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As the demand for high-speed, reliable wireless communication among interconnected devices rises,

the need for robust next-generation wireless MIMO systems becomes crucial. This dissertation is motivated

by the need to address the challenges inherent in the development of such systems, specifically focusing on two

key aspects: (i) Robust block-sparse mmWave channel modeling and (ii) Robust detection in the presence

of few-bit MIMO systems. Central to this thesis is the integration of model-based methods with deep neural

network (DNN)-aided approaches, leveraging the synergy between these two paradigms to enhance system

performance and mitigate the impact of model inaccuracies and mismatches.

The first part of this dissertation focuses on the spatial modeling of mmWave channels, to capture

the heterogeneous scattering behavior, through block-sparse signal recovery. Despite the promise of block-
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sparse signal processing for channel modeling in the angular domain, a key challenge is block-patterned

estimation without knowledge of block sizes and boundaries. This work propose a novel total variation

sparse Bayesian learning (TV-SBL) method for block-sparse signal recovery under unknown block pat-

terns. Unlike conventional approaches that employ block-promoting regularization on signal components,

this method introduces two classes of hyperparameter regularizers for the SBL cost function inspired by total

variation (TV) denoising. The first class relies on a conventional TV difference unit, allowing iterative SBL

inference through convex optimization, thus facilitating the use of various numerical solvers. The second

class integrates a region-aware TV penalty to penalize signal and zero blocks differently, thereby enhancing

performance. An alternating optimization algorithm based on expectation-maximization is derived for com-

putationally efficient parallel updates for both regularizer classes. Going beyond model-based methods, this

work also presents a basis for extension to DNN-aided block-sparse signal recovery for 1-D and 2-D signals.

The second part of this dissertation focuses on designing detection algorithms for signal recovery

in few-bit MIMO systems, beginning with a detailed analysis of one-bit MIMO systems. This begins by

analyzing the smoothness and convexity of the one-bit likelihood function, based on the Gaussian CDF, for

signal recovery. This culminates in an improved gradient descent (GD) algorithm for one-bit MIMO, and

ensuing convergence analysis. The accelerated GD method is applied to one-bit MIMO recovery, further

improving convergence. The analysis is extended to an effective surrogate function for the Gaussian CDF,

i.e., the logistic regression (LR), explaining the enhanced performance when utilized as a surrogate likelihood.

Constrained optimization, incorporating detection from a finite M-QAM constellation, is addressed by the

introduction of a learnable Gaussian denoiser to project detected symbols onto the M-QAM subspace.

Another class of DNN-aided regularizers is proposed for one-bit MIMO, utilizing a regularized

gradient descent update. A novel constellation-aware loss function is incorporated to tailor the DNN loss

function to M-QAM symbol recovery. The key utility of a generalized DNN-aided GD update is for detection

in mmWave channels, where there is a higher contrast in per-user channel powers, presenting a challenge

for joint multi-user detection. Leveraging a general parametric DNN structure enables the development of a

novel hierarchical detection training algorithm, ensuring network design for equitable detection in mmWave

channels, where users with higher channel powers experience improved recovery performance.

The final part of this dissertation extends the research to two-bit MIMO detection. In few-bit

MIMO systems like the two-bit MIMO receiver, the quantization noise exhibits distinct characteristics posi-

tioned between the fully saturated one-bit scenario and the independently additive noise observed in higher

resolutions. However, limited research has focused on accurately characterizing this unique quantization

noise profile. These properties of quantization noise, along with the constraints of optimization for MIMO

xvii



signal recovery, make DNNs ideally suited for the signal recovery. The DNN-augmented receiver algorithm

developed attempts to learn this noise behavior to dequantize the signal, without the need for explicit

analytical characterization, thereby enhancing signal recovery in few-bit MIMO systems.
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Chapter 1

Introduction

Figure 1.1: Illustrating the different aspects of the next-generation of wireless systems.
Image source: https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/web-why-and-what-you-

need-to-know-about-6G-in-2022.pdf

1.1 Next-generation wireless communication systems

In today’s interconnected world, wireless systems have become an integral part of our daily lives,

facilitating seamless connectivity for a myriad of applications like communication and data transfer, inter-

connected devices, augmented reality, autonomous vehicles, smart homes and factories, GPS and navigation,

edge computing, and so many more [2–4]. The different verticals and applications for the next generation,
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i.e. 6G, of wireless communications are illustrated in Fig. 1.1. From the early days of basic voice calls

over wired links to the present era of high-speed data transfer and internet-of-things (IoT) connectivity,

wireless communication technologies have undergone remarkable evolution. Today, the wireless channel,

from WiFi routers to satellite communication, is present at some point or the other when we connect to the

internet. The next generation of wireless communication promises to redefine the boundaries of connectivity

and enables transformative applications across various domains. Building upon the foundations laid by its

predecessors, 6G aims to deliver unprecedented performance in terms of data rates, latency, reliability, and

energy efficiency [5,6]. This next generation of wireless communication will rely on two key aspects: (i) The

mmWave spectrum, and (ii) Massive MIMO systems.

One of the key technologies that promises to revolutionize connectivity is the millimeter wave

(mmWave) communication system. Operating in frequency bands above 24 GHz up to 100 GHz [7–10],

mmWave communication offers significantly larger bandwidths compared to traditional microwave frequen-

cies, paving the way for ultra-high data rates and low-latency transmission. The short wavelength of mmWave

signals allows for the integration of large antenna arrays in compact form factors, facilitating beamforming

and spatial multiplexing techniques to overcome path loss and propagation limitations inherent to higher

frequencies. This is further elaborated next.

The massive Multiple-Input-Multiple-Output (massive MIMO) system design continues to play a

pivotal role in shaping the future of wireless networks. By harnessing the power of advanced antenna arrays

and beamforming techniques, massive MIMO offers the potential to significantly enhance spectral efficiency,

coverage, and capacity, thereby enabling the deployment of ultra-dense networks and supporting a diverse

range of applications [11–13]. Massive MIMO systems have several advantages over conventional wireless

architectures. Firstly, massive MIMO significantly increases the spatial degrees of freedom, allowing for more

efficient utilization of the available spectrum and improved spectral efficiency. Secondly, by exploiting the

spatial diversity offered by a large number of antennas, massive MIMO enhances the resilience of wireless

links to fading and interference, thereby improving the overall reliability and quality of service. Moreover,

massive MIMO facilitates advanced beamforming techniques, enabling precise control over signal transmis-

sion and reception directions, which in turn enhances coverage, reduces interference, and enables seamless

mobility support. As we embark on the journey towards 6G, the exploration and optimization of massive

MIMO systems will be instrumental in realizing the full potential of next-generation wireless communication

networks.
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1.2 Towards robust MIMO Systems

Tx: UE

Base Station: Rx

Stationary Scatterer

Stationary Scatterer

Figure 1.2: Clustered angular scattering for the uplink mmWave channel

Widescale deployment and adoption of the technologies for wireless communication systems is

determined by the robustness of system modeling and receiver design. Accurate system modeling enables

engineers to understand the behavior of wireless channels under diverse conditions, facilitating the design

of robust communication systems capable of mitigating the challenges posed by fading, interference, and

other impairments. A comprehensive examination of these aspects entails a detailed exploration of various

components within wireless systems. This thesis endeavors to advance the field by introducing enhanced

modeling techniques and receiver algorithms tailored for two specific verticals. In particular, we analyze (i)

Robust block-sparse channel modeling for mmWave channels, and (ii) Receiver design for wireless systems

with few-bit ADCs. The subsequent sections delve deeper into these topics.

1.2.1 Improved block-sparse signal modeling of mmWave channels

The paradigm of mmWave communication incorporates frequency bands of 24 GHz to 100 GHz

[7–10]. Unlike the prevalent sub-6 GHz wireless channels characterized by rich scattering environments, the

mmWave spectrum introduces a distinctive characteristic — its channel manifests a more specular behavior,

marked by a notable reduction in the abundance of multipath components. The spatial domain analysis of the
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mmWave channel reveals a pronounced block-sparse structure[14–16]. The scattering behavior is illustrated

in Fig. 1.2, with different clustered multipath components. As seen from this figure, unlike traditional

channels where reflections and scattering lead to a dense multipath profile, mmWave channels often exhibit

a sparsity that is organized into distinct blocks of various sizes, originating from the heterogeneous scattering

and limited propagation paths inherent to these higher-frequency bands [17–19]. Robust signal modeling

capable of capturing these block-sparse components is essential for effective channel characterization and

signal processing. Moreover, the ability of such modeling techniques to remain resilient to the diverse block

sizes and structures is vital for their practical utility in mmWave systems. This will play a pivotal role in

building reliable channel estimation algorithms for initial wireless access. To address this challenge, this work

delves deeper into a specific class of signal recovery algorithms tailored for scenarios with unknown block

structures, leveraging the principles of sparse Bayesian learning. This framework for block-sparse signal

recovery is detailed in Chapter 2

1.2.2 MIMO detection for receivers using few-bit ADCs

RF Chain b-bit ADC

Baseband

Processing

RF Chain b-bit ADC

N
R

Figure 1.3: General MIMO receiver with b-bit ADC in the receiver chain

The practical deployment of wireless communication systems entails integrating various hardware

components, such as power amplifiers, filters, local oscillators, and analog-to-digital converters (ADCs), each

introducing its own set of nonlinearities that distort the received signal. This is illustrated via the general

MIMO receiver chain blocks in Fig. 1.3. The work in this thesis focuses on examining the hardware-induced

nonlinearities stemming from ADCs, particularly few-bit ADCs, which have garnered increasing research
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attention [20–25]. As next-generation massive MIMO systems move towards larger number of antennas,

the use of few-bit ADCs assist with widescale deployment due to reduced cost and complexity of operating

the RF chain. However, few-bit ADCs bring in several hardware-induced nonlinearities, which need to be

compensated at the receiver. To this end, efficient modeling of these systems, and the subsequent design of

resilient data recovery algorithms at the receiver will play a key role in the design of robust MIMO systems.

One-bit ADCs: In recent years, one-bit ADCs have emerged as a particularly researched case within the

realm of few-bit ADCs [1,20,26–36]. One-bit ADCs offer a radically simplified approach to analog-to-digital

conversion, primarily relying on a single comparator. Unlike traditional multi-bit ADCs that quantize the

analog signal into multiple levels, one-bit ADCs simply compare the input signal to a threshold voltage and

output a single bit, thus significantly reducing hardware complexity. To fully unlock the potential of one-bit

ADCs in next-generation wireless MIMO systems, it is necessary to conduct comprehensive signal modeling,

and develop advanced signal processing algorithms specifically designed to accommodate the characteristics

of one-bit quantization. The work in this thesis provides analytical insights into signal recovery for one-bit

MIMO systems, as well as robust detector algorithm design for these systems, through Chapters 3-4. The

analysis in Chapter 5 presents the detector design for few-bit MIMO receivers, particularly two-bit MIMO

receivers.

Utilization of DNN-aided methods is particularly essential for building the next generation of robust

wireless systems. However, the design of these systems is enhanced by utilizing the model-aided frameworks

for signal generation. This is further elaborated in the next section.

1.3 Synergy of model-based and DNN-aided frameworks

Today, artificial intelligence (AI) has revolutionized our interaction with the information-centric

world, and heralded in a new age of signal processing. Through AI technologies, we witness a sweeping

revolution across diverse domains including computer vision, robotics, autonomous driving systems, natural

language processing, medicine, and beyond [37–47]. Remarkable advancements such as the generative pre-

trained transformer [48, 49] epitomize the profound strides made in this field, redefining the dynamics of

human-information exchange.

Model-based learning: A pivotal class of learning techniques revolves around leveraging forward models

for signal recovery. This framework enriches traditional algorithms by incorporating deep neural networks

(DNNs) through a process known as algorithm unrolling, thereby enhancing signal recovery performance

[50, 51]. In domains such as medical imaging and robotics, where the underlying forward model is clearly
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defined, algorithm unrolling with deep neural networks (DNNs) has demonstrated enhanced performance

over conventional model-based approaches [46]. These methods have played a crucial role in advancing AI-

aided wireless system design, facilitating significant progress in the field. The subsequent discussion delves

deeper into this.

1.3.1 The era of model-based AI for wireless MIMO systems

Artificial intelligence (AI) has led to several advancements in wireless communications, with DNN-

aided frameworks improving multiple blocks of MIMO systems. These frameworks have significantly bol-

stered performance across various fronts, including enhanced beamforming [52–54], more robust detection

algorithms [55–59], handling hardware nonlinearities [60], and optimized wireless access and resource man-

agement strategies [61–63], to name a few. In wireless communication systems, the forward model governing

signal propagation and reception is often well-defined, facilitating the implementation of model-based ap-

proaches for system optimization. However, real-world wireless channels often exhibit dynamic and complex

behaviors, leading to model mismatch. To address this challenge, synergistic learning using model-based

approaches and DNN-aided methods presents a viable alternative. By leveraging DNNs to unroll algo-

rithms and capture intricate patterns in wireless channel data, these methods enhance the adaptability and

robustness of wireless communication systems in the face of model uncertainties. This synergy not only

alleviates the impacts of model mismatch but also facilitates the extension of model-based approaches to

scenarios where efficient modeling and scalability pose challenges. Within the scope of this thesis, we delve

into the exploration of synergistic learning within two verticals of robust wireless systems introduced in Sec.

1.2: block-sparse signal modeling for mmWave wireless channels and the design of few-bit MIMO detection

algorithms. This is elaborated further in the subsequent discussion.

1.3.2 Motivating synergistic learning for block-sparse mmWave channels

As discussed in Sec. 1.2.1, the non-homogeneous scattering in mmWave channels presents significant

challenges in modeling a general block-sparse structure across scattered multipath clusters. Model-based

approaches, such as specialized signal priors, offer a means to enforce structure on the recovered signal.

However, the use of a general prior capable of capturing any block-sparse pattern and size proves unfeasible

with solely model-based methods. Additionally, while tractable signal priors are effective in handling 1-D

block-sparse signal structures, they often falter when scaling to 2-D scenarios. To overcome these limitations,

the synergy between model-based algorithmic approaches and the integration of DNN-aided techniques
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emerges as a promising solution. By leveraging the power of DNNs, these techniques augment model-

based methods, enhancing their ability to capture the underlying signal structure with greater efficiency and

adaptability.

1.3.3 Motivating synergistic learning for few-bit MIMO detection

In the realm of few-bit MIMO signal detection, the synergistic integration of model-based and

DNN-aided methods emerges as a promising approach to address the inherent challenges. In practical com-

munication systems, the quantization of signals to few bits often leads to high saturation levels, rendering

the modeling of noise intractable with traditional methods. This poses a challenge for conventional receivers

that heavily rely on accurate noise statistics for optimal performance [12, 64]. Furthermore, the transmit-

ted symbols, drawn from finite constellation M-QAM sets, impose additional constraints on signal recovery

within this constrained set. When relying solely on model-based approaches, accommodating these chal-

lenges becomes increasingly complex. However, by harnessing the complementary strengths of model-based

algorithms and DNN-aided techniques, a promising avenue opens for enhanced detection performance.

1.4 Dissertation layout

The work in this dissertation independently looks at two facets of robust wireless system design,

introduced in Sec. 1.2. The first part, namely Chapter 2 details the contributions to block-sparse signal

recovery. The second part, i.e., Chapters 3 - 5 presents the contributions for detection algorithms for few-bit

MIMO systems. The structure of the dissertation is summarized below to navigate through the research

contributions.

In Chapter 2, the analysis delves into block-sparse signal processing from a broad perspective.

A block-sparse recovery algorithm based on the framework of sparse Bayesian learning (SBL), i.e., total

variation SBL (TV-SBL) is introduced. The approach introduces a novel class of regularizers to the SBL

optimization framework to encourage inter-element coupling, resulting in signal recovery with block-sparse

structure. Following this, the optimization of the regularized SBL loss function using different TV-based

regularizers is analyzed, along with the resulting algorithm convergence. The chapter concludes by exploring

the integration of Deep Neural Network (DNN)-aided techniques to augment block-sparse recovery, initially

targeting 1-D block-sparse signals. Additionally, preliminary endeavors employing DNN-aided methods for

the recovery of 2-D block-sparse signals are presented, laying the foundation for potential advancements in

this direction.

7



Beginning with Chapter 3, the dissertation delves into robust detection in MIMO systems employing

few-bit ADCs. This chapter primarily focuses on the detection for one-bit MIMO systems. Insights into

the optimization algorithm for one-bit MIMO detection are provided, followed by a robust GD algorithm

for signal recovery. Notably, the chapter introduces an innovative approach utilizing accelerated gradient

descent (AGD) for optimizing the one-bit MIMO problem. Following this an analysis on the utility of

surrogate likelihood measures is provided, analytically describing the advantages of this approach. The

chapter also underscores the significance of projection to the M-QAM symbols in the detection algorithm,

highlighting its role in enhancing detection performance. A novel DNN-aided receiver is presented, namely

the A-PrOBNet, which unfolds the accelerated GD algorithm along with learnt projection step, showcasing

the potential of integrating deep learning techniques into detection processes.

In Chapter 4, regularized GD, using a DNN-aided projection step, is presented as an alternative

optimization framework for the one-bit MIMO detection problem introduced in Chapter 3. The regularized

GD algorithm is unfolded using two distinct neural networks: (i) ROBNet, an unfolded DNN approach,

and (ii) OBiRIM, a recurrent neural network approach, dedicated to implementing regularized GD-based

detection. Following this, the chapter specifically addresses the challenges posed by employing GD-based

joint detection in the mmWave channel, considering the channel’s unique properties. In order to address these

challenges, the mmW-ROBNet is introduced as a variant of the ROBNet tailored specifically to mmWave

channels. This network is trained using a novel hierarchical detection algorithm that results in equitable

detection of users based on the respective channel quality.

In Chapter 5 the detection approach is presented for few-bit MIMO systems, beyond one-bit. In

particular, the chapter elucidates the differences in detection approaches for systems beyond one-bit ADCs.

Notably, it explores the intricacies of detection through signal dequantization, a method unfeasible for

one-bit MIMO systems. Moreover, the chapter underscores the role of system design in shaping detection

performance, particularly emphasizing the trade-off between resolution and clipping inherent in designing

ADC quantization levels. Subsequently, it delves into a subspace-based analysis of both quantized and

unquantized signals, leading to the assessment of the probability of dequantization. A DNN-aided network

is presented, i.e., the DQuantNet, to unfold the iterations of the alternating optimization, utilizing a learnt

regularization step for the quantization noise. This chapter concludes with a discussion on the validity of

dequantization-based detection for few-bit MIMO systems and possible extensions to this line of work.

In Chapter 6, the main contributions of this work are summarized, followed by a discussion of

possible future directions of extending this research.
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Chapter 2

Learning Block-sparse Structure for

Clustered Angular Channels

2.1 Introduction

Solving an underdetermined system of linear equations has been heavily studied in the signal

processing literature. In many signal acquisition and estimation tasks, the underlying signals are sparse.

Compressed Sensing (CS) theory [65, 66] has extensively studied stability conditions, algorithms, and con-

vergence for sparse signal estimation. Within the CS paradigm, one particular signal class is block-sparse

signals where consecutive groups of elements are alternatively nonzero or zero. Block-sparse signal recovery

has various applications in wireless communication, audio, and image processing. Our primary interest re-

sides in mmWave channel estimation and modeling where the received signal consists of angular multipath

components that impinge on the receive antenna as clustered rays (hence block-sparse) [14–16].

The key challenge with block-sparse recovery is to model inter-element dependency, in addition

to the sparsity constraint. We address the most general class of block-sparse signals: block boundaries are

unknown and the block sizes are, in general, unequal. In this setup, the number of possible block combinations

involved in the search grows exponentially with the signal length. Imposing all signal boundaries without

prior structure and knowledge would prevent scaling to large signal sizes and thus prove inefficient for

recovery. On the other hand, employing a conventional CS algorithm with no block structure regularization

would clearly underperform by not taking the full advantage of the signal structure. Thus, there is an

inherent trade-off in incorporating a prior signal structure in block-sparse recovery under unknown block
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boundaries: pre-defining the search grid enables accurate modeling at the cost of excessive complexity,

whereas computationally tractable, flexible modeling of block-sparse priors may hamper the ability to recover

arbitrary block structures. This calls for the design of a computationally efficient signal recovery algorithm

that imposes an effective, yet robust prior to model the underlying non-uniform block-sparsity, which is the

main focus of our paper.

2.1.1 Overview of Block-Sparse Signal Recovery

Block-sparse recovery methods have enforced block-patterned structures through block partitioning

or efficient inter-element coupling. The early attempts assumed known block sizes and modified conventional

CS algorithms to support block-sparse signal recovery. These include Group-Lasso [67], Group Basis Pursuit

[68], Model-based CoSaMP [69], Block-OMP [70], and a block ℓ2-norm based method [71]. Extending to the

case of unknown block partitions, algorithms such as Struct-OMP in [72] and the method based on graphical

models in [73] were developed. The approach in [73] uses the Boltzmann Machine model to capture inter-

element dependencies; the method suffers from high complexity, inhibiting the scaling to large dictionaries

and signal dimensions.

Apart from conventional CS approaches, Sparse Bayesian Learning (SBL) [74,75] has shown superior

performance for block-sparse recovery, especially in multiple measurement vector (MMV) scenarios. The first

work is [76], where the developed block Sparse Bayesian Learning (BSBL) algorithm assumes known block

partitions and models temporal signal correlations in an MMV-SBL problem. The work in [77] proposes

different optimization methods for the BSBL inference, including the extension to unknown block structures,

which however does not follow an elegant optimization framework. Differently, [78] uses Bayesian compressive

sensing and incorporates a spike-and-slab prior to model both block-patterned and individual sparsity. The

inference in [78] relies on time-consuming Gibbs Sampler and Markov Chain Monte Carlo (MCMC) methods.

The Pattern-coupled SBL (PC-SBL) method [79] initiated a fresh view to incorporate block-sparse

structures by coupling the underlying SBL hyperparameters. The Non-uniform Burst Sparsity algorithm

in [80] improved on PC-SBL inference by using the Variational Bayesian Inference [81]. Coupled priors

for block-sparse signal recovery are also used in the Extended-BSBL (EBSBL) method in [82]. Unlike the

PC-SBL algorithm, EBSBL algorithm gives an equal weight to the neighbouring parameters, leading to

performance superior to BSBL, but inferior to PC-SBL.

All the above coupled-priors-based algorithms incorporate a hyperprior in the SBL parameter space

(see, e.g., Gamma hyperprior in [74]), which needs to be specifically tuned for a particular block-sparse
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signal structure. Instead of such offline tuning, the hyperparameters could be estimated jointly with the

signal. Such an approach is proposed in [83], where the signal and support random variables are modeled

via a Gaussian-Bernoulli prior whose hyperparameters are also estimated from the observed data. Since

exact update equations are no longer tractable for such models, the MCMC method is used for parameter

estimation. Based on a clustered sparsity model, a hybrid clustered sparse prior is introduced in [84]. This

framework extends PC-SBL [79] by considering the PC-SBL’s coupling coefficient as a hyperparameter which

is then adaptively adjusted based on the observed data.

2.1.2 Main Contribution: Total Variation Regularizers for SBL

We address compressed estimation of block-sparse signals in an MMV setup. We propose a novel

SBL hyperparameter prior/regularizer to encourage block-patterned sparsity where the underlying sparsity

profile is non-uniform and unknown, i.e., without any prior knowledge of block sizes and boundaries. To this

end, we introduce two classes of Total Variation (TV) inspired regularizers that promote contiguous signal

and zero regions by enforcing low TV in the hyperparameter space of SBL. The salient features of these

regularizers, and the underlying optimization used, are given below:

• The first regularizer class, Conventional TV Regularizers, uses the standard TV of the form T (x) =∑
i |xi − xi−1| (i.e., the absolute difference between two consecutive elements) and its variants utiliz-

ing sparsity promoting regularizers from the CS domain on the TV penalty. This enforces minimal

hyperparameter variation in both the signal and zero regions of a block-sparse signal.

• The second regularizer class, Region-aware Regularizers, introduces more robust regularization that

penalizes the signal and zero regions differently; this region-awareness stems from the incorporation of

a nonlinear hyperparameter transformation g(·), thus creating a general version of the TV as T (x) =∑
i |g(xi)− g(xi−1)|.

• A majorization-minimization approach is utilized to derive iterative convex solvers for the class of

Conventional TV Regularizers. We have analyzed this framework separately in our prior work [85].

• We develop an iterative algorithm for the Expectation-Maximization (EM) based SBL inference using

cyclic optimization, tailored for Region-aware Regularizers, and show its convergence properties. The

procedure decouples the inference into parallel updates for each hyperparameter component, establish-

ing a computationally efficient optimization method. We further unify the method to build a universal

inference strategy for the TV-regularized SBL under both regularization classes.
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Numerical experiments show that by inducing a soft, flexible TV prior, the proposed TV-regularized SBL

method is robust to sparsity structure; the algorithm attains definitive recovery from strict block-sparsity to

fully random sparsity in spite of the block-pattern-inducing prior. We additionally note that the block-sparse

signal generation is inspired by the real-world applications like mmWave channel modeling. To this end, we

assume that the block-sparse signals do not have excessively large amplitude fluctuations within each signal

block; the developed TV-SBL accommodates such homogeneous signals for resilient performance.

To the best of our knowledge, this is the first work to apply a TV-type penalty in the hyperparameter

space of SBL for the purpose of encouraging block-sparsity. The framework is quite general and allows for

more exploration of a wide range of regularizers, especially those inspired by CS.

Organization: The paper is organized as follows. Section 2.2 formulates the block-sparse signal

recovery problem through the SBL framework and introduces the two classes of TV regularization for block-

sparsity. Section 2.3 presents a general optimization framework for the both regularizer classes. Section 2.4

devises a universal EM-based alternating optimization method, establishes its proof of convergence, and

outlines its algorithmic implementation. Numerical experiments are shown in Section 2.5, and Section 5.6

provides concluding remarks.

Notations: Vectors are denoted by lower-case boldface letters (a) and defined as column vectors

a = [a1 · · · aN ]T. Matrices are denoted by upper-case boldface letters (A). The vector at ith column of

matrix A is denoted as ai. Transpose and Hermitian transpose are denoted as (·)T and (·)H, respectively.

The trace of matrix A is denoted as Tr(A). A diagonal matrix with diagonal entries a1, . . . , aN is denoted

by diag(a1, . . . , aN ). The default norm for a vector ||a|| is the 2-norm, unless otherwise specified. ||A||

denotes the Frobenius norm of matrix A, unless otherwise specified. The ℓ0-“norm” ∥a∥0 counts the number

of nonzero entries of vector a. The notation (·)(k) is used to denote the value at the kth iteration. We use

I(·) as a shorthand for the standard indicator function for positive real numbers 1{R+}(·). The statistical

quantities p(x|y), E[·], etc. have their usual meaning.

2.2 Total Variation Regularizers for Block-Sparse Signal Recovery

via SBL

2.2.1 Sparse Signal Recovery Problem

We consider a multiple measurement vector (MMV) problem where the objective is to simultane-

ously estimate L unknown source vectors xl ∈ CN with a common block-sparse structure from a collection
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of noisy linear measurements1

yl = Axl + nl, l = 1, . . . , L, (2.1)

where yl ∈ CM is a measurement vector at time instant l, A ∈ CM×N is a fixed and known measurement

matrix (or a basis matrix or dictionary), and nl ∼ CN (0, λI) is a noise vector, independent of xl. Source

vectors and noise vectors are assumed to be independent and identically distributed (i.i.d.) across the time

instants.

Because of the block-sparse structure, xl consists of successive signal blocks and zero blocks. The

same sparsity pattern is shared among the collection of vectors {xl}Ll=1, but the magnitudes of nonzero

elements are drawn from an i.i.d. Gaussian distribution. Thus, the signal ensemble X = [x1 · · ·xL] is block-

row-sparse. We consider the most general (and challenging) block-sparse inference task: both the block

locations and (possibly non-uniform) sizes are unknown.

Prior to introducing our novel SBL-based method for block-sparse recovery, we provide a brief

overview of the general SBL framework for sparse signal recovery.

2.2.2 SBL with Generalized Cost Function

SBL is inspired by the Automatic Relevance Determination mechanism from neural networks [86,

87], providing the means for relatively weighing the importance of different network weights, which could

be sparse. There are various advantages for choosing SBL as a sparse signal recovery method for the MMV

case:

• The M-SBL [88] parameter estimation abstracts each row of X by a single (hyper)parameter (γi),

reducing the number of parameters to be estimated from NL to N compared to CS approaches.

• SBL falls into the category of correlation-aware methods which show superior sparse recovery perfor-

mance [89].

• It has been shown in [75, 90] that the global minimum for the SBL cost function leads to maximally

sparse solutions. Additionally, the number of local minima can be bounded above [75]; this bound is

typically lower than that for conventional sparse recovery algorithms.

1Since our framework is not application-specific, we call each unknown xl a source for convenience. The considered MMV
setting arises in, e.g., wireless communications: 1) direction of arrival estimation of clustered multipath components at mmWave
frequencies, where the block-sparse xl represents a vector of beam space angular components of the channel for time instant l,
and 2) a user activity detection and channel estimation problem in multi-antenna communications under uncorrelated fading
channels with spatially correlated activity patterns, where the block-sparse xl is the channel vector associated with N users at
time instant l.

13



• SBL shows great promise for sparse signal recovery under correlated sources and ill-conditioned dic-

tionaries [91, 92]. Such dictionaries (e.g., FFT bases) are often encountered in specific signal recovery

applications, like wireless channel estimation.

We now describe the SBL inference. With an additive Gaussian noise model (2.1), the likelihood of

the observations p(yl|xl) is given by the Gaussian likelihood CN (Axl, λI). The SBL framework [88] assumes

a prior distribution on xl; for each signal xl ∈ CN , l = 1, . . . , L, this is characterized by a parametric Gaussian

distribution CN (0,Γ) as

p(xl;γ) =
1

|πΓ|exp
(
−xH

l Γ
−1xl

)
, (2.2)

where γ = [γ1 · · · γN ]T ∈ RN
+ is a vector of hyperparameters, adjusting the variance of each signal component

xl,i, i = 1, . . . , N , and Γ ≜ diag(γ1, . . . , γN ). The hyperparameter values γ reflect the sparsity profile of the

block-row-sparse X; a suitable prior on γ can lead xl to model many interesting sparse priors, e.g., Gaussian

scale mixtures [74,93,94].

The posterior density p(xl|yl;γ) is also Gaussian as CN (µxl|yl;γ
,Σx|y;γ), where

µxl|yl;γ
= λ−1Σx|y;γA

Hyl, Σx|y;γ =
(
λ−1AHA+ Γ−1

)−1
. (2.3)

For a given γ, the estimate of each signal {xl}Ll=1 is formed as x̂l,SBL = µxl|yl;γ
according to (2.3). Following

[88], the hyperparameter estimation is done through Type-II Maximum a Posterior (MAP) estimation over

γ as

γ∗= argmax
γ⪰0

log p(γ|y1, . . . ,yL)

= argmin
γ⪰0

L log |Σy|+
∑L

l=1 y
H
l Σ

−1
y yl − log p(γ),

(2.4)

where Σy = λI+AΓAH is the measurement model covariance matrix and log p(γ) is the hyperprior on γ.

The expression in (2.4) is the generalized MMV-SBL cost function.

Two important remarks regarding (2.4) are in order.

1. Role of the prior: A majority of works consider so-called non-informative (i.e., uniform) prior log p(γ),

which corresponds to type-II Maximum Likelihood estimation above. However, in signal processing

tasks, where one possesses some prior information of the structure of signal X, an appropriate choice of

an informative prior of hyperparameter γ can significantly improve the inference performance [95–97].

We address the latter by incorporating the knowledge of the underlying block-sparse signal structure

into the hyperprior log p(γ).
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2. Minimization strategies: The SBL cost function (2.4) is, in general, non-convex in γ due to the concave

term log |Σy|; convexity of log p(γ) depends on the prior. Different minimization strategies for (2.4)

have been proposed, along with their convergence guarantees. To this end, we develop and discuss

specific optimization strategies tailored for our novel SBL method in Sec. 2.3.

