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Electroweak three-body decays in the presence of
two- and three-body bound states
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ABSTRACT: Recently, formalism has been derived for studying electroweak transition am-
plitudes for three-body systems both in infinite and finite volumes. The formalism provides
exact relations that the infinite-volume amplitudes must satisfy, as well as a relationship
between physical amplitudes and finite-volume matrix elements, which can be constrained
from lattice QCD calculations. This formalism poses additional challenges when compared
with the analogous well-studied two-body equivalent one, including the necessary step of
solving integral equations of singular functions. In this work, we provide some non-trivial
analytical and numerical tests on the aforementioned formalism. In particular, we consider
a case where the three-particle system can have three-body bound states as well as bound
states in the two-body subsystem. For kinematics below the three-body threshold, we
demonstrate that the scattering amplitudes satisfy unitarity. We also check that for these
kinematics the finite-volume matrix elements are accurately described by the formalism for
two-body systems up to exponentially suppressed corrections. Finally, we verify that in
the case of the three-body bound state, the finite-volume matrix element is equal to the
infinite-volume coupling of the bound state, up to exponentially suppressed errors.
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Introduction

Accurately computing electroweak transitions involving hadronic states is crucial for testing

the Standard Model of Particle Physics.

For example, the current tension between the

theoretical prediction and experimentally measured values of the muon anomalous magnetic

moment has driven the community to assess the largest theoretical uncertainties coming

from hadronic intermediate states [1]. Electroweak transitions also serve to probe the non-

perturbative quark and gluon interactions within Quantum Chromodynamics (QCD) itself,

allowing one to determine the substructure of and understand the role of glue in matter, one



of the central motivations behind the experimental program being planned for the upcoming
Electron-Ion Collider [2].

While the electroweak sector is amenable to perturbation theory for computations of a given
observable, processes involving strongly interacting hadrons requires systematically improv-
able, non-perturbative computational methods. An approach to non-perturbative QCD
known as lattice QCD allows one to numerically compute low-energy observables in finite,
discrete spacetime volume. While the computational costs and theoretical support pose
significant challenges, the growing number of results involving scattering and electroweak
matrix elements have shown that quantitative results of low-energy strong dynamics are
possible [3, 4].

An important aspect in reconstructing low-energy observables of few-hadron systems from
lattice QCD is correcting for finite-volume effects inherent in any calculation. Observables
involving multiple hadrons, such as electroweak matrix elements, suffer from power-law
scaling effects when computed in a finite spatial volume [5-7]. Isolating the power-law
corrections to these observables allows one to construct exact non-perturbative mappings
between finite-volume observables, such as energy spectra and matrix elements, to corre-
sponding infinite-volume reaction amplitudes, effectively removing the volume artifacts.

The first work to study the effects for matrix elements was by Lellouch and Liischer [7],
who found an exact relationship between the K — w7 decay amplitude and the correspond-
ing finite-volume matrix elements of the weak current. This has since been generalized to
increasingly complicated reactions involving two-particle states in the initial and/or final
state [8-25]. With a mature formalism at hand, steady progress is being achieved in appli-
cations to physically relevant process are being carried out, e.g. weak decay of a kaon to
two pions [26], and form-factor of the meson resonances [27-31].

Transitions that involve more than two hadrons constitute the present frontier. Before
discussing the progress towards this end, we briefly summarize the status of studies of
purely hadronic amplitudes. For the past decade, there has been a strong push towards
understanding the non-perturbative relation between the spectrum of three particles in a
finite-volume and infinite-volume quantities [32-58]. In general, these relations provide a
method to constrain a short-distance unphysical quantity, that can then be related to phys-
ical scattering amplitudes via non-perturbative integral equations [35]. This has motivated
a line of research to solve and understand the analytic properties of the integral equations
and their solutions [59-64], which has resulted in some of the most stringent tests of the
aforementioned formalism. Given the confidence in the formalism, there have been several
applications in the analysis of actual lattice QCD spectra [65-70], including interactions in
higher-partial waves |71, 72|, and one determination of the S-wave scattering amplitude [73].
The formal infrastructure to reliably study integral equations in higher partial waves was
recently developed in ref. [74]. 1

Given this progress, the field has turned its attention towards the possibility of studying

'For pedagogical introductions into this rapidly evolving field, we point the reader to Refs. [75, 76]. For
more recent summaries of the status of the field, see Refs. [77, 78].



three-hadron decays [79-82]. While no applications have been carried out yet, it is to be
expected that the formalism can be used to constrain electromagnetic transitions, such
as v* — 3w, as well as CP-violating kaon decays, K — 3w. In this context, a thorough
investigation of the features of the formalism is timely. This includes consistency checks,
which have been proven useful in the context of two-particle processes |21, 22].

In this work, we perform an analytical and numerical validation of the relativistic field-
theoretic formalism for three-hadron transitions in infinite- and finite-volume [81]. For sim-
plicity, we use the formalism for identical particles in the isotropic approximation. In partic-
ular, we focus on two limits. First, we consider the case where the two-particle subchannel
contains a bound state (dimer). In this limit, we use the Lehmann-Symanzik-Zimmerman
(LSZ) reduction formula to show that below the three-particle threshold, the three-particle
transition amplitude recovers the transition amplitude to a two-particle system, composed
of the two-body bound state (b) and one of the particles (¢). We prove that the resultant
two-body amplitude satisfies Watson’s theorem, as expected from S matrix unitarity. Fur-
thermore, we show that the finite-volume formalism presented in ref. [81] reduces to the
known Lellouch-Liischer formalism for two nondegenerate particles. The second scenario
considered is that where the theory contains a three-body bound state (trimer). In this
limit, we demonstrate that the finite-volume matrix element is equal to the trimer decay
constant up to exponentially suppressed errors in the volume. We study both of these limits
analytically, and we also show numerical evidence for an illustrative example in the limit
of vanishing three-body K matrix.

The rest of this work is organized as follows. In section 2, we review the key aspects of
the infinite-volume formalism and we consider the two limits discussed above. In section 3,
we review the necessary finite-volume formalism. In section 4, we analytically derive and
provide numerical evidence that the two-body quantization condition and the Lellouch-
Liischer limit can be recovered from the three-particle formalism in the presence of a two-
body bound state. Section 5 shows the analogous results in the presence of a trimer, while
concluding remarks are given in section 6. In appendix A, we generalize the results from
sections 4.1 and 4.2 to non-zero values of the three-body K matrix.

2 Infinite-volume formalism for identical particles

This section provides a recap of the infinite-volume formalism for the relativistic field-
theoretic three-particle scattering [34, 35| and transition [81] formalism.

In what follows, we will strictly consider the limit where the three-particle K matrix, IC3 2,
is fixed to 0. Lifting this assumption is expected to be straightforward. In this limit, the
three-to-three scattering amplitude for three identical particle scattering can be written as

Ms=S {D(“’“)} , (2.1)

?Note that we have dropped the “df” (divergence free) notation from K3 originally introduced in ref. [34],
given that K matrices must in general be free from on-shell singularities due to S matrix unitarity.



where D) gatisfies an integral equation, known as the “ladder equation” which we define
below, including all possible pair-wise interactions. Because this amplitude requires one
to define a pair and spectator for the initial and final state, we refer to it as the unsym-
metrized amplitude. To obtain the full amplitude, one must sum explicitly over the choice
of the spectator. This operation is referred as “symmetrization”, and it is done by § in the
expression above (see Eq. (39) of [35]).

