell model (see 

Fig. 2-15). 

 

Single cell model analysis revealed that high-threshold calcium current ICa 

inactivation was critical for determining the oscillatory mode (tonic spiking or 

bursting). In a further set of simulations, we extended this finding to the network 

model by perturbing inactivation variable, h, of ICa for all neurons in the network to 

induce switching between the two oscillatory states (Fig. 2-16). The network switched 

from fast run to slow bursting when enforcing a value of h = 0.53 (mean value 

between bursts) for 0.25 sec. Similarly, imposing a value of h = 0.36 (mean value 

during fast run) for 1 sec during slow bursting caused the network to switch to fast 

run. 
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Figure 2-14 Globally connected network with five PY cells and one IN. (A) Left: 
Bifurcation analysis (minimum of membrane voltage): Hysteresis between fast run 
and slow bursting for [K+]o between 5.0 and 5.4 mM. Circles denote stable limit cycle 
oscillations. Top right: Schematic of slow periodic network dynamics. Bottom right: 
Averaged [K+]o change rate as a function of [K+]o. (B-D) Slow transitions after initial 
brief increase in [K+]o (B) Network activity of PY cells (40 seconds duration) shows 
alternating epochs of fast run and slow bursting. (C) [K+]o increased during fast run 
and decreased during slow bursting. Upper switching point for transition from fast run 
to slow bursting and lower switching point for transition from slow bursting to fast run 
correspond to hysteresis endpoints in (A). (D) Membrane voltage time course of PY 
cell (top trace) and of IN (bottom trace). 
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Figure 2-15 Transition from slow bursting to fast run in a PY cell for weak and strong 
excitatory drive of IN. (A) The inhibitory interneuron follows firing in the PY cell for 
gAMPA(PY-IN) = 0.010 mS and gNMDA(PY-IN) = 0.014 mS. PY firing is interrupted by 
IPSCs. PY cells fire in groups of spikes (fast bursts). (B) The IN interneuron is silent 
during fast run for gAMPA(PY-IN) = 0.007 mS and gNMDA(PY-IN) = 0.008 mS. Fast run in 
the PY cell is tonic firing at high frequency. 
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Figure 2-16 Controlling inactivation, h, of high-threshold calcium conductance GCa 
induced switching between slow bursting and fast run. (A) An unperturbed time-
course of a PY cell in a model of small cortical network (top panel). Enforcing 
inactivation h = 0.53 for 1 sec caused the network to switch to slow bursting (middle 
panel). Similarly, a transition from slow bursting to fast run was induced by setting h 
= 0.36 for 1 sec (bottom panel). Horizontal bars delimit intervals where h was held 
constant. (B) Phase plane plots of switching between fast run and slow bursting (top 
panel) and vice versa (bottom panel) by controlling inactivation h. 
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ROLE OF SYNAPTIC CONDUCTANCES 

Network interaction was critical for the occurrence of alternating epochs of fast 

run and slows bursting. Therefore, we systematically varied the synaptic strength to 

uncover its specific effect on the network dynamics. Increasing excitation (PY-PY 

coupling) without changing inhibition (IN-PY = 1.1) widened the [K+]o hysteresis 

(from 0.24 to 0.62 mM for PY-PY = 0.8 and 1.2, respectively, Fig. 5A, left, dashed 

line) and prolonged the episodes of slow bursting at the expense of fast run (solid 

lines). The increase in hysteresis width was mainly caused by a lower value of [K+]o 

for which the network switched from slow bursting to fast run (from 5.38 to 4.77 mM 

for PY-PY = 0.8 and 1.2, respectively, Fig. 2-17A, right). In contrast, increasing 

inhibition (IN-PY coupling) without changing excitation (PY-PY = 0.9) shortened 

epochs of slow bursting and prolonged epochs of fast run, respectively (Fig. 2-17B, 

left, solid lines). The [K+]o hysteresis was narrowed (from 0.75 mM to 0.28 mM for 

IN-PY = 0.8 and 1.2, respectively, Fig. 2-17B, left, dashed line), mostly by an increase 

in the range of [K+]o for which fast run was the only stable state (from 4.86 to 5.36 

mM for IN-PY = 0.8 and 1.2, respectively). Thus, during fast run, [K+]o increased 

more slowly due to the reduced firing frequency. Additionally, increased inhibition 

forced the network back to fast run for higher [K+]o. (Fig. 2-17B, right). Examples of 

non-alternating regimes resulted from major changes in the balance between excitation 

and inhibition (areas in dark blue in Fig. 2-17C right). For strong excitation and weak 

inhibition, the network returned to the silent state after a single epoch of bursting. 

Conversely, strong inhibition and weak excitation led to sustained fast run (time-
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courses in Fig. 2-18). Combinatorial variation of both excitatory (PY-PY) and 

inhibitory (IN-PY) synaptic coupling strength showed that the existence of the 

transitions between fast run and slow bursting is robust to changes in synaptic 

connectivity as long as the balance between excitatory and inhibitory coupling was 

maintained. Both the logarithmic ratio of the duration of fast run and slow bursting 

episodes and the width of the hysteresis were only slightly affected by changes in 

synaptic connectivity strength as long as excitation and inhibition was scaled 

accordingly (diagonal structure in Fig. 2-17C). 
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Figure 2-17 Quantification of periodic slow transitions between slow bursting and fast 
run as a function of excitatory and inhibitory coupling. Balanced excitation and 
inhibition causes alternating epochs of slow bursting and fast run. Left: Duration of 
epochs of slow bursting and fast run (blue and green solid line, respectively) and width 
of hysteresis (dashed red line) and upper and lower endpoint of hysteresis (right) for 
changing (A) excitatory coupling (PY-PY) and (B) inhibitory coupling (IN-PY). 
Values determined from simulation of 400 sec of activity. Error bars, s.e.m. (C) 
Overview plot showing logarithmic ratio of duration of fast run and slow bursting 
(left) and width of hysteresis (right) as a function of synaptic excitation and inhibition. 
Top left corner corresponds to regime with exclusive fast run, whereas bottom right 
corner denotes the regime with exclusive slow bursting. 
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Figure 2-18 Effect of synaptic coupling. PY membrane voltage time course (left 
column) and time-dependent autocorrelation computed every 100 msec for a window 
of 400 msec (right column). (A) Transition between slow bursting and fast run for 
gAMPA(PY-PY) = 0.20 mS, gNMDA(PY-PY) = 0.013 mS, gAMPA(PY-IN) = 0.010 mS, gNMDA(PY-

IN) = 0.014 mS, gGABA(IN-PY) = 0.05 mS. (B) Weak excitation and strong inhibition 
(scaling: PY-PY = 0.8 and IN-PY = 1.2). PY cells remained in fast run. No transition 
to slow bursting due to decreased excitatory drive. (C) Strong excitation and weak 
inhibition (scaling: PY-PY = 1.2 and IN-PY = 0.8). Network directly returned to 
silence after a single epoch of bursting. 
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Bursts differed in their characteristics depending on the balance between 

excitation and inhibition (Fig. 2-19). In the case of reduced excitation (PY-PY = 0.9) 

and inhibition (IN-PY = 0.8), bursts exhibited a gradual decline in spike amplitude, 

spike inactivation, and a pronounced after-hyperpolarization (Fig. 2-19A, first row). 

Excitatory AMPAergic input to PY cells built up during spiking at the onset of the 

burst. NMDA current was active until burst termination (Fig. 2-19A, second row). For 

increased inhibition (IN-PY = 1.2, Fig. 2-19B), bursts showed decreased spiking 

frequency and lacked both spike inactivation and after-hyperpolarization. Excitatory 

synaptic currents mediated by AMPA and NMDA receptors were of similar amplitude 

and duration. Balancing increased inhibition (IN-PY = 1.2) by strengthening excitation 

(PY-PY = 1.2) increased both firing frequency within the burst and the total number of 

spikes per burst (Fig. 2-19C). Fast run spiking structure was less sensitive to moderate 

changes in the balance between excitation and inhibition as long as the inhibitory 

interneuron remained active during periods of fast runs (see above). 
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Figure 2-19 Time course of burst and underlying synaptic currents for three different 
synaptic configurations. First row: Membrane voltage time course. Second row: Total 
synaptic current on PY cell. (A) Weak excitation and weak inhibition (scaling factors: 
PY-PY = 0.9 and IN-PY = 0.8). (B) Weak excitation and strong inhibition (scaling 
factors: PY-PY = 0.9 and IN-PY = 1.2). (C) Strong excitation and strong inhibition 
(scaling factors: PY-PY = 1.2 and IN-PY = 1.2). 
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SLOW TRANSITIONS OF OSCILLATORY STATES IN LARGE NETWORK 

In a larger network consisting of 60 PY cells and 15 INs with local synaptic 

connectivity, each PY neuron switched between fast run and slow bursting at a similar 

time-scale as in the case of the small, compact network (Fig. 2-20A, Top panel: 

network activity as a function of time. Bottom panel: single membrane voltage trace). 

In contrast to the small network, however, state transitions did not occur 

synchronously across the network. Rather, a given PY cell reached the [K+]o required 

for a state transition first, switched its oscillatory firing mode and induced an 

according transition in the neighboring PY cells by synaptic coupling. Epochs of slow 

bursting or fast run therefore spread in neighboring cells. In other words, state 

transitions were induced according to the hysteresis in the leading neurons which were 

the cells with highest [K+]o (Fig. 2-20B, top panel). Transitions in the neighboring 

cells were then promoted by the synaptic coupling. This resulted in a multitude of 

switching points for each neuron (Fig. 2-20B, bottom panel). The behavior of the 

neurons initiating network transitions was governed according to the bistability 

described before. Intracellular calcium [Ca2+]i was highly elevated during paroxysmal 

activity (>0.004 mM), in comparison to the equilibrium value at the resting potential 

(0.0001 mM). [Ca2+]i remained more or less constant during epochs of fast run and 

oscillated during bursting  (Fig. 2-20C, top panel) since ICa was the major contributor 

to the burst depolarization. In any given PY neuron, peak value of [Ca2+]i almost 

doubled during each burst (Fig. 2-20C, bottom panel). Including lateral K+ diffusion 
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did not change the global structure of alternating epochs of fast run and slow bursting 

(data not shown). 
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Figure 2-20 Large network (60 PY cells and 15 INs) with local synaptic connectivity. 
(A) PY cell activity as a function of time (top panel). Time-course of Vm for PY 30 
(bottom panel, arrow in top panel). Cells switched between bursting and fast run as in 
the case of the small network. Due to the local synaptic connectivity, the activity 
pattern exhibited complex spatial structure. (B) [K+]o in extracellular compartments 
surrounding PY cells as a function of time (top panel). Time-course of [K+]o for PY 30 
(bottom panel, arrow in top panel). (C) Intracellular calcium [Ca2+]i in PY cells as a 
function of time. Time-course of [Ca2+]i for PY 30 (bottom panel, arrow in top panel). 
Color scheme in (B) and (C): From blue to red for low to high values of ionic 
concentration. 
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SLOW TRANSITIONS OF OSCILLATORY STATES IN VIVO 

We recorded paroxysmal activity with similar patterns of sustained transitions 

between fast run and slow bursting from association areas 5 and 7 in anesthetized cats 

(Fig. 2-21). Cats under ketamine-xylazine anesthesia reveal sleep-like slow oscillatory 

pattern with frequency 0.8-0.9 Hz (Steriade et al., 1998). In 31 cats (N = 45), we found 

spontaneous paroxysmal discharges consisting of spike-wave (polyspike-wave) 

complexes (slow bursting, 1.5-3 Hz) and epochs of fast run (fast spiking, 8-15 Hz). In 

average, 2.4 (std 1.4) episodes of fast run occurred during a seizure. Episodes of slow 

bursting and fast run lasted 37.2 sec (std 22.2) and 4.9 sec (std 5.7), respectively. The 

mechanism of these slow transitions is unknown. Our modeling work reproduces the 

qualitative features of these transitions between slow bursting and fast run and 

therefore suggests activity-dependent modulation of excitability (e.g. extracellular 

potassium dynamics) as a candidate mechanism. 
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Figure 2-21 Sample trace of electrographic seizure composed of alternating epochs of 
spike-wave complexes (slow bursting) and fast run. Upper panel shows depth EEG 
and intracellular activity during normal slow oscillation and its transformation to 
paroxysmal activity composed of fast runs and spike-wave complexes. The 
electrographic seizure is indicated by the rectangle in the upper panel. Thick gray lines 
indicate periods of fast runs. The other periods of the seizure are spike-wave 
complexes. Three expanded fragments indicated by horizontal bars and arrows show 
(from left to right) a period of slow oscillation, a paroxysmal fast run, and a period of 
spike-wave discharges (slow bursting). 
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DISCUSSION 

Extracellular potassium concentration, [K+]o, reflects past firing activity. In 

turn, elevated [K+]o increases the intrinsic excitability of neurons. Yet, very little is 

known about the dynamics of such activity-dependent modulation of intrinsic 

excitability. K+-dependent regulation of neuronal activity essentially provides a 

positive feedback mechanism that can lead to tonic depolarization and to instability 

exhibited through high frequency sustained firing. Here we found, however, that 

dynamic interplay of fast processes (mediated by intrinsic and synaptic conductances) 

and [K+]o dynamics can mediate very slow transitions between two different 

oscillatory states in conditions of balanced excitation and inhibition for elevated [K+]o. 