2.2.3 SBL with Novel TV-based Regularizers

Regarding the MMV-SBL cost function (2.4), this section presents our novel SBL priors, i.e., hy-

perparameter regularizers, that will encourage block-sparse signal recovery. We introduce two regularization

classes inspired by Total Variation (TV) and various CS-based sparse regularizers. TV has been used

extensively in image processing for regularization and denoising [98–100]. TV regularization has also been

used for group-sparse recovery along with the sparsity-inducing regularizers (like ℓ1-norm penalty) in such

image recovery tasks [101–106]. These approaches enforce structure by working directly on signal xl – a

more challenging and less efficient approach for the complicated block-sparsity problem.

Differently, our approach relies on enforcing special structures on the hyperparameter vector γ. It

is noteworthy that imposing the regularizer on the hyperparameters rather than the source vectors xl is an

important distinction and also key to the success of our approach. Block-sparse recovery algorithms have

been developed introducing priors on the hyperparameter space (see Sec. 2.1.1). The BSBL [77] algorithm is

tailored to fixed block sizes, thus limiting its utility for more flexible block-sparse recovery. The algorithms

using rigid SBL hyperparameter coupling [79,80], although highly effective for flexible block-sparse recovery,

are herein shown to be sensitive to recovering signals with both block-sparse and isolated sparse components;

these stronger priors are biased to block structures in the underlying signal. We aim to bridge this gap

by introducing a softer TV-inspired prior p(γ) on the hyperparameter space. This circumvents excessive

coupling bias on the signal and makes the proposed method extremely robust and capable of accommodating

both block-sparse and isolated sparse components. Empirical evidence for our claims is provided through

the simulation results for different classes of block-sparse signals in Sec. 2.5.

Consider the MMV-SBL cost function (2.4). We denote the hyperprior as β̃ T (γ) ≜ −log p(γ),

where β̃ is a non-negative weighting parameter controlling the emphasis on the prior, and T (·) is a general

TV-type penalty of vector γ, which will become explicit in sequel. Accordingly, we will minimize the TV-

regularized MMV-SBL cost function

γ∗ = argmin
γ⪰0

L log|Σy|+
∑L

l=1 y
H
l Σ

−1
y yl + β̃ T (γ). (2.5)
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Regardless of the form of T (·), we refer to our proposed method collectively as TV-SBL.

Recall from (2.4) that β̃ in (2.5) serves as the interface on how much weight the data Y carries in

(the optimization over) the posterior distribution versus the weight carried by the prior information about

the signal structure, captured by T (γ). This brings us to motivate the choice of an appropriate T (·). The

first thing to stress is that the purpose of the regularization T (·) is not to promote sparse solutions per se.

Namely, in the canonical part of the SBL cost function in (2.5), the log det term log|Σy| takes the role of

imposing a sparsity penalty via the principles of automatic relevance determination. Thus, the role of T (·)

is to augment the SBL’s objective to encourage special sparse structures, herein, block-sparse structures.

Conventional CS techniques induce sparsity via minimization of the ℓ0-“norm” ||x||0 =
∑N

i=1 I(|xi|).

Many surrogate measures have been used, the most common one being the ℓ1-norm in CS [107, 108]. We

harness this indicator function perspective to promote block-sparsity. By extending this element-counting

function to a block-counting function, we introduce two novel classes of regularizers T (·): (i) Conventional

TV Regularization and (ii) Region-aware Regularization using TV. We introduce three analytical TV-SBL

regularizers – Linear TV, Log TV and DoL TV – with the first two belonging to the conventional TV

regularization class, and the third to the region-aware regularization class. We elaborate further below.

Conventional TV Regularization

Our initial approach defines a block (either signal or zero block) as a region with constant γi’s, analogous to

the BSBL algorithm in [76], yet without the knowledge of the true block distribution. We define the related

regularizer using the block-counting function that is equal to TV on γ, i.e.,

T (γ) =
∑N

i=2 I(|γi − γi−1|). (2.6)

Using equal variances for the entries within a block, the measure (2.6) counts the number of edges in the

underlying block structure. Note that even if the regularizer (2.6) tends to enforce equal values of γi’s for

the consecutive nonzero entries, this does not stringently translate to restraining the corresponding signal

entries xl,i to have equal magnitudes. This is the main asset in regularizing the hyperparameters, not the

signal magnitudes. Thus, while simple, the imposed hierarchical prior structure admits significant boost in

recovering various block-sparse signals, as demonstrated by the numerical results in Sec. 2.5.

Armed with the ideal measure (2.6), we can use tractable measures developed in CS on the TV

input variable |γi−γi−1| to identify appropriate block structures. CS theory has developed many regularizers

that are monotonically increasing and concave on the positive orthant to promote sparsity. We investigate

two such surrogate functions, introducing our two conventional TV regularizers addressed in this paper.
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Linear TV

The linear TV regularizer is equivalent to the ℓ1 penalty in CS and is given by the form

T (γ) =
∑N

i=2 |γi − γi−1|. (2.7)

As stated earlier, TV has also been used in different signal processing applications to preserve edges and

enforce local smoothness. We use this convex regularizer to enforce a block structure in the recovered signal.

In addition to the signal regions, this penalty is found to “denoise” the zero regions more effectively than

the unregularized SBL algorithm [85].

Log TV

Another widely used regularizer in CS is
∑N

i=1 log(|xi|+ϵ), where ϵ is a positive stability parameter.

This log-sum regularizer employs an iterative reweighted ℓ1 minimization algorithm and has been shown to

yield superior recovery [108,109]. Utilizing this regularizer for block-sparsity, the log TV regularizer is given

by

T (γ) =
∑N

i=2 log(|γi − γi−1|+ ϵ). (2.8)

As in the CS literature, the log TV based approach is found to be more effective than the linear TV, using

the MM optimization framework (see Sec. 2.3.1) [85]. This is due to its better resemblance to ℓ0-“norm”

[108], allowing more signal variance differences within a block and restraining small (faulty) signal estimate

components to emerge.

The block-counting function (2.6) enforces blocks quite rigidly through constant γi values, irre-

spective of a block being a zero or nonzero block. A more flexible block-counting function, explained next,

incorporates this crucial difference between zero and nonzero blocks.

Region-aware Regularization using TV (RAR TV)

We introduce a new terminology here, namely, zero and signal regions. Inspired by a pictorial representation

of block-sparse signals (e.g., block-sparse angular regions for mmWave channels), a signal region – as a

broader description of a signal block – consists of a contiguous sequence of nonzero entries, which are not

necessarily associated with the same γi value. We have empirically observed that there exists a dissimilarity

in the recovery of zero and signal regions of the sparse vector xl. We modify our original block-counting
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function (2.6) to incorporate this differentiation as

T (γ) =
∑N

i=2 |I(γi)− I(γi−1)|. (2.9)

The block-counting function (2.9), unlike (2.6), will minimize the number of transitions between

a signal region and a zero region, while allowing arbitrary variation of signal magnitudes within the blocks

of the signal region. Further, this will enforce strict contiguous zero blocks; hence the name Region-aware

Regularization (RAR). This differential treatment of the zero and nonzero regions translates to a nonlinear

scaling of the hyperparameter components. More explicitly, we use a tractable relaxation of (2.9) as

T (γ) =
∑N

i=2 |g(γi)− g(γi−1)|, (2.10)

where g(·) is a non-decreasing concave function in the positive quadrant, which (relatively) amplifies lower

γi values while scaling down the higher values corresponding to large signal components. We term the

penalty in (2.10) as the Difference of Functions (DoF) regularizer. We use this form, with its concave

non-decreasing behavior, for the optimization analysis of TV-SBL in Sec. 2.4. Prior to this, we introduce

one specific realization of g(·) for the DoF penalty, which will be used to illustrate the utility of the RAR

strategy.

Difference of Logs (DoL) TV

Following the above arguments for the utility of the log(·) transform in CS as surrogate measures

of the ℓ0-“norm”, we propose a novel Difference of Logs (DoL) TV penalty as

T (γ) =
∑N

i=2 |log(γi)− log(γi−1)|. (2.11)

Here, the role of the log(·) function2 is to nonlinearly scale the hyperparameter vector γ to differentially treat

the zero and signal regions, which is the main feature required for g(·), as motivated above. We remark that

other tractable surrogate functions g(·) that better resemble the indicator function I(·) in (2.9) are worth

studying as future work.

Remark. One feature of interest here is that the penalty |log(γi)− log(γi−1)| in (2.11) alternatively reduces

the TV in the hyperparameter space using the ratio γi

γi−1
→ 1. The analysis of the TV reduction by matching

2Some of our experiments (not provided herein) have shown that the concave square root penalty g(γi) =
√
γi is another

potential variant for (2.10), performing similar to the log(·) penalty.
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Table 2.1: Comparison of Key Properties for TV-SBL Regularizers

Property Linear TV (2.7) Log TV (2.8) DoL TV (2.11)

Block-counting function Conventional TV (2.6) Conventional TV (2.6) Region-aware TV (2.9)
Analogous CS regularizer ℓ1-norm regularization log-sum regularization No conventional CS regu-

larizer
Block-sparse enforcement Minimize γi variation Minimize γi variation Minimize γi zero–nonzero

transition
Block type symmetry Invariant to block type Invariant to block type Differential zero–nonzero

γi regularizer
Convex optimization solu-
tion

Possible through MM Possible through MM Not possible (EM-based
optimization used)

Performance Weakest TV-SBL regular-
izer

Stronger than Linear TV Strongest TV-SBL regu-
larizer

the ratio to 1 warrants further elaboration and discussion, and it is left for future work.

Remark. The value of regularization weight parameter β has clearly a significant impact on the TV-SBL’s

performance and needs thus appropriate adjustment. As for any regularization-based method, having a sys-

tematic way of defining the optimal β is elusive. Pragmatically, if the estimate of γ and, consequently,

the estimate of xl tend to exclusively show isolated sparse components for a block-sparse X, increasing β

promotes the blocks to emerge. On the contrary, if the estimate vectors are non-sparse with overly smooth

envelopes, β should be decreased. We remark that configuring β could also be incorporated into a learning

framework. Specific tuning of β is outside of the scope of this work.

Through this section, we have introduced three novel block-sparsity-inducing regularizers: (2.7),

(2.8), and (2.11). The key properties highlighting the differences between these regularizers are summarized

in Table 2.1. We now move on to analyze the optimization of the TV-regularized MMV-SBL cost function

(2.5) under each regularizer.

2.3 Optimization Framework for TV-SBL

SBL optimization has been extensively studied in various contexts. The original approach was

proposed by Tipping [74], using fixed point iteration. The most popular algorithm for SBL optimization

is the Expectation-Maximization (EM) algorithm, as used in [75, 76, 88]. Another common approach is

the Majorization-Minimization (MM) framework [85,110] that relaxes the non-convex optimization problem

(2.4) into a sequence of convex optimization problems. Other strategies include the iterative reweighted ℓ1

and ℓ2 methods [93] and Generalized Approximate Message Passing (GAMP) [92].

The fundamental difference in the underlying block-counting measures between the Conventional
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TV in (2.6) and RAR TV in (2.9) classifies the optimization procedures for the TV-SBL cost (2.5) under

their respective labels.

1. Conventional TV Optimization: The linear and log TV penalties in (2.7) and (2.8) can be tack-

led by convex optimization tools after appropriately relaxing the problem (2.5), e.g., using the MM

framework. We address such MM-based optimization in Sec. 2.3.1.

2. RAR TV Optimization: The DoL penalty in (2.11) precludes the use of convex solvers, as will

be discussed in Sec. 2.3.2. We approach this by splitting the overall optimization into two sequential

sub-problems, and combining the solutions. We use the EM-based inference to generate closed-form

update expressions. The EM preliminaries are presented in Sec. 2.3.3 and our overall optimization

procedure is detailed in Sec. 2.4.

Both these frameworks reformulate the original TV-SBL cost (2.5), to be handled by different optimization

tools.

2.3.1 Conventional TV-SBL through Convex Optimization

There are many options for minimizing the general SBL objective function. We apply the majorization-

minimization (MM) approach and derive an iterative algorithm for minimizing the TV-SBL cost.

Linear TV

he TV-SBL optimization (2.4) for the Linear TV regularizer in (2.7) is

γ∗=argmin
γ⪰0

L log|Σy|+
∑L

l=1 y
H
l Σ

−1
y yl + β

∑N
i=2|γi − γi−1|. (2.12)

Using the MM technique similar to [110], we majorize the concave term log|Σy| and solve iteratively a

sequence of convex optimization problems. We majorize (i.e., linearize) log|Σy| by its first-order Taylor

approximation at point Γ(j), i.e.,

log|λI+AΓAH| ≤ log|λI+AΓ(j)AH|+

Tr
(
(Σ(j)

y )−1AAH[Γ− Γ(j)]
)
,

(2.13)
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where the superscript j denotes the MM iteration index. Using (2.13), at iteration j, we end up with solving

the convex problem

γ(j+1) =argmin
γ⪰0

LTr
((

Σ(j)
y

)−1
AΓAH

)
+
∑L

l=1 y
H
l Σ

−1
y yl + β

∑N
i=2 |γi − γi−1|,

(2.14)

and then updating Σ(j)
y using the newly obtained γ(j+1).

Log TV

The TV-SBL optimization (2.4) for the Log TV regularizer in (2.8) is

γ∗ =argmin
γ⪰0

L log|Σy|+
∑L

l=1 y
H
l Σ

−1
y yl

+β
∑N

i=2 log(|γi − γi−1|+ ϵ).

(2.15)

Similar to the Linear TV case above, we apply the MM approach for (2.15). Besides majorizing the log|Σy|

term via (2.13), we majorize the concave Log TV penalty (2.8) by its first-order Taylor approximation at

points (γ
(j)
i − γ

(j)
i−1), i = 2, . . . , N , i.e.,

log(|γi − γi−1|+ ϵ) ≤ log(|γ(j)
i − γ

(j)
i−1|+ ϵ) + |γi−γi−1|

|γ(j)
i −γ

(j)
i−1|+ϵ

. (2.16)

Thus, at iteration j, we solve the convex problem

γ(j+1)= argmin
γ⪰0

LTr
((

Σ(j)
y

)−1
AΓAH

)
+
∑L

l=1 y
H
l Σ

−1
y yl + β

∑N
i=2

1

|γ(j)
i −γ

(j)
i−1|+ϵ

|γi − γi−1|,
(2.17)

followed by updating Σ(j)
y using the newly obtained γ(j+1).

Convex Solver Implementation of TV-SBL

Any convex optimization package can be implemented to solve (2.14) and (2.17). Algorithm 8

presents the implementation of TV-SBL via the widely used CVX optimization package [111] to facilitate

easy adoption and experimentation. One key step is to handle the matrix inverse in yH
l Σ

−1
y yl through

the Schur’s complement equivalence [112, Appendix A5.5] by introducing the Hermitian symmetric matrix

variables Zcvx,l ∈ SM×M , l = 1, . . . , L.
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Algorithm 1: CVX Solver for TV-SBL

Input: A,Y,γ(0), λ, β, ϵ, jmax

Output: µxl|yl;γ
(∀ l ∈ {1, . . . , L}

1 for j = 0 to jmax − 1 do

2 Evaluate [Σ(j)
y ]−1 = (λI+AΓ(j)AH)−1;

3 CVX variables: γcvx ∈ RN , Zcvx,l ∈ SM×M , l = 1, . . . , L;

4 minimize: LTr
[
(Σ(j)

y

)−1
AΓcvxA

H
]
+
∑L

l=1 Tr(Zcvx,l) + β T (γcvx);

5 subject to: γcvx ⪰ 0,

[
Zcvx,l (yly

H
l )

1/2

(yly
H
l )

1/2 λI+AΓcvxA
H

]
⪰ 0 (∀ l ∈ {1, . . . , L});

6 γ(j+1) ← γcvx;

7 end

8 Evaluate µxl|yl;γ
(∀ l ∈ {1, . . . , L}) using γ(jmax) in (2.3);

2.3.2 Difficulty in Majorizing DoL TV Penalty

Consider the DoL penalty in (2.11). The term |log(γi) − log(γi−1)| is concave in γi for γi > γi−1

and convex in γi for γi < γi−1. Thus, unlike the linear and log TV in (2.12) and (2.15) respectively, we

cannot find a universal majorizer for the DoL function. In fact, this holds true for any DoF TV penalty in

(2.10) with a concave function g(·). Until further notice, we proceed with the DoF regularizer (2.10) while

keeping in mind that its special case g(·) = log(·) realizes the DoL in (2.11).

The TV-SBL optimization (2.5) under the DoF TV penalty in (2.10) reads as

γ∗ = argmin
γ⪰0

L log|Σy|+
∑L

l=1 y
H
l Σ

−1
y yl

+β̃
∑N

i=2 |g(γi)− g(γi−1)|.
(2.18)

We solve (2.18) with the EM method. In particular, as it will be seen in Sec. 2.4, this converts the minimiza-

tion (2.18) into a form that can be solved efficiently using cyclic optimization. Before elaborating further,

we describe the general EM procedure used in the TV-SBL optimization.

2.3.3 TV-SBL Inference through Expectation-Maximization

As opposed to a single-shot minimization (2.18), the EM algorithm finds the estimate of the hy-

perparameter vector γ iteratively. We follow the EM-SBL framework, introduced in [75] and extended to

MMV in [88]. Using the standard EM theory [113], Y is the observation variable, X is the hidden variable

and γ is the unknown parameter to be estimated. Each of the variables Y,X, and γ is as determined in

(2.1) and (2.2).

E-step
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Treating (Y,X) as the complete data and using the Markov chain γ → X→ Y, the joint distribution gives

log p(X,Y,γ) = log p(Y|X) + log p(X|γ) + log p(γ). (2.19)

The Q-function is evaluated by averaging out the hidden variable X as

Q(γ|γ(k))= EX|Y;γ(k) [log p(Y,X,γ)]

= EX|Y;γ(k) [log p(Y|X)+log p(X|γ)+log p(γ)]

= EX|Y;γ(k)

[
log p(Y|X)+ log

∏L
l=1 p(xl|γ)

]
+log p(γ),

(2.20)

where the expectation is with respect to the posterior p(X|Y;γ(k)) =
∏L

l=1 p(xl|yl;γ
(k)). Removing the

terms that do not depend on γ, and using the result from [88] to evaluate the posterior expectation, we write

the E-step as

Q(γ|γ(k))=
∑N

i=1

[
− L log γi −

∑L
l=1

E
(k)
l,i

γi

]
+ log p(γ)

= L
{∑N

i=1

[
− E

(k)
i

γi
− log γi

]
− β̃

L
T (γ)

}
,

(2.21)

where, using (2.3), we defined the quantities for iteration k as

E
(k)
i =

1

L

∑L
l=1 E

(k)
l,i

=
1

L

∑L
l=1

[[
µxl|yl;γ(k)(i)

]2
+Σx|y;γ(k)(i, i)

]
.

(2.22)

Remark. For the subsequent analysis, we use the regularization normalized by the number of snapshots,

i.e., β ≜ β̃/L.

Specializing (2.21) to the DoF TV regularizer in (2.10), we re-define the E-step cost function as

J (k)(γ) ≜
∑N

i=1 f
(k)
i (γi) + β

∑N
i=2 |g(γi)− g(γi−1)|, (2.23)

where, for brevity, we introduced a function

f
(k)
i (γi) ≜

E
(k)
i

γi
+ log γi. (2.24)
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J (k)(γ)=
∑

i∈even

[
f
(k)
i (γi) + β

( ∣∣g(γi)− g(γi−1)
∣∣+ ∣∣g(γi)− g(γi+1)

∣∣ )]+∑
i∈odd f

(k)
i (γi)

=
∑

i∈odd

[
f
(k)
i (γi) + β

( ∣∣g(γi)− g(γi−1)
∣∣+ ∣∣g(γi)− g(γi+1)

∣∣ )]+∑
i∈even f

(k)
i (γi).

(2.26)

M-step

γ(k+1)=argmax
γ⪰0

Q(γ|γ(k))

=argmin
γ⪰0

J (k)(γ)

=argmin
γ⪰0

∑N
i=1 f

(k)
i (γi)+β

∑N
i=2 |g(γi)− g(γi−1)|.

(2.25)

Using EM, we have converted the original TV-SBL optimization from (2.18) to iterative updates

as per (2.25). It is important to note that besides J (k)(γ) being non-convex in γ, the TV term introduces

coupling of the hyperparameters, preventing updates of {γi}Ni=1 in parallel. Consequently, the computational

complexity of vector optimization in (2.25) may become excessive for high-dimensional signal setups. There-

fore, in the next section, we propose an alternating optimization framework that enables solving the M-step

(2.25) efficiently via element-wise parallel updates.

2.4 Alternating Optimization for Solving the M-Step of the EM-

based TV-SBL

Our alternating optimization procedure for TV-SBL, detailed in this section, has been inspired by

the coordinate descent optimization methods [114–118]. We extend these methods to handle our EM-based

TV-SBL framework described in Sec. 2.3.3. First, the detailed derivation is carried out for the M-step of

DoF TV-SBL in (2.25) (for which the MM approach is not applicable). The section ends with establishing

a universal EM-based TV solver, providing alternative solvers to the linear TV optimization (2.12) and log

TV optimization (2.15) apart from their MM solutions in Sec. 2.3.1.

2.4.1 Alternating Optimization and Convergence

In order to use the techniques from coordinate descent to solve (2.25), we first reformulate the cost

function J (k)(γ) in (2.23). We begin by expressing the TV part T (γ) as summations over the even and

odd indices, as shown in (2.26). The form (2.26) rewrites the M-step optimization (2.25) as a summation

over two disjoint sets of the elements of γ, i.e., the even and odd index elements of γ. This provides an

ideal setting to use alternating optimization and separately optimize over the even and odd indices. For this
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alternating optimization procedure, we define the following function in relation to (2.26):

F
(k)
i (γi; γ

(k)
i−1, γ

(k)
i+1) ≜ f

(k)
i (γi)+

β
(∣∣g(γi)− g(γ

(k)
i−1)

∣∣+ ∣∣g(γi)− g(γ
(k)
i+1)

∣∣), (2.27)

where γ
(k)
i−1 and γ

(k)
i+1 are fixed quantities at EM iteration k.

The following theorem presents our proposed EM-based alternating optimization method for DoF

TV-SBL along with its convergence properties. In particular, the following update equations form the M-step

(see (2.25)) tailored to TV-SBL.

Theorem 1. For F
(k)
i (γi; γ

(k)
i−1, γ

(k)
i+1) defined by (2.27), if the alternating optimization at iteration k is carried

out as

γ
(k+1)
i =argmin

γi>0
F

(k)
i (γi; γ

(k)
i−1, γ

(k)
i+1), ∀i even

γ
(k+1)
i =argmin

γi>0
F

(k)
i (γi; γ

(k+1)
i−1 , γ

(k+1)
i+1 ), ∀i odd,

(2.28)

the cost function (2.23) decreases over each iteration k, i.e.,

J (k)(γ(k+1)) ≤ J (k)(γ(k)). (2.29)

Proof. The proof is given in Appendix 2.A.

By means of Theorem 1, we decouple the general DoF TV penalty and provide N separate update

equations corresponding to each hyperparameter element γi. Moreover, by using this two-step alternating

optimization over the even and odd indices of γ, the M-step cost function (2.25) decreases over each iteration

as per (2.29), which subsequently results in convergence to a local minimum of problem (2.25).

Owing to the generality of the cost function J (k)(γ) in terms of the choice of concave function g(·),

it may not always be possible to find closed-form solutions to the minimization steps in (2.28). However,

the following corollary asserts that for a convergent algorithm determined through (2.29), it is sufficient to

obtain only a decrease in the optimization steps.

Corollary 1.1. If the updated parameters γ(k+1) satisfy

F
(k)
i (γ

(k+1)
i ; γ

(k)
i−1, γ

(k)
i+1) ≤ F

(k)
i (γ

(k)
i ; γ

(k)
i−1, γ

(k)
i+1), ∀i even,

F
(k)
i (γ

(k+1)
i ; γ

(k+1)
i−1 , γ

(k+1)
i+1 ) ≤ F

(k)
i (γ

(k)
i ; γ

(k+1)
i−1 , γ

(k+1)
i+1 ),

∀i odd,
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then this is sufficient to imply (2.29).

Proof. The proof follows from the steps similar to those for Theorem 1. In particular, the inequalities (2.38)

and (2.40) do not require the obtained γ
(k+1)
i , ∀i, in (2.28) to be strict minimizers.

Corollary 1 implies that we can use different optimization methods for (2.28), ranging from gra-

dient descent to MM, to approximately solve the M-step of the TV-SBL. Having described the alternating

optimization recipe for the TV-SBL, we now present its specific iterative algorithmic implementation.

2.4.2 Algorithm Implementation: Segment-wise Parallel Updates

This section elaborates the steps to solve each optimization sub-problem in (2.28) over the even

and odd indices. We exploit the nature of the absolute value function | · | of the DoF regularizer to break

each minimization here into individual segments, optimize these separately, and then combine the results.

Hence, we refer to our method as the Segment-wise Parallel Update algorithm. We begin with the update

equation for the even indices in (2.28); the optimization for the odd indices will follow analogously.

We start by introducing quantities that order the neighbouring elements for each γ
(k)
i :

γ
(k)
i,max≜max

(
γ
(k)
i−1, γ

(k)
i+1

)
, γ

(k)
i,min≜min

(
γ
(k)
i−1, γ

(k)
i+1

)
. (2.30)

Using (2.30), the optimization problem for the even indices in (2.28) reads as

γ
(k+1)
i = argmin

γi>0
F

(k)
i (γi; γ

(k)
i,max, γ

(k)
i,min)

= argmin
γi>0

[
f
(k)
i (γi) + β

( ∣∣g(γi)− g(γ
(k)
i,max)

∣∣
+
∣∣g(γi)− g(γ

(k)
i,min)

∣∣ )], ∀i even.
(2.31)

The objective function of (2.31) is differentiable, except at points γi ∈ {γ(k)
i,max, γ

(k)
i,min}. To overcome

the non-differentiability, we first define three mutually exclusive and collectively exhaustive segments on

positive reals (R+):

Γ̂i=
{
γi | γi > γ

(k)
i,max ≥ 0

}
,

Γ̃i=
{
γi | γ(k)

i,max ≥ γi ≥ γ
(k)
i,min ≥ 0

}
,

Γ̄i=
{
γi | γ(k)

i,min > γi ≥ 0
}
,

(2.32)

wherein this function is continuous and differentiable. Using (2.32), the optimization problem (2.31) is
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equivalent to

γ
(k+1)
i = argmin

γi∈
{
γ̂
(k)
i ,γ̃

(k)
i ,γ̄

(k)
i

}F (k)
i (γi; γ

(k)
i,max, γ

(k)
i,min), ∀i even, (2.33)

where the three “candidate” solutions {γ̂(k)
i , γ̃

(k)
i , γ̄

(k)
i } are found by separate segment-wise optimization

problems

γ̂
(k)
i ≜argmin

γi∈Γ̂i

f
(k)
i (γi)+2βg(γi)− β

[
g(γ

(k)
i,max) + g(γ

(k)
i,min)

]
,

γ̃
(k)
i ≜argmin

γi∈Γ̃i

f
(k)
i (γi)+β

[
g(γ

(k)
i,max)− g(γ

(k)
i,min)

]
,

γ̄
(k)
i ≜argmin

γi∈Γ̄i

f
(k)
i (γi)− 2βg(γi)+β

[
g(γ

(k)
i,max) + g(γ

(k)
i,min)

]
.

(2.34)

The constrained problems in (2.34) present our general approach to solve the TV-SBL problem for

any general DoF TV penalty (2.10). However, these might be difficult to solve, especially through closed-

form expressions. Fortunately, for certain controlled cases, like the DoL TV penalty (2.11), we can solve

them equivalently, yet more efficiently, through the following two-step procedure: an unconstrained update

followed by projection to the relevant segment.

Step 1: Unconstrained update

α̂
(k)
i = argminγi∈R f

(k)
i (γi) + 2βg(γi)

α̃
(k)
i = argminγi∈R f

(k)
i (γi)

ᾱ
(k)
i = argminγi∈R f

(k)
i (γi)− 2βg(γi).

(2.35)

Step 2: Segment-wise projection

γ̂
(k)
i = max

(
γ
(k)
i,max, α̂

(k)
i

)
γ̃
(k)
i = min

(
γ
(k)
i,max, max

{
γ
(k)
i,min, α̃

(k)
i

})
γ̄
(k)
i = max

(
0, min

{
γ
(k)
i,min, ᾱ

(k)
i

})
.

(2.36)

Elaborate justification of this segment-wise parallel update optimization strategy is presented in Sec. 2.4.3.

As we mentioned earlier, the steps above are used to update the hyperparameter values in parallel,

obtaining γ
(k+1)
i for the even indices. Then, these updated values are used in the optimization over the odd

indices through the optimization steps analogous to (2.30), (2.36), and (2.33).
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Algorithm 2: Universal EM-Based Segment-wise Parallel Update Algorithm for TV-SBL

Input: A,Y,γ(0), λ, β

Output: γ(kmax), µ
(kmax)

xl|yl;γ(kmax) , ∀l

1 for k = 0 to kmax do

2 Evaluate Σ
(k)
x|y and µ

(k)

xl|yl;γ(k) , ∀l using (2.3);

3 Evaluate E
(k)
i using (2.22);

4 Evaluate α̂
(k)
i , α̃

(k)
i , and ᾱ

(k)
i , ∀i using Table 2.2;

5 for i ∈ even indices do

6 Evaluate γ
(k)
i,max and γ

(k)
i,min using (2.30);

7 Evaluate γ̂
(k)
i , γ̃

(k)
i , γ̄

(k)
i using (2.36);

8 Obtain γ
(k+1)
i using (2.33);

9 for i ∈ odd indices do

10 Evaluate γ
(k+1)
i,max and γ

(k+1)
i,min using (2.30);

11 Evaluate γ̂
(k)
i , γ̃

(k)
i , γ̄

(k)
i using (2.36);

12 Obtain γ
(k+1)
i using (2.33);

2.4.3 Unifying TV-SBL using Alternating Optimization

We now specialize this framework and set up a universal TV-SBL solver to handle all the introduced

TV regularizers: the linear TV (2.7), the log TV (2.8), and the DoL TV (2.11).

To begin, it is clear that for a convex cost (2.31), the segment-wise algorithm – following the steps

(2.35), (2.36), and (2.33) – converges to a local minimum of (2.31), enjoying the convergence properties

of Theorem 1, i.e., the TV-SBL M-step cost (2.25) decreases over each iteration. Since the DoL TV-SBL

cost function (2.31) is non-convex, it is not immediately clear whether the unconstrained updates (2.35) in

conjunction with the segment-wise projections in (2.36) work. To this end, Appendix 2.B shows the segment-

wise parallel updates for the DoL TV cost to be equivalent to (2.31), i.e., this optimization strategy finds a

local minimum of the M-step cost (2.25). Thus, the DoL TV-SBL optimization, via the controlled nature

of the DoL TV, adheres to the convergence results of Theorem 1, despite the non-convexity. Appendix 2.B

also derives the closed-form solutions to the unconstrained updates (2.35) for the DoL TV.

We derive an EM-based solution to the TV-SBL with the linear TV penalty (2.7) and the log TV

penalty (2.8) as follows. For each penalty, we majorize the involved non-convex TV-SBL cost F
(k)
i (γi; γ

(k)
i,max, γ

(k)
i,min)

in (2.31) by a convex surrogate. Applying the segment-wise algorithm on the majorized convex cost function
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Table 2.2: TV-SBL: Unconstrained updates (2.35) for the linear, log, and DoL TV penalties

TV Penalty α̂
(k)
i α̃

(k)
i ᾱ

(k)
i

|γi − γi−1|
√

E
(k)
i

q
(k)
i +2β

√
E

(k)
i

q
(k)
i

√
E

(k)
i

max(ϵ0,q
(k)
i −2β)

log(|γi − γi−1|+ ϵ)

√
E

(k)
i

q
(k)
i +β(a

(k)
i +b

(k)
i )

√
E

(k)
i

max
(
ϵ0,q

(k)
i +β(b

(k)
i −a

(k)
i )

) √
E

(k)
i

max
(
ϵ0,q

(k)
i −β(a

(k)
i +b

(k)
i )

)
|log(γi)− log(γi−1)|

E
(k)
i

1+2β E
(k)
i

E
(k)
i

1−2β

ensures the convergence of (2.25) according to Corollary 1.1, i.e., the TV-SBL M-step cost (2.25) decreases

over each iteration. The closed-form solutions to the unconstrained updates (2.35) for the linear and log TV

under this majorization approach are derived in Appendix 2.C.1 and 2.C.2, respectively.

