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Henrik Singmann (singmann@psychologie.uzh.ch) Department of Psychology, Syracuse University

Department of Psychology, University of Zürich 409 Huntington Hall, Syracuse, NY 13244, USA
Binzmühlestrasse 14/22, 8050 Zürich, Switzerland

Abstract

Belief bias in syllogistic reasoning refers to the finding that
individuals are more likely to accept believable than unbeliev-
able conclusions independent of their logical validity. Most
theories argue that belief bias is driven by differences in rea-
soning processes between believable and unbelievable syllo-
gisms. In contrast, Dube, Rotello, and Heit (2010) proposed
that belief bias is solely an effect of response processes. We
investigated belief bias without having to rely on response bias
manipulations (Klauer, Musch, and Naumer, 2000) or confi-
dence ratings (Dube et al., 2010). Instead, we added a third
response (“I don’t know”) to the usual binary response set
(“Yes”/“No”). This allowed us to test belief bias with a fully
identified multinomial processing tree model, in a hierarchical
Bayesian framework. We found evidence that the belief bias
is driven by differences in response processes. Evidence for a
difference in reasoning processes was inconclusive.
Keywords: belief bias; syllogisms; multinomial processing
tree models

Introduction

Syllogisms are logical arguments that usually consist of
two premises and a putative conclusion. In the syllogism-
evaluation task, the task of the reasoner is to decide whether
this conclusion follows necessarily from the premises (i.e., is
valid) or not (i.e., is invalid). The validity of a conclusion
is determined by the structure of the syllogism alone, inde-
pendent of its actual content. Despite this property, reasoners
tend to be influenced by prior beliefs about the conclusion.
Evans, Barston, and Pollard (1983) crossed validity and be-
lievability (see Table 1 for an example) and found that believ-
able conclusions are more likely to be endorsed than unbe-
lievable ones. This effect was stronger for invalid syllogisms
than for valid ones. Together, this effect of believability on
endorsement rates for syllogisms constitutes the belief bias
effect.

In a large set of studies, Klauer, Musch, and Naumer
(2000) compared different accounts that try to explain the be-
lief bias effect. What all accounts have in common, is that
believability is assumed to affect reasoning processes: When
confronted with a believable compared to an unbelievable syl-
logism, individuals are assumed to use the syllogistic struc-
ture and its content in different ways.

However, reasoning processes are not the only cogni-
tive processes contributing to the performance in syllogism-
evaluation tasks. The other main factor are response pro-
cesses, which affect the general propensity to prefer one of
the possible response options, independent of form and con-
tent of the syllogism. For example, a liberal reasoner is more
likely to endorse syllogisms in general, whereas a conserva-
tive reasoner is more likely to reject them, compared to an
unbiased reasoner.

Table 1: Example syllogisms.

Believability

Validity Believable Unbelievable

Valid No oaks are jubs. No trees are punds.
Some trees are jubs. Some Oaks are punds.

Therefore some trees Therefore some oaks
are not oaks. are not trees.

Invalid No tree are brops. No oaks are foins.
Some oaks are brops. Some trees are foins.

Therefore some trees Therefore some oaks
are not oaks. are not trees.

Klauer et al. (2000) showed that one cannot test different
belief-bias accounts by comparing acceptance rates of con-
clusions. In order to establish diganostic tests, Klauer et al.
developed an extended experimental and a formal measure-
ment model – a multinomial processing tree model (MPT;
Riefer & Batchelder, 1988) – to disentangle reasoning pro-
cesses and response processes. Their model was a variant of
the two-high threshold (2HT) model. It assumes that when
reasoners are presented with a syllogism, there is a probabil-
ity r with which they engage in reasoning and determine its
true logical status (i.e., valid or invalid). If the reasoning step
fails, with probability 1− r, reasoners enter an uncertainty
state in which they are forced to guess a response. Thus,
this model assumes that reasoning can only lead to a correct
response and errors are solely due to guessing. Further, re-
sponse bias enters the model only in the guessing stage. Their
model based analysis agreed with the notion put forward in
essentially all existing accounts: Conclusion believability of
a syllogism affected the reasoning processes.