Thus, the inherently positive feedback mechanism of extracellular potassium 

dynamics stabilizes cortical network oscillations and causes sustained neural firing 

structured into alternating periods of fast run and slow bursting. 

 

BISTABILITY AND HYSTERESIS 

In our neocortical network models, we found a bistability with hysteresis 

between tonic firing and slow bursting under conditions of balanced excitation and 

inhibition. Thus, the hysteresis causes a sustained pattern of alternating episodes of 

fast and slow oscillations in the absence of external input. Network connectivity was 

critical to maintain oscillations. While the hysteresis between several oscillatory states 

was found already in a single cell model, those states appeared only transiently 

following initial stimulation. Balanced excitatory and inhibitory connections between 
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pyramidal cells and interneurons were essential to stabilize the network in the regime 

of alternating modes. After an initial increase in [K+]o, a small globally connected PY-

IN network exhibits periodic transitions between fast run and slow bursting every few 

seconds. During fast run, the spiking frequency is sufficiently high for extracellular K+ 

to accumulate. When [K+]o reaches the upper endpoint of the hysteresis, the network 

switches back to slow bursting, during which [K+]o decreases until it reaches the lower 

endpoint of the hysteresis for transition to fast run. We showed that a similar 

mechanism also occurs in larger networks with more realistic synaptic connectivity 

where oscillatory regimes are initiated and driven by [K+]o dynamics. 

 

Various types of potassium mediated bistabilities have been described in both 

experimental and theoretical studies. Elevated [K+]o led to a bistability between tonic 

firing and quiescence in a model of a hippocampal pyramidal cell (Hahn and Durand, 

2001). Exposing cardiac Purkinje fibers to changing K+ concentration revealed two 

stable levels of resting potentials; switching between these two stable states was 

associated with a hysteresis (Gadsby and Cranefield, 1977). A simplified model of 

cerebellar Purkinje cells comprised of high-threshold calcium and delayed-rectifier 

potassium channels reproduced an experimentally observed bistability between resting 

potential and a depolarized state (Yuen et al., 1995). Myocardial cells exhibited two 

stable levels of diastolic potential when exposed to 4 mM K+ in vitro (McCullough et 

al., 1990). 
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In contrast to these studies, we investigated here a novel bistability between 

two different oscillatory firing regimes. In our model, [K+]o dynamics not only created 

bistability but also forced periodic transitions between two metastable oscillatory 

states. The rate of [K+]o change depends on the balance between neuronal K+ currents, 

K+ pumps and glial buffering and, therefore, can be arbitrary slow. Because of this, the 

time scale of slow transitions between oscillatory states in the model was not explicitly 

restricted by the time constants of any intrinsic or synaptic conductances. The relative 

duration of the different oscillatory modes depended on the width of hysteresis that 

was controlled by the combination of intrinsic and synaptic currents. Thus, 

mechanisms proposed in this work can potentially explain a wide range of oscillatory 

phenomena different by the time scale of oscillations and duration of alternating 

modes.  

 

Other mechanisms may create multistability in synaptically coupled networks. 

Synaptic depression mediated bistability between two modes of oscillations in 

networks with recurrent inhibitory connectivity (Manor and Nadim, 2001). Bistability 

between silence and firing mediated by nonlinear firing characteristics of neurons and 

by feedback between the two neurons was found in small biological circuits in vitro 

(Kleinfeld et al., 1990). While all these mechanisms may potentially explain periodic 

transitions between different network states, an explicit assumption about the time 

constant of plasticity that should match the time constant of the slow transitions 

between modes is required. Our model is free from this limitation. As we showed here, 
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interaction in a population of neurons (or neuronal circuits) mediated by extracellular 

ionic concentrations may lead to complex oscillatory regimes with continuous and 

arbitrarily slow transitions between individual stable modes.  

 

BALANCED EXCITATION AND INHIBITION 

In our model, extracellular potassium dynamics caused sustained neural 

oscillations with alternating epochs of slow bursting and fast run provided synaptic 

excitation and inhibition was balanced. Substantial change of the excitatory PY-PY or 

inhibitory IN-PY coupling away from the balanced state created regimes with 

exclusive fast tonic oscillations or slow bursting. The concept of balanced synaptic 

excitation and inhibition plays a central role in many neurobiological processes. 

Experimental in vivo, in vitro and modeling studies of transitions between cortical UP 

and DOWN states showed that periods of high activity are accompanied by a decrease 

in input resistance mediated by a simultaneous increase in both excitation and 

inhibition (Bazhenov et al., 2002; Compte et al., 2003; Steriade et al., 2001). Self-

sustained activity mediated by balanced synaptic inputs might underlie short-term 

memory (Durstewitz et al., 2000) and the modulation of neuronal excitability with 

attention (Mehta et al., 2000). We find it notable that potentially similar conditions for 

the balance between excitation and inhibition can allow different forms of self-

sustained activity and state-dependent transitions between different activity regimes.  
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Our model sheds a new light on the interaction between excitatory and 

inhibitory synaptic coupling during cortical oscillations. Traditionally, the role of 

inhibitory interneurons is to maintain reasonable firing frequency levels, and a shift in 

the balance between excitation and inhibition towards excitation is often associated 

with epileptic states (Dichter and Ayala, 1987; Galarreta and Hestrin, 1998; Nelson 

and Turrigiano, 1998; Tasker and Dudek, 1991). A number of studies conclude, 

however, that synaptic inhibition remains functional in many forms of paroxysmal 

activities (Cohen et al., 2002; Davenport et al., 1990; Engel et al., 2003; Esclapez et 

al., 1997; Higashima, 1988; Prince et al., 1997; Timofeev et al., 2002a; Topolnik et al., 

2003a; Traub et al., 1996). In agreement with these findings, the role of inhibition is 

rather subtle in our model. If the balance of excitation and inhibition is shifted towards 

excitation, the PY cells were sufficiently active to stay in the bursting mode and fast 

run never occurred. Since [K+]o decreased progressively during bursting, the network 

switched to the silent state. Thus, contrary to what was expected, decrease of 

inhibition in the model terminated oscillations since a single epoch of slow bursting 

was followed by silence (Fig. 2-18). 

 

Synaptic plasticity can change the balance between excitation and inhibition 

and therefore move the network away from the region of sustained oscillations. These 

dynamic changes in synaptic weights could be especially prominent during high 

frequency synchronized paroxysmal oscillations. Therefore, the mechanism described 
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in our model may potentially explain termination of the paroxysmal activity after 

seizures. 

 

CONCLUSION 

We describe a novel biophysical mechanism for slow periodic transitions 

between different oscillatory states of cortical networks. A positive feedback 

mechanism modulating intrinsic excitability caused metastable slow state transitions 

rather than unstable “run-away” dynamics as intuition might suggest. Such slow 

transitions between different oscillatory regimes have been observed in a number of in 

vivo recordings from different cortical structures. We expect the dynamics observed in 

our modeling work to be potentially valid for various brain states characterized by a 

(transient) increase in cellular excitability. Neocortical paroxysmal activity mediated 

by elevated extracellular K+ concentration represents one “extreme” example of such a 

change in excitability. Other potential mechanisms include upregulation of some 

intrinsic depolarizing currents, increase of input resistance or decrease in extracellular 

Ca2+ concentration. Specifically, our model predicts that (1) dynamic interaction of 

fast processes (such as intrinsic and synaptic conductances) in the system with positive 

feedback mechanism controlling excitability (extracellular potassium dynamics) can 

introduce dynamics on a much slower time scale, (2) the slow patterning of sustained 

neuronal firing behavior into alternating epochs of tonic firing and bursting can be 

mediated by extracellular potassium dynamics, (3) balanced synaptic excitation and 

inhibition is required for maintaining the slow transition dynamics, and (4) the high-



  142 

 

threshold calcium conductance plays an important role in creating sustained neural 

oscillations. 
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2.4 Coexistence of Tonic Firing and Bursting in Cortical Neurons 

Sustained neuronal activity can be broadly classified as either tonic firing or 

bursting. These two major patterns of neuronal oscillations are state-dependent and 

may coexist. The dynamics and intracellular mechanisms of transitions between tonic 

firing and bursting in cortical networks remain poorly understood. Here we describe a 

detailed two-compartment conductance-based cortical neuron model which exhibits 

bistability with hysteresis between tonic firing and bursting for elevated extracellular 

potassium concentration. The study explains the ionic and dynamical mechanisms of 

burst generation and reveals the conditions underlying coexistence of two different 

oscillatory modes as a function of neuronal excitability. 

 

INTRODUCTION 

Oscillatory activity is an emerging property of many biological systems. In the 

brain, neuronal oscillations modulate cortical excitability and are critically involved in 

almost every cognitive task including information coding, memory formation, and 

perception (Gray et al., 1989; Maquet, 2001; Stickgold et al., 2000; Womelsdorf et al., 

2006). Neuronal oscillations result from the activity of individual neurons that can be 

broadly classified as tonic spiking (unimodal distribution of interspike intervals) and 

bursting (multimodal distribution with distinct peaks for intraburst intervals). Many 

neuron classes display transitions between tonic spiking and bursting as a function of 

the brain state (e.g. sleep vs. wakefulness) (Sherman, 2001; Shilnikov and Cymbalyuk, 

2005; Steriade et al., 1993a; Steriade et al., 2001; Turrigiano et al., 1996); these 
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transitions can modify the information transfer mode of neuronal networks. 

Understanding the dynamical mechanisms underlying the existence of tonic spiking 

and bursting oscillations and conditions that trigger transitions between these patterns 

of neuronal activity is critical for understanding processing of sensory information in 

the brain. 

An increase in intrinsic excitability can cause bursting in cells which usually 

fire single action potentials. Extracellular potassium concentration [K+]o has been 

shown to modulate intrinsic excitability (Jensen and Yaari, 1997; Leschinger et al., 

1993; Pan and Stringer, 1997). It is well established that [K+]o increases during 

epileptogenesis (Dietzel et al., 1989; Moody et al., 1974; Somjen, 2004) and may be 

critically involved in synchronized burst oscillations during several seizure types 

(Traynelis and Dingledine, 1988). Little, however, is known about the underlying 

dynamics of these state-dependent transitions between different oscillatory modes. 

Here, we show that non-synaptic, spontaneous activity in hippocampal region CA3 in 

vitro switches from single spikes to bursting when [K+]o is increased. We then build a 

conductance-based model of a cortical neuron which we show to exhibit bistability 

with hysteresis between tonic firing and bursting for elevated [K+]o. Using fast-slow 

analysis, we explain the mechanism of bursting and reveal the source of bistability in 

this system for a range of [K+]o. 
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CONDUCTANCE-BASED MODEL 

The conductance-based model used in our study includes a dendritic and an 

axo-somatic compartment reflecting the functional morphology of cortical neurons 

(Mainen and Sejnowski, 1996). Motivation for the choice of a two-compartmental 

model is that different firing patterns (e.g. different levels of spike frequency 

adaptation for regular spiking neuron versus fast spiking interneuron) can be easily 

modeled by varying the electrical coupling between the two compartments (Mainen 

and Sejnowski, 1996). Here, we model a pyramidal cell with spike frequency 

adaptation for injection of a depolarizing step current: 

Cm dVD/dt = -gL(VD-EL) -gKL,D(VD-EK)- g(VD-VS)SD - ID,ionic (1) 

g(VS-VD)/SS =-gKL,S(VS-EK) - IS,ionic, 

where VD and VS are dendritic and somatic membrane voltages respectively, 

g = 0.1 mS is the coupling conductance between the two compartments, ID,ionic and 

IS,ionic are the ionic currents in the two compartments, Cm = 0.75 µF/cm2 is the 

membrane capacitance, and gL = 0.03 mS/cm2, gKL,D = 0.01 mS/cm2, gKL,S = 

0.1 mS/cm2, EL, and EK are the conductances and equilibrium potentials of the mixed 

and potassium-mediated dendritic and somatic leak currents, respectively. The surface 

areas of the dendritic and somatic compartments are SD = 1.65 10-4 cm2 and SS = 

10-6 cm2, respectively. All ionic currents are of the form Ij = gj(VD,S-Ej) with 

conductance gj and equilibrium potential Ej. The conductance gj is written as: gj = 

GjmMhH, with maximal conductance Gj and voltage-dependent activation and 

inactivation variables m and h. The activation and inactivation dynamics are described 
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by first-order kinetics of the form τ dx/dt = -(x-x∞) where x ∈ m,h. Specifically, the 

dendritic compartment is endowed with voltage-gated transient and persistent sodium 

(INa,D and INap,D), slow voltage-dependent and calcium-dependent non-inactivating 

potassium (IKm and IKCa), high-threshold calcium ICa, and hyperpolarization-activated 

depolarizing Ih currents: 

ID,ionic = INa,D+INap,D+IKm+IKCa+ICa+Ih. 

The INa,D current has M = 3, H = 1, 

Am = 0.182(VD+25)/(1-exp(-(VD+25)/9)),  

Bm = 0.124(-VD-25)/(1-exp(-(-VD-25)/9)), 

Ah = 0.024(VD+40)/(1-exp(-(VD+40)/5)), 

Bh = 0.0091(-VD-65)/(1-exp(-(-VD-65)/5)), 

m = 1/(α(Am+Bm)), 

τh = 1/(α(Ah+Bh)), 

m∞ = Am/(Am+Bm), 

h∞ = 1/(1+exp((VD+55)/6.2)). 

The INap,D current has M = 1, H = 0, 

m∞ = 0.02/(1 + exp(-(VD+42)/5)), 

τm = 0.1992. 

