
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Implementation of a Distributed Kalman Filter for 3-D Moving Object Tracking by Using
IMU/UWB

Permalink
https://escholarship.org/uc/item/8972645q

Author
Zhou, Yizhi

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8972645q
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Implementation of a Distributed Kalman Filter for 3-D Moving Object Tracking by
Using IMU/UWB

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical Engineering

by

Yizhi Zhou

June 2022

Dissertation Committee:

Dr. Wei Ren, Chairperson
Dr. Nanpeng Yu
Dr. Bir Bhanu

Copyright by
Yizhi Zhou

2022

The Dissertation of Yizhi Zhou is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to express my greatest gratitude to Professor Wei Ren, my supervisor

for his help with my research. Without his guidance, I am unable to complete this thesis.

I would like to give my appreciation to Pengxiang Zhu and Jie Xu for helping me

on understanding the algorithms and the data collection during the experiments.

Finally, I want to express my love to my family for the love through my life.

iv

ABSTRACT OF THE DISSERTATION

Implementation of a Distributed Kalman Filter for 3-D Moving Object Tracking by Using
IMU/UWB

by

Yizhi Zhou

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, June 2022

Dr. Wei Ren, Chairperson

The focus of this thesis is on the implementation of distributed kalman filters over

sensor networks for 3-D moving target tracking. Two distributed kalman filters, quaternion-

based distributed extended kalman filter and distributed invariant extended kalman filter,

are implemented based on crazyflie quadrotor platform in the local positioning system. In

the algorithms, each agent is equipped with the communication and sensing capabilities to

cooperatively track a 3-D moving object. The proposed algorithms are fully distributed

and robust to time-varying communication topologies. Experimental results based on the

multi-agent platform are shown to validate the proposed algorithms. Finally, we compare

and analyze the performances of two algorithms based on the results.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 3
1.3 Outlines for Chapters . 3

2 Algorithm Introduction 5
2.1 Notations and Preliminaries . 5

2.1.1 Quaternion . 5
2.1.2 Lie Group and Lie Algebra . 7
2.1.3 Notations and Definitions . 7

2.2 Quaternion-Based Distributed EKF Algorithm 8
2.2.1 Problem Formulation . 8
2.2.2 Distributed Kalman Filter Algorithm 9

2.3 Distributed Invariant EKF Algorithm . 12
2.3.1 Problem Formulation . 12
2.3.2 Matrix Lie Group Representation . 13
2.3.3 Distributed Kalman Filter Algorithm 14

3 Experiment Environment 16
3.1 Hardware . 16

3.1.1 Crazyflie Quadcopter . 16
3.1.2 Vicon System . 18

3.2 Software . 19
3.2.1 Crazyswarm ROS Package . 19
3.2.2 Crazyflie Client . 19
3.2.3 Eclipse . 21

vi

4 My Work and Contribution 23
4.1 The Setup of the Experimental Platform . 23
4.2 The Data Acquisition and Processing System 24

5 Results and Discussion 27
5.1 Experimental Validation . 27

5.1.1 Estimator Parameters . 28
5.1.2 Experiments . 29

6 Conclusions 34

Bibliography 35

vii

List of Figures

3.1 Crazyflie2.1 with expansion decks . 18
3.2 Crazyswarm diagram. A point cloud of markers are detected by the motion-

capture system to track the crazyflie. All estimated poses are broadcasted
by the radios on the base PC. State estimation, path planning, and control
run onboard at 500 Hz. 20

3.3 Crazyflie clients . 21

4.1 Experimental diagram. 25
4.2 Soldering procedures. 25
4.3 Communication framework between the crazyflie and the expansion decks.

The micro-sd card deck communication with crazyflie using SPI3 while the
LPS deck uses SPI1 port for communication. 26

5.1 Spatial distribution of the networked agents (UWB anchor). 28
5.2 Experimental platforms: a crazyflie2.1 quadrotor robot and the LPS. 30
5.3 RMSE for the estimated target pose of agent 1,2,and 3. 32
5.4 Estimated 3-D trajectory of the agent 1. 33

viii

List of Tables

5.1 UWB anchor positions . 30
5.2 Average RMSE for the pose estimation in TWR mode 31

ix

Chapter 1

Introduction

1.1 Motivation

Distributed estimation is one of the most fundamental problems in sensor networks

with a wide range of applications such as target tracking, area monitoring and rescue [11].

Generally, for the problem of target tracking, it is assumed that a state of interest can

evolve based on a noisy dynamic model. Measurements related to the state can be obtained

by each agent when the target are located in the observation area. The purpose is to

estimate the target state (i.e.,orientation and position) on each agent accurately by using the

dynamic noisy model and those measurements. For this problem, a centralized algorithm

can provide an optimal solution by getting all the measurements in a fusion center and

running a centralized Kalman Filter (CKF). But, CKF requires expensive communication

from all agents to the fusion center and has heavy computational complexity. Therefore,

the centralized algorithm is inapplicable for real-time applications in large sensor networks.

In contrast to the centralized way, distributed algorithms only use the local information and

1

neighbors’ information of each agent, which greatly improve the computational efficiency

and maintain robustness [6]. Moreover, distributed estimation has advantages in handling

with the issue of observation loss [14]. Thus, researchers in the area of control and robotics

focus more on the distributed approaches in recent years.