Dube, Rotello, and Heit (2010) set out to answer the same
questions using a different measurement model based on sig-
nal detection theory (SDT; Green & Swets, 1966). Their
model assumes that the reasoning process leads to a contin-
uous validity signal to which reasoners have access. When
asked to evaluate the validity of a syllogism, reasoners com-
pare its validity signal with an established response criterion
that reflects their response bias. If the signal surpasses the cri-
terion, reasoners endorse the syllogism, otherwise they reject
it. Thus, this model can be seen as one instantiation of a prob-
abilistic reasoning account (e.g., Oaksford & Chater, 2007).
This stands in contrast with most established accounts of syl-
logistic reasoning, which assume that reasoning is performed
on discrete entities such as sets, rules, or mental models (for
an overview, see Khemlani & Johnson-Laird, 2012). Dube et
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al.’s model based analysis challenged all existing accounts of
belief bias, as believability did not affect the reasoning pro-
cesses. Instead, the belief bias could be explained by response
processes only– a criterion shift indicating a response bias.
Trippas Handley, and Verde (2013) replicated this finding for
simple syllogisms (for which only one model of the premises
needs to be constructed) but not for complex syllogisms (for
which multiple models of the premises need to be constructed
for a correct judgment of validity).

Despite the obvious differences between Klauer et
al. (2000) and Dube et al. (2010) in terms of models and
their assumptions, both studies had to address a technical
problem complicating their modeling efforts. They wanted
to estimate more model parameters than simple “Yes”/“No”
datasets would allow for. More specifically, a single set of
“Yes”/“No” responses to both valid and invalid syllogisms
only provides two independent data points, thus only allow-
ing the estimation of a maximum of two model parameters.
However, as shown by Klauer et al. (2000), a comprehensive
measurement model for syllogistic reasoning data requires
the estimation of at least three parameters. A similar argu-
ment for the case of SDT was made by Dube et al. (2010,
Experiment 1).

To increase the number of parameters that can be esti-
mated, Klauer et al. (2000) used a response bias manipu-
lation by collecting data from three groups of participants,
each of which received different base rates of valid syllo-
gisms. The low base rate group was instructed that only one
sixth of the problems were valid. Medium, and high base rate
groups were instructed that half and five sixth of the prob-
lems were valid, respectively. This procedure allowed Klauer
et al. to circumvent the limitations of single “Yes”/“No” data
sets. Specifically, they assumed that the base rate instructions
would only affect response processes, but not reasoning pro-
cesses. However, one potential limitation of this approach
was that, by using three different groups, the model had to
be applied to the aggregated data, thereby not allowing to ac-
count for individual differences.

Dube et al. (2010) used a different solution for making
their full model identifiable. Instead of base rate instructions
and equating parameters across groups, they expanded the re-
sponse format from binary “Yes”/“No” responses to a 6-point
confidence rating scale. They asked participants to provide
a confidence judgment ranging from 1 to 3 (1 for low confi-
dence, 2 for medium confidence, and 3 for high confidence)
after each “Yes”/“No” response.

One problem with the SDT approach as introduced by
Dube et al. (2010) is that it is unable to distinguish between
a genuine response bias effect, a criterion shift, and a mathe-
matically indistinguishable explanation via differences in rea-
soning processes, a distribution shift (Klauer & Kellen, 2011;
Singmann & Kellen, 2014). Dube et al.’s conclusion that be-
lief bias is merely a response bias effect hinges on the former
interpretation of the results (for evidence of this interpreta-
tion, see Stephens, Dunn, & Hayes, 2017). This ambiguity

regarding the reason for a specific results pattern is absent
for the MPT model of Klauer et al. (2000). Unfortunately,
formulating an MPT model for a 6-point confidence rating
scale requires the specification of a response mapping func-
tion. This response mapping function can influence the con-
clusion, but is ultimately unrelated to the question of whether
belief bias is driven by response processes or reasoning pro-
cesses.

Here, we propose a minimal extension to the standard
belief bias task that – similar to the approach by Dube et
al. (2010) – does not require the use of a response bias manip-
ulation. Neither is there a need for a 6-point confidence rating
scale. We simply extend Klauer et al.’s (2000) model by one
additional response category (Singmann, Klauer, & Kellen,
2013). Extending the response format from “Yes”/“No” to
“Yes”/“I don’t know”/“No” allows us to estimate all the nec-
essary parameters.

One further difference between Klauer et al. (2000) and
Dube et al. (2010) is the number of problems that each par-
ticipants received. Klauer et al.’s participants solved eight to
twelve problems. Dube et al. and following studies within
an SDT framework (e.g., Trippas et al., 2013; Stephens et
al., 2017) used considerably more problems per participant,
usually 32 to 64. However, solving complex syllogisms re-
quires considerable effort and concentration. Given such a
large number of problems, it seems questionable whether par-
ticipants invested an appropriate amount of effort for each
syllogism. Therefore, we follow Klauer et al. and use only
eight problems per participants.

