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Abstract

Recombinant human growth hormone (rhGH) and GH receptor antagonists

(GHAs) are used clinically to treat a range of disorders associated with GH

deficiency or hypersecretion, respectively. However, these biotherapeutics can

be difficult and expensive to manufacture with multiple challenges from

recombinant protein generation through to the development of long-acting for-

mulations required to improve the circulating half-life of the drug. In this

review, we summarize methodologies and approaches used for making and

purifying recombinant GH and GHA proteins, and strategies to improve phar-

macokinetic and pharmacodynamic properties, including PEGylation and

fusion proteins. Therapeutics that are in clinical use or are currently under

development are also discussed.

KEYWORD S
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1 | BACKGROUND

Human growth hormone (hGH) is a nonglycosylated
22 kDa single-chain peptide hormone secreted from the
anterior pituitary that functions as a key promoter of
postnatal longitudinal growth by inducing bone growth
and affecting protein, lipid, and carbohydrate metabo-
lism. Recombinant hGH (rhGH) therapy has been shown
to be beneficial for the treatment of GH deficiency
(GHD) in both adults and children and has been in clini-
cal use since the 1980s for a range of disorders. rhGH is
administered to adults with GHD, adults with catabolic
illnesses, older adults with decreased GH secretion, and
children with GHD, idiopathic short stature, chronic

renal insufficiency, Prader–Willi syndrome, small for ges-
tational age, short stature due to homeobox gene defi-
ciency, and short bowel syndrome (Danowitz &
Grimberg, 2022; Franklin & Geffner, 2011; Kirk, 2012;
Vance & Mauras, 1999). rhGH has a very short half-life
in the circulation due to renal clearance, and thus daily
subcutaneous injections are required (Webster
et al., 2008). The current standard daily regimen for
rhGH presents challenges in terms of adherence, espe-
cially for long-term use and patient adherence to daily
rhGH therapy may decline over time. In recent years,
several long-acting rhGH formulations have been
released to the market, which have the potential to
decrease the burden of daily injections and enhance
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patients' compliance with the therapy (Steiner
et al., 2023). The global market for hGH was valued at 3.8
billion USD in 2020 and is expected to increase to 9.2 bil-
lion USD by 2030.

Conversely, GH hypersecretion results in gigantism in
childhood and a condition called acromegaly in adults
(Colao et al., 2019) that can be treated with the GH recep-
tor (GHR) antagonist, pegvisomant (described below).
Increased GH signaling has also been implicated in
tumor growth and progression and is elevated in certain
cancers. As a result, there has been increasing interest in
developing GH antagonists (GHAs) as potential cancer
therapies (Brooks & Waters, 2010; Chesnokova &
Melmed, 2019; Kopchick et al., 2022; Lu et al., 2019).

The aim of this review is to summarize the
approaches that have been used to generate long-acting
GHR agonists and antagonists in the lab and clinical set-
ting. Strategies to increase recombinant protein expres-
sion and purification, and to improve pharmacokinetic/
pharmacodynamic properties are summarized including
protein PEGylation (i.e. covalently attaching polyethyl-
ene glycol [PEG]) and fusion. We also discuss clinical
applications and therapeutics that are in clinical use or
are currently under development.

1.1 | GH structure

22 kDa hGH consists of 191 amino acids with two intra-
molecular disulfide bonds at Cys53–Cys165 and Cys182–
Cys189 (Kopchick, 2003). A single hGH ligand binds to
two receptor molecules (Figure 1a). The hGH molecule
contains two distinct binding sites with different affinities
for the GHR; Site 1 is a high-affinity binding site whereas
Site 2 has lower affinity for the receptor. Upon GH-GHR

binding, a rotational change in the transmembrane
domain of the receptor occurs, resulting in transpho-
sphorylation and activation of the downstream signaling
pathways, such as the Janus kinase (JAK)/signal trans-
ducer and activator of transcription (STAT) pathway
(Brooks et al., 2014). From the crystal structure, the ter-
tiary structure of this hormone is an antiparallel four-
helix bundle molecule organized in an up–up–down–
down manner (de Vos et al., 1992; Figure 1b). A disulfide
bridge between Cys53 and Cys165 links the connection
between Helices I and II and Helix IV. The second disul-
fide bridge between Cys182 and Cys189 forms a small loop
in the C-terminus (Junnila & Kopchick, 2013). Both
disulfide bridges are well conserved across species and
important for protein folding and stability (Connors
et al., 1973). Some studies have suggested that the disul-
fide bond between Cys53 and Cys165 is important for the
biological potency of hGH and is required for activation
of the JAK/STAT pathway, whereas the disulfide bond
between Cys182 and Cys189 may only modestly impact the
biological activity of hGH. But, removal of the Cys182-
Cys189 disulfide bridge does decrease protein stability and
binding affinity for the GHR (Junnila et al., 2013;
Junnila & Kopchick, 2013).

1.2 | Pegvisomant, a GHR antagonist

The GHR antagonist, pegvisomant (Somavert; Pfizer),
was initially discovered during attempts to improve the
growth-promoting activity of bovine Gh. The crystal
structure of GH highlighted the amphiphilic properties of
the third α-helix (109–126 in bovine Gh and 110–127 in
hGH; Kopchick et al., 2014). A peptide containing the
third α-helix was found to promote growth (Hara

FIGURE 1 Crystal structure human growth hormone (hGH). (a) 1:2 complex of hGH (green) associated with a growth hormone

receptor (GHR) homodimer (orange and purple), with binding sites and residue G120 indicated (PDB ID 1HWG). (b) Side and top view of

hGH (PDB ID 1HGU). Disulfide bonds are indicated by an arrow.
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et al., 1978). However, three amino acids at Positions
117, 119, and 122 of bovine Gh were not ideal for amphi-
philic helix formation. The initial hypothesis was that
substituting these three residues would improve the
amphiphilic property of the third helix and would
increase the bioactivity of GH. Pulsatile secretion of hGH
from the pituitary normally stimulates the production
and secretion of hepatic insulin-like growth factor
1 (IGF-1), but surprisingly, transgenic mice expressing a
mutant bovine Gh gene with the substitution of E117L,
G119R, and A122D had reduced circulating IGF-1 con-
centrations and exhibited a dwarf phenotype (Yang
et al., 1993). Further studies confirmed that G119 of
bovine Gh was the critical amino acid involved in growth
promotion (Campbell et al., 1993). The glycine residue at
Position 120 of hGH corresponds to G119 of bovine Gh,
and substitution of glycine 120 to lysine/arginine in hGH
resulted in similar inhibitory activity (Chen et al., 1990;
Thirone et al., 2002). This amino acid substitution is the
basis of pegvisomant, which is a PEGylated protein
antagonist (Kopchick et al., 2002; van der Lely &
Kopchick, 2006). The protein component of pegvisomant
is called B2036. It incorporates the G120 K substitution
and 8 additional mutations at binding site 1 (H18D,
H21N, R167N, K168A, D171S, K172R, E174S, and I179T).
These substitutions serve two functions; they increase the
binding affinity at site 1 and remove two potential PEGy-
lation sites in the binding site (K168A and K172R), as
PEGylation at these sites would be expected to interfere
with ligand binding. B2036 can competitively bind to the
GHR, but does not activate it, thereby inhibiting
the GHR signal transduction.

1.3 | Current and potential therapeutic
indications for GH and GHA

rhGH was originally used for replacement therapy in
children and adults deficient for hGH. GHD in children
is a rare disorder that can arise from genetic causes (con-
genital) or acquired through damage or injury, but often
also arises spontaneously with no known cause (idio-
pathic GHD; Ayuk, 2006).

GHD in adults and children is treated using GH
replacement. Currently, this involves daily injection of
rhGH (Yuen et al., 2021). In children with GHD, rhGH
treatment induces linear growth and the aim of treatment
is for the patients to be within the normal height range by
adulthood (Pfäffle, 2015; Yuen et al., 2021). GH replace-
ment has many beneficial effects on body composition
and bone turnover in adults (Carroll et al., 2000). It has
also been shown to help improve quality of life, reduce
cardiovascular risk factors, increase left ventricular mass,
and improve cardiac performance (Carroll et al., 2000).

More recently, the number of clinical applications for
hGH has expanded considerably. rhGH has also been
used to treat adults with catabolic illnesses, older adults
with decreased GH secretion, chronic renal insufficiency,
idiopathic short stature, short stature due to homeobox
gene deficiency, Prader–Willi syndrome, Noonan Syn-
drome, small for gestational age, short bowel syndrome,
and women undergoing in vitro fertilization (Danowitz &
Grimberg, 2022; Franklin & Geffner, 2011; Kirk, 2012;
Shang et al., 2022; Vance & Mauras, 1999).