Finally, our universal EM-based TV-SBL algorithm exploiting the segment-wise parallel up-

dating is summarized in Algorithm 12; the required unconstrained update rules for (2.35) for each TV-penalty

type are summarized in Table 2.2.

2.4.4 Algorithm Complexity

Since the E-Step of TV-SBL is the same as the original M-SBL, the complexity of TV-SBL is

similar to M-SBL. The main computational burden at each iteration of our proposed EM-based TV-SBL, as

summarized in Algorithm 12, is the computation of the matrix inverse in the E-step in evaluating Σ
(k)
xl|yl

, ∀l,

via (2.3). The number of floating-point operations is of order O(M2N) per iteration k. It has been shown in

[88] that the overall covariance computation can be done independent of the number of snapshots L. Thus,

the overall order of the entire algorithm is O(kmaxM
2N), where kmax is the (maximum) number of iterations

taken. For the M-step update (2.25) using the TV-SBL regularizers (2.7), (2.8), and (2.11), we have an O(1)

parallel update procedure for each of the hyperparameter components γi (see Algorithm 12); thus faster

computation than the E-step update (2.22), leaving the overall TV-SBL complexity as O(kmaxM
2N).

2.5 Numerical Results

We provide numerical results for the block-sparse signal recovery using the proposed TV-SBL

algorithm, implemented via Algorithm 12. For the MMV setup (2.1), we consider a signal of length N = 300

with M = 30 measurements and L = 5 snapshots. We form the dictionary A ∈ RM×N by first drawing its

elements from a Gaussian distribution, and then normalizing the columns as ∥ · ∥2 = 1. The signal ensemble

X contains K nonzero rows and each nonzero element is drawn from N (0, 1/K). We consider three classes

of sparse signal distributions:
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1. Homogeneous block-sparse signal with total sparsity K = 20, composed of 4 blocks of length 5 each;

2. Random sparse signal with K = 15 randomly placed nonzero components, which are thus mostly

isolated;

3. Hybrid sparse signal with total sparsity K = 20, composing 3 blocks of length 5, and 5 isolated com-

ponents.

Each entry of noise signal nl is generated from N (0, λ) with noise variance λ chosen so that the signal-to-

noise ratio (SNR), 10log10

(
E[||Axl||2]
E[||nl||2]

)
, varies from −5 to 25 dB. All expectations E[·] are evaluated over 200

Monte Carlo trials. We assess the performance with the following two metrics.

1. Estimation accuracy is measured by the normalized mean square error (NMSE), E
[
||X̂−X||2
||X||2

]
, where

X̂ is the estimated source matrix.

2. Support recovery is evaluated using the F1-Score [119], F1 = 2E
[
precision×recall
precision+recall

]
, where precision =

tp
tp+fa , recall =

tp
tp+mis , tp is the number of true positives, fa is the number of false alarms, and mis

is the number of misdetections. The F1-Score is a balanced support recovery metric as it penalizes

misdetections and false alarms equally. F1 = 1 implies perfect recovery.

Remark. For ease of comparison, we form a support estimate for an algorithm by preserving the K largest

rows of X̂ while setting the rest to zero. In practice, the support could also be estimated using a fixed threshold.

The choice for setting this fixed threshold is not static and we use empirical methods to set the best minimum

threshold based on the signal values.

Remark. For implementation convenience, we first run the M-SBL algorithm [88] to convergence and use

the obtained γ values as a warm start (i.e., initialize γ(0)) for all subsequent block-sparse recovery algorithms.

2.5.1 Performance of Different TV Penalties

We first compare the relative performance of the different TV-based SBL regularizers (2.7), (2.8),

and (2.11) for the homogeneous block-sparse scenario (see Fig. 2.1(a)). As evident in Figs. 2.1(b) and

2.1(c), all three TV-SBL regularizers outperform the M-SBL algorithm [88] which imposes no prior on γ.

Both conventional TV regularizers (linear TV and log TV) have very similar performance in terms of the

NMSE and support recovery3. However, the region-aware DoL TV clearly outperforms the conventional TV

3As opposed to the EM-based approaches herein, our results in [85] show that the log TV considerably outperforms the
linear TV when optimized via their MM approaches (2.14) and (2.17), respectively.
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Figure 2.1: Performance of TV-SBL under the different TV penalties for N = 300, M = 30, and L = 5: (a) Homoge-
neous block-sparsity (4 blocks of length 5), (b) NMSE, and (c) Support recovery.

regularizers. This performance boost reinforces the strategy to selectively penalize signal and zero regions

in block-sparse recovery.

Remark. Based on the analysis in Sec. 2.5.1, we use the DoL TV version of the TV-SBL for all subsequent

simulations.

2.5.2 Comparison with Benchmark Algorithms

We investigate all the three signal classes and compare the performance of our TV-SBL algorithm

(using DoL TV) against the following SBL-based block-sparse recovery algorithms: (i) BSBL [77], (ii) PC-

SBL [79], and (iii) Burst Sparsity Learning [80]. The M-SBL algorithm [88] is used as a reference to show

recovery without regularization.

Remark. In order to assess the robustness of each algorithm to the changes in block patterns, the parameters

of each algorithm were empirically tuned for the homogeneous block-sparse signal, and then left unchanged for

random and hybrid sparse signals. This tuning is crucial for all hyperparameter-coupling based algorithms,

including our TV-SBL, because it would be evidently optimal to disable the coupling (i.e., set β = 0 for TV-

SBL) for random sparse signals. Thus, we simulate a practical signal recovery scenario where the parameter

tuning might not be viable.

Homogeneous block-sparse signals

As seen in Fig. 2.2, all algorithms, unsurprisingly, outperform M-SBL. BSBL, being provided block

size and boundary information apriori, attains the best F1-Score (Fig. 2.2(c)). However, as the NMSE (Fig.

2.2(b)) illustrates, we need regularization/coupling in addition to fixed block partitioning to recover the signal

effectively. TV-SBL shows superior recovery performance at high SNR values; however it is outperformed by
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Figure 2.2: Performance of TV-SBL (DoL TV) versus the benchmark algorithms for N = 300, M = 30, and L = 5.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

S
o
u
rc

e 
M

ag
n
it

u
d
e

Block-sparse Signal Structure

(a)

-5 0 5 10 15 20 25

-25

-20

-15

-10

-5

0

NMSE Performance

(b)

-5 0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Support Recovery Performance

(c)

Figure 2.3: Performance of TV-SBL (DoL TV) versus the benchmark algorithms for N = 300, M = 30, and L = 5:
(a) Isolated sparsity (15 blocks of length 1), (b) NMSE, and (c) Support recovery.

Burst Sparsity Learning at lower SNR owing to the softer prior imposed. TV-SBL induces hyperparameter

coupling implicitly through the DoL TV prior (2.11). This, combined with its region-aware nature, illustrates

the utility of TV-SBL for block-sparse recovery.

There is an important caveat to explicit coupling-based priors like PC-SBL and Burst Sparsity

Learning: searching for blocks even when there are none. We now demonstrate that a softer prior for

block-sparsity in TV-SBL enjoys increased flexibility to a block structure, showing TV-SBL’s utility beyond

homogeneous block-sparsity.

Sparse signals

Fig. 2.3(a) represents the extreme scenario for the block-sparse algorithms: the block size is one.

First, as seen in Figs. 2.3(b) and 2.3(c), M-SBL achieves the best performance, as expected, establishing a

justified performance bound. TV-SBL significantly outperforms the coupling-based algorithms, while being

comparable to M-SBL. Explicit hyperparameter coupling in PC-SBL and Burst Sparsity Learning biases the
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Figure 2.4: Performance of TV-SBL (DoL TV) versus the benchmark algorithms for N = 300, M = 30, and L = 5:
(a) Hybrid sparsity (3 blocks of length 5 and 5 blocks of length 1), (b) NMSE, and (c) Support recovery.

algorithms to block structures, and thus renders them ineffective for isolated sparsity. Using a softer prior,

TV-SBL supports block-sparsity without such excessive bias; it is remarkably adept at isolated sparsity as

well. This motivates us to analyze a hybrid signal, containing both isolated and block-patterned components,

which is typically the case in practice.

Hybrid sparse signals

The hybrid block structure in Fig. 2.4(a) is a representative of a practical scenario for, e.g., multiple-

input multiple-output (MIMO) wireless channels. As seen in Figs. 2.4(b) and 2.4(c), TV-SBL outperforms

all the other algorithms. The soft prior of TV-SBL flexibly accommodates both block-patterned and isolated

components, whereas PC-SBL and Burst Sparsity Learning, imposing explicit hyperparameter coupling, are

sensitive to isolated components in the underlying signal. This reinforces the fact that TV-SBL presents a

balanced approach to block-sparse signal recovery; it does not compromise on sparse signal recovery at the

cost of block-sparse signal recovery.

2.5.3 Effect of Compression Ratio

We highlight the effect of increasing the compression ratio M/N for the hybrid sparse signals in Fig.

2.5. We increase the number of measurements by 50 % from that in Fig. 2.4, i.e., from M = 30 to M = 45, for

the SNR analysis. As observed in Figs. 2.5(b) and 2.5(c), the relative gap between the algorithms reduces.

Here too, similar to Fig. 2.4, TV-SBL slightly outperforms the other algorithms. The improved performance

for all algorithms is now attributed to the increase in the number of measurements, which reduces the effect

of a block-sparsity prior. This is reinforced by analyzing the system performance for varying the number

of measurements M at SNR 20 dB, as seen in Fig. 2.6. As seen from the results in Figs. 2.6(b) and
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2.6(c), the performance saturates as we increase the number of measurements. This is in line with the

general estimation theory in that the impact of a prior is overridden by having increased amount of data to

perform the inference. However, it may not always be feasible to acquire more measurements in a fixed data

acquisition setup. Nonetheless, for a scenario with a limited number of measurements and snapshots and

varying block-sparse structures, our proposed TV-SBL algorithm represents a robust regularization-enforced

SBL method for general-patterned block-sparse signal recovery.
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Figure 2.5: Performance of TV-SBL (DoL TV) versus the benchmark algorithms for N = 300, M = 45, and L = 5:
(a) Hybrid sparsity (3 blocks of length 5 and 5 blocks of length 1), (b) NMSE, and (c) Support recovery.
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Figure 2.6: Performance of TV-SBL (DoL TV) versus the benchmark algorithms with varying number of measure-
ments for N = 300, L = 5 at SNR = 20dB: (a) Hybrid sparsity (3 blocks of length 5 and 5 blocks of length 1), (b)
NMSE, and (c) Support recovery.

2.5.4 Effect of Snapshots

We analyze the performance of the TV-SBL algorithm as we vary the number of snapshots L in Fig.

2.7. The NMSE (Fig. 2.7(a)) and support recovery (Fig. 2.7(b)) are evaluated at SNR 20 dB for the hybrid

block-sparse signal structure (Fig. 2.7(a)). The performance plots illustrate that by increasing the number
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Figure 2.7: Performance of TV-SBL (DoL TV) versus the benchmark algorithms with varying number of snapshots
for N = 300, M = 30 at SNR = 20dB: (a) Hybrid sparsity (3 blocks of length 5 and 5 blocks of length 1), (b) NMSE,
and (c) Support recovery.

of snapshots, the performance of M-SBL improves significantly, as is expected from the reduced dependency

on the prior. It is interesting to note that while the algorithms using rigid coupling, i.e., PC-SBL and Burst

Sparsity Learning saturate at a lower NMSE, the softer prior of the TV-SBL is able to follow the M-SBL

algorithm, thereby showing the flexibility of the chosen prior.

2.6 Conclusions and Future Work

We proposed TV-based hyperparameter regularizers for SBL to perform robust block-sparse signal

recovery under unknown block patterns. We introduced a new SBL algorithm, TV-SBL, with two perspec-

tives to handle block regularization: 1) the conventional TV regularization (linear TV and log TV) and 2)

the RAR using TV (DoL TV). We showed that, after appropriate relaxations, the conventional TV regular-

ization reduces to a sequence of convex optimization problems, enabling a multitude of numerical solvers.

The majority of our analysis, algorithms, and experiments focused on the DoL TV regularizer, motivated

by its superior performance reported herein. We developed an EM-based alternating optimization solution

algorithm, which has universal applicability to all the introduced TV regularizers. The soft TV prior of the

TV-SBL – especially when incorporating the region-aware DoL TV – presents a novel balanced perspective

on handling block-sparsity. The numerical results show the TV-SBL algorithm to be an efficient method in

recovering sparse signals with both block-patterned and isolated components, proving immensely useful for

practical signal recovery systems, like mmWave channel estimation with non-uniform sparse scattering.

Chapter 2, in part, is a reprint of the material as it appears in Aditya Sant, Markus Leinonen, and

Bhaskar D. Rao. “Block-sparse Signal Recovery via General Total Variation Regularized Sparse Bayesian

Learning.” IEEE Transactions on Signal Processing 70 (2022), and in part, a reprint of the material as
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it appears in Aditya Sant, Markus Leinonen, and Bhaskar D. Rao. “General Total Variation Regularized

Sparse Bayesian Learning for Robust Block-sparse Signal Recovery.” ICASSP 2021-2021. The dissertation

author was the primary investigator and author of these papers.

36



Appendices

2.A Proof of Theorem 1

Using (2.26) and (2.27), the right-hand side of (2.29), J (k)(γ(k)), is written as

J (k)(γ(k))=
∑

i∈evenF
(k)
i (γ

(k)
i ;γ

(k)
i−1,γ

(k)
i+1) +

∑
i∈oddf

(k)
i (γ

(k)
i ). (2.37)

Given an initial value for J (k)(γ(k)) in (2.37), by implementing the first step of the algorithm (2.28), i.e.,

updating the even elements in γ(k+1), we get

∑
i∈evenF

(k)
i (γ

(k+1)
i ; γ

(k)
i−1, γ

(k)
i+1)+

∑
i∈odd f

(k)
i (γ

(k)
i )

≤ J (k)(γ(k)).
(2.38)

The inequality (2.38) expresses the reduction in the cost function J (k)(γ) by only minimizing over the even

indices of γ. We now show the same for the odd indices, corresponding to the second step of the algorithm

(2.28), finally leading to (2.29).

Let us rewrite the left-hand side of (2.38) equivalently as

∑
i∈evenF

(k)
i (γ

(k+1)
i ;γ

(k)
i−1,γ

(k)
i+1)+

∑
i∈oddf

(k)
i (γ

(k)
i )=∑

i∈oddF
(k)
i (γ

(k)
i ;γ

(k+1)
i−1 ,γ

(k+1)
i+1 )+

∑
i∈evenf

(k)
i (γ

(k+1)
i ).

(2.39)

Since the second step of the algorithm (2.28) minimizes
∑

i∈odd F
(k)
i (γi; γ

(k+1)
i−1 , γ

(k+1)
i+1 ) over the odd coeffi-

cients, by using the equivalence in (2.39), the second step results in

J (k)(γ(k+1))≤
∑

i∈odd F
(k)
i (γ

(k)
i ; γ

(k+1)
i−1 , γ

(k+1)
i+1 )

+
∑

i∈even f
(k)
i (γ

(k+1)
i ),

(2.40)
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where J (k)(γ(k+1)) represents the M-step cost function value after completing one iteration cycle in the EM

algorithm.

Combining (2.38), (2.39), and (2.40) results in J (k)(γ(k+1)) ≤ J (k)(γ(k)) in (2.29), which completes

the proof.

2.B Segment-wise Optimization for DoL TV Penalty

Using the definition of f
(k)
i (γi) in (2.24), we rewrite (2.35) as

α̂
(k)
i = argminγi∈R F

(k)
1 (γi) ≜

E
(k)
i

γi
+ (1 + 2β)log γi,

α̃
(k)
i = argminγi∈R F

(k)
0 (γi) ≜

E
(k)
i

γi
+ log γi,

ᾱ
(k)
i = argminγi∈R F

(k)
2 (γi) ≜

E
(k)
i

γi
+ (1− 2β)log γi.

(2.41)

These can be solved by equating the derivative to zero, generating the unconstrained update expressions as

α̂
(k)
i =

E
(k)
i

1 + 2β
, α̃

(k)
i = E

(k)
i , ᾱ

(k)
i =

E
(k)
i

1− 2β
. (2.42)

We choose the regularization parameter β < 0.5 to ensure positive minima. Next, we show the validity of

the two-step strategy in (2.35) and (2.36), separately for each three segments Γ̂i, Γ̄i, and Γ̃i given by (2.32).

Segment γi ∈ Γ̂i: The derivative of the cost function F
(k)
1 (γi) in (2.41) is

∂

∂γi
F

(k)
1 (γi) = −

E
(k)
i

γ2
i

+ (1 + 2β)
1

γi
. (2.43)

It is evident that
∂F

(k)
1 (γi)
∂γi

> 0 for γi > α̂
(k)
i , where α̂

(k)
i is defined in (2.42). Additionally, if α̂

(k)
i /∈ Γ̂i, then,

by the definition of segment Γ̂i in (2.32), we must have α̂
(k)
i < γ

(k)
i,max. This implies that if α̂

(k)
i /∈ Γ̂i, then

α̂
(k)
i < γi, ∀γi ∈ Γ̂i. Using the fact that (2.43) is positive for γi > α̂

(k)
i , F

(k)
1 (γi) is continuously increasing

in the segment Γ̂i, if α̂
(k)
i /∈ Γ̂i. Thus, the minimum of F

(k)
1 (γi) under the constraint set γi ∈ Γ̂i is located

either at the stationary point α̂
(k)
i (when α̂

(k)
i ∈ Γ̂i) or at the lowest value of the segment (when α̂

(k)
i /∈ Γ̂i).

This leads to the solution of the form (2.36) as

argmin
γi∈Γ̂i

F
(k)
1 (γi) = max

(
γ
(k)
i,max, α̂

(k)
i

)
. (2.44)
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Segment γi ∈ Γ̄i: The derivative of the cost function F
(k)
2 (γi) in (2.41) is

∂

∂γi
F

(k)
2 (γi) = −

E
(k)
i

γ2
i

+ (1− 2β)
1

γi
. (2.45)

It is evident that
∂F

(k)
2 (γi)
∂γi

< 0 for 0 < γi < ᾱ
(k)
i , where ᾱ

(k)
i is defined in (2.42). By the definition of segment

Γ̄i in (2.32), if ᾱ
(k)
i /∈ Γ̄i, then ᾱ

(k)
i > γ

(k)
i,min; this implies ᾱ

(k)
i > γi, ∀γi ∈ Γ̄i. Using the fact that (2.45) is

negative for 0 < γi < ᾱ
(k)
i , F

(k)
2 (γi) is continuously decreasing in the segment Γ̄i if ᾱ

(k)
i /∈ Γ̄i. Following the

logic similar to segment Γ̂i, the solution is of the form (2.36), i.e.,

argmin
γi∈Γ̄i

F
(k)
2 (γi) = max

(
0, min

{
γ
(k)
i,min, ᾱ

(k)
i

})
(2.46)

Segment γi ∈ Γ̃i: The derivative of the cost function F
(k)
0 (γi) in (2.41) is

∂

∂γi
F

(k)
0 (γi) = −

E
(k)
i

γ2
i

+
1

γi
. (2.47)

It is evident that (i)
∂F

(k)
0 (γi)
∂γi

< 0 for 0 < γi < α̃
(k)
i , and (ii)

∂F
(k)
0 (γi)
∂γi

> 0 for γi > α̃
(k)
i , where α̃

(k)
i is defined

in (2.42). By the definition of segment Γ̃i in (2.32), if α̃
(k)
i /∈ Γ̃i, then either α̃

(k)
i < γ

(k)
i,min or α̃

(k)
i > γ

(k)
i,max.

If α̃
(k)
i < γ

(k)
i,min, then F

(k)
0 (γi) is increasing in Γ̃i; in this case, γ̃

(k)
i = γ

(k)
i,min. Analogously, if α̃

(k)
i > γ

(k)
i,max,

then γ̃
(k)
i = γ

(k)
i,max. Putting these conditions together, we obtain the solution in (2.36) as

argmin
γi∈Γ̃i

F
(k)
0 (γi) = min

(
γ
(k)
i,max, max

{
γ
(k)
i,min, α̃

(k)
i

})
. (2.48)

2.C Expression for unconstrained updates

2.C.1 Unconstrained Updates in (2.35) for Linear TV

We begin by reformulating the M-step (2.25) to correspond to the linear TV penalty in (2.7) as

J (k)(γ) =
∑N

i=1

[
E

(k)
i

γi
+ log γi

]
+ β

∑N
i=2 |γi − γi−1|. (2.49)

We majorize log γi by its first-order Taylor approximation at point γ
(k)
i , i = 1, . . . , N . Consequently, (2.49)

is majorized as

Ĵ (k)(γ) =
∑N

i=1

[
E

(k)
i

γi
+ q

(k)
i γi

]
+ β

∑N
i=2 |γi − γi−1|, (2.50)
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where q
(k)
i = 1

γ
(k)
i +ϵ

and ϵ is a small stability parameter. Following the steps similar to Sec. 2.4.1 and 2.4.2,

we obtain the majorized cost function equivalent to (2.31) as

F̂
(k)
i (γi; γ

(k)
i,max, γ

(k)
i,min) =

E
(k)
i

γi
+ q

(k)
i γi

+β
(∣∣γi − γ

(k)
i,max

∣∣+ ∣∣γi − γ
(k)
i,min

∣∣ ), (2.51)

Accordingly, using the definition of f
(k)
i (γi) in (2.24), we write the updates in (2.35) for linear TV as

α̂
(k)
i = argminγi∈R

E
(k)
i

γi
+ (q

(k)
i + 2β)γi

α̃
(k)
i = argminγi∈R

E
(k)
i

γi
+ q

(k)
i γi

ᾱ
(k)
i = argminγi∈R

E
(k)
i

γi
+ (q

(k)
i − 2β)γi,

(2.52)

For the first two problems in (2.52), differentiating with respect to γi and equating to zero, we get α̂
(k)
i =√

E
(k)
i

q
(k)
i +2β

and α̃
(k)
i =

√
E

(k)
i

q
(k)
i

. For the third problem in (2.52), it is possible that q
(k)
i − 2β < 0, i.e., the cost

function is unbounded below and theoretically, ᾱ
(k)
i =∞. In a practical implementation, we account for the

negativity q
(k)
i −2β < 0 via setting a large value ᾱ

(k)
i . Thus, the update rule becomes ᾱ

(k)
i =

√
E

(k)
i

max(ϵ0,q
(k)
i −2β)

,

where ϵ0 is a small number.

2.C.2 Unconstrained Updates in (2.35) for Log TV

We begin by formulating the M-step (2.25) with respect to the log TV penalty in (2.8) as

J (k)(γ)=
∑N

i=1

[
E

(k)
i

γi
+ log γi

]
+ β

∑N
i=2 log(|γi − γi−1|+ ϵ1). (2.53)

Besides majorizing log γi similar to the linear TV case in Appendix 2.C.1, we majorize log(|γi−γi−1|+ϵ1) by

its first-order Taylor approximation at point (γ
(k)
i − γ

(k)
i−1), i = 2, . . . , N . Consequently, (2.53) is majorized

as

J̃ (k)(γ) =
∑N

i=1

[
E

(k)
i

γi
+ q

(k)
i γi

]
+ β

∑N
i=2 c

(k)
i |γi − γi−1|, (2.54)

where q
(k)
i = 1

γ
(k)
i +ϵ

and c
(k)
i = 1

|γ(k)
i −γ

(k)
i−1|+ϵ1

.

Following the steps similar to Sec. 2.4.1 and 2.4.2, we obtain the majorized cost function having

the form similar to (2.31):

F̃
(k)
i (γi; γ

(k)
i,max, γ

(k)
i,min) =

E
(k)
i

γi
+ q

(k)
i γi

+β
(
a
(k)
i

∣∣γi − γ
(k)
i,max

∣∣+ b
(k)
i

∣∣γi − γ
(k)
i,min

∣∣ ), (2.55)
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where a
(k)
i = 1

|γ(k)
i −γ

(k)
max|+ϵ1

and b
(k)
i = 1

|γ(k)
i −γ

(k)
min|+ϵ1

. Observing the similarity to (2.51), the unconstrained

updates (2.35) for log TV become

α̂
(k)
i = argminγi∈R

E
(k)
i

γi
+
(
q
(k)
i + β(a

(k)
i + b

(k)
i )

)
γi

α̃
(k)
i = argminγi∈R

E
(k)
i

γi
+
(
q
(k)
i + β(b

(k)
i − a

(k)
i )

)
γi

ᾱ
(k)
i = argminγi∈R

E
(k)
i

γi
+
(
q
(k)
i − β(a

(k)
i + b

(k)
i )

)
γi.

(2.56)

Based on the same logic as for the linear TV updates, the solutions to these unconstrained updates are

α̂
(k)
i =

√
E

(k)
i

q
(k)
i +β(a

(k)
i +b

(k)
i )

, α̃
(k)
i =

√
E

(k)
i

max
(
ϵ0,q

(k)
i +β(b

(k)
i −a

(k)
i )

) , and ᾱ
(k)
i =

√
E

(k)
i

max
(
ϵ0,q

(k)
i −β(a

(k)
i +b

(k)
i )

) .
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Chapter 3

Insights into One-bit MIMO

Detection

3.1 Introduction

The advent of massive MIMO communications has brought in a new era of high speed communi-

cation systems and interconnected devices [3, 4]. However, one of the key challenges facing massive MIMO

deployment is the ensuing system cost and complexity. In this context, the use of high-resolution and

high-speed Analog-to-Digital Converters (ADCs) significantly contributes to the overall cost and power con-

sumption within the MIMO communication system [23, 120]. Addressing these challenges, accompanied by

several advances in algorithm design and machine learning techniques, research into robust communication

system design is being developed on the backbone of few-bit or low resolution ADCs [20–25]. A specific type

of low-resolution ADC, the one-bit ADC, has attracted notable attention in communication system design

and sensing due to its simple design and ease of implementation.

Advances in DNN technologies have enabled robust detector designs for these few-bit MIMO re-

ceivers. The overall application of DNNs to wireless communication systems has greatly improved receiver

performance and robustness. The general parametric structure of DNNs, coupled with their advantage as

universal functional approximators [121, 122], makes these an integral part of the future of robust wireless

communication, exploited for a variety of applications from beamformer design [52–54], channel estimation

[123–125] as well as end-to-end detection [55–59]. In this work, we begin by analyzing the detection process

for one-bit MIMO receivers. Following this, a robust detector utilizing a DNN-aided unfolded network is
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developed for multi-user one-bit massive MIMO systems.

3.1.1 Prior work

One-bit MIMO was first used for sensing and channel estimation algorithms [26–28]. Going beyond

this, the main focus of one-bit MIMO has been on receiver design. One-bit MIMO data detection gained

a valuable advance with the application of Bussgang’s theorem to linearize the input-output relation [126].

Through means of this relation, a class of linear receivers was developed for detection from one-bit data

[29–31]. Several works utilized this linearization to characterize the one-bit system and evaluate the overall

system performance and capacity [127–129]. Additional robust model-based detectors improving on the

Bussgang linear detectors have also been proposed in some works [32,33].

However, today, the state-of-the-art class of receivers utilizes the nonlinear optimization of the

likelihood function. The one-bit maximum likelihood (ML) optimization was derived using the Gaussian

cumulative distribution function (CDF) [34]. Utilizing this formulation the work in [35] introduced a near

maximum likelihood (n-ML) detector based on a two step iterative algorithm - gradient descent (GD) followed

by projection onto the unit sphere. Other works applying the Gaussian CDF likelihood formulation have

also been used extending this idea [130, 131]. However, one of the limitations of applying the GD iteration

on the Gaussian CDF is its numerical instability at high signal-to-noise ratio (SNR) values [132]. One of

the approaches to address this was through a surrogate function for the Gaussian CDF, i.e., the logistic

regression (LR). The authors in [1] designed the detector, the OBMNet, as an unfolded DNN, implementing

the GD algorithm for this approximate likelihood. Both the n-ML algorithm as well as the OBMNet were

limited in performance due to the sub-optimal projection step onto the M-QAM constellation. The work

in [20] improved on the OBMNet by introducing a learnable M-QAM projection over the GD iterations.

The resulting unfolded DNN, the FBM-DetNet, is the current state-of-the-art detector for one-bit MIMO

systems.

Extending the model-based methods to learning-based methods, DNNs have also been used to design

robust detectors for one-bit MIMO receivers. The OBMNet [1] and FBM-DetNet[20] were implemented as

unfolded DNNs, learning the parameters for the GD methods and the M-QAM projection, respectively.

The work in [133] utilized model-based unrolling to learn the GD algorithm with a generalized Newton

update. Other DNNs for one-bit detection, not relying on the likelihood framework have also been developed

[134–137]. The general parametric structure of DNNs can also enhance the GD update step by enforcing a

general regularization at the end of each GD iteration. The framework in [36] utilizes two unique networks
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- an unfolded DNN, the ROBNet, as well as a recurrent network, the OBiRIM, to implement a regularized

GD algorithm. The mmWave extension of the regularized GD, i.e., the mmW-ROBNet [138], demonstrates

the utility of the regularized GD framework for mmWave channels. Here, the regularized framework, along

with a novel hierarchical training strategy is able to generate equitable user performance for the mmWave

one-bit MIMO receiver.

Although different strategies for detection of one-bit received signals have been proposed, no work,

to the best of the authors’ knowledge, comprehensively looks at the properties and convergence for the

recovery algorithms. Bridging this gap, this work aims to generate useful insights into the ML framework

for the one-bit MIMO receivers.

3.1.2 Contributions of this work

Through this work, we endeavor to bridge the gap between theory and algorithm design for the

one-bit MIMO receiver. In particular, we enumerate the following contributions.

1. Characterizing ML optimization: We characterize the properties of the CDF-based likelihood, namely,

the convexity, smoothness and the nature of the solution space. Different from prior works, this analysis

enables structured algorithm design as well as convergence analysis.

2. Stabilizing CDF-based GD update: Implementing the GD update for the CDF-based likelihood is shown

to run into computational instabilities. Utilizing the properties of the CDF, a robust approximation

of the gradient is implemented, preserving the first order properties of the CDF (necessary for GD).

3. Introduce accelerated GD update: This stabilized GD update is utilized in the design of an accelerated

GD algorithm for faster convergence. To the best of the authors’ knowledge, this is the first work

to utilize AGD in signal recovery for one-bit MIMO receivers. The convergence of the algorithms is

analyzed using the properties of the likelihood function.

4. Analysis of robust CDF surrogate, LR: Prior works have demonstrated the utility of the logistic re-

gression (LR) as an effective surrogate to the CDF for the one-bit likelihood [1, 20, 132]. The insights

from the CDF-based likelihood are extended to explaining the improved performance of the LR-based

likelihood.

5. DNN-aided Gaussian denoising: In order to address the constrained optimization over the M-QAM

symbols, we extend and generalize the quantization-based M-QAM projection from [20]. To this end,

we expound the role of the M-QAM projection step and develop a general learnable two-tier projection
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framework for robust M-QAM symbol recovery. This framework is implemented as an unfolded DNN

referred to as the A-PrOBNet.

Organization: This manuscript is organized as follows - Sec. 3.2 introduces the system model, and formu-

lation of the one-bit likelihood optimization. Sec. 3.3 analyzes the different properties of the CDF-based

likelihood. This section also introduces the improved GD algorithm and the AGD algorithm, as well as

the related convergence analysis for these algorithms. Sec. 3.4 analyzes the surrogate functions for the

CDF-based likelihood, in particular, the LR function. Sec. 3.5 introduces the general Gaussian denoising

for projection onto the M-QAM symbol space. Sec. 4.6 provides the experimental validation and Sec. 5.6

provides concluding remarks and future directions.

Notation: The abbreviation ML is used for maximum likelihood, as opposed to machine learning. The latter

has not been abbreviated wherever utilized. We use lower-case boldface letters a and upper case boldface

letters A to denote complex valued vectors and matrices respectively. The notation Re(·) and Im(·) denote

the real and imaginary parts, respectively. The operation (·)T denotes the transpose of the array or matrix.