The IKm current has M = 1, H = 0, 

Am = 0.001(VD + 30) / (1 - exp(-(VD + 30)/9)), 

Bm = -0.001(VD + 30) / (1 - exp((VD + 30)/9)), 

τm = 1/(α(Am + Bm)), 
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m∞ = Am/(Am+Bm). 

The IKCa current has M = 2, H = 0, 

m∞ = (48 [Ca2+]i
2/0.03)/(48 [Ca2+]i

2/0.03 + 1), 

τm = (1/(0.03(48 [Ca2+]i/0.03 + 1)))/4.6555. 

The ICa current has M = 2, H =1, 

Am = 0.055(-27 - VD)/(exp((-27-VD)/3.8) - 1), 

Bm = 0.94 exp((-75-VD)/17), 

τm = 1/(α (Am+Bm)), 

m∞= Am/(Am+Bm), 

Ah = 0.000457 exp((-13-VD)/50), 

Bh = 0.0065/(exp((-VD-15)/28) + 1), 

τh = 1/(alpha(Ah+ Bh)), 

h∞ = Ah/(Ah+Bh). 

The Ih current has M = 1, H = 0, 

m∞ = 1/(1 + exp((VD + 82)/7)), 

τm = 38. 

The axo-somatic compartment exhibits a transient and persistent sodium current (INa,S 

and INap,S) and a delayed-rectifier potassium IKv current: 

IS,ionic = INa,S+INap,S+IKv. 

The sodium currents are of identical form as for the dendritic compartment 

except for the maximal conductances. The current IKv has M = 4, H = 0, 

Am = 0.02(VS-25)/(1-exp(-(VS-25)/9)) 
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Bm = -0.002(VS-25)/(1-exp((VS-25)/9)), 

τm = 1/(2.9529(Am+Bm)), 

m∞ = Am/(Am+Bm). 

The maximal conductances are GNa,D = 1, GNap,D = 3.5, GKm = 0.01, GKCa = 2.5, 

GCa = 0.015, Gh = 0.05, GNa,S = 3000, GNap,S = 3.5, and GKv = 200 (all conductances in 

mS/cm2, voltage-dependent conductances scaled with temperature adjustment factor α 

= 2.95). The equilibrium potentials were ENa = 50 mV and ECa = 140 mV. The 

equilibrium potential EK for potassium conductances is determined by the Nernst 

equation. The voltage-independent leak conductance gL, with equilibrium potential EL 

given by the Goldman-Hodgkin-Katz equation, defines the resting potential 

(Bazhenov et al., 2004; Kager et al., 2000): 

EK = 26.64 ln ([K+]o/[K+]i) 

EL = 26.64 ln([K+]o + 0.085 [Na+]o + 0.1 [Cl-]i)/ 

([K+]i + 0.085 [Na+]i + 0.1 [Cl-]o), (5) 

where the ion concentrations are set to [Na+]o = 130 mM, [Na+]i = 20 mM, 

[Cl-]o = 130 mM, [Cl-]i = 8 mM. Intracellular calcium dynamics are described by  

d[Ca2+]i/dt = -5.18 10-5ICa + ([Ca2+]i(eq)-[Ca2+]i)/τCa, 

where [Ca2+]i(eq) = 240 nM is the equilibrium concentration and τCa = 300 ms is 

the time constant for intracellular Ca2+ removal. All bifurcation diagrams are built 

using XPP-AUTO (http://www.pitt.edu/~phase). 
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Transverse hippocampal slices (400 µm) from a male Wistar rat (p18) were cut 

in ice cold standard artificial cerebrospinal fluid (ACSF) equilibrated with 95% O$_2$ 

and 5% CO2 (119 mM NaCl, 2.5 mM KCl, 1.3 mM NaHPO4, 1.3 mM MgCl2, 2.5 mM 

CaCl2, 26 mM NaHCO3, and 11 mM glucose) and then transferred into an interface 

chamber where they were incubated at 34°C for 45 minutes. A multiwire electrode 

(ALA Scientific, Westbury, NY) was used for recording spontaneous spiking activity 

in CA3. Fast synaptic transmission was blocked by bath application of 10 µM NBQX 

and 2.5 µM Gabazine (Tocris Bioscience, Ellisville, MO). Slices were submerged in 

standard ACSF (32°C); the high potassium condition corresponded to an increase of 

KCl concentration to 6.5 mM. Extracellular traces were bandpass filtered (300 Hz, 

5000 kHz) and sampled at 20 kHz. Potential spikes were detected by threshold 

crossing. A spike from a given unit was typically picked up by 3-4 recording sites 

(tetrode-like recordings). Spikes were then sorted by first overclustering the 

waveforms into subclusters with the k-means clustering algorithm. As a result, spikes 

corresponding to a single unit were represented by several neighboring subclusters. 

These subclusters were then manually combined to clusters representing individual 

units (Fee et al., 1996). All experiments were carried out in accordance with the 

guidelines set forth by the University of California. 
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RESULTS 

Potassium-mediated currents essentially define the resting state of the 

membrane voltage and act against any depolarizing ion currents. Therefore, an 

increase in [K+]o, which weakens potassium currents, causes an increase in intrinsic 

excitability. Here, we show how a change in [K+]o modulates the spontaneous activity 

patterns mediated by intrinsic conductances in the absence of any current injection; we 

recorded non-synaptic, spontaneous activity in hippocampal region CA3 in vitro for 

[K+]o = 2.5 mM and [K+]o = 6.5 mM (extracellular single unit recordings). For low 

[K+]o, all units which we recorded from fired single action potentials most of the time. 

Increasing [K+]o caused bursting to become the prevalent firing pattern (representative 

units in Fig. 2-22). Bottom panel of Fig. 2-22 displays the probability distribution of 

instantaneous frequencies (inverse of interspike intervals) for two cells and two [K+]o 

concentrations. It shows that the cells recorded in high potassium ([K+]o = 6.5 mM) 

clearly exhibit  bimodal distribution of instantaneous frequencies with one peak 

corresponding to frequencies higher than 130 Hz (interspike intervals < 7.7 msec) and 

another one corresponding to frequencies less than 4.8 Hz (interspike intervals > 208 

msec). Only the latter peak corresponding to interspike intervals larger than 208 msec 

was found for neurons recorded in low potassium ([K+]o = 2.5 mM). 
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Figure 2-22 Top panels: Representative single unit activity for [K+]o = 2.5 mM (top) 
and [K+]o = 6.5 mM (bottom) in hippocampal region CA3. Ten traces are aligned by 
the first spike in a sequence. In high [K+]o solution, the neurons fired bursts with 
several spikes. Scale bar: 5 ms. Bottom panel: Probability distribution of instantaneous 
frequencies (calculated as inverse of interspike intervals, N = 204) for two cells for 
each [K+]o concentration. Cell 1 and 2 ([K+]o = 6.5 mM) exhibit nonzero probabilities 
for instantaneous frequencies higher than 130 Hz, corresponding to spiking during 
bursts. Cell 3 and 4 ([K+]o = 2.5 mM) never show instantaneous frequencies exceeding 
4.8 Hz (that corresponds to interspike intervals > 208 msec). 
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To explain these data and to understand the dynamical mechanisms of the 

transition between different oscillatory modes, we used the two-compartmental neuron 

model (1)-(6). In the following, we treat [K+]o in Eq. (5) as a constant parameter to 

determine the stable oscillatory states as a function thereof. We plot the Poincare 

cross-section, where the intracellular calcium level is plotted at the intersection of the 

membrane voltage of the axo-somatic compartment with the manifold V = -25 mV, for 

a range of [K+]o ∈ [4.5, 7] mM. In such a plot, limit cycles are represented as points 

defined by a threshold crossing of a trajectory for different values of [K+]o. This 

method allows the graphical representation of changes in the nature of oscillatory 

behavior as a function of a parameter, in our case [K+]o. For a given value, tonic firing 

is represented as a single point, whereas bursting corresponds to a group of points. 

Hence, parallel lines indicate a parameter range for which bursting occurs. Here, the 

Poincare cross-section reveals tonic firing, coexistence of tonic firing and bursting, 

and only bursting for increasing levels of [K+]o (Fig. 2-23). Below, we investigate the 

dynamics of this model neuron for different values of [K+]o to explain the bistability 

between tonic firing and bursting in terms of the attractor landscape mediating the two 

different oscillatory states. At this point, we broadly classify the temporal activity 

patterns into tonic firing (which includes other non-bursting, fast activity, such as 

spike doublets with similar frequency) and bursting, which is characterized by 

prolonged depolarization, quickly occasioning several spikes, before incurring in spike 

inactivation, followed by a pronounced after-hyperpolarization. Our bifurcation 
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analysis presented below reveals two separate dynamical mechanisms responsible for 

the two different activity types defined above. 

 

 

To study the dynamics of bursting, we used fast-slow analysis by choosing a 

state variable with dynamics on the time-scale of individual bursts and treating it as a 

parameter of the resulting reduced system. Here, the calcium-activated potassium 

conductance gKCa, with a time scale at least as slow as the already very slow [Ca2+]i 

dynamics, was chosen as the slow variable. As we show below, this conductance is 

responsible for burst termination after sufficient calcium influx via the high-threshold 

calcium conductance activated during the depolarized membrane state. 
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Figure 2-23 Poincare cross-section for gradually increasing (top) and decreasing 
(bottom) [K+]o. Tonic firing corresponds to a single point, spike doublets to two 
points, and bursting to a series of points in the Poincare cross-section for a given value 
of [K+]o. Bistability between tonic firing and bursting for [K+]o ∈ [5.75, 6.4] mM. 
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Figure 2-24 Bifurcation diagram for [K+]o = 5.9 mM. Stable fixed points Pup
s and 

Pdown
s (thick dashed line) are connected by the branch of unstable fixed points Pu (thin 

dashed line). Solid lines indicate stable (thick) and unstable (thin) limit cycles. O1 - 
Andronov-Hopf, O2 and O3 - fold, O4 - saddle homoclinic orbit bifurcation points. 
Insets show bursting and tonic spiking patterns in the complete system with freely-
running gKCa. Middle and bottom panels - enlarged region of interest. O5 - Neimark-
Sacker and O6 - period doubling bifurcation points. Ls indicates stable limit cycles. 
Projection of the phase trajectory for the complete system during bursting mode (solid 
red line, middle panel) and tonic firing (solid vertical blue line, bottom panel). 
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We first consider the case for [K+]o = 5.9 mM which is within the bistable 

region (see Fig. 2-23). Although in the full system gKCa ≥ 0 by definition, we included 

gKCa < 0 in our analysis to reveal the entire bifurcation structure of the system. For all 

limit cycles, we show both maximum and minimum dendritic membrane voltage of 

the oscillatory trajectory on the ordinate of the bifurcation plots. The fixed points of 

the reduced system follow a z-shaped line as a function of gKCa (Fig. 2-24, top panel). 

Two stable fixed points, Pdown
s and Pup

s, are connected by a branch of unstable fixed 

points Pu. For gKCa in {0.007,0.076} mS/cm2, both stable states co-exist. Pup
s loses 

stability by a sub-critical Andronov-Hopf bifurcation at O1. Pdown
s coalesces with the 

unstable fixed point in a saddle-node bifurcation at O3. The following mechanism 

underlies burst generation in this system (Fig. 2-24, middle panel). Conductance gKCa 

decreases while the system tracks Pdown
s because of the calcium pump's efforts to 

remove intracellular Ca2+. As a consequence, Pdown
s eventually loses stability in the 

saddle-node bifurcation point O3 and a transition to Pup
s occurs. The trajectory rotates 

several times around Pup
s, which is a stable focus, but never quite reaches it in the 

complete system with freely running gKCa. These rotations correspond to the rapid 

sequence of action potentials at the onset of the burst. The decaying amplitude of the 

transient oscillations is reflected in the decreasing spike amplitude in the membrane 

voltage time-course during a burst. As the system approaches this fixed point, no more 

action potentials occur and the membrane voltage remains depolarized. In the 

meantime, the intracellular Ca2+ concentration increases since the cell is sufficiently 
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depolarized to activate the high-threshold Ca2+ conductance which mediates calcium 

influx. In turn, this causes an increase in gKCa which eventually leads to a loss of 

stability of Pup
s at O1. The trajectory then falls back to Pdown

s. In short, burst generation 

in the complete system is mediated by periodic transitions between two fixed points of 

the reduced system. These transitions form a periodic orbit corresponding to the 

bursting dynamics. 

 

The small-amplitude unstable limit cycle which originates at O1 wraps around 

at gKCa = -0.001 mS/cm2 leading to the coexistence of a small- and a large-amplitude 

unstable limit cycle (Fig. 2-24). Before coalescing with the unstable fixed point Pu in a 

saddle homoclinic orbit bifurcation point O4, the unstable limit cycle with larger 

amplitude in the VD dimension becomes stable in a narrow range for gKCa ∈ [-

0.0005,0.0045] mS/cm2 (indicated by Ls in Fig. 2-24, bottom panel). At the left 

bifurcation point O5, the large-amplitude cycle gains stability through a subcritical 

Neimark-Sacker bifurcation. 