Hypersecretion of GH in adults, after epiphyseal clo-
sure causes acromegaly (Colao et al., 2019; Petrossians
et al., 2017). Acromegaly is characterized by dispropor-
tionate skeletal, tissue, and organ growth and patients
with acromegaly present with changes to their limbs and
facial structure, increased perspiration, headaches, pares-
thesia (pins and needles), sexual dysfunction, hyperten-
sion, and goiter (Colao et al., 2019; Petrossians
et al., 2017). In around 98% of cases acromegaly is the
result of GH hypersecretion by benign pituitary adeno-
mas (Hannah-Shmouni et al., 2016). Pituitary adenomas
arise from clonal expansion of a mutated anterior pitui-
tary cell and most acromegaly-causing pituitary adeno-
mas consist of mature somatotrophs that only produce
GH (Chanson & Salenave, 2008). Treatment for acromeg-
aly includes somatostatin receptor ligands, dopamine
agonists, and the GHR antagonist, pegvisomant.

There has also been increasing interest in the applica-
tion of GHAs as cancer therapeutics (Wang et al., 2023).
B2036 and pegvisomant have been shown to have anti-
cancer activity in cancer cells and in vivo in cancer xeno-
graft models (Bougen et al., 2012; Dagnaes-Hansen
et al., 2004; Divisova et al., 2006; Evans et al., 2016;
Friend et al., 1999; Kaulsay et al., 2001; Lempereur
et al., 2003; Unterberger et al., 2022). Pegvisomant has
not been assessed in clinical trials for oncology applica-
tions. However, a Phase I study evaluated and compared
the efficacy of pegvisomant and octreotide by assessing
pharmacodynamic biomarkers associated with GH activ-
ity (Yin et al., 2007). Pegvisomant dosed at high s.c. doses
daily for 14 days was found to be well tolerated and was
more efficacious than octreotide in suppressing the GH
axis (Yin et al., 2007). Given the wealth of preclinical data
supporting GH-signaling as an anticancer target, further
clinical trials in this area will be of interest. The clinical
and preclinical indications for rhGH and GHA are sum-
marized in Figure 2.

2 | RECOMBINANT GH/GHA
PRODUCTION

Recombinant proteins have been widely used in biologi-
cal and biomedical sciences. However, expression and

WANG ET AL. 3 of 33



purification can be challenging because every protein is
different, and expression strategies and purification pro-
tocols need to be tailored for individual proteins and their
intended use. Expression and purification of GH and
GHAs from both prokaryotic and eukaryotic host systems
have been described (summarized in Figure 3).

2.1 | GH/GHA expression and
purification from Escherichia coli

Endogenous GH is a nonglycosylated protein and is
therefore very suitable for production in prokaryotic
expression systems. However, it tends to accumulate as

rhGH

GHA

� Adult GHD

� Paediatric GHD

� Adults with catabolic illnesses

� Older adults with decreased GH secretion

� Chronic renal insufficiency

� Prader-Willi syndrome

� Children born small for gestational age

� Children with idiopathic short stature

� Turner syndrome

� Short-stature homeobox-containing (SHOX)

gene haploinsufficiency

� Children with Noonan syndrome

� Children with chronic renal insufficiency

� Women undergoing in vitro fertilization

� Cancer
� Diabetic retinopathy & 

nephropathy
� Healthy aging

� Acromegaly

� Heart failure

Clinical indications Preclinical indications

FIGURE 2 Clinical and

experimental indications for

recombinant human growth

hormone (GH; Danowitz &

Grimberg, 2022; Isgaard

et al., 2015; Shang et al., 2022)

and GH receptor antagonist

(Colao et al., 2019; Lu

et al., 2019).

FIGURE 3 Outline of the different approaches used for expression and purification of growth hormone (GH) and GH receptor

antagonist. Image created using BioRender. PEG, polyethylene glycol. IMAC, immobilized-metal affinity chromatography.
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insoluble protein aggregates in inclusion bodies when
expressed in the cytoplasm of E. coli. Different
approaches to overcome this and improve expression
have been described, including periplasmic expression,
cytoplasmic expression of fusion proteins, and refolding
the insoluble protein from inclusion bodies.

2.1.1 | Periplasmic expression

Periplasmic expression is widely used to facilitate purifi-
cation and enable disulfide bond formation for high-
value therapeutic proteins. It is an optimal approach for
many recombinant proteins that has significant advan-
tages in downstream processing, such as reduced release
of cytoplasmic proteins, membrane components, and
DNA, reduced micronization of cellular debris, and low
endotoxin contamination, making downstream purifica-
tion less complicated (Balasundaram et al., 2009). This
approach is ideal for proteins containing disulfide bonds
as the periplasmic space is an oxidizing environment,
which facilitates formation, but it tends to result in much
lower expression levels compared with cytoplasmic
expression. Recombinant proteins are usually engineered
with an N-terminal signal peptide, which allows the pro-
tein to be exported to the periplasm via the general secre-
tion (Sec) protein export pathway (Georgiou &
Segatori, 2005). The signal peptide is cleaved by a signal
peptidase during or shortly after substrate translocation,
and the mature protein is released on the trans-side of
the membrane (Freudl, 2018).

Periplasmic secretion has been widely used for the pro-
duction of rhGH (Alanen et al., 2015; Amaranto et al., 2021;
Bagherinejad et al., 2016, 2018; Becker & Hsiung, 1986;
Browning et al., 2017; Chang et al., 1987; Chang et al., 1989;
Ghorpade & Garg, 1993; Gray et al., 1985; Guerrero
Montero et al., 2019; Jeiranikhameneh et al., 2017; Li
et al., 2004; Matos et al., 2014; Menezes et al., 2017; Perez-
Perez et al., 2020; Rigi et al., 2021; Soares et al., 2003; Soares
et al., 2008; Sockolosky & Szoka, 2013; Teresa et al., 2000;
Uchida et al., 1997; Zamani et al., 2016; Zhou et al., 2021).
A common approach is to fuse the signal sequence to the
N-terminus of rhGH for transport, and a His-tag to
the C-terminus for subsequent purification. Different signal
peptides have been evaluated with varying success
(Table 1). In a recent report, a modified Staphylococcus
aureus protein A signal peptide fused to the mature hGH
coding region was utilized that allowed rhGH to be secreted
through the Sec pathway. This increased expression 3-fold
compared with cytoplasmic expression (Rigi et al., 2021). In
addition, Perez-Perez et al. (2020) developed a novel expres-
sion method using a signal peptide from PelB fused to small
metal-binding protein (PelB-SmbP) that combines theT
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benefits of periplasmic expression with purification via
immobilized Ni affinity chromatography. hGH expression
was improved 10-fold compared with His-tagged hGH pro-
tein, with a yield of 15.5 mg hGH from 1 L culture, the
highest periplasmic production reported.

The Sec pathway exports proteins across the cytoplasmic
membrane in an unfolded state, and the oxidization of
disulfide bonds occurs in the periplasm in wild-type bacte-
ria. An alternative transport pathway called the twin-
arginine translocation (Tat) pathway, transports correctly
folded proteins across the membrane (Natale et al., 2008).
This pathway is not able to export proteins containing disul-
fide bonds since these are normally only formed in the peri-
plasm. Theoretically, the reduced cytoplasmic proteins are
recognized as incorrectly folded and tend to be excluded by
the Tat pathway. Despite this, studies have also employed
the Tat pathway to export hGH to the periplasm (Alanen
et al., 2015; Bagherinejad et al., 2016; Browning et al., 2017;
Guerrero Montero et al., 2019; Matos et al., 2014). To over-
come this, Robinson laboratory developed a series of bacte-
rial strains called CyDisCo which can oxidize disulfide
bonds in the cytoplasm and allow hGH to be transported by
the Tat pathway (Alanen et al., 2015; Matos et al., 2014).
However, interestingly, the Tat system has been shown to
export hGH even when it lacks disulfide bonds, with bonds
forming after translocation into the periplasm (Alanen
et al., 2015). Gram-negative bacteria possess a TatABC-type
Tat translocase, which comprises three proteins, TatA, TatB,
and TatC (Sargent et al., 1998). However, these Tat compo-
nents are expressed at relatively low levels in wild-type E.
coli which can lead to saturation of the system by high sub-
strate expression levels (Barrett et al., 2003). Co-expression
of TatABC proteins from a second plasmid can overcome
this and increases export of proteins to the periplasm via
the Tat pathway (Matos et al., 2012). Accordingly, over-
expression of the TatABC genes from the E. coli chromo-
some resulted in a series of super-secreting strains that drive
protein expression via Tat pathway, and these “TatExpress”
strains significantly improved Tat-dependent secretion of
hGH when compared with a wild-type strain (Browning
et al., 2017). A follow-up study from the Robinson lab
reported that several g/L hGH could be exported into the
periplasm of a W3110 TatExpress strain if a Tat signal pep-
tide was used. The yield of purified His-tagged hGH was
5.4 g from 1 L extended fed-batch fermentation culture
(Guerrero Montero et al., 2019).

