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Abstract

The overall goal of our research is a system which can recog-
nize the intended message of a grouped bar chart by reason-
ing about the communicative signals contained in the graphic.
One such communicative signal is the relative effort required to
perform different perceptual tasks on the graphic. This paper
presents our methodology for estimating relative task effort.
Based on graph comprehension research and our motivational
eye tracking experiments, we hypothesize a set of factors that
should be taken into account in a model of task effort. We
present our model, implemented in the ACT-R framework, and
discuss the results of a final set of eye tracking experiments
that validate our model as a predictor of relative task effort.
Keywords: Graph Comprehension; Grouped Bar Charts; Cog-
nitive Modeling; Bayesian Reasoning; Eye Tracking.

Introduction
Information graphics, ranging from simple bar charts and line
graphs to grouped bar charts and multiple line graphs, play a
prominent role in today’s information age. When such graph-
ics appear in popular media, they generally have a commu-
nicative goal or message that they are intended to convey. For
example, the message conveyed by the top graphic in Figure 1
is ostensibly that female salaries lag behind male salariesin
all of the disciplines listed. Our research has shown that when
information graphics appear in popular media, their intended
message is very often not repeated in the article’s text and
cannot be gleaned from the graphic’s caption(Carberry, Elzer,
& Demir, 2006). Thus, recognizing the graphic’s message
is fundamental to the two applications that we are pursuing:
1) constructing a rich summary of a multimodal document
and 2) providing sight-impaired individuals with alternative
access to information graphics in popular media via a brief
summary of the graphic.

Our previous research produced a Bayesian network that
uses the communicative signals present in a simple bar chart
as evidence in hypothesizing the graphic’s message(Elzer
et al., 2005). We are now extending our methodology to
grouped bar charts, which are considerably more complex
than simple bar charts and present additional challenges. One
of the most important communicative signals is the relative
effort of different perceptual tasks.1 For example, consider

1Other communicative signals include whether a group is high-
lighted, the position of a group in the chart, etc.
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Figure 1: Two grouped bar charts from the same data.

the two graphics in Figure 1, both of which display the same
data. In the top graphic, it is easy to perceptually compare
the salaries of males and females in each discipline, and the
graphic’s intended message is ostensibly that female salaries
lag behind male salaries in all of these disciplines. While
these comparisons can also be made in the bottom graphic,
they are much more difficult due to the design of the graphic.
Thus, the bottom graphic appears to convey a different mes-
sage. This correlates with Larkin and Simon (1987) who ob-
serve that informationally equivalent graphics are not nec-
essarily computationally equivalent, and with Peebles and
Cheng (2003) who note that seemingly minor design changes
can greatly affect a graph viewer’s performance on graph
reading tasks. Thus perceptual task effort affects the message
that is conveyed by a grouped bar chart.
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This paper presents our model of relative task effort for
grouped bar charts. Note that our goal is not a cognitive
model of human graph comprehension, but rather a model
that takes into account cognitive and perceptual aspects ofthe
graphic to estimate the relative effort required to performrele-
vant recognition tasks. Our aim is to develop this model with
solid cognitive underpinnings and to validate it with sound
experimental data. In future research, we will incorporatethe
results of this model into a Bayesian network and use this
evidence alongside other communicative signal evidence to
hypothesize the intended message of a grouped bar chart.

Related Work
There has been much work on graph comprehension. Clas-
sical graph work such as Lohse (1993), Meyer (2000), and
Simkin and Hastie (1987) involve the modeling ofspecific
fact-retrieval tasks on a graph. Shah, Freedman, and Vekiri
(2005) are concerned with how quantitative information is
comprehended from graphics. Freedman and Shah (2002) use
a constraint-satisfaction approach and consider the graphic
viewer’s prior knowledge. Our work differs from these and
other efforts in that rather than modeling human processing,
our emphasis lies in estimating andrankingthe relative effort
of different message recognition tasks. Our work is similar
in that it must take into account both graphic complexity and
the human-visual architecture.

Messages and Task Effort
In this paper, we will consider five general categories of mes-
sages that are common in grouped bar charts, and we will
model the effort required to perform the task of extracting
these messages from a graphic. We hypothesize that the more
difficult a message is to extract, the less likely it is that the
graphic was intended to convey that message.

