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Abstract B Female Salaries

The overall goal of our research is a system which can recog- 80,000 M Male Salaries
nize the intended message of a grouped bar chart by reason-
ing about the communicative signals contained in the graphi
One such communicative signal is the relative effort rezplito
perform different perceptual tasks on the graphic. Thisepap
presents our methodology for estimating relative taskreffo
Based on graph comprehension research and our motivational
eye tracking experiments, we hypothesize a set of factaits th
should be taken into account in a model of task effort. We . . :
present our model, implemented in the ACT-R framework, and Al ComputerEngin.  Life  Phys. - Social
discuss the results of a final set of eye tracking experiments

that validate our model as a predictor of relative task &ffor

Keywords: Graph Comprehension; Grouped Bar Charts; Cog- FEMALE SALARIES MALE SALARIES

nitive Modeling; Bayesian Reasoning; Eye Tracking. jzzzz
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Information graphics, ranging from simple bar charts and li 40,000 g g
graphs to grouped bar charts and multiple line graphs, play a 30,000 g g
& £

20,000
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prominent role in today’s information age. When such graph-

108 [eoos |BEEEERETREE

ics appear in popular media, they generally have a commu- 5 Za & Za
nicative goal or message that they are intended to convey. Fo g © 3 <t 03
example, the message conveyed by the top graphic in Figure 1 - T3

is ostensibly that female salaries lag behind male salaries
all of the disciplines listed. Our research has shown tharwh
information graphics appear in popular media, their inezhd
message is very often not repeated in the article’s text and Figure 1: Two grouped bar charts from the same data.
cannot be gleaned from the graphic’s caption(Carberrgrt:lz
& Demir, 2006). Thus, recognizing the graphic’s message
is fundamental to the two applications that we are pursuinghe two graphics in Figure 1, both of which display the same
1) constructing a rich summary of a multimodal documentyata. In the top graphic, it is easy to perceptually compare
and 2) providing sight-impaired individuals with alterivat  the salaries of males and females in each discipline, and the
access to information graphics in popular media via a briegraphic's intended message is ostensibly that femaleisslar
summary of the graphic. lag behind male salaries in all of these disciplines. While
Our previous research produced a Bayesian network thghese comparisons can also be made in the bottom graphic,
uses the communicative signals present in a simple bar chafiey are much more difficult due to the design of the graphic.
as evidence in hypothesizing the graphic’s message(Elz&fhys, the bottom graphic appears to convey a different mes-
et al., 2005). We are now extending our methodology tosage. This correlates with Larkin and Simon (1987) who ob-
grouped bar charts, which are considerably more compleXerve that informationally equivalent graphics are not-nec
than simple bar charts and present additional challenges. O essarily computationally equivalent, and with Peebles and
of the most important communicative signals is the relativecheng (2003) who note that seemingly minor design changes
effort of different perceptual tasks.For example, consider .an greatly affect a graph viewer's performance on graph

10ther communicative signals include whether a group is-high read_ing tasks. Thus perceptual task effort affects the agess
lighted, the position of a group in the chart, etc. that is conveyed by a grouped bar chart.

198 yrew/endwod (I
195 yrew/eindwoy [T
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This paper presents our model of relative task effort for Philadelphia Philadelphia Trenton

grouped bar charts. Note that our goal is not a cognitive to NewYork  to Washington  to New York
model of human graph comprehension, but rather a model $1,008 $972
that takes into account cognitive and perceptual aspetheof $821
. . . . $792 $810
graphicto estimate the relative effort required to perfoeta- $633 $666
vant recognition tasks. Our aim is to develop this model with 611 $522
solid cognitive underpinnings and to validate it with sound
experimental data. In future research, we will incorpotiage
results of this model into a Bayesian network and use this
evidence alongside other communicative signal evidence to Sept Oct Feb  Sept Oct Feb  Sefct  Feb
hypothesize the intended message of a grouped bar chart. Cost of amonthly train ticket
Figure 2: Graphic from théhiladelphia Inquirer “Com-
Related Work muters Facing Fare Hikes”, September 28, 2005.
There has been much work on graph comprehension. Clas-
sical graph work such as Lohse (1993), Meyer (2000), and Internet Access
Simkin and Hastie (1987) involve the modeling secific ‘
fact-retrieval tasks on a graph. Shah, Freedman, and Vekiri l$1o,000—$14,99a By Income
(2005) are concerned with how quantitative information is . $15.000L516,999 = Eugg'n
comprehended from graphics. Freedman and Shah (2002) use ‘
a constraint-satisfaction approach and consider the graph - $20,000-$24,999
viewer’s prior knowledge. Our work differs from these and ‘ $25,000-$34,99
other efforts in that rather than modeling human processing -
our emphasis lies in estimating arahkingthe relative effort ‘ $35,000-$48,999
of different message recognition tasks. Our work is similar _ $50,000-$74,999
in that it must take into account both graphic complexity and _ $75,000 PLUS