Unless otherwise specified, all scalar functions like tanh(·) or sign(·), when applied to arrays or matrices,

imply element-wise operation. The diagonalization operator, denoted by diag(·), when applied to an array

a, creates a diagonal matrix with the diagonal entries given by a. The notation x(t) is used to denote the

value of the variable x at iteration t of the algorithm. For the DNN training, the size of the training set is

given by Ntrain and the notation x̂n,train denotes the nth sample from this set. Unless otherwise specified,

the norm || · || represents the ℓ2-norm for a vector or matrix.

3.2 System Model and general one-bit likelihood

Through this section the multi-user uplink MIMO model is introduced, with one-bit ADCs at the

base station (BS) receiver. This is followed by the formulation of the ML optimization that forms the basis

of the detection algorithm.

3.2.1 One-bit MIMO system model

The Rayleigh fading channel with block flat-fading, as used in most past works, e.g. [12, 139] is

utilized here. The K single antenna users transmit to a multi-antenna base-station (BS) with N receive

antennas. The MIMO channel H̄ ∈ CN×K consists of i.i.d entries drawn from CN (0, 1). This work assumes

perfect unquantized channel state information (CSI) at the BS.

45



As a part of the multi-user uplink, the kth user transmits the signal x̄k drawn from the M-QAM

constellation. The multi-user transmitted signal is x̄ =

[
x̄1, x̄2, . . . , x̄K

]T
. The unquantized received signal

at the BS is given by

r̄ = H̄x̄+ n̄, (3.1)

where n̄ is the AWCGN with noise variance depending on the system signal-to-noise ratio (SNR) ρ =

E(||H̄x̄||2)
E(||n̄||2) . The transformed signal due to the one-bit quantization is given by

ȳ = sign
(
Re(r̄)

)
+ j sign

(
Im(r̄)

)
. (3.2)

In order to express the algorithm design as a function of real-valued inputs, we convert the received

signal and the observed channel matrix into real-valued forms as

H =

Re(H̄) −Im(H̄)

Im(H̄) Re(H̄)

 , x =

Re(x̄)

Im(x̄)

 ,

r =

Re(r̄)

Im(r̄)

 , y =

Re(ȳ)

Im(ȳ)

 , n =

Re(n̄)

Im(n̄)

 .

(3.3)

Thus, the modified received one-bit signal at the BS is

y = sign(Hx+ n). (3.4)

The detection algorithm recovers the M-QAM transmitted symbols x from the one-bit received data y.

3.2.2 Signal detection - Maximum likelihood framework

As stated earlier, the signal detection is formulated as a likelihood optimization problem. The

maximum likelihood (ML) problem for one-bit MIMO has been derived in [34]. We alternatively opt for

minimizing the negative log-likelihood expression for ease of subsequent analysis. This is given by

x̂ML = argmin
x∈M2K

2N∑
i=1

−log Φ
(√

2ρ yih
T
i x

)
, (3.5)

where Φ(·) is the Gaussian cumulative distribution function (CDF) for N (0, 1) andM2K represents the set of

the 2K-dimensional vectors, consisting of the real-valued representation (see eq. (3.3)) of the K-dimensional
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vectors of M-QAM symbols. In addition, the vector hi denotes the ith row of H.

Remark. Since the factor
√
2ρ is a positive scalar and does not affect the convergence of the optimization

over the constrained setM2K , we can eliminate this factor for ease of representation. Thus, for all subsequent

expressions and analysis, the likelihood is expressed as a general function by the form L =
∑

i f(yih
T
i x)

In order to delve deeper into the analysis of the likelihood function, and algorithm development,

we consider two key features with respect to the optimization (3.5).

Generalization of likelihood

In order to understand the broader class of likelihood functions, including all surrogate measures,

a general likelihood formulation is presented as

L(x) =
2N∑
i=1

ζ(yih
Tx). (3.6)

The scalar function ζ(·) can take different values, depending on the exact or surrogate value of the likelihood.

Based on this, we follow two separate lines of analysis

• By substituting the CDF, we attain the original likelihood expression (3.5). We provide detailed

analysis into the CDF-based likelihood expression in Sec. 3.3.

• We can also substitute appropriate surrogates for the CDF-based likelihood to overcome the limitations

of the former. This is elaborated in more detail in Sec. 3.4.

The general gradient ∇x and Hessian Hx expressions will be utilized in the analysis later. For the general

likelihood ζ(·), these expressions are given as

∇x = GT ζ ′(Gx) (3.7a)

Hx = HT diag(ζ ′′(Gx))H, (3.7b)

where G = diag(y)H and the diag(·) operator notation for both matrices and arrays is explained in Sec.

5.1.

Constrained vs unconstrained optimization

Since the transmitted symbols are drawn from an M-QAM constellation, a constrained optimization

is performed over the set of M-QAM symbols. However, for understanding the properties of the likelihood
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framework and development of robust recovery algorithms, unconstrained optimization over the entire set

R2K is initially considered. Specifically, we analyze

x̂ML = argmin
x∈R2K

2N∑
i=1

−log Φ
(
yih

T
i x

)
. (3.8)

The CDF-based likelihood and the different CDF surrogates will first be analyzed via the unconstrained

optimization framework (3.8) in Sec. 3.3-3.4. Constrained optimization over M2K is then detailed in Sec.

3.5.

3.3 Insights into the cdf-based one-bit likelihood

This section begins with the analysis of the CDF-based likelihood. This is followed by the design

a robust approximate GD algorithm and accelerated GD algorithm, along with the convergence analysis for

both.

Substituting the CDF-based likelihood for the general expressions (3.6)-(3.7) gives

ζ(z) = −log Φ(z) (3.9a)

ζ ′(z) = − ϕ(z)

Φ(z)
(3.9b)

ζ ′′(z) =
ϕ(z)

Φ(z)

(
z +

ϕ(z)

Φ(z)

)
, (3.9c)

where ϕ(·) is the probability density function (PDF) of the standard normal distribution N (0, 1). Utilizing

this in (3.6) and evaluating the gradient gives the GD update, as derived in [35],

x(t+1) = x(t) + α(t) GT ϕ(Gx)

Φ(Gx)
, (3.10)

where α(t) is the step size at the tth iteration.

One of the limitations of applying unconstrained GD to the CDF-based likelihood function is the

evaluation of the gradient (3.9b) (see Sec. 3.3.2 for details). We construct a more robust GD algorithm to

overcome these limitations.
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3.3.1 Characterizing the CDF-based likelihood

The various properties of the CDF-based one-bit likelihood function, useful for deriving the different

GD-based algorithms and analyzing the convergence properties, are enumerated. The following inequalities

are used in this analysis.

Lemma 1. For the scalar argument z < 0, we can bound the CDF-gradient ζ ′(z), given by (3.9b), by the

following bounds

−z <
ϕ(z)

Φ(z)
< −z − 1

z
(3.11)

Proof. If z > 0, then the following holds for the CDF,

1√
2π

exp
(
− z2

2

) z

z2 + 1
< 1− Φ(z) <

1√
2π

exp
(
− z2

2

)1
z
. (3.12)

Rearranging the terms above gives the inequalities in (3.11).

We now enumerate the various characteristic properties of the cdf-based likelihood function.

Convexity

The Hessian for the CDF-based likelihood (3.9c) is substituted in (3.7b). This can be separately

analyzed for both positive and negative arguments. For z > 0 the expression (3.7b) is always positive. For

z < 0, lemma 1 is utilized to show

0 < ζ ′′(z) < 1. (3.13)

Since each element of the matrix diag(ζ ′′(Gx)) in (3.7b) is always positive, for the CDF-based likelihood,

the Hessian is positive semi-definite (PSD). Therefore, the CDF-based likelihood is a convex function of x.

Solution space

Having showed the convexity of the likelihood, the minimizer is now analyzed. We define the set

X1 = {x |yih
T
i x > 0,∀ i = 1, 2, . . . , 2N}. Consider two cases for the minimizer, based on the SNR at the BS

receiver.

• Case 1: Separable solution - There exists at least one finite x, for which yih
T
i x > 0, ∀ i = 1, 2, . . . , 2N .

This corresponds to operating in a high SNR regime.

• Case 2: Non-separable solution - There exists no x, such that yih
T
i x > 0, ∀ i = 1, 2, . . . , 2N , i.e., X1 is

a null set. This corresponds to low SNR operation.
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In Case 1, the Gaussian CDF approaches 1 asymptotically. Thus the minimum value of the likelihood (3.6)

cannot be attained by any finite x. The high-SNR saturation of the performance the GD algorithms is

analyzed by operating in this case, as seen in later sections.

For Case 2, it is evident that the optimal value x∗ for minimizing the likelihood is bounded. The

significance of analyzing this case is presented after the smoothness analysis of the likelihood (see Remark

3.3.1).

Smoothness

The function L(x) is β-smooth if

Lβ(x) =
β

2
||x||2 − L(x) (3.14)

is convex [140]. Utilizing (3.7b) and (3.9c), the Hessian for Lβ(x), Hβ
x, is given by

Hβ
x = β I−HT diag(ζ ′′(Gx))H. (3.15)

In order to show the Hessian to be PSD, consider any vector z ∈ R2K . We have

zTHβ
xz

T = β zTIz− zTHT diag(ζ ′′(Gx))Hz

> β zTIz− zTHTHz

= β ||z||2 − ||Hz||22

≥ ||z||2(β − ||H||22),

(3.16)

where ||H||2 is the ℓ2-norm of the matrix H. The inequality (3.13) and the Cauchy-Schwartz inequality are

utilized above. The Hessian is PSD if

β ≥ ||H||22. (3.17)

Thus, the cdf-based likelihood is a smooth function with the smoothness parameter β lower bounded by

||H||2. Based on this, we have the following:

• The smoothness parameter thus depends on the chosen channel matrix. This captures the dimension-

ality of the problem, i.e., the number of users and MIMO antennas.

• The optimal step size for the improved GD method α(t) is given by 1/β. If the number of users or

antenna elements increases, the optimal step size reduces.
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Remark. Note that this smoothness characterization is valid for the likelihood, irrespective of the solution

being drawn from Case 1 or Case 2. The optimal value x∗ is bounded for Case 2; hence the existing results

for smooth functions [140] can be applied to this case. For Case 1 however, the choice of GD parameters

and subsequent convergence analysis in the absence of a finite minimizer warrants explicit analysis. This

case presents the high-SNR saturation regime of receiver algorithm. Thus, for the remainder of this work,

all subsequent analysis and algorithm design is performed from the perspective of operating under Case 1.

3.3.2 Improved Gradient Descent for log-CDF likelihood

One of the limitations of applying GD to the CDF-based likelihood (3.9a) is the evaluation of the

gradient (3.9b) for large negative arguments. The Gaussian CDF quickly decreases to zero for negative values

of z and thus the numerical evaluation of the gradient runs into instabilities due to inability of capturing

such low values within floating point precision. Any approximation of computing this gradient expression

must preserve the descent direction, not just address the numerical instabilities. For this reason, regularizing

the denominator of (3.9b) by a scalar constant is not a feasible solution.

A key observation here is that the gradient computation of (3.9b) does not necessarily require the

computation of the individual PDF and CDF terms ϕ(z) and Φ(z), respectively; only the ratio of the two

terms is essential. The core principle to improve robustness for the CDF-based GD algorithm thus involves

a numerically efficient method to evaluate the ratio ζ ′(z) = ϕ(z)/Φ(z), for large negative arguments z.

Lemma 1 derives an upper and lower bound for this ratio ζ ′(z) for z < 0. From this, it is evident

that the value of ζ ′(z) asymptotically approaches the linear function f(z) = −z as z → −∞. For negative

values below a threshold zthresh, a surrogate gradient value, using a residual ϵ(z), is evaluated as

ζ̂ ′(z) = −z + ϵ(z), for z < zthresh. (3.18)

As seen in Lemma 1, the value of ζ ′(z) is sandwiched between −z and −z − 1/z for z < 0. Thus ϵ(z) → 0

as z → −∞. This residual is empirically evaluated, utilizing the series expansion

ϵ(z) = −1

z
+

c2
z2

+
c3
z3

+
c4
z4

+ . . . (3.19)

Using the least squares fit, the coefficient values are evaluated as c2 = −0.09, c3 = 1.80, c4 = 1.95. Further,

we observe that the computation of the residual up to 4 orders, i.e., c4
z4 is sufficient for the desired accuracy

in gradient evaluation. The plots in Fig. 3.1 illustrate the fit of the gradient using (3.18)-(3.19). Based on
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Figure 3.1: Accuracy of the numerically stable gradient of the CDF-based likelihood (a) Comparing the curve fit of
(3.9b) and (3.20), (b) Mean square error of using the approximation (3.20)

Fig. 3.1, the evaluation of the gradient using (3.18) approximates the actual gradient to a high degree of

accuracy for large negative values. Thus, the surrogate gradient ζ̂ ′(z) is

ζ ′(z) =


−z − 1

z + c2
z2 + c3

z3 + c4
z4 , for z < zthresh

− ϕ(z)
Φ(z) , for z ≥ zthresh

(3.20)

As opposed to (3.9b), the surrogate ζ̂ ′(·) in (3.20) avoids the CDF computation and any ensuing numerical

instabilities. An improved GD algorithm for the log-CDF based likelihood is presented in Algorithm 13,

with the following salient features:

• The vector Gx(t) for the tth iteration is evaluated.

• Based on a pre-determined threshold 1 zthresh = −5, each index of the vector Gx(t) is classified as I+

or I− (see line 2-3 in Algorithm 13).

• Depending on the classification of each index, ζ ′(

[
Gx(t)

]
i

) is evaluated using (3.20).

• The final output x(T ) is normalized to the M-QAM magnitudes, as required

1empirically chosen threshold based on numerical results (see Fig. 3.1(b))
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Algorithm 3: Improved GD for log-CDF likelihood

Input: T , G, x(0) = 0, {α(t)}T−1
t=0 , zthresh

Output: x(T )

1 for t = 0 to T − 1 do
2 I+ = {i |

[
Gx(t)

]
i
≥ zthresh};

3 I− = {i |
[
Gx(t)

]
i
< zthresh};

4 for i in I− do
5 Evaluate ζ ′(

[
Gx̂(t)

]
i
) as (3.20), case 1;

6 end
7 for i in I+ do
8 Evaluate ζ ′(

[
Gx̂(t)

]
i
) as (3.20), case 2;

9 end

10 Evaluate ∇(t)
x using (3.7a);

11 Update x(t+1) = x(t) − α(t)∇(t)
x ;

12 end

13 x(T ) ← η x(T )

||x(T )|| ;

3.3.3 Accelerated Gradient Descent for faster convergence

The general accelerated gradient descent (AGD) method for a convex β-smooth function was first

introduced in [141] as an algorithm to attain the optimum oracle complexity for smooth convex functions

and has been widely applied to various applications in signal processing [142].

Applying AGD to the CDF-based one-bit likelihood optimization (3.8), gives the update

d(t) = γ(t) (x(t) − x(t−1)) (3.21a)

x̂(t) = x(t) + d(t) (3.21b)

x(t+1) = x̂(t) − α(t)∇xL(x̂(t)). (3.21c)

Here, d(t) is the momentum update at the tth iteration, which is a step taken in addition to the gradient

step. The scalar γ(t) is the weighting coefficient for the momentum. The gradient ∇xL(x̂(t)) is evaluated

using the improved gradient method described in Sec. 3.3.2.

The AGD algorithm, utilizing the improved GD update for the CDF likelihood, is presented in

Algorithm 15. Different from the GD, i.e., Algorithm 13, AGD is able to modify the update step with an

additional correction from the gradient direction, determined by the previous estimates. The momentum d(t)

in (3.21a) accumulates the gradients from the previous iterations, preventing the algorithm slowdown due to

vanishing gradient[142]. The momentum endows a “speed” to the GD algorithm, preventing saturation in

such regions of very low gradient values. This is particularly effective for speeding up the likelihood decrease
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Algorithm 4: Accelerated GD for log-CDF likelihood

Input: T , G, x(0) = 0, d(0) = 0, {α(t)}T−1
t=0 , zthresh, γ

Output: x(T )

1 for t = 0 to T − 1 do
2 Evaluate x̂(t) = x(t) + d(t);

3 I+ = {i |
[
Gx̂(t)}

]
i
≥ zthresh};

4 I− = {i |
[
Gx̂(t)}

]
i
< zthresh};

5 for i in I− do
6 Evaluate ζ ′(

[
Gx̂(t)}

]
i
) as (3.20), case 1;

7 end
8 for i in I+ do
9 Evaluate ζ ′(

[
Gx̂(t)}

]
i
) as (3.20), case 2;

10 end

11 Evaluate ∇(t)

x̂(t) using (3.7a);

12 Update x(t+1) = x̂(t) − α(t)∇(t)
x̂ ;

13 Update d(t+1) = γ (x(t+1) − x(t));

14 end

15 x(T ) ← η x(T )

||x(T )|| ;

for the CDF-based likelihood optimization without any finite minimizer, as detailed next.

3.3.4 Likelihood decay for the GD-based algorithms

Through this section we analyze the likelihood decay performance for the unconstrained GD Algo-

rithms 13 and 15.

Likelihood decay for GD

The likelihood decay for smooth functions with a finite minimizer and minima has been extensively

analyzed [140]. In particular, the GD iterations decrease the likelihood function at the rate 1/t. However, as

stated in Sec 3.3.1, there is no finite x ∈ R2K that achieves the infimum of the likelihood, i.e., L(x) > 0 ∀x

(see Remark 3.3.1). The convergence is thus analyzed to a surrogate minimum ϵ of the likelihood. The

following theorem provides the likelihood decay after T iterations of the improved GD algorithm.

Theorem 2. For a given surrogate minimum ϵ, the likelihood decay after T steps of the GD algorithm, i.e.,

Algorithm 13, with step size α(t) = 1
β , is given by

L(x(T ))− ϵ ≤ λ0(ϵ)

T + λ1(ϵ)
(3.22)

where the scalars λ0(ϵ) and λ1(ϵ) are dependent on ϵ.
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The proof follows the same steps as the general decay rate analysis using a finite minimizer [140],

with the surrogate minimum ϵ for the likelihood appropriately chosen. The exact steps for this proof is

provided in Appendix 3.A of this chapter.

Theorem 2 provides the best possible convergence rate for GD, utilizing the optimally chose step

size, i.e., α(t) = 1/β, for a finite horizon GD algorithm.

Comparing likelihood decay for GD and AGD
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Figure 3.2: Comparing decrease in CDF-based likelihood for AGD vs GD.

For a general β-smooth function f(x), the AGD has been proven to converge to the minimum as

[140,141]

f(x(T ))− f(x∗) <
c1
T 2

. (3.23)

Applying the AGD to the recovery of symbols by minimizing the one-bit likelihood (3.8) shows a similar

gain in convergence rate. This is empirically illustrated in Fig. 3.2, comparing the likelihood convergence

rate to the infimum for GD vs AGD. As seen from the plots, the likelihood decays to a much lower value

for AGD, with the gap to the GD-based likelihood decay increasing with T . This empirically illustrates the

strength of using the AGD for the unconstrained optimization (3.8).
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Through theoretical bounds on likelihood decay, as well as the empirical results for AGD, we

illustrate that unconstrained GD-based techniques will be able to converge arbitrarily close to the infimum,

provided that there are no constraints on the number of iterations. This greatly scales the GD horizon T ,

proving infeasible for practical receivers, operating to minimize computational complexity. Resilient and

simplified GD for practical receivers is added through (i) Improved surrogate likelihoods to allow for larger

step sizes and thereby speed up convergence, and (ii) Projected GD to efficiently converge to the solution

within the constrained setM2K . Each of these is elaborated in Sections 3.4 and 3.5, respectively.

3.4 Improved CDF Surrogates for Modeling One-bit Likelihood

This section explores surrogate functions of the CDF, focusing primarily on the logistic regression

(LR), to model an approximate one-bit likelihood for signal recovery. Insights into the improved likelihood

decay for the LR are provided, followed by the GD algorithms for this likelihood.

3.4.1 Modeling one-bit likelihood through logistic regression

The approximation for the Gaussian CDF using the sigmoid function was first proposed in [143].

This was initially applied to the one-bit MIMO receiver in [1], where, motivated by the utilization of the

sigmoid function as a prevalent nonlinear activation in DNNs, the GD-based receiver was implemented as

an unfolded DNN, i.e., the OBMNet.

The LR-based likelihood expression involves substituting the value of the sigmoid function σ(z) for

the general likelihood ζ(z) in (3.6), giving the expressions

ζ(z) = −log σ(z) (3.24a)

ζ ′(z) = −σ(−z) (3.24b)

ζ ′′(z) = σ(z)(1− σ(z)). (3.24c)

The unconstrained ML optimization is given by

x̂ML = argmin
x∈R2K

2N∑
i=1

−log σ
(
yih

T
i x

)
. (3.25)

The following is the analysis the LR-based likelihood.
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Convexity

On substituting the Hessian for the LR-based likelihood (3.26) in (3.7b), it is evident that each

element of the matrix diag(ζ ′′(Gx)) is always positive. Thus the Hessian is positive semi-definite (PSD).

Therefore, the LR-based likelihood is a convex function of x.

Smoothness

Analogous to (3.15), Hβ is evaluated as

Hβ = β I−HTdiag(σ(Gx)(1− σ(Gx)))H. (3.26)

For any vector z ∈ R2K . We have

zTHβ
xz

T = β ||z||2 − zTHTdiag(σ(Gx)(1− σ(Gx))Hz

≥ β ||z||2 − ||diag
(√

σ(Gx)(1− σ(Gx))
)
Hz||2

> β ||z||2 − 1

4
||Hz||22

≥ ||z||2(β − 1

4
||H||22),

(3.27)

where we utilize σ(z)(1− σ(z)) ≤ 1/4 ∀ z, and the Cauchy-Schwartz inequality. The Hessian is PSD if

β ≥ ||H||
2
2

4
. (3.28)

Comparing this to (3.17) gives βLR = 1
4βCDF. Following the model-based selection of the step size α(t) = 1/β,

the LR enables an increase by a factor of 4.

3.4.2 Step size robustness of LR for GD

In addition to better smoothness characterization over the CDF, the LR offers additional robustness

to larger step sizes α(t) >> 1/βLR, resulting in faster likelihood decay without diverging to the incorrect

solution. This is attributed to the properties of the Hessian matrix; the plots in Fig. 3.3 pictorially show

different behavior, which translates to increased robustness for LR. This is further elaborated below.

Consider the general likelihood expression L(x), given by (3.6). As described earlier, smoothness

parameter β determines the step size for the GD algorithm. Following the analysis in (3.16) and (3.27), we
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Figure 3.3: Comparing the values of ζ′′(z) for the LR and CDF-based likelihoods.
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have that the following bound on β

β ≥ ||diag
(√

ζ ′′(Gx)
)
H||22. (3.29)

Further, the maximum value for the RHS of (3.29) is given by

βmax = max
x∈R2K

||diag
(√

ζ ′′(Gx)
)
H||22 =

[
max
z∈R

ζ ′′(z)
]
||H||22. (3.30)

Choosing the step size α(t) utilizing the value β = βmax is sufficient to guarantee convergence of GD over all

x ∈ R2K . This is the model-based limit chosen for the CDF and LR-based likelihoods, as given in Sec 3.3.1

and 3.4.1, respectively. However, a step size larger than this limit can be utilized by analyzing the value of

the x(t) for the attainment of β = βmax. This, in turn, depends on the value of ζ ′′(z(t)), which is compared

for both the LR and CDF-based likelihoods in Fig. 3.3. Based on the plots, we analyze this further.

LR-based likelihood

As seen by the curve for the LR-based likelihood in Fig. 3.3, the value for βmax is attained at z = 0,

corresponding to the case x = 0. However, the practical GD trajectory is considered via the attainment

of the values of ζ ′′(z(t)) for two zones, as seen in Fig. 3.3: (i) The convergence zone corresponding to the

positive z-axis, and (ii) The divergence zone corresponding to the negative z-axis

• Convergence zone, i.e., [Gx]i > 0 ∀ i: It has been shown that ||x(t)|| increases unbounded with each

GD iteration2. Thus the gap of the expression ζ ′′(z(t)) to the maximum value of 0.25 increases mono-

tonically. This, in turn allows a much larger step size, i.e., α(t) >> 1/βmax.

• Divergence zone, i.e., [Gx]i < 0 ∀ i: The symmetry of the plot for ζ ′′(z(t)) plays an important role for

the divergence zone as well. With increasing divergent behavior, i.e., increasing negative values of z(t),

the gap of ζ ′′(z(t)) to the maximum value also increases. This further increases the maximum value of

the step size that can be taken to move in the convergence direction. Since the value of ζ ′′(z(t)) can

decrease to zero, there will always exist a point after which the GD algorithm (with a fixed step size)

will move in the direction of convergence.

The same logic will also hold for intermediate behavior between convergence and divergence zones of the GD

algorithm, wherein the GD algorithm will never indefinitely diverge.

2Proof of Theorem 2 shows the conditions for monotonic decrease of ||x(t) − x(t−1)||.
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CDF-based likelihood

For the CDF-based likelihood plots in Fig. 3.3, the same robustness as the LR will hold for the

convergence zone. However, for the GD algorithm dynamics in the divergence zone, the dependence on the

step size is inverted compared to the LR-based likelihood. With increasing negative values of ζ ′′(z(t)), the

gap to βmax decreases. This implies the need to take smaller step sizes for convergence; using a larger step

size will result in indefinite divergence of the GD algorithm. This increased sensitivity to step sizes larger

than 1/βmax results in use of step sizes smaller than LR, resulting in greater GD iterations for convergence.

3.4.3 GD for LR-based likelihood and algorithm convergence
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Figure 3.4: Comparing decrease in CDF-based likelihood vs LR-based likelihood, with model-based step size and
large step size, due to GD.

Applying GD to the likelihood (3.25) gives the GD update

x(t+1) = x(t) + α(t)GTσ(−Gx(t)). (3.31)

Similar to the application of the GD for the CDF-based likelihood, the choice of the step size parameter

α(t) is dependent on βLR. In order to guarantee convergence of GD, the step size is chosen such that,
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α(t) = 1/βmax, as explained in 3.4.1. However, the LR is more resilient to larger step sizes, allowing for

faster convergence.

The convergence analysis for GD algorithm of the LR follows the same analysis as the CDF-based

likelihood, i.e., Theorem 2. However the specific constants will differ for the LR, owing to the different

likelihood function. This convergence of the GD algorithm for the LR-based likelihood is illustrated in Fig.

3.4. The plots compare the GD convergence of the LR-based likelihood, using both the model-based step

size α(t) = 1/βmax and the large step size α(t) >> 1/βmax, to the CDF-based likelihood. All the GD-based

algorithms decay as 1/t, validating Theorem 2. The similar decay performance for the GD algorithms with

the model-model based step size is attributed to the fact that α
(t)
LR = α

(t)
CDF. However, the larger step size

resilience for the LR-based likelihood is clearly seen by the significantly improved convergence.

Remark. Although the OBMNet [1] learns the step sizes α(t) at each GD iteration, these do not need to

be explicitly learnt. The evaluation of the Lipschitz constant β, theorizes the the required optimal step size.

Additionally, empirical evaluation of the GD algorithm (OBMNet) with learnt step sizes and static step sizes

shows no difference in performance. However, the latter enables the analysis of the rate of likelihood decrease.

3.4.4 AGD for LR-based likelihood and algorithm convergence

The AGD algorithm, introduced in 3.3.3, is applied to the LR-based likelihood. The resulting GD

update step is

x̂(t) = (1 + γ(t))x(t) − γ(t)x(t−1) (3.32a)

x(t+1) = x̂(t) + α(t)GTσ(−Gx̂(t)). (3.32b)

The entire T -step AGD (3.32) can also be equivalently implemented as a T -layer unfolded DNN, i.e., the

accelerated-OBMNet (A-OBMNet). Different from the original OBMNet with individual disjoint subnet-

works to implement (4.5), the A-OBMNet also additionally links the each subsequent OBMNet sub-network

stage and adds increased robustness to the signal recovery. At each iteration, we can learn the scalar co-

efficients α(t) and γ(t) using the loss function (4.7). As stated in Remark 3.4.3, for the A-OBMNet too,

we empirically observe no difference in performance for learning the parameters {α(t), γ(t)}Tt=1 or statically

choosing these through the smoothness properties of the LR-based likelihood. The performance comparison

of the A-OBMNet to the original OBMNet is given in Sec. 4.6.
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Figure 3.5: Comparing decrease in LR-based likelihood for different variants of the GD algorithms

3.5 Projected Gradient Descent - DNN-Aided Optimization for

M-QAM Symbols

This section begins by elucidating the significance of the projection step. This is followed by the

general two-tier projection strategy employed for the M-QAM constellation symbols. Finally, the entire

projected AGD algorithm is implemented as an unfolded DNN, the A-PrOBNet.

3.5.1 Significance of M-QAM projection for GD

One of the main limitations of of applying the unconstrained GD algorithm, optimizing over R2K ,

for the recovery of symbols generated from the M-QAM constellation is symbol recovery with large cluster

spread. The recovered symbols are illustrated in Fig. 3.6. The consequences of this large cluster spread on

the unconstrained GD-based symbol recovery, specifically Algorithms 13 and 15, are explained below.
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Figure 3.6: Recovered 16-QAM constellation plots using unconstrained GD for M-QAM constellations with K = 8
users and N = 128 BS antennas (blue - correctly detected and red are incorrectly detected symbols).

Slow rate of gradient decay

We begin by first understanding the road to convergence, specifically through the gradient decay.

Consider the expression for the gradient at the tth iteration for a general likelihood, i.e., (3.7a),

∇(t)
x = GT ζ ′(Gx) =

2N∑
i=1

gi ζ
′(yih

T
i x

(t)), (3.33)

where gi and hi are the ith rows of the matrices G and H, respectively. Firstly, the function ζ ′(·) is

strictly positive-valued and the rows are drawn from a normal distribution, the gradient decays to zero if

ζ ′(yih
T
i x

(t)) → 0, ∀i. Secondly, the input x is drawn from the M-QAM constellation points. Both these

factors imply that for all i, yih
T
i x

(t) should be large positively-scaled constellation symbols, with very low

cluster spread, in order for the gradient to decay to zero.

The presence of large symbol cluster spread affects the positivity of the expression yih
T
i x

(t) for

some indices, even though the recovered symbols are within the right symbol boundaries. This is an induced

negative bias, due to large cluster spreads. Due to this negative bias, the GD is significantly slowed down,

correcting for both incorrectly detected symbols as well as reducing the cluster spread of correctly detected

symbols. This makes the GD process very slow and inefficient, if applied by itself, as seen from the different

convergence results of Sec 3.3 and 3.4. The slow convergence is corrected through the use of projected GD,

as explained below.
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GD step – projection step positive feedback
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Figure 3.7: Iteration dynamics of SER: Comparing CDF-based AGD with and without projection. Recovery of 16-
QAM symbols received from K = 8 users at a BS antenna with N = 128 antennas for SNR = 25 dB

The improvement in convergence via projected GD is pictorially illustrated in Fig. 3.7, portraying

the symbol error rate (SER) reduction over the GD iterations. In the absence of any projection step at each

GD iteration, the SER quickly saturates and further reduction is very slow, i.e., the rate of symbol error

correction doesn’t follow the rate of likelihood decay. In the absence of projection, the GD iteration itself

works towards reducing the cluster spread, which does not have any bearing on the SER. On the other hand,

the the two-tier projection (explained in Sec. 3.5.2) improves performance and speeds up convergence. The

projection step, by itself, does not help correct symbol errors; it is only responsible for improved regularization

of the recovered symbols into smaller clusters. This reduces the negative bias and the GD iteration is able

to efficiently correct the M-QAM symbol errors in the subsequent step, which is further helpful to better

regularize the recovered M-QAM symbols, and so on. This creates positive feedback with the projection step

helping the GD step, and the GD step helping the projection step, to greatly speed up convergence.

Remark. Although the above analyzes symbol recovery with GD Algorithms 13 and 15 for the CDF-based

likelihood, these observations are general to the unconstrained optimization and also apply to the surrogate

likelihood based on the LR.
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3.5.2 Two-tier projected GD framework
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Figure 3.8: Block diagram for the A-PrOBNet - Unfolded DNN to implement the projected AGD update (3.37). The
blue shaded blocks in each stage represent the learnable parameters in the unfolded DNN.