• Same-relation: a set of entities have the same relation-
ship to one another over an ontology. The top graphic in
Figure 1 has an intended message that falls into thesame-
relation category, as does Figure 3 whose intended mes-
sage is that rural households have less internet access than
urban households at all income levels.

• Contrast-relation: a set of entities have a different rela-
tion to one another at one place in an ontology compared
with everywhere else in the ontology. Figure 1 would con-
tain such acontrast-relationmessage if female salaries ex-
ceeded males salaries for one of the listed disciplines.

• Same-trend: several entities have the same trend (increas-
ing, decreasing, or stable) over some ordinal set (such as
years, ages, etc.). Figure 2 is an example of a grouped
bar chart whose intended message falls into thesame-trend
category. Asame-trendmessage can also be extracted from
Figure 3.

• Contrast-trend: one entity has a different trend from the
other entities. This would be the case if the group labeled
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to NewYork to New York
Trenton

to Washington
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Sept Oct Feb Sept Oct Feb Sept FebOct

$522$611
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Figure 2: Graphic from thePhiladelphia Inquirer, “Com-
muters Facing Fare Hikes”, September 28, 2005.
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Figure 3: Graphic fromBusiness Week, “A Small Town Re-
veals America’s Digital Divide”, October 4, 1999.

“Philadelphia to New York”in Figure 2 displayed decreas-
ing prices from Sept. to Feb.

• Gap-trend: The gap between entities is generally chang-
ing in the same direction (increasing or decreasing) over
an ontology. Such agap-trendmessage could be extracted
from Figure 3 (although it is effortful to do so) since the
gap between internet access for rural and urban households
is generallyincreasing across income levels.

We have developed a model for estimating the relative ef-
fort involved in extracting each of the above message types
for a given grouped bar chart, based on the design of the
graphic. In our work on simple bar charts, effort was mod-
eled using a GOMS approach(Card, Moran, & Newell, 1983)
which decomposed tasks into perceptual subtasks, such as
‘find the top of a bar’. The effort for primitive subtasks was
estimated based on cost estimates by cognitive psychologists,
and the effort estimates for the subtasks were summed to pro-
vide an effort estimate for the composite task. Although this
GOMS approach worked well for modeling relative effort in
simple bar charts, grouped bar charts are much more complex
and can involve high dimensional relationships over multiple
sets of entities, as well as the inherent cognitive limitations
in extracting those messages. Thus we chose to use the ACT-
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R programmable framework(Anderson, Matessa, & Lebiere,
1997) which is an implemented cognitive theory with visual
and declarative modules that are relevant to the perception
and memory issues in modeling task effort. However, our
goal isNOTto construct a cognitive model that simulates how
humans comprehend graphs; instead we want to identify the
factors that make tasks on one graphic more difficult than on
another graphic and utilize them in a model that estimates the
relative difficulty of a task on a given graphic.

Factors that Affect Effort

We performed preliminary (motivational) eye tracking exper-
iments with human subjects to gain insight into the factors
that affect task effort in grouped bar charts and to motivatethe
design of our effort model. Subjects were given a grouped bar
chart and asked to perform a recognition task, during which
fixations and their durations were measured along with the
time to complete the task. Our observations from these exper-
iments, along with previous research by cognitive psycholo-
gists and graph designers, suggest factors that should be in-
corporated into our model of task effort.

High-level Visual Patterns The presence of high-level vi-
sual patterns that can be easily perceived by the human visual
system appears to significantly affect the effort required to ex-
tract messages from grouped bar charts. When such patterns
were present, we observed fewer bar fixations and shorter
time for task completion in our preliminary eye tracking ex-
periments.

Pinker (1990) identified various high-level visual patterns
such as linear lines or quadratic curves which are easily iden-
tifiable for most viewers. Shah, Mayer, and Hegarty (1999)
show that graph viewers use bottom-up visual pattern recog-
nition in graph comprehension and note that the grouping of
data points in graph design will influence the perceived pat-
tern recognition of trends. Applying this to identifying the
presence of messages in grouped bar charts, we note that at-
tentions on successive bars which are positioned in a rela-
tively straight line are not needed to determine that those bars
are indeed in a straight line. For example, one can very easily
recognize at a high-level that the bar heights in Figure 2 form
an increasing pattern. Other patterns, such as a “U” shape in
a same-relationmessage with 3 or more bars per group, also
appear to be perceived quickly without a fixation on each bar
in the pattern.