One drawback of using a small number of problems per
participant is that this precludes a model-based analysis on
the individual level using a traditional maximum-likelihood
approach. However, it is well-known that an analysis based
on aggregated data for non-linear models such as discussed
here can lead to severe aggregation artifacts (e.g., Klauer,
2010). Therefore, we analyze the individual-level data in a
hierarchical-Bayesian framework using a partial-pooling ap-
proach (i.e., taking participants’ similarities as well as their
differences into account).

Extended Belief Bias MPT

The original 2HT model for syllogistic reasoning by Klauer
et al. (2000) was tailored to binary “Yes”/“No” responses.
The extended model has the three response categories
“Yes”,“No”, and “I don’t know”. Figure 1 shows the tree
representation of the extended model, separately for believ-
able and unbelievable syllogisms. In the following, we first
describe the model in its general form which is equivalent for
both believability conditions.

The extended belief bias MPT assumes a reasoning stage,
followed by a response stage. With probability r a reasoner
detects the correct logical status of a problem. In this case,
the response stage simply consists of reporting this correct
logical status of the problem, answering “Yes” for valid con-
clusions and “No” for invalid conclusions. With probability
of 1− r a reasoner does not detect the correct logical sta-
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tus of the problem. Please note that this reasoning parameter
assumes reasoning processes to yield a correct answer, there-
fore reasoning processes that lead to errors (e.g., as proposed
by reasoning accounts based on mental models) are not cap-
tured by this parameter.

If the correct logical status is not detected, an uncertainty
state is reached and the response stage is entered. It is impor-
tant to note that in this case the logical status of the problem is
unknown and cannot influence the following decisions. With
probability n a reasoner decides not to give a response about
the logical status of the problem by selecting “I dont know”.
With probability 1− n a response is given despite having no
information about the logical status of the problem. In this
case, with probability g the response “Yes” is selected, and
with probability 1−g the response “No” is selected. Parame-
ters n and g capture response biases and, as mentioned above,
incorrect reasoning processes, if the theory of interest pro-
poses them. With these three parameters r, n, and g we build
four processing trees, one for each type of problem:

• valid (v) syllogisms with believable (b) conclusions,

• invalid (i) syllogisms with believable (b) conclusions,

• valid (v) syllogisms with unbelievable (u) conclusions,

• invalid (i) syllogisms with unbelievable (u) conclusions.

For each problem type, we have a specific reasoning pa-
rameter rvb, rib, rvu, and riu. As argued above, the param-
eters representing response processes, n and g, cannot be in-
fluenced by the logical status of the problem, therefore we as-
sume them to be equal for valid and invalid problems within
believability conditions. They are however influenced by re-
sponse biases. This leads to one parameter pair for each sta-
tus of believability, nb and gb for believable problems and nu
and gu for unbelievable problems. This of course assumes
that other cues (e.g. premise believability, content specific
effects) are controlled for across believability conditions.

The resulting four model trees are shown in Figure 1. A
key assumption of the extension is that the n parameters are
not a function of logical validity but only of response biases.
Violations of this assumption would result in poor fit of the
model to the data.

Statistical Analysis

Our analyses were performed in a hierarchical Bayesian
framework. We used the latent-trait approach (Klauer, 2010)
to fit the belief bias MPT as hierarchical Bayesian model in
Stan (Carpenter et al., 2017).

Model fits were assessed via posterior predictive p-values,
pB, using the T1 test statistic proposed by Klauer (2010). The
T1 statistic checks whether a model adequately describes the

rvu

1-rvu

nu
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Yes
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Figure 1: Four trees forming the extended belief bias MPT. rvb,rib, rvu, and riu are the probabilities to reach the logically correct
answer for the respective trees. nb is the probability of answering “I don’t know” for syllogism with believable conclusions
(regardless of validity). nu is the is the probability of answering “I don’t know” for syllogisms with unbelievable conclusions.
gb is the probability of guessing that a syllogism with a believable conclusion is valid, thus responding with “Yes”. gu is the
probability of guessing that a syllogism with a unbelievable conclusion is valid, thus responding with “Yes”.
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category frequencies, aggregated over participants. Small pB
values indicate poor model fits.

Our main research goal was to test differences in the model
parameters between the believability conditions (e.g., be-
tween gb and gu). To this end, we reparameterized the model
shown in Figure 1 to allow testing for differences. This was
done by introducing a mean parameter θ̄ as well as a differ-
ence parameter δθ for each parameter θ ∈ {rv,ri,n,g}. The
condition specific parameter θb for the believable syllogisms
and θu for unbelievable syllogisms were then obtained from
those two parameters as

θb = θ̄+
1
2

δθ (1)

and

θu = θ̄− 1
2

δθ. (2)

This allowed us to test for differences between the two con-
ditions by comparing prior and posterior distribution of δθ
using the so-called Savage-Dickey density ratio (for a tutorial
see Wagenmakers, Lodewyckx, Kuriyal & Grasman, 2010).
The resulting Bayes factors quantify the evidence for (H1) or
against (H0) a difference between believability conditions.