In distributed algorithms, the consensus [9] and the Covariance Intersection (CI)

[3] algorithms have been widely employed to obtain a consistent distributed Kalman Filter

(DEKF). The objective of CI is to curry out the fusion of weighted information that repre-

sents the state and cross-covariances of the agent. A typical CI-based estimator is proposed

in, where the CI is used to fuse the prior information pair first and then update it with all

the measurements [12]. In addition, some approaches fuse the posterior information pairs

among the neighborhoods with CI after updating from its own measurement [5]. However,

all those algorithms can only work on vector space and has additive errors. It cannot be

applied in most 3D cases which use the quaternion or rotation matrix to represent rotations.

To solve this issue, quaternion-based distributed EKF (QDEKF) [15] is proposed in

the recent work to fuse the information of quaternions from other sensors in a sensor network.

Specifically, it uses a unit quaternion to represent the 3D orientation and extend CI to the 3D

case using ”quaternion average”. Although the proposed QDEKF shows good performance

in target tracking, this algorithm is built upon error-state Kalman Filter which has potential

inconsistency and hurts the accuracy [10]. To further address this problem, a distributed

invariant EKF is designed to solve the problem of distributed state estimationover sensor

networks in 3D environments. In this algorithm, CI algorithm is extend to matrix Lie groups

for the first time. The proposed distributed invariant EKF (DIEKF) algorithm improves the

2

estimation accuracy and consistency compared with QDEKF. The objective of this thesis

is to test the effectiveness of both QDEFK and DIEKF and compare their performances in

a realistic ultra-wideband (UWB) environment by using quadrotors specified by crazyflies

[4, 7].

1.2 Contribution

The contribution of this thesis is the setup of a UWB platform for validating the

distributed estimation algorithms with crazyfiles, including the following:

1) the setup of a localization positioning system for crazyflies quadrotors based

on UWB, achieving accurate UWB localization for two-way ranging (TWR) and time-

difference-of-arrival (TDOA) measurements;

2) the design of an offline data acquisition and processing system for recording

raw sensor data from crazyflies to allow for measurement and analysis of data such as IMU,

UWB, and Vicon for state estimation;

3) the experimental implementation of the proposed DKF algorithms in a 3D

indoor environment by using crazyflies to explore its effectiveness and performance.

1.3 Outlines for Chapters

Chapter 1 serves as the introduction of this thesis which includes the motivation

and background of this research. My contributions to this work are mentioned as well.

Chapter 2 demonstrates the details of the proposed algorithms.

Chapter 3 illustrates the experimental platforms used in this thesis.

3

Chapter 4 demonstrates my work and contributions in this work.

Chapter 5 shows the simulation results and experimental results. It also discuss

the performance of the proposed algorithms.

Chapter 6 gives the conclusion and future work of the thesis.

4

Chapter 2

Algorithm Introduction

2.1 Notations and Preliminaries

2.1.1 Quaternion

In the following, the definition is described in [10]. A quaternion is generally

defined as

q̄ = q1i + q2j + q3k + q4 (2.1)

where i, j, and k are hyperimaginary numbers satisfying

i2 = −1, j2 = −1,k2 = −1, − ij = ji = k,−jk = kj = i,−ki = ik = j, (2.2)

Note that this definition is corresponding to the JPL definition instead of the

Hamilton definition. For simplicity, q can be further written as a four-dimensional column

matrix given by

q̄ =

q

q4

 =

[
q1 q2 q3 q4

]T
(2.3)

5

Orientation is represented as a unit quaternion satisfying |q̄| =
√
|q|2 + q24 = 1. A

rotation can be represent as a unit quaternion as

q =

ksin(θ/2)

cos(θ/2)

 (2.4)

Where k is a unit vector defining the rotation aixs and θ is the angle of rotation.

In the vector space, the error vector and its covariance can be expressed in terms

of the arithmetic difference between the true value and the estimation value. However, we

cannot use this error representation for a quaternion. Instead, we will employ the error

quaternion δq̄ to define the error, a small rotation between the estimation value and true

value respected to the local frame. This error is written as a multiplication as

q̄ = δq̄ ⊗ ˆ̄q (2.5)

Since the rotation corresponds to δq̄ is assumed to be very small value. Its small angle

approximation can be further obtained as

δq̄ =

 δq

δq4

 =

msin(δθ/2)

cos(δθ/2)

 ≈

1
2δθ

1

 (2.6)

A rotation can also be described as a rotation matrix R. The relation between a

rotation matrix and a unit quaternion is

R = (2q24 − 1)I3 − 2q4[q×] + 2qqT (2.7)

where [×] represents the skew symmetric matrix. Given a 3 × 1 vector q = [q1, q2, q3]
T , its

6

skew symmetric matrix is defined as
0 −q3 q2

q3 0 −q1

−q2 q1 0

 (2.8)

2.1.2 Lie Group and Lie Algebra

Here, matrix Lie group theory is employed to derive our algorithm. The material

is from ??. A matrix Lie group is a subset of square invertible N ×N matrices satisfying

IN ∈ G,

∀a ∈ G, a−1 ∈ G,

∀a, b ∈ G, ab ∈ G,

(2.9)

Its Lie algebra is defined as g, which is a vector space with the same dimension as G.

(·)∧ : Rdimg → g is denoted as the linear map that transforms the elements in the Lie

algebra to the corresponding matrix representation. Moreover, the exponent map is defined

as exp(ξ) = expm(ξ∧) ∈ G,where ξ ∈ Rdimg is an element in g. Correspondingly, the

inverse function of the exponent map, logarithm map, is defined as log(·), which satisfies

the log(·) = (logm(·))∨ : G → Rdimg. (·)∨ is defined as the inverse operator of (·)∧

2.1.3 Notations and Definitions

In this thesis, we denote 0m×n as a m×n zeros matrix, and In as a n×n identity

matrix. We denote G, T and Ci respectively as the global frame, target’s local frame and

the ith sensor frame. Let T
Gq̄ denotes the target’s orientation from G to T , and T

GR is the

7

corresponding rotation matrix. GpT , the target’s global position, denotes the position of T

in G. For vector quantities, the error δx is defined as the standard additive error δx = x− x̂.

