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Abstract

Cloud-based Methods and Architectures for Robot Grasping

by

Benjamin Robert Kehoe

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Ken Goldberg, Co-chair

Professor J. Karl Hedrick, Co-chair

The Cloud has the potential to enhance a broad range of robotics and automation sys-
tems. Cloud Robotics and Automation systems can be broadly defined as follows: Any
robotic or automation system that relies on either data or code from a network to support its
operation, i.e., where not all sensing, computation, and memory is integrated into a single
standalone system. We identify four potential benefits of Cloud Robotics and Automa-
tion: 1) Big Data: access to remote libraries of images, maps, trajectories, and object data,
2) Cloud Computing: access to parallel grid computing on demand for statistical analysis,
learning, and motion planning, 3) Collective Robot Learning: robots sharing trajectories,
control policies, and outcomes, and 4) Human computation: using crowdsourcing access to
remote human expertise for analyzing images, classification, learning, and error recovery.

We present four Cloud Robotics and Automation systems in this dissertation. First, we
develop a system for Cloud-based grasping of 2D polygonal objects with uncertainty in shape
using an analytic conservative estimate of the probability of force closure. Second, we develop
a system for Cloud-based grasping of 2D polygonal objects with uncertainty in pose, using a
quasi-static simulation that is less conservative than the approach for the first system. These
two systems demonstrate the usefulness of Cloud-based parallelism for handling uncertainty.
Third, we develop a system for recognizing and grasping household objects using the Google
Object Recognition Engine as a web service and using Cloud storage of object and grasp
information. Finally, we develop a system for providing algorithms as web services and
integrating datasets with these services. These systems advance the understanding of the
benefits the Cloud can provide for Robotics and Automation.
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3.8 The test set of brackets. The g∗ grasps for parameters dC = 0, ρ = 1.5, and
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3.9 “Whisker diagram” showing algorithm results for Part A, using dC = 0, ρ = 1.5,
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3.10 “Whisker diagram” showing algorithm results for Part B, using dC = 0, ρ = 1.5,
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Chapter 1

Introduction

The Cloud has potential to enhance a broad range of robots and automation systems. The
National Institute of Standards and Technology (NIST) defines the Cloud as “a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
resources (e.g., servers, storage, networks, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider interaction” [158].
An example is the online word processing capabilities offered by Google Docs. One can send
Microsoft Word documents over the Internet, but Google Docs differs in that the document
and software does not reside locally: both the data and code is stored in the Cloud using
remote server farms with shared processors and memory. This is helpful because one does
not have to worry about maintenance, outages, and software or hardware updates. The
Cloud also provides economies of scale and facilitates sharing data across applications and
users [169]. This rapidly expanding collection of internet resources and wireless networking
have the potential to liberate robots and automation systems from limited onboard compu-
tation, memory, and software.

The Google self-driving car exemplifies the idea. It indexes maps and images collected
and updated by satellite, Streetview, and crowdsourcing from the Cloud to facilitate accurate
localization. Another example is the Kiva Systems pallet robot for warehouse logistics. These
robots communicate wirelessly with a local central server to coordinate routing and share
updates on detected changes in the environment.

In 2010, James Kuffner coined the term “Cloud Robotics” and described a number of
potential benefits [134], and an article in IEEE Spectrum quickly followed [90].

1.1 Definition

Cloud Robot and Automation systems can be broadly defined as follows: Any robot or
automation system that relies on either data or code from a network to support its operation,
i.e., where not all sensing, computation, and memory is integrated into a single standalone
system. This definition is intended to include future systems and many existing systems that
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Figure 1.1: The Cloud has potential to enable a new generation of robots and automation
systems to use wireless networking, Big Data, Cloud Computing, statistical machine learning,
open-source, and other shared resources to improve performance in a wide variety of tasks
such as assembly, caregiving, package delivery, driving, housekeeping, and surgery.

involve networked teleoperation or networked groups of mobile robots such as UAVs [160, 136]
or warehouse robots [131, 46] as well as advanced assembly lines, processing plants, and home
automation systems, and systems with computation performed by humans [7, 189]. Due to
network latency, variable quality of service, and downtime, Cloud Robot and Automation
systems often include some capacity for local processing for low-latency responses and during
periods where network access is unavailable or unreliable.