We followed Gronau, Wagenmakers, Heck, and Matzke
(2017) and used a zero-centered normal prior for δθ. To ac-
count for the prior sensitivity of the Bayes factor, we explored
different widths of the prior of δθ. This means, we fitted the
model three times, each time with a different standard devia-
tion σδ. σδ represents assumptions about the expected differ-
ence between the two believability conditions. We explored a
narrow (σδ narrow ≈ 0.52), medium (σδ medium ≈ 0.84), and a
wide (σδ wide ≈ 1.28) zero-centered normal prior. These pri-
ors represent the assumption of a small, medium, and large ef-
fects on the probability scale centered around 0.5 (see Gronau
et al., 2017). More information about the model specification
and parameter priors can be found in the model code on the
Open Science Framework at: https://osf.io/fsmvz/

Experiment

The goal of the present experiment was to assess which cog-
nitive processes are influenced by conclusion believability in
a syllogism-evaluation task: reasoning processes, response
processes, or both.

The Bayesian hierarchical framework of the analysis al-
lowed us to collect only few data points per participant and
capitalize on partial pooling. This seems especially valuable,
given the high task difficulty of the syllogism-evaluation task
with complex syllogisms.

Data, analysis scripts, and model codes can be found on
the Open Science Framework at: https://osf.io/fsmvz/

Method

Design Logical validity (valid vs. invalid) and conclusion
believability (believable vs. unbelievable) were manipulated
within subjects.

Participants Four hundred thirty-seven participants were
recruited for an online experiment via crowdflower.com.
Participation was restricted to the following countries: UK,
USA, Canada, Australia, and New Zealand. Participants were
required to be native English speakers and at least 18 years
old. From initially 437 participants, 83 were excluded re-
sulting in 354 data sets. Exclusion criteria were as follows:
Multiple IP entries (resulting in exclusion of all data sets from
this IP; N = 30), missing IP entries (N = 31), and an average
response time smaller than 2 seconds per syllogism (N = 29).
Finally, we excluded participants who reported that they did
not perform the task seriously (N = 10).1 Participants could
report this after the experiment and were informed that doing
so would have no negative effect on their reward.

Each experimental session lasted less than 10 minutes. Par-
ticipants were rewarded $0.10 for participation and could
win a performance based bonus. An additional $0.50 was
awarded if they responded correctly to at least 66% of the tri-
als in which they selected the options “Yes” or “No”. Trials
in which they selected “I don’t know” were neither counted
as correct nor incorrect towards the bonus. This bonus sys-
tem was aimed towards motivating participants to use the re-
sponse option “I don’t know”.

Stimuli Twenty complex syllogistic structures were used.
The structures were taken from Dube et al. (2010) experi-
ments 1-3 and Klauer et al. (2000) experiments 3, 4, and 7.
These syllogistic structures included the ones used by Trip-
pas et al. (2013) and Stephens et al. (2017). The goal was to
include all complex syllogistic structures that have recently
been used in the literature on belief bias to minimize any ef-
fects that might be unique to a subset of these structures.

Participants were presented with four random syllogistic
structures; two valid ones and two invalid ones. Each of
these structures was presented once with a believable con-
clusion, and once with an unbelievable conclusion resulting
in 8 unique syllogisms per participant.

Contents were chosen randomly from a list of forty rated
pairs of category and exemplar (e.g., “trees” and “oaks”;
Klauer et al., 2000; Dube et al., 2010; Ball, Phillips, Wade,
& Quayle, 2006; Oakhill & Johnson-Laird, 1985; Quayle &
Ball, 2000; Evans et al., 1983). Conclusion believability was
manipulated by reversing the order of category and exem-
plar (e.g., “some trees are not oaks” and “some oaks are not
trees”). Premises were linked with nonsense words to reduce
effects of premise believability.

Procedure Participants were asked to decide whether a
conclusion followed logically from the premises. Premises
and conclusions were separated by a horizontal line. Re-
sponses were given by clicking on one of three buttons lo-
cated right under the conclusions labeled “Yes”, “I don’t
know”, and “No”. Selecting a response was immediately fol-
lowed by the next problem.