the human-visual architecture. 0 15 30 45 60 75

Percent
Messages and Task Effort

In this paper, we will consider five general categories of-mesFigure 3: Graphic fronBusiness WeekRA Small Town Re-
sages that are common in grouped bar charts, and we wit€als America’s Digital Divide”, October 4, 1999.

model the effort required to perform the task of extracting

th_e_se messages from a graphic. We hypothesize_ that the more“PhiIadeIphiato New York®
difficult a message is to extract, the less likely it is that th
graphic was intended to convey that message.

in Figure 2 displayed decreas-
ing prices from Sept. to Feb.

- - . e Gap-trend: The gap between entities is generally chang-

o Same-relation: a set of entities have the same relation- j,q in the same direction (increasing or decreasing) over
ship to one another over an ontology. The top graphic in - a1 ontology. Such gap-trendmessage could be extracted
Figure 1 has an intended message that falls intcsémee- from Figure 3 (although it is effortful to do so) since the

relation category, as does Figure 3 whose intended mes- 4an, hetween internet access for rural and urban households
sage is that rural households have less internet access thang generallyincreasing across income levels

urban households at all income levels.
We have developed a model for estimating the relative ef-

o Contrast-relation: a set of entities have a different rela- ¢ inyolved in extracting each of the above message types
tion to one another at one place in an ontology compareg,. 5 given grouped bar chart, based on the design of the

with everywhere else in the ontology. Figure 1 would con-granhic 1n our work on simple bar charts, effort was mod-

tain such econtrast-relatiormessage if female salaries ex- g|qq using a GOMS approach(Card, Moran, & Newell, 1983)
ceeded males salaries for one of the listed disciplines. | hich decomposed tasks into perceptual subtasks, such as

e Same-trend: several entities have the same trend (increas-nd the top of a bar’. The effort for primitive subtasks was

ing, decreasing, or stable) over some ordinal set (such #&Stimated based on cost estimates by cognitive psychtdogis

years, ages, etc.). Figure 2 is an example of a groupeﬁnd the effort estimates for the subtasks were summed to pro-

bar chart whose intended message falls intastirae-trend vide an effort estimate for the composite task. Although thi

category. Asame-trenanessage can also be extracted fromCOMS approach worked well for modeling relative effort in
Figure 3. simple bar charts, grouped bar charts are much more complex

and can involve high dimensional relationships over mldtip
e Contrast-trend: one entity has a different trend from the sets of entities, as well as the inherent cognitive linotagi
other entities. This would be the case if the group labeledn extracting those messages. Thus we chose to use the ACT-
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R programmable framework(Anderson, Matessa, & Lebierealso hypothesize that the use of peripheral vision explains
1997) which is an implemented cognitive theory with visualwhy subjects in our eye tracking experiments did not fix-
and declarative modules that are relevant to the perceptiosite on every bar when identifyingsame-trendnessage in
and memory issues in modeling task effort. However, oura grouped bar chart.
goal isNOTto construct a cognitive model that simulates how : .

o . . Exceptions We will refer to one or a couple of bars that
humans comprehend graphs; instead we want to identify thg :

. o o not conform to an overall trend, such as the bars in the

factors that make tasks on one graphic more difficult than on

another graphic and utilize them in a model that estimates th3roups .02 gnd 031in Figure 4, as mcepnpr:\ When given
relative difficulty of a task on a given graphic. a graphic with an overall trend but containing some excep-

tions, subjects tend to identify the trend, but take longetd
so compared to a similar graph without exceptions. This in-
Factorsthat Affect Effort creased processing time is the general result of more fixatio

We performed preliminary (motivational) eye tracking expe occurring on the graph, especially around the exceptica are

iments with human subjects to gain insight into the factors

. . Shrinking Giants
that affect task effortin grouped bar charts and to motitlze 75 hillion

design of our effort model. Subjects were given a grouped bar = Ford

chart and asked to perform a recognition task, during which
fixations and their durations were measured along with the
time to complete the task. Our observations from these exper
iments, along with previous research by cognitive psycholo
gists and graph designers, suggest factors that should be in
corporated into our model of task effort.