2.1.2 | Cytoplasmic expression

Attempts to express rhGH in the cytoplasm of E. coli usu-
ally result in its aggregation as inclusion bodies. Many
strategies have been developed to improve soluble

cytoplasmic expression of proteins in E. coli. These
include inducing protein expression at lower tempera-
tures (15�C–25�C), low IPTG concentration, coexpression
of molecular chaperones, modification of the protein
with fusion tags, and modification of the host strain.

Lowering the rate of protein synthesis by controlling
the transcriptional and translational rates, increases the
amount of soluble hGH expression (Koo & Park, 2007).
The proportion of soluble protein was increased when
the expression rate decreased, and by using a T7 tran-
scription terminator-deleted expression system, more
than 90% of hGH was expressed in a soluble form (Koo &
Park, 2007). Induction at 16�C–20�C also significantly
improved the solubility of rhGH, whereas reducing the
IPTG concentration was not as effective (Kim, Park,
et al., 2013). Ruddock et al. developed a system named
CyDisCo (cytoplasmic disulfide bond formation in E.
coli), which involves coexpression of a target protein with
a sulfhydryl oxidase and a disulfide bond isomerase.
Using the CyDisCo system and fed-batch fermentation
culture, they were able to express soluble hGH in the
cytoplasm with a yield of 0.97 ± 0.12 g/L (Gaciarz
et al., 2017).

Creating fusion proteins is another option to increase
protein solubility in the cytoplasm. Fusion proteins play
an important role in improving recombinant protein pro-
duction in E. coli as they may improve protein solubility,
correct protein folding, and can be used to facilitate pro-
tein purification. For example, fusing hGH to a thiore-
doxin tag (Trx–hGH) significantly improves soluble
cytoplasmic expression with up to 1 g/L of Trx–hGH sol-
uble fusion protein expressed in E. coli using flask culti-
vations or fed-batch fermentation (Levarski et al., 2014).
Many alternative fusion partners have also been
described. Nguyen et al. (2014) fused hGH with seven dif-
ferent fusion partners (Trx, His6, GST, maltose binding
protein [MBP], protein disulfide bond isomerase [PDI],
N-utilization substance protein A [NusA], and the b0a0

domain of PDI [PDIb0a0]) and assessed solubility of the
fusion proteins in E. coli. With the exception of the His6
tag fusion, all the fusion proteins exhibited ≥90% solubil-
ity when expressed at 18�C, with the Trx tag resulting in
the highest yield (�37 mg purified hGH obtained from
0.5 L culture). However, when expressed at 37�C, only
the MBP and PDI fusion proteins were soluble (up to
70%). Our lab also used a fusion tag approach to increase
the solubility of a series of GHAs and found that an
N-terminal Trx–His fusion partner increased the solubil-
ity when the proteins were expressed at 18�C or 30�C
(Tamshen et al., 2020; Wang et al., 2020; Wang
et al., 2021). Another recent study fused the Fc domain of
human Immunoglobulin G (IgG) 1 to the C-terminal
of an hGH super-agonist to enhance soluble cytoplasmic
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expression of the chimeric protein (Mirbaha et al., 2022).
Several studies have reported the insolubility of bovine
Gh in E. coli expression systems (George et al., 1985;
Langley et al., 1987; Wingfield et al., 1987). We used a
Trx tag fused to the bovine GHA, G119R, in an attempt
to improve soluble expression, but found that the major-
ity of the fusion protein aggregated as inclusion bodies
(unpublished data). However, using alternative fusion
tags may be more appropriate for bovine Gh. For exam-
ple, when bovine GH was fused with an NusA tag, 89% of
the fusion protein was expressed in the soluble fraction
(Davis et al., 1999). Moreover, a recent study reported
that coexpression with a molecular chaperone increased
the soluble expression of Trx-tagged ovine GH with a
final yield of 22 mg soluble protein/L (Liu et al., 2022).
A summary of the approaches for soluble expression of
GH or GHA is listed in Table 2.

2.1.3 | Refolding the protein from inclusion
bodies

The accumulation of insoluble hGH protein aggregates as
inclusion bodies is a commonly described issue following
overexpression in E. coli and reduces the efficiency of
hGH and GHA production. Although the formation
of inclusion bodies has certain advantages, such as pro-
tecting the protein from proteolysis and ease of isolation,
precipitation as inclusion bodies poses a major hurdle in
the recovery of bioactive proteins (Kim, Park, et al., 2013;
Nguyen et al., 2014). Numerous studies have attempted
to refold GH orthologues originating from different spe-
cies from inclusion bodies (e.g., human, bovine, ovine,
porcine, and fish; Aramvash et al., 2018; Choi &
Geletu, 2018; Chung et al., 2015; Crivelli et al., 1991;
Fradkin et al., 2010; Funkenstein et al., 2005; George
et al., 1985; Jeh et al., 1998; Keshavarz et al., 2021; Khan
et al., 1998; Mahmoud et al., 1998; Mukhija et al., 1995;
Mukhopadhyay & Sahni, 2002; Ocło�n et al., 2018; Paduel
et al., 1999; Panda et al., 1999; Patra et al., 2000; Poen &
Pornbanlualap, 2013; Promdonkoy et al., 2004; Rao
et al., 1997; Sereikaite et al., 2007; Shin et al., 1998; Singh
et al., 2009, 2012; Sonoda & Sugimura, 2008; Upadhyay
et al., 2012; Wallis & Wallis, 1990; Wingfield et al., 1987;
Zomorrodipour et al., 2004). A summary of the
approaches for refolding GH or GHA from inclusion bod-
ies is listed in Table 3.

To obtain soluble protein from inclusion bodies, the
inclusion bodies are first solubilized in denaturant and
then subjected to a refolding process. Therefore, having
an efficient solubilization and refolding method is a criti-
cal step. The protocol to solubilize inclusion bodies usu-
ally uses a strong denaturing buffer containing 8 M urea

or 6 M guanidine HCl. Two variants of bovine Gh have
been successfully refolded from inclusion bodies using a
strong denaturing buffer with 8 M guanidinium chloride.
Following dialysis, anion-exchange and size-exclusion
chromatography, the overall recovery was �25% of total
bovine Gh present prior to refolding (Wingfield
et al., 1987). His-tagged hGH has been extracted and sol-
ubilized from inclusion bodies using 6 M guanidine
hydrochloride, with a yield of 30 mg His-tagged hGH
from 1 L culture media following immobilized-metal
affinity chromatography (IMAC; Mukhija et al., 1995). In
addition, ovine GH was successfully purified from inclu-
sion bodies using 6 M guanidine hydrochloride to solubi-
lize the inclusion bodies with 4.5 M urea pH 11.5 used to
refold the denatured protein following IMAC. The yield
of His-tagged ovine GH was 32 μg/mL at shake-flask level
and a dimeric form was observed (Rao et al., 1997). GH
contains two internal disulfide bonds, and misfolding of
these disulfide bonds during the inclusion body refolding
process can result in the formation of dimers or multi-
mers. Another study used 6–8 M urea, pH 12 to solubilize
hGH from inclusion bodies and extracted 20 mg of GH
from 1 L culture following chromatography purification
(Wojtowicz-Krawiec et al., 2014).