In a sensor network of multiple agents, we define a directed communication graph

Gk = (V, Ek), where V indicates the agent set and Ek represents the edge set defined as

Ek ⊆ V × V. Ek stands for the communication links between agents at timestep k. We

assume that self edge (i, i) ∈ Ek, ∀i ∈ V always exists in the communication graph. If

(j, i) ∈ Ek, it means that agent j is a neighbor of agent i, and agent i can receive information

from agent j. The set of all the communication neighbors of agent i at timestep k can be

defined as N k
i = {i|(l, i) ∈ Ek, l ∈ V}.

2.2 Quaternion-Based Distributed EKF Algorithm

In this section, the algorithm is demonstrated in [15].

2.2.1 Problem Formulation

Consider a network of multiple agents in a 3D environment. Each agent can

communicate with its one-hop neighbors and measure the target in a limited sensing region.

The state of the target is defined as

x =

T
Gq̄

xv

 =

[
T
Gq̄

T GpTT
GvTT

]T
(2.10)

which includes the target’s 6-DOF pose T
Gq̄ and GpT , and the linear velocity GvT in global

frame. Consider that the target moves according to the following dynamic model

T
G

˙̄q =
1

2
ωk ⊗T

G q̄,G ṗT =G vT ,
G v̇T =T

G RTak (2.11)

8

where ω and a are the actual local angular velocity and linear acceleration. The correspond-

ing noisy model are given as

ωm = ω + nω, am = aLGRg + na (2.12)

where nω and na are zero mean white Gaussian noise which are assumed to be known to

each agent. The local measurement zki obtained by each agent i at timestep k is given by

the following nonlinear model with local measurement noise wi

zki = hi(x
k, wk

i) (2.13)

The objective of our work is to compute an accurate target’s state on every agent by using

the information from itself and its one-hop communication neighbors.

2.2.2 Distributed Kalman Filter Algorithm

The distributed kalman filter includes two steps: propagation and upate. Suppose

that at timestep k, agent i can obtain a prior estimator (x̄ki , p̄
k
i) with state and covariance

after propagation. In particular, the prior estimation x̄ki can be computed according to the

following propagation model

Tk
G q̄ = exp(

1

2
Ωωk−1

m ∆t)
Tk−1

G
ˆ̄q,

Gv̄k =G v̂k−1 −G g∆t + T
GR̂

Tak−1
m ∆t,

Gp̄k =G p̂k−1 +G v̂k−1∆t− 1

2
g∆t2 +

1

2
T
GR̂

Tak−1
m ∆t2

(2.14)

Then, agent i aims to update its local estimator (x̄ki , p̄
k
i) by using the information

of itself and one-hop communication neighbors. First, we will fuse all the prior informa-

tions among the neighborhood, i.e., (x̄ki , p̄
k
i),∀j ∈ N k

i . Note that we cannot compute the

9

information vector of a quaternion and fuse the information. Therefore, we employ the

following method to obtain a closed form solution of the averaged orientations described by

quaternion Ti
G

ˇ̄q as

Ti
G

ˇ̄q = arg max
q̄∈S3

q̄TMq̄,

M =
∑
j∈N k

i

πk
j (

Tj

G
˜̄q)T

Tj

G
˜̄q (2.15)

where
Tj

G
˜̄q is agent j’s prior estimation of T

Gq̄, and S3 represents the unit 3-sphere. πj is a

parameter that weighted synchronize the prior estimation to avoid the uncertainty. In order

to make sure that we don’t overuse any information among the neighborhood, the parameter

πj satisfies πj ∈ [0, 1], and
∑

j∈Ni
πj = 1. We can obtain a quaternion that minimizes the

weighted sum of the orientation errors by solving the above equation. Moreover, the fusion

of vector quantities xv in x is computed by

x̌kvi =
∑
j∈Ni

πk
j x̄kvj (2.16)

Then we can obtain the weighted average state vector as

x̌ki =

T
G

ˇ̄q

x̌kvi

 =
∑
j∈N k

i

πk
j ⊠ x̄kj (2.17)

where the symbol ⊠ is defined for computing the weighted average. Due to the quater-

nion error is calculated by the error of the rotational angle, the covariance can be directly

computed in vector quantity as

p̌ki =
∑
j∈N k

i

πk
j p̄

k
i (2.18)

We calculate the weight πk
j to minimize the trace of p̌ki according to the following simplified

10

algorithm

πk
j =

1/Trace(p̄j)∑
j∈N k

i
1/Trace(p̄j)

(2.19)

Second, all the intermediate estimation pair (x̌ki , p̌
k
i) will be fused with its local

measurements zkj , ∀j ∈ N k
i . After linearize the measurement zki on the current estimated

state as

z̃ki = zki − hi(x̄
k
i), Hk

i =
∂hi(x̄

k
i)

∂xki
(2.20)

We can compute the updated covariance pki and the state correction δxi
k according to

pki = [p̌ki +
∑
j∈N k

i

skj]−1,

δxki =

 δθki

δxkvi

 = pki
∑
j∈N k

i

ykj

(2.21)

where δθi is the orientation correction and δxvi is the corrections of the vector quantities,

and pki and δxki is calculated as

ski = (Hk
i)T (Rk

i)−1Hk
i ,

yki = (Hk
i)T (Rk

i)−1z̃ki

(2.22)

Then x̌i can be updated by using δxi according to

x̂ki =


Ti,k

G
ˆ̄q

x̂kvi

 = x̌ki ⊞ δxki (2.23)

where we define the symbol ⊞ for updating x̌ki . Specifically, the vector quantities x̌vi can be

directly updated using δxkvi , and the quaternion
Ti,k

G
ˇ̄q is updated by a small rotation error

δq̄i according to

x̂kvi = x̌kvi + δxkvi ,

Ti,k

G
ˆ̄q =

Ti,k

G
ˇ̄q ⊗ δq̄i

(2.24)

11

2.3 Distributed Invariant EKF Algorithm

In the following, the algorithm in this section is described in [13].