We do not consider this a binary definition; there are degrees to which any system will
fit under our definition. In this way, the Cloud can be seen a spectrum, in which increasing
scale and connectivity push a system further into the Cloud category.

1.2 Potential Benefits of Cloud Robotics and

Automation

The Cloud has at least four aspects that can benefit robotics and automation:

1. Big Data: access to remote libraries of images, maps, trajectories, and object data
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2. Cloud Computing: access to parallel grid computing on demand for statistical analysis,
learning, and motion planning,

3. Collective Robot Learning: robots sharing trajectories, control policies, and outcomes,

4. Human Computation: using crowdsourcing access to remote human expertise for ana-
lyzing images, classification, learning, and error recovery.

There are also examples where the Cloud can enhance robotics and automation systems
by facilitating access to a) datasets, publications, models, benchmarks, and simulation tools,
b) open competitions for designs and systems, and c) open-source software.

In this dissertation, we focus on the Big Data and Cloud Computing aspects, as well as
enabling future work in the Collective Robot Learning aspect.

1.3 Sampling-based Uncertainty Methods

The computational resources available in the Cloud can enable robot designers to provide
similar capabilities as existing robots with lower cost. Removing computational resources
from the robot itself leads to lower power requirements, and both of these contribute to lower
weight, reducing the actuator power needed for mobile robots. However, lower-cost actuators
and sensors may have lower precision. This introduces uncertainty into both actuation and
sensing.

With high uncertainty, algorithms that do not take into account uncertainty may fail to
produce usable results. For example, unexpected collisions may occur between the robot and
its environment.

Many grasping algorithms assume that the gripper does not move the object during the
grasp, even if the gripper does not have contact sensing available. However, if the shape or
pose of the object is unknown, movement cannot be guaranteed. Instead, methods which
assume movement may be more robust to uncertainty.

Monte Carlo methods provide an avenue for handling uncertainty. By sampling over a
probability distribution for the uncertainty, algorithms that do not directly integrate uncer-
tainty can be used. However, as the inner loop, the speed of this algorithm is an important
performance factor.

1.4 Robotics and Automation as a Service (RAaaS)

Moving robotics and automation algorithms into the Cloud requires frameworks that facil-
itate this transition. The Cloud provides three possible levels at which a framework could
be implemented [158]. The lowest level is Infrastructure as a Service (IaaS), where bare
operating systems are provided on (possibly virtualized) machines in the Cloud. The second
level, Platform as a Service (PaaS), provides more structure, including application frame-
works and database access, while restricting the choice of programming languages, system



CHAPTER 1. INTRODUCTION 4

architectures, and database models that can be used. Software as a Service (SaaS), the high-
est level of structure, is exemplified by the difference between Google Docs, a Cloud-based
word processor, and Microsoft Word, which must be downloaded and installed locally.

For example, the RoboEarth Cloud robotics project includes a Cloud Computing plat-
form called Rapyuta [165], which is a Platform as a Service (PaaS) framework for moving
computation off of robots and into the Cloud. It also connects to the RoboEarth knowledge
repository, integrating the Big Data aspect. We believe that this PaaS approach can be ex-
tended to use the Software as a Service (SaaS) paradigm, which offers many advantages for
robots and automation systems. With SaaS, an interface allows data to be sent to a server
that processes it and returns outputs, which relieves users of the burden of maintaining data
and software and hardware and allows companies to control proprietary software.

We call this approach Robotics and Automation as a Service (RAaaS). To illustrate the
concept, consider two scenarios for a graduate student setting up a robot workcell. The
workcell contains a 7-DoF Fanuc industrial arm with parallel-jaw gripper and a Microsoft
Kinect RGBD sensor. The purpose of the workcell is to pick up and inspect parts as they
come down an assembly line, requiring object recognition and localization, grasp planning,
and motion planning.