High-level Visual Patterns The presence of high-level vi- '98 99 '00 01 ‘02 ‘03 '04 05
sual patterns that can be easily perceived by the human visua

system appears to significantly affect the effort requicesit Figure 4: A graphic with exceptions. Graphic frowall

tract messages from grouped bar charts.- When such patterg reet Journagl“Auto Industry, at a Crossroads, Finds lItself
were present, we observed fewer bar fixations and shortesrta”e d by History”, January 2, 2006

time for task completion in our preliminary eye tracking ex-
periments.

Pinker (1990) identified various high-level visual pattern Clutter Wickens and Carswell (1995) showed that perfor-
such as linear lines or quadratic curves which are easily-ide Mance in comprehension tasks degrades when visual clutter
tifiable for most viewers. Shah, Mayer, and Hegarty (1999)increases, where visual clutter is the close spatial proxim
show that graph viewers use bottom-up visual pattern recodty Of two perceptually or semantically contrasting elertsen
nition in graph comprehension and note that the grouping ofvhich should not be compared. The encoding time for one of
data points in graph design will influence the perceived patihese elements increases because of the close proximitg of t
tern recognition of trends. Applying this to identifyingeth Other element’s “noise”. We have observed increased time fo
presence of messages in grouped bar charts, we note that £€0gnition tasks on grouped bar charts when visual clistter
tentions on successive bars which are positioned in a reldrésent.

tively straight line are not needed to determine that th@se b Spatial Reasoning Ability ~Trickett and Trafton (2006) the-
areindeed in a straight line. For example, one can very easilyy(j-e that spatial cognition is often used in graph compmehe
rec_ognize gt a high-level that the bar heights in Figure éhfor sion. They hypothesize that one such spatial task is, for ex-
an increasing pattern. Oth_er patterns, such as a “U” shape Bmple, the mental averaging of bar heights within a group, fo
asame-relatiormessage with 3 or more bars per group, alsoyerforming the task of comparing the height of two groups.
appear to be perceived quickly without a fixation on each baﬁ'hey use the work of Simkin and Hastie (1987) in their mod-
in the pattern. eling, whosesuperimpositiorelementary graph process in-
Peripheral Vison The concept of peripheral vision is volves a graph viewer spatially moving graph objects to cre-
closely related to the idea of high-level visual patterns inate overlap and ease comparison with other graph objects. We
the domain of information graphics and the acceptance thatypothesize that superimposition is present in the extmact
multiple objects can be processed in parallel in a guidedf somegap-trendmessages.

search(Anderson & Lebiere, 1998). Salvucci (2001) has . . .

shown the ability to attend to an object without fixating on Modeling in ACT-R and its Limitations

it, in the domains of equation solving, reading, and visualThe ACT-R framework enables us to address many perceptual
search. We have observed in our eye tracking experimenend memory issues involved in our recognition tasks. For ex-
that subjects do not always fixate on the first and last groupample, the imaginal module allows us to build a problem rep-
of a graph, but theorize that subjects still attend to thera. Wresentation, and to handle frequent comparisons between an
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object of current attention and a representation of apusljo  bars being compared (in the case of Figure 1, the female and
attended object. However, other aspects of ACT-R are inadenale salary bars for each discipline must be extracted from
guate for our needs. For example, ACT-R is unable to autodifferent groups) and perform bar-by-bar comparisons to de
matically recognize that the data points representingdpe t termine whether they have the same relation to one another
of a series of bars can be encoded bottom-up to form a sin— resulting in many fixations and much cognitive process-
gle line object, unless that relationship is explicitly Beed  ing, and therefore producing a high effort estimate.
in the model. Therefore, to implement pattern recognition,
we wrote a small script which taFI)<es as inF[)aut a graphi?:’s dat§"’"'ne'trend and Contrast-trend Tasks
points and automatically outputs any relevant high-level v In modeling the same-trend and contrast-trend recognition
sual patterns presentin the graphic. These high-leved et tasks, we differentiate betweentra-trends (where each
are then available for the ACT-R model to use in modelinggroup in the grouped bar chart represents a trend, as in Fig-
recognition tasks on the graphic. ure 2) andinter-trends (where each series of bars across all
We also incorporated EMMA, an ACT-R add-on(Salvucci, groups represents a trend, such as in Figures 3 and 4).
2001) which was designed to model peripheral vision. Intuitively, the recognition of amtra-trend requires that
EMMA adjusts the constant visual encoding time cost of arPne realize that a trend exists in each group of a graph. There
object into a variable cost, affected by the proximity of thefore, the effort for this realization is dependent on boté th
previous attention location. It is able to successfully elod cost of recognizing each individual group trend and the num-
that a “skipped fixation” will occur when two attentions are ber of groups. Thus one would expect that as the number of