The use of a learnt M-QAM projection has been applied for one-bit MIMO in [20], which utilizes

quantizers based on the rectified linear unit (ReLU) function. However, one of the major limitations of

this approach is the absence of a structure for the projection, causing the detection to undergo unstable

initial GD iterations, before being stabilized in the later stages. Differently, this work introduces a two-tier

structured projection applied to the GD and AGD algorithms. This is explained below.

Tier 1 - Hypercube projection

The tier 1 projection maps each GD iterand to the M-QAM 2K-dimensional hypercube, defined as

Scube ∈ R2K such that

Scube = {x | |x[i]| ≤ smax, ∀i = 1, 2, . . . , 2K}, (3.34)

where smax is the maximum value of the M-QAM quadrature component. We define the projection operation

Pcube : R2K → Scube through the element-wise transformation

[
Pcube(x)

]
i

=


x[i], if |x[i]| ≤ smax

smax, otherwise.

,∀i = 1, 2, . . . 2K. (3.35)
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Applying this, we have the following projected GD update

x̂(t+1) = x(t) − α(t)∇(t)
x (3.36a)

x(t+1) = Pcube(x̂
(t+1)). (3.36b)

Similarly, applying this projection to the AGD method gives

x̂(t+1) = x(t) + d(t) − α(t)∇(t)
x+d (3.37a)

x(t+1) = Pcube(x̂
(t+1)) (3.37b)

d(t+1) = γ(t)(x(t+1) − x(t)). (3.37c)

The tier 1 hypercube projection improves GD as follows

• Bounding each x(t)[i] as −smax ≤ x(t)[i] ≤ smax, the GD update (3.36) converges faster due to the

larger value of the smoothness parameter β over the set Scube.

• The tier 1 projection is linear inside the M-QAM hypercube, which is a soft projection and hence

not too restrictive. This allows for more flexible symbol recovery and error correction in the initial

stages of the GD algorithm. This flexibility in projection enables the formation of the initial M-QAM

constellation clusters for the recovered symbols, which are efficiently fined-tuned using the subsequent

projection method.

Tier 2 - Gaussian denoiser

The tier 2 projection PQAM maps from the set Scube → Scube through an exhaustive weighted sum

of all the symbols inM2K . This requires modeling the posterior distribution of the transmitted symbols.

The vector of M-QAM transmitted symbols from the K different users is given by s. Each GD

iterand x(t) after the tier 1 projection (3.35) is modeled as

x(t) = s+△s(t), (3.38)

where the residual△s(t) is the deviation from the transmitted symbols, drawn from the Gaussian distribution

N (0, (σ(t))2I). We assume that this residual component at the tth iteration △s(t) is independent of the

previous residuals {△s(t)}t−1
t=0. Further, we consider the uniform non-informative prior Pr(s) over all the

symbols inM2K . The tier 2 projection PQAM is the MMSE estimate of the transmitted symbols using this
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estimation model for x(t). Hence, using the modeled Gaussian distribution with the independent increment

assumption, the tier 2 projection at each iteration is given as

ŝ(t) = PQAM(x(t)) = Es|x(t) (s), (3.39)

which is the posterior mean of the distribution Pr(s|x(t)). Using the Gaussian likelihood f(x(t)|s) and the

uniform prior Pr(s), the MMSE estimate is given by

ŝ(t) = c(t)
MK∑
i=1

si exp
(
− ||x

(t) − si||2

2(σ(t))2

)
, (3.40)

where c(t) =
(∑MK

i=1 exp
(
− ||x(t)−si||2

2(σ(t))2

))−1

is the normalization constant and si is the ith element ofM2K .

The parameter σ(t) is a learnt over each iteration (see Sec. 3.5.3) Since s(t) consist of 2K independent

components, corresponding to the real and imaginary parts of K users, the element-wise evaluation of the

tier 2 projection is given by

ŝ[i] = c(t)

√
M∑

k=1

sk exp
(
− (x(t)[i]− sk)

2

2(σ(t))2

)
, (3.41)

where sk is the kth quadrature component of the M-QAM constellation. The equation (3.41) is the Gaussian

denoiser, formed by a convex summation of all the elements in M2K . This convex projection clearly also

maps to a point in the hypercube Scube. Based on this projection, we have the following.

• Different from the tier 1 projection (3.35), the tier 2 projection is weighted by the ℓ2 distance of

the iterand x(t) to each constellation point, via a Gaussian kernel. Thus, the values x(t)[i] close to

the constellation points {sk} are compactly clustered around these points. This enables reducing the

cluster spread of the recovered constellation.

• The iteration-dependent parameter (σ(t))2 quantifies the cluster spread of the recovered symbols. The

initial iterations begin with a large value of (σ(t))2, allowing for flexible symbol error correction. The

value of this parameter reduces with iterations, due to increasing confidence in detected symbol values,

resulting in more compact clusters. This trend over the GD iterations is learnt from training data, as

explained in the subsequent sub-section.

A threshold iteration value t0 denotes the switch from the tier 1 to the tier 2 projection. Thus, the overall
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two-tier projected GD update is given by

x̂(t+1) = x(t) − α(t)∇(t)
x (3.42a)

x(t+1) = P(x̂(t+1)) =


Pcube(x̂

(t+1)), if t ≤ t0

PQAM(x̂(t+1)), if t > t0.

(3.42b)

The AGD update with the two-tier projection is given by

x̂(t+1) = x(t) + d(t) − α(t)∇(t)
x+d (3.43a)

x(t+1) = P(x̂(t+1)) =


Pcube(x̂

(t+1)), if t ≤ t0

PQAM(x̂(t+1)), if t > t0

(3.43b)

d(t+1) = γ(t)(x(t+1) − x(t)). (3.43c)

The unfolded DNN implementing the AGD algorithms with the two-tier projection is explained next.

3.5.3 Unfolded DNN implementation of projected AGD

The proposed accelerated projected one-bit network (A-PrOBNet) is illustrated in Fig. 3.8. The

following present salient features for this framework.

• The T -step AGD algorithm is unfolded as a T -stage DNN, with each Stage t denoting a distinct

sub-network.

• The initial inputs are provided as x(0) = d(0) = 0, empirically shown to have a well-conditioned initial

gradient value to start the GD.

• Within each Stage t, the gradient is evaluated using a shallow neural network, with the two static

weight matrices G and GT and the hidden layer nonlinearity ζ ′(z). For the A-ProbNet, we implement

the CDF-based likelihood and hence the element wise nonlinearity ζ ′(z) is evaluated using the improved

gradient method (3.20).

• The learnable parameters (denoted by the blue shaded box in Fig. 3.8) for the network are the scalers

{σ(t)}Tt=t0+1 for the tier 2 projection (3.41). The values of the different static parameters {α(t), γ(t)}

are chosen differently for different M-QAM constellations. This is elaborated in Sec. 4.6.
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• Learning the Gaussian denoiser parameters {σ(t)}t specializes each stage of the A-ProbNet to gradually

reduce the cluster spread of the recovered symbols. As explained through Fig. 3.7 this has a significant

effect on improving the rate of convergence.

• The A-ProbNet parameters are trained in an end-to-end manner, using the MSE loss for the ideal

constellation symbols, given by

L =
1

Ntrain

Ntrain∑
n=1

||x̃n − x̃train,n||2. (3.44)

We now present some finer points through means of a brief discussion on the overall projected AGD frame-

work.

3.5.4 Discussion

Generalization of the learnt quantization-based projection

As stated earlier, the work in [20] also introduced a learnt quantization-based denoiser for M-QAM

projection, utilized the two nearest neighbors. The general Gaussian denoiser for the proposed two-tier

projection weights the symbol against all the constellation symbol values, adding more robustness and

flexibility, especially in the initial iterations.

Loss function for end-to-end learning

The work in [36] introduced a novel regularized DNN loss function that captured both the MSE

and symbol errors. This loss implicitly captured the effect of projection during DNN training. However,

differently, this work does not utilize this regularized loss due to the explicit use of the projection operation.

Further, the application of the loss on the final symbols with sharp Gaussian denoisers results in the MSE

capturing the symbol errors exclusively. However, the use of a regularized loss is still relevant for iteration-

dependent loss functions, utilizing and fine-tuning all the intermediate estimates {x}Tt=1
3..

Generalized Gaussian denoising

Through the Gaussian denoiser introduced in this work, a single scalar parameter σ(t) per iteration t.

This has the potential to be generalized further. To this end, our future work will explore this generalization,

when applied to more advanced channel models.

3outside the scope of this work
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3.6 Experimental Results

3.6.1 Simulation setup

All the different prior works for one-bit MIMO receivers (see Sec. 5.1) benchmark the algorithm

for lower and higher order M-QAM constellations, i.e., QPSK and 16-QAM. However, all these approaches

perform comparably for QPSK symbols. Hence, in order to show true robustness to higher order M-QAM,

we perform detailed testing and benchmarking of this work for the 16-QAM constellation symbols.

The 16-QAM constellation symbols are transmitted from K = 8 users, N = 128 BS antennas with

SNR = E(||Hx||2)
E(||n||2) in the range 10 to 45 dB. This setup follows the standard multi-user 16-QAM simulations

conducted in [1, 35, 36, 132]. The Rayleigh fading channel H is considered with each entry chosen from the

CN (0, 1) distribution.

Performance benchmarks

We compare the proposed algorithm against the different model-based and learning based frame-

works. (i) The N-ML algorithm from [35] is used to establish the original benchmark using the CDF-based

likelihood. (ii) The OBMNet in [1] forms the original LR-based likelihood benchmark. (iii) The FBM-DetNet

from [20] is the existing state-of-the-art benchmark, utilizing the learnt quantization-based projection to the

M-QAM set.

Benchmark algorithm and network parameters

The n-ML [35] is executed for a maximum of T = 500 iterations, with a step size of 0.001, (to

ensure convergence). Consistent with the benchmarks established in [1], the OBMNet is run for T = 15

iterations. The same parameters are also taken for the FBM-DetNet [20].

Improved GD, AGD and A-PrOBNet

The following are the parameters chosen for the different algorithms and networks introduced in

this work in Sec. 3.3.2, 3.3.3 and 3.5.3.

• The improved GD, i.e., Algorithm 13, is run for T = 100 iterations, to ensure convergence of the

likelihood. The step size α = 0.03.

• The AGD, i.e., Algorithm 15, is run for T = 20 iterations. The momentum parameter γ is taken as

0.63 and step size α = 0.03, based on empirical testing.
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• The A-PrOBNet is run for T = 15 iterations. The momentum parameter γ = 0.63 and step size

α = 0.03. The denoiser parameters {σ(t)}T−1
t=0 are the only learnable parameters. The training for

the DNN is similar to the training strategy in [36]. The network training is carried out via minibatch

gradient descent, with the chosen batch size Ntrain = 32. In order to train the A-PrOBNet on the

set of randomly generated Rayleigh channel matrices, each minibatch is generated from a different

channel matrix H, denoted by BH. Based on the described system model (5.1)-(3.2), the minibatch

set is generated as BH = {x̄n, n̄n, ȳn}Ntrain
n=1 . We utilize the MSE loss function (4.7). We practically

implement minibatch gradient descent with the Adam update [144] for each training minibatch to keep

a check on the learning rate. For regularization of DNN weights, we utilize weight decay to further

increase resilience by preventing exploding network weights.

3.6.2 Intrinsic testing

In this sub-section the algorithms and DNNs proposed in this work are tested by varying the

different parameters.

CDF-based likelihood performance

10 15 20 25 30 35 40 45
SNR (dB)

10 3

10 2

10 1

BE
R

Improved GD and AGD for CDF-based Likelihood
Improved GD (T=20)
Improved GD (T=50)
Improved GD (T=100)
Improved AGD (T=20)

Figure 3.9: Intrinsic comparison of improved GD and AGD performance for CDF-based likelihood for given simulation
setup
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Performance of A-OBMNet
OBMNet (T=15)
A-OBMNet (T=8)
A-OBMNet (T=15)
Improved AGD (T=20)

Figure 3.10: Testing the performance of AGD on surrogate likelihood using LR, i.e., (3.32) for the given simulation
setup.

The performance for the improved GD and AGD, Algorithms 13 and 15 respectively, is evaluated

as a function of the number of iterations in Fig 3.9. As seen from these plots, the improved GD performance

saturates beyond T = 50 iterations. In addition, the the momentum-based GD clearly outperforms the GD,

with significantly fewer iterations. The performance of both Algorithms 13 and 15 are limited due to the

unit sphere normalization. Further improvement is only possible by modifying the projection step as seen

in the subsequent tests.

Evaluating surrogate likelihoods

The performance of the surrogate likelihood based AGD-update steps (3.32) are given in Fig. 3.10.

As can be seen by the results, the LR-based likelihood converges in a fewer number of steps using AGD

(see Fig. 3.5). The BER performance for the AGD update is comparable to the GD update using half the

number of iterations. This is attributed to the step size robustness for the LR-based likelihood. However,

as seen by the plots, increasing the number of iterations for AGD doesn’t improve BER significantly. This

shows that in addition to the robustness in step size as well as the advantages of accelerated GD, projection

plays a vital role in improving BER performance.
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Performance of projected AGD framework

10 15 20 25 30 35 40 45
SNR (dB)

10 4

10 3

10 2

10 1

BE
R

Projected AGD for CDF-based Likelihood
Improved AGD (T=20)
Improved AGD: Tier 1 Proj (T=20)
A-PrOBNet (T=15)

Figure 3.11: Testing the role of different projection strategies on the CDF-based AGD for given simulation setup

We evaluate the role of the different projection strategies on the better performing AGD algorithm.

The role of the different projection strategies is highlighted through the results in Fig. 3.11. As seen from

these plots, Tier 1 projection is a significantly better strategy compared to projection on the unit sphere.

The two-tier learnt strategy of the A-PrOBNet further improves on the BER by directly reducing the cluster

spread.

3.6.3 Detection for general channel

We now compare the performance of the A-PrOBNet to the state-of-the-art recovery algorithms

for a general channel matrix drawn from the distribution of Rayleigh distributed channels. The recovery

performance is given in Fig. 3.12. As can be seen from these plots, the performance of the proposed A-

PrOBNet matches the current state-of-the-art performance of the FBM-DetNet with the same number of

iterations (outperforming the OBMNet and n-ML using unit sphere normalization). However, differently,

this algorithm does not make any additional approximations on the likelihood like utilization of a surrogate

function. The A-PrOBNet thus establishes the limit of optimum performance for the original CDF-based

likelihood without any additional approximations. Further, the two-tier projection is developed as a gener-
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Detection Performance for all Algorithms
OBMNet (T=15)
FBM-DetNet (T=15)
A-PrOBNet (T=15)

Figure 3.12: Testing state of the art detection performance of all algorithms for given simulation setup

alization of the quantization-based projection. The latter is clearly a better strategy at lower SNR values

owing to weighting by a fewer M-QAM neighbors.

3.7 Conclusions

This work provides insights into the ML optimization for one-bit MIMO receivers, enabling a better

understanding of the GD-based signal recovery algorithm. The accelerated GD, with faster convergence, is

introduced into the class of different algorithms. These insights are extended to the surrogate likelihood

function, the logistic regression, explaining the improved robustness and speed of convergence. Finally,

the significance of an effective per-iteration projection step is highlighted in the GD-based recovery. The

accelerated GD, with a novel two-tier projection is unfolded into a T-stage DNN, the A-PrOBNet, to achieve

state of the art performance. Future work in this area involves the extension of this work to mmWave

channels. The challenge of non-uniform power distribution among the different users makes joint-detection

especially challenging for one-bit MIMO systems.

Chapter 3, in part, is a reprint of the material as it appears in Aditya Sant, and Bhaskar D. Rao.

“Insights into Maximum Likelihood Detection for One-bit Massive MIMO Communications”, IEEE Trans-

actions on Wireless Communications, (under review). The dissertation author was the primary investigator
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and author of this paper.
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Appendices

3.A Proof of Theorem 2

This section provides a supplementary material to the original manuscript. In particular, this

provides a proof of Theorem 1. We begin by defining a surrogate minimum and minimizer for the general

likelihood and the subsequent convergence to this surrogate minimizer.

Defining the surrogate minimum and minimizer

As stated in Sec. III in the original manuscript, there is no finite x ∈ R2K that achieves the

infimum of the likelihood, i.e., L(x) > 0. The convergence is thus analyzed to an ϵ-closeness to the infimum.

A surrogate minimum ϵ is chosen to analyze the decay of the likelihood such that

ϵ ≤ L(x(t)), ∀ t = 1, 2, . . . , T. (3.45)

We now define a structured surrogate minimizer x∗
ϵ that uniquely maps to this surrogate minimum. Consider

the set X1, defined in Sec. III-A of the original manuscript. This contains the set of all the separating

hyperplanes Xplane ∈ X1. An element xplane ∈ Xplane if

yih
T
i xplane ≥ 0, ∀i = 1, 2, . . . , 2N, and (3.46a)

||xplane|| = 1. (3.46b)
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Among the set of all the separating hyperplanes, the margin-maximizing hyperplane is uniquely defined,

depending on the observed data {H,y} only, as

xmm =max
x

min
i

yih
T
i x, and (3.47a)

||x|| = 1. (3.47b)

Using the above margin-maximizing hyperplane, the surrogate minimizer x∗
ϵ is now defined as

x∗
ϵ = κϵxmm, withκϵ such that (3.48a)

L(x∗
ϵ ) = ϵ. (3.48b)

We state the following lemma for uniqueness of this surrogate minimizer.

Lemma 2. If we define two surrogate minimizers x∗
1 = κ1xmm and x∗

2 = κ2xmm, we then have

L(x∗
1) = L(x∗

2) =⇒ κ1 = κ2. (3.49)

Proof. Let us assume there exist 2 distinct values κ1 and κ2, such that L(x∗
1) = L(x∗

2). Further, wlog,

consider κ1 > κ2. We than have

L(x∗
1) = −

2N∑
i=1

log Φ(κ1yih
T
i x

∗
mm)

< −
2N∑
i=1

log Φ(κ2yih
T
i x

∗
mm)

< L(x∗
2).

(3.50)

This is a contradiction and hence L(x∗
1) ̸= L(x∗

2)

Using this framework, the surrogate minimizer, defined as the scaled margin-maximizing hyperplane

(3.48), uniquely maps each surrogate minimum to a surrogate minimizer. Specifically, given a particular value

of a ϵ, we can evaluate a unique surrogate going along the direction of the scaled margin-maximizing classifier.

Proof of Theorem 2

Based on the above definitions of the surrogate minimizers, we now analyze the convergence of the

GD algorithm to the surrogate minimum.
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The following quantities are defined for the given finite-horizon GD:

∇max = max
t
||∇(t)

x || (3.51a)

∇min = min
t
||∇(t)

x || (3.51b)

Xmax = max
t
||x(t)||. (3.51c)

We begin by analyzing the convergence of x(t) to x∗
ϵ , defined in (3.48). We define ∇∗

ϵ = ∇x(L(x∗
ϵ )). We

now that r(t) = ||x(t) − x∗
ϵ || is monotonically decreasing over the GD iterations with step size α(t) = 1/β.

Consider the expression for r(t+1) 2

r(t+1) 2 = ||x(t+1) − α(t)∇(t)
x − x∗

ϵ ||2

= r(t) 2 − 2α(t)⟨x(t) − x∗
ϵ ,∇(t)

x ⟩+ α(t) 2||∇(t)
x ||2

= r(t) 2 − 2α(t)⟨x(t) − x∗
ϵ ,∇(t)

x −∇∗
ϵ ⟩

− 2α(t)⟨x(t) − x∗
ϵ ,∇∗

ϵ ⟩+ α(t) 2||∇(t)
x ||2

≤ r(t) 2 − 2α(t)

β
||∇(t)

x −∇∗
ϵ ||2

− 2α(t)⟨x(t) − x∗
ϵ ,∇∗

ϵ ⟩+ α(t) 2||∇(t)
x ||2

= r(t) 2 − 1

β

[ 1
β

(
||∇(t)

x ||2 + 2||∇∗
ϵ ||2−

4⟨∇(t)
x ,∇∗

ϵ ⟩
)
+ 2⟨x(t) − x∗

ϵ ,∇∗
ϵ ⟩
]

≤ r(t) 2 − 1

β

[ 1
β

(
||∇min||2 + 2||∇∗

ϵ ||2−

4||∇max|| ||∇∗
ϵ ||

)
+ 2⟨x(t) − x∗

ϵ ,∇∗
ϵ ⟩
]

≤ r(t) 2 − 1

β
β
[ 1
β

(
||∇min||2 + 2||∇∗

ϵ ||2−

4||∇max|| ||∇∗
ϵ ||

)
− 2(xmax + κϵ)||∇∗

ϵ ||
]

= r(t) 2 − 1

β

[ 2
β
||∇∗

ϵ ||2−(4||∇max||
β

+ 2(xmax + κϵ)
)
||∇∗

ϵ ||+
1

β
||∇min||2

]
= r(t) 2 − 1

β
R(||∇∗

ϵ ||)

(3.52)

Here, the different inequalities are derived using the properties of β-smooth functions4 and the Cauchy-

4Nesterov, Y., 2003. Introductory lectures on convex optimization: A basic course (Vol. 87). Springer Science & Business
Media.
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Schwarz inequality. Since R(||∇∗
ϵ ||) → 1

β ||∇min||2 as ||∇∗
ϵ || → 0, for a small enough value of ϵ, we can

consider 0 < R(||∇∗
ϵ ||) < 1

β ||∇min||2. Thus the sequence r(t) is monotonically decreasing. Using evaluate the

bound on △(t) = L(x(t))− L(x∗
ϵ ).

Using convexity of L(x(t)), we have L(x∗
ϵ ) ≥ L(x(t))−⟨∇(t)

x ,x(t)−x∗
ϵ ⟩. Thus we can bound △(t) as

△(t) ≤ ⟨∇(t)
x ,x(t) − x∗

ϵ ⟩

≤ ||∇(t)
x || ||x(t) − x∗

ϵ ||

≤ ||∇(t)
x || r0

(3.53)

For the β-smooth function

L(x(t+1)) ≤ L(x(t))− 1

2β
||∇(t)

x ||2. (3.54)

Subtracting L(x∗
ϵ ) and using (3.53)

△(t+1) ≤ △(t) − 1

2β
||∇(t)

x ||2

△(t+1) ≤ △(t) − 1

2β

△(t) 2

r20

1

△(t)
≤ 1

△(t+1)
− 1

2β r20

△(t)

△(t+1)

1

△(t)
≤ 1

△(t+1)
− 1

2β r20

(3.55)

Adding the T terms of the telescoping summation gives us

L(x(T ))− L(x∗
ϵ ) ≤

2βr20△(0)

△(0)T + 2βr20
, (3.56)

which is the required form of the decay rate.

The above theorem provides the best possible convergence rate for GD, utilizing the optimally chose

step size, i.e., α(t) = 1/β. Further, for ϵ ≈ 0, the theorem provides the framework to choose of the number

of iterations T required to get arbitrarily close to the infimum of the likelihood.
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Chapter 4

DNN-aided One-bit MIMO Detection

4.1 Introduction

Next generation massive MIMO communication system design promises high-speed wireless com-

munication and an entire network of interconnected devices [3, 4]. However, widescale deployment brings in

challenges for system cost, power consumption and complexity. Several advances in model-based algorithm

design as well as high performance DNNs are being made to combat these challenges for both channel es-

timation as well as end-to-end communication. The general parametric structure of DNNs, coupled with

their advantage as universal functional approximators [121, 122], makes these an integral part of the future

of robust wireless communication, exploited for a variety of applications from beamformer design [52–54],

channel estimation [123–125] as well as end-to-end detection [55–59].

One of the major challenges for widescale deployment is the design of high-resolution analog to

digital converters (ADCs). Prior analysis of system design has shown that high-resolution ADCs account for

significant system cost and power consumption [23,120]. Moving in the direction of low cost and complexity,

low-resolution ADCs have been gaining significant interest, due to advances in both signal processing and

DNN-based algorithms [20–25]. A special case of low-resolution ADCs is the one-bit ADC. One-bit signal

recovery has seen various innovations in general signal processing research [145–148]. In our work, we focus

on the application of DNN-based methods to symbol recovery for one-bit massive MIMO communication

systems. DNN based detectors appear to be naturally suited for this problem because of the inherent

nonlinearity in the measurement process.

One-bit MIMO data detection benefited significantly with the application of Bussgang’s theroem to
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linearize the input-output relation [126]. Based on this linearization, a large class of linear receivers as well

as MMSE receivers has been proposed for both single carrier and multi-carrier systems [29–31]. In addition

several works utilize this linearization to characterize the one-bit system and evaluate the overall system

performance and capacity [127–129]. Additional robust model-based detectors improving on the Bussgang

linear detectors have also been proposed in several key works [32,33]. In addition to one-bit data detection,

one bit channel estimation for mmWave communication systems has also been studied [26,27]. Our previous

work [28] characterizes the subspace of the one-bit transformed signal and even generalizes this behavior to a

broader class of odd-symmetric nonlinearities. In addition to the different model-based approaches, different

works applying DNNs to one-bit detection have also been proposed [133–137,149,150].

One of the most resilient class of one-bit detectors is based on the one-bit likelihood maximization

of the received signal using the Gaussian cumulative distribution function (cdf) [34]. The work in [35]

introduced a near maximum likelihood (n-ML) detector based on a two step iterative algorithm - gradient

descent (GD) followed by projection onto the unit sphere. Other works applying the Gaussian cdf likelihood

formulation have also been used extending this idea [130,131]. However, one of the limitations of applying the

GD iteration on the Gaussian cdf is its instability at high signal-to-noise ratio (SNR) values [132]. The work

in [1] applied the sigmoid approximation of the Gaussian cdf [143] to the one-bit likelihood. The ensuing

detector, that the authors named the OBMNet, formulated this detection as an unfolded DNN, learning the

GD step sizes at each iteration. The sigmoid approximation was shown empirically to stabilize the gradient

and addressed more explicitly in [132]. This work is, at present, the current state-of-the-art for M-QAM

data detection.

Our work builds on the state-of-the-art OBMNet formulation, with the following contributions.

• We introduce a novel, regularized GD approach for one bit detection. We augment each GD iteration

with a learnable DNN-based step. This DNN-based step performs an explicit regularization of each

GD iteration of the OBMNet algorithm, enhancing recovery for data symbols transmitted from an M-

QAM constellation. We capitalize on not only the model-based OBMNet structure, but also increase

the network expressivity through this DNN-aided regularization block per iteration.

• We improve on the generalization capability of existing end-to-end detection networks (mentioned

earlier), which are trained and tested on a single channel response. By designing the architecture,

input data as well as training on on multiple randomly sampled Rayleigh-fading channels, we avoid

the need to re-train the detector network for each different channel state information matrix.

• We implement two unique networks, for the above mentioned regularized GD approach:
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1. ROBNet: A deep unfolded network with an identical, different, sub-network block per GD itera-

tion

2. OBiRIM: A deep recurrent neural network utilizing estimation memory for one-bit estimation

To the best of our knowledge, the latter, i.e. the OBiRIM, presents the first approach using a recurrent

neural network for one-bit detection.

• Contrary to the mean square error (MSE) loss used for network training, we introduce a novel loss func-

tion, tailored to MIMO communication symbol recovery. In particular, we incorporate a constellation-

aware regularized MSE loss function to penalize the symbol errors as well as the bit errors. We envision

this as a general communication system loss function, not just limited to one-bit symbol recovery.

Our experimental results, implemented on the i.i.d. Rayleigh fading channel, show the utility of considering

a robust regularized GD algorithm through sharper and more compact recovered constellation clusters with

significantly reduced cluster spread. This improved recovery is especially significant for improved detection

performance of higher order M-QAM constellations. Although the analysis of multi-bit MIMO receivers falls

outside the scope of this work, the presented regularized GD framework and robust constellation aware DNN

loss function can potentially be applied to deal with the nonlinearities of these systems as well.

The purpose of this document is provide background and details necessary for the mmWave exten-

sion presented at IEEE ICASSP 2023.

Organization: This manuscript is organized as follows - Sec. 4.2 introduces the system model, one-

bit detection problem and the gradient-descent based approaches used. Sec. 4.3 introduces our proposed

framework for general regularized one-bit detection, while Sec. 4.4 explains the specific DNN implementation

used. Sec. 4.6 provides experimental validation of our proposed framework and Sec. 5.6 concludes the

manuscript.

Notation: We use lower-case boldface letters a and upper case boldface letters A to denote complex

valued vectors and matrices respectively. The notation Re(·) and Im(·) denote the real and imaginary parts,

respectively. The operation (·)T denotes the transpose of the array or matrix. Unless otherwise specified,

all scalar functions like tanh(·) or sign(·), when applied to arrays or matrices, imply element-wise operation.

The notation x(t) is used to denote the value of the variable x at iteration t of the algorithm. For the DNN

training, the size of the training set is given by Ntrain and the notation x̂n,train denotes the nth sample from

this set. Unless otherwise specified, the norm || · || represents the ℓ2-norm for a vector and Frobenius norm

for a matrix.
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4.2 System model and background

The one-bit MIMO model follows from the same model introduced in the equivalent section in

Chapter 3. However, to recap, the system model is repeated here in brief. It is assumed that all the signals

are converted to the equivalent real-valued forms using the framework in (3.3).

The uplink unquantized signal is received as r and the one-bit quantized signal is given by y. These

quantities are given as

r = Hx+ z (4.1a)

y = sign(r), (4.1b)

where H is the MIMO channel matrix, x is the vector of transmitted M-QAM symbols and z is the AWCGN.

The following two sub-sections briefly recap the approaches for the GD-based detection for one-bit MIMO.

4.2.1 One-bit maximum likelihood and GD-based detection

The one-bit maximum likelihood (ML) problem has been derived in [34] as

x̂ML = argmax
x∈M2K

2N∑
i=1

log Φ
(√

2ρ yih
T
i x

)
, (4.2)

where Φ(·) is the cumulative distribution function (cdf) for N (0, 1) andM2K represents the set of the 2K-

dimensional vectors, consisting of the real-valued representation (see eq. (3.3)) of the K-dimensional vectors

of M-QAM constellation symbols. The search over this constrained, finite, non-convex setM2K scales this

problem exponentially in the number of users. Different approaches based on relaxations of the optimization

(4.2) have been proposed [1, 35,133].

One of the proposed relaxations for the constrained optimization (4.2) involves unconstrained GD

over the entire subspace R2K , followed by a projection onto the subspace of interest [35]. The unconstrained

GD update step has been derived in [35] as

x(t+1) = x(t) + α(t)
√
2ρGT ϕ(

√
2ρGx)

Φ(
√
2ρGx)

(4.3)

where α(t) is the step size at iteration t, G = diag(y1, y2, . . . , y2N )H and ϕ(·) is the Gaussian probability

density function. The subsequent step projects this estimate x(t+1) onto the unit hyper-sphere.

This optimization approach is limited by the behavior of the Gaussian cdf Φ(·) at high SNR values.
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It is empirically observed that this function drops rapidly to zero at high SNR values, making the likelihood

gradient explode to large values. Further the Hessian matrix for the same is empirically observed to contain

a high condition number [132]. All this makes the optimization (4.2) unstable at high SNR values.

4.2.2 Current state-of-the-art one-bit detector: OBMNet

An approximate ML estimation framework was proposed in [1] using the logistic cdf approximation

of the Gaussian cdf [143]. This approximation involves sigmoids, a popular activation function in neural

networks, and naturally leads to a DNN based detector. The authors in [1] empirically observe a robustness

in detection to incorrect symbol estimation as well as imperfect CSI at the detector as a result of this

approximation. This can be explained by examining the gradient of the approximate ML and noting that it

is much better behaved at high SNR [132]. The approximate ML problem using the sigmoid log-likelihood

is given by

x̂ML = argmin
x∈M2K

2N∑
i=1

log (1 + e−c
√
2ρyih

T
i x), (4.4)

with the value of c = 1.702. Applying GD to the likelihood (4.4), we have the update equation

x(t+1) = x(t) − α(t)∇(t)
x

= x(t) + α(t)GTσ(−Gx(t)), t = 0, . . . , T − 1,

(4.5)

where σ(·) is the logistic sigmoid function. The constants have been absorbed into the step size α(t). After

executing T iterations of GD, the final estimate x̂(T ) is normalized as

x̃ =

√
K

||x(T )||
x̂(T ). (4.6)

The T -step unconstrained update (4.5) is implemented as a T -layer unfolded DNN with sigmoid nonlinearity

and network weights depending on the CSI matrix and one-bit measurements, i.e., the OBMNet [1]. The

step sizes at each iteration α(t) are the only learnable parameters. The network parameters are trained on

the MSE loss function

L =
1

Ntrain

Ntrain∑
n=1

||x̃n − x̃train,n||2. (4.7)

The results in [1] show the OBMNet as an efficient low-complexity detector for QPSK as well as 16-QAM

symbols. However this detector has a few limitations, described below.