In Scenario 1 (today with ROS), the software runs locally. ROS (Robot Operating
System), the well-known open-source library of robotics software [188], provides access to
over 2000 open-source ROS packages. Currently however, ROS is only supported on the
Ubuntu Linux operating system. While Ubuntu is popular, the computers available to the
graduate student run OS X. Many stable ROS packages are provided as packages, which
simplifies installation, but some software is only available as a source distribution, which
requires the download and installation of dependencies. The graduate student must set up a
new machine with Ubuntu and resolve all library dependencies, including those that conflict
with other packages.

In contrast, Scenario 2 (in the future with RAaaS), the analysis and planning software
runs in the Cloud. The graduate student visits a website to input the robot, sensor, and
gripper models. She then selects her desired object recognition and localization, motion
planning, and grasping algorithms, and uses a graphical interface to connect these algorithms
into a pipeline. Her robot begins sending up data in the form of point clouds from the Kinect.
The robot receives and executes motion plans and grasps, reporting back outcomes to the
Cloud-based pipeline, which are combined with feedback from other robots to improve the
Cloud-based software parameters over time. We are excited about the potential of such a
system and actively working with others on developing its components.

1.5 Contributions

The main contributions of this dissertation are case studies of algorithms and systems
for Cloud Robotics and Automation for grasping and Robotics and Automation as a Ser-
vice (RAaaS).
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• Almost all robot grasping algorithms assume as input an exact model of part shape.
We designed and implemented the first algorithm for grasping 2D polygonal parts
with shape uncertainty defined with Gaussian vertex/center-of-mass distributions. The
algorithm computes a grasp that maximizes a lower bound on the probability of force
closure using Cloud-based Monte Carlo sampling and fast geometric grasp analysis.
The algorithm includes an adaptive candidate grasp elimination step that can reduce
grasp evaluations by up to 90%. We tested this algorithm on twelve part shapes, finding
counterintuitive grasps, and performed a sensitivity analysis on algorithm parameters.
We tested a Cloud-based implementation with varying numbers of nodes, obtaining a
515× speedup with 500 nodes in one case, suggesting the algorithm can scale linearly
when all nodes are reliable. We also evaluated the algorithm on the PR2 robot. This
work was published in ICRA 2012 [123], CASE 2012 [122], and T-ASE 2015 [126]

• The above geometric analysis provides a guaranteed lower bound on the probability of
force closure, but this lower bound is conservative. To consider cases missed by this
analysis, we developed a novel quasi-static simulation based on Box2d, an open-source
game physics engine [29]. Dynamic simulators must estimate the difficult-to-model
friction between the part and worksurface; our simulator models only the relative mo-
tion of the part and the gripper, which can be calculated using Mason’s Rule [154]. We
performed a sensitivity analysis on pose uncertainty parameters. Our results suggest
that the relationship between the level of uncertainty in part pose and grasp quality is
not trivial, and that simulation-based evaluation of the grasp quality can be beneficial.
By considering 2D polygonal parts, our method runs over 100× faster than general
sampling-based grasp planners with pose uncertainty. This work was published in the
RSS 2014 workshop Information-based Grasp and Manipulation Planning [127].

• To explore how cloud-based data and computation can facilitate 3D robot grasping,
we developed a system architecture, implemented prototype, performed experiments
for a cloud-based robot grasping system that incorporates a Willow Garage PR2 robot
with onboard color and depth cameras, Google’s proprietary object recognition engine,
the Point Cloud Library (PCL) for pose estimation, Columbia University’s GraspIt!
toolkit and OpenRAVE for 3D grasping and our prior approach to sampling-based
grasp analysis to address uncertainty in pose. We report data from experiments in
recognition (a recall rate of 80% for the objects in our test set), pose estimation (failure
rate under 14%), and grasping (failure rate under 23%), as well as results on recall and
false positives in larger data sets using confidence measures. This work was published
in ICRA 2013 [121].