In what follows, we explore the consequence of the infinite- and finite-volume formalism
where the two-particle subsystem can support a bound state, which we call a dimer (b).
We will consider the dynamics of this bound state with the spectator, which we will re-
fer generically to ¢. As one might expect, the manifestation of the b system is most
readily available in the unsymmetrized amplitudes. As a result, we will only consider the
unsymmetrized Dluu)

Before giving a definition of D% we define the kinematics of the system. For simplicity,
we will restrict our attention to the amplitudes in their center-of-momentum (CM) frame,
where the total three-particle state will carry four-momentum P* = (E,0) = (4/s,0),
where s is the Mandelstam variable. All particles involved are identical spinless bosons
with mass m. The spectators, which will be on-shell, carry four momenta k* = (wg, k),
where wr, = vVm? 4+ k2. As a result, the two-particle subsystem has a CM energy (Eoy)
defined by E2, = so, = (P — k).

Furthermore, we will only consider the scenario where the scattering amplitude of the two-
particle subsystem, Mo, is completely saturated by the £ = 0 partial wave. This can be
written in terms of the two-body phase-shift, J, in the standard way,

1
ky= —— 2.2
Mok) = s (2:2)
where k = |k|, p is the two-particle phase-space defined for identical particles to be
q*
p 2 (2:3)

- 16m\/Sok

and ¢, is the relative momentum of the two systems in its CM frame. This can be written

as ¢, = 25% A2 (591, m2, m?), where ) is the Kallén triangle function

a,y,2) = 2% + o + 22 — 2ay + yz + 22). (2.4)

Note, each building block on the right-hand side of eq. (2.2) is a function of the CM two-
particle energy, ,/sok, but we left this implicit to simplify the notation.

In what follows, we will make the dependence on the total CM energy implicit, while making
the spectator momenta explicit. Labeling the initial/final spectator spatial momentum as
k/p, we can define the ladder equation as

d>r

e (27)3 (P r)D(r k), (2.5)

D) (p,k) = —M(p)G(p, k) Mz (k) — M2(p)/

where G is an exchange propagator that is not a standard one. In particular, in order to
regulate the integral appearing in the aforementioned equation, it is necessary for G to



depend explicitly on a cutoff function, H,

H(p)H (k)

Gl = e —a)? - (R

(2.6)

This expression follows because we have fixed the angular momentum of the two-particle
subsystem to be £ = 0. There is a large class of cutoff functions that one can consider. A
fairly common choice, which we adopt here, is a smooth cutoff function of the form

) 0, <0,

E

H(k:):J<:c:4;f> = < exp (—%exp {—ﬁ}), O<zr<1, (2.7)
1, 1 <.

The smoothness of the cutoff is relevant for the finite-volume formalism, but in infinite
volume, a hard cutoff also has been used [63]. In this work, we will only use the smooth
form.

To solve the integral equation, it is convenient to write this in terms of a function that has
fewer singularities,

D) (p, k) = M (p)d(p, k) Ma(k), (2.8)
where d satisfies the integral equation,

dr

WG(p, r)Ms(r)d(r, k) . (2.9)

anmz—aum—/

For simplicity, we will further restrict to the case where the orbital angular momenta be-
tween the spectator and two-particle system is also fixed to 0. We can do this by partial-
wave projecting d [61]. Labeling the resultant amplitude as dg, it is easy to see that by
integrating over [ dQ/4m, it satisfies

r2dr

o @mE s rIMa(r)ds(r, k) (2.10)

%@%F&Gﬂnm—ém

where

Gs(p, k) = _H(p)H(k) log <z(p, k) + ie — 2pk> 7

2.11
4pk z(p, k) + ie + 2pk (2.11)

with z(p, k) = (\/s — wg, — wp)2 — k% — p?> — m?2. The resultant integral equation for dg can
be solved using numerical techniques, as already explored in refs. [61, 63, 73].

2.1 My, amplitude

In this work, we consider a simple two-model where the two-particle subsystem can have
a bound state. The reason for this is that we can explore the fact that in a kinematic
region, the physical observables can be equally described in terms of two- and three-body
dynamics.



We can do this by parametrizing the two-particle scattering amplitude in terms of the
leading order effective range expansion,

1
G cotd = ——, (2.12)
a

where a is the scattering length. If a > 0, the two-body scattering amplitude has a pole
below the threshold corresponding to a bound state with mass

1
my = +/Sp =24/ m? — — (2.13)

a?’

From this, it is easy to read that the state has a binding momentum of
Ky = 1/a. (2.14)

The binding momentum will play a key role in section 4. There, we prove that the finite-
volume formalism for the three-particle system can be approximated by the two-body for-
malism in a kinematic regime, and the difference between these formalisms will be expo-
nentially suppressed by kL, where L is the spatial extent of the finite-volume system.

It is always true that the residue of the amplitude at the pole can be factorized,

lim Ma(k)(sor — 8p) = —g°, (2.15)
89k —>Sp
and g can be identified with the coupling of the bound state to the scattering states, i.e.
the b — 2¢ coupling. For the leading order effective range expansion, the coupling can be
found to be

g = 8¢/27m\/spkp. (2.16)

With this, we can then define an amplitude describing the scattering between the bound
state and the spectator. For convenience, we will label this as M, where ¢ refers to the
spectator, and the amplitude describes elastic b — b scattering. It is a function of s,
which is suppressed here.

As it was presented in ref. [61], in the K3 — 0 limit, M, can be obtained from D following
the LSZ procedure. This is done by amputating the external legs associated with the
propagating bound state, and dividing by the corresponding couplings of each state, i.e.,

Moy = tim S22 = )k =) i oy (2.17)

82p,82k—Sh 92

where Dg is the D amplitude after S-wave projection. Using the relations between D and
d in eq. (2.8), and the limit of the two-body scattering amplitude at the pole, eq. (2.15),
one finds a simple expression which is more amenable for computational evaluation,

My = ¢*> lim ds(p, k), (2.18)

S82p,S2k —*Sp

where dg is defined by eq. (2.10).



Because the resultant amplitude is a two-body scattering amplitude, it must satisfy two-
body unitarity, which implies that it can be written in the form,

1

Moy = —, 2.19
A Ppb €Ot 5<pb — 1Pyb ( )
where d,, is the b scattering phase shift, p, is its phase-space,
dipb
Pob = 8777?/5’ (2.20)
and gy is the relative momentum in the system
Qb = i)\1/2(3, sp,m?). (2.21)
» 2k

At times it is more convenient to introduce the pb K matrix, Ky, which is simply related
to the phase shift via

IC;bl = Pyb €Ot Op. (2.22)

2.2 Trimer poles and residues

Just like the two-body scattering amplitude can have poles associated with bound state
and even resonances, so can the 3-body amplitude M3. These pole singularities, associated
with three-body bound states or resonances, we will generally refer to as trimers. As was
shown in great detail in refs. [63, 64], the relativistic scattering amplitudes presented here
do generate trimers bound states and/or resonances depending on the value of the two-
body scattering length, a. The nature and evaluation of these states with a is quite rich
and interesting. Here we are just interested in defining the trimer poles, their residues, and
ultimately their couplings to external currents.