(i) Limited network expressivity: The OBMNet, as a general DNN, is highly underparameterized. Any
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changes in the network architecture, loss function and training procedure do not show up in improved

performance for the network.

(ii) Constellation cluster spread: Analyzing scatter plots for the recovered symbols, high cluster spread

is evident (see Fig. 4.8). More on this in the next section. Although this does not compromise bit

error rate (BER) for lower order constellations like QPSK, it degrades performance at higher order

constellations like 16-QAM.

(iii) Gap to ML: The original two-step OBMNet detection (4.5)-(4.6) falls short of the theoretical expo-

nential search based ML solution to (4.4). The authors in [1] fine-tune their estimates through a

constrained lower order ML search step to bridge this gap.

4.3 Regularized GD for one-bit MIMO detection

In order to address some of the observed limitations of the OBMNet, we introduce the framework of

regularized neural one-bit detection, building on the OBMNet framework (Sec. 4.2.2). The specific network

structure and implementation details for our approach are provided in the next section. Here, we begin

with the general regularized GD framework, with a learnable DNN-aided regularization. Next, for robust

DNN training, we have developed a novel constellation-aware quantization based loss function. Finally we

comment on the ability to generalize to any arbitrary Rayleigh fading channel.

4.3.1 DNN-aided regularized GD for one-bit MIMO detection

In order to improve the detection robustness, we modify the unconstrained OBMNet update step

(4.5) to a regularized GD update, per iteration t, given by

x̂(t+1) = x(t) − α(t)∇(t)
x (4.8a)

x(t+1) = x̂(t+1) + h
(t)
ϕ (x(t),∇(t)

x , x̂(t+1)). (4.8b)

Here, the first step (4.8a), the intermediate update, is the same as the unconstrained OBMNet update

(4.5). The second step (4.8b) represents the introduced correction to this unconstrained update. Based

on regularizing the estimate x̂(t+1) to account for optimization within the M-QAM constellation space, the

overall update (4.8) is called the regularized GD detection for one-bit MIMO. We introduce a parametric

regularization function h
(t)
ϕ (·), per iteration, implemented via a DNN (exact implementation in Sec. 4.4). By
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means of an additional learnable regularization we increase the network expressivity of the original OBMNet,

by increasing the number of learnable network parameters. We also enable per-iteration projection of the

iterand x(t) onto the set of the real-valued representation of M-QAM constellation pointsM2K .

The detector FBM-DetNet, introduced in [20], also implements a per-iteration projection of the

OBMNet estimate on the M2K subspace at each iteration. This is implemented using a learnable hard

quantization of each iterand x̂(t+1) to the M-QAM constellation. Differently, the regularized GD (4.8) learns

a general projection function, implemented as a residual correction at each step.

4.3.2 Improved DNN loss function

In order to capitalize on the general parametric regularization structure, we design a constellation-

aware loss function. The MSE loss function (4.7), utilized by the OBMNet, penalizes the magnitude of the

symbol error for the received signal. We attempt to add in an additional robustness to network training by

also penalizing symbol flips in the estimated symbols, thus implicitly penalizing bit flips in the recovered

data.

Incorporating this robustness, we improve on the MSE loss by using the following modification

L =
1

Ntrain

Ntrain∑
n=1

[
||x(T )

n − x̃train,n||2 + λR(x(T )
n , x̃train,n)

]
, (4.9)

whereR(·) is a constellation-aware regularization for DNN training. This regularization is based on a smooth

quantization of the network output, and implemented as

R(x(T )
n , x̃train,n) = ||Qβ(x

(T )
n )− x̃train,n||2. (4.10)

Here, the function Qβ(·) is a smooth constellation-aware quantization function, utilizing the nonlinearity

fβ(z) = tanh(βz) with a hyperparameter β. The choice of the scaled tanh(·) nonlinearity is inspired by

(i) The saturating behavior for quantization, (ii) Differentiability for backpropagation of the loss, and (iii)

Ease of tuning to regulate the quantization degree. For the two considered constellations in this work, we

implement the quantization function Qβ(·) as follows.

1. Qβ(x) for QPSK constellation:

Qβ(x) = tanh(β x). (4.11)
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2. Qβ(x) for 16-QAM constellation:

Qβ(x) = tanh(β (x+ 2)) + tanh(β x) + tanh(β (x− 2)). (4.12)

The quantization function (4.12) for the 16-QAM constellation is plotted in Fig. 4.1. The plots illustrate that

the quantization (4.12) implements a smooth version of the symbol-mapper, that can be backpropogated

through the regularization network, to the 16-QAM constellation symbols. By specifically modifying the

loss function as (4.19) to communication system symbol recovery, we are able to incorporate a symbol error

rate (SER) metric into the training phase of our networks. The role of the quantizer (4.20) is to cluster

the estimated symbols within a very small neighborhood of the nearest M-QAM symbols. Thus the symbol

loss for the staying within the “right” symbol boundaries is attenuated and the symbol loss for crossing

over the symbol boundaries is amplified. Thus the regularization loss will be dominated by symbol errors

(implicitly bit errors). By incorporating this into the training phase, we also account for an improved BER

performance, a metric that is imperative to communication system design.
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Figure 4.1: Illustration for 16-QAM quantizer (4.12). The value of β = 10.

Remark. The general quantization function Qβ(·) can be implemented using different nonlinearites, like the

ReLU. Analysis of such alternate quantization functions will extract larger patterns in the behavior of the

constellation-aware regularization. This work conceptually introduces improved loss functions through the

use of M-QAM constellation mapping, in order to incorporate symbol error rate in the network training. The

specific detailed analysis of alternate loss functions falls outside the scope of this work.

Before illustrating our specific implementations of this neural detector, we present another advan-

tage of this framework, i.e., the generalizability to arbitrary Rayleigh fading channels.
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4.3.3 Generalization of one-bit neural detection

Contrary to the conventional end-to-end learning approaches for one-bit detection [133–135], we

develop our regularized model beyond a channel-specific detector. The regularization network h
(t)
ϕ (·) in (4.8)

implicitly takes in the channel information via the gradient of the estimate at each iteration ∇(t)
x , which is

used for the signal recovery. Each new subsequent channel matrix H results in a new sequence of gradient

expressions for the unfolded network, i.e., ∇(t)
x . This, in turn, enables the network to uniquely identify the

inputs with the channel response. As opposed to directly feeding in the input channel matrix H to the

regularization network, our approach exploits the main advantage of unfolded deep learning [50] by using

the channel information in an appropriate, model-based form. By feeding the gradient of the signal, for any

generated channel matrix H, to the regularization network, we are able to efficiently fine tune the original

GD algorithm for that particular channel matrix H. This approach of learning a parametric regularization

from the gradient of the linear model was also used for recurrent inference machines (RIMs) [151]. We thus

overcome the need to re-train or fine-tune the network for each unique channel matrix H. This enables

completely eliminating the need to transmit any other additional pilot symbols (for any online training)

following the initial access and channel state information (CSI) estimation phase.

4.4 DNN-Aided Regularized GD: Implementation

Based on the proposed regularized GD and loss function framework introduced earlier, the next two

subsections present the specific implementation via two distinct approaches, namely, the unfolded ROBNet

and the recurrent OBiRIM.

4.4.1 Unfolded one-bit DNN: ROBNet

Model-based algorithm unrolling and the use of unfolded DNNs have been explored in different

applications of signal processing and wireless communication [50, 152]. These networks are able to account

for any model mismatch and can significantly save on the number of iterations, compared to the original

model-based algorithms. The ability to use such network structures to complement model-based analysis

motivates us to incorporate such an unfolded DNN to implement our regularized one-bit GD approach (4.8).

Our proposed unfolded network implementation, the regularized one-bit network (ROBNet) is il-

lustrated in Fig. 4.6. Based on this, we present the following salient features of the unfolded learning

approach.
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Figure 4.2: Block diagram for the Regularized One-bit Detector (ROBNet)

• The ROBNet, implementing a T -stage regularized GD algorithm, is unfolded into T distinct sub-

networks (each represented as Stage t in Fig. 4.6). Each sub-network at Stage t consists of two

sequential phases.

1. GD-Net - Identical to each OBMNet [1] iteration, this implements (4.8a), with the tth gradient

and unconstrained iterate given by ∇(t)
x and x̂(t+1), respectively. The GD step size α(t) is the

only learnable parameter.

2. GD-RegNet - Denoted by h
(t)
ϕ (x̂(t+1),∇(t)

x ,x(t)), this is a larger parametric network that regular-

izes each GD iteration, i.e., (4.8b). This increases network exressivity through a larger number of

learnable parameters.

• Additionally, for each Stage t, a residual link from the GD-Net output x̂(t) is fed to the output of the

GD-RegNet. Thus the role of each GD-RegNet at Stage t is to impart an appropriate stage-dependent

correction, learnt from the data, to the unconstrained gradient step.

We now provide the specific technical details of this GD regularization, along with the general channel

training.

GD-RegNet structure and training: We begin by describing the input to the GD-RegNet at each

Stage t, consisting of the GD-Net output - the unconstrained update x̂(t+1), gradient ∇(t)
x and previous

iterand x(t). These three components are converted into 6 channels, with two channels, per component, for

the real and imaginary parts, respectively. This is propagated through the GD-RegNet as follows:

1. First a 1-D convolution extracts the input features into a set of output channels1

1The 1-D convolution empirically shown to provide improved results, compared to only using fully connected layers. Feature
extraction from the OBMNet estimate and gradient enables a more robust GD regularization (4.8b).
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2. The output of the 1-D convolution is flattened and passed through a fully connected network (FCN),

consisting of three hidden layers. The output of the FCN is a vector in R2K , same as the x̂(t+1)

3. A residual link from the OBMNet output x̂(t+1) is added at the output of the GD-RegNet, generating

the final iterand x(t+1).

4. We normalize the final output x(T ), analogous to (4.6), as

x(T ) ← ηM
x(T )

||x(T )||
, (4.13)

where ηM depends on the constellation order M2.

The specific details of the parameters in each layer, for a general number of users K, are given in Table 4.2.

The network training is carried out via minibatch gradient descent, with the chosen batch size

Ntrain = 32. In order to train the ROBNet on the set of randomly generated Rayleigh channel matrices, each

minibatch is generated from a different channel matrix H, denoted by BH. Based on the described system

model (5.1)-(3.2), the minibatch set is generated as BH = {x̄n, z̄n, ȳn}Ntrain
n=1 . We employ the modified loss

function (4.19), discussed in Sec. 4.3.2, to train the ROBNet. We practically implement minibatch gradient

descent with the Adam update [144] for each training minibatch to keep a check on the learning rate. For

regularization of DNN weights, we utilize weight decay to further increase resilience by preventing exploding

network weights.

4.4.2 Recurrent one-bit DNN: OBiRIM

We now investigate an alternate network strategy that can model the sequence of iterands {x(t)}Tt=0

as a time-series generated via the regularized GD algorithm. We thus turn towards recurrent neural networks

to learn this time series pattern, resulting in a parametrically efficient network design.

Recurrent neural networks (RNNs) have been one of the earliest DNNs to incorporate time-series

information in pattern extraction for applications like speech and NLP [153, 154]. A specific class of these

networks, the recurrent inference machines (RIMs), proposed in [151], have shown much success in medical

imaging. The ability of the RIM architecture to parametrically model a prior distribution and as well as the

optimization procedure is responsible for its superior performance over conventional approaches [46, 151].

2For lower order constellations, i.e., QPSK, we incorporate ηM into the learning process during training, making it data-
dependent. However, we have empirically observed that for higher order QAM, i.e., 16-QAM, this value should be fixed. On
the whole, the difference between statically choosing ηM and learning it from the data does not have any change in overall
performance.
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Figure 4.3: Block diagram for the Projected-Regularized One-bit Recurrent Inference Machine (OBiRIM) Detector

The use of a parametric prior distribution as regularization, along with an iterative estimation algorithm of

one-bit detection fits in perfectly with the strengths of the RIM framework.

To this end, we implement our own version, the one-bit RIM (OBiRIM) for the regularized GD

algorithm (4.8). The overall network structure for the OBiRIM is shown in Fig. 4.3. Different from the

ROBNet, the OBiRIM utilizes parameter sharing for the GD-RegNet, such that the same set of parameters

hϕ are used for each GD iteration in (4.8). The presence of recurrent cells in the OBiRIM, stores the relevant

estimation memory for the iterative GD algorithm and fine-tunes each OBMNet estimate x̂(t) based on the

system history. By sharing parameters among the different iterations and exploiting the system memory,

this network is highly parameter efficient. To the best of our knowledge, the OBiRIM is the first recurrent

DNN for detection of one-bit MIMO, which can be generalized for detection to any arbitrary Rayleigh fading

channel.

The overall regularized GD framework for the OBiRIM, as seen in Fig. 4.3, is similar to the

ROBNet, i.e., implementation of the regularized GD algorithm (4.8). We highlight some of the salient

features of this network here below.

• The OBiRIM, implementing a T -step regularized GD algorithm, consists of T temporal iterations. At

each Stage t (see Fig. 4.3), the data is sequentially processed through two phases.

1. GD-Net - This is similar to GD-Net block in the ROBNet (see Fig. 4.6).

2. GD-RegNet - Different from the equivalent network of the ROBNet, this GD-RegNet incorporates
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DNN recurrence to temporally fine tune each estimate x(t). DNN memory enables temporal

processing, while sharing parameters across different OBiRIM stages.

• At each Stage t, a residual link from the GD-Net output x̂(t) is fed to the output of the GD-RegNet,

thus imparting a stage-dependent correction to the unconstrained gradient step.

We now provide the technical parameters of this GD regularization, along with the general channel training.

Table 4.1: DNN Parameters of GD-RegNet in ROBNet & OBiRIM (K Users)

Network Layer Parameters

ROBNet
(each stage)

Convolution
(1-D)

conv + ReLU + bn
Input dim - K
Input chan - 6
Output chan - 64
Kernel size - 3

Fully-connected

Input dim - 64K
Output dim - 2K
Hidden layers - 3
Hidden dim - {128, 64, 32}
bn dim - {128, 64, 32}
Nonlinearity - ReLU

OBiRIM
(each stage)

Convolution Same as ROBNet

GRU

Num of GRUs - 2
GRU1 input dim - 64K
GRU1 hidden dim - 1024
GRU2 input dim - 1024
GRU2 hidden dim - 1024

Fully-connected

Input dim - 1024
Output dim - 2K
Hidden layers - 4
Hidden dim - {512, 128, 64, 32}
bn dim - {512, 128, 64, 32}
Nonlinearity - ReLU

GD-RegNet structure and training: The GD-Net output at each Stage t is fed as 6 input channels to

the GD-RegNet, similar to the ROBNet. Different from the series of GD-RegNets {h(t)
ϕ }Tt=1 of the ROBNet,

the GD-RegNet hϕ of the OBiRIM is a single recurrent network using gated recurrent units (GRU) to store

the estimation memory. We choose the GRU as the recurrent block due to its ability to capture long and

short term memory by resetting and updating the hidden state using the input sequence [153, 155]. The

overall propagation of the input through the GD-RegNet, for each temporal Stage t, is given as:

1. First, a 1-D convolution extracts the input features into a set of output channels.

2. The output of the convolution stage is flattened and passed to the recurrent step of the GD-RegNet.

This consists of two sequential GRU blocks, with the output hidden state of the first GRU cell passed
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as the input to the second GRU cell. The hidden states of both these recurrent cells are initialized to

zero.

3. Post propagation through the two GRU cells, the output hidden state of the second GRU cell is

flattened and passed to a FCN with four hidden layers, with the output of the FCN, having the same

dimension as the OBMNet output x̂(t+1).

4. A residual link, from the OBMNet output x̂(t+1), is added to the output of the FCN, similar to the

ROBNet.

5. The normalization of the final estimate x(T ) is carried out as in (4.13).

The specific details of the GD-RegNet parameters of the OBiRIM, for a general number of users K, are given

in Table 4.2. The training data as well as the training parameters are the same as the that of the ROBNet

(see Sec. 4.4.1). Further, the same improved loss function (4.19) is used to also train the OBiRIM network

parameters.

Remark. Both the ROBNet and OBiRIM are trained based on the loss function (4.19), incorporating the

final one-bit estimate x(T ). Differently, the original RIM framework, introduced in [151], incorporates all the

intermediate iterands x(t), with t < T , in the evaluation of the MSE loss. Although the analysis stemming

from the explicit incorporation of these intermediate iterands in the final loss function falls outside the scope

of this work, we have utilized this strategy for a different context of one-bit detection. This analysis for

one-bit MIMO is left for our future work.

4.5 DNN-aided GD for MmWave One-bit Receivers

This section presents the GD-based detection tailored specifically to the mmWave channel. Begin-

ning with the challenges for joint detection, we describe our proposed approach and implementation.

4.5.1 System model - One-bit receiver for mmWave channel

We begin by describing the K-user sectored LOS mmWave channel model [12]. The complex-valued

channel model is expressed as

H̄ =

[
a(θ1),a(θ2), . . . ,a(θK)

]
. diag(α1, α2, . . . , αK), (4.14)
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where each a(θi) is the uniform linear array (ULA) manifold with N antennas for the ith user. Each user

path gain αi and path angle θi is independently drawn from the distributions N (0, 1) and U(−π/3, π/3),

respectively. We order the four users 1 to 4 in decreasing order of received channel powers3, i.e., {|αi|2}Ki=1.

The received uplink unquantized signal and the corresponding one-bit quantized output of the BS

is the same as eq. (4.1). For the simplification of subsequent algorithm notations, the transformations in eq.

(3.3) are defined using the operators Tm(·) : CM×N → R2M×2N and Tv(·) : CM → R2M , for matrices and

arrays, respectively.

H = Tm(H̄) =

Re(H̄) −Im(H̄)

Im(H̄) Re(H̄)

 , r = Tv(r̄) =

Re(r̄)

Im(r̄)

 ,

x = Tv(x̄) =

Re(x̄)

Im(x̄)

 , n = Tv(n̄) =

Re(n̄)

Im(n̄)

 .

An overview of the OBMNet [1] framework is provided in Sec. 4.2.2. The following section presents the

challenges of directly applying this joint detection framework to the mmWave channel.

4.5.2 Challenges to joint detection using GD for the mmWave channel

This sub-section begins by analyzing the structure of the mmWave gradient in terms of the channel

characteristics. Following this, we elucidate the difference in these channel characteristics between the

Rayleigh and mmWave channel, with their particular bearing on the detector design. This motivates the

need for a detector framework with equitable user performance.

Analyzing the mmWave one-bit likelihood gradient

The general gradient expression at each time step t, ∇(t)
x , is evaluated in (4.5), following the same

analysis as in [1]. The positive constant c
√
2ρ is assumed to be absorbed into the matrix G for the remainder

of this analysis. We represent the complex gradient by ∇̄(t)
x , written out in terms of the OBMNet gradient

expression ∇(t)
x as

∇̄(t)
x = T −1

v (∇(t)
x )

=

[
∇(t)

x

]
1:K

+ j

[
∇(t)

x

]
K+1:2K

,
(4.15)

3User ordering done during CSI acquisition and initial access
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where the notation [·]1:K is explained in Sec. 5.1. In addition, we factorize the general CSI matrix H as

H̄ = ĀDα, (4.16)

where each column of Ā, i.e., ai, has unit norm and Dα = diag(α1, α2, . . . , αk). Each αi is a complex

scalar with |αi| = ||h̄i|| ∀i. Each scalar αi is thus the channel path gain coefficient (up to a phase factor).

This is not a unique factorization, but we can always factorize every complex matrix this way. One such

factorization for the mmWave channel is given by (4.14). Using the factorization (4.16) for the gradient

expression, the role of the varying path gains becomes evident in the detection process. We formulate this

explicit factorization of the gradient as the following lemma.

Lemma 3. The complex gradient given in (4.15) is directly dependent on the path gains for any general

channel, and can be factorized as

∇̄(t)
x = DH

α .
(
σ̃
(t)
x,R + j σ̃

(t)
x,I

)
, (4.17)

where Dα is as per (4.16), and σ̃
(t)
x,R and σ̃

(t)
x,I are vectors in RK consisting of homogeneous intermixing terms.

Proof. The proof is provided in the Appendix 4.A.

Lemma 3 illustrates the role of channel quality in the multi-user GD-based detection process. Since

the ith component of the complex gradient ∇̄(t)
x [i] consists of the tth step for the ith user, each user converges

to the local optima point at a different rate since it is scaled by the path loss for that particular channel, i.e.,

αi. The spread in the channel powers (∝ ||αi||2) will play a role in the multi-user detection performance.

The intermixing terms σ̃
(t)
x,R and σ̃

(t)
x,I in (4.17) also implicitly carry path-gain information. However,

the gradient behavior is predominantly dictated by the Dα. This is illustrated in Sec. ??. We now describe

the gradient behavior, and result on joint detection, by analyzing the statistics of the mmWave and Rayleigh-

fading channel.

MmWave Vs Rayleigh-fading - Ordered channel statistics

Different from the rich scattering of the Rayleigh-fading channel, there is lower diversity in the

mmWave channel due to antenna correlation [12, 13]. This is pictorially represented in Fig. 4.4 by the

histograms of the square root of channel power (see eq. (4.14)), i.e., ||h̄i||, in decreasing order from User

1 (||h̄1||) to User 4 (||h̄4||). These plots portray a larger spread in mmWave channel powers per user, vs

the more equitable power distribution of the Rayleigh channel. The impact of this channel power spread

among the users affects detection performance, i.e., bit error rate (BER), of each user. This is quantitatively
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antennas, K = 4 users. Here User 1 has the strongest channel and User 4 the weakest.
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K = 4 users, N = 64 antennas, each user transmitting QPSK symbols. User 1 has the strongest channel and User 4
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illustrated in Fig. 4.5, comparing maximum likelihood (ML) detection, using exhaustive search inM2K , to

the OBMNet [1], for QPSK symbols. The left plot in Fig. 4.5 shows the overt disparity in the ML detection

performance for the different users; User 1, with the strongest channel, experiences more than six orders of

magnitude lower BER, at saturation, compared to User 4, with the weakest channel. The right plot in Fig.

4.5 highlights that the OBMNet [1], optimizing for the joint detection performance, is limited by the weakest

users, thus unable to equitably handle users with stronger channels.

Towards equitable detection for mmWave channels

Based on the BER performance plots for the mmWave channel in Fig. 4.5, it is evident that (i) The

reduced diversity of the mmWave channel results in user performance being capped by the channel quality,

and further (ii) Joint multi-user GD-based detection will be biased by the weakest users, hence unable to

capitalize on the stronger user channels.

A possible solution to improve joint detection would be to regulate mmWave channel access to users

with similar channel powers, thereby clustering different users based on channel quality. However, this being

a highly dynamic approach, especially in the number of user clusters, forebodes a difficult access protocol

problem. The neural detection framework developed in this work is motivated by improving the joint multi-

user detection to equitably match the performance of each user to the channel quality. In particular, we aim

to address the following two main challenges for the general mmWave channel: (i) Overcoming the path-loss

based scaling of the likelihood gradient to stabilize the trajectory of each user, and (ii) Ensure detection

performance is not limited by the weakest users in the channel. To this end, the following section addresses

GD-based joint multi-user detection for mmWave channels, to overcome these challenges.

Signal detection for the receiver (4.1) is approached via regularized DNN-aided GD, with a novel

hierarchical detection training strategy. Our approach consists of three major components, elaborated next.

4.5.3 User-matched regularized GD

The regularized GD detection for one-bit receivers [36] augments the GD step (4.5) via a DNN-

aided projection step, thereby fine-tuning each iteration. For mmWave channels, we devise a modification -

a user-matched regularized GD. Herein, we incorporate the mmWave channel path gains per-user {αi}Ki=1,
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Figure 4.6: Block diagram for the mmW-ROBNet

from (4.14), as

∇̂(t)
x = Tm

(
abs(diag(α1, α2, . . . , αK)−1)

)
∇(t)

x (4.18a)

x̂(t+1) = x(t) − α(t)∇̂(t)
x (4.18b)

x(t+1) = x̂(t+1) + h
(t)
ϕ (x(t), ∇̂(t)

x , x̂(t+1)). (4.18c)

The user-matching step (4.18a) homogenizes the gradient from (4.5), stabilizing the unequal channel power

scaling among the users, as seen in Lemma 3. Update steps (4.18b)-(4.18c) execute regularized GD with

the user-matched gradient. The function h
(t)
ϕ is the DNN-based parametric regularization at iteration t,

elaborated further in Sec. 4.5.6. The regularized GD algorithm (4.18), implemented as an unfolded DNN,

i.e., the mmWave regularized one-bit net (mmW-ROBNet), is illustrated in Fig. 4.6.

4.5.4 Constellation-aware DNN loss function

In order to tailor the DNN loss function to the M-QAM symbol recovery, we incorporate the

regularized loss function from Sec. 4.3.2.

L =
1

Ntrain

Ntrain∑
n=1

[
||x(T )

n − x̃train,n||2 + λR(x(T )
n , x̃train,n)

]
, (4.19)

where R(·) is a constellation-aware regularization, based on a smooth quantization of the network output,

Qβ(·), implemented as

R(x(T )
n , x̃train,n) = ||Qβ(x

(T )
n )− x̃train,n||2. (4.20)
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For QPSK symbol recovery, this is given by Qβ(x) = tanh(β x). This saturating nonlinearity Qβ(·) atten-

uates symbol errors within the true constellation boundaries and amplifies errors for crossing over symbol

boundaries. The constellation-aware regularization (4.20) thus incorporates symbol error rate (SER), in

addition to MSE, into the total loss (4.19), resulting in a robust training.

4.5.5 Hierarchical detection training

The final block for robust DNN-aided GD is the enhanced DNN training procedure. In particular,

we control the trajectory of intermediate GD iterates {x(t)}T−1
t=1 in (4.18), essential to the final estimate x(T ).

To this end, we propose a sub-loss L(t) at each iteration t as

L(t) =
1

Ntrain

Ntrain∑
n=1

[
||w(t) ⊙ x(t)

n −w(t) ⊙ x̃train,n||2

+ λR(w(t) ⊙ x(t)
n ,w(t) ⊙ x̃train,n)

]
where,

w(t) = c̃(t)
[
1, exp(−κt), . . . , exp(−(K − 1)κt)

]T
.

(4.21)

Here w(t) is the masking vector, κt is the user masking coefficient and c̃(t) is the normalization constant such

that ||w(t)|| = 1, at the tth iteration. The operator ⊙ denotes element-wise product. The regularization R(·)

is the same as (4.20). The total DNN training loss function is given by

L =

T∑
t=1

L(t). (4.22)

Owing to the exponential decay over the user index, the masking vector w(t) attenuates the users that

experience a weaker channel, reducing their contribution to the loss function (4.21). Further, we begin

with a large value for the masking coefficient κt and decrease this over the GD iterations to κT = 0. This

results in the first few regularization sub-networks h
(t)
ϕ being trained to detect the stronger users only. The

subsequent sub-networks gradually add users in decreasing order of their channel quality, by jointly detecting

these with the stronger users. Finally, the last sub-network h
(T )
ϕ is trained to jointly detecting all the users.

Since the training strategy (4.21)-(4.22) detects multiple users from the strongest to the weakest, it is called

hierarchical detection or HieDet training.
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Table 4.2: DNN Parameters of the Regularizer Network (For K Users)

Network Layer Parameters

mmW-ROBNet
(each stage)

Convolution
(1-D)

conv + ReLU + bn
Input dim - K
Input chan - 6
Output chan - 64
Kernel size - 3

Fully-connected

Input dim - 64K
Output dim - 2K
Hidden layers - 3
Hidden dim - {128,64,32}
bn dim - {128,64,32}
Nonlinearity - ReLU

4.5.6 DNN implementation for user-matched regularized GD

Inspired by the potential of model-based algorithm unrolling for general signal processing [1, 50,

54, 133], the unfolded DNN, ROBNet, is developed as an approach to solve the constrained optimization

(4.4) for any general channel matrix H, via a DNN-augmented GD algorithm [36]. The mmW-ROBNet

framework (4.18), introduced in Sec. 4.5.3, incorporates the specific properties of the mmWave channel.

The implementation details are elaborated as follows.

(i) The T -stage regularized GD algorithm (4.18), is unfolded into T distinct sub-networks (each

represented as Stage t in Fig. 4.6).

(ii) At the beginning of each Stage t + 1, the OBMNet iteration (4.5) generates the tth gradient

and output ∇(t)
x and x̂(t+1), respectively.

(iii) The mmWave-channel powers per user, {|αi|2}Ki=1, user-matches the OBMNet-generated gra-

dient ∇(t)
x as (4.18a), to get ∇̂(t)

x

(iv) The previous estimate x(t), user-matched gradient ∇̂(t)
x and OBMNet output x̂(t+1) is passed

to the Regularization Network h
(t)
ϕ for fine-tuning (see Table 4.2 for DNN parameters).

(v) Additionally, a residual link from the OBMNet output is fed to the output of the Regularization

Network, thereby imparting a stage-dependent correction, to the unconstrained OBMNet step.

(vi) The final output x(T ) is normalized as x(T ) ←
√
2K

||x(T )||x
(T ).

4.6 Experimental Results: ROBNet and OBiRIM

We now evaluate our regularized networks ROBNet and OBiRIM. First we describe the simulation

setup, followed by the results of the various tests along with comments.
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Simulation setup We evaluate the detector on two different M-QAM constellations with different

channels, user, BS antennas and input SNR = E(||Hx||2)
E(||n||2) parameters:

(i) The QPSK constellation with K = 4 users, N = 32 BS antennas and SNR in the range −5 to 35 dB.

(ii) The 16-QAM constellation with K = 8 users, N = 128 BS antennas with SNR in the range 10 to 45

dB.

Both the simulations setups (i) and (ii) follow the standard simulations conducted in [1, 35, 132]. For both

the constellation cases, a Rayleigh fading channel H is considered with each entry chosen from the CN (0, 1)

distribution. Unless otherwise stated, we assume perfect channel state information (CSI) available at the

BS.

Performance benchmarks We benchmark our algorithms against the existing model-based and DNN-

aided one-bit detectors for state-of-the-art detection. For the simulation setup (i), as described in the

paragraph above, we lower bound the BER by the maximum-likelihood detector (ML Detector). Using the

exhaustive constellation search, this method grows exponentially with each added user as well as increase

in modulation order. However, this presents the best recovery possible, directly solving the constrained

optimization problem (4.4). ML detection for 16-QAM (simulation setup (ii)) presents as a much larger

computational complexity for our scale of the simulation setup considered, and is hence not evaluated. The

OBMNet [1] is used as the main benchmark, on which we propose improving, by means of the regularized

GD (4.8). We also provide the performance of the n-ML algorithm, from [35], to benchmark against the GD-

based detector using cdf-based likelihood (4.2). For testing the general channel detection performance we

also benchmark our algorithm against the FBM-DetNet [20], implemented for the same number of iterations

as the OBMNet.

Remark. The work in [132] extensively tests end-to-end learning via different DNNs like Resnets, Densenets

and Hypernetworks for one-bit detection. However, the presented results in this work show the robust model-

based OBMNet to exceed the performance of these networks. Thus, we have omitted the inclusion of these

end-to-end learning approaches for benchmarking our regularized one-bit detection approach.

Network and model parameters Consistent with the benchmarks established in [1], the OBMNet is

run for ten and fifteen iterations (T ∈ {10, 15}) for simulation setups (i) and (ii), respectively. The n-ML

method is executed for a maximum of T = 500 iterations, with a step size of 0.001, to ensure convergence.