Milder solubilization strategies using lower urea con-
centrations have been shown to help retain a more
native-like secondary structure and improve the recovery
of bioactive protein when compared with using higher
concentrations of urea (Singh et al., 2015). Patra et al.
refolded hGH from inclusion bodies produced in E. coli
after 10 h of fed-batch fermentation using different urea
and pH conditions. With 100 mM Tris buffer at pH 12.5
containing 2 M urea, the solubilized amount of hGH
from inclusion bodies was comparable to Tris buffer with
8 M urea at pH 8. Following ion-exchange and size-
exclusion purification, the overall yield of hGH purified
from inclusion bodies was �50%. In this study, they also
observed that extraction of hGH from inclusion bodies at
alkaline pH increased the presence of a dimeric form
(Patra et al., 2000). However, another study found that a
solubilization buffer containing 2 M urea at alkaline pH
was ineffective in their production system, whereas
100 mM Tris buffer with 2 M GnHCl at pH 12.5 resulted
in 95% solubility of hGH from inclusion bodies
(Sonoda & Sugimura, 2008). Refolding protein from
inclusion body has also been used to isolate different
hGH isoforms. For example, the 20 and 22 kDa isoforms
of human pituitary GH and placental GH were expressed
as inclusion bodies and resolved in 4.5 M urea, pH 11.
After refolding and anion-exchange chromatography, the
yields were between 400 and 700 mg from a 5 L culture
(Solomon et al., 2006). In another study, a mutated hGH
variant, hGH des(1–6,14), which exhibited antagonistic
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activity, was expressed in E. coli as inclusion body, and
solubilized using 4.5 M urea buffer, pH 11.3. Following
anion-exchange and size-exclusion chromatography,
circular-dichroism spectroscopy analysis of the purified
mutant demonstrated that the α-helix content of the ana-
logue was similar to the wild-type hGH, suggesting the
three-dimensional structure was preserved (Tchelet
et al., 1997). A recent study demonstrated that hGH
inclusion bodies contained a native-like secondary and
tertiary structure, and mild and nondenaturing condi-
tions (a combination of alkaline pH and high pressure)
preserved the structure. After decompression, using a
redox pair formed by 2 mM Glutathione (GSH) and
1 mM oxidised gluathione (GSSG) in the presence of
Dithiothreitol (DTT) was important for the refolding pro-
cess of hGH and resulted in a good yield of 81% with
�73% of monomer (Chura-Chambi et al., 2022).

Several studies have reported inclusion bodies proto-
cols for isolating GH from different species of fish. Rab-
bitfish GH was purified from inclusion bodies and
refolded in buffer containing 4.5 M urea in the presence
of cysteine at pH 11.3. Subsequent purification by
Q-Sepharose chromatography resulted in a yield of
�2.5 mg monomeric GH from 1 L bacterial culture
(Funkenstein et al., 2005). Striped catfish GH was solubi-
lized from inclusion bodies with 2 M urea solution in the
present of 1% Trixton X-100, pH 11, and yielded 31 mg
from 1 L of cell culture following IMAC purification
(Poen & Pornbanlualap, 2013). Flounder GH with an
N-terminal His-tag was not soluble, even when induced
at 18�C. But it was possible to solubilize it from inclusion
bodies by including 0.1% N-lauroylsarcosine in the dena-
turant buffer. This resulted in a yield of 450 mg flounder
GH from 1 L culture medium after removing the denatur-
ant regents, but without chromatographic purification
(Choi & Geletu, 2018). Similarly, giant grouper GH was
found to be expressed as inclusion bodies even when pro-
tein expression was induced at 16�C (Chung et al., 2015).
Initially, 4 g/L protein was produced via mid-log phase
induction in a large-scale fed-batch culture and inclusion
bodies were then solubilized in Phosphate-buffered saline
(PBS) buffer containing 3 M urea and 0.1 mM DTT,
pH 12. Following refolding and IMAC chromatography,
5.7 mg of giant grouper GH was recovered from 10 mL of
fed-batch culture (45% recovery; Chung et al., 2015).

Apart from denaturant and pH parameters, other ele-
ments also play a role in the production of GH from
inclusion body. For example, organic solvents such as tri-
fluoroethanol are mild solubilization agents that stabilize
the secondary structure of the protein in the inclusion
body aggregates while destabilizing tertiary structure.
Combining 30% trifluoroethanol with 3 M urea was
shown to be an efficient method to solubilize hGH withT
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�36 mg hGH recovered from 79 mg inclusion bodies fol-
lowing chromatographic purification (Upadhyay
et al., 2016). Using a single freeze–thaw cycle of the
inclusion body is a simple and low-cost approach to
improve refolding efficiency. An additional benefit of this
approach is that lower urea concentrations can be used
(Qi & Chilkoti, 2015). We used this approach to refold
bovine GHA (bG119R) from inclusion bodies and found
that a single freeze–thaw cycle combined with 2 M urea
buffer, pH 8.0, was as efficient as using 8 M urea with the
traditional denaturation method (unpublished). hGH has
also been solubilized from inclusion bodies in 2 M urea
with 1 mM DTT using a freeze–thaw method, with
�10 mg hGH obtained from 72 mg inclusion bodies fol-
lowing anion-exchange and size-exclusion chromatogra-
phy (Singhvi et al., 2021). Furthermore, fusing GH with
self-aggregating peptide tags has also been reported to
improve the recovery from inclusion bodies. Four aggre-
gating tags were used to drive an hGH fusion protein into
active protein aggregates. Following cleavage of the tags,
hGH was released into the supernatant. This approach
avoids requirement of the traditional refolding steps and
resulted in purification of 57 mg/L hGH from inclusion
bodies, with 92% of the bioactivity of commercial hGH
(Lin, Amesso Ndengue, et al., 2021).

2.2 | GH/GHA production in other
species, such as yeast

In addition to E. coli, a wide range of eukaryotic host sys-
tems have been applied to produce recombinant GH
(Table 4), including yeast Saccharomyces cerevisiae (Jin
et al., 1999; Jung et al., 2005) and Pichia pastoris (Apte-
Deshpande et al., 2009; Ascacio-Martínez & Barrera-
Saldaña, 2004; Azadi et al., 2017; Azadi et al., 2018; Calik
et al., 2008; Deng et al., 2020; Li et al., 2009; Orman
et al., 2009; Rothan et al., 2014; Wang et al., 2003; Wu,
Liu, et al., 2014; Xu et al., 2008). Pichia pastoris is a com-
monly used eukaryotic host for the manufacturing of
recombinant proteins. Compared with other eukaryotic
hosts, P. pastoris has several advantages, such as its capa-
bility to grow at high cell densities, its effective secretion
system, and its proficiency in executing posttranslational
modifications. However, yeast cells may not be able to
perform all posttranslational modifications necessary for
proper protein folding and activity (Ahmad et al., 2014).
Other eukaryotic hosts have also been used to produce
recombinant GH, such as mammalian cell lines CHO
(Aghili & Zarkesh-Esfahani, 2018; Rezaei et al., 2013)
and VERO (Lupker et al., 1983; Ohno et al., 1991), and
insect cell systems (Jing et al., 2002). Mammalian expres-
sion systems are often preferred for producingT
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recombinant proteins because they are capable of per-
forming complex posttranslational modifications that are
necessary for the proper folding, stability, and activity of
many proteins. Mammalian cells can also secrete the pro-
tein into the culture medium, making downstream pro-
cessing and purification easier. In addition, recombinant
proteins produced in mammalian cells are often less
immunogenic, making them more suitable for therapeu-
tic applications in humans. However, the production of
GH in mammalian cells is generally low and the high
cost associated with large-scale production is another
limitation (Deng et al., 2020). Insect cell systems have
also been used to produce recombinant proteins. Depend-
ing on the protein of interest, insect expression systems
can have a higher protein expression capacity than mam-
malian cells; however, this is not always the case. Insect
cells can perform some posttranslational modifications,
but they may produce proteins that are more immuno-
genic than those produced in mammalian cells (Liu
et al., 2013). All in all, each expression system has its
advantages and disadvantages, and the choice of system
depends on several factors, such as the desired yield, cost
of production, protein activity, immunogenicity, and
downstream processing requirements. Mammalian cells
and insect cells have not been widely used to produce
recombinant GH due to lower yields. This section focuses
on the production of GH from the P. pastoris system.

Pichia pastoris is an established industrial platform
for producing recombinant proteins. The major advan-
tages of P. pastoris over bacterial expression systems such
as E. coli are their ability to secrete recombinant protein
into the culture medium and the absence of endotoxin
contamination. Different strategies to improve the
expression of heterogeneous protein in P. pastoris expres-
sion systems have been developed, such as optimization
of fermentation conditions, gene code optimization, coex-
pression of chaperones, and selection for high gene copy
host (Gao & Shi, 2013; Juturu & Wu, 2018;
Murasugi, 2010). Fed-batch fermentation strategies have
been evaluated for producing rhGH in P. pastoris (Azadi
et al., 2017; Azadi et al., 2018). A study reported that
when using a sorbitol/methanol mixed feed strategy, the
cell biomass of rhGH achieved was 108 g/L (dry cell
weight [DCW]) and total protein 0.807 g/L (Azadi
et al., 2017). Addition of 10 mmol ascorbic acid to sorbi-
tol/methanol co-feeding significantly increased the bio-
mass of rhGH to 162.5 g/L (DCW) and total protein
1.14 g/L (Azadi et al., 2018). To express other GH from
other species in the P. pastoris system (e.g., porcine,
canine, Ailuropoda melanoleuca, and fish), codon opti-
mized gene sequences are often used (Cho et al., 1987;
Ascacio-Martínez & Barrera-Saldaña, 2004; Deng
et al., 2020; Rothan et al., 2014). For example, porcine

GH was produced more effectively in P. pastoris when
using an optimized gene sequence, with expression levels
reaching 10% of the total intracellular protein (Cho
et al., 1987). Similarly, codon optimization of the giant
grouper GH gene also improved expression in P. pastoris,
compared with native gene (2.80 ± 0.27 vs. 1.75
± 0.25 mg from 1 L culture; Rothan et al., 2014).