Generally, one can have trimers for theories with or without two-body bound states. For
simplicity, we will consider classes of theories where there are both two-body bound states
and trimers. As a result, trimers appear as poles in both M, and the full amplitude in the
s complex plane. Here we are just interested in bound state trimers, which lie below the
b threshold on the real axis (in the physical Riemann sheet). If we label the mass of this
state as my, we can define the pole location (s;) and the binding momentum of the system
Ky Via

mtzﬁz\/mQ—nf+\/mg—m%. (2.23)

In this work, we will study trimer and couplings via amplitudes involving the @b system. In
other words, we will first apply the LSZ procedure to the three-body scattering amplitudes,
and then look for poles in s. With this, we define the coupling ¢ — ¢b coupling (),
analogously to as was done in eq. (2.15) for the two-body bound state,

lim (s — 8;)Myp = =77 (2.24)

S—>St



2.3 J — 3p transition amplitude

Thus far, we have only thought about amplitudes in the absence of external currents.
Although what is being considered here are generic properties of scattering amplitudes,
one is tempted to refer to the amplitudes above as describing purely “hadronic” processes,
given the motivation of applying this machinery for lattice QCD calculations. With this
in mind, we now turn to reactions involving an external probe. Following the analogy
with lattice QCD, we can think of this probe as a proxy for perturbative insertions of the
electroweak sector. For simplicity, we will assume that the current () is a Lorentz scalar,
which has the same quantum numbers of the desired three-particle system. Note that we
are restricting our attention to scalar bosons projected to J¥ = 0T, since the resultant
amplitude is assured to be a Lorentz scalar.

With this in mind, here we review the key pieces introduced in ref. [81] for describing
J — 3y transitions. Because we exclusively consider the limit where K3 is zero, the
expressions simplify further. Furthermore, we will simplify the notation relative to the
previous work. We label the unsymmetrized transition amplitude in the isotropic limit as
T, where we have left the superscript (u) and label “iso”, which normally emphasizes these
two points, implicit.

In this limit, the amplitude can be defined in terms of D% or equivalently d up to a
multiplicative purely real function A. This function solely depends on s. As with the
purely hadronic amplitudes, we will leave the dependence on s implicit. With this, the
transition amplitude satisfies

T(p)=L(p) A (2.25)
where
3
£lp) = 5 = Malp)olr) + / M‘j(;)gmw(p,k) ip(k) (2.26)
e8] 2
- % — Ma(p)p(p) — MQ(p)/O wllj(;fpds(p, k) Ma(k) pk) | (2.27)

where we have evaluated the integral over angles analytically and written the remaining
integral in terms of dg. We have also introduced a non-standard version of the phase space
that depends on the cutoff function, 3

pk) = —ip(k)H (k) . (2.28)

As with T, usually in the literature £ is explicitly labeled with (u) and label “iso”, which
we drop here because we are exclusively interested in the isotropic amplitudes where the
outgoing state has not been symmetrized.

2.4 J — @b transition amplitude

Here we now turn our attention to the consequence for the 7 in the previously considered
scenario where the two-particle subsystem can have a bound state. In this case, the J — 3¢

3Note, in the literature this non-standard modification of p is typically called 7, because it originally
was introduced in a calculation where the principal-value (PV) prescription of integrals being used.



amplitude will have a pole in the s, complex plane at s;. Following the same LSZ procedure
carried out above for relating D to My, it is clear that the residue will be proportional to
the J — b amplitude, which we label as 7.,

lim (82p - Sb)T(p) =—g 7:01) . (2.29)

82p—>Sh
Because we have fixed the outgoing two-particle subsystem to be at the pole, the T
amplitude only depends on s, which we leave implicit.

Using the definition

Tob = 05,
= Jim (82]; ) B — Ma(p)p(p) (2.30)
e8] 2
o) [ () a0 500 A

it follows that

' N k2 dk .
Top = lim —g [p(p)+ /0 mds(p, kr)M2(k)P(k)] A,

(2.31)

o0 2
- [mqwb) s [T dstaan ) Mz(k)ﬁ(k)] A

Here we have made use of the behavior of My at its pole, eq. (2.15), as well as the fact
that when the two-particle subsystem is fixed to be at the pole, the spectator momentum
coincides with gy given in eq. (2.21). Introducing o(p) as

o0 2
o(p) = (p) + /0 mds(pa k) Ma(k)(E) (2.32)

the previous result can be abbreviated as
Tob = —90(qep) A . (2.33)

Given that this is now a transition amplitude coupling to a two-particle state, we know
from Watson’s theorem that 7 must be proportional to M, up to an overal real function.
In other words, the unitarity singularities of 7., are completely given by those of M.y,
Explicitly, one can show that

Tob = =g Al + iMpppeb)Z, (2.34)

where 7 is a real function of the energy. Since 1+ iM ppup = /Vl@blc;bl and the K matrix
is a real function, this equation suffices to demonstrate the proportionality between M,
and 7.
To show this, we start by noting that My (k) can be split as

2

My = i + AMo,
Sop — Sp + 1€
= ig%(szk —sp) + (AMy), (2.35)



where AMsy and (AMs)" are smooth functions in this kinematic region. Next, consider
7 (k) to be a smooth function, then®

* k*dk (n) (n+1)
—A R (s K) Ma(E)T) (k) = T0D (g,)

wy(2m)? (2.36)

- GS(ngba Q<pb) (iQQprb)I(n) (Qcpb)'

Here, the first term on the right-hand side, I(”H)(q(pb), is also a smooth function resulting
from a principal-value integration. Moreover, the second term results from the pole contri-
bution of the integral, which sets all other quantities on-shell. Note that at this stage, the
labeling Z( and Z(*Y is arbitrary but convenient for the next step.

In order to reach eq. (2.34), we start from eq. (2.31) and first identify Z(® = 5. Then we
insert the integral equation for dg in eq. (2.10) recursively to all orders. Using the relation
in eq. (2.36) to all orders, one finds infinite sums of the form

=) 1, (2.37)

where Z was previously introduced in eq. (2.34). Rearranging all terms in the infinite sum,
and using M, = g2ds(qpb, gb), one arrives to the result in eq. (2.34).

2.5 J —t coupling

Finally, we can consider the limit where there is a trimer present in the theory. As previously
discussed, we will exclusively consider theories with both two-body states and trimers. The
goal here is to define the coupling (g;) of the trimer to the external current.

As in section 2.2, we can then obtain the J — ¢ coupling from the residue of the 7T,
amplitude at its pole,
Slin;t(s —50)Tob = =V 9t - (2.38)

Note that the residue factorizes, with one piece corresponding to the “hadronic” coupling
vt defined in eq. (2.24), and the other to the coupling to the current.

To derive an expression for the decay constant, g;, we make note of the behavior of the full
amplitude in the vicinity of the trimer pole [63, 64, 84]

' (p) I'(k)

2 )
5 —mjg

DY (p, k) ~ — (2.39)
where I'(k) are related to the wavefunction of the bound states. Given the relationship
between D and d, eq. (2.8), it follows that d behaves as

1 I'(p) I'(k)

ST M) st

(2.40)

4See Appendix A.1 of ref. [83] for a proof of this relation.

~10 -



From egs. (2.18) and (2.24), it is clear that in the limit that k approaches gy the ratio of
I' and M5 must be smooth, and in particular it must approach

F(k) N

li = =. 2.41
Szklglsb Mz(k) g ( )
This implies that near the timer pole,
Tt I'(k)
d k)~ — . 2.42
S(Q<pb ) g/\/lg(k)s—m% ( )
With this, we are finally able to define the trimer decay constant to be
1.
gt = —— lim (s — 5¢) T
’yt S—rSt
=— —T'(k)p(k)A.
| oA

The key point is that we can define the J — t coupling in terms of functions of the ladder
equation and one unknown real function, A, which can in principle be constrained from
finite-volume matrix elements. Specifically, g¢/.A can be obtained from T,/A and M,
using eqgs. (2.24) and (2.38).

3 Recap of the finite-volume formalism

In this section, we provide a summary of the finite volume formalism for the processes
b — b, J — b, 3p — 3p, and J — 3y, for a system with zero total 3-momentum
P = 0. We will only consider systems in cubic volumes, V = L3, with periodic boundary
conditions. For simplicity, we will set all angular momenta to 0 and fix K3 = 0, although
lifting the latter assumption is straightforward. Because we are fixing K3 = 0 for every
kinematic variable, this is a special case of the isotropic approximation [34].