approximately close and are executed successively. groups in a graph increases, the effort and total time tizeeal
an intra-trend should increase as well. This was borne out in
Modeling Task Effort our preliminary eye tracking experiments.

This section briefly discusses the five categories of mes- Our motivational eye tracking experiments also showed

sage recognition tasks and the implementation of our ACT—F\;hat the_ _num_ber of bars per group did no_t significantly affect
model of relative task effort. recognition time. We hypothesize that this can be accounted

for by the human ability to recognize high-level visual pat-

Same-relation and Contrast-relation Tasks terns. Because the bars which form the trend over a group

When the relation being examined is among entities reprecan be encoded as a high-level line pattern, the recognition

sented by adjacent bars in a group (such as the relation bof the trend at each group can occur without an exhaustive

tween rural and urban internet access in Figure 3 or the reﬁxanon on every bar in the group. Thus our ACT-R model

ton among i prices nSept,Oct,and Fr th e “0on® 10U DY 0100 U gfievel goup atentond o
trips depicted in Figure 2), high-level visual patterns rhaip P group b P

. . . ACT-R’s imaginal module representing the pattern of the pre
with recognizing a same or contrast relation. Thereforeswh . . :
. . . eding group attention. Our experiments suggested that sub
the tops of the bars in a group represent a high-level visual

pattern (such as a “/” or a “U” shape), our ACT-R model en_Jects re-attend on and around areas which semanticallrdiff

; . from the surrounding areas and their expectations. Thirein t
codes this pattern and models the same-relation and ctntras ! .
i : . case of a contrast-relation, our ACT-R model captures ttis e
relation tasks as a comparison of the pattern with each grou . . .
. ra effort by re-attending to the prior and succeeding gsoup

On the other hand, there may not be a common visual paf-
anund any contrast.

tern; this happens when the tops of the bars do not represen . .
. . : Inter-trends consist of a series of bars across all groups (for
a common pattern (typically occurring with 4 or more bars . o :
example, the increasing internet access over income levels

per group) or when the bars are so similar in height that %r both rural and urban residents in Figure 3). In our eye

more detailed examination is needed to discern which bar i ) . o .
. ; racking experiments, the fixations by subjects suggebted t
higher. In such cases, bar-by-bar processing of each gsoup | . : )
. . they were both processing multiple trends in parallel ard pr
performed to determine whether there is a same or contrast

relation message. When there was a contrast-relation 0cessing several adjacent bars in a trend with a single fixatio
L ge. ) . ' OYhis apparent use of peripheral vision is accounted for in ou
motivational eye tracking experiments showed re-attastio

in the vicinity of the group that is in contrast with the other model in two ways. When the tops of the bars in a series

groups, presumably to double-check the contrasting osiati are all approximately near the tops of the bars in another se-
thus ou’r model also includes an extra check ries, our ACT-R model marks one series as a “free” attention,

In some cases, such as the bottbaif of Figure 1, a and attending to the non-free series automatically endbees

. . . trends of both that series and the “free” series. In additon
same-relatiormessage (that female salaries lag behind male

T o odel does not fixate on each bar in a series, but instead uses
salaries in each discipline) can be extracted from the grapElMMA,s ability to capture attending to several close adjece
but the related bars are not adjacent to one another. For sug

graphics, our ACT-R model must capture the extraction of the ars with a S'T‘g"? fixation.
However, sincénter-trends are spread across groups, there