Peripheral Vision The concept of peripheral vision is
closely related to the idea of high-level visual patterns in
the domain of information graphics and the acceptance that
multiple objects can be processed in parallel in a guided
search(Anderson & Lebiere, 1998). Salvucci (2001) has
shown the ability to attend to an object without fixating on
it, in the domains of equation solving, reading, and visual
search. We have observed in our eye tracking experiments
that subjects do not always fixate on the first and last groups
of a graph, but theorize that subjects still attend to them. We

also hypothesize that the use of peripheral vision explains
why subjects in our eye tracking experiments did not fix-
ate on every bar when identifying asame-trendmessage in
a grouped bar chart.

Exceptions We will refer to one or a couple of bars that
do not conform to an overall trend, such as the bars in the
groups ’02 and ’03 in Figure 4, as anexception. When given
a graphic with an overall trend but containing some excep-
tions, subjects tend to identify the trend, but take longer to do
so compared to a similar graph without exceptions. This in-
creased processing time is the general result of more fixations
occurring on the graph, especially around the exception area.
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Figure 4: A graphic with exceptions. Graphic fromWall
Street Journal, “Auto Industry, at a Crossroads, Finds Itself
Stalled by History”, January 2, 2006.

Clutter Wickens and Carswell (1995) showed that perfor-
mance in comprehension tasks degrades when visual clutter
increases, where visual clutter is the close spatial proxim-
ity of two perceptually or semantically contrasting elements
which should not be compared. The encoding time for one of
these elements increases because of the close proximity of the
other element’s “noise”. We have observed increased time for
recognition tasks on grouped bar charts when visual clutteris
present.

Spatial Reasoning Ability Trickett and Trafton (2006) the-
orize that spatial cognition is often used in graph comprehen-
sion. They hypothesize that one such spatial task is, for ex-
ample, the mental averaging of bar heights within a group, for
performing the task of comparing the height of two groups.
They use the work of Simkin and Hastie (1987) in their mod-
eling, whosesuperimpositionelementary graph process in-
volves a graph viewer spatially moving graph objects to cre-
ate overlap and ease comparison with other graph objects. We
hypothesize that superimposition is present in the extraction
of somegap-trendmessages.

Modeling in ACT-R and its Limitations
The ACT-R framework enables us to address many perceptual
and memory issues involved in our recognition tasks. For ex-
ample, the imaginal module allows us to build a problem rep-
resentation, and to handle frequent comparisons between an
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object of current attention and a representation of a previously
attended object. However, other aspects of ACT-R are inade-
quate for our needs. For example, ACT-R is unable to auto-
matically recognize that the data points representing the tops
of a series of bars can be encoded bottom-up to form a sin-
gle line object, unless that relationship is explicitly declared
in the model. Therefore, to implement pattern recognition,
we wrote a small script which takes as input a graphic’s data
points and automatically outputs any relevant high-level vi-
sual patterns present in the graphic. These high-level patterns
are then available for the ACT-R model to use in modeling
recognition tasks on the graphic.

We also incorporated EMMA, an ACT-R add-on(Salvucci,
2001) which was designed to model peripheral vision.
EMMA adjusts the constant visual encoding time cost of an
object into a variable cost, affected by the proximity of the
previous attention location. It is able to successfully model
that a “skipped fixation” will occur when two attentions are
approximately close and are executed successively.

Modeling Task Effort
This section briefly discusses the five categories of mes-
sage recognition tasks and the implementation of our ACT-R
model of relative task effort.

Same-relation and Contrast-relation Tasks

When the relation being examined is among entities repre-
sented by adjacent bars in a group (such as the relation be-
tween rural and urban internet access in Figure 3 or the re-
lation among train prices in Sept, Oct, and Feb2 for the three
trips depicted in Figure 2), high-level visual patterns mayhelp
with recognizing a same or contrast relation. Therefore, when
the tops of the bars in a group represent a high-level visual
pattern (such as a “/” or a “U” shape), our ACT-R model en-
codes this pattern and models the same-relation and contrast-
relation tasks as a comparison of the pattern with each group.
On the other hand, there may not be a common visual pat-
tern; this happens when the tops of the bars do not represent
a common pattern (typically occurring with 4 or more bars
per group) or when the bars are so similar in height that a
more detailed examination is needed to discern which bar is
higher. In such cases, bar-by-bar processing of each group is
performed to determine whether there is a same or contrast
relation message. When there was a contrast-relation, our
motivational eye tracking experiments showed re-attentions
in the vicinity of the group that is in contrast with the other
groups, presumably to double-check the contrasting relation;
thus our model also includes an extra check.