A key point of this work is that for energies below the three-body threshold, the finite-
volume quantities must be equally well described using the three-body formalism for 3¢
as well as a two-body formalism for the @b system. Given that the two-body formalism is
easier, we begin by reviewing this.

3.1 Finite-volume formalism for the two-body system

The quantization condition for a two-body state provides a mapping between the set of
finite-volume spectra of the system and its scattering amplitude. In general, this relation
relates one energy level to an infinite number of partial-wave amplitudes. In practice, at
moderately small energies, most partial waves are consistent with zero or unresolvable.
As previously mentioned, we only consider the case where the total angular momentum is
zero and the individual particles, including the bound state, are spinless. In this case, the
quantization condition gives a one-to-one correspondence between the spectrum and the
scattering amplitude My,

— 11 —



The quantization condition in the kinematic range (mp +m)? < s < (3m)? can be written
in terms of the K matrix as [5, 6, 85|,

(Ftpb(Ev L))_l + ]Ccpb(E) =0, (3.1)

where the geometric function F, is given in terms of the Liischer-Riemann zeta function,
Z,5 as Fp(E, L) = Z(Lg/27)/(87LE).

As seen from egs. (2.19) and (2.22), the K matrix and M., are easily related by unitarity.
This leads to another useful representation of the quantization condition in terms of My,

( <,ZoEb(E7 L))il + MSOb(E) =0, (3'2)

where F;Eb is defined analogously to Fp, except that integrals are performed using the ie
prescription, rather than the principal-value one. The relation between them is straightfor-
ward, ng = Fyp + ipgp.

Given the K matrix, one can find the spectrum in a finite volume by looking for the
solutions of eq. (3.1). Alternatively, given the finite-volume spectrum, one can use eq. (3.1)
to constrain the K matrix, or equivalently the scattering amplitude. The latter is what is
actually done in a lattice QCD study.

Next, we review how the J — b transition amplitude, 7., can be constrained from finite-
volume matrix elements of the current. Given we are only interested in states that are
at rest and that couple to 0 total angular momentum, we only need to consider the Af
irreducible representation (irrep) of the cubic group, where the + sign labels the parity.
If we label the states in this irrep as |A], L) and normalize them to unity, the transition
amplitude can be non-perturbatively related to the finite-volume matrix elements |7, 18] as
Tool? = 73l (AT, L1 T [0) |” (3Fgob(E, L) n 8K¢b(E)>
v 11— il pppyn|? OFE OF ’

where p.y is the two-body phase space given in eq. (2.20), and the derivative are evaluated

(3.3)

at the corresponding solution of the quantization condition.

3.2 Finite-volume formalism for the three-body system

We now turn our attention to reviewing the finite-volume formalism for the spectrum and
matrix elements of three identical scalar particles. As previously stated, we restrict our
attention to the isotropic approximation where K3 = 0 and fix P = 0.

In this limiting case, the spectrum satisfies [34]
(F3°(B,L)" =0, (3.4)

where F§S° can be written as a matrix element of a matrix defined in the spectator-
momentum space,

FYO(B,L) = [F3(E, L)), = (1 B3(E, L)[1) (3.5)
k,p

°Z can be written as Z(z) = [}, =PV [d’n] (n®* — 2°) ", where the PV emphasizes that one must
take the principal value contribution from the integral. A useful evaluation of this integral is by introducing
an exponential regulator. See Appendix B of ref. [20] for an explicit evaluation of the ie-analogue.
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where the sum runs over all the allowed values of the incoming and outgoing spectator
momenta. These satisfy two conditions. The first is that they must be k = 27n/L, where
n is an integer triplet, as required by the boundary conditions. Second, given the total
energy of the system and the value of the momentum, the cutoff function as defined in
eq. (2.7) must be nonzero, i.e. H(k) > 0. The state |1) is a vector in the space of momenta
with all components equal to 1, while the F3 matrix can be written in terms of a linear
combination of other matrices,

F - 1 ~
——F——20wMsy F
3 14 2wMsor,G

1

F3 = ﬁ ’ (36)

where we suppress the £ and L dependence of the quantities above.® The diagonal matrix
F' is proportional to the zeta function. A convenient representation uses an exponential
regulator [10] as defined in Appendix B of ref. [40]

: (3.7)

~ 1 H(k) 2w | 1
Frp, =0 lim ———— - — [ — —-PV
kp = Ok B 2r 3213 (E — wy) L [LS 2 /a
a
1
= 5kpﬂFkk’, (3.8)
where 22 = (¢¢ , L/27)?, a = 2mn,/L with n, being vectors of integers, and % = r2 4 r2
42 i ) g gers, I 1

Ng)| — 1| /2
= 2l y Tl =MNal, (3.9)
Y
and where H (k) is defined in eq. (2.7). We have introduced a compact notation for the

three-dimensional integral, [, = [ d®a/(27)?, that we adopt going forward.

The Moy, function can be understood as the finite-volume analog of the infinite-volume
two-particle scattering amplitude, eq. (2.2). The combination wMsyy is also diagonal in
momentum space,

[w Moy, = Skpwi [pcoté—ip(l—H)—i—F],;kl, (3.10)

where ¢ is the two-body scattering phase shift defined in eq. (2.2), p is the two-body phase
space given in eq. (2.3), and the repeated indices on the right-hand side are not being
summed over.

Finally, the G matrix parametrizes all the one-particle exchanges in a finite volume, and
consequently, it is not a diagonal matrix. Assuming the two-particle system is saturated by
the S-wave angular momentum, its components are defined as

H(k)H (p)

0 = T3 ) ) (B — iy — ) — (k+ D) — )

(3.11)

SNote that there are several ways of expressing Fs that are algebraically equivalent, for instance, eq.
(39) in ref. [34].
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In the three-body sector, it was recently shown [81] that the J — 3¢ transition amplitude

defined in eq. (2.25) can be related to finite-volume matrix elements (A, L| 7 [0). Given

the aforementioned approximations, the relationship reads

2 O(Fs*(E, L)~
oF

In the above, L is as defined in eq. (2.26). Using eq. (2.25) for the transition amplitude,

T (k) = L*[ (AT, LI T |0) [?|£(k)

(3.12)

this relation can be also be written in terms of the infinite-volume quantity A,
R AFE°(E, 1)
OF

Note that the normalization of these equations differs from eqgs. (2.85) and (2.79) in ref. [81],
since we are explicitly considering transitions with the vacuum as initial state.

|A[® = L? (AT, L| 7 |0) (3.13)

In the case of the trimer, the expectation is that the coupling g; can be expressed in terms
of appropriate finite-volume matrix elements using the standard normalization as

ge = V2EL3(A{,L| T 0) , (3.14)

up to terms exponentially suppressed in kL, where x; is the binding momentum of the
trimer defined in section 2.2. Combining that with eq. (3.13), we can obtain g, from the
finite-volume formalism by taking the following limit,

2EA?
2= i . . 3.15
I B A(F(E, L)) 1/OE (3.15)

4 Proving the equivalence for (m; +m)? < s < (3m)?

Here we provide the first check on the finite-volume formalism presented above. We use
the same set of assumptions as above, namely, we consider the isotropic case, K3 = 0, and
overall zero momentum, P = 0. However, we note that the restriction K3 = 0 can be easily
lifted, as done in appendix A. Furthermore, we assume that the two-body system has a
bound state with mass my, and consider the consequence of the finite-volume formalism for
energies restricted to be above the bound-state/spectator threshold but below the three-
particle threshold, i.e. (m, +m)? < s < (3m)?. In this kinematic region, both formalisms
presented in sections 3.1 and 3.2 must be equivalent.