Participants were instructed to assume that the premises

1Note that the exclusion criteria are not mutually exclusive

1172



valid

Yes I don't know No
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on

believable
unbelievable

invalid

Yes I don't know No
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rti

on
Response option

Figure 2: Response proportions to the three response options.
Error bars represent the 95% multinomial confidence inter-
vals (Sison & Glaz, 1995) based on data aggregated across
participants.

were true and to endorse a conclusion only if it necessarily
followed from the premises. We clarified that if a conclusion
is possible, but not necessary, they were to select “No”. We
also told them that they were to select “I don’t know”, if they
could not decide whether a conclusion followed necessarily,
but only if they seriously tried to evaluate the conclusion. We
informed them that in the context of logic, the frequently used
quantifier “some” means “at least one, possibly all”.

After the instructions, participants were shown an example
problem, followed by a short version of the task instructions.
Stimuli were divided into two blocks. This was not apparent
to participants and there was no break between blocks. Each
block consisted of four syllogisms using the four structures
and random contents. Whether the conclusion was believable
(or unbelievable) in the first or second block was randomly
determined for each syllogistic structure anew. The order of
syllogisms within each block was also randomized. The two
stimuli blocks were followed by a performance feedback and
a short demographic survey.
Bayesian Model We ran six MCMC chains with random
start values, each running for 2000 samples and we dis-
carded the first 1000 samples as warmup. Convergence of
the MCMC chains was assessed via the R̂ statistic (R̂ < 1.04).
Results reported below are based on 6000 posterior samples.

Table 2: Bayes factors derived from the difference parameters

Parameter rv ri n g

narrow prior 1.4� 1.2 2.1◦ 232.0
medium prior 1.5� 1.3� 3.1� 70.3
wide prior 2.0� 1.6� 4.5� 16.1

Note. Bayes factors in favor of the null hypothesis (i.e., no
difference between believability conditions) are marked with
� (i.e., BF� = 1

BF ).
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Figure 3: Posteriors of the group-level parameters rv, ri, n,
and g. Different colors represent different prior widths for
the difference parameters δθ.

Results

Response Frequencies Response proportions for each type
of problem are shown in Figure 2. They exhibited a be-
lief bias effect: The marginal proportion of responding with
“Yes” was larger for believable conclusions than for unbe-
lievable ones. The difference in responding with “Yes” be-
tween believability conditions occurred for both valid and in-
valid syllogisms. As expected, it was larger for invalid than
for valid syllogisms. The proportions of responding with “I
don’t know” seemed to be affected by neither validity nor be-
lievability.

Model Fit Overall model fit was good; for the model with
the narrow prior pB = .51, for the model with the medium
prior pB = .50, and for the model with the wide prior pB =
.48. This suggests that the model assumptions, such as n be-
ing unaffected by validity, were not grossly violated by the
data.

Difference Analysis Posteriors of the group-level parame-
ters are shown in Figure 3 and the Bayes factors derived from
the difference parameters are shown in Table 2. We can see
that the priors influenced the Bayes factors, but the results
stayed qualitatively the same.

In contrast to Klauer et al. (2000), there was no evidence
for an effect of believability on the reasoning parameters.
More specifically, the evidence for a difference was incon-
clusive for both reasoning parameters rv and ri, 1

3 < BF <
3.

In terms of the response process parameters, the results
tended to agree with Dube et al. (2010). For n, there was weak
evidence for the absence of a difference between believability
conditions, although only under the wide prior. The evidence
under the medium and narrow prior was rather inconclusive.
However, there was considerable evidence for a difference in
response bias g over believability conditions, BF > 16. For
the unbelievable conclusions participants appeared to be rel-
atively unbiased with g around .4. For the believable conclu-
sions participants showed a response bias towards the “Yes”
response with g being clearly above .5 (at around .7).
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Discussion

Comprehensive measurement models for syllogistic reason-
ing data require the estimation of at least three parameters,
whereas binary “Yes/No” response formats provide only two
independent data points (Klauer et al., 2000). We used a min-
imal extension to the binary syllogism-evaluation task by in-
troducing a third response option, “I don’t know” (Singmann
et al., 2013). Although this third response option was rarely
selected, it provided the means for estimating the parameters
of the extended belief bias MPT. Similar extensions can be
useful for investigating cognitive processes in other domains
(e.g., source memory; Kellen, Singmann, & Klauer, 2014).

Here, we found converging evidence for the results of Dube
et al. (2010) and the interpretation of their model-based anal-
ysis; the belief bias effect can be explained by a change in
response bias (see also Stephens et al., 2017; Trippas et al.,
in press). However, we cannot conclude that belief bias is
solely a result of response processes, as the evidence for or
against differences in reasoning processes was inconclusive.
Then again, considering our somewhat large number of par-
ticipants we can assume that if there was a difference in rea-
soning processes it would probably be rather small.
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