The network parameters and training details for our proposed networks - ROBNet and OBiRIM, have been

provided in Sec. 4.4.1 and 4.4.2. In contrast to the higher number of iterations for the given benchmarks
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above, we execute both the ROBNet and the OBiRIM for only five and ten GD iterations (T ∈ {5, 10})

for simulation setups (i) and (ii), respectively. Thus the added utility of the regularized GD algorithm also

presents as an advantage in reducing the number of GD iterations. To avoid overloading the networks for

large SNR ranges during training, the proposed networks are trained for a single intermediate SNR (15 dB

for simulation (i) and 25 dB for simulation (ii)) and tested on the entire range mentioned above. A similar

strategy for training unfolded and recurrent neural networks was used in [54].

4.6.1 Intrinsic testing of DNN-aided regularized GD
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Figure 4.7: Testing the ROBNet for different number of stages T (a) QPSK transmitted symbols, with N = 32,
K = 4 (b) 16-QAM transmitted symbols, with N = 128, K = 8

We begin by testing the performance of the networks implementing the regularized GD update

(4.8). In particular, we test the performance by varying the network parameters, i.e., the number of network

stages T . For the considered test, we evaluate the performance of the unfolded network, the ROBNet.

We train and test the ROBNet for different stages T , corresponding to number of regularized

GD iterations. The plots given in Fig. 4.7(a) portray the BER performance for the QPSK transmitted

symbols. Based on the performance plots, There is a marked gain in performance from T = 2 to 5 stages,

with saturation in performance beyond this. By increasing the number of layers beyond a certain limit,

we increase network complexity and runtime with extremely marginal gains in performance. This is also

supported by the results for the 16-QAM constellation, as shown by the plots in Fig. 4.7(b). Here too, a

significant performance boost is observed as we increase from T = 5 to 10, with subsequent increase in the

number of stages only marginally increasing performance. Based on the observed recovery results, we utlize

T = 5 and T = 10 layers for QPSK and 16-QAM symbols, respectively.
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4.6.2 Recovered constellation
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Figure 4.8: Recovered QPSK constellation for ROBNet compared to OBMNet [1], with N = 32, K = 4 (red dots
represent incorrectly detected symbols)

We qualitatively analyze the recovered M-QAM constellation symbols, comparing these to the

recovered symbols from the OBMNet, which doesn’t utilize any additional regularization. The symbol

recovery is demonstrated for the training SNR of the networks, i.e., 15 dB for QPSK and 25 dB for 16-QAM.

The recovered QPSK symbols are given in Fig. 4.8. As can be seen from these plots, the OBMNet results

in recovered symbols with a larger cluster spread. The combination of the increased network expressivity

for the ROBNet, along with the constellation-aware network loss function (4.19), results in much sharper

recovered symbol clusters.

The symbol recovery for 16-QAM constellation presents the more stark contrast on the effect of the

regularized GD method (4.8). Although the OBMNet is able to effectively recover the 16-QAM symbols from

the one bit data, the cluster shapes are non-homogeneuous in the symbol power. As can be seen from the

density of incorrectly detected symbols (red scatter points), this non-homogeneity results in more incorrectly

detected symbols. The regularization introduced by the ROBNet, in contrast, presents a more homogeneous

recovered constellation, irrespective of the 16-QAM symbol powers. As visually evident, this is responsible

for fewer incorrectly detected symbols.

Following the qualitative visual analysis of the recovered symbols, we now move on to the quanti-

tative analysis.
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Figure 4.9: Recovered 16-QAM constellation for ROBNet compared to OBMNet [1], with N = 128, K = 8 (red dots
represent incorrectly detected symbols)

4.6.3 Detection for single Rayleigh-fading channel

Through this test we demonstrate the strength of our proposed approach, when implemented for

channel-specific detection. As stated in Sec. 5.1, most conventional end-to-end DNN-based detectors, both

for unquantized as well as one-bit received data [57–59, 133, 134, 136], are trained and tested for a single

channel. Such detectors are applicable to highly static and directional channels, with minimum CSI variation.

Real-world channels, like Rayleigh-fading channels, are more dynamic; robust detector design should thus

be channel state-invariant, trained on the entire set of random Rayleigh-fading channels and avoiding the

need to be retrained for each new CSI matrix. Prior to testing the proposed networks in this work on the

entire distribution of Rayleigh-fading channels, we perform the channel-specific detection to ascertain the

performance for this widely utilized model by different works. In the context of DNN design, this test is akin

to the overfitting test. The different networks and approaches are trained and tested on a single channel

H, sampled from the distribution of Rayleigh-fading channels. Further, we normalize the columns of the

channel matrix H and scale it by the number of antennas N , ensuring each user receives the same channel

power.

The channel-specific BER performance for QPSK symbols is shown in Fig. 4.10. As seen from

this plot, all the networks and the algorithms approach very low BER values when trained and tested with

a very well conditioned channel with equal power distribution among the corresponding users 4. However,

such ideal performance requires overfitting the networks for a given channel model, which presents extensive

4Equal per-user channel power is especially important for joint GD-based detection. We analytically validate this, in detail,
through our future work.
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Figure 4.10: Performance comparison of improved networks for channel-specific detection for QPSK constellation
with number of antennas N = 32 and the number of users K = 4.

practical challenges. As seen from the plots, the OBMNet, with its improved sigmoid likelihood formulation

exceeds the n-ML approach, further highlighting the utility of this likelihood formulation. As can be seen

from the results, both our proposed networks exceed the OBMNet performance for the channel-specific

detection, approaching the ideal ML-detection. This further enforces the utility of the proposed regularized

GD algorithm and the constellation-aware loss function.

The channel-specific BER performance for the 16-QAM symbols is shown in Fig. 4.11. Here too, all

the networks and algorithms are trained and tested on a single channel matrix, with equal per-user channel

power. Based on the results in this plot, the contrast in performance between the regularized one-bit GD

and the competing algorithms is more starkly visible, highlighting the strength of this strategy for higher

order M-QAM constellations. The presence of a non-zero BER floor for all algorithms (as compared to Fig.

4.10), stems from the more challenging case of recovering higher order constellation symbols from one-bit

data.

4.6.4 Detection for general channel

We now present the results for the networks trained and tested on the set of all Rayleigh-fading

channel matrices H, by randomly sampling from this distribution for each training minibatch. Once the
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Figure 4.11: Performance comparison of improved networks for channel-specific detection for 16-QAM constellation
with number of antennas N = 128 and the number of users K = 8.
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Figure 4.12: Performance comparison of improved networks for general channel detection for QPSK constellation
with number of antennas N = 32 and the number of users K = 4.
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Figure 4.13: Performance comparison of improved networks for general channel detection for 16-QAM constellation
with number of antennas N = 128 and the number of users K = 8.

networks have been trained in this manner, they do not need to be fine-tuned or re-trained for each new

channel matrix, thus acting as general Rayleigh channel detectors.

The general channel BER performance for the QPSK symbols is given in Fig. 4.12. As seen from

the performance plots, our proposed DNN-based detectors, ROBNet and OBiRIM, are able to generate

the same performance as the OBMNet and the FBM-DetNet for the QPSK symbols with much fewer GD

iterations. In addition, as seen from the recovered constellations plots in Sec. 4.6.2, these networks generate

sharper constellation clusters with much smaller cluster spread. Although this does not directly translate to

improved BER performance for lower order constellations like QPSK, it does bode advantageous for higher

order constellations.

The BER performance for the 16-QAM constellation symbols is shown in Fig. 4.13. As can be seen

from these plots, the improved regularization framework directly translates to an improved relative BER

performance, as compared to the OBMNet, for the higher order 16-QAM constellation symbols. Further,

the BER performance, especially the high-SNR BER floor, for general channel detection is similar to that

of the channel-specific detection, seen in Fig. 4.11. This can be attributed to the channel hardening effect

seen by increasing the number of receiver antennas, improving the overall channel conditioning for any

general 16-QAM channel. However, we observe that the quantization-specific learnable projection of the
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FBM-DetNet outperforms both the ROBNet and the OBiRIM. The sharper learnable quantization to the

M-QAM symbols is responsible for lower cluster spreads. The ROBNet and OBiRIM are unable to sharpen

constellation clusters beyond a certain limit and the hence under-perform in BER to the FBM-DetNet.

4.6.5 Detection for general channel - Noisy channel estimate

The different model-based and DNN-based approaches described above rely on perfect channel esti-

mates. However, practical systems introduce an estimation error in acquiring the channel state information.

Although different channel estimation algorithms have been studied for one-bit systems [26–28], we model

the channel estimation via a general estimation error. The estimated Rayleigh fading channel is modeled as

Ĥ = H+∆h. Here the introduced estimation error is modeled as an additive complex Gaussian with each

term

[
∆h

]
i,j

drawn from the distribution CN (0, σ2
h). We analyze the BER performance on the pre-trained

networks with perfect CSI as a function of the introduced channel noise σ2
h. All the trainable networks in

the subsequent performance comparison are trained on perfect CSI, setting a uniform reference point for all

networks, but tested on noisy CSI. Through this test, we assess the inherent network resiliency for both the

ROBNet as well as OBiRIM, compared to other benchmarks.
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Figure 4.14: Performance comparison of improved networks for general channel detection with imperfect CSI for
QPSK constellation with number of antennas N = 32 and the number of users K = 4.

The BER performance for the QPSK constellation symbols, as a function of this estimation noise
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σ2
h is given in Fig. 4.14. The detection performance is analyzed at the training SNR for QPSK symbols,

i.e., 15 dB. As can be seen from these plots, both the regularized GD networks, i.e., the ROBNet and the

OBiRIM, are more resilient to channel estimation noise, as compared to the unregularized OBMNet. Further,

the FBM-DetNet also performs comparably to the ROBNet and OBiRIM. The small performance gap among

all these algorithms goes on to further highlight the strength of the original OBMNet framework for lower

order M-QAM constellations. Consistent with the results of Fig. 4.12, we observe marginal improvement over

the OBMNet framework with additional regularization, for lower order M-QAM constellations. However,

increasing constellation order brings out the increased resilience of our proposed approach over the OBMNet.
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Figure 4.15: Performance comparison of improved networks for general channel detection with imperfect CSI for
16-QAM constellation with number of antennas N = 128 and the number of users K = 8.

The BER performance for 16-QAM constellation symbols as a function of the added channel estima-

tion error is provided in Fig. 4.15. The detection performance is analyzed at the training SNR for 16-QAM

symbols, i.e., 25 dB. There is a markedly increased performance gap in the performance of the regularized

GD approach (both ROBNet and OBiRIM) for the 16-QAM constellation symbols. The increased network

expressivity and training of our proposed approach enables accommodation of CSI estimation errors, in spite

of the presence of higher order constellation symbols. However, the FBM-DetNet outperforms both the

ROBNet as well as the OBiRIM in the resilience to channel estimation noise. As stated in Sec. 4.6.4, this

is attributed to reduced cluster spread generated by the quantization-based projection to M-QAM symbols
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of the FBM-DetNet.

We thus infer that the combination of the general parametric regularization, improved loss function

and training on multiple Rayleigh-fading channel matrices, makes these extremely robust, over the unregu-

larized OBMNet, one-bit detection networks. The observed resilience to channel estimation errors enables

the use of these networks in conjunction with standard one-bit channel estimation algorithms, without af-

fecting detection performance. Additionally, the proposed networks do not need to be separately trained for

noisy channel estimates; existing ideally trained networks can be directly used with noisy channel data.

Remark. Based on the observed results from Figs. 4.10-4.15, we can observe a difference in behavior for

the unfolded ROBNet and recurrent OBiRIM. In particular, the OBiRIM is shown to perform marginally

better for the lower order QPSK, whereas the ROBNet performs marginally better for the higher order 16-

QAM. This highlights an important trade-off between (i) Capturing correlation through system memory and,

(ii) Network expressivity through number of parameters. For the simpler QPSK system model, the system

memory, through DNN recurrence, is slightly more efficient at capturing correlation among the different

intermediate iterates {x(t)}Tt=1. This is translates to marginally better performance for the simpler QPSK

case. However, as we increase the constellation order, the recovery requires more network expressivity.

Increasing the number of iterations the ROBNet increases the number of sub-networks and thus the number

of trainable parameters. On the other hand, the OBiRIM, with more number of iterations, retains the same

number of parameters due to parameter sharing. For the higher order 16-QAM symbols, we observe that the

network expressivity and number of parameters wins out over the ability of the OBiRIM to capture correlation

(with the same number of parameters). Thus the ROBNet now marginally outperforms the OBiRIM5.

4.7 Experimental Results: mmW-ROBNet

The following section presents the results for the mmW-ROBNet, specifically tailored to detection

for the mmWave channel.

Simulation setup: The sectored mmWave channel [12] is considered, as described in Sec. 5.2. The

signal from K = 4 users, transmitting QPSK symbols, is received at a BS ULA with N = 64 antennas.

DNN hyperparameters and training: We follow the same DNN training procedure, namely the

minibatch description, optimizer and weight decay, as described in our previous work [36]. The mmW-

ROBNet consists of T = 5 iterations. For the constellation-aware loss function (4.19)-(4.20), we assign λ = 5

and β = 2. All networks are trained at an intermediate SNR of 15 dB. Finally, the sequence of user masking

5Detailed analysis of this trade-off between recurrence and parameter richness falls outside the scope of this work.

110



1 0 1

1.0

0.5

0.0

0.5

1.0

mmWave-ROBNet

2 1 0 1 2

1

0

1

OBMNet

Figure 4.16: Recovered constellation for joint detection of all K = 4 users, received at ULA with N = 64 antennas
at SNR = 15 dB
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Figure 4.17: Recovered constellation for User 1 and User 2 only, received at ULA with N = 64 antennas at SNR =
15dB

coefficients {κt}5t=1, in (4.21), is given by {10, 1, 0.5, 0.1, 0}.

Performance benchmarks: The OBMNet [1], with T = 20 iterations is considered as our primary

benchmark. We also compare our framework against the the n-ML [35] algorithm optimizing the cdf likeli-

hood. The Rayliegh-ROBNet framework, from our previous work [36], is also considered. Finally, the ML

detection, based on an exhaustive search, forms the lower limit of the BER performance.

4.7.1 Recovered constellation: Scatterplots

We begin with a qualitative performance comparison of the proposed mmW-ROBNet and the

benchmark unregularized GD, i.e., the OBMNet [1]. The recovered constellation via joint detection of all
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four users is provided in Fig. 4.16 (red dots represent incorrectly detected symbols). Based on these plots, it

is evident that both the mmW-ROBNet as well as the OBMNet have poor recovery with bit errors for joint

four-user detection. Since all the users experience different quality channels, the recovered constellation for

the weaker users is evidently responsible for this performance limitation. Reinforcing this rationale, we also

illustrate the scatterplots of the strongest two users, i.e., User 1 and User 2, in Fig. 4.17. Due to the better

quality channel for these users, the mmW-ROBNet, with HieDet training, is able to generate more uniform

constellation clusters with markedly reduced cluster spread compared to the OBMNet.

4.7.2 Detection performance for general mmWave channel
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Figure 4.18: Comparison of per-user BER Vs SNR performance, from the strongest user, User 1, to the weakest, User
4. All K = 4 users, transmitting QPSK symbols, are jointly detected at the BS with N = 64 antennas

The per-user BER vs SNR performance is given in Fig. 4.18. As seen from these plots, the

sigmoid-based likelihood (4.4) improves on the cdf-based n-ML detector. Although our Rayleigh-ROBNet

[36] outperforms the benchmark detectors, it is also unable to captalize on the channel with the highest

power, i.e., User 1. Note that the BER average across the users will not capture this difference in detector

performance. The combination of the user-matched GD, along with the sequential HieDet training is able to

capitalize on the users with a better channel without significantly affecting users with worse channel quality.

Finally, all approaches saturate in BER for high SNR, and reducing the gap to ML is still part of our ongoing

research.

4.8 Conclusions and future work

In this chapter we have proposed a regularized one-bit neural detector based on a novel regularized

GD-based strategy for improving on the state-of-the-art OBMNet. The learnable DNN-based regularization

is effectively able to improve on the OBMNet estimate on a per-iteration basis. To this end, we have

developed two unique regularization networks: (i) ROBNet, using an unfolded DNN architecture, and (ii)
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OBiRIM, using a RIM-based architecture. We also developed a novel constellation-aware loss function for

DNN training, through which we are able to implicitly address bit errors. Through our model-aided DNN

design as well as training for a general Rayleigh-fading channel, we are able to build a one-bit detector that

doesn’t need to be retrained for each new channel response. Finally, through our results we highlight the

strength of the proposed approach, especially for the higher-order M-QAM constellations.

Additionally, we have presented a novel one-bit neural detection approach, mmW-ROBNet, specif-

ically tailored to the mmWave channel model. We have illustrated the dependence of the detection per-

formance, per user, on the channel power for that user. Addressing this limitation, we have modified the

existing regularized GD framework, the ROBNet, to overcome these challenges. In particular, by means of

the user-matched regularized GD and HieDet training, we are able to capitalize on the stronger user channel

powers for an equitable performance among the multiple users.

Future work in this domain involves improving on the robustness of the HieDet training to further

close the gap to ML detection. In addition, we also envision extending this detection to higher order M-QAM

constellations, addressing the challenges therin.

Chapter 4, in part, is a reprint of the material as it appears in Aditya Sant, and Bhaskar D. Rao.

“Regularized Neural Detection for One-Bit Massive MIMO Communication Systems.” arXiv e-prints (2023):

arXiv-2305. and, in part, a reprint of the material as it appears in Aditya Sant, and Bhaskar D. Rao.

“Regularized Neural Detection for Millimeter Wave Massive MIMO Communication Systems with One-Bit

ADCs.” IEEE ICASSP 2023. The dissertation author was the primary investigator and author of these

papers.
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Appendices

4.A Proof of Lemma 3

We begin by considering the expression for the one-bit likelihood gradient ∇x. For any general

channel, the gradient expression is given by

∇x = c
√
2ρGT σ(−c

√
2ρGx) (4.23)

For further analysis, we absorb the positive scalers c
√
2ρ into G for simpler notation. These constants can

be added back in the end and bear no change on the subsequent analysis. We thus simplify the gradient

expression as

∇x = GT σ(−Gx). (4.24)

Using the real-valued notations and transformations for DNN implementation, we write out each term as

follows. We begin by considering the argument of the sigmoid expression.

Gx =

YR 0

0 YI


HR −HI

HI HR


xR

xI

 (4.25)

Using this for the sigmoid expression we have

σ(−Gx) =

σ(−YR(HRxR −HIxI)
)

σ
(
−YI(HRxI +HIxR)

)
 (4.26)
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Now we re-write the gradient expression using these analytical expressions as

∇x = GT σ(Gx)

=

 HT
R HT

I

−HT
I HT

R


YR 0

0 YI


σ(−YR(HRxR −HIxI)

)
σ
(
−YI(HRxI +HIxR)

)


=

 HT
R HT

I

−HT
I HT

R


YRσ

(
−YR(HRxR −HIxI)

)
YIσ

(
−YI(HRxI +HIxR)

)


=

 HT
R HT

I

−HT
I HT

R


σ̃R(x)

σ̃I(x)



. (4.27)

We now write out the real-representation channel matrix as

HR −HI

HI HR

 =

AR −AI

AI AR


ᾱR −ᾱI

ᾱI ᾱR

 (4.28)

with ᾱ =


α1

. . .

αK

.
Based on this we have

HT
R = ᾱRA

T
R − ᾱIA

T
I

HT
I = ᾱRA

T
I + ᾱIA

T
R

. (4.29)

Using this in the expression for the gradient we simplify the gradient as

∇x =

∇R

∇I


=

 HT
R HT

I

−HT
I HT

R


σ̃R(x)

σ̃I(x)


=

ᾱR t(x) + ᾱI u(x)

ᾱR u(x)− ᾱI t(x)

 ,

(4.30)
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where we have

t(x) = AT
R σ̃R(x) +AT

I σ̃I(x)

u(x) = −AT
I σ̃R(x) +AT

R σ̃I(x).

(4.31)

Putting all this together, we an write the complex valued gradient as follows,

∇x = ∇R + j∇I =
(
ᾱR + j ᾱI

) (
t(x) + j u(x)

)
(4.32)
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Chapter 5

DNN-aided Dequantization for

Few-bit MIMO Detection

5.1 Introduction

Massive MIMO communications is integral for building a network of high-speed communications

and interconnected devices[3,4]. A key component of the wireless RF and analog chain is the high-resolution

and high-speed Analog-to-Digital Converter (ADC). However, this component significantly contributes to

the overall system cost and complexity[23, 120]. To this end, few-bit ADCs, using two or more bits, enable

balancing the tradeoff between high system cost and complexity, and excessive signal distortion, seen in

one-bit ADCs. Additionally, with several advances in algorithm design and machine learning, research

into robust communication system design on the backbone of low resolution ADCs has garnered increased

interest[20–25].

The application of DNNs to wireless communication systems has greatly improved receiver perfor-

mance and robustness. The general parametric structure of DNNs, coupled with their advantage as universal

functional approximators [121, 122], makes them an integral part of the future of robust wireless communi-

cations. DNN-aided wireless communications are applied to beamformer design [52–54], channel estimation

[123–125] as well as end-to-end detection [55–59]. In this work, we exploit this general parametric structure

of DNNs to develop an iterative dequantizer for signal recovery from few-bit measurements.
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5.1.1 Prior work

Few-bit MIMO systems have been extensively studied, from channel estimation systems to detector

design. To begin with, the use of one-bit ADCs in multi-user MIMO for both channel estimation and

data detection is of particular research interest. One-bit MIMO was first used for sensing and channel

estimation algorithms[26–28]. Following this, data detection for one-bit MIMO gained a valuable advance

with the application of Bussgang’s theorem to linearize the input-output relation [126]. Through means of

this relation, a class of Bussgang-based receivers was developed for detection from one-bit data [29–31], and

extended to include more robust receiver structures for one-bit systems[32,33].

The current state-of-the-art detection frameworks for one-bit MIMO detection is based on the

maximum likelihood (ML) framework. The ML optimization, using the Gaussian cumulative distribution

function (CDF), has been formulated in [34]. Utilizing this formulation the work in [35] introduced a near

maximum likelihood (n-ML) detector. Other works applying the Gaussian CDF likelihood formulation have

also been used extending this idea [130, 131]. The authors in [1] designed the detector, the OBMNet, an

unfolded DNN, implementing the GD algorithm for approximate likelihood. The work in [20] improved

on the OBMNet by introducing a learnable M-QAM projection over the GD iterations, the FBM-DetNet.

Going beyond model-based methods, the different DNN-based receivers have also been designed to using

the ML optimization and unrolling the resulting GD algorithm [36,133,138]. The work in [156] analytically

addresses ML detection for one-bit MIMO, as well as incorporating a faster accelerated GD-based detector

using an unfolded DNN, i.e., the A-PrOBNet. Other DNNs for one-bit MIMO detection, not relying on the

likelihood framework have also been developed [134–137].

Going beyond one-bit, few-bit ADCs have also gained increased interest for channel estimation and

pilot design algorithms[21,22,157–159]. Data detection for few-bit MIMO systems is also a heavily researched

area in building robust MIMO systems[33, 160–163]. The current state-of-the-art few-bit MIMO detector

is the FBM-DetNet[20]. This extends the ML framework, derived for one-bit MIMO to the multi-bit case,

unfolding the resultant GD algorithm as a T -layer DNN. However, to the best of the authors’ knowledge,

no work has addressed the functional mapping from the discrete M-QAM transmitted signal space to the

quantized received signal space. This approach, i.e., signal dequantization forms the basis of the analysis in

this work.
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5.1.2 Contributions of this work

The detector design in this work utilizes a DNN-aided framework to dequantize the signal, In

particualr, the following enlist the main contributions of this work.

1. Role of quantizer design: This work details the impact of the different parameters of the few-bit quan-

tizer in the signal detection. In particular, the tradeoff for resolution vs clipping in signal acquisition

is further elaborated.

2. Insights into signal dequantization: The functional mapping from the discrete transmitted M-QAM

space to the received quantized measurements is elucidated. This analysis enables the formulation of

a probability of perfect dequantization, and the role of massive MIMO systems on such systems.

3. Baseline projected ZF detection: An initial baseline approach for signal dequantization is introduced

using the zero forcing (ZF) based projection for ideal unquantized measurements. This is based the

procedure for alternating optimization for signal recovery, and also serves as a lower bound on the

performance evaluation for the signal recovery.

4. DNN-aided iterative dequantizer: A DNN-aided framework is presented to learn a general dequanti-

zation mapping, beginning with the role of such DNN-aided systems in signal dequantization. The

network, DQuantNet, is implemented as a T -block unfolded DNN, with each block implementing a

learnt dequantization procedure to iteratively estimate the unquantized measurements.

The experimental results in this work compare the proposed DNN-aided framework to the current state-of-

the art detection for few-bit MIMO. The presented results show this to be a promising approach for detector

design using dequantization.

Organization: This work is organized as follows. Section 5.2 introduces the system model, quantizer design

and the resulting optimization for signal detection. Following this, Sec. 5.3 provides insights into the role

of the quantizer design, the general dequantization process, and concludes by introducing the projected ZF

detector. Improving on the projected ZF detector, Sec. 5.4 details the general DNN-aided dequantizer, along

with the implementation as an unfolded DNN. The experimental validation is provided in Sec. 5.5 and Sec.

5.6 concludes the paper.

Notation: We use lower-case boldface letters a and upper case boldface letters A to denote complex valued

vectors and matrices respectively. The notation Re(·) and Im(·) denote the real and imaginary parts,

respectively. The operation (·)T denotes the transpose of the array or matrix. Unless otherwise specified,
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all scalar functions like tanh(·) or sign(·), when applied to arrays or matrices, imply element-wise operation.

The diagonalization operator, denoted by diag(·), when applied to an array a, creates a diagonal matrix

with the diagonal entries given by a. The notation x(t) is used to denote the value of the variable x at

iteration t of the algorithm. For the DNN training, the size of the training set is given by Ntrain and the

notation x̂n,train denotes the nth sample from this set. Unless otherwise specified, the norm || · || represents

the ℓ2-norm for a vector or matrix.

5.2 System Model and Few-bit Likelihood

This section begins by introducing the multi-user wireless uplink system model. This is followed

by the signal quantization model. Finally the optimization framework is presented for the signal detection.

5.2.1 Uplink wireless system model

The Rayleigh fading channel with block flat-fading, as used in most past works, e.g. [12, 139] is

utilized here. The K single antenna users transmit to a multi-antenna base-station (BS) with N receive

antennas. The MIMO channel H̄ ∈ CN×K consists of i.i.d entries drawn from CN (0, 1). This work assumes

perfect unquantized channel state information (CSI) at the BS.

As a part of the multi-user uplink, the kth user transmits the signal x̄k drawn from the M-QAM

constellation. The multi-user transmitted signal is x̄ =

[
x̄1, x̄2, . . . , x̄K

]T
. Additionally, the M-QAM symbol

vector is normalized such that E ||x̄||2 = K The unquantized received signal at the BS is

r̄ = H̄x̄+ n̄, (5.1)

where n̄ is the AWCGN with noise variance depending on the system signal-to-noise ratio (SNR) ρ =

E(||H̄x̄||2)
E(||n̄||2) .

In order to express the algorithm design as a function of real-valued inputs, we convert the received

signal and the observed channel matrix into real-valued forms as

H =

Re(H̄) −Im(H̄)

Im(H̄) Re(H̄)

 , x =

Re(x̄)

Im(x̄)

 ,

r =

Re(r̄)

Im(r̄)

 , n =

Re(n̄)

Im(n̄)

 .

(5.2)
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The received unquantized signal at the BS is thus given by

r = Hx+ n. (5.3)

However, the BS does not have access to this unquantized signal. The received signal (5.3) is passed through

the b-bit quantizer at the BS. This is further elaborated in the subsequent subsection.

5.2.2 Signal quantization
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Figure 5.1: Illustration of 2-bit quantizer design and signal quantization. (a) Quantizer levels shown wrt the saturation
limits [−L,L] (b) Illustrating the quantized signal output for L = 2.5 and input signal from 32×4 MU-MIMO system
with QPSK symbols at SNR = 30dB.

At the BS, the b-bit quantizer is characterized by the quantizer saturation limits1 [−L,L]. The

different quantizer levels and inter-level spacing are given by τl = −L+(2l− 1)△2 and △ = 2L
2b
, respectively,

for l = 1, 2, . . . , 2b. Based on this, the element-wise b-bit quantization at the BS is

y[i] = Qb(r[i]), ∀ i = 1, 2, . . . , N (5.4a)

=


τl, if τl − △

2 ≤ r[i] < τl +
△
2 , l ̸= {1, 2

b}

τ1, if r[i] < τ1 +
△
2

τ2b , if r[i] ≥ τ2b − △
2 .

(5.4b)

The quantizer levels and quantized signal output are shown in Fig. 5.1 for a two-bit quantizer. Fig. 5.1(a)

1Values of the input signal for which there is no clipping in the quantizer
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shows the quantizer levels with respect to the saturation limits [−L,L]. As seen from the plots in Fig. 5.1(b),

the signal undergoes amplitude clipping for certain values. This is dependent on the choice of the quantizer

limits L. The design of the quantizer limits for a given signal analyzed further in Sec. 5.3.1.

5.2.3 Optimization for received signal detection

We represent the received quantized signal (5.4) via the additive quantization noise model given as

y = Hx+ n+ e. (5.5)

Here the quantization noise e is not independent of the received signal r. This specifically exploits the fact

that the few bit signal slightly deviates from the linear system model and approaches linearity with increasing

quantizer bits. Hence, this can be utilized to iteratively dequantize the observed quantized measurements.

The linear MSE detection (for the unqunatized case) can be appropriately modified to detect the signal from

the quantized measurements. In particular, the both the transmitted symbols x and quantization noise e

are jointly estimated. This resulting optimization is presented as

[x∗, e∗] = argmin
x∈M2K ,e∈E2N

||y −Hx− e||2, (5.6)

whereM2K represents the set of the 2K-dimensional vectors, consisting of the real-valued representation (see

eq. (5.2)) of the K-dimensional vectors of M-QAM symbols. The set E2N represents the set of quantization

noise vectors. Clearly, this constrained optimization is not convex. This work addresses solving this detection

problem via the alternating optimization framework. The insights into this MIMO detection, along with the

proposed DNN-aided dequantizer, are presented in the subsequent sections.

5.3 Insights into Few-bit MIMO Detection

This section begins by considering the different factors affecting quantizer design in the MIMO RF

chain. This is followed by the subspace analysis of the quantized signal and the subsequent dequantization

of this quantized signal. Finally, a baseline ZF detector is presented, that forms the basis for the improved

DNN-aided dequantizer.
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symbols at SNR = 30 db (a) Quantization error ||y−r||2 vs the quantizer limit L (b) Performance of proj-ZF detection
baseline (Algorithm 7) for different quantizer limits

5.3.1 Impact of quantizer design on detection

The parameters of the quantizer influence the best possible performance for the few-bit MIMO

detector. Tuning the quantizer (before detection) to ensure optimal performance requires information about

the received signal power, gain control at the receiver and the quantizer tradeoff between clipping and

increased signal resolution. This is elaborated below.

Unquantized received signal power

Consider the unquantized received signal (5.3) that is input to the quantizer. The signal power per

antenna element is given by E ||r[i]||2 = E ||hT
i x||2 + σ2

z, where hi is the ith row of the channel matrix H.

This received signal power clearly depends on (i) The number of users K, (ii) The power of transmitted

symbols per user as well as the modulation order of the symbols, and (iii) The noise variance σ2
z, which is a

function of the SNR.

Signal gain control

At the BS receiver the ADC scales the received unquantized signal, using an automatic gain control

(AGC), to ensure that the input signal to the ADC remains within an optimal range to avoid clipping and

nonlinear distortion. However, for ease of analysis in this work (analyzing received signal SNR), the power

control is realized at the transmitter side. This gain control is realized through scaling of the transmitted

symbols, i.e., E||x||2 = pK, with p as the per-user transmit power, ensuring same power is transmitted by

the UE, invariant of modulation. The value of p can be adjusted to control the received signal power at
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the BS. Without loss of generality, in the subsequent analysis and algorithm development in this work, the

K-user transmitted symbol vector is scaled such that E ||x||2 = K.

Resolution vs clipping tradeoff

In addition to the signal scaling, the quantizer limit L also plays an important role in system

performance. Once the power control for the received signal has been fixed, the quantizer parameter can be

independently tuned to control allowable signal clipping. For a given received unquantized signal r, a lower

value of L ensures better resolution, but increases the signal clipping. Conversely, increasing L will reduce the

signal clipping, at the expense of reduced signal resolution at lower magnitudes. This is empirically shown by

analyzing the quantization error of a 2-bit quantizer for the 4-user QPSK transmission at 30 dB SNR in Fig.