• We developed the concept of Robotics and Automation as a Service (RAaaS). RAaaS
is analogous to Software as a Service (SaaS), exemplified by Google Docs vs. Microsoft
Word. RAaaS can provide twelve potential benefits to algorithm implementers and
software end-users, including providing algorithms as web services, automatic replica-
tion and load balancing, porting ROS packages, maintaining source code confidentiality,
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algorithm benchmarking, and collective robot learning. We designed and implemented
Brass (Berkeley RAaaS Software), a framework for providing algorithms as web ser-
vices, along with proof-of-concept services using Brass. This work has been submitted
to ICRA 2015 [125].

1.6 Dissertation Overview

In Chapter 2, we present related work for Cloud Robotics and Automation. This related work
connects to all four potential benefits of the Cloud. In Chapter 3, we present two systems for
Cloud-based analysis of parallel-jaw grasping of 2D polygonal objects under shape and pose
uncertainty, respectively. Both systems are based on the technique of push grasping, in which
the parallel-jaw gripper uses one jaw to push the object into alignment with the jaw, and then
closes with the second jaw. Given a method to estimate the success or failure of a push grasp,
we consider a quality measure that includes uncertainty using Monte Carlo integration. In the
first system, we present a geometric method for fast analysis of push grasps, and analyze this
method with shape uncertainty. In the second system, we develop a quasi-static simulator
and use this simulator with pose uncertainty. As Monte Carlo integration is embarrassingly
parallel, we implement the first system in the Cloud. Chapter 4, we present a system
architecture, implemented prototype, and initial experimental data for a cloud-based robot
grasping system that incorporates a Willow Garage PR2 robot with onboard color and depth
cameras, Google’s proprietary object recognition engine, the Point Cloud Library (PCL) for
pose estimation, Columbia University’s GraspIt! toolkit and OpenRAVE for 3D grasping
and our prior approach to sampling-based grasp analysis to address uncertainty in pose.
In Chapter 5, we present Brass (Berkeley RAaaS Software), a framework for providing
algorithms as web services. We present the Brass system architecture and three case studies
of implemented Brass services: 1) kinematics, 2) path planning, and 3) grasping. Finally, in
Chapter 6, we conclude and suggest new research directions.
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Chapter 2

Related Work

This chapter is organized around four potential benefits from the Cloud: 1) Big Data: ac-
cess to remote libraries of images, maps, trajectories, and object data, 2) Cloud Computing:
access to parallel grid computing on demand for statistical analysis, learning, and motion
planning, 3) Collective Robot Learning: robots sharing trajectories, control policies, and
outcomes, and 4) Human computation: using crowdsourcing access to remote human ex-
pertise for analyzing images, classification, learning, and error recovery. This chapter also
cites examples where the Cloud can enhance robotics and automation systems by facilitat-
ing access to a) datasets, publications, models, benchmarks, and simulation tools, b) open
competitions for designs and systems, and c) open-source software.

2.1 A Brief History

The value of networking to connect machines in manufacturing automation systems was
recognized over 30 years ago. In the 1980’s, General Motors developed the Manufacturing
Automation Protocol (MAP) [109]. A diverse set of incompatible proprietary protocols
were offered by vendors until a shift began in the early 1990’s when the World Wide Web
popularized the HTTP over IP protocols [168].

In 1994, the first industrial robot was connected to the Web with an intuitive graphical
user interface that allowed visitors to teleoperate the robot via any internet browser [78].
In the mid and late 1990’s, researchers developed a series of web interfaces to robots and
devices to explore issues such as user interfaces and robustness [83, 80] that initiated the
subfield of “Networked Robotics” [82, 155].

In 1997, work by Inaba et al. on “remote brained robots” described the advantages of
remote computing for robot control [107].

In May 2001, the IEEE Robotics and Automation Society established the Technical Com-
mittee on Networked Robots [104] which organized a number of workshops. Two chapters
of the first Springer Handbook on Robotics were focused on Networked Tele-robots (where
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Figure 2.1: The RoboEarth systems architecture designed to allow robots to share data and
learn from each other [245, 237]. (Image reproduced with permission).

robots are operated remotely by humans using global networks) and Networked Robots
(where robots communicate with each other using local networks) respectively [218, 135].