In some cases, such as the bottomhalf of Figure 1, a
same-relationmessage (that female salaries lag behind male
salaries in each discipline) can be extracted from the graph
but the related bars are not adjacent to one another. For such
graphics, our ACT-R model must capture the extraction of the

2However, the intendedmessage in Figure 2 is asame-trendand
not asame-relationmessage.

bars being compared (in the case of Figure 1, the female and
male salary bars for each discipline must be extracted from
different groups) and perform bar-by-bar comparisons to de-
termine whether they have the same relation to one another
— resulting in many fixations and much cognitive process-
ing, and therefore producing a high effort estimate.

Same-trend and Contrast-trend Tasks
In modeling the same-trend and contrast-trend recognition
tasks, we differentiate betweenintra-trends (where each
group in the grouped bar chart represents a trend, as in Fig-
ure 2) andinter-trends (where each series of bars across all
groups represents a trend, such as in Figures 3 and 4).

Intuitively, the recognition of anintra-trend requires that
one realize that a trend exists in each group of a graph. There-
fore, the effort for this realization is dependent on both the
cost of recognizing each individual group trend and the num-
ber of groups. Thus one would expect that as the number of
groups in a graph increases, the effort and total time to realize
an intra-trend should increase as well. This was borne out in
our preliminary eye tracking experiments.

Our motivational eye tracking experiments also showed
that the number of bars per group did not significantly affect
recognition time. We hypothesize that this can be accounted
for by the human ability to recognize high-level visual pat-
terns. Because the bars which form the trend over a group
can be encoded as a high-level line pattern, the recognition
of the trend at each group can occur without an exhaustive
fixation on every bar in the group. Thus our ACT-R model
scans group-by-group using high-level group attentions, and
compares the current group’s visual pattern with a pattern in
ACT-R’s imaginal module representing the pattern of the pre-
ceding group attention. Our experiments suggested that sub-
jects re-attend on and around areas which semantically differ
from the surrounding areas and their expectations. Thus in the
case of a contrast-relation, our ACT-R model captures this ex-
tra effort by re-attending to the prior and succeeding groups
around any contrast.

Inter-trends consist of a series of bars across all groups (for
example, the increasing internet access over income levels
for both rural and urban residents in Figure 3). In our eye
tracking experiments, the fixations by subjects suggested that
they were both processing multiple trends in parallel and pro-
cessing several adjacent bars in a trend with a single fixation.
This apparent use of peripheral vision is accounted for in our
model in two ways. When the tops of the bars in a series
are all approximately near the tops of the bars in another se-
ries, our ACT-R model marks one series as a “free” attention,
and attending to the non-free series automatically encodesthe
trends of both that series and the “free” series. In addition, our
model does not fixate on each bar in a series, but instead uses
EMMA’s ability to capture attending to several close adjacent
bars with a single fixation.

However, sinceinter-trends are spread across groups, there
is opportunity for visual clutter, particularly when one trend
contrasts with the other trends in the graph — for example, a
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decreasing trend when the other trends are increasing. Thus
not only does our ACT-R model re-attend to contrastinginter-
trends, but it also re-attends to the bars in the area where the
contrasting trend crosses the other trends since this represents
an area of visual clutter.

For bothintra-trends andinter-trends, our ACT-R model
re-attends to the bars around any exceptions to the trend. This
captures the extra processing observed in our eye tracking ex-
periments and the resulting extra time to perform same-trend
and contrast-trend tasks in the presence of exceptions.

Gap-trend Task
The gap-trendmessages that we have observed in our cor-
pus of graphs3 consist of two bars per group. Based on the
work of Trickett and Trafton (2006), if the two series of bars
across all the groups are both increasing or both decreasing,
we hypothesize that superimposition is used in the gap com-
parison process. Our ACT-R model takes this into account by
fixating on a gap and superimposing it on the succeeding gap
to recognize whether thegap-trendis generally increasing or
decreasing over the graph.4

If the two series are moving in opposite directions, the
high-level visual pattern formed by the bar tops of the two se-
ries can generalize to resemble “<” or “ >”, and would be eas-
ily recognizable.5 Thus our ACT-R model extracts the high-
level visual patterns for the two series and compares them.