2.3.1 Problem Formulation

The state of a target that is tracked by a networks of agents in a 3D environment,

is defined as

x =

[
G
TR

GvTT
GpTT

]T
(2.25)

which includes the target’s orientation T
GR and positionGpT , and the linear velocity GvT in

global frame. Consider that the target moves according to the following dynamic model

T
GṘ =T

G R(ω − nω)×,

Gv̇ =T
G R(a− na) + g,

Gṗ =G v

(2.26)

where ω and a are the corresponding angular velocity and the linear acceleration of the target

in the target frame, and nω and na are white Gaussian noises. The local measurement zki

obtained by each agent i at timestep k is given by the following nonlinear model with local

measurement noise wi

zki = hi(x
k, wk

i) (2.27)

12

2.3.2 Matrix Lie Group Representation

The state of the target at timestep k is represented by a matrix Lie group SE(3)

as

X =


G
TR

Gv Gp

01×3 1 0

01×3 0 1

 ∈ R6×6 (2.28)

Let X̂k be the state estimation, and its right invariant estimation error η is defined as

ηt = Xt(X̂t)
−1 (2.29)

The corresponding error vector ξk defined in the Lie algebra of se(3) is given by

ξk =

[
(ξRk

)T (ξvk)T (ξpk)T

]T
∈ R9 (2.30)

where ξRk
, ξvk , and ξpk ∈ R3 are the corresponding error vectors of rotation, velocity and

position. The estimation error ηkcan be computed by

ηk = exp(ξk) = expm(ξ∧k) (2.31)

where ξ∧k is given as

ξ∧k =


(ξRk

)× ξvk ξpk

01×3 1 0

01×3 0 1

 ∈ R6×6 (2.32)

It has been shown that the dynamic model of ξk is given as

d

dt
ξk = Akξk −AdX̄t

Ut (2.33)

13

where AdX̄t
is the adjoint of SE(3) at X̄t, and Ut = [nT

ωt
, nT

at , 01×3]
T . At is represented as

At =


03 03 03

(g)× 03 03

03 I3 03

 (2.34)

2.3.3 Distributed Kalman Filter Algorithm

Suppose that we know the motion of the target. Let Xk denote the target state

at timestep tk, and X̄k
i and X̂k

i denote the agent’s prior and posterior estimation of the

target state at timestep tk respectively. Also let η
k|k−1
i = Xk(X̄k

i)−1 = exp(η
k|k−1
i) which

represents the agent’s prior error. The agent’s posterior error is represented as η
k|k
i =

Xk(X̂k
i)−1 = exp(η

k|k
i). Note that here η

k|k−1
i and η

k|k
i is defined in se(3). The covariances

of η
k|k−1
i and η

k|k
i are defined as P̄ k

i and P̂ k
i .

The proposed algorithm includes three steps. The first step is to obtain the prior

estimation (X̄k−1
i , P̄ k−1

i) by propagating the posterior estimation (X̂k−1
i , P̂ k−1

i) based on

the dynamic model. Specifically, the individual states in X̄k
i can be propagated as

G
T R̄

k
i =G

T R̂k−1
i Γ0(ω

k−1∆t),

Gv̄ki =G v̂k−1
i +G

T R̂k−1
i Γ1(ω

k−1∆t)ak−1∆t + g∆t,

Gp̄ki =G p̂k−1
i +G v̂k−1

i ∆t +G
T R̂k−1

i Γ2(ω
k−1∆t)ak−1∆t2 +

1

2
g∆t2

(2.35)

The second step is to update the agent’s local estimation by fusing the information

from its neighbors. The goal is to obtain an intermediate measurement (X̌k
i , P̌

k
i). For agent

j ∈ Ni,η
k|k−1
j denote the prior estimation error in SE(3), and ξ

k|k−1
j = log(η

k|k−1
j) is the

prior estimation error in se(3).Here we extend CI algorithm in the context of error-state EFK

in Lie groups to estimate the error states in se(3). The intermediate estimation (ξ̌
k|k−1
j , P̌ k

i)

14

can be calculated by

P̌ k
i = [

∑
j∈N k

i

πk
j (P̄ k

j)−1]−1,

ξ̌
k|k−1
i = P̌ k

i [
∑
j∈N k

i

πk
j (P̄ k

j)−1log((X̄k
j)(X̄k

i)−1)]

(2.36)

where the weight πk
j can be computed according to equation(2.19). Then the intermediate

state estimation Xk in SE(3), denoted by X̌k
i , can be mapped from ξ̌

k|k−1
i by

X̌k
i = exp(ξ̌

k|k−1
i)X̄k

i (2.37)

The third step is to fuse the agent’s intermediate estimation (X̌k
i , P̌

k
i) with all the

measurements, which includes the measurement from itself and its neighbhors. First, by

linearizing the measurement zki on the current estimated state and compute the Jacobian

as

z̃ki = zki − hi(x̄
k
i), Hk

i =
∂hi(x̄

k
i)