In 2009, the RoboEarth project was announced. It envisioned “a World Wide Web for
robots: a giant network and database repository where robots can share information and
learn from each other about their behavior and environment” [237, 245] as illustrated in
Figure 2.1. Under a major European Union grant, the RoboEarth research team developed
a series of system architectures for service robotics [16, 62], developing Cloud networking [99,
119], and computing resources [103] to generate 3D models of environments, speech recog-
nition, and face recognition [225].

As noted in the previous section, James Kuffner introduced the term “Cloud Robotics”
in 2010. This broader term supplanted earlier terminology and has been adopted by many
researchers including the organizers of this Special Issue of the IEEE Transactions on Au-
tomation Science and Engineering.

Cloud Robotics and Automation is related to several other new initiatives. The “Internet
of Things” [18], a term also introduced in 2010, describes how RFID and inexpensive pro-
cessors could be incorporated into a vast array of robots and physical objects from inventory
items to household appliances [150] to allow them to communicate and share information.

The term “Industry 4.0,” introduced in Germany in 2011, predicts a fourth industrial
revolution that will use networking to follow the first (mechanization of production using
water and steam power), the second (mass production with electric power), and the third
(use of electronics to automate production) industrial revolutions [108].

In 2012, General Electric introduced the term “Industrial Internet”, to describe new
efforts where industrial equipment such as wind turbines, jet engines, and MRI machines
connect over networks to share data and processing for industries including energy, trans-
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portation, and healthcare [64],[128]. For example, GE is using sensor readings from aircraft
engines to optimize fuel consumption under a myriad of conditions [73]. The power of the
Cloud is being harnessed to optimize water usage for irrigation [61]. Big Data and Cloud
Computing are extensively being used to optimize production in oil fields [221] and other
industries [2, 156].

Many related projects are emerging. In August 2014, Ashutosh Saxena announced the
“RoboBrain” project, “a large-scale computational system that learns from publicly available
Internet resources, computer simulations, and real-life robot trials.”

2.2 Big Data

The Cloud can provide robots and automation systems with access to vast resources of data
that are not possible to maintain in onboard memory. “Big Data” describes “data that ex-
ceeds the processing capacity of conventional database systems” [63] including images, video,
maps, real-time network and financial transactions [140], and vast networks of sensors [240].

A recent U.S. National Academy of Engineering Report summarizes many research op-
portunities and challenges created by Big Data [42] and other challenges are summarized
in [15, 249]. For example, sampling algorithms can provide reasonable approximations to
queries on large datasets to keep running times manageable [30], but these approximations
can be seriously affected by “dirty data” [239].

Figure 2.2: Data can be collected from many sources as shown in this schematic architecture
for the Mobile Millennium, a Cloud-based transportation system that combines streaming
data from taxis, maps, and road-based sensors [102]. Mobile Millennium uses the Big Data
and Collective Robot Learning aspects of Cloud Robotics and Automation. (Image repro-
duced with permission).
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Hunter et al. [102] presents algorithms for a Cloud-based transportation system called
Mobile Millennium, which uses the GPS in cellular phones to gather traffic information,
process it, and distribute it and also to collect and share data about noise levels and air
quality (see Figure 2.2).

Large datasets can facilitate machine learning, as has been demonstrated in the context
of computer vision. Large-scale image datasets such as ImageNet [54], PASCAL visual object
classes dataset [65], and others [217, 230] have been used for object and scene recognition.
By leveraging Trimble’s SketchUp 3D warehouse, Lai et al. reduced the need for manually
labeled training data [137]. Using community photo collections, Gammeter et al. created an
augmented reality application with processing in the Cloud [70]. Combining internet images
with querying a local human operator, Hidago-Pena et al. provided a more robust object
learning technique [93]. Deep learning is a technique using many-layered neural networks
that can take advantage of Big Data [53], and has been used for computer vision [133, 214]
and grasping [143].