At the right point O6 the limit cycle loses stability again through a period-

doubling bifurcation. Between these two points, the limit cycle Ls remains stable, 

mediating tonic firing. If this regime is present in the complete system with freely-

running gKCa depends on whether gKCa stays in the range where the cycle Ls is stable in 

the reduced system. In the complete system, gKCa remains very low during tonic firing 

since gCa mediating calcium influx is in average only weakly activated. Also, gKCa is 

bounded by zero on the left side since an ionic conductance cannot become negative. 
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Therefore it is critical for the existence of tonic firing in the full system that the 

corresponding limit cycle Ls is stable for arbitrarily small positive values of gKCa. This 

is indeed the case for selected value of [K+]o = 5.9 mM since the left bifurcation point 

O5, where the limit cycle loses stability, corresponds to a negative value of gKCa and 

therefore permits stable tonic oscillations in the complete system. In short, the stable 

limit cycle of the reduced system Ls remains a stable periodic orbit in the complete 

system. This limit cycle mediating tonic spiking dynamics co-exists with the periodic 

orbit mediating bursting (see above). 
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Figure 2-25 Three-dimensional bifurcation diagram for [K+]o = 5.5 mM. The Z-axis 
shows the activation variable of the high-threshold Ca2+ current, mICa. A small 
perturbation (gKCa = 0.0045 mS/cm2) left from O3 (gKCa = 0.005  mS/cm2) leads to 
convergence to the limit cycle (blue line starting close to O3). A larger perturbation 
(gKCa = 0.001 mS/cm2) triggers convergence to the stable fixed point Pup

s (red line 
starting further away from O3). Left insets show time courses of convergence to the 
stable fixed point (top, red) and limit cycle (bottom, blue). Right inset - sequence of 
period doubling bifurcations in Poincare cross-section: mICa = 0.4. 
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We next consider [K+]o = 5.5 mM. In the complete system, we only observed 

firing with spike doublets (Fig. 2-25). The bifurcation diagram of the reduced system 

(Fig. 2-25) looks similar to the previous case. In contrast to [K+]o = 5.9 mM, however, 

the limit cycle corresponding to tonic firing is unstable for gKCa > 0 mS/cm2 (Fig. 2-

25, right inset). Instead, a cycle of period 2 is stable within a range of gKCa fluctuations 

occurring during non-bursting activity in the complete system with freely-running 

gKCa. 

To determine why bursting does not occur in this system, we applied a set of 

perturbations of different amplitudes in the vicinity of saddle-node bifurcation point 

O3 (Fig. 2-25). A small deflection off the saddle-node bifurcation point caused nearly 

periodic firing with period 4. A larger deflection left from O3 triggered convergence to 

the stable upstate fixed point Pups. Therefore, for low values of [K+]o the vicinity of 

the saddle-node point O3 no longer belongs to the basin of attraction of the upper 

stable fixed point Pup
s. For initial conditions from the low stable branch of fixed points 

Pdown
s, the system reaches the saddle-node bifurcation point and then immediately 

jumps to the stable limit cycle with period 2, mediating firing with spike doublets. 
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Figure 2-26 Bifurcation diagram for [K+]o = 9.0 mM. Projected trajectory of full 
system (thin solid line, red) shows transient oscillation at the end of the burst before 
switching to Pdown

s. Top inset, supercritical Andronov-Hopf bifurcation at O1. Bottom 
inset, membrane (soma, VS) voltage time-course during burst. 
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Conversely, for [K+]o = 6.5 mM (not shown), we only observed bursting in the 

complete system. The bifurcation plot distinguishes itself from the previous two cases 

by the fact that for low values of gKCa there is only a very narrow region of gKCa ∈ 

[0.01, 0.014] mS/cm2 for which a stable limit cycle Ls exists. The left bifurcation point 

O5 occurs at a positive value of gKCa. In the complete system, starting from the initial 

conditions belonging to the limit cycle, the value of gKCa decreases toward its 

equilibrium, corresponding to a very low value of gKCa. Before reaching this point, 

however, the limit cycle loses its stability at the Neimark-Sacker bifurcation point O5 

and the system moves to the Pups branch, starting a burst. Hence, non-bursting firing 

does not exist as a stable state for sufficiently elevated [K+]o. Further elevation of 

[K+]o (e.g. [K+]o = 9 mM) changes the type of bifurcation point O1 (Fig. 2-26). The 

stable up state Pup
s now loses stability via a supercritical Andronov-Hopf bifurcation 

for gKCa = 0.145 mS/cm2 (Fig. 2-26, top inset). It changes the burst pattern displayed 

by the complete system. Rather than displaying a “smooth” transition to the low 

branch of fixed points Pdown
s, the system produces a series of spikelets with increasing 

amplitude at the end of each depolarization state (burst offset). This particular pattern 

was previously described in vivo (Steriade et al., 1998). 

 

DISCUSSION 

Extracellular potassium concentration has been shown to vary as a function of 

neural activity (Bazhenov et al., 2004; Kager et al., 2000). Specifically, potassium 

currents tend to increase [K+]o, whereas pumps, glial buffering, and diffusion 
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contribute to stabilize [K+]o. When any of these mechanisms fails to operate normally, 

[K+]o rises and a neuron starts to burst spontaneously (Bazhenov et al., 2004), as 

frequently observed during paroxysmal seizures in vivo (Perreault and Avoli, 1989; 

Steriade and Contreras, 1995; Ziburkus et al., 2006). Here, we showed that non-

synaptic, spontaneous activity changes from single action potentials to bursts in 

conditions of increased [K+]o in hippocampal region CA3. Our experimental approach 

of extracellular single unit recordings in acute hippocampal slice does not perturb the 

intracellular milieu (including [Ca2+]i, which we showed to be essential for burst 

termination) and is therefore free from this limitation of intracellular recordings. 

 

Using a detailed mathematical model, we have discussed the dynamic 

landscape underlying the coexistence of tonic firing and bursting in a cortical 

pyramidal cell for elevated extracellular potassium concentration. A common 

mechanism of burst generation involves a transition between two attractors: a stable 

fixed point corresponding to a hyperpolarized state, and a limit cycle corresponding to 

spiking (Izhikevich, 2007). In our model, the fast subsystem does not have such a limit 

cycle attractor, and therefore spike generation depends on fast rotations around the 

upper fixed point with relatively weak convergence (point-point mechanisms of 

bursting). When the trajectory reaches this stable fixed point, this corresponds to spike 

inactivation (depolarization block) frequently observed during seizures in vivo and in 

slices treated with high potassium and/or 4-aminopyridine (4-AP) (Ziburkus et al., 

2006). The bursting mechanism which we described here is essentially mediated by 
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the dynamic interaction of the high-threshold calcium conductance gCa, intracellular 

calcium concentration [Ca2+]i, and the calcium-activated potassium conductance gKCa. 

During tonic firing, gCa is minimally activated and therefore [Ca2+]i stays near its 

equilibrium value. This allows the spiking to continue indefinitely. In contrast, in 

bursting mode, substantial calcium influx mediated by gCa during the depolarized state 

causes gKCa to activate. This in turn mediates burst termination and subsequent after-

hyperpolarization. The different levels of deinactivation of gCa explain the bistability 

between tonic firing and bursting. In the bursting mode, gCa becomes significantly 

deinactivated during the hyperpolarized phase therefore enabling a rapid sequence of 

spikes initiating the onset of a further burst when the hyperpolarized phase is over. In 

contrast, when the neuron is in tonic firing mode, insufficient gCa deinactivation 

between spikes reduces the effect of this conductance and prevents switching to the 

bursting mode. The persistent sodium conductance gNaP enables the existence of the 

bursting mode by providing additional depolarizing force to sufficiently activate gCa 

during the bursts. Accordingly, an increase in gNaP shifts the bistable region to lower 

values of [K+]o. A significant decrease in gNaP abolishes the bursting regime. 

Introducing gh decreases the value of [K+]o for which the neuron became active and 

narrowed the width of the hysteresis (data not shown).  

Our model predicts the existence of a bistable regime for elevated [K+]o where 

tonic firing and bursting co-exist. Direct experimental verification would require a 

tight control of [K+]o in the extracellular environment which is probably easier to 

achieve in case of isolated neurons (e.g. in dissociated culture). Additionally, fluid 



  166 

 

dynamics of the perfusion system would need to be constrained such that [K+]o could 

be rapidly increased and decreased by changing K+ concentration at the source. 

Furthermore, activity-dependent changes in [K+]o would need to be suppressed to 

ensure constant [K+]o. 

 

Other potassium-mediated bistabilities between a silent and active state or 

between two membrane voltage values have been found both in models and 

experiments (Gadsby and Cranefield, 1977; Hahn and Durand, 2001; McCullough et 

al., 1990; Yuen et al., 1995). Bistability between tonic spiking and bursting was 

described in a model of a leech heart interneuron under specific pharmacological 

conditions (Shilnikov et al., 2005). Burst generation in this model was mediated by 

transitions between a fixed point and a periodic orbit of the fast subsystem and 

included bursting regimes with arbitrary long oscillatory depolarized states. 

 

Existence of bistability between tonic spiking and bursting for an intermediate 

range of [K+]o predicts that in a neuronal system with dynamically updated [K+]o, K+-

dependent regulation of neuronal activity may lead to complex oscillatory behavior 

(Frohlich et al., 2006). In an isolated neuron model where [K+]o was continuously 

computed based on neuronal K+ currents, K+ pumps and glial buffering, [K+]o 

decreased faster during periodic bursting and slower during tonic firing (Bazhenov et 

al., 2004). Since the [K+]o gradient depends on the frequency of firing, excitation 

mediated by lateral synaptic connections between neurons may increase the frequency 
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of tonic spiking sufficiently to provide [K+]o elevation during tonic spiking throughout 

the network of neurons. On the other hand, frequency of bursting is mainly mediated 

by intrinsic cell properties - rate of deactivation of the calcium-dependent potassium 

conductance during the intraburst interval - and, therefore, the [K+]o gradient during 

bursting can stay negative even in the presence of excitatory synaptic connections. 

This suggests that activity-dependent modulation of intrinsic excitability can lead to 

sustained oscillations in a cortical network with slow transitions between two distinct 

firing modes - tonic spiking and bursting - mediated by slow [K+]o oscillations. 

Examples from in vivo experiments where such transitions were observed include the 

transition between fast runs and slow bursting during spike-wave seizures (Timofeev 

et al., 1998) and periodic transitions between slow-wave and fast-wave oscillations in 

olfactory cortex (Murakami et al., 2005). 
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2.5 Maintenance and Termination of Neocortical Oscillations by Dynamic 
Modulation of Intrinsic and Synaptic Excitability 

 
Mechanisms underlying seizure cessation remain elusive. The Lennox-Gastaut 

syndrome, a severe childhood epileptic disorder, is characterized by episodes of 

seizure with alternating epochs of spike-wave and fast run discharges. In a detailed 

computational model incorporating extracellular potassium dynamics, we studied the 

dynamics of these state transitions between slow and fast oscillations. We show that 

dynamic modulation of synaptic transmission can cause termination of paroxysmal 

activity. An activity-dependent shift in the balance between synaptic excitation and 

inhibition towards more excitation caused seizure termination by favoring the slow 

oscillatory state which permits recovery of baseline extracellular potassium 

concentration. We found that slow synaptic depression and change in chloride reversal 

potential can have similar effects on the seizure dynamics. Our results suggest a novel 

role for synaptic dynamics during epileptic neural activity patterns. 

 

 

INTRODUCTION 

A prominent feature of cortical circuits is their propensity for rhythmic activity 

(Buzsaki and Draguhn, 2004; Steriade, 2006). This oscillatory activity might exist in 

either normal forms, such as during sleep (Bazhenov et al., 2002; Contreras et al., 

1997a; Contreras et al., 1997b; Destexhe et al., 1998; Nita et al., 2003; Steriade, 

2004a, 2003a, 2006; Steriade, 2003b; Steriade and Amzica, 2003, 1998; Steriade et al., 

1986; Steriade and McCarley, 2005; Steriade et al., 1993a; Steriade et al., 1993b; 
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Steriade et al., 2001; Timofeev et al., 2001a), or paroxysmal forms, such as during 

epilepsy (Amzica and Steriade, 2000; Neckelmann et al., 1998; Steriade, 2003b; 

Steriade and Amzica, 1998; Steriade et al., 1998; Steriade and Contreras, 1995, 1998; 

Timofeev et al., 2002a; Timofeev et al., 2004, 1998; Timofeev and Steriade, 2004). 

Epileptic seizures are characterized by epochs of hypersynchronized neural 

oscillations that are accompanied by firing. Experimental animals exhibit 

electrographic seizures that closely mimic the dynamics of clinical seizures. Here, we 

focus on the paroxysmal activity that closely resembles Lennox-Gastaut seizures 

(Markand, 2003; Niedermeyer, 2002), which are characterized by slow bursting 

(spike-wave or polyspike-wave complexes) intermixed with epochs of fast runs 

(Frohlich et al., 2006; Neckelmann et al., 1998; Timofeev et al., 1998). 