∂xki
(2.38)

we can compute

ski = (Hk
i)T (Rk

i)−1Hk
i ,

yki = (Hk
i)T (Rk

i)−1z̃ki

(2.39)

Then the updated covariance P̂ k
i and the posterior estimate of ξ̂

k|k−1
i can be obtained by

P̂ k
i = [(P̌ k

i)−1 +
∑
j∈N k

i

skj]−1,

ξ̂
k|k−1
i = P̂ k

i

∑
j∈N k

i

ykj

(2.40)

In the last step, the estimated state X̂k
i is recovered from ξ̂ki and X̄k

i as the following

X̂k
i = exp(x̂i

k
i)X̄k

i (2.41)

Now, we obtain the posterior estimated information pair (X̂k
i , P̂

k
i).

15

Chapter 3

Experiment Environment

3.1 Hardware

3.1.1 Crazyflie Quadcopter

In this work, we use crazyflie 2.1 quadrotors. As shown in Figure 3.1, the crazy-

file 2.1 is a versatile open source flying development platform designed by Bitcraze. It is

equipped with four 7x16 mm coreless DC motors and 45 mm plastic propellers. Crazyflie

2.1 is supplied by 1 Cell (3.7 V), 20x30x7 mm, 240 mAh LiPo battery. It provides energy

up to 7 minutes of continuous flight.

The crazyfile 2.1 has two micro-controllers called main mirco-controller and addi-

tional mirco-controller. The main micro-controller is an ARM 32-bit STM32F405 Cortex-

M4 embedded processor running at 168 MHz. It communicates with ground PC computer

with a USB dongle and being controlled over the 2.4 GHz Crazyradio PA. The additional

micro-controller is a 32 MHz nRF51822 ARM Cortex-M processor for power energy manage-

16

ment and radio communication managment. The robot on-board sensors system is equipped

with an Inertial Measurement Unit (IMU), i.e., MPU-9250 with three axis: gyro, accelerom-

eter and magnetometer, with an additional high precision pressure sensor (LPS25H).

Multiple expansion decks such as AI deck and LED-ring deck can be easily installed

on crazyflie 2.1 for different purposes. In our experiment, we use local positioning deck for

the setup of local positioning system, and micro-sd card deck to record data synchronously

in relatively-high frequency. Specifically, the Loco Positioning deck is a tag in a Loco

Positioning system which can measure the distances to anchors in three different mode

(TWR, TDOA2, and TDOA3). The distance measurements can be used to conduct position

estimation for the quadrotor. The position is calculated on-board of the quadrotor without

any need for an external computer. The micro-sd card deck has a micro-sd card reader to

the crazyflie, and makes it possible to record data from crazyflie up to 1kHZ and write it in

a micro-sd card. Although we can also obtain experimental data via radio in real-time, the

communication rate is very low which hurts the synchronicity of raw data. Note that the

micro-sd card is using the SPI bus on the deck port to communicate. This has turned out

to have some implications for the other decks such as local positioning deck that use the

SPI bus which limits the speed of logging. Thus, we have to use the hidden SPI port in the

main micro-controller to avoid the communication conflict issue. In our experiment, IMU

and UWB distance measurement are recorded for state estimation. We also record Vicon

data, i.e., position and orientation as our ground truth.

17

(a) Crazyflie2.1 (b) Micro-sd card deck (c) Local-positioning deck

Figure 3.1: Crazyflie2.1 with expansion decks

3.1.2 Vicon System

The vicon system is an optical passive motion capture system. This system can

track and anaylze the motion of a moving object in a 3D workspace. It uses passive spherical

markers that placed on objects. The markers can be easily detected by vicon cameras by

reflecting infrared. Vicon system is widely applied due to its high performance: generally

position errors are less than one milimeter. In comparison, some state-of-the-art localiza-

tion systems such as UWB has very large position errors of over 10 centimeters, which is

imaplicable for dense formations. In this thesis, we use vicon system to obtain the position

and orientation informations of our quadrotors as ground truth.

18

3.2 Software

3.2.1 Crazyswarm ROS Package

The crazyswarm platform is a ROS package which allows us to fly a swarm of

crazyflie 2.x. quadrotors in tight, synchronized formations. This platform supports multiple

localization systems including LPS, motion capture system and LightHouse. In contrast

to some related platforms, the majority of in-flight computation is implemented onboard.

The frequency of main onboard loop is 500 Hz. In each iteration, the onboard micro-

controller fuses IMU and motion capture system measurements in an Extended Kalman

Filter (EKF) to improve the performance of state estimation and reduce the communication

workloads. The EKF implementation follows the indirect error-state approach. Crazyswarm

package designs a set of onboard trajectory planning methods that reduce the amount of

information change between the base station and crazyflie. This package also sets up reliable

communications for large swarm of crazyflies with low latency. Furthermore, crazyswarm

develops a high-level and effective controller for crazyflies. Figure 3.2 shows the diagram of

major system components of crazyswarm. In our experiments, we make use of this package

to conduct high level control and set up effective communication frameworks between the

host computer and crazyflies.