4.1 Recovering the two-body quantization condition

The first goal of this section is to show equivalence between the three-body and two-body
quantization conditions given by eq. (3.4) and eq. (3.1), respectively. © In particular, we
will show for (my, +m)? < s < (3m)? that

1
i€ -1

F?i)so = [ {;SO]OO + 92G(Q¢b) U(ngb) ) (4'1)

"This was previously shown in ref. [32] for a non-relativistic derivation of the three-body quantization
condition.
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where [ngo] > is the infinite-volume analog of Fiso explicitly defined as

; 1 [(plk) ~

1) = [ o (B - a7
k 2wk \ 3

(k) i) 2
— — My (k)d(k, p) M —,
|Gt p) Mo 5
and o is the same infinite-volume function as in eq. (2.32). Note that in the remaining of this
section, we suppress E and L dependence in all quantities. As we will see, eq. (4.1) is exact
up to exponentially suppressed errors. This is sufficient to argue that in this kinematic
iso

region, the spectrum of the theory, which coincides with the poles of F3*°, according to

eq. (3.4), also satisfies the two-body quantization condition, eq. (3.1).

For convenience, we can use an expression for F3 that is equivalent to eq. (3.6):

_F (1 Mo,
F3 - m <3 MQLF MQLdLWF> 5 (43)

where F = 2wF as in eq. (3.8),

Moy,

dp = =G =G5 73

dr, (4.4)

and G is a matrix version of the function G(p,k) shown in eq. (2.6), defined for discrete
values of momenta allowed by the boundary conditions. Note, one can also use the é,
defined in eq. (3.11) to define a modified version of dy. The advantage of this is that the
infinite volume analog of dy, is exactly the d function defined in eq. (2.9).

The strategy for this derivation will be to separate the volume dependence of eq. (4.3), and
isolate parts that can lead to divergences. To do this, we take advantage of two key points.

2 < s < (3m)?, the energy running through My is assured to

First, because (my + m)
satisfy (P — k)2 < (2m)2. This allows one to replace My, with My up to exponentially
suppressed corrections. One can see this from eq. (3.10) and looking at the behavior of
ipH + F below threshold, which vanishes exponentially quickly [35]. The second key point
is that in this same kinematic region, Mo has a pole associated with the bound state,
eq. (2.35). With this, one gets,

_92

Mop ~ My = —2
S2k — Sb

+ AM,, (4.5)

where AMs is the smooth function introduced in eq. (2.35). Because AMs has no poles,
it will not contribute to power-law finite-volume effects.

All other functions appearing in the definition of F3 have no poles in this kinematic region.
This includes G and F. Furthermore, in this kinematic region, we can use the following
relation,
Fk:p = Fk:p + Z'(Ska(k‘)p k) - l(ska(kZ)p(k?)
= 12; — 10 H (k) p(k)
~ by H (K)p(k) = Sy (). (4.6)
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Meanwhile, the G matrix can be treated as a matrix that has no singularities.

With this, it is clear that in the kinematic region being considered the only power-law
finite-volume effects in the definition of F3, eq. (4.3), are given by the pole in Msy. This
appears explicitly in the second and third terms in the parenthesis of eq. (4.3), but it also
appears implicitly in the definition of dy,, eq. (4.4). Our task is to isolate such contributions.

To proceed in a clear fashion, we begin by looking at the leftmost term of F:,i,SO in eq. (4.3).
Given the function being summed has no pole singularities, the sum over momenta can be

replaced by an integral
Sl =525
6wL3 |, — L? — Gw

k,p
~ 5(k;) iso]°
_/ka € [F*] .

The last line denotes that the entire contribution of this first term can be included in the

(4.7)

infinite-volume analog of Fi*® defined in eq. (4.2).

Next, we consider the contribution of the second term in eq. (4.3),

F 1 1
> [zpr”F] =13 2 Fuvg-MuFey
k,p kp kK p
~ 1 p(k) 1 Mo p(k) (4.8)
L3 ” P 2w, 2PV ’

To isolate the finite-volume corrections, we will use the simple identity,

1 1
LBZ:/J(L?)Z—/I(). (4.9)
k k
Given the approximations already stated and this identity, it is clear that the power-law

finite-volume corrections are all in the sum-integral difference of the pole in Ms. In partic-
ular, the key identity we will use is the following,

1 1 1 1
2 M= Joaet (m 2" /k> 2
1

= My — g? Fic
k2wk g b

(4.10)
where we have used that the sum-integral difference of My is related to Féfb. This can be
. 1 1 1
€ _ T _ . -
1

- - 4.11
Zk: /k) 2w, (sok — Sp + i€) ( )
1 1
N (ngk:_/k> 2w ((P — k)2 — sp + ie)

seen as follows:

~16 —



where, as always, we have ignored terms in the integrand that are smooth. Note that
after being placed on shell, F b still has angular dependence, so explicitly is a function of

both the on-shell momentum and an angle k. This dependence can be carried by spherical
harmonics when it is written as a matrix in angular momentum space, i.e.,

Yo (W)Y, (B) (k™
Bl o TAG N (0 4.12
[ gob]g L'm <L3 Z /) 2wk P k‘) — Sp + 26) qb ( )

In section 3, we were interested in the £ = m = 0 of this matrix, and as a result, we left the

angular momentum indices suppressed. Below, we review how the £ = 0 can be recovered
from the more general results.

With this, we can then revisit eq. (4.8),

F ~ 1 ~
kz; [2wL3M2LF] E/kp(k‘)Msz(k)

kp
_ (ng S /k> ﬁ(k)Qik Myp(k).  (4.13)

The one subtlety left to address is that the products of p(k) act as effective endcaps mul-

tiplying the pole in My, which is the only source of power-law finite-volume effects. As
a result, we can evaluate these at the “on-shell” condition given by the pole, and in doing
so we would only be making errors that are exponentially suppressed. Note that at the
on-shell condition, the magnitude of k is fixed to be g, the relative momentum of the b
system, given by eq. (2.21). For the system we are considering, [5(qub)]em = 6000mop(qypb),
which truncates all the partial waves in eq. (4.12) besides ¢ = m = 0. This allows one to
write

SN S M| = g - [~ - Blag) + (4.14)
2wl k
k,p p

where the ellipses denote terms that are included in [Fi°]*, and the dots denote a dot
product over the angular momentum space.

From the first and second term of Fi*°, we found terms of zeroth order in F| (ffb that can be
included in [Fi°]*°, and a term of first order in F7, shown in eq. (4.14) that contributes
to the finite-volume part. The same holds for the third term of F3*® as well, except that
it contains a series of terms of increasing order in F sz due to the presence of dy,. We thus
observe a pattern that emerges for F3*°. We can systematically evaluate it using eq. (4.9)

for each sum, and expanding the series in terms of the number of contributions of F

@b
> .
Fyo=>"F%, (4.15)
n=0

where FISE’ ) denotes the term with n factors of F”E

In order to do that, it is useful to introduce endcap functions that are evaluated on the
bound-state pole. The on-shell condition generally fixes the magnitude of the momentum
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that the spectator carries, but it does not fix the angular dependence. This angular depen-
dence can be accounted for using spherical harmonics. The partial-wave projected on-shell
endcaps can be written as

m(426) = 6060 Pa0) + [ oo 52 300, (4.16)

where d was given in eq. (2.9), and the S-wave projected o was already introduced in
eq. (2.32). Note, generally d is not diagonal in the orbital angular momentum [74], but in
the special case we are considering, with an S-wave two-body bound state, it is. Note, in
the limit we have considered, where the d amplitude is completely saturated by the £ =0
partial wave, so will the endcap.