 

Recently, we proposed a mechanism for the slow state transitions between two 

different oscillatory regimes using a computational model of a cortical network with 

extracellular potassium dynamics (Frohlich et al., 2006). Pyramidal cells exhibited 

bistability with hysteresis between tonic firing and slow bursting for elevated 

extracellular potassium concentration [K+]o (Frohlich and Bazhenov, 2006). In a 

model that included [K+]o as a dynamic variable, this bistability caused persistent 

oscillations with slow transitions between slow bursting and fast run. We concluded 

that activity-dependent modulation of intrinsic excitability can mediate slow 

patterning of sustained neural oscillations. Activity-dependent changes of synaptic and 

intrinsic properties can modulate excitability through positive- and negative-feedback 
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mechanisms. Thus, an increase in [K+]o during sustained neural activity (Amzica and 

Steriade, 2000; Heinemann et al., 1977) upregulates excitability by decreasing the 

driving force on potassium currents and, hence, forms a positive-feedback (Yaari et 

al., 1986). By contrast, expression of excitatory recurrent coupling between pyramidal 

cells mediates negative feedback, whereas depression of inhibition constitutes positive 

feedback. Little is known about the combined effect of different dynamic mechanisms 

that modulate excitability. Here, we study network oscillatory states in the presence of 

dynamic mechanisms that shift the balance between excitation and inhibition towards 

more excitation. The positive-feedback nature of activity-dependent increase in 

excitability would indicate the occurrence of some form of self-amplifying ‘runaway 

dynamics’ by a global loss of stability. We found the opposite, namely that a dynamic 

shift in balance towards more excitation can force the network back to its silent state 

after a period of patterned oscillator activity. We discuss the resulting dynamics as a 

model for seizure cessation. 

 

OBJECTIVES 

Key objective of this study was to investigate how slow activity-dependent 

changes of synaptic transmission modulate paroxysmal network activity. Specifically, 

we studied the effect of slow synaptic depression and of change in GABAergic 

reversal potential mediated by chloride accumulation on the oscillatory network 

dynamics. 
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METHODS 

COMPUTATIONAL MODEL 

The model neocortical network with extracellular potassium dynamics has 

been described in detail elsewhere (Bazhenov et al., 2004; Frohlich and Bazhenov, 

2006; Frohlich et al., 2006). In short, individual neurons were modeled with an 

axo−somatic and a dendritic compartment, each endowed with Hodgkin−Huxley type 

conductances including fast transient sodium, delayed-rectifier potassium, persistent 

sodium, high-threshold calcium, calcium-activated potassium, and a mixed cationic 

leak conductance. Passive and active ion-transport mechanisms and glial buffering 

regulated the extracellular potassium concentration. The two-layered network 

consisted of a line of 80 pyramidal cells (PYs) and 16 inhibitory interneurons (INs). 

PYs were recurrently coupled through excitatory synapses (both AMPA and NMDA) 

to their local neighbors (five PYs on each side). Each PY excited three neighboring 

INs, which, in turn, inhibited 11 neighboring PYs through GABA(A) synapses. 

Synaptic transmission was modeled with first-order gating kinetics (Destexhe et al., 

1994). Maximal conductances denoting the total excitation and inhibition received by 

a given cell were set to G(AMPA)(PY-PY) = 200 nS, G(NMDA)(PY-PY) = 13 nS, 

G(AMPA)(PY-IN) = 100 nS, G(NMDA)(PY-IN) = 14 nS, and G(IN-PY) = 50 nS. All 

synapses included spontaneous release of neurotransmitter resulting in miniature 

postsynaptic potentials (Bazhenov et al., 2002). All synapses included short-term 

depression (STD) modeled with depression factor (D = 0.07) denoting the fraction of 

synaptic resources lost per presynaptic action potential and with first-order-recovery 
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dynamics with time-constant of 700 msec (Markram et al., 1998). Slow, activity-

dependent synaptic depression (‘slow depression’) was modeled similarly to STD but 

with different parameters. Depression factor D was set to a low value (D = 0.001) and 

recovery time constant was very slow (τ = 1000 sec). In some simulations, 

intracellular chloride concentration was computed for each cell by integration of the 

inhibitory currents mediated by GABA(A) receptors. The reversal potential for 

chloride was dynamically updated using Nernst equation with extracellular 

concentration [Cl-]o = 130 mM: ECl = 26.64 mV ln([Cl-]i/[Cl-]o). 

 

IN VIVO EXPERIMENTS 

The details of in vivo electrophysiological experiments involving intracellular 

recordings during paroxysmal activities has been described in detail (Timofeev et al., 

2002a; Timofeev et al., 2004). Briefly, intracellular recordings from neocortical 

neurons were performed in 15 cats anesthetized with ketamine−xylazine 

(10−15 mg kg-1 and 2−3 mg kg-1; i.m.) Following ketamine-xylazine anesthesia ∼30% 

of cats (n = 6) displayed spontaneous electrographic seizures consisting of SW/PSW 

complexes at 1.5−3 Hz, often associated with fast runs at about 10−15 Hz. In cats that 

did not display spontaneous electrographic seizures, the electrographic seizures were 

elicited by 3−4 pulse-trains (10−20 stimuli at 100 Hz) applied to cortical areas in the 

vicinity of the intracellular recording pipette. 
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Field-potential recordings and stimulation were obtained by using bipolar 

coaxial macroelectrodes inserted into the cortex. The outer pole of the electrode was 

placed at the cortical surface or 0.1 mm deeper, whereas the inner pole was placed at 

0.8−1 mm in the cortical depth.  

 

Intracellular recordings were obtained with sharp glass micropipettes filled in 

the majority of cases with a solution of 2.5−3.0 M potassium acetate (KAc). 

Electrophysiological identification of recorded neurons was achieved by intracellular 

application of depolarizing current pulses of 0.2−1.0 nA lasting for 200−300 msec. 

Because the intrinsic firing patterns of neurons are influenced by the network state 

(Steriade, 2004b; Steriade et al., 1998), formal identification was performed during 

active phases of slow oscillation in seizure-free periods. In this study, we only report 

data on regular-spiking neurons that revealed spike-frequency adaptation and on fast-

spiking neurons that exhibited both thin spikes and high-frequency tonic discharge 

without spike-frequency adaptation upon direct depolarization. In some experiments 

with dual intracellular recordings, one pipette was filled with KAc and the other with 

potassium chloride (KCl, 2.0−3.0 M). Intracellular pipettes had a DC resistance of 

30−80 MΩ. A high-impedance amplifier (bandpass, 10 kHz) with an active-bridge 

circuitry was used to record and inject current into the neurons. All electrical signals 

were sampled at 20 kHz and digitally stored on Vision (Nicolet). To simplify data 

processing, occasionally the data were downsampled to 2 kHz. All experimental 

procedures were performed in accordance with the guidelines of the Canadian Council 
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on Animal Care and were approved by the Committee for Animal Care of Laval 

University. 

 

RESULTS 

PERSISTENT OSCILLATORY ACTIVITY IN THE CORTICAL NETWORK MODEL 

Step depolarization of all 80 pyramidal cells in the network induced high-

frequency firing that resulted in a gradual increase in [K+]o (Fig. 2-27A). At the end of 

the stimulation [K+]o = 5.5 mM, for which activity-dependent potassium outflow was 

approximately balanced by mechanisms for removal of excess extracellular potassium. 

Therefore, [K+]o remained elevated, causing sustained oscillations in absence of 

stimulation. The persistent activity was structured into epochs of tonic firing (fast 

runs) and slow bursting (sample epochs labeled in Fig. 2-27A, top panel). Both the 

pyramidal cells (Fig. 2-27A, top panel) and the inhibitory interneurons (Fig. 2-27A, 

middle panel) were subject to this slow patterning. Previously, we showed that these 

slow state transitions between the two oscillatory regimes are mediated by a bistability 

with hysteresis of the two modes for elevated [K+]o (Frohlich et al., 2006). At the 

offset of external stimulation, the network started slow bursting during which [K+]o 

decreased (Fig. 2-27A, bottom panel) to a level at which only fast run is a stable mode. 

At this point the network switched to fast run and [K+]o started to increase because of 

the higher overall activity during fast run compared with slow bursting (Fig. 2-27A, 

bottom panel). Eventually, the system reached [K+]o at which fast run becomes 

unstable and the system switched to slow bursting again.  
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Figure 2-27 Cortical network oscillation patterned into alternating epochs of slow 
bursting and fast run following stimulation of PYs. (A) Top: Activity of all 80 PYs as 
a function of time. Middle: INs. Bottom: [K+]o time-course. After an initial transient 
increase, [K+]o increases and decreases during fast run and slow bursting, respectively. 
(B) Activity of all 80 PYs during slow bursting. (C) Membrane voltage-time course 
during fast run (top) and slow bursting (bottom). Scale bars: top, 20 msec; bottom, 
100 msec. 
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Slow bursting was synchronized throughout the network and occurred at 

frequencies of few bursts per second (Fig. 2-27B). In individual neurons, fast run 

denotes firing patterns similar to tonic firing (Fig. 2-27C top panel shows sample 

epoch of fast run in PY 40, marked in Fig. 2-27A, top panel). During slow bursting, 

pyramidal cells exhibited both burst with and without spike inactivation (Fig. 2-27C 

bottom panel shows sample epoch of slow bursting in PY 40). 

 

Here, we investigate possible mechanisms for the termination of the persistent 

oscillatory firing. In the model, transitions between fast run and slow bursting last 

indefinitely in presence of balanced synaptic excitation and inhibition. In case of 

strong recurrent excitation and weak inhibition, however, the network exhibited only 

bursting followed by silence (Frohlich et al., 2006). In other words, if the excitatory 

coupling is sufficient to prevent the network from switching to fast run, the network is 

bound to return to the silent state because [K+]o only decreases during slow bursting. 

Therefore we asked if a dynamic mechanism can shift the balance between excitation 

and inhibition such that a network that initially exhibits transition dynamics eventually 

reaches the regime where only bursting is stable and the persistent activity eventually 

terminates. In the following, we discuss two alternative dynamic mechanisms 

mediating an activity-dependent shift in the balance of excitation and inhibition 

towards more excitation. As we show below, both differential synaptic depression of 

excitation and inhibition with slow-recovery time constant (‘slow depression’) and 

increase in intracellular chloride concentration terminated the oscillatory activity. 
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EFFECT OF SYNAPTIC DEPRESSION ON SEIZURE CESSATION 

First, we consider depression of both excitatory coupling between pyramidal 

cells and inhibitory coupling between interneurons and pyramidal cells. We used a 

generic model of synaptic depression with a low depression rate and a long recovery-

time constant causing activity-dependent depression for synaptic coupling without 

recovery on the time-scale of a seizure. In presence of such slow depression, a 

transient increase in [K+]o initiated a series of alternating epochs of fast run and slow 

bursting with eventual return to the silent state in a network with 80 PYs and 16 INs 

(Fig. 2-28A, activity map of pyramidal cells). As in the case without slow depression 

(Fig. 2-27), [K+]o decreased during slow bursting and increased during epochs of fast 

run (Fig. 2-28B); this regime would persist in the network with balanced excitation 

and inhibition. However, depression rates of excitatory and inhibitory synaptic 

conductances were chosen such that inhibition decreased faster than excitation [D(PY-

PY) = 0.00005 and D(IN-PY) = 0.001]. This resulted in a net shift of the balance 

between excitation and inhibition towards more excitation. The phase plane 

representing the normalized synaptic-coupling strengths (Fig. 2-28C) shows that 

during the development of the seizure both excitation and inhibition decreased. 

However, because of the different depression rates, the trajectory moved away from 

the diagonal band (blue lines) corresponding to persistent oscillations mediated by 

balanced excitation and inhibition (red arrow in Fig. 2-28C). The persistent 

oscillations ended with an epoch of slow bursting during which [K+]o decreased to a  
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value where all cells eventually became silent (membrane voltage time-course in 

Fig. 2-28D). 
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Figure 2-28 Patterned cortical network oscillations of finite length for slow depression 
of synaptic transmission. (A) Activity of all 80 PYs as a function of time. (B) Time-
course of changes in [K+]o. (C) Phase−space representation of normalized synaptic-
coupling strength. Dynamic change in balance between excitation and inhibition (red 
line). Arrowhead indicates direction of time. Blue diagonal lines delimit the region for 
which alternating epochs of fast run and slow bursting might occur infinitely. The box 
corresponds to the values of synaptic coupling strengths for which we found persistent 
oscillations in a small network with the same dynamics (Frohlich et al., 2006). (D) 
Time-course of membrane voltage before termination of oscillations shows slow 
bursting. 
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We next analyzed 10 seizures triggered by a transient increase in [K+]o for 

two values of the slow-depression rate for the inhibitory coupling [Fig. 2-29A for 

D(IN-PY) = 0.001 and Fig. 2-29B for D(IN-PY) = 0.0011, all activity maps aligned on 

onset of oscillatory firing]. Slow bursting is shown in black, fast run in gray, and 

silence in white. The difference between the firing patterns for a given value of D(IN-

PY) was mediated by the random modulation of the membrane voltages by miniature 

postsynaptic potentials evoked by spontaneous release of neurotransmitter vesicles. 

For D(IN-PY) = 0.001, three out of 10 seizures did not terminate within the time 

window simulated (150 sec). All cases exhibited a series of transitions between fast 

run and slow bursting. In case of D(IN-PY) = 0.0011 (Fig. 2-29B), only one out of 10 

seizures did not terminate within 150 sec. In one case, the seizure consisted only of 

slow bursting with no epoch of fast run. In all cases for which the network returned to 

the silent state, the oscillatory pattern ended with an epoch of slow bursting. In phase 

space, the normalized synaptic conductances diverged from the diagonal band that 

corresponds to persistent activity. We found a statistically significant difference in 

seizure duration for the two values of D(IN-PY) (Fig. 2-29D, left panel, P= 0.02). 