3.2.2 Crazyflie Client

The crazyflie PC client is an important tool in our experiments. This client enables

users to flash and control the crazyflie. It implements the user interface and high-level

control commands such as gampad handling. Figure 3.3 shows the user interface of the

19

Figure 3.2: Crazyswarm diagram. A point cloud of markers are detected by the motion-
capture system to track the crazyflie. All estimated poses are broadcasted by the radios on
the base PC. State estimation, path planning, and control run onboard at 500 Hz.

crazyflie client. In this thesis, we use crazyflie client to assign the address of each crazyflies

and select the communication channel. The radio communication frequency is designed to

be 100Hz between the crazyflie and the host PC. The communication frequency needs to be

high enough to ensure smooth trajectory. The radio address for the crazyflie is configured

as ”0xE7E7E7E70X” where ”X” represents the number of the crazyflie in the hexadecimal

system. Note that this number should be corresponding to the crazyflies’ name in the

motion capture system.

In addition, the configuration of LPS is required to be manually done from crazyflie

client. This configuration is an essential part in the setup of our LPS system and has to be

operated according to the following steps: 1) Open the crazyflie client and connect to the

crazyflie. Configure the crazyflie in 2Mbit radio mode if not already done. This can reduce

interferences with the UWB radio. If the configuration is changed a restart of the crazyflie

is required. 2) Check anchors’ status and verify the communication between the anchors

and crazyflie. If there is any issue with the communication, verify the anchor is configured

20

correctly. 3) Each the anchors’ position manually and verify the anchors’ position in the

crazyflie client. 4) Select the system mode and the caliboration will be automatically done

in the crazyflie client. The LPS supports three different modes: Two-way Ranging (TWR),

Time-of-difference arrival 2 (TDOA2) and Time-of-difference arrival 3 (TDOA3).

Figure 3.3: Crazyflie clients

3.2.3 Eclipse

Diving into the C-based firmwares is one of the key components about developping

crazyflies. Eclipse is a proper tools to make some major changes to the intrinsics of the

firmwares and debug the STM32. Eclipse also allows us to place the break point and read

the real-time values of the code which make us easily debugging the firmwares. Note that a

debug adapter and a ST Link debugger are required for on-chip debugging through eclipse.

Generally, the crazyflie firmware can be coded and debugged in Eclipse according to the

following steps: 1) Install required Eclipse Plugins including the C++ development tools

and GNU MCU plugin; 2) Import crazyflie firmware into Eclipse and set up the debugging

21

environment; 3) Connect to crazyflie with a debug adapter and a ST link debugger, and

configure the firmware; 4) Set up the breakpoints in the code and debug. Eclipse can run

into an dedicated debugging environment automatically. 5) Eclipse can automatically halt

the crazyflie’s firmware before it enter the main function of the firmware.

22

Chapter 4

My Work and Contribution

In this thesis, the LPS platform is setup based on crazyflie2.1 and LPS decks, and

the UWB localization in TWR and TDOA modes is established accordingly. In addition,

we build an offline data acquisition system to record and process the measurement data on

crazyflie2.1. The proposed algorithms are validated by the experimental platform.

4.1 The Setup of the Experimental Platform

Figure 4.1 shows the experimental diagram of this thesis. In our experiments, the

Ubuntu 18.04 system and ROS have been installed on the ground PC. The crazyflie client is

installed on the ground PC to control the crazyflie and setup the LPS. In order to establish

and improve the UWB localization system, we use the Loco-Positioning configuration tool

(LPCT) created by Bitcraze to configure the UWB anchors according to the following steps:

1) Update the LPS firmware of each anchor by LPCT: First label each anchor with

an appropriate ID from 0-7, and upload the firware. Then select the anchor mode including

23

TWR and TDOA. Note that the UWB measurement by TWR always has an offset which

directly related to the parameter named ”antenna delay”. To reduce the offset and improve

the accuracy of the UWB measurement, we build a few tests to find a proper value of the

”antenna delay”.

2) Place the anchors in the experimental space: Four anchors are placed in an

approximately rectangle space on the ground, and the other four anchors are placed on

tripods with 1.8m above the ground. All the anchors are fixed and powered by 5V batteries.

To avoid interferences, each anchor is placed at least 15cm away from the obstacles. The

anchor positions are measured by using vicon motion capture systems.

3) Configure and verify the system: When all the anchors are mounted and pow-

ered, we use crazyflie client to configure the system. The commonication between the client

and the anchors are relayed through the LPS decks and the crazyflie. First, we place the

crazyflie in the center of the flying area and connect it through crazyflie client. Then we

can click the loco-positioning tab in the client to check the status of each anchor. If the

communication between the client and the anchors works well, we can manually enter an-

chor positions to each anchor. The crazyflie client can automatically calibrate the system.

Finally, we verify the built system and switch the system mode through cfclient.

4.2 The Data Acquisition and Processing System

In our work, we aims to obtain the data including IMU, UWB distance mea-

surements, and ground truth. Other data such as barometer measurement and control

parameters can also be recorded. All the data are logged offline by using a micro-sd card

24

Figure 4.1: Experimental diagram.

attached to the crazyflie. The micro-sd card is using the SPI bus on the deck port to com-

municate with the crazyflie. Due to the communication issue we mentioned in the chapter

3, the connection between the decks (UWB tag and micro-sd card deck) and the crazyflie

has to be re-designed for data logging. Here, we use a ”hidden” SPI port on the deck named

”SPI3” for the micro-sd card, separate from the SPI port named ”SPI1” which is using for

the LPS deck[1]. Figure 4.2 shows the communication framework between the crazyflie and

the expansion decks. The following steps can be used to work around this issue:

1) Patch and solder the micro-sd card deck and the LPS deck, Figure 4.3 illustrates

the patching and soldering procedures: cut some small lines and solder small patch wires

between the crazyflie and the decks based on the wire connections shown in Figure 4.4.

Then, attach all the decks to the crazyflie.

Figure 4.2: Soldering procedures.