As with trend messages, exceptions can occur and result in
re-attentions in the area of the exceptions.

Validation Experiment
Design
To evaluate our model for estimating relative task effort, we
performed an eye tracking validation experiment using a To-
bii T60 system with 20 human subjects.

Each subject was initially presented with learning and
practice slides which explained the kinds of tasks that they
would be asked to perform and the concept of anexception
to a trend. Each subject was then presented with 52 graph-
ics, and in each case the subject was asked to perform one
of the five tasks: determine whether there is 1) a same-trend,
2) a contrast-trend, 3) a same-relation, 4) a contrast-relation,
or 5) a gap-trend. 42 of the graphics contained a trend, re-
lation, or gap-trend that the subject was supposed to identify
and the other 10 graphics did not. The graphics included both
intra andinter trends and varied in the number of groups, the
number of bars per group, and the presence of exceptions and
clutter. The order in which the graphics were presented to

3Our corpus consists of approximately 150 grouped bar charts
extracted from a variety of popular media sources.

4ACT-R/S, an ACT-R module that models spatial representa-
tions and their size capacity is currently under development. How-
ever, our problem is much simpler than their 3-dimensional problem
space(Hiatt, Trafton, & Harrison, 2004).

5An “X” pattern can also occur, when the relation between the
bars changes — for example, when the first bar is taller than the
second bar for the beginning groups (with the gap between them
decreasing) and then the second bar becomes taller than the first bar.

subjects was randomized. Both the subjects and the graphics
used in this validation experiment were different from those
used in the preliminary eye tracking experiments.

For each graphic, an untimed instruction slide was first dis-
played explaining to the subject which task they were be-
ing asked to perform on the next graphic. The subject hit
the space bar after comprehending this instruction. Then
the graphic was displayed on the screen and the subject per-
formed the requested recognition and then hit the space bar
again. In addition to gaze points, the elapsed time following
the onset display of the graphic and the hitting of the space
bar was also recorded. Then a multiple choice prompt was
displayed, and the subject was instructed to select the answer
corresponding to his/her response to the task.

Results and Analysis
For each of the 42 graphics that contained a trend, relation,
or gap-trend that the subject was supposed to recognize, we
computed the mean completion time for the human subjects6

and the effort estimate produced by our ACT-R model, where
the ACT-R effort estimate was in terms of task completion
time. Since our goal is to rank tasks on a graphic in terms
of their relative effort, we performed a Spearman Rank-Order
Correlation, which is used to determine whether two sets of
rank-ordered data are related; values approaching 1.0 showa
strong correlation. Table 1 shows the results of the correla-
tions between the model’s effort estimates and average task
completion time for the human subjects.

Table 1: The Spearman Rank Correlation Coefficient for the
task effort produced by our model and the subjects’ average
task completion time. (n is the number of graphs.)

Task Spearman correlation (rho)

Same/Contrast-Relationρ = .854,p < .004(n = 24)
Same/Contrast-Trend ρ = .821,p < .001(n = 10)

Gap-Trend ρ = .833,p < .02 (n = 8)

All Tasks ρ = .809,p < .001(n = 42)

The results in Table 1 show a strong correlation between
the relative task effort produced by our model and the rank-
ing of graphics according to the average task completion time
by human subjects; this correlation holds both within the cat-
egories of tasks and more importantly, across all tasks. For
same/contrast-trend tasks which involved aninter-trend and
for same-relationtasks, the main disagreement in the rank-
ings occurred in graphics where the estimated recognition
times by the model and the mean completion times by the
subjects differed only slightly. For same/contrast-trendtasks
that involved anintra-trend, differences in the rankings ap-
pear to reflect disagreement about how much extra effort is
needed when either a contrasting group or an increase in the
number of groups occurs. Our model estimates less time on

6There were only a few “incorrect” responses overall, and these
were not included in the mean time calculation.
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graphics with many groups and no contrasting group than it
does for graphics with fewer groups that include a contrasting
group, whereas subject completion times reflect the opposite.
Overall, the strong correlations displayed in Table 1 validate
our model of task effort.