We can then write the term of order F;%,

Fity == plags) - [~9*Fls] - plagb)

_ 2 e

- ﬁ((ﬁpb) : [ g gab:| : d(‘]gobap)

- /k d(k,a0) 228 5y - g2 F5S] - plan)

2wk
_/kd(ka(ﬁpb)/\;lz(kk)ﬁ(k)- [~g?F] ,/d(%b’p)/\;z(p)ﬁ(p)
p D
== 0(ap) - [=9°F3) - o (ag0)- (4.17)

The first term above is exactly the contribution of the second term of Féso shown in
eq. (4.14), while the other three terms appear in the expansion of third term of Fi%.
In the last line above, the four contributions have been written compactly in a single term,
making use of the endcaps o(qyp). Following the same procedure, it is now easy to see the
n'™® order term,

iso

3,(n) = _U(qu) ’ [_92 :peb] : [_M(,Dijpeb] o : O'(qapb)a (4'18)

where we have used the fact that M, = g%d.

Summing all terms to all orders, one gets,
iso iso] @ 2 ie\—1 -1
By = [F)™ + Polaq) - [(F5) ™ + M| - olam). (4.19)
With this, we see that the poles of the correlation function satisfy the standard quantization
condition for a two-particle system. In the limit that only the lowest angular momentum

contributes, this reduces to the algebraic expression given in eq. (3.2), which we rewrite
here for convenience

(Fi(B, L))" + Mp(E) = 0. (4.20)
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4.2 Recovering the two-body Lellouch-Liischer formalism

Our goal here is to show the equivalence between egs. (3.3) and (3.12). For clarity, we
explicitly rewrite these two equations here, including the equality we prove below,

2 isoy—1\ —1
oo =T G <8(F§’E) > 2

_ Tl 11— iKpppenl?

— )
L3 8wa1 n 0K s
oF OF

where we have assumed the lowest-lying partial wave dominates the b system, and the F

(4.22)

and L dependence of the quantities is not explicitly shown.

To derive this, we start by writing Fi%, as given in eq. (4.19), in the vicinity of a finite-
volume pole. In particular, we are interested in the derivation of its inverse. Near the pole,

the inverse of F3* vanishes as

isoy\—1 1 1
)™ = ) (p;% +M§"*’> ' (429

Using this identity, we can write its derivative as,

O(Fiso)~t 1 o (1
=3 2 = [+ M
OE  |p_p, 9°(0(qe))? OF EL, s E=E,
Y A .
_ pb O (e -1
 9*(o(qp))? OF <F“”b +M“°b> E=E,

11— iKgppob| > —1
_ 2 (F
320 ()2 aE(  +Ka)

: (4.24)
E=F,

where we have neglected terms that vanish at the pole, and in the last equality we have
used that the phases of o and M.y, cancel due to Watson’s theorem (see section 2.4).

The other building blocks needed to rewrite the terms on the right-hand side of eq. (4.21)
are the 7 and £ amplitudes. Both of these have poles in sgf in the kinematics being

considered. The exact behavior at the pole for 7 is given by eq. (2.29). For L, we use
eq. (2.26) to find

lim (sor — sp)L(k) = lim (S — Sp) <:13 - MQ(k’)O'(k’)) = g%0(qpp)- (4.25)

k_)QLpb k_>Q¢b

Using the expressions it is now just a matter using simple relations to rewrite the right-hand
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Figure 1: A schematic depiction of the workflow used to produce the numerical checks
for the amplitudes M and 7. presented in section 4.3, and for the trimer coupling g;
presented in section 5.2. Specifically, My, Top, and g; can be obtained both using the
infinite-volume formalism and LSZ reduction formula as described in section 2, and the
three- and two-body finite-volume formalisms summarized in section 3. This is numerically
validated in the results shown in figures 4 to 6.

side of eq. (4.21)
2 _ (526 = s0)T(k)” 1/ (52 — 5u) LK)

’ <Ai|—’ L‘ ‘7 ‘O> ‘ L3 8(F§so)—1
oF
19Tl 1/|9%0 (ggp) |
- [1=iKubpenl =2 9 -1
gQ|qu¢:)|2 OE (Fsob +’C‘Pb) b,
Tl |1 — iKgbpil”

73 (4.26)

o) -1
oE (Fgob + K:Wb)

Y

E=FE,

which recovers eq. (4.22).

4.3 Numerical evidence

In this section, we provide numerical evidence for the two results that were analytically
derived in the previous subsections. In the first part, we explore a simple toy model that
supports a two-body bound state. Within this model, we demonstrate two things. First, we
show that in the kinematic region below the three-body threshold, the finite-volume spectra
and matrix elements are equally well described by the two- and three-body formalism.
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Second, we produce the same numerical values for the infinite-volume amplitudes, M.
and 7Tgp, using the finite-volume formalism and the integral equations. These two checks
provide empirical evidence of the equivalence found in section 4 and the fact that the finite-
and infinite-volume formalisms are self-consistent.

In figure 1, we give a graphical depiction of the procedure we used to perform this check,
which we proceed to describe. Throughout this numerical demonstration, we set K3 = 0,
and fix the two-body phase shift using a single value of the scattering length k cot d,, = —1/a,
with ma = 1.5. This leads to a bound state mass of my ~ 1.49m, see eq. (2.13). We focus
our attention on energies below the three-body threshold, F < 3m, where the system should
be well described as a three- or two-body system.

With these inputs, we can obtain the three-body amplitudes by solving the integral equa-
tions using the now standard techniques described in, for example, refs. [59, 63|. The My
and 7, amplitudes can be obtained using the LSZ procedure, as reviewed in section 2.

Having My, we can determine the finite-volume spectrum using the two quantization
conditions given in egs. (3.1) and (3.4). Out of convenience, we will introduce two functions
of energy and volume, which we will label as QC,; and QCs,

QCuy(E, L) = F,'(E, L) + Ky (E), (4.27)
QC3(E, L) = (F5°(E, L))~ (4.28)

From the quantization conditions, egs. (3.1) and (3.4), we see that the spectra in a finite
volume correspond to the zeroes of these functions. By considering values away from the
zeros, we are also able to evaluate the numerical residues needed for the finite-volume matrix
elements.

Figure 2(a) shows an example of these two functions being evaluated numerically for a
volume of mL = 14. As a stylistic choice, we plot the inverse of these functions, such
that the energies are seen as the infinities of QC3 b and QC;,}. One can immediately see
that the locations of the poles of these functions agree by eye. In figure 2(b) we show the
difference between the spectra obtained using these two functions for the three-lowest states
for a range of volumes. As can be seen, these spectra agree up to exponentially suppressed
errors.

To obtain Lellouch-Liischer factors, R3,, and Ry, given in egs. (3.3) and (3.12), we will
need to evaluate the residues of these functions. We do this by evaluating the product of
the inverse of the QC functions times (E — Es, ) in the vicinity of a solution, £ ~ Es, ,,
and interpolating to the desired kinematic point,

R3g0,n = E—1>1£r7)131¢n(E - E3<p,n) chl(Ea L) (429)
_ 1 -1
Rt = , 1 (E = Epn) QC4 (B, L), (4.30)

An important subtle point is that although the spectra using QCs and QC,,, are exponen-
tially close to one another, one can not use the spectrum of one in obtaining the residue of
the other. These minor differences lead to arbitrarily large systematic errors. Correlatedly,
although the pole locations are close, the residues are not.
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Figure 2: (a) Demonstration of the pipeline to obtain energy levels and the correspond-
ing residues of the quantization condition. The top two panels show the inverse of the
QCs, while the bottom two show the remainders of the residue determination, defined in
eq. (4.32), for a fixed volume of mL = 14. (b) The absolute difference between the energies
obtained from the two- and three-body quantization conditions as a function of the box
size for the three lowest energy levels obtained.