25

2) Update the firmware to the hidden SPI mode and compile the firmware respec-

tively.

Figure 4.3: Communication framework between the crazyflie and the expansion decks. The
micro-sd card deck communication with crazyflie using SPI3 while the LPS deck uses SPI1
port for communication.

The micro-sd card data logging system is formatted as a FAT32 file system. This

data logging system is contained in the firmware of the crazyflie and can be activated using

a configuration file in the micro-sd card. Logging variables such as sensor measurements

and state estimations can be logged synchronized in a fixed frequecy. The maximize logging

frequency is 1000 Hz. In order to reduce the data size and avoid communication conflicts,

the number of logging variables is limited to 18 in our experiments. Once the logging

process is started, a logfiles containing all the loggin variables will be created in the micro-

sd card. The logfiles can be enumerated in ascending order from 0-99, which allows multiple

logs. A new logfiles can be automatically created when resetting the crazyflie. When the

logging process is stopped, we will obtain a binary logfile which can be decoded simply by

python[1].

26

Chapter 5

Results and Discussion

5.1 Experimental Validation

In this section, we use the real data collected by crazyflie2.1 and LPS to test the

performance of the proposed algorithms offline. The target, crazyflie2.1, is tracked by LPS

consisting of 8 uwb anchors in a 3D environment, denoted as agents 1-8. The crazyflie is also

equipped with a UWB tag. Of the 8 anchors, 4 are placed in an approximately rectangle

on the ground, and the other 4 are placed at a height of approximately 1.8m above the

ground. Figure 5.1 shows the anchor positions. The vicon motion capture system is applied

to measure the pose of the interest target as ground truth. The real data is logged by the

micro-sd card in another deck named micro-sd card deck attached on the crazyflie.

27

Figure 5.1: Spatial distribution of the networked agents (UWB anchor).

5.1.1 Estimator Parameters

The IMU data is obtained by the IMU sensor BMI088 on the crazyflie2.1, including

a 3-xais accelerometer and gyroscope meter. The IMU model is followed by (2.12). Due to

the fact that the motors on crazyflie are almost directly connected to the PCB which induces

a lot of extra vibrations, the IMU noise parameters on a flying crazyflie is totally different

with it on a stationary platform. Based on the observations, the estimation performance

changes significantly when the process noise are selected within a wide range. Thus, the

process noise in each axis is chosen adaptively for better estimator performances in the

experiments as follows

ηacc = (0.02, 0.02, 0.05)m/sec2/
√
Hz,

ηgyro = (0.15, 0.15, 0.20)deg/sec/
√
Hz

(5.1)

where ηgyro is the noise for the angular rate gyroscope and ηacc is the noise for the accelerom-

eter. We consider two different modes of UWB measurements in our experiments. One is

two-way ranging (TWR)that returns the distance between the tag at its current position

GpTk
and the anchor position puwb,i. The covariance of the UWB TWR measurement is set

to V ar(ηtwr) = 0.0225m2 based on the analysis of the UWB distance measurements. We

28

place the crazyflie in the different locations of the tracking space, record the distance mea-

surements from UWB anchors and compute the covariance based on the distance obtained

from the ground truth. The local measurement model for agent i at timestep k hence has

the following form:

zki = hi(
GpTk

) + ηtwr = ∥puwb,i −G pTk
∥ + ηtwr (5.2)

Another measurement mode named time-difference of arrival (TdoA) measure-

ments is also used in our experiments. Tdoa mode cannot directly measure the distance

bwtween the tag and the anchor. In this mode, the measurement can be regarded as the

difference between the distances to two different anchors. The measurement model is given

as

zki = hi(
GpTk

) + ηtdoa = ∥puwb,i −G pTk
∥ − ∥puwb,j −G pTk

∥ + ηtdoa (5.3)

5.1.2 Experiments

The experiment is conducted in 4m × 3m × 2m space shown in Figure 4.2, and

the coordinates of 8 fixed anchors are represented in Table 1. Each agent is able to obtain

measurements when the target of interest is within its field of sensing. Moreover, we assume

that each agent can communicate with the other cameras with certain percentages to show

the benefits of distributed tracking. For example, 60% communication means that each

agent has the probability of 60% to communicate with other agents. The communication

neighbors of each agent are randomly choosen at each timestep, and hence the communi-

cation graph here is time varying. We assume that the agents have the knowledge of the

target’s motion model. We compare the results of the proposed two algorithms (DIEFK and

29

QDEKF) of different communication rate in estimating both position and orientation. The

results are quantified by rooted mean square error (RMSE) that evaluates the estimation

accuracy.

Table 5.1: UWB anchor positions

ID x [m] y [m] z [m]

0 -1.83 -1.34 0.20
1 -1.88 1.10 1.73
2 2.02 1.10 0.20
3 1.98 -1.32 1.73
4 -1.83 1.34 1.73
5 -1.87 1.11 0.20
6 2.02 1.10 1.73
7 1.98 -1.32 0.20

Figure 5.2: Experimental platforms: a crazyflie2.1 quadrotor robot and the LPS.

In our experiment, real data is collected in UWB-TWR mode. The target is flying

following a pre-designed 3-D trajectory. The initial position of the crazyflie is chosen as the

30

original point in the space. The initial covariances P
0|0
i in QDEKF is given as

P
0|0
i ∼ diag(0.152, 0.152, 0.202, 10−4, 10−4, 10−4, 10−4, 10−4, 10−4), ∀i ∈ V (5.4)

where P
0|0
i will be converted respectively in DIEFK. Due to that the micro-sd card uses

shared SPI bus with the LPS deck on the crazyflie, it would slow down the data transmis-

sion or stop working if it is too congested. This finally causes the micro-sd card logging to

fail when LPS is put in TWR mode. In addition, because of the limitation to the number of

logging variables that fit in the data log block of the crazyflie, we cannot record too many

data synchronized in a relatively high frequency in TWR mode. Thus, we implement two

independent experiments which estimate the target’s position and orientation separately.