Future Work
In the next phase of our project, our model will be used to
provide evidence about relative task effort for use with other
communicative signals in a Bayesian network to hypothesize
the intended message of a grouped bar chart. For example,
we processed both the top and bottom graphic of Figure 1
in our model of task effort. As hoped, the model estimated
that the top graphic required significantly less effort to rec-
ognize asame-relationmessage than the bottom graphic (ap-
proximately only a third of the time required by the bottom
graphic). This result suggests that our ACT-R model will
produce relative effort estimates that will serve as usefulevi-
dence in our Bayesian network.

Conclusion
We have developed a model of relative task effort on grouped
bar charts, implemented within the ACT-R framework. Our
model takes into account a number of factors that appear to
impact the requisite effort, including the recognition of high-
level visual patterns, the use of peripheral vision, the pres-
ence of exceptions and clutter, and the potential for spatial
reasoning. Our model was validated by a final set of eye
tracking experiments in which a strong correlation was shown
between the effort estimates produced by our model and the
average completion times of human subjects. Future work on
this project involves implementing a Bayesian network which
will use the communicative signals present in a grouped bar
chart, including relative task effort, to probabilistically reason
about the graphic’s intended message.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. IIS-0534948.

References
Anderson, J. R., & Lebiere, C. (1998).The atomic compo-

nents of thought. Mahwah, NJ: Lawrence Erlbaum Asso-
ciates.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-r:
A theory of higher level cognition and its relation to visual
attenion.Human-Computer Interaction, 12, 439-462.

Carberry, S., Elzer, S., & Demir, S. (2006). Information
graphics: An untapped resource of digital libraries. InPro-
ceedings of 9th international acm sigir conference on re-
search and development on information retrieval(p. 581-
588). New York, NY: ACM.

Card, S., Moran, T. P., & Newell, A. (1983).The psychology
of human-computer interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Elzer, S., Carberry, S., Zukerman, I., Chester, D., Green, N.,
& Demir, S. (2005). A probabilistic framework for recog-
nizing intention in information graphics. InProceedings of
the international joint conference on artificial intelligence
(p. 223-230). Morristown, NJ: Association for Computa-
tional Linguistics.

Freedman, E. G., & Shah, P. (2002). Toward a model of
knowledge-based graph comprehension. InSecond inter-
national conference on diagrammatic representation and
inference(p. 18-30). London, UK: Springer-Verlag.

Hiatt, L. M., Trafton, J. G., & Harrison, A. (2004). A cog-
nitive model for spatial perspective taking. InProceedings
of the sixth international conference on cognitive model-
ing (p. 354-355). Pittsburgh, PA, USA: Carnegie Mellon
University/University of Pittsburgh.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is
(sometimes) worth a thousand words.Cognitive Science,
11, 65-99.

Lohse, G. L. (1993). A cognitive model for understand-
ing graphical perception.Human-Computer Interaction, 8,
353-388.

Meyer, J. (2000). Performance with tables and graphs: effects
of training and a visual search model.Ergonomics, 43(11),
1840-1865.

Peebles, D., & Cheng, P. C.-H. (2003). Modeling the effect
of task and graphical representation on response latency in
a graph reading task.Human Factors, 45, 28-45.

Pinker, S. (1990). A theory of graph comprehension. In
Artificial intelligence and the future of testing(p. 73-126).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Salvucci, D. D. (2001). An integrated model of eye move-
ments and visual encoding.Cognitive Systems Research, 1,
201-220.

Shah, P., Freedman, E. G., & Vekiri, I. (2005). The compre-
hension of quantitative information in graphical displays.
In P. Shah & A. Miyake (Eds.),The cambridge handbook
of visuospatial thinking(p. 426-476). New York, NY: Cam-
bridge University Press.

Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as
aids to knowledge construction: Signaling techniques for
guiding the process of graph comprehension.Educational
Psychology, 91, 690-702.

Simkin, D., & Hastie, R. (1987). An information-processing
analysis of graph perception.American Statistical Associ-
ation, 82, 454-465.

Trickett, S. B., & Trafton, J. G. (2006). Toward a comprehen-
sive model of graph comprehension: Making the case for
spatial cognition. InProceedings of the fifth international
conference on the theory and application of diagrams(p.
286-300). Berlin Heidelberg New York: Springer-Verlag.

Wickens, C. D., & Carswell, C. M. (1995). The proximity
compatibility principle: Its psychological foundation and
relevance to display design.Human Factors, 37, 473-494.

2297