Finally, to illustrate the quality of the determination of the residues, we introduce two new
functions, which are expected to be smooth functions of energy,

R3go,n

AQC, = QC3t — B (4.31)
®,n

AQC,, = QC-) — —Tebn (4.32)
& b E — Egabn

In the two lower panels of figure 2(a), we show the inverse of these functions determined for
the same parameters and kinematic region as the QC functions. We see that, as expected,
the AQC functions are indeed smooth in this region. This provides some evidence that the
spectra and residues are being obtained with sufficient precision and accuracy.

Figure 3 summarizes the spectra obtained for a large range of volumes using these two
methods, which are visibly indistinguishable. This spectrum also shows evidence of a pos-
sible shallow three-body bound state below the b threshold. We will discuss this further
below.

Having obtained the spectrum using the three-body quantization condition, we can then
input this into the b quantization condition, eq. (3.1), to independently determine the
My, amplitude at those energies. In figure 4, we show the real and imaginary parts M,
as a function of s = E? obtained using this technique. This procedure only allows for a
finite discrete set of determinations of the amplitude, which are shown as orange circles.
For comparison, we show the numerical solutions of the integral equations, which can be
constrained with arbitrary resolution. As is shown from the figure, one sees perfect agree-

— 22 —



2.9

w -
O three-body spec.
== two-body spec.

— free spec.

.

2.81

95 Egp =m +my

10 15 20 25
mlL
Figure 3: Comparison of the energy levels as a function of the box size L, obtained from the
three-body quantization condition (orange markers) and the two-body one with a particle-
dimer phase shift obtained after solving integral equations (red lines). Grey lines indicate
the finite-volume energy levels of two particles of mass m and my assuming that they do

not interact.

ment between the two methods. This evidence of the self-consistencies of the finite- and
infinite-volume formalism was previously observed in refs. [61, 63].

We are now in place to perform a numerical test of the three-body formalism for decays
in the particle-dimer regime. Analogously to the procedure followed for M, we can
obtain the J — ¢b transition amplitude 7, following two approaches: directly in infinite
volume via integral equations, and using the finite-volume formalism as an auxiliary tool.
The infinite-volume method just amounts to feeding the solutions of the integral equation
into eq. (2.31). These approaches are schematically depicted in figure 1. Again, this is
conceptually straightforward using the techniques presented in ref. [59, 63].

The finite-volume method follows from the observation that the finite-volume matrix ele-
ment must satisfy two equalities, eqgs. (3.3) and (3.13). By equating these two, we can solve

for the ratio of |Top|?/|Al*:

8((F¢_bl+lc<pb)_l)

2
1
|7:pb‘2 = ; 2 8Eiso (433)
‘A‘ ‘1 - ”Ctpbpgab‘ O(1/F5*)
oF
1
= Rspn (4.34)

11— iKobpeb|® Rebn’
where we have written the final expressions in terms of the already determined residua,
Rs3pn and Ryp,. This leads to the absolute value of the transition amplitude in units

of A. The energy-dependent phase of 7., can be inferred using Watson’s theorem, i.e.,
7:017 = ‘%b’Mcpb/’va‘&

8There remains a possible overall phase that is not energy dependent and is not fixed by this procedure,
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Figure 4: Comparison of the real (top) and imaginary (bottom) parts of the particle-
dimer scattering amplitude obtained following two methods. The orange dots are obtained
by using the two-particle Liischer formalism on energies obtained from the three-particle
quantization condition. The teal line is obtained by solving the three-body integral equa-
tions in combination with the LSZ reduction formula. The vertical grey line labels the
particle-dimer threshold, sy, = (m + my)?.

Figure 5 also shows the agreement between the finite and infinite-volume determinations of
the transition amplitude. As in My, we see that 7., shows evidence of a pole right below
threshold, which is consistent with the fact that there is a shallow three-body bound state.
This provides perhaps the strongest self-consistency check of the formalism, as well as a
numerical validation of Watson’s theorem in the three-particle case, which was analytically
shown in section 2.4.

5 Recovering the trimer-coupling

Having analytically continued these results below the three-particle threshold, we can take
this continuation further and consider the limit where the three-particle system supports a
trimer.

5.1 Analytic derivation

We first comment on the finite-volume effects in the trimer mass. If we consider the trimer
as a particle-dimer bound state, the asymptotic volume dependence is known from the

either 0 or 7w to assure that the imaginary part of the amplitude is consistent with unitarity. In order for
these two methods to agree, it must be 7. This explains the relative minus sign of the amplitudes shown
in figures 4 and 5.
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—11 O  FV two-body formalism
== IV integral equation

Re T,u/(mA)

/ (@A)

6.0 6.5 7.0 7.5 8.0 8.5 s/m2
Figure 5: Real (top) and imaginary (bottom) parts of the J — @b transition amplitude,
Tz, as a function of s = E? obtained with two methods. The teal line corresponds to the
result obtained by solving the integral equations, while the orange dots are obtained from
the finite-volume Lellouch-Liischer factors as described in the text. The result is shown
in units of the mass m times the arbitrary constant A. The vertical grey line labels the

particle-dimer threshold.

two-particle finite-volume formalism

Ama(L) %6_“”:, (5.1)

see e.g. eq. (42) in Ref. [21]. Since we have already shown that the three-particle formalism
reduces to the two-particle one for the particle-dimer system in section 4.1, we expect that
eq. (5.1) describes the leading exponential dependence of the trimer mass.” We neglect
such exponential effects in the derivation below.

Next, we turn to the formalism for current insertions. Using the definition of the physical
decay constant in terms of A4 and purely hadronic quantities, we can investigate the finite-
volume matrix element in the limit £ = Fg <« 3m. With K3 = 0, the finite-volume matrix
iso

element is related to A via eq. (3.13), and thus, an expression for F3* in that energy region

is needed.

In the trimer limit, eq. (4.3) is dominated by the trimer pole in dz, which is inherited from

9Note that eq. (5.1) differs from the expression for the volume-dependence of the trimer energy in the
unitarity limit [84, 86], i.e. Amy(L) x L31/2 e~2%L/V3  The apparent discrepancy in the exponent can
be understood as a different definition of the binding momentum in refs. [84, 86], m; = 3m — x*/m (c.f.

eq. (2.23)), while the different power of L is a feature of the unitarity limit related to the proximity of the

three-particle threshold.
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eq. (2.40). Thus, we only consider the third term in eq. (4.3), we can write

N F F Fu. T(K)T(p) F
Fy° ~ — e d —_— ~ 2 5.2
; z[2wL3M2L LM2L%L3LP S e 62)

k,p k,p

where we have used eq. (2.40), and that in the trimer limit [dz]i, ~ d(k,p). Using the
relation for Fj in eq. (4.6), and replacing sums by integrals, it follows that

e —— ( /k i (k>F<k))2, (5.3)

5 —m; 2wy

where, up to exponentially suppressed corrections, sums have been replaced by integrals.
Note that the same result can be recovered from eq. (4.1). In particular, below the particle-
dimer threshold, F ;% vanishes up to exponentially suppressed effects that decay with y,
and thus F3% is dominated by the second line of eq. (4.2). However, eq. (5.3) holds even if
there is a trimer without a two-particle bound state.