Coexpression of molecular chaperone proteins has
been demonstrated to improve the intracellular soluble
expression of GH in the P. pastoris system. Molecular
chaperones are a class of molecules that interact with
unfolded or partially folded protein, that play an impor-
tant role in facilitating correct folding of proteins
(Camberg et al., 2013). Ssa1 and Sis1 are molecular chap-
erones which belong to the heat shock protein (Hsp)70
and Hsp40 family of molecular chaperones, respectively,
that assist with the formation of correct native conforma-
tion of peptides. Coexpression with Ssa1 and Sis1 proteins
in P. pastoris enhanced the intracellular soluble expres-
sion of porcine GH resulting in a yield of 340 mg/L, of
which 70 mg/L was soluble and 270 mg/L was insoluble
protein (Deng et al., 2020). Increased protein expression
can also be obtained by engineering P. pastoris strains
that contain multiple copies of a gene of interest. For
example, a P. pastoris strain carrying two to three copies
of a human serum albumin (HSA)–GH fusion gene had
significant increased protein secretion than a strain with
only one copy. The secretion level can reach to 3–4 g/L in
the strain carrying three copies of HSA–GH fusion gene
and two copies of chaperone protein disulfide isomerase,
whereas the strain carry one copy of HSA–GH fusion
gene only express recombinant protein at 400–500 mg/L
in the same fed-batch fermentation condition (Wu,
et al., 2014).

3 | GENERATION OF LONG-
ACTING GH OR GHA
THERAPEUTICS

GH and GHAs are proteins of a relatively small size
(22 kDa) with a short circulating half-life of �20 min due
to renal clearance. A number of strategies have been used
to overcome this obstacle, including glycosylation, pro-
tein fusion, and albumin conjugation (AlQahtani
et al., 2019). One strategy for increasing the serum half-
life of proteins is to generate poly(ethylene glycol) (PEG)-
protein conjugates which increase the molecular weight
and hydrodynamic volume (Dozier & Distefano, 2015;
Turecek et al., 2016), thus preventing the biomolecules
from being excreted through kidney filtration
(Abuchowski et al., 1977). There are many FDA-
approved PEG conjugates as a result (Alconcel
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et al., 2011; Sanchez Armengol et al., 2022). PEGylation
can be accomplished through chemical and enzymatic
techniques to attach PEG molecules to proteins on the
thiol-group of cysteine, carboxyamide group of gluta-
mine, ε-amino group of lysine, or alcohol group of serine,
and threonine. However, PEGylation may lead to a
reduction in binding affinity, and consequently activity,
due to steric interference with the drug-receptor binding
interaction. This loss in drug potency is compensated for
by a longer circulating half-life. The resulting change in
pharmacokinetic—pharmacodynamic profile has enabled
development of drugs that otherwise would not have
been feasible and has led to improvements in other exist-
ing drugs. Thus, while most drug development
approaches seek to specifically increase the activity of the
drug, the focus of PEGylated drugs is to balance pharma-
cokinetic and pharmacodynamic properties to produce a
therapy that has both increased efficacy and greater com-
pliance in the clinical setting (Fishburn, 2008). In this
section, we will discuss strategies for the construction of
long-acting GH or GHA, such as PEGylation and devel-
opment of fusion proteins, and will discuss recent
advances in the field.

3.1 | Conjugation of GH/GHA with PEG

3.1.1 | Chemistries used for GH/GHA
PEGylation

Various chemistries have been employed to PEGylate
GH/GHA and these have advantages and disadvantages.
For example, N-hydroxysuccinimide (NHS) ester PEGs
react with the protein amines. The polymers are readily
commercially available; however, the disadvantage is the
lack of site specificity and the quick hydrolysis of
the NHS group. The latter typically requires a large
excess of PEG that must be removed from the product.
But the resulting bond is a stable amide. Aldehyde PEG
has been employed to react with amines on both GH and
GHA. Aldehydes are less prone to hydrolysis than NHS
groups. However, the resulting imine is unstable and
therefore the bond must be reduced to the stable amine.
This reaction can be slow, depending on the aldehyde
used and is typically conducted at mildly acidic
pH. Maleimide PEGs have also been employed to react
with thiol groups. These groups are more stable than
NHS groups in solution and have the advantage of spe-
cific reaction with the free cysteines. The disadvantage is
that the resulting thiol ether group has been known to
reverse in physiological conditions, which can change
pharmacokinetic profiles over time (Lyon et al., 2014;
Shen et al., 2012). Polymers with either azide or alkyne

groups have been applied for click chemistry reactions.
These chemistries are site selective and the PEGs and
products are stable in solution. However, the partner
reactive group is not found on the native protein. In addi-
tion, unless strained alkynes are employed, the reaction
requires copper, which can be damaging to some pro-
teins. Other conjugation chemistries that have not yet
been utilized on GH or GHA have been reviewed (Ko &
Maynard, 2018).

3.1.2 | Nonspecific PEGylation

A common approach for protein PEGylation is through
nonspecific conjugation to amine groups with reagents
containing activated esters, such as NHS. As described
above, while this method results in higher conjugation
yields when commercially available reagents are used, its
nonspecific nature often disrupts protein–ligand binding
due to steric interference. Furthermore, conjugates pro-
duced using this method are heterogenous, creating chal-
lenges in characterization and reproducibility.

Non-specific PEGylation was the approach used to
produce the long-acting GHR antagonist, pegvisomant,
which is approved by the Food and Drug Administration
(FDA) for the treatment of acromegaly. In the case of
pegvisomant, 4–6 5 kDa PEG moieties are attached via
nine amine groups present in the protein core of B2036
(eight lysines and the N-terminal amine group; Clark
et al., 1996). PEGylation dramatically decreases the affin-
ity of B2036 for the GHR, resulting in reduced bioactivity
in vitro (Muller et al., 2004) However, it also significantly
improves the half-life of B2036 in the circulation to
�72 h and reduces antigenicity, thus improving the bio-
activity of the drug in vivo (Pradhananga et al., 2002).
PEGylated variants of B2036 have been described, includ-
ing, B20, which contains a G120R substitution instead of
G120K. This removes a potential PEGylation site in bind-
ing site 2 of the protein and improves in vitro bioactivity
following PEGylation. PEGylation with amine-reactive
NHS-PEG results in a heterogeneous mixture of conju-
gates containing four to seven PEG moieties (Wang
et al., 2020).

This approach has also been used to generate long-
acting GH therapeutics. To extend the circulating half-life
of GH, Clark et al. (1996) produced hGH derivatives con-
taining up to seven 5 kDa PEG moieties to primary
amines by reaction with amine-reactive NHS-PEG. Sepa-
ration of PEGylated species that differ by one 5 kDa PEG
chain is challenging and not achievable by size exclusion,
as the relative size difference between variants with
PEGylation of N and (N + 1) moieties reduces as
N increases (Fee & Van Alstine, 2011). To overcome this,
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a series of chromatographic methods, including SP-
Sepharose high performance chromatography and High
Performance Liquid Chromatography (HPLC), was used
to separate amine PEGylated GH derivatives. This
resulted in a series of purified GH conjugates, GH-
(PEG)2, GH-(PEG)5, and GH-(PEG)7, with purity of
�85% (Clark et al., 1996). However, the purified GH-PEG
derivatives were modified at different amino acid sites
due to the random nature of amine PEGylation.

3.1.3 | Site-specific PEGylation

As mentioned above, one of the issues with nonspecific
PEGylation is that it yields heterogenous products. One
way to avoid this is to use a site-specific conjugation
approach. Controlled attachment of PEG to specific resi-
dues distal to an active or binding site of a protein can
reduce steric hindrance of these sites and improve bioac-
tivity. Site-specific protein conjugation strategies are
widely used and have been reviewed elsewhere (Dozier &
Distefano, 2015; Ko & Maynard, 2018; Veronese &
Mero, 2008; Zhang et al., 2012). Here, key strategies used
to achieve site-specific PEGylation of GH and GHA are
discussed (Figure 4 and Table 5).