Grasping is a persistent challenge in robotics: determining the optimal way to grasp
a newly encountered object. Cloud resources can facilitate incremental learning of grasp
strategies [38, 166] by matching sensor data against 3D CAD models in an online database.
Examples of sensor data include 2D image features [100], 3D features [85], and 3D point
clouds [39].

Figure 2.3: Google’s object recognition system combines an enormous dataset of images and
textual labels with machine learning to facilitate object recognition in the Cloud [134, 88].
(Image reproduced with permission).

Google Goggles [88], a free image recognition service for mobile devices (see Figure 2.3),
has been incorporated into a Cloud-based system for robot grasping, as illustrated in Fig-
ure 4.3, which we detail in Chapter 4.

The RoboEarth project stores data related to objects and maps for applications rang-
ing from object recognition to mobile navigation to grasping and manipulation (see Fig-
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ure 2.1) [237]. The Columbia Grasp dataset [84], the MIT KIT object dataset [120], and
the Willow Garage Household Objects Database [38] are available online and have been
used to evaluate different aspects of grasping algorithms, including grasp stability [49, 47],
robust grasping [243], and scene understanding [185]. Dalibard et al. attach “manuals” of
manipulation tasks to objects [45].

One research challenge is defining cross-platform formats for representing data. While
sensor data such as images and point clouds have a small number of widely-used formats,
even relatively simple data such as trajectories have no common standards yet but research
is ongoing [224, 226, 186]. Another challenge is working with sparse representations for
efficient transmission of data, e.g., algorithms for sparse motion planning for robotic and
automation systems [55, 144].

Large datasets collected from distributed sources are often “dirty” with erroneous, du-
plicated, or corrupted data [69, 239], such as 3D position data collected during robot cali-
bration [153]. New approaches are required that are robust to dirty data.

2.3 Cloud Computing

Massively-parallel computation on demand is now widely available [15] from commercial
sources such as Amazon’s Elastic Compute Cloud [11, 12], Google’s Compute Engine [87],
and Microsoft’s Azure [161]. These systems provide access to tens of thousands of remote
processors for short-term computing tasks [146, 145]. These services were originally used
primarily by web application developers but have increasingly been used in scientific and
technical high performance computing (HPC) applications [117, 157, 231, 228].

Uncertainty in sensing, models, and control is a central issue in robotics and automa-
tion [76]. Such uncertainty can be modeled as perturbations in position, orientation, shape,
and control. Cloud Computing is ideal for sample-based Monte-Carlo analysis. For exam-
ple, parallel Cloud Computing can be used to compute the outcomes of the cross-product
of many possible perturbations in object and environment pose, shape, and robot response
to sensors and commands [22]. This idea is being explored in medicine [238] and particle
physics [215].

Cloud-based sampling can be used to compute robust grasps in the presence of shape
uncertainty (see Figure 2.4), which we detail in Chapter 3. This grasp planning algorithm
accepts as input a nominal polygonal outline with Gaussian uncertainty around each vertex
and the center of mass and uses parallel-sampling to compute a grasp quality metric based
on a lower bound on the probability of achieving force closure.

Cloud Computing has potential to speed up many computationally-intensive robotics
and automation systems applications such as robot navigation by performing SLAM in the
Cloud [193, 194] as illustrated in Figure 2.5 and next-view planning for object recogni-
tion [175]. Cloud-based formation control of ground robots has also been demonstrated [233].

For optimal sampling-based motion planning methods such as RRT*, Cloud Computing
is useful to generate the graphs; it is also important to recognize that these graphs can grow
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Figure 2.4: A Cloud-based approach to geometric shape uncertainty for grasping, discussed
in detail in Chapter 3. (Top) Uncertainty in object pose and shape. (Bottom) Computed
push grasps. Kehoe et al. use sampling over uncertainty distributions to find a lower bound
on the probability of success for grasps [122, 123, 126].

rapidly so algorithms for graph reduction are needed to facilitate data transfer as illustrated
in Figure 2.6.