5.2(a). This plot shows that an appropriately chosen L = 2.87 correctly balances this resolution-clipping

tradeoff.

This choice of the quantizer limit L is further reinforced through the performance plots illustrated

in Fig. 5.2(b). The BER performance for the projected ZF baseline, explained in 5.3.3. The maximum

likelihood (ML) detection for the unquantized signal is the lower limit on the bit error rate (BER). As seen

from these plots, by increasing L beyond the optimal, the performance deteriorates due to lower resolution

at lower signal amplitudes. The plots in Fig. 5.2 illustrate that for optimal signal detection performance, the

quantizer limit L should be chosen to balance the resolution vs clipping tradeoff for the received unquantized

signal.

Remark. In practical system deployment the quantizer performance and efficiency is affected the received

unquantized signal power. Thus, the quantizer limit L and the transmitted symbol power E ||x||2 should be

jointly optimized to balance the resolution vs clipping tradeoff. However, for ease of analysis in this work,

we assume an ideal quantizer that can operate at any input power level. To this end, the symbol powers are

kept fixed, and the quantizer limit L is tuned to balance this resolution vs clipping tradeoff.

Quantizer parameters for subsequent analysis

Based on the performance plots in Fig. 5.2, the optimum two-bit quantizer limit to balance the

resolution vs clipping tradeoff is chosen as L = 2.87. The subsequent DNN-aided detection algorithms are

trained and tested using this value of the quantizer limit.

Remark. The choice of the quantizer parmeters, like the quantizer limit L, can also be tuned based on

the SNR. The SNR affects the percentage occupancy of the different quantization levels differs with amount
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of noise added, attributed to increased received signal variance due to the AWGN. Considering this, the

quantizer design and receiver algorithms can be tuned for different SNR values separately. However, this

SNR-dependent analysis falls outside the scope of this current work.

Following the quantizer design, the subsequent subsections delve into transmitted signal recovery

algorithms and DNN-aided methods via signal dequantization.

5.3.2 Signal dequantization

Signal recovery from quantized measurements involves inverting a nonlinear transformation y =

f(x) : R2K → R2N , as seen in eqs. (5.3)-(5.4). However, the specific properties of the input and output

sets, as well as the nature of the transformation f(·) enables establishing bounds on transmitted symbol

recovery from received measurements y. This subsection delves deeper into the framework for evaluating

these recovery bounds using received signal dequantization.

Defining the sets and quantities

The following are the different sets of interest in this analysis, defined for a given H ∈ R2N×2K and

a b-bit ADC Qb(·):

Y = {y |y = Qb(r),∀ r ∈ RN} (5.7a)

YH = {y |y = Qb(r),∀ r ∈ R(H)} (5.7b)

RQAM = {r | r = Hx, x ∈MK} (5.7c)

YQAM = {y |y = Qb(r),∀ r ∈ RQAM}. (5.7d)

The cardinality of these discrete sets (5.7) plays a key role in the further analysis. These quantities are given

by

|Y| = 2bN (5.8a)

|YH| = NH ≤ 2bN (5.8b)

|RQAM| = MK (5.8c)

|YQAM| = NH,QAM ≤ NH. (5.8d)

125



Note that, barring RQAM, the cardinality of all other sets will increase with increasing N , due to the

increasing dimension of the subspace of received quantized measurements y.

Illustration of the different sets

In this analysis, a low dimensional 2-bit quantized MIMOmodel is considered to pictorially illustrate

the different sets in (5.7), as well as the role of quantizer design, discussed in the earlier sub-section. For

this example, consider the real-valued problem such that H ∈ RN×1, M = 4 and b = 2. This is pictorially

shown in Fig. 5.3.

R(H)

RQAM

Figure 5.3: Illustration for the 2-D quantized space with the different sets (5.7)

Based on the illustrated subspace analysis in Fig. 5.3, the different square grids partition R2

using 2-bit quantization along each axis. The centroid of each square partition, i.e., the quantized value, is

represented using the ‘x’ symbol. For a given channel matrix H, the blue line passing through the origin

represents R(H). The different grid squares that are intersected by R(H) are part of the set YH, represented

by the red crosses. The discrete set RQAM is the set of blue dots on the line R(H). The set |YQAM| will be

a subset of YH, with NH = 6 and NH,QAM = 4.

Resolution vs clipping tradeoff: Since the sets R(H) and RQAM are independent of the quantized
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grid space, the quantizer parameter L, controlling the sizes of the squares in the grid, determines the set

YQAM. From the illustration in Fig. 5.3, it is evident that a very large value of L, or a very small value of

L will result in the selection of the two quantized centroids close to the origin, or at the edges of the grid,

respectively. This is the resolution vs clipping tradeoff seen in Sec. 5.3.1. Thus, the optimum choice of the

quantizer limit L balances this tradeoff by maximizing the overlap between the sets YH and YQAM. This is

expressed via the optimization

L∗ = argmin
L∈R+

EH |NH −NH,QAM|. (5.9)

The above analytically ensures that the discrete set RQAM is evenly spread over all the intersecting quan-

tization grid points. The optimization (5.9) is evaluated by averaging over different channel realization, for

a given M-QAM setup. However, owing to the intractable nature of the quantities NH and NH,QAM, for a

general H, the optimum quantizer limit L is empirically evaluated using the quantization error minimization,

as given in 5.3.1. All subsequent analysis is developed for this optimal value of the quantizer limit L.

This analysis is now extended to the general N -dimensional case; using the definitions in (5.7) and

(5.8), the general probability of perfect dequantization can be evaluated.

Towards perfect dequantization

The few-bit quantization (5.3)-(5.4) presents a nonlinear functional mapping from the setM2K to

YQAM. This is invertible, if this mapping is one-one. Therefore, the probability for perfect dequantization

Pdequant is the probability that this mapping is one-one. We make an important assumption for the ensuing

analysis. Specifically, the number of antennas is chosen large enough, such that NH > MK . This is possible

since NH increases with increasing N .

The probability Pdequant can be evaluated using the combinatorial method of putting MK balls

in NH boxes, such that each box has at most 1 ball. This implies that there is a unique one-one mapping

between the observed discrete unquantized values r ∈ RQAM and quantized observations y ∈ YH,QAM. This

is evaluated as

Pdequant(NH) =
NH ∗ (NH − 1) . . . (NH −MK + 1)

(NH)MK . (5.10)

Before highlighting the utility of evaluating this probability of dequantization, two specific properties of

signal dequantization are shown.

Firstly, it can be shown that (5.10) is a monotonically increasing function of NH . To show this,
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consider two values M1 and M2, such that M1 < M2. We can then show

Pdequant(M2)

Pdequant(M1)
=

MK−1∏
i=0

(M2 − i

M1 − i

)M1

M2

=

MK−1∏
i=0

M1M2 −M1i

M1M2 −M2i

=

MK−1∏
i=0

(
1 +

(M2 −M1)i

M2(M1 − i)

)
> 1.

(5.11)

Clearly, as N →∞, Pdequant(NH)→ 1; this provides an analytical understanding for motivating the use of

massive MIMO for few-bit systems.

Secondly, we can upper bound the dimensionality of the subspace, to ensure that dequantization is

definitely not possible. This will occur if,

MK > supp(NH,K)

MK > 2bN

K >
bN

log2 M
.

(5.12)

This restricts both the number of users as well as the modulation order for a given MIMO system.

The significance of evaluating the probability or dequantization is elaborated below.

• The probability of dequantization connects the quantizer parameters with the parameters of the trans-

mitted constellation symbols.

• This metric characterizes the effect of the number of MIMO antennas on the possible performance of

the few-bit MIMO detection algorithm, establishing the probability of a one-one inverse mapping to

the M-QAM subspaceM2K .

• Conversely, the minimum number of BS antennas can be selected to achieve a desired dequantization

probability; this enables resource-efficient design of few-bit MIMO systems.

This analysis is a probability of one-one mapping only, and does not provide insights for effective

algorithms for dequantization. Different detectors can be utilized to implement this operation. We begin by

describing the baseline detection strategy, which will be refined further to learn an efficient dequantization-

based detector.
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Remark. The above analysis and probability for perfect dequantization relies on knowing NH for any chan-

nel H ∈ R2N×2K . The computation of these bounds, although relevant for evaluating the dequantization

probabilities, falls outside the scope of this work. Here, we primarily focus on the detection algorithm design

for few bit MIMO. The detailed analysis on the evaluating this probability analytically or numerically is left

for future work.

5.3.3 Projected ZF detection

The projected ZF detection algorithm is based on solving the joint optimization (5.6) using alter-

nating optimization. Intuitively, this consists of two main steps (i) Update the estimate of the transmitted

symbols using the current estimate of the dequantized value, (ii) Update the dequantized value using the

current estimate of the transmitted symbols.

Alternating optimization for projected ZF

This iterative approach successively updates the values of each parameter as follows.

1. Updating x(t)

x
(t)
ZF = H†(y − e(t−1)) (5.13a)

x(t) = PX (x
(t)
ZF). (5.13b)

2. Updating x(t)

e
(t)
ZF = y −Hx(t) (5.14a)

e(t) = PE(e
(t)
ZF). (5.14b)

This alternating update strategy involves successively refining the estimate of the quantization noise e(t) to

get a better estimate of the current unquantized signal r(t) = y − e(t). This, in turn, is used to get the

current MMSE estimate of x(t) using the current estimate of the unquantized signal. This is used to again

re-estimate the quantization noise, and so on.
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Projection operators

The projection operators (5.13b) and (5.14b) are used to incorporate the constraints x ∈M2K and

e ∈ E2N , respectively, in the joint optimization (5.6). Each of these is further elaborated below.

1. Projection of x(t): The Gaussian projection is utilized for projecting the ZF estimate onto the symbol

spaceM2K , as seen in the previous works [156]. Following the same theoretical framework as seen in

this work, the estimated symbol at the tth iteration, x
(t)
ZF, is modeled as the ideal M-QAM symbol vector

s with a Gaussian noise △s. Based on the uniform distribution over all the symbols, the Gaussian

denoiser is derived as the posterior mean Es|x(s). Thus, the projection is derived as

PX (x
(t)
ZF) = c(t)

MK∑
i=1

si exp
(
−
||x(t)

ZF − si||2

(σ(t))2

)
, (5.15)

where si is the ith element in the setM2K , and c(t) =
(∑MK

i=1 exp
(
− ||x(t)

ZF−si||2

2(σ(t))2

))−1

. The term σ(t)

is a projection hyperparameter, denoting the confidence of symbol estimation.

2. Projection of e(t): Different from the M-QAM symbol setMK , the noise distribution for few bit sys-

tems cannot be accurately analyzed. This is also attributed to the clipping vs resolution tradeoff for

the quantizer design. The presence of signal clipping prevents bounding all the samples of the quanti-

zation noise, and the exact distribution of the bounded noise and clipped components is intractable.

Considering these constraints, and utilizing empirical testing of different projection approaches, the

identity operator is chosen for stable recovery. Thus the quantization noise projection is given by

PE(e
(t)
ZF) = e

(t)
ZF. (5.16)

The entire projected ZF algorithm is given in Algorithm 7. This algorithm forms the baseline detector

benchmark for this work. The subsequent section improves on this baseline algorithm, by utilizing a DNN-

aided iterative dequantizer.

Remark. With regards to the projection PX (·) in (5.15), the approach in [156] utilizes a learnable denoiser

(learning the variance parameters {σ(t)}Tt=1) for for detection in one-bit MIMO systems. However, for this

work, utilizing signal dequantization-based detection, both the learnable denoiser as well as the statically

chosen denoiser are observed to have the same performance. Hence, a statically chosen denoiser is utilized,

for ease of implementation.

130



Algorithm 5: Projected ZF Algorithm

Input: T , H, e(0) = 0, {σ(t)}Tt=1

Output: x(T+1)

1 for t = 1 to T do

2 Evaluate x
(t)
ZF using (5.13a);

3 Project x
(t)
ZF using (5.15) to get x(t);

4 Evaluate e
(t)
ZF using (5.14a) & update e(t) ← e

(t)
ZF;

5 end

6 Evaluate x
(T+1)
ZF using (5.13a);

7 Project x
(T+1)
ZF using (5.15) to get x(T+1);

5.4 DNN-aided Iterative Dequantizer

This section begins by motivating the need for DNN-aided methods for solving this dequantization

problem. Following this, the general learnable iterative dequantizer framework is presented. Finally, the

specific DNN-based implementation, i.e., DQuantNet, is elaborated for this detector design.

5.4.1 Motivating DNN-aided detection

Building on the projected ZF baseline Algorithm 7, a DNN-aided detector is introduced here,

motivated by two main aspects: (i) Addressing the limitations of projected ZF, and (ii) Learning a nonlinear

dequantization mapping. This is elaborated below.

Limitations of the baseline projected ZF algorithm

Algorithm 7 introduces the framework for iteratively fine-tuning the estimate of the quantization

noise. However, this approach faces a few limitations

• Projecting e
(t)
ZF: As stated earlier, the intractability in analyzing the quantization noise statistics poses

challenges for the design of this quantization noise projection. The identity projection operation (5.16)

has been selected for stable recovery, based on empirical testing. However, this can be further improved

by data-driven methods.

• Higher SER for higher order M-QAM: The Gaussian projection (5.15) is empirically observed to aggres-

sively reduce symbol cluster spread, resulting in hard thresholding of symbols at each iteration. This

results in recovered constellation clusters with low cluster spread, but doesn’t correct symbol errors

efficiently. This is unfavorable from a MIMO detection point of view. Thus, there is a need to balance
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symbol error correction and M-QAM cluster spread reduction over iterations for the dequantization

process.

Both these limitations can be effectively addressed through the use of a DNN-aided methods, as will be

explained in the next subsection.

Learning dequantization

As stated earlier, we presented the conditions and probability for one-one mapping between the

discrete M-QAM spaceM2K and the observed quantized measurements YQAM. However, the probability of

dequantization does not establish any methods for executing the inverse process. Inverting the quantization

operation is a nonlinear intractable function f(·) : YQAM → M2K , i.e., the dequantization function. The

general parametric nature of DNNs and the ability for universal functional approximation [121] makes them

ideally suited to model and learn this dequantization function.

5.4.2 Iteratively learning the dequantizer
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Convolution
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conv + ReLU + bn
Input dim - N
Input chan - 6
Output chan - 64
Kernel size - 3

Fully-
connected

FC layer + bn + ReLU
Input dim - 64N
Output dim - 2N
Hidden layers - 3
Hidden dim - {512, 256, 128}
bn dim - {512, 256, 128}

Figure 5.4: Block diagram of the T -stage DQuantNet. Within each stage, the shaded blue boxes represent the
learnable parameters. The accompanying table in the figure details the parameters and dimension of the subnetwork
h
(t)
ϕ . The parameters depend on the received signal input dimension N .

In order to learn a general, nonlinear mapping f(·) : YQAM →M2K , the proposed dequantization

approach works on iteratively enhancing the estimate of the unquantized signal r(t), beginning with the

132



quantized measurements y. These unquantized measurements are used to estimate the transmitted symbols

x. This entire operation is executed via a three-stage update process, described below.

1. ZF estimate: Multi-user M-QAM signal estimation

x
(t)
ZF = H†r(t−1) (5.17a)

x(t) = η(t)x
(t)
ZF (5.17b)

2. Dequantization: Learning quantization correction

e
(t)
ZF = r(t) −Hx(t) (5.18a)

ê
(t)
ZF =

e
(t)
ZF − a(t)

b(t)
(5.18b)

e(t) = α(t)ê
(t)
ZF + h

(t)
ϕ (ê

(t)
ZF, r

(t−1),y) (5.18c)

3. Updating unquantized signal

r(t) = r(t−1) − e(t) (5.19)

The following points further elaborate on each stage of the proposed algorithm (5.17)-(5.19).

• ZF estimate - The step (5.17a) is similar to Algorithm 7. However, differently, the Gaussian projection

PX (·) from (5.15) is not used. Instead, an iteration-dependent learnt scalar η(t) is used to scale the

M-QAM signal amplitudes, as seen in (5.17b).

• Dequantization - Instead of directly subtracting the quantization noise from the quantized measure-

ments, as seen in (5.14), a general error correction term is learnt from the data. First, the ZF quantiza-

tion error is evaluated, as given in (5.18a). In step (5.18b), the learnt parameters a(t) and b(t) normalize

this error. In step (5.18c), this is utilized, along with previous unquantized estimate r(t−1) and the

quantized measurements y to create a DNN-aided regularized correction h
(t)
ϕ (·) to the quantization

error term e
(t)
ZF. This is added to a scaled normalized error ê

(t)
ZF, with learnt parameter α(t), to create

the final error correction term e(t). The details of the DNN implementation h
(t)
ϕ (·) are provided in Sec.

5.4.3.

• Unquantized signal update - The learnt quantization correction e(t) is subtracted from the current

unquantized estimate to get the new value r(t).
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5.4.3 Implementing the iterative dequantizer

This subsection introduces the DNN implementation of the iterative dequantizer: DQuantNet (De-

Quantization Network). The block diagram for the DQuantNet is provided in Fig. 5.4. Explaining this

further, the details of the DNN architecture and training are provided below.

DNN architecture

Based on the block diagram in Fig. 5.4, we have the following.

• The iterative dequantization algorithm is unfolded as a T -stage DNN. For each iteration t, a distinct

subnetwork is utilized.

• At each iteration, the unquantized estimate r(t−1) (starting with r(0) = y) and quantized measurements

y are fed in as input. The output of each iteration is the refined unquantized estimate r(t).

• Each iteration t subnetwork block consists of three stages, explained in equations (5.17)-(5.19). The

specific steps and flow of information in each of the stages is further elaborated in the red dashed line

boxes.

• Within each iteration subnetwork, the learanble parameters are shown in the shaded blue boxes. For

the dequantization stage, the regularization subnetwork h
(t)
ϕ consists of 1-D convolutional and fully

connected layers. The specific details of the parameters within h
(t)
ϕ (·) are detailed in the accompanying

table in Fig. 5.4

Loss function and training

The loss function for DNN training L is designed as a weighted sum of individual sub-losses at each

iteration L(t). This is given by the form below.

L(t) =
1

λ+ 1

[
||r(t) − rtrain||2 + λ||x(t)

ZF − xtrain||2
]

(5.20a)

L =

T∑
t=1

exp(−β(T − t))L(t). (5.20b)

Based on this formulation, we have the following

• Each sub-loss at iteration t, i.e. (5.20a), consists of a weighted sum of the dequantization error as well

as the symbol recovery error. This weighted sum balances both these factors, important for robust

symbol recovery. The value of λ is selected through hyperparameter tuning.
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Figure 5.5: Dequantization NMSE evaluated over each iteration t. The K = 4 users transmit QPSK symbols for a
N = 32 antenna BS. The SNR is 30 dB.

• Each sub-loss L(t) is exponentially weighted based on the iteration. Thus the total loss is not excessively

penalized by the estimation error in the initial stages. Additionally, this also creates a trajectory for

the DNN-aided framework, reducing the dequantization loss ||r(t) − rtrain||2 over each iteration.

The DNN training follows from the same steps as the different standard works in this domain [1,20,36,138].

The network training is carried out via minibatch gradient descent, with the chosen batch size Ntrain = 32. In

order to train the DQuantNet on the set of randomly generated Rayleigh channel matrices, each minibatch

is generated from a different channel matrix H, denoted by BH. Based on the described system model

(5.1)-(5.4), the minibatch set is generated as BH = {x̄n, z̄n, ȳn}Ntrain
n=1 . The loss function (5.20) is used for

training. We practically implement minibatch gradient descent with the Adam update [144] for each training

minibatch to keep a check on the learning rate. For regularization of DNN weights, we utilize weight decay

to further increase resilience by preventing exploding network weights.

5.4.4 Discussion

Based on the introduced iterative dequantization framework, i.e., the DQuantNet, the following

points elaborate further on the process of iteratively learning the dequantization function.
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Iterative dequantization vs projected ZF

The baseline projected ZF Algorithm 7 works on estimating the quantization noise iteratively.

This estimate is refined over iterations and, at each stage, subtracted from the quantized measurements

to get the current unquantized estimate. Differently, the DQuantNet takes a small step towards the final

unquantized measurement, using each intermediate estimate r(t) for ZF detection of the M-QAM signal x(t).

This approach is more resilient to SER correction, and balances the same with reduced M-QAM cluster

spread. In addition, the update process for learning a stage-dependent quantization correction e(t), i.e.,

(5.18), is a generalized projection to the quantization noise space, learnt from unquantized training data.

Significance of learning regularized error correction

The key learning step in the DNN-aided iterative dequantization is (5.18b) and (5.18c). As stated

in Sec. 5.4.1, the general dequantization mapping is an intractible function. By learning a regularized error

corection step, (i) The framework utilizes the information in the ZF estimate, i.e., e
(t)
ZF, and (ii) It uses

the unquantized training data r
(t)
train to learn the appropriate correction term to this ZF quantization error

estimate.

Dequantization convergence

The convergence plots in Fig. 5.5 show the dequantization performance for QPSK transmitted

symbols. As seen from the performance plots, increasing T beyond a certain value doesn’t significantly

improve performance. It is evident that the dequantization error is bounded below for a given choice of

the quantizer. This is because (i) For a finite antenna case, the dequantization probability Pdequant is not

exactly 1, implying that the recovery performance is bounded below, and (ii) The DQuantNet is trained for

the entire distribution of Rayleigh fading channels H, not just optimized for a single channel matrix.

Few-bit MIMO vs one-bit MIMO

One-bit MIMO is the limiting case of the few-bit MIMO system. Applying the additive noise

model (5.5) to one-bit quantizers clearly shows that the quantization noise e = ±1− r, i.e., the unquantized

signal (up to a scalar bias). Specifically, the magnitude of the quantized measurements do not provide any

information about the input unquantized measurements, beyond the sign. To this end, the different state-of-

the-art detectors for one-bit MIMO (see Sec. 5.1) can only match the sign(r) to the true value. Beyond this,

the detector uses additional projection or scaling steps to estimate the M-QAM symbols. By just adding
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an additional bit in the MIMO system, the signal there is additional information about the magnitudes of

the unquantized measurements (see Sec. 5.3.1) and a probability for one-one mapping, i.e., Pdequant. The

probability of learning this intractable (probably) one-one mapping makes DNN-aided detection much better

suited for robust detector design, as compared to the one-bit MIMO system.

5.5 Experimental Results

5.5.1 Simulation setup

The different parameters used for the simulations as well as the parameters of the different algo-

rithms are provided below.

Channel model and quantized measurements

The M-QAM symbols x are transmitted by K = 4 users to a BS antenna with N = 32. For this

work, we consider the transmission of QPSK and 16-QAM symbols. The input SNR = E(||Hx||2)
E(||n||2) is taken

in the range [−15, 20] dB and [10, 45] dB for QPSK and 16-QAM symbols, respectively. For consistency in

evaluation, the same b-bit quantizer is used for the MU-MIMO system, irrespective of the modulation order.

To ensure this condition is satisfied, the trasnmitted symbols x are normalized such that E ||x[i]||2 = 1. In

the tests within this section, one-bit and two-bit ADCs are used as few-bit quantizers. Beyond two-bits, the

quantization noise is more accurately modeled using independent noise. Various state-of-the-art detectors

already exist for these systems.

Performance benchmarks

The proposed DQuantNet is compared to the current state-of-the-art detector for few-bit MIMO

systems, specifically the FBM-DetNet [20]. For the QPSK symbols, we utilize the ML detection with

unquantized measurements as the theoretical upper bound for detection. We also compare the results with

the introduced projected ZF detector, i.e., Algorithm 7, to get the dequantization-based detection baseline.

DQuantNet parameters

Based on the convergence plots for Fig. 5.5, the DQuantNet is run for T = 5 iterations for both

QPSK and 16-QAM symbols. The training procedure is explained in Sec. 5.4.3. For the loss function

(5.20), the hyperparameter values are taken to be λ = 5 and β = 0.5. The DQuantNet is trained for high
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SNR=30 dB for QPSK symbols and 25 dB for 16-QAM symbols. This specializes the network for high-SNR

dequantization, efficiently removing the quantization noise at high SNR. It also follows from the inference of

similar works [28,36,138].

5.5.2 Detection performance for general channel

This section now compares the performance of the proposed DQuantNet to the state-of-the-art

detectors for a general channel drawn from a distribution of Rayleigh fading channels.
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Figure 5.6: Performance comparison of DQuantNet for 2-bit MIMO. The K = 4 users transmit QPSK symbols for a
N = 32 antenna BS.

The recovery performance for QPSK transmitted symbols is shown in Fig. 5.6. Based on these

performance plots it is evident that the unquantized ML is comparable to two-bit detection for very low SNR

but quickly deviates beyond 5 dB. This shows very little scope for further optimization of two-bit MIMO

detection at very low SNR. The FBM-DetNet slightly outperforms our proposed dequantization detection for

low to moderate SNRs. However, (i) This framework uses three times as many iterations as the DQuantNet,

(ii) The DQuantNet is specifically trained for high-SNR dequantization, and (iii) The FBM-DetNet saturates

to a higher BER for higher SNR. Differently, there is no saturation observed for the proposed DQuantNet

at high SNR; showing a more efficient framework for symbol error correction through dequantization. The
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similar orders of BER for QPSK shows this modulation to be inherently robust to quantization. This is not

the case for higher-order M-QAM modulation.
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Figure 5.7: Performance comparison of DQuantNet for 2-bit MIMO. The K = 4 users transmit 16-QAM symbols for
a N = 32 antenna BS.

The recovery performance for 16-QAM transmitted symbols is shown in Fig. 5.7. Based on these

plots it is evident that the gap to the projected ZF increases with increasing modulation order. Further, the

DQuantNet improves on the FBM-DetNet for higher SNR values, using significantly fewer iterations. This

shows the proposed dequantization-based detection to be an efficient framework for recovery of higher order

M-QAM symbols.

5.6 Conclusions

Through this work, we introduce a novel DNN-aided receiver based on iterative signal dequantiza-

tion. The theoretical insights into signal dequantization provides an expression for the probability for perfect

dequantization, that can be empirically evaluated. This also provides guidance on the design of the massive

MIMO system, number of users and modulation order to get a desired performance in terms of probability

of dequantizing the received signal. Finally, this work presents the DQuantNet, an unfolded DNN to learn
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this dequantization mapping using an three stage iterative procedure. The iteration-weighted loss function

enables efficient training by utilizing the intermediate estimates. Future work in this domain involves more

detailed analysis into theoretical limits of signal dequantization. In addition, this work can also be extended

beyond the rich-fading Rayleigh channel to the mmWave case with its own challenges for non-uniform user

power distribution.

Chapter 5, in part, is a reprint of the material being prepared for submission, Aditya Sant, and

Bhaskar D. Rao. “Few-bit MIMO Detection Using DNN-aided Dequantization”. The dissertation author is

the primary investigator and author of this paper.
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Chapter 6

Contributions and Future Work

This chapter summarizes the contributions of this dissertation, building robust next generation

MIMO communication systems through the following two verticals: (i) Block-sparse signal modeling for

mmWave channels, and (ii) Building robust receiver algorithms for few-bit MIMO systems.

Block-sparse signal recovery

Motivated by the need to robustly model the heterogeneous angular scattering in mmWave channels,

this work introduced a robust signal recovery framework for a general block-sparse signal, with unknown

block sizes and locations. The underlying framework for block-sparse signal recovery worked on modifying

the sparse Bayesian learning algorithm, a type-II estimation algorithm utilizing a parametric Gaussian prior

for the underlying sparse signal, and consequently estimating the hyperparameters of this prior distribution.

The main contribution of this work was the introduction of a novel class of total-variation based regularizers.

Unlike conventional regularizers operating in the signal space, the use of the block-sparse regularizers in

the hyperparameter space, as laid out by the SBL framework, proved to be more resilient for block-sparse

signal recovery, especially for multiple measurement vectors. This work introduced three specific block-

sparse regularizers in the SBL hyperparameter space, (i) Linear TV, (ii) Log TV, and (iii) Difference of

Logs (DoL) TV. A convex optimization framework, based on majorizing the underlying SBL cost function,

was presented for the first two classes, and an expectation maximization (EM) algorithm was presented

for the third. The proof of convergence was provided for the underlying block-sparse signal recovery using

expectation maximization. The experimental results presented the strength of the TV-SBL algorithm for a

huge range of block-sparse signals. Unlike conventional block-sparse signal recovery algorithms, the TV-SBL
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did not compromise on the sparse signal recovery, at the cost of block-sparse signal recovery. This makes

this framework especially resilient for signal recovery of hybrid block-sparse signals, containing both isolated

sparse and block-sparse signal components, that could potentially be observed for mmWave channels.

This work also provided a basis for extending block-sparse signal recovery for both 1-D and 2-D

signals. The synergistic use of DNN-aided methods, building on the SBL framework, can overcome the

challenges for tractably modeling the signal prior. Future directions and developments for both model-based

and DNN-aided methods are promising. For model-based frameworks, the exploration of a broader range

of block-sparse enforcing signal priors promises to advance the theoretical underpinnings of block-sparse

signal recovery. Concurrently, DNN-aided methodologies are poised to mitigate issues of model mismatch

and computational complexity as this framework is extended to more complex systems.

Insights into receiver detection algorithms for few-bit MIMO system

Motivated by the need to build robust detection algorithms for few-bit MIMO systems, this work

provided theoretical insights as well as novel DNN-aided recovery algorithms for few-bit MIMO systems.

The one-bit MIMO, a specific case of the few-bit MIMO systems, was studied in more detail here. The

theoretical analysis of the receiver algorithms began by the characterization of the properties of the maximum

likelihood optimization. The insights into in the convexity and smoothness of the likelihood function enabled

characterization of the convergence of the GD algorithm for signal recovery. The accelerated GD was

presented as an improved receiver detection algorithm, capitalizing on the smoothness properties of the

likelihood. The analysis was extended to surrogate likelihood measures for signal recovery, specifically the

logistic regression based likelihood, a framework used in recent research works with much success. Through

the analysis of the underlying Hessian, the strengths of this surrogate was elucidated; an analysis that hasn’t

been provided in recent research works utilizing this function for one-bit MIMO signal recovery. The role of

projection was elaborated as well, considering that signal recovery for communication systems is constrained

to finite M-QAM constellations. This work proposed the A-PrOBNet, a DNN-aided projected accelerated

GD algorithm, that matched the state-of-the-art recovery algorithms for one-bit MIMO for Rayleigh fading

channels.

DNN-aided methods were analyzed in detail, through the proposed regularized GD detection. This

DNN-aided regularization, applied to the GD, enabled increased flexibility for signal recovery, which was

exploited for signal recovery in mmWave channels. Different from the Rayleigh fading channel, the mmWave

channel presented more challenges to joint user detection owing to greater channel power variation among

the users. The regularized GD was exploited to develop a novel hierarchical detection training strategy for
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this channel, that resulted in equitable performance among the different users.

Finally, the DNN-aided framework was also utilized for signal recovery for few-bit MIMO systems

beyond one-bit, specifically detection for two-bit MIMO signals. Different from one-bit MIMO, the design of

the quantizer plays a key role in detection performance by balancing the trade-off between signal resolution

and clipping. Further, the transmission of symbols from a finite M-QAM constellation enables the evaluation

of a probability of perfect dequantization. The framework for dequantization, however, requires analysis of

the quantization noise statistics, that are not tractably analyzed. This makes DNN-aided frameworks ideally

suited for the signal recovery. The proposed framework, DQuantNet, was used to learn a general projection

strategy for the intractable quantization noise for DNN-aided dequantization, that resulted in improved

system performance over the existing state-of-the-art.

Future directions in few-bit MIMO detection algorithm design, for one-bit and beyond are very

promising. The introduced A-PrOBNet, using Gaussian denoising can be extended to handle the challenges

of the mmWave channel. Similarly, improved DNN architectures and training strategies can enhance per-

formance for the generalized projection strategy. Incorporating SNR into detection frameworks, where the

balance between quantization noise and AWGN is effectively handled, is also a promising direction for both

one-bit as well as two-bit MIMO detection. The underlying synergy between model-based and DNN-aided

methods will be key to continual development of robust detection algorithms.
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