Chemical modification on naturally occurring
amino acids
Alkylation of the N-terminal amino group of a protein by
reductive amination can be achieved, even if lysine resi-
dues are present in the protein. This strategy works due
to the slight difference in the pKa values between these
two types of amino groups. The pKa for the N-terminal
α-amine group is �7.8, whereas the pKa for an ε-amine
group on lysine is 10.1. When the chemical reaction is
performed at a lower pH, for example, at pH 5, the lysine
amine group is mostly protonated and are therefore
unable to react with the aldehyde group, thus the free
amine on the N-terminus is the only site able to be modi-
fied. However, these approaches are rarely completely
site-specific as a small amount of modification of lysines
usually still occurs.

N-terminal mono-PEGylation of GH and GHA has
been achieved using this approach (da Silva et al., 2013;
Grigoletto et al., 2016; Wu et al., 2013; Wu, Ji,
et al., 2014). N-terminal PEGylation of GHA with 20 or
40 kDa PEG propionaldehyde was used to generate a
long-acting GHR antagonist. Administration of the
20 kDa conjugate (2 mg/kg) to rats reduced serum IGF-1
by 30%–43%, whereas the larger 40 kDa conjugate had no
activity in vivo (as described above, pulsatile secretion of
hGH from the pituitary stimulates the production and
secretion of hepatic IGF-1, and normalization of

circulating IGF-1 concentrations is the key biochemical
criterion by which treatment efficacy is assessed in
patients with acromegaly; Renehan & Brennan, 2008).
The authors speculated that this may result from interfer-
ence by the larger 40 kDa PEG with GHR binding sites
(Wu et al., 2013). Another study prepared N-terminal
PEGylated hGH using two different linkers (phenyl
amide and ethyl moieties). PEGylated hGH using the
phenyl amide linker performed better than the conjugate
generated using the propyl linker, in terms of proteolytic
sensitivity, immunogenicity, pharmacokinetic parame-
ters, and pharmacodynamic behavior. hGH-phenyl-PEG
administration in Sprague–Dawley rats significantly
increased IGF-1 concentrations compared with hGH,
with circulating levels peaking at 24 h (Wu, Ji,
et al., 2014).

Chemical modification on engineered cysteines
A common method for site-specific PEGylation of pro-
teins is to conjugate the PEG chain through the thiol
group on a cysteine residue. In this instance, an unpaired
cysteine residue is often genetically encoded into the tar-
get protein. Many thiol-specific reagents, such as the mal-
eimide groups, are commercially available. The
modification is achieved by reacting a free cysteine with
a maleimide group attached to a PEG moiety. If protein
engineering tools are available, amino acid substitution
to install a cysteine at a defined site works well as a
method for site-specific PEGylation (Ko &
Maynard, 2018; Paluck et al., 2016). Notably, there is no
guarantee that the modified protein will fold properly
and not form an undesired disulfide dimer. Alternatively,
native disulfide bonds can be reduced to provide cyste-
ines available for conjugation (Dozier & Distefano, 2015;
Ko & Maynard, 2018).

The key to designing site-specific biotherapeutics with
sustained activity is to control the site where the polymer
is conjugated, and usually involves conjugation to a
“nonessential” residue. This approach minimizes any
effects of the polymer on bioactivity and results in a
homogeneous PEGylated protein (Ko & Maynard, 2018).
Many studies have investigated the impact of the conju-
gation site on GH or GHA retention and bioactivity. For
example, Cox et al. (2004) evaluated three site-specific
PEGylated GH variants (hGH-T3C-PEG, hGH-S144C-
PEG, and hGH-T148C-PEG) and demonstrated that the
PEGylated variants had substantially improved bioactiv-
ity over nonspecific amine-PEGylated hGH. Another
study from the group demonstrated that attachment of a
20 kDa PEG at amino acid site T3C increased the in vitro
bioactivity �100-fold compared with amine-PEGylated
GH with five to six 5 kDa PEGs (Clark et al., 1996; Cox
et al., 2007). The half-life of the 20 kDa PEG-T3C-GH
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conjugate was increased to 9 h. PEG-T3C-GH was shown
to stimulate dose-dependent increases in body weight
and tibial epiphyses width in HYPOX rats (Cox
et al., 2007).

We used site-specific conjugation to PEGylate B2036
via an introduced cysteine at amino acid Position
144 which is away from either of the binding sites (Wang
et al., 2021). To avoid the formation of dimers at the

FIGURE 4 Summary of PEGylation strategies for growth hormone (GH) modification. Positions of the alpha helices are indicated by a

blue line. (a) human GH (hGH) amino acid sequence showing sites of polyethylene glycol (PEG) conjugation. Image created using

BioRender. (b) Topology representation of hGH structure (PBD ID 1HGU, Pymol). Positions of the four main alpha helices are indicated by

colored lines and/or numbers in (a,b).
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engineered cysteine residue (Cys144), the maleimide-thiol
reaction was performed whilst the B2036-thioredoxin
fusion protein was immobilized on a solid support (nickel
resin). This site-specific PEGylation method combined
protein purification, PEGylation, and removal of unreac-
tive mPEG into one step, which significantly improved
the yield of the conjugate and saved time. Site-specific
PEGylation of B2036 also minimized the impact on the
potency of the conjugates. Attachment of 20, 30, or
40 kDa PEG at amino acid Cys144 reduced the in vitro
bioactivity of B2036 by 6.5-, 10.5-, and 12.6-fold, respec-
tively. However, this was a marked improvement com-
pared with amine PEGylated B2036 (with four to
six 5 kDa PEGs) which resulted a 143-fold reduction in
activity. Subcutaneous administration of 40 kDa mPEG
conjugate (10 mg/kg/day) reduced serum IGF-1 concen-
trations by 50.6% (Wang et al., 2021). Although conjuga-
tion with a larger mPEG chain is usually accompanied by
loss of bioactivity, the longer serum half-life compensates
for this in vivo.

Chemical modification on noncanonical amino acids
In recent years, advances in the genetic code expansion
field have allowed for polymer attachment at alternative
sites. Particularly, noncanonical amino acids which con-
tain a polymer initiator can be substituted into any posi-
tion in the amino acid sequence, and these provide
functional handles that can be modified as required
(Tamshen et al., 2020). Incorporation of unnatural amino
acids containing azide or alkyne functional groups that
are compatible with copper-catalyzed “click” cycloaddi-
tion has been commonly used (Lee et al., 2016). Incorpo-
ration of the unnatural amino acid, p-acetylphenylalanine
(pAcF), into hGH allowed site-specific conjugation with
PEG-Oxyamine, resulting in 80%–97% conjugation effi-
ciency depending on the site of attachment. However, the
expression level of pAcF-modified hGH in E. coli ranged
from 20% to 70% of wild-type GH, depending on the incor-
poration site. Six pAcF-hGH variants (Y35, F92, Q131,
R134, Y143, and K145) out of 20, had similar in vitro bio-
activity, and their conjugates exhibited longer half-life
than native hGH. PEGylated Y35pAcF-hGH displayed
greater pharmacodynamic behavior compared with other
variants in terms of the ability to induce weight gain in
hypophysectomized rats, which underlined the impor-
tance of the location of the PEGylation sites (Cho
et al., 2011).

hGH variants have also been generated that contain
the non-natural amino acid Nε-2-azideoethyloxycarbo-
nyl-l-lysine at selected positions (Y35, G131, and K145),
to investigate the impact of controlled PEG attachment at
defined sites. The half-lives of 20 kDa PEG hGH conju-
gates (Y35, G131, and K145) were 11.3, 6.4, and 8.0 h,

respectively, and the half-lives of the 40 kDa PEG conju-
gates were 29.0, 7.6, and 8.6 h, respectively, demonstrat-
ing that the site of conjugation impacts on the circulating
half-life. Furthermore, site-specific PEGylation on more
than one of the sites reduced immunogenicity and
improved the pharmacokinetic profile while retaining
bioactivity, when compared with PEGylation at a single
site (Wu et al., 2017).

We developed a platform for preparation of a site-
specific B2036-PEG conjugate with improved in vitro
activity compared with nonspecific anime-PEGylated
B2036 (pegvisomant). In this study, an unnatural amino
acid propargyl tyrosine (pglY) was incorporated into
B2036 at amino acid Y35 for site-specific PEGylation
using copper-catalyzed click chemistry. The alkyne on
pglY can react selectively with azides under mild, copper-
catalyzed conditions. A 20 kDa B2036-PEG conjugate
had 5.8-fold reduction in bioactivity when compared with
pegvisomant, for which a 72.8-fold reduction was
observed. Using this approach also led to a high conjuga-
tion efficiency of 90% (Tamshen et al., 2020). Notably,
although studies using click in chemistry for site-specific
PEGylation of GH or GHA reported high protein–
polymer conjugation efficiency (>80%), incorporation of
an unnatural amino acid inevitably resulted in reduced
protein expression yield and in some cases was associated
with a by-product (truncated protein).