Starting with the definition for g; in eq. (2.43), and using egs. (3.13) and (5.3), one gets
that

o ([P dRRER) ) o
0s
= ap gl (55) (5.5
— 2EL% (Af,L|J]0)?, (5.6)

which recovers eq. (3.14), i.e., the standard relativistic normalization needed to correct for
the fact that the finite-volume states have been normalized to 1. In the above, E = F; is
the FV energy corresponding to the trimer state, obtained by solving eq. (3.4) below the
mp + m energy threshold.

5.2 Numerical evidence

We now turn to a numerical check for the computation of the coupling of a trimer to a
current, g;. Following the approach of the previous section, we will use two methods that
utilize the finite-volume formalism, as well as the integral equations in the infinite volume.

First, one can compute g; from the residue of the pole in 7, using eq. (2.38) after having
obtained the trimer pole residue 7; from eq. (2.24). Second, ¢g; can be computed using the
QCj as described in eq. (3.15). This can be rewritten in terms of residue as,

gf/A2 = Lh—I}éo 2E0 Rg%o s (57)

where R3, 0 is the residue of the lowest finite-volume state. These two approaches are
schematically shown in figure 1. For eq. (5.7) to make sense, the ground state must be
below threshold and asymptotic to an energy below threshold as the volume is taken to
infinity. From the finite-volume spectra shown in figure 3, we see good evidence of there
being such a state in our toy model.
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In figure 6, we show the results obtained from determining the energy of this state relative
to the b threshold and the coupling using the finite- and infinite-volume formalisms. For
comparison, on the top of the two panels, we show the volume in units of the m, and in the
bottom axis, we write it in units of the binding momentum of the trimer x;.

As can be seen, both the energy shift and the coupling do approach their infinite-volume
values, but the convergence is slow due to the remarkably small binding momentum of the
trimer. This is consistent with the expectation that the finite-volume errors should scale

—#tl pather than e™™% for a shallow bound state. This emphasizes that the finite-

with e
volume formalism must be used to treat the volume dependence of such shallow-bounds
states. Neglecting to do so would lead to large systematic errors, or it would require a

larger order of magnitudes of resources to suppress these exponential effects.

But the key message here is that both the finite- and infinite-volume formalism self consis-
tently recover the same binding energies and matrix elements for three-body bound states
when the appropriate limits are taken.

10 20 30 40 50 60 mL

0.00

™ —0.021

—~

AE(L

—0.04 1

4.00 1

|9:(L)/ Al x 10°

1 ) ) 1 5
1 2 3 4 % L

Figure 6: Comparisons of properties of the trimer obtained with the finite-volume (orange)
and infinite-volume (blue) methods. For the finite-volume method, the orange line shows
the energy shift (top) and coupling to the current in units of A (bottom) of the trimer as
a function of the box size in units of the binding momentum of the trimer. The blue lines
are the same quantities obtained by solving the integral equations. The top horizontal axis
shows the volume in units of m, while the bottom horizontal axis shows it units of the

binding momentum of the trimer, k.
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6 Summary and outlook

In this work, we have performed consistency checks of the infinite- and finite-volume three-
body formalism describing three-body scattering and decays derived in ref. [34, 35, 81]. In
particular, we have focused in the case in which the two-body subsystem contains a two-
body bound state, a dimer. This way, the three-particle formalism below the three-particle
threshold describes a particle+dimer (¢b) system.

First, we have shown that in the elastic region of b scattering, both the three-particle quan-
tization conditions and the formalism connecting finite-volume matrix elements to infinite-
volume transition amplitudes reduce to the well-known generalizations of the Liischer two-
body quantization condition and Lellouch-Liischer factor. This was shown first analytically
and then numerically in section 4. The main figures demonstrating this are figures 4 and 5,
where the amplitudes from the integral equations, or via the finite-volume formalism are
visibly indistinguishable. Indeed, only small exponentially-suppressed differences are ob-
served.

In section 5, we have also performed numerical and analytical consistency checks in the
regime in which there is a three-particle bound state, a trimer, below the ¢b threshold. In
this case, the finite-volume determinations of the trimer mass m; and coupling to a current
g must be exponentially close to the same objects obtained from integral equations. This
is indeed demonstrated in figure 6.

Beyond these consistency checks, this work implements integral equations to compute tran-
sition amplitudes for the first time. This is a necessary step towards transitions to three
particles from lattice QCD, for which no lattice QCD application are yet available, but are
expected in the future.

Phenomenologically relevant three-particle electroweak transitions include v* — 37 and
K — 37. These, however, involve three-pion final states at non-maximal isospin. Thus, the
generalization to generic three-pion isospin also presented in refs. [81, 82| must be used.

As lattice QCD applications keep evolving, it will be necessary to solve integral equation
of more complicated systems. While we expect the fundamentals to be simple, this will
involve additional challenges, such as multichannel integral equations and higher partial
waves. Work in this direction has already started, see refs. [74].

Ultimately, the goal is to establish a first-principles pipeline to compute form factors and
transition amplitudes involving unstable hadrons, and this work provides a crucial verifica-
tion for some of the required tools.
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A Equivalence for non-zero isotropic K3

In this appendix, we extend the results of sections 4.1 and 4.2 to 3 # 0 within the isotropic
approximation, i.e., K3 is simply a function of the total energy.

We first show the equivalence of the two-body and three-body scattering amplitudes in the
infinite-volume case. For this, we need the result for the scattering amplitude at non-zero
isotropic s from Ref. [35]:

L(p)L(k)

M(u’u) (p7 k:) = ID(MU) (p7 k) + T icn100 . -—1°
3 S ey

(A1)
where all quantities have been defined in the main text. Applying the LSZ procedure, one
can obtain the generalization of eq. (2.18) to the non-zero K3 case:

Mgob = 92 dS(Q(pbv Q@b) + %)2_1 ) (AQ)
COAETE

where, as in the main text, the energy dependence of the quantities is omitted.
We now derive the equivalence of the quantization conditions. The three-body quantization

condition is [34]

Fiso = _jc; L, (A.3)

Next, we can use the expression for Féso derived in section 4.1. In particular, eq. (4.1)
describes the relationship between ngso and My in the K3 = 0 limit. In this expression,
we can substitute M, with its value at K3 = 0, namely g*dg, and get

is i 1
Fg© = [F°]™ + g°o(qg0) o(ggh) - (A.4)
(Fi5) ™ + gds (g a0)
Combining the previous two equations, one can write:
(Fi) ™ + ¢ | ds(agns app) + 0 (a0)> 7= = | = (F) T+ My =0, (A5)
((FT K5

and thus, the two-body quantization condition is satisfied.

We now prove that three-body formalism for three-body decays is equivalent to the corre-
sponding one for two-body systems below the three-body threshold independently of the
value of the isotropic K3. To do this, we start with the expression of the finite-volume
formalism for decays for non-zero Ks:

[ (AT, L] 710} |

s _ TR |1+ K [FE©) ) <8<F§SO>—1 a/cg)‘{ 46)

3 1C(k)2 OF oF
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In order to obtain the relation, it will be useful to express

(1+Ks [F5]™) ((F

(Fo) )+ Ky = 5 B M), (A
(5] { (Ffpb> + gzds} + 970 (qe)?

which follows after algebraic manipulations using eq. (A.4). In the vicinity of a finite-volume
solution, where the numerator vanishes, the previous equation can be approximated as:

. . 1 150002 i€\
(R + Ko s [ Ko [FR1Y {9+ M, (A9)

gco

using the two-body quantization condition in the denominator. Note that this also assumes
that [ngo]oo is real, which is true below the three-body threshold. Plugging in eq. (A.8)
into eq. (A.6) and using that the derivative is evaluated at the finite-volume solutions, as
done in section 4.2, one can recover eq. (4.22).
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