The data is collected on a crazyflie2.1 at 100Hz including real IMU, UWB, and groud-truth

data. Table 4.2 shows the average RMSE for position and orientation for different communi-

cation rate in TWR mode. It is clear that the estimation performance of position improves

as the communication rate increase. Further, to illustrate the estimation performance over

time, we plot the RMSE(PRMSE) and RMSE(ORMSE) results over agent 1,2 and 3 with

60% communication for both algorithms in Figure 4.3. The estimated trajectory of the

agent 1 is shown in Figure 4.

Table 5.2: Average RMSE for the pose estimation in TWR mode

Communication rate 10% 20% 30% 40%

QDEKF
PRMSE (m) 0.131 0.092 0.085 0.076

ORMSE (deg) 9.425 9.857 9.570 10.212

DIEKF
PRMSE (m) 0.098 0.073 0.062 0.058

ORMSE (deg) 8.16 7.75 8.25 8.10

31

(a) PRMSE for QDEKF (b) ORMSE for QDEKF

(c) PRMSE for DIEKF (d) ORMSE for DIEKF

Figure 5.3: RMSE for the estimated target pose of agent 1,2,and 3.

32

(a) 3-D trajectory for QDEKF

(b) 3-D trajectory for DIEKF

Figure 5.4: Estimated 3-D trajectory of the agent 1.

33

Chapter 6

Conclusions

This thesis studies two DKF algorithms (QDEFK and DIEFK), and shows the

experimental validation of the algorithms. In order to validate the effectivenss of both

algorithms and compare their performances, both algorithms were implemented on the

experimental platforms. In particular, the DKF algorithms for quadrotor localization with

UWB was developed and tested. Using the considered DKF algorithms, the target tracking

process can be achieved by only using the local information and its local communications.

Further, the experimental results shows that the DIEFK algorithm is more accurate in

the position and orientation estimation, and coverage faster than QDEKF algorithm. The

future work will be extend to online situations to test the real-time performances of both

algorithms on different robot platforms.

34

Bibliography

[1] https://www.bitcraze.io/products/micro-sd-card-deck/.

[2] Axel Barrau and Silvère Bonnabel. The invariant extended kalman filter as a stable
observer. IEEE Transactions on Automatic Control, 62(4):1797–1812, 2017.

[3] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano. Consensus-based
linear and nonlinear filtering. IEEE Transactions on Automatic Control, 60(5):1410–
1415, 2015.

[4] Wojciech Giernacki, Mateusz Skwierczyński, Wojciech Witwicki, Pawe l Wroński, and
Piotr Kozierski. Crazyflie 2.0 quadrotor as a platform for research and education in
robotics and control engineering. In 2017 22nd International Conference on Methods
and Models in Automation and Robotics (MMAR), pages 37–42, 2017.

[5] Xingkang He, Wenchao Xue, and Haitao Fang. Consistent distributed state estimation
with global observability over sensor network. Automatica, 92:162–172, 2018.

[6] Bin Jia, Khanh D. Pham, Erik Blasch, Dan Shen, Zhonghai Wang, and Genshe Chen.
Cooperative space object tracking using space-based optical sensors via consensus-
based filters. IEEE Transactions on Aerospace and Electronic Systems, 52(4):1908–
1936, 2016.

[7] Mark W. Mueller, Michael Hamer, and Raffaello D’Andrea. Fusing ultra-wideband
range measurements with accelerometers and rate gyroscopes for quadrocopter state es-
timation. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 1730–1736, 2015.

[8] R. Olfati-Saber. Distributed kalman filtering for sensor networks. In 2007 46th IEEE
Conference on Decision and Control, pages 5492–5498, 2007.

[9] Wei Ren, Randal W. Beard, and Ella M. Atkins. Information consensus in multivehicle
cooperative control. IEEE Control Systems Magazine, 27(2):71–82, 2007.

[10] Nikolas Trawny and Stergios I. Roumeliotis. Indirect kalman filter for 3 d attitude
estimation. 2005.

35

[11] Shaocheng Wang, Yang Lyu, and Wei Ren. Unscented-transformation-based dis-
tributed nonlinear state estimation: Algorithm, analysis, and experiments. IEEE
Transactions on Control Systems Technology, 27(5):2016–2029, 2019.

[12] Shaocheng Wang and Wei Ren. On the convergence conditions of distributed dynamic
state estimation using sensor networks: A unified framework. IEEE Transactions on
Control Systems Technology, 26(4):1300–1316, 2018.

[13] Jie Xu, Pengxiang Zhu, and Wei Ren. Distributed invariant extended kalman filter
for 3-d dynamic state estimation using lie groups. 2022 American Control Conference
(ACC), 2022.

[14] Yingrong Yu, Jianglong Yu, Yishi Liu, and Zhang Ren. Distributed state estimation
for heterogeneous mobile sensor networks with stochastic observation loss. Chinese
Journal of Aeronautics, 35(2):265–275, 2022.

[15] Pengxiang Zhu and Wei Ren. Distributed kalman filter for 3-d moving object tracking
over sensor networks. In 2020 59th IEEE Conference on Decision and Control (CDC),
pages 2418–2423, 2020.

36