2However, the intendethessage in Figure 2 issame-trencand 1S Opportunity for visual clutter, particularly when onerd
not asame-relatiormessage. contrasts with the other trends in the graph — for example, a
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decreasing trend when the other trends are increasing. Thgsibjects was randomized. Both the subjects and the graphics
not only does our ACT-R model re-attend to contrastirigr- used in this validation experiment were different from #hos
trends, but it also re-attends to the bars in the area where thused in the preliminary eye tracking experiments.
contrasting trend crosses the other trends since thissepte For each graphic, an untimed instruction slide was first dis-
an area of visual clutter. played explaining to the subject which task they were be-
For bothintra-trends andnter-trends, our ACT-R model ing asked to perform on the next graphic. The subject hit
re-attends to the bars around any exceptions to the trensl. Ththe space bar after comprehending this instruction. Then
captures the extra processing observed in our eye tracking ethe graphic was displayed on the screen and the subject per-
periments and the resulting extra time to perform samedtrenformed the requested recognition and then hit the space bar
and contrast-trend tasks in the presence of exceptions. again. In addition to gaze points, the elapsed time follgwin
the onset display of the graphic and the hitting of the space
Gap-trend Task bar was also recorded. Then a multiple choice prompt was
The gap-trendmessages that we have observed in our cordisplayed, and the subject was instructed to select theemsw
pus of graph% consist of two bars per group. Based on thecorresponding to his/her response to the task.
work of Trickett and Trafton (2006), if the two series of bars )
across all the groups are both increasing or both decreasinffesults and Analysis
we hypothesize that superimposition is used in the gap confor each of the 42 graphics that contained a trend, relation,
parison process. Our ACT-R model takes this into account byr gap-trend that the subject was supposed to recognize, we
fixating on a gap and superimposing it on the succeeding gagomputed the mean completion time for the human suljects
to recognize whether thgap-trendis generally increasing or and the effort estimate produced by our ACT-R model, where
decreasing over the grafh. the ACT-R effort estimate was in terms of task completion
If the two series are moving in opposite directions, thetime. Since our goal is to rank tasks on a graphic in terms
high-level visual pattern formed by the bar tops of the two se of their relative effort, we performed a Spearman Rank-©rde
ries can generalize to resemble™or “ >”, and would be eas-  Correlation, which is used to determine whether two sets of
ily recognizable> Thus our ACT-R model extracts the high- rank-ordered data are related; values approaching 1.0 ahow
level visual patterns for the two series and compares them. strong correlation. Table 1 shows the results of the correla
As with trend messages, exceptions can occur and result itions between the model’s effort estimates and average task
re-attentions in the area of the exceptions. completion time for the human subjects.

Validation Experiment
Table 1: The Spearman Rank Correlation Coefficient for the

Design o ) task effort produced by our model and the subjects’ average
To evaluate our model for estimating relative task effor, W {35k completion time.n(is the number of graphs.)

performed an eye tracking validation experiment using a To- Task Spearman correlation (rho)

bugGOhsystte)z_m \t’v'th 20. h_ltj.mlfm SUbJeCttS' d with | . d Same/Contrast-Relationp = .854,p < .004 (n = 24)
ach subject was iniially presented with learming an Same/Contrast-Trend p=.821,p < .001(n=10)

practice slides which explained the kinds of tasks that they Gap-Trend 0= 833.p< 02 En =)
(

would be asked to perform and the concept ofeaneption
to a trend. Each subject was then presented with 52 graph- All Tasks p=.809,p<.001(n=42)

ics, and in each case the subject was asked to perform one

of the five tasks: determine whether there is 1) a same-trend, The resuits in Table 1 show a strong correlation between

2) a contrast-trend, 3) a same-relation, 4) a contrastivala  the relative task effort produced by our model and the rank-
or 5) a gap-trend. 42 of the graphics contained a trend, repg of graphics according to the average task completioa tim
lation, or gap-trend that the subject was supposed to ifenti j,y hyman subjects: this correlation holds both within the ca
and the other 10 graphics did not. The graphics included botRggries of tasks and more importantly, across all tasks. For
intra andinter trends and varied in the number of groups, theggme/contrast-trend tasks which involvediaier-trend and
number of bars per group, and the presence of exceptions afg same-relatiortasks, the main disagreement in the rank-
clutter. The order in which the graphics were presented t‘?ngs occurred in graphics where the estimated recognition

30ur corpus consists of approximately 150 grouped bar chartéime,S by the model ant_j the mean completion times by the
extracted from a variety of popular media sources. subjects differed only slightly. For same/contrast-tréasks