Accordingly, the number of epochs of fast run decreased for increased D(IN-PY) 

(Fig. 2-29D, right panel). All this can be explained by faster depression for D(IN-PY) 

= 0.0011 that moved the system further away from the region of balanced excitation 

and inhibition where oscillation could persist infinitely (Fig. 2-28C). Our results also 

indicate that the same network might produce a different pattern of paroxysmal 

oscillations as a result of random fluctuations of the membrane voltages. 
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Figure 2-29 (A,B) Ten instances of patterned oscillatory firing for slow synaptic 
depression rate D = 0.001 (A) and D = 0.0011 (B). Black, gray, and white denote slow 
bursting, fast run and silence, respectively. (C) Phase−space representation of 
normalized excitation and inhibition (Left, D = 0.001; right, D = 0.0011). Circles, 
endpoints with termination of oscillations; stars, endpoint with no termination of 
oscillations within 150 sec. (D) Left, duration of seizures. Right, number of epochs of 
fast runs. Stars, median values. 
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EFFECT OF CHLORIDE REVERSAL POTENTIAL ON SEIZURE CESSATION 

Our simple model of slow depression with differential scaling of synaptic 

excitation and inhibition represents a general principle of activity-dependent shift in 

the balance between excitation and inhibition. Next, we focused on a specific 

experimentally determined physiological mechanism, which can mediate such a shift 

in balance of excitation and inhibition. We previously found that the reversal potential 

for fast GABAergic synaptic currents mediated by chloride ions changes over the time 

course of an electrographic seizure (Timofeev et al., 2002b). Specifically, chloride 

influx caused a depolarization of the chloride reversal potential from -69.7 mV before 

seizure onset to - 46.7 mV at the end of the seizure. The resulting decrease in 

inhibitory currents is, therefore, a potential candidate mechanism for a slow, activity-

dependent shift in the balance between synaptic excitation and inhibition during a 

seizure. We included these data in our model by adding simplified intracellular 

chloride dynamics in the form of a simple, activity-dependent accumulation 

mechanism that integrates the inhibitory currents targeting a cell. When using the 

dynamically updated chloride concentration to compute the reversal potential for the 

currents mediated by GABA receptors, the persistent neural oscillations terminated 

(Fig. 2-30A). Over the duration of the patterned oscillatory activity, the chloride 

concentration increased from 8.0 mM (corresponding to a reversal potential ECl = -

74.3 mV) to 16.4 mM (ECl = -55.1 Mv) (Fig. 2-30B). This led to a weakening of 

inhibition without affecting synaptic excitation (Fig. 2-30C). As in the case of slow 

depression, the seizure ended with an epoch of slow bursting (Fig. 2-30D). 
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Figure 2-30 Patterned cortical network oscillations of finite length for dynamically 
updated intracellular chloride concentration. (A) Activity of all 80 PYs as a function 
of time. (B) Time-course of changes in intracellular chloride concentration ([Cl-]i). 
Corresponding reversal potentials are shown for the onset and the end of oscillations. 
(C) Symbolic phase−space representation of dynamic change in balance between 
excitation and inhibition (red line). Arrowhead indicates direction of time. Blue 
diagonal lines delimit the region for which alternating epochs of fast run and slow 
bursting might occur infinitely. (D) Time-course of membrane voltage before 
termination of oscillations. 
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DIFFERENCES IN ACTIVITIES OF REGULAR-SPIKING NEURONS AND FAST-SPIKING 

INTERNEURONS DURING SEIZURES IN VIVO 

For the depolarization of the chloride reversal potential to have an effect on the 

seizure dynamics, inhibitory interneurons need to be active throughout the seizure. 

Fast-spiking neurons constitute an important class of inhibitory interneurons in the 

CNS. For this study, we recorded from 120 regular-spiking and 15 fast-spiking 

neurons (cell-type classification based on electrophysiological properties). In five, 

simultaneous, dual intracellular registrations, at least one regular-spiking and one fast-

spiking neuron was recorded during electrographic seizures (Fig. 2-31). The observed 

seizures evolve from the slow oscillation and consist of spike-wave complexes with 

frequency 1−3 Hz (mainly 1.5−2.5 Hz) interrupted with periods of fast runs 

(8−20 Hz). On all occasions, the first 3−5 initial paroxysmal discharges were 

characterized by high-frequency firing of fast-spiking neurons (50−300 Hz, with some 

time reaching 500 Hz). Regular-spiking neurons also increased their firing frequency 

(Fig. 2-31B). During later stages of seizure spike-wave components, the fast-spiking 

inhibitory interneurons continued to maintain high-frequency firing during each burst, 

often reaching 500 Hz (Fig. 2-31C). However, despite large depolarization, the 

regular-spiking neurons displayed mainly one or two action potentials per paroxysmal 

spike (Fig. 2-31C). The loss of ability to fire spikes by regular-spiking neurons is 

probably caused by depolarizing block. Thus, in these experiments, the fast-spiking 

neurons maintained high-firing rate and, therefore, were in a position to exhibit a 

strong influence on their postsynaptic target neurons during both initial and spike-
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wave components of seizure. Combined with our earlier findings that chloride reversal 

potential increases over the duration of the seizure to an extent that chloride mediated 

synaptic currents mediate depolarizing postsynaptic potentials (Timofeev et al., 2002), 

our experiments imply – in agreement with our modeling results – a crucial shift in the 

balance between inhibition and excitation towards excitation over the time-course of 

the seizure. The relative increase in firing for the fast-spiking interneurons over the 

time-course of the seizure can be explained by depolarizing GABAergic postsynaptic 

potential from synaptic connectivity between fast-spiking interneurons and further 

amplifies the divergence from balanced excitation and inhibition towards more 

excitation in the case of elevated intracellular chloride concentration. 
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Figure 2-31 Spontaneous firing patterns of regular-spiking and fast-spiking cortical 
neurons during electrographic seizure in vivo. (A) Simultaneous, dual intracellular 
recording of EEG, regular-spiking and fast-spiking neurons (indicated) during seizure 
that is composed of spike-wave components and fast runs. The seizure evolves from 
slow oscillation. The fast-spiking inhibitory interneuron is active throughout the 
seizure. (B,C) Expansions of underlined fragments. (B) Intracellular activities during 
transition from slow oscillation to seizure. The fast-spiking neuron fires much more 
spikes than the regular-spiking neuron. (C) During spike-wave complexes the regular-
spiking neuron displays one spike, whereas the fast-spiking neuron maintains ability to 
fire high-frequency trains of spikes. 
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CONCLUSIONS  

We have shown that a cortical-network model that includes ion-concentration 

dynamics exhibits both seizure maintenance and termination dynamics in qualitative 

agreement with experimental results on electrographic seizures in experimental 

animals (Timofeev and Steriade, 2004) and human clinical EEG recordings 

(Niedermeyer, 2002). We suggest that the same shift towards more excitation that 

initiates and maintains a seizure will eventually also permit seizure cessation. 

 

DISCUSSION 

Little is known about the mechanisms underlying seizure cessation (Timofeev 

and Steriade, 2004). Here, we found in the model of neocortical seizures with epochs 

of slow bursting and fast run mediated by extracellular K+
 dynamics that an activity-

dependent shift towards more excitation can mediate seizure cessation. For both 

activity-dependent scaling of synaptic conductances (slow depression) and change in 

chloride reversal potential, the transition dynamics was followed by silence that is 

similar qualitatively to in vivo intracellular recordings in anesthetized cats (Timofeev 

et al., 1998). Using a computational model, we first identified the general mechanism 

of a relative increase in excitation as a potential cause of seizure cessation. Then, 

based on experimentally established chloride-concentration dynamics (Timofeev et al., 

2002b) as a physiological candidate mechanism for differential weakening of 

inhibition, we verified the hypothesis that a collapse in the chloride gradient can 

mediate seizure cessation. Synaptic inhibition is a highly efficient mechanism for 
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cortical synchronization and therefore we suggest that a decrease in inhibitory 

efficiency (more depolarizing reversal potential for inhibitory postsynaptic potentials, 

IPSPs) would terminate hypersynchronous activities such as seizures. 

 

It is widely accepted that the development of epileptiform activity results from 

a shift in the balance between excitation and inhibition towards excitation (Dichter and 

Ayala, 1987; Galarreta and Hestrin, 1998; Nelson and Turrigiano, 1998). The easiest 

way to elicit acute seizures is to block inhibition (Chagnac-Amitai and Connors, 

1989a, b; Gutnick et al., 1982; Matsumoto and Ajmonemarsan, 1964; Prince, 1978), 

which is a well known approach to elicit experimental seizures (McNamara, 1994; 

Steriade and Amzica, 1998; Timofeev and Steriade, 2004; Traub et al., 1996). 

Chloride concentration has been implicated previously in seizure dynamics because it 

directly affects synaptic inhibitory currents mediated by GABA(A) receptors (Cohen 

et al., 2002). Contrary to expectation, the model implementing activity-dependent 

increase of [Cl-]I showed that seizure cessation was mediated by a relative increase in 

excitation over the course of paroxysmal oscillations. This provides a new 

interpretation for the changes in intracellular chloride concentration that occur during 

a seizure. Although a decrease in inhibition can promote seizure initiation in normal 

cortex, we propose here that an actual increase in excitability during paroxysmal run 

itself can lead to seizure cessation.  
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Importantly, our model predicts that the termination of a seizure is preceded by 

an epoch of slow bursting. This finding is confirmed by experimental recordings (I. 

Timofeev, unpublished observations). 

 

Our model of chloride dynamics is relatively simple, and other mechanisms 

that we have not included in our model also affect intracellular chloride concentration 

(Kaila et al., 1997; Thompson and Gahwiler, 1989). For example, an increase in [K+]o 

in mature neocortical PYs would result in further increase in [Cl-]i via activation of the 

neuron-specific protein K+Cl- (KCC2) co-transporter (DeFazio et al., 2000). Although 

we have not included this mechanism in our model, our results indicates that adding 

another activity-dependent mechanism of intracellular chloride dynamics might affect 

the duration of a seizure and contribute further to seizure cessation. Chloride 

concentration dynamics have also been implicated in the field of pain research where a 

change from inhibitory to excitatory GABAergic transmission has been associated 

with neuropathic pain (Coull et al., 2003). 
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3 Conclusions 

Computational neuroscience has become a mature discipline that has 

successfully contributed to a better understanding of many aspects of the functioning 

of the nervous system. Nevertheless, the study of neurological disorders by means of 

computer models has yet to develop into a fully recognized interdisciplinary scientific 

discipline. With our work, we hope to contribute to this emerging field by fostering an 

increased understanding of dynamic principles that govern pathological oscillatory 

cortical activity. We believe that we may find in the future that the clinical complexity 

and diversity of pathological brain activity can be conceptually reduced to a limited set 

of dynamic principles. The identification of these principles - if they exist - would 

certainly greatly aid the development of improved clinical modalities to prevent, treat, 

and cure disorders with neurological manifestations. 

 

In the first part of this dissertation, we studied how cortical networks 

reorganize in response to loss of afferent synaptic input and showed that homeostatic 

plasticity may paradoxically cause hypersynchronous periodic network facilitation. 

Importantly, the model we used is free of any specific assumptions about particular 

pathologies and may therefore indeed manifest a general principle of brain 

reorganization dynamics that occurs in a broad variety of CNS disorders associated 

with reduced synaptic input due to synapse or presynaptic cell loss. In fact, we showed 
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that the same principle (given a more structured pattern of deafferentation) may also 

explain epileptogenesis in the posttraumatic brain. 

 

In the second part, we studied the dynamics of cortical seizures with 

computational models that included potassium concentration ([K+]o) homeostasis 

mechanisms. In essence, we found that [K+]o dynamics can indeed explain initiation, 

maintenance, and termination of cortical seizures. Of particular interest in this context 

is the fact that our work revisited an old hypothesis that had been prematurely 

abandoned for other hypotheses on the pathophysiology of cortical seizures. In fact, 

the results from our modeling work reveal the underlying dynamics and explain the 

previously ununderstood experimental findings. We therefore believe that our work 

illustrates the importance of computer models for advancing our understanding of 

physiological and pathological brain activity.  

 

Of course, all our findings are limited by the sophistication and robustness of 

the models used. Our goal was to build models that were sufficiently general without 

being too unspecific. The final answer to the question whether we have achieved a 

good balance in that regard will only be available once the according in vivo and 

human clinical studies are going to be performed. In fact, only time will show how 

useful efforts of our kind will be for improving the human condition. In the mean time 

it remains for us to hope that they in fact will. 
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4 Appendix 

4.1 Extracellular single-unit recordings of spontaneous and evoked 
population activity in the acute cortical slice preparation 

 
The acute brain slice preparation represents an important experimental system 

for the study of spatio-temporal dynamics in cortical networks. Multi-electrode arrays 

for extracellular recordings of action potentials have matured into an essential tool for 

the study of network dynamics in vivo. In acute cortical slices in vitro, however, 

extracellular recordings with single-cell resolution from a population of neurons have 

remained an elusive goal. Here, we present a robust and relatively simple method for 

single-unit recordings based on extracellular multiunit recordings with penetrating 

metal microelectrodes and consequent isolation of putative single units by spike 

sorting. Combined intracellular whole-cell patch-clamp and extracellular recordings in 

hippocampal slices provided the opportunity to directly assess the accuracy of the 

spike sorting and to describe the cell-type dependence of the extracellular action 

potential waveforms. We demonstrate the application of the technique to the study of 

network dynamics in acute hippocampal slices. First, we found slow patterning of 

spontaneous activity in hippocampus CA3 under standard ionic conditions. Second, 

we probed the dynamic input-output mapping in the CA3 - CA1 network in 

hippocampus by combining single-unit recordings with extracellular stimulation of 
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afferent fibers. We conclude by discussing opportunities and limitations of 

extracellular single unit recordings in vitro. 