Enzymatic modification on naturally occurring
amino acids
Enzymatic labelling is another method for conjugating
polymers to proteins. This method utilizes an enzyme
which generally recognizes a specific amino acid
sequence. For example, enzymatic site-specific PEGyla-
tion mediated by microbial transglutaminase (mTGase)
has been used to produce a long-acting hGH conjugate.
TGases (protein-glutamine γ-glutamyltransferase [E.
C.2.3.2.13]), catalyze acyl-transfer reactions between the
γ-carboxyamide group of the glutamine residues of a pro-
tein and a primary amine, normally the ε-amino group
from lysine. TGases have been used to create protein con-
jugates derived from hGH. hGH contains 13 glutamine
residues (Gln, Q), but only Gln141 and Gln40 can be trans-
glutaminated by mTGase (Doerwald et al., 2006; Hu
et al., 2017).

One problem for TGase-mediated PEGylation is to
control which glutamine residue will be modified and
obtain a high yield of a homogeneous mono-PEGylated
protein. Several studies were attempted to improve this
by screening highly selective enzymes or increasing the
selectivity of TGase during reaction. Zhao et al. (2010)
generated a mTGase mutant library and screened an
mTGase with a superior specific activity on Gln141 of
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hGH. Mero et al. (2009) developed a method to directly
identify the Gln residue conjugated with a monodisperse
Boc-PEG-NH2. They demonstrated that the Gln residues
conjugated with a monodisperse polymer were identified
easily by electrospray ionization mass spectrometry
(MS) and tandem MS analyses, and this method has been
tested on hGH, horse heart apomyoglobin, and human
granulocyte colony-stimulating factor. Subsequently, they
investigated an approach to increase the specificity of
mTGase, resulting in yielding monoconjugated isomer
for some proteins presenting more than one Gln as
mTGase substrates, such as hGH and salmon calcitonin.
This study demonstrated that the enzymatic PEGylation
yielded single mono-PEGylated conjugates in the present
of cosolvents in the reaction mixture, which the authors
speculated to be a result of the influence on the second-
ary structure of the protein and the activity of mTGase.
In the presence of 50% (v/v) ethanol, for example, conju-
gation with either low or high molecular weight PEG-
NH2 yielded mono-PEGylated hGH on Gln141 (Mero
et al., 2011). Interestingly, a study from Khameneh et al.
(2015) showed that hGH was site-specifically PEGylated
on Gln40 using mTGase under optimized PEG: protein
ratio, pH value, and reaction time, which contrasted with
the conjugated site Gln141 reported by Mero et al. The
authors found that cosolvent solution improved the selec-
tivity of mTGase but discussed that the secondary struc-
ture of hGH was not changed in the presence of ethanol
or methanol, but its tertiary structure was perturbed. A
study from Henrik et al. introduced Q141N mutation to
hGH to allow site-selective modification at position Gln40

(Ramírez-Andersen et al., 2018).
The way the PEG chain is arranged around the pro-

tein as well as the site where conjugation takes place are
fundamental because the PEG chain can sterically inter-
rupt the protein/receptor recognition process. N-terminal
chemical PEGylation (PEG-Nter-GH) and enzymatic
labelling of hGH on Gln141 using TGase (PEG-Gln141-
GH) improve the pharmacokinetics of these two mono-
PEGylated proteins compared with unconjugated GH,
and there was no significant difference in the pharmaco-
kinetic parameters between these two conjugates (da Silva
et al., 2013). Administration of a single dose in rats of
either PEG-Gln141-GH or PEG-Nter-GH had better or
comparable potency compared with daily doses of hGH
over 7 days, in terms of weight gain, femoral length, and
tibial diaphysis width. No significant differences were
observed between the two conjugation sites when
attached with 20 kDa PEG (Grigoletto et al., 2016).

This method has been used to produce hGH-
PEGylated at amino acid site Gln141 for pharmaceutical
applications. For example, NNC126-0083 is a long-acting
hGH molecule, in which a 43 kDa PEG residue was

attached to Gln141 on hGH. This PEGylation results in
prolonged in vivo circulating half-life by increasing the
absorption time and slowing the elimination phase
(De Schepper et al., 2011; Rasmussen et al., 2010;
Rasmussen et al., 2010; Søndergaard et al., 2011). GH for-
mulations using PEGylation technology have been
reviewed recently (Steiner et al., 2023) and some of these
will be discussed in Section 4.

In summary, PEGylation is a common approach used
to improve pharmacokinetic profiles and reduce immu-
nogenicity of therapeutic proteins; however, optimizing
the PEGylation strategy to minimize any negative effects
on the biological activity of the protein can be a time-
consuming trial and error process. With the development
of new polymer chemistries and conjugation methods,
more options have become available. For example, the
use of degradable polymers may avoid common issues
associated with PEG such as production of anti-PEG anti-
bodies, and potential accumulation in tissues with long-
term treatment (Hoang Thi et al., 2020; Ibrahim
et al., 2022; Zhang et al., 2016). There is also a growing
interest in exploring the potential for using stimuli-
responsive/self-immolative smart polymers to modify the
pharmacological activity of therapeutic proteins
(Fogueri & Singh, 2009). For example, a polymer might
be engineered to achieve preprogramed pulsatile release
of GH over a period of time, mimicking the natural pat-
tern of pituitary GH secretion. However, we note that the
production of new polymer materials for human use can
be complex and expensive, and there may be still safety
concerns related to the long-term use of these materials.

3.2 | Fusion proteins

Protein fusion is another approach to increase the half-
life of biotherapeutics and advances in fusion technology
have led to the generation of new classes long-acting
hGH biotherapeutics. For example, fusing HSA to the
N-terminus of hGH led to the development of albutropin
which has improved pharmacokinetic properties (Osborn
et al., 2002). Compared with hGH, albutropin exhibits 4-
and 6-fold increased serum half-life in rats and monkeys,
respectively. In addition, a single administration of albu-
tropin had comparable bioactivity to seven consecutive
daily injections of hGH. The pharmacokinetic and phar-
macodynamic profile in rats and monkeys suggest that
albutropin can be administrated less frequently than
hGH to achieve similar therapeutic effects in patients
(Osborn et al., 2002).

Albumin has also been linked to hGH by N-terminal
modification with pseudo-bifunctional PEG-hexadecane
(3.5 or 10 kDa PEG) as the linker (Wu et al., 2015).
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hGH-PEG3.5 fused to albumin exhibited longer half-life
(19.2 ± 1.0 h) than hGH (1.9 ± 0.1 h) and hGH-
PEG3.5-hexadecane (13.7 ± 0.3 h; Wu et al., 2013).
Another study described a series of hGH–albumin fusion
conjugates generated using a range of different linkers
and conjugation sites and found that conjugation was
most easily achieved through reductive alkylation or by
alkylation to introduced cysteine residues using functio-
nalized albumin-binding side chains. Position L101C on
hGH proved to be the optimal position for conjugation,
with improved pharmacodynamic properties observed
with a once-weekly dosing regimen (Ramírez-Andersen
et al., 2018).

Fusion with antibodies is another approach to
improve pharmacokinetic properties of hGH. For exam-
ple, hGH was fused to a hybrid Fc fragment containing
partial Fc domains of human Immunoglobulin D (IgD)
and IgG4 without any site-directed mutagenesis. This
hGH–Fc fusion protein was called GX–H9 and was code-
veloped by Genexine and Handok. Fusion to the Fc
domain increased the hydrodynamic diameter from 4.8
± 0.9 to 10.5 ± 2.1 nm and increased the molecular
weight from 20 to 130 kDa (Kim et al., 2013; Kim
et al., 2013). A Phase II study reported that GX–H9 has
the potential for twice-monthly administration (Ku
et al., 2018). Long-acting GH formulations using protein
fusion technology have been reviewed (Cawley
et al., 2013; Høybye et al., 2015; Miller et al., 2020; Steiner
et al., 2023; Yuen et al., 2018) and some of these forma-
tions will be discussed in the next section.