4ACT-R/S, an ACT-R module that models spatial representathat involved arintra-trend, differences in the rankings ap-

tions and their size capacity is currently under develogmelow- a5y tg reflect disagreement about how much extra effort is

ever, our problem is much simpler than their 3-dimensionabiem . . . -

space(Hiatt, Trafton, & Harrison, 2004). needed when either a contrasting group or an increase in the
SAn “X” pattern can also occur, when the relation between thenumber of groups occurs. Our model estimates less time on

bars changes — for example, when the first bar is taller then th——M

second bar for the beginning groups (with the gap betweemthe  SThere were only a few “incorrect” responses overall, andé¢he

decreasing) and then the second bar becomes taller tharstigafi. ~ were not included in the mean time calculation.
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graphics with many groups and no contrasting group than iElzer, S., Carberry, S., Zukerman, 1., Chester, D., Green, N
does for graphics with fewer groups that include a contmgsti & Demir, S. (2005). A probabilistic framework for recog-
group, whereas subject completion times reflect the opgposit  nizing intention in information graphics. Froceedings of
Overall, the strong correlations displayed in Table 1 \atkd the international joint conference on artificial intelligee

our model of task effort. (p. 223-230). Morristown, NJ: Association for Computa-
tional Linguistics.
Future Work Freedman, E. G., & Shah, P. (2002). Toward a model of

In the next phase of our project, our model will be used to knowledge-based graph comprehension.Sétond inter-
provide evidence about relative task effort for use witheoth ~ hational conference on diagrammatic representation and
communicative signals in a Bayesian network to hypothesize inference(p. 18-30). London, UK: Springer-Verlag.

the intended message of a grouped bar chart. For examplgiatt, L. M., Trafton, J. G., & Harrison, A. (2004). A cog-
we processed both the top and bottom graphic of Figure 1 Nitive model for spatial perspective taking. Proceedings

in our model of task effort. As hoped, the model estimated Of the sixth international conference on cognitive model-
that the top graphic required significantly less effort to-re  ing (p. 354-355). Pittsburgh, PA, USA: Carnegie Mellon
ognize asame-relatiomessage than the bottom graphic (ap- University/University of Pittsburgh.

proximately only a third of the time required by the bottom Larkin, J. H., & Simon, H. A. (1987). Why a diagram is
graphic). This result suggests that our ACT-R model will (sometimes) worth a thousand wordSognitive Science

produce relative effort estimates that will serve as usefisl 11, 65-99. N
dence in our Bayesian network. Lohse, G. L. (1993). A cognitive model for understand-
ing graphical perceptiorHuman-Computer Interactiqi,
Conclusion 353-388.

We have developed a model of relative task effort on groupeaﬂeyer’ ‘] (2000). Pe_rformance with tables and graphs: tsffec
of training and a visual search mod&lrigonomics43(11),

bar charts, implemented within the ACT-R framework. Our 1840-1865.

model takes into account a number of factors that appear tBeebIes D.. & Cheng, P. C.-H. (2003). Modeling the effect

impact the requisite effort, including the recognition ajfr of task and graphical representation on response latency in
level visual patterns, the use of peripheral vision, thespre .
b perip P a graph reading tasikduman Factors45, 28-45.

ence of exceptions and clutter, and the potential for Sbatijbinker S. (1990). A theory of graph comprehension. In

reasoning. Our model was validated by a final set of ey A . X
tracking experiments in which a strong correlation was show A_rt|f|C|aI intelligence and the future of te_stlr(g. 73-126).
Hillsdale, NJ: Lawrence Erlbaum Associates.

between the effort estimates produced by our model and th . .
average completion times of human subjects. Future work O§alvuctC|, D('j D.' (2|001)' (ﬁn mteg_:ate; mtodel ?:\I cye rzt(])ve-
this project involves implementing a Bayesian network whic ments and visual encodinGognitive Systems Resear

) S . 201-220.
will use the communicative signals present in a grouped ba, .
chart, including relative task effort, to probabilistiyaleason éhah, P., Freedman, E. G., & Vekiri, I. (2005). The compre-

e hension of quantitative information in graphical displays
aboutthe graphic's intended message. In P. Shah & A. Miyake (Eds.)The cambridge handbook

Acknowledgments of_visuosp_atial .thinkingp. 426-476). New York, NY: Cam-
. - i bridge University Press.

This material is based upon work supported by the Natlonajjhah, P. Mayer, R. E., & Hegarty, M. (1999). Graphs as

Science Foundation under Grant No. 11S-0534948. aids to knowledge construction: Signaling techniques for

guiding the process of graph comprehensiBducational
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