 

INTRODUCTION 

Information processing and storage in the central nervous system relies on both 

spatial and temporal coding strategies. Thus, understanding the functional dynamics of 

neuronal networks requires techniques that permit the simultaneous recording of the 

activity of many neurons with high temporal resolution. Extracellular recordings of 

action potentials with arrays of electrodes serve this exact purpose and have become 

an established technique in vivo (Buzsaki, 2004; Hubel, 1957). With this technique, 

extracellular signatures of action potentials from a population of cells are recorded 

with a set of electrodes and subsequently sorted into individual units corresponding to 

different neurons. However, similar techniques have so far not prevailed in the acute 

cortical slice preparation in vitro. Yet, recording from a population of neurons from 

acute brain slices in vitro with high temporal resolution represents an essential 

technique to bridge the gap between multi-electrode recordings in vivo and whole-cell 

patch-clamp recordings in vitro. Here we describe a relatively simple and robust 

experimental approach for extracellular single-unit recordings of spontaneous and 

evoked population activity in the acute cortical slice preparation. We show that this 

technique permits the study of temporal dynamics of small populations of neurons in 

combination with whole-cell patch-clamp recordings. 

 



  196 

 

Network behavior strongly depends on the local ionic and neurochemical 

environment which can only be controlled to a very limited extent in an in vivo 

experiment. Quite in contrast, the slice preparation provides a unique experimental set-

up with the necessary stability and controllability for studying the state-dependence of 

spatio-temporal network dynamics. However, such studies have been hampered by the 

constraints of the currently available recording techniques in vitro. Fluorometric 

measurements of neural activity with calcium-sensitive indicators achieve single unit 

resolution but are currently restricted to relatively low temporal resolution. While the 

whole-cell patch-clamp method provides the required temporal resolution, the method 

is limited to simultaneous recordings from at most few cells. Thus, the lack of a tool to 

study network dynamics of populations of neurons with millisecond time resolution at 

the single-cell level represents a major hurdle to overcome for the study of network 

dynamics in vitro. 

 

While simultaneous multielectrode recordings from hundreds of ganglion cells 

in vitro have become feasible (Shlens et al., 2006), achieving reliable recordings with 

single unit resolution in acute cortical slice of both spontaneous and evoked activity 

has remained an elusive goal. Previous studies of network dynamics in the acute 

cortical slice have used multiunit recordings without single-unit resolution (Cohen and 

Miles, 2000; Sanchez-Vives and McCormick, 2000). Electrical stimulation and 

extracellular recordings have been combined in cultured neurons (Wagenaar and 

Potter, 2002). Substantial research has been dedicated to the development of 
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commercial multielectrode arrays that require dedicated set-ups (Egert et al., 2002; 

Heuschkel et al., 2002). Also, custom-made silicon probes have been used to record 

action potentials that were evoked by glutamate application in vitro (Hempel et al., 

2002). Here, we focused on the development of a relatively simple method to record 

from a population of neurons with single-unit and high temporal resolution which can 

be integrated into an existing whole-cell patch-clamp setup. Specifically, we recorded 

extracellular action potentials with penetrating metal electrodes designed for in vivo 

extracellular microelectrode recordings. We then used a spike sorting algorithm to 

extract individual putative single units from the multiunit data. Importantly, we made 

use of simultaneous whole-cell recordings to directly determine the quality of the 

achieved single-unit isolation. Here we describe the method and provide first results 

that illustrate its usefulness for the study of network dynamics in cortical circuits in 

vitro. 

 

METHODS 

Transverse hippocampal slices (400 µm thick) from Wistar rats (age: p16 - 

p38) were cut in ice cold standard artificial cerebrospinal fluid ACSF (119 mM NaCl, 

2.5 mM KCl, 1.3 mM NaHPO4, 1.3 mM MgCl2, 2.5 mM CaCl2, 26 mM NaHCO3, and 

11 mM glucose) equilibrated with 95% O2 and 5% CO2. Slices were immediately 

transferred into an interface chamber where they were incubated at 34°C for 45 

minutes and afterwards maintained at room temperature. For all recordings, slices 
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were submerged in standard ACSF and maintained at 32-34°C. All experiments were 

carried out in accordance with the guidelines by the University of California. 

 

Extracellular recordings in acute cortical slice submerged in ACSF were 

achieved with commercial in vivo metal microelectrodes that were mounted on a 

micromanipulator (Luigs & Neumann Feinmechanik und Elektrotechnik GmbH, 

Ratingen, Germany) as typically used for whole-cell patch-clamp recordings. 

Electrodes were inserted into the tissue at depths between 10 and 200 microns and at 

an angle comparable to the one for whole-cell recordings with glass micropipettes. In 

some cases, a transient increase in spontaneous discharge was observed that 

disappeared within few seconds. Electrodes resistance, material, and tip geometry 

were found to be crucial parameters for successful recordings. Most reliable 

recordings were achieved with tungsten electrodes with nominal impedance at 1 kHz 

between 500 kOhm and 2 MOhm (FHC Inc., Bowdoin, ME). Electrodes with sharp 

tips (final taper angle less than 15°) did not pick up action potentials. Too blunt tips 

(final taper angle more than 25°) caused macroscopic tissue damage upon insertion 

which often resulted in absence of detected spiking activity. While we successfully 

tested these single electrodes in preliminary experiments, we eventually settled on a 

commercially available electrode with 8 recording sites (impedance 500-800 kOhms 

as reported by the manufacturer) with close spacing of the recording pads (estimated 

20 µm) which are positioned 360° around the tip of the electrode (ALA Scientific, 

Westbury, NY). This high density of recording sites permitted spike sorting with high 
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accuracy (Harris et al., 2000) since action potentials were typically picked up from 

several recording sites [“tetrode effect”, (McNaughton et al., 1983)]. The electrodes 

were connected to an eight channel preamplifier MPA8I with gain 10 (Multi Channel 

Systems MCS GmbH, Reutlingen, Germany) which was mounted on the 

micromanipulator and connected to the stimulation artifact suppression unit (Multi 

Channel Systems MCS GmbH, Reutlingen, Germany) which leaded into to a sixteen 

channel amplifier Model 3500 (A-M Systems, Inc., Carlsborg, WA). Data was filtered 

(bandpass filter with cut-off frequencies 0.1 Hz and 5 kHz, respectively) and amplified 

with gain 100. Data was digitized with a Digidata 1440A A/D converter (Molecular 

Devices Corporation, Sunnyvale, CA) at 20-50 kHz sampling rate and recorded on a 

hard drive with the pClamp software (Molecular Devices Corporation, Sunnyvale, 

CA). Whole-cell patch-clamp recordings and extracellular stimulation were performed 

as previously described (Glickfeld and Scanziani, 2006; Pouille and Scanziani, 2001, 

2004). 

 

Our recording set-up permitted the extracellular stimulation of afferent fibers 

and the simultaneous extracellular recording of evoked spiking with monosynaptic 

latencies. Since metal electrodes record changes in electrical field by means of 

capacitative coupling, electrical stimulation in the submerged chamber filled with 

conducting ACSF caused an electrical artifact which outlasted the time window of 

interest for spikes in response to the activation of afferent synapses. While we 

experimented with several different possible solutions (not reported her), we achieved 
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by far the best results with a stimulus blanking device (Multi Channel Systems MCS 

GmbH, Reutlingen, Germany) which was integrated between preamplifier and 

amplifier. This blanking device contained a rapid electronic switch for disconnecting 

the preamplifier from the amplifier. The TTL pulse triggering the stimulus isolation 

unit for extracellular stimulation also triggered the blanking device which transiently 

grounded the preamplifier such that no charge reached the amplifier during 

stimulation. Blanking duration was chosen to be as short as possible. Typical duration 

of the TTL pulse for blanking was between 100 and 800 microseconds and depended 

on the geometry of stimulation and recording electrode positioning and the stimulation 

amplitude.  

 

Data analysis was performed offline by custom written software in MATLAB 

(The MathWorks, Inc., Natick, MA). Low frequency components in the signal which 

consisted of local field potential mediated by synaptic currents (abolished by 10 µM 

NBQX, data not shown) was removed by subtraction of a locally fitted low-order 

polynomial [SALPA algorithm, (Wagenaar and Potter, 2002)]. The spike sorting 

process consisted of two consecutive steps: (1) spike extraction and (2) spike 

clustering into single units. First, the pre-processed signal was subjected to a threshold 

(manually chosen, usually with a negative threshold of minus five standard deviations 

of the extracellular trace) to extract presumed spikes. Each time the threshold was 

crossed a corresponding 2 msec waveform snippet was extracted from all recording 

sites and concatenated to form a composite waveform vector. Second, spikes were 
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assigned to putative single units with a spike sorting algorithm adapted from Fee et al 

(1998). Specifically, waveform vectors were grouped into clusters using the k-means 

clustering algorithm. The number of these “subclusters” was manually set to a value 

around ten times as high as the number of expected single units to be found. These 

subclusters were then iteratively merged to form clusters that eventually represented 

individual single units. Linkage analysis of the subcluster centroids was used as a 

guide for this manual merging of subclusters. Finally, spike clustering results were 

assessed by testing for refractory period violations and by visual inspection of 

resulting waveform clusters in a reduced two-dimensional space determined by 

principal component analysis. Waveform stability was evaluated by plotting the first 

two principal components of all spikes as a function of time. 

 

 

RESULTS 

We recorded the extracellular signatures of action potentials in acute 

hippocampal slices with a single shank metal electrode with eight recording sites. In 

order to reveal the network dynamics with single-cell resolution, we separated the 

extracellular waveforms into individual clusters that corresponded to putative single 

units. While such spike sorting procedures are routinely applied to multiunit 

recordings in vivo (Buzsaki, 2004), the application of these algorithms to in vitro 

recordings has not yet been established. Therefore, we first determined the accuracy of 

spike sorting of in vitro multiunit data by making use of the advantage that we readily 
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achieved simultaneous whole-cell intracellular recordings. Specifically, we 

simultaneously recorded whole-cell from a neuron close to the tip of the multisite 

electrode. This experimental paradigm permitted us to trigger action potentials in this 

identified neuron by brief intracellular current injections (“control unit”). In such 

experiments, the extracellular recording sites picked up action potentials from both 

spontaneously active cells in the vicinity and the control unit (Fig. 4-1A, intracellular 

recording and extracellular traces from four recording sites). We then sorted the spikes 

blind to which spikes originated from the control unit. This procedure enabled an 

explicit quantification of the accuracy of the spike sorting by determining how many 

spikes were erroneously associated with the control unit (false positives) and how 

many spikes from the control unit were missed (false negatives) in the spike sorting 

process (Harris et al., 2000; Henze et al., 2000). In the sample experiment shown in 

Figure 4-1, we extracted eight putative single units (Fig. 4-1B; raw waveforms on six 

recoding sites; units are color-coded). Unit 4 represented the control unit that had fired 

707 action potentials during the experiment according to the results from spike sorting. 

In reality, the intracellular recording of the control unit showed 701 spikes. Also, 10 

spikes were wrongly assigned to the control unit by the spike sorting algorithm. Thus, 

we found a false positive rate of 1.41% and a false negative rate 0.45%. All eight units 

determined by spike-sorting formed clusters when plotted in two-dimensional PCA 

space (Fig. 4-1C, same color code as in Fig. 4-1B). Importantly, the waveforms 

remained stable over the duration of the experiment (Fig. 4-1D, first two principal 
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components plotted as a function of time) Thus, this experiment shows that spike 

sorting with very high reliability is achievable with the methods presented here. 
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Figure 4-1 Spike sorting in vitro. (A) Combined intracellular (top trace; pyramidal 
cell; inset: spike pattern in response to depolarizing current step) and extracellular 
recording (bottom four traces for recording sites 1-4) in hippocampus in vitro. Arrow 
head points to action potential in control unit elicited by brief intracellular current 
injection. (B) Raw extracellular waveforms of all eight single units extracted by spike 
sorting algorithm (columns, units are color-coded). Rows correspond to six of the 
eight extracellular recording sites. Note that the distinction of different units only 
based on a single recording site would be exceedingly difficult. Unit 4 in light blue 
was the control unit. (C) All action potentials plotted in reduced two-dimensional PCA 
space. Units form distinct clusters. (D) First two principal components of all action 
potentials plotted as a function of time. Clusters remained stable over duration of 
experiment. 
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We next considered the nature of the extracellular action potential waveform in 

more detail by simultaneous extracellular and intracellular recordings from visually 

identified cells (Fig. 4-2A). Since the extracellular waveform is presumed to be mostly 

mediated by a capacitative current (Gold et al., 2006), we investigated whether the 

first derivative of the intracellular waveform corresponded to the extracellular 

waveform. Specifically, we triggered a series of action potentials in current clamp 

mode and simultaneously recorded the extracellular spike train. Using these data, we 

then determined the impulse response of the linear transfer function that mapped the 

intracellular to the extracellular action potential waveform (Fig. 4-2D). Most 

prominently, the resulting impulse response had two consecutive non-zero samples of 

opposite sign. Thus, the value of the extracellular waveform at any time-point was 

indeed approximately determined by the arithmetic difference between two 

consecutive time-samples of the intracellular membrane voltage (“differentiator”). 
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Figure 4-2 Intracellular and extracellular waveforms. (A) Pyramidal cell layer in 
hippocampus CA1 with intracellular (left) and extracellular (right) recording 
electrode. (B) Intracellular (top) and extracellular (bottom) raw action potential 
waveforms. (C) Impulse response of linear filter that transformed intracellular into 
extracellular waveform. 
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Different cell types exhibit different intracellular waveforms depending on 

their specific ion channel complement. For example, fast spiking inhibitory 

interneuron are characterized by “fast” spikes when recorded intracellularly 

(McCormick et al., 1985). Consequently, extracellular waveforms with short duration 

have been associated with inhibitory interneurons (Bartho et al., 2004; Henze et al., 