4 | LONG-ACTING GH
PHARMACEUTICAL
FORMULATIONS IN CLINICAL
DEVELOPMENT

Long-acting GH has the potential to improve patient
compliance rates due to less frequent dosing. The first
long-acting GH formulation employed a microsphere
technique which creates a depot for rhGH upon injection
(Johnson et al., 1997; Kemp et al., 2004). Under normal
physiological conditions, anterior pituitary released GH
aggregates for compact storage in secretory granules and
this process is assisted by abundant zinc ions (Miletta
et al., 2014; Thorlacius-Ussing, 1987). To mimic the
native microenvironment, rhGH is complexed with zinc
prior to being encapsulated in biocompatible and biode-
gradable polylactide co-glycolic acid (PLGA) micro-
spheres. Upon subcutaneous injection, GH release occurs
in two steps: the initial phase of diffusion, followed by
the prolonged-release phase of diffusion and polymer
degradation. Emptied PLGA microspheres degrade by

hydrolysis and the remnant biocompatible lactic and gly-
colic acids are promptly cleared by the kidneys
(Park, 1995). The overall process of microsphere degrada-
tion is slow, allowing prolonged GH release, which is sus-
tained from 1 week up to 1 month. Hence, the need for
daily injections is eliminated. In 1999, Nutropin Depot
was the first long-acting GH to be approved for use in
GHD patients and was found to improve serum IGF-1
levels to a normal range for up to 17 days (Cook
et al., 2002; Kemp et al., 2004). However, in 2004, Nutro-
pin Depot was withdrawn from the market due to costs
involved in manufacturing the product and formulation
issues including viscosity which made it difficult to
administer with large administration volumes required
(Lal & Hoffman, 2018). A newer version of depot formu-
lation is LB03002 (Eutropin Plus) which offers a sus-
tained release of rhGH using sodium hyaluronate
microspheres. Upon injection, tissue hyaluronidase at the
site of injection breaks the microspheres to release hGH
(Peter et al., 2009). Previously, the use of fine needles was
difficult due to the larger size of the PLGA microparticles
but the small particle size and low viscous medium chain
triglycerides of sodium hyaluronate microspheres miti-
gated this issue (Kim et al., 2005). A randomized, con-
trolled study confirmed 0.7 mg/kg/week administration
was noninferior to daily rhGH with a total 0.37 mg/kg/
week dose (Hwang et al., 2018). LB03002 is currently
marketed for clinical use in South Korea for GHD chil-
dren and is also approved in Europe.

Several PEGylated formulation of GH have been
made and tested by pharmaceutical companies (Høybye
et al., 2015). PHA-794428 (Pfizer) is an earlier version of
PEGylated GH with a branched 40 kDa PEG attached to
the N terminus. This increases the molecular weight of
the PHA-794428 conjugate to �62 kDa. Human pharma-
cokinetic data comparing equivalent doses of somatropin
(rhGH) and PHA-794428 (60–100 μg/kg) indicated that
PHA-794428 has an �6- to 7-fold increase in half-life
compared with somatropin (Webster et al., 2008). How-
ever, a significant number of adult GHD patients who
received PHA-794428, displayed lipoatrophy, which pro-
voked discontinuation of pegylated GH formulations for
some time (Touraine et al., 2009). Another pegylated-GH
formulation NNC126-0083 (Novo Nordisk) was prepared
by conjugation of 43 kDa PEG to glutamine 141 of the
GH. This formulation was well tolerated and no lipoatro-
phy was observed (Søndergaard et al., 2011), but it was
discontinued as dosing did not achieve a satisfactory
weekly IGF-1 profile (De Schepper et al., 2011). A more
recent example of a long-acting GH, Jintrolong
(GeneScience Pharmaceuticals), consists of a branched
40 kDa PEG molecule attached to amino groups of rhGH.
This formulation is well tolerated and no injection-site
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lipoatrophy was observed (Luo et al., 2017). Clinical stud-
ies in patients with GHD demonstrated that once-weekly
Jintrolong treatment is effective and safe (Du et al., 2022;
Hou et al., 2023; Wu et al., 2022).

Reversible attachment of a long-acting carrier to
rhGHs forms an inactive prodrug which can be designed
to release GH across an appropriate time frame. Trans-
Con hGH (SKYTROFA, lonapegsomatropin-tcgd; Ascen-
dis Pharma) is an rhGH transiently bound to PEG using
a hydrolysable linker to achieve an extended serum half-
life. The linker is designed with specific characteristics to
allow hydrolysis in a controlled manner under physio-
logic pH and temperature so the fully release of unmodi-
fied rhGH occurs over a 1-week period. Tolerance at
injection sites was satisfactory and dosing at 0.14–
0.3 mg/kg/week led to a dose-related IGF-1 elevation to
normal physiological range (Chatelain et al., 2017). A
Phase III trial demonstrated greater height velocity in
GHD children who received weekly TransCon hGH treat-
ment for a year, compared with daily rhGH injections
(Thornton et al., 2019). TransCon hGH is approved by
the US FDA and European Commission as a once-weekly
subcutaneous injection for children with growth failure.

Alternative approaches include fusion protein thera-
peutics. A novel formulation of long-acting GH targets its
affinity for endogenous albumin, the most abundant
serum protein in the blood. Somapacitan (Sogroya; Novo
Nordisk) is a rhGH covalently attached to a 1.2 kDa fatty
acid which facilitates noncovalent and reversible binding
of GH to albumin. The extended half-life allows for once-
weekly dosing (Johannsson et al., 2018). In both GHD
adults and children, IGF-1 levels were raised to normal
physiological levels throughout the week upon single
dosage (Juul et al., 2019). Somapacitan has recently been
approved for GHD in adults and children. Another clini-
cally approved fusion protein is Somatrogon (Ngenla,
MOD-4023; OpKo health and Pfizer). Somatrogon is a
long-acting GH fused to three copies of the carboxyl-
terminal peptides derived from the human chorionic
gonadotropin, currently used for treating pediatric GHD
as a once-weekly subcutaneous injection (Deal
et al., 2022; Horikawa et al., 2022). Other versions of
fusion proteins are currently under development at vari-
ous stages of clinical trials: GX–H9 (Genexine and Han-
dok), a long-acting GH fused to a hybrid Fc which
consists of noncytolytic IgD and IgG4 (Ku et al., 2018;
Malievskiy et al., 2020); JR-142 (JCR Pharmaceuticals), a
long-acting GH fused to a modified HSA (Japan Registry
of Clinical Trials, 2021); LAPS rhGH (HM10560A; Hanmi
Pharmaceutical Co), a long-acting GH conjugated to
recombinant immunoglobulin G4 Fc fragment (clinical-
trials.gov, HM10560A).

One of the primary advantages of long-acting GH
formulations lies in their ability to reduce the burden of
frequent injections, as conventional rhGH necessitates
daily administration. The ultimate goal for these formu-
lations is to further decrease the dosing frequency to a
weekly or even monthly basis. However, GHA adminis-
tration requires more frequent dosing in order to be
effective. For example, pegvisomant which is currently
the only clinically available long-acting GHA formula-
tion requires daily dose even though it has a 72 h
serum half-life in humans. This highlights the chal-
lenges for developing long-acting GHAs. Unlike long-
acting GH agonists, an antagonist would need to com-
pete with circulating GH which is released in pulses
from the pituitary and may therefore require a longer
circulating half-life and higher dosing to effectively
compete. Ongoing research and advances in drug deliv-
ery systems and formulation technologies such as
sustained-release formulations, depot injections, or
implantable devices may lead to the development of
new approaches to improve the pharmacokinetic prop-
erties of GHA formulations, thus reducing the need for
frequent dosing. It is important to note that
the development of long-acting GH or GHAs is a com-
plex and challenging task, and it may require a multi-
disciplinary approach involving expertise in drug
design, protein/peptide and polymer technologies, phar-
macokinetics, and pharmacodynamics, and formulation
science. Ongoing research efforts, collaborations
between academia and industry, and advancements in
biotechnology will likely play a crucial role in overcom-
ing these challenges and advancing the field.

5 | CONCLUSION

The GH axis is an important target for medical therapy
that is indicated for GHD, acromegaly and may also be
applicable in other diseases. Expression of recombinant
GH or GHA has been demonstrated in various host sys-
tems, such as prokaryotic (E. coli) and eukaryotic
(i.e., yeast and mammalian cells) expression systems.
However, large-scale production of recombinant GH and
GHA is still challenging. Furthermore, the short serum
half-life for unmodified GH and GHA is an obstacle for
in vivo applications. As discussed here, a variety of strate-
gies have been used to modify the protein core to extend
the serum half-life, with varying success. Several rhGH
formulations have been released into the market, but
only one GHA (pegvisomant) is available for clinical use,
and there is still a need for the development of novel
long-acting GHAs.
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