2002). We performed simultaneous extra- and intracellular recordings from pyramidal 

cells (sample in Fig. 4-3A) and fast-spiking inhibitory interneurons (sample in Fig. 4-

3B) to confirm this suggested relationship between cell type and extracellular 

waveform. We determined two parameters from the extracellular waveforms: (1) the 

duration defined as the time from the negative to the positive peak and (2) the ratio of 

the positive and the negative peak amplitudes. We found significant differences 

between pyramidal cells and fast-spiking inhibitory interneurons for both of these 

parameters (Fig. 4-3C and D). In fact, the distribution of both parameters did not 

overlap and therefore permitted us to define a separation criterion by determining a 

straight line that maximally separated the two cell types (Fig. 4-3E, equation of 

classification boundary: slope: 1.30; y-axis intercept: 0.44).  
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Figure 4-3 Pyramidal cells and fast-spiking interneurons have different extracellular 
action potential waveforms. (A) Pyramidal cell (PY, blue). Top: Intracellular 
recording. Response to depolarizing current step and average action potential 
waveform. Bottom: Average extracellular waveform. Dashed lines delimit duration 
and peak values. (B) Fast-spiking inhibitory interneuron (IN, red). Same plots as in 
(A). (C) Duration from negative to positive peak of extracellular waveform for PYs (N 
= 9) and INs (N=5). Error bars denote S.E.M. Difference is significant (p<0.05, t-test). 
(D) Ratio of negative and positive peak amplitudes for PYs (N = 9) and INs (N = 5). 
Error bars denote S.E.M. Difference is significant (p<0.05, t-test). (E) Group data 
from panels (C) and (D). INs: red diamonds. PYs: blue squares. Black diagonal line 
denotes classification boundary (slope: 1.30; y-axis intercept: 0.44). 
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Hippocampus field CA3 represents an interesting network to study due to its 

presumed attractor network like dynamics (Guzowski et al., 2004; Hopfield, 1982; 

Leutgeb et al., 2007; Leutgeb et al., 2005). Under standard in vitro conditions, we 

found spontaneous action potential firing in the pyramidal cell layer of CA3 (Fig. 4-4). 

In a typical experiment, the rastergram (Fig. 4-4A) and firing frequency histogram 

(Fig. 4-4B) exhibited periods of stable activity and periods where individual cells 

exhibited strong fluctuation of activity levels. Importantly, this modulation of activity 

levels was not synchronized across cells. Thus, these fluctuations were cell specific 

and did not simply reflect a change in overall excitability of the entire network. We 

then calculated an activity trajectory (Mazor and Laurent, 2005) that represented the 

evolution of the network activity as a function of time (1 sec bin width). For each time 

bin, we determined the activity vector that represented the number of action potentials 

for each cell (e.g. if “Cell 1” fired four action potentials in a given one second time 

interval, the first entry in the activity vector would be “4”).  
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Figure 4-4 Spontaneous activity in hippocampus CA3. (A) Spike rastergram of eleven 
isolated units. (B) Spike histogram determined from spike histogram (bin width: 1 
second). Units are color-coded. (C) Activity trajectory in reduced three dimensional 
principal component space (time color-coded). Trajectory initially remained in steady-
state location (dark red) but then exhibited several transients away from the steady-
state location (yellow). (D) Control trajectory for shuffled spike identities. No 
structure as in (C). 
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We then plotted the activity vector in a reduced three-dimensional space 

determined by PCA (Fig. 4-4C, left, time is color-coded). The plotted activity 

trajectory exhibited (1) a “steady-state location” where most of the trajectory resided 

and (2) several “transients” where the trajectory traveled away from the steady-state 

location and returned back within few seconds. As a simple control, we scrambled the 

spike identities such that the overall firing histogram remained the same but the cell 

identities were randomly mixed up. The corresponding activity trajectory did not 

exhibit the previously found structure (Fig. 4-4C, right). Therefore, the observed 

dynamics did indeed not merely reflect fluctuations in overall activity levels. While 

these trajectories are suggestive of attractor-type network dynamics, we emphasize 

that the underlying mechanism of these network dynamics were not the subject of this 

study and deserve more detailed separate investigations. 

 

Key advantage of the slice preparation for the study of network dynamics is the 

controllability of the afferent inputs. In particular, the hippocampus provides the 

opportunity to study input-output dynamics of networks of neurons through its simple 

layered structure with segregated afferent pathways. Here, we use our experimental 

set-up to study how simulated bursts in CA3 neurons are represented by CA1 neurons. 

To that end, we disconnected CA3 from CA1 by a microsurgical cut in the slice and 

stimulated the Schaffer collaterals stemming from CA3 by means of extracellular 

current stimulation through a metal microelectrode. The stimulation amplitude was 

chosen to be sufficiently low such that only few postsynaptic neurons in CA1 were 
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activated. Such low stimulation amplitudes imitated the sparse activation patterns in 

the behaving animal (Henze et al., 2000). Also, we were limited to low stimulation 

amplitudes by an important inherent constraint of extracellular single-unit recordings. 

Synchrony in action-potential firing in a local group of cells consistently resulted in 

the appearance of a single population spike instead of a group of separate spikes from 

individual cells (data not shown). As a consequence, our method to record and extract 

spikes from individual units failed. 

 

Stimulation of the Schaffer collaterals with five pulses at 100 Hz elicited a 

positive going field potential envelop with superimposed individual spikes in the 

pyramidal cell layer of CA1 (Fig. 4-5A, top panel). The slow field potential was 

removed with SALPA, essentially an adaptive subtraction of the estimated underlying 

waveform by piecewise fitting with low-order polynomials (Wagenaar and Potter, 

2002) without distortion of the spike waveforms (Fig. 4-5A, bottom panel). Individual 

trials were separated by a 10 second interval to prevent short-term synaptic dynamics 

to pollute the responses. In a typical experiment, we isolated about 10 neurons from 

one single shank electrode with eight recording sites (11 units in experiment shown in 

Fig. 4-5B). Spike-timing histograms of two sample units revealed two different 

response types (Fig. 4-5C). One cell exhibited very little spike jitter and short response 

delay (top panel), whereas the other one had more jitter and longer latencies (bottom 

panel). 
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Figure 4-5 Input-output map in the hippocampal CA3 – CA1 circuit. Evoked action 
potentials in pyramidal cell layer of hippocampus CA1 by extracellular stimulation of 
afferent Schaffer collaterals. (A) Raw trace consists of synaptic field potential and 
individual spikes (top). Same trace after application of the SALPA algorithm to 
remove slow synaptic field potential (bottom). (B) Raster plot for 100 consecutive 
sweeps; each symbol denotes a different unit. (C) Spike histograms for two sample 
units. 
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A further application of a similar set-up but with stimulation of two 

independent pathways is illustrated in Fig. 4-6, where we studied the input 

discrimination ability of the CA3 - CA1 circuit. Goal of this type of experiment was to 

determine how similar the postsynaptic spiking response patterns for activation of two 

independent afferent pathways were. We positioned two extracellular stimulation 

electrodes (“Input A” and “Input B”) at two closely spaced locations within the 

Schaffer collaterals and established the independence of the two pathways activated by 

testing for linearity of the postsynaptic field (data not shown). Action potentials were 

extracted and assigned to individual units as described above. In this specific case, we 

isolated 7 units (Figure 4-6A; units coded by symbols). The two panels show the 

responses to the two inputs on a trial-by-trial basis (blue and red, for response to Input 

A and Input B, respectively). While some units had a strong preference for one of the 

two inputs (unit denoted by square, firing histogram in Fig. 4-6B, left panel), other 

units exhibited less of a response preference (unit denoted by star, firing histogram in 

Fig. 4-6B, right panel). Also, we noted variability on a trial-to-trial basis due to the 

fact that our stimulation protocol operated in a near threshold regime where any unit 

responded only on a fraction of trials.  
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Figure 4-6 Input discrimination ability of a small population of neurons in 
hippocampus CA1. (A) Spike rastergram for two independent inputs A and B (blue 
and red, respectively). Symbols represent units. (B) Spike response histograms of two 
sample units. Response to Input A and B are shown in blue and red, respectively. (C) 
Left: Correlation matrix for all response vectors. Right: Average correlation for [Input 
A, Input A], [Input B, Input B], and [Input A, Input B] response-vector pairs. (D) 
Average performance of linear classifier as a function of number of neurons 
considered. Classifier performance linearly increased with the number of neurons 
included. 



  216 

 

To quantify the ability of the monitored population of neurons to discriminate 

between the two inputs, we determined the response vectors for each trial for both 

inputs. These response vectors had as many entries as units found by spike sorting. 

Each entry in a response vector consisted of the number of spikes of a given unit on a 

given trial. In order to quantify how strongly and robustly the postsynaptic network of 

CA1 cells discriminated between the two inputs, we computed the correlation of 

response-vector pairs. We expected that pairs of response vectors for the same input 

were stronger correlated than pairs of response vectors from two different inputs. For 

presentation purposes, we reordered all trials such that trials for inputs A and B 

formed two neighboring contiguous blocks and plotted the correlation of all possible 

response-vector pairs (Fig. 4-6C, color-coded correlation matrix). In agreement with 

our hypothesis, the average correlation of all response vectors pairs from the same 

inputs equaled 0.505 (Input A) and 0.510 (Input B) respectively, whereas the average 

correlation for pairs of vectors from two different inputs equaled -0.07. This finding 

shows that pooling the response from a small population of cells may be beneficial for 

decoding inputs. To more directly test the ability to correctly decode which input was 

activated for a given response vector, we built a linear classifier (support vector 

machine). Indeed, we found that classification performance of all non-zero response 

vectors linearly increased with the number of neurons included. In conclusion, this 

experiment illustrates how our method can be used to study functional properties of 

circuits in vitro. 
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DISCUSSION 

We have here introduced a technique which is aimed at empowering the study 

of network dynamics in vitro. By adapting and combining extracellular recording 

strategies, we found a way to combine extracellular recordings with whole-cell patch-

clamp measurements. Importantly, we avoided the use of a cost intensive commercial 

multi-electrode array solution. To our knowledge, we are the first to describe a simple 

and feasible method for reliable extracellular recordings of both spontaneous and 

evoked activity with single-unit resolution in acute cortical slices. 

 

Extracellular single unit recordings in acute cortical slices may provide the 

basis for advances in two key fields of neurophysiology. First, the ease with which 

extracellular recordings of spontaneous activity can be combined with whole-cell 

patch-clamp recordings enables the efficient collection of comprehensive data sets for 

the development and evaluation of spike sorting algorithms. Recent progress in 

method developments in this field [e.g. (Schmitzer-Torbert et al., 2005)] have heavily 

relied on a single data set of combined intracellular and extracellular recordings in 

vivo (Harris et al., 2000). Additional data sets, possibly from different brain regions, 

may thus be crucial for further developments. Second, small neural circuits represent 

an important spatial scale for the study of functional dynamics. Single-unit resolution 

extracellular recordings from neural populations appear to well serve the purpose of 

studying neural circuits. Our first results indicate that both spontaneous and evoked 
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spiking activity reveal interesting network properties when probed with extracellular 

recordings. 

 

As any technique, the method described here has some limitations. First, by the 

nature of extracellular recordings, where essentially every spike from any neuron 

within a certain neighborhood of the electrode is recorded, only sparse activation 

levels can be monitored with single-unit resolution. This limitation is of particular 

relevance in the case of recording action potentials with monosynaptic latencies after 

extracellular stimulation of afferent fibers. The experiments shown in Figures 3-5 and 

3-6 had to be based on very low stimulation intensities to avoid synchronous action 

potential firing in the postsynaptic population. Practically spoken, only a narrow 

window of stimulation amplitudes provided recordings from which we were able to 

extract single-unit activity. In our hands, this precluded us from varying the 

stimulation amplitude to study the response behavior of the CA1 network as a function 

of number of afferent fibers activated. Yet, our stimulation amplitude regime is most 

likely more physiological than the strong stimulation amplitudes commonly used 

when recording synaptic currents in vitro. Second, wile the described methods were 

robust in our hands, we noted that not all metal microelectrodes used in vivo do 

actually work in vitro. Most likely, this can be explained by the fact that the 

submerged acute slice preparation imposes more severe challenges for extracellular 

recordings than brain tissue in vivo due to the higher conductivity of the environment 

around the electrodes. 
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In summary, we introduced a method which can be used to monitor the spiking 

of a population of neurons in acute cortical slices in vitro. By combining technology 

used for in vivo and in vitro culture experiments, we built a set-up with which we were 

able to record both spontaneous and evoked action potentials from a population of 

neurons with high temporal resolution. We described sample experiments which 

illustrate the potential of extracellular recordings combined with stimulation of 

afferent fibers to probe the input-output transformation mediated by cortical circuits in 

slice. From our viewpoint, key advantage of this method is that it can be easily 

integrated in a standard whole-cell patch clamp rig for acute slice experiments. This 

provides the opportunity to address questions which truly integrate single cell behavior 

with network level dynamics recorded with single-unit and high temporal resolution. 
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