The Cloud also facilitates video and image analysis [208, 173], and mapping [164, 195]
(see Figure 2.5. Image processing in the Cloud has been used for assistive technology for the
visually impaired [23] and for senior citizens [71].

Bekris et al. [19] propose an architecture for efficiently planning the motion of new robot
manipulators designed for flexible manufacturing floors in which the computation is split
between the robot and the Cloud.

It is important to acknowledge that the Cloud is prone to varying network latency and
quality of service. Some applications are not time sensitive, such as decluttering a room
or pre-computing grasp strategies or offline optimization of machine scheduling, but many
applications have real-time demands [112] and this is an active area of research [149, 4, 3,
130].
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Figure 2.5: A Cloud framework for robot navigation using cooperative tracking and mapping
(C2TAM). Riazuelo et al. demonstrate computer intensive bundle adjustment for navigation
using simultaneous localization and mapping (SLAM) performed in the Cloud [193, 194,
195]. (Image reproduced with permission).

2.4 Collective Robot Learning

The Cloud facilitates sharing of data for robot learning by collecting data from many in-
stances of physical trials and environments. For example robots and automation systems
can share initial and desired conditions, associated control policies and trajectories, and
importantly: data on the resulting performance and outcomes.

The “Lightning” framework (see Figure 2.8), proposes a framework for Collective Robot
Learning by indexing trajectories from many robots over many tasks and using Cloud Com-
puting for parallel planning and trajectory adjustment [20].

Such systems can also be expanded to global networks to facilitate shared path planning,
including traffic routing as shown in Figure 2.7.

For grasping [25], grasp stability of finger contacts can be learned from previous grasps
on an object [47]. Sharing data through Collective Robot Learning can also improve the
capabilities of robots with limited computational resources [89].

The MyRobots project [167] from RobotShop proposes a “social network” for robots:
“In the same way humans benefit from socializing, collaborating and sharing, robots can



CHAPTER 2. RELATED WORK 14

Figure 2.6: Distributed sampling-based motion planning. A roadmap of trees for motion
planning in high-dimensional spaces. Plaku et al. show that their planner can “easily solve
high-dimensional problems that exhaust resources available to single machines” [183]. (Image
reproduced with permission).

benefit from those interactions too by sharing their sensor information giving insight on
their perspective of their current state” [244].

The RoboEarth and RoboBrain databases in Section 2.2 are designed to be updated
with new information from connected robots. The RoboBrain project “learns from publicly
available Internet resources, computer simulations, and real-life robot trials.” [196]

KIVA Systems [131, 46] uses hundreds of mobile platforms to move pallets in warehouses
using a local network to coordinate motion and update tracking data.

2.5 Human Computation: Crowdsourcing and Call

Centers

Human skill, experience, and intuition is being tapped to solve a number of problems such
as image labeling for computer vision [38, 119, 134, 7], and learning associations between ob-
ject labels and locations [209]. Amazon’s Mechanical Turk is pioneering on-demand “crowd-
sourcing” with a marketplace where tasks that exceed the capabilities of computers can be
performed by human workers. In contrast to automated telephone reservation systems, con-
sider a future scenario where errors and exceptions are detected by robots and automation
systems which then contact humans at remote call centers for guidance.

Research projects are exploring how this can be used for path planning [94, 111], to
determine depth layers, image normals, and symmetry from images [75], and to refine image
segmentation [115]. Researchers are working to understand pricing models [220] and apply
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Figure 2.7: Schematic architecture of CloudThink. Wilhem et al. developed an open-
standard for self-reporting sensing devices such as sensors mounted in automobiles. Cloud-
enabled storage of sensor network data can enable collaborative sharing of data for traffic
routing and other applications [246]. CloudThink uses the Collective Robot Learning aspect
of Cloud Robotics and Automation. (Image reproduced with permission).

crowdsourcing to grasping [219] (see Figure 2.10). Knowledge-based solutions are being
explored for industrial automation as well [222].

Networked robotics has a long history of allowing robots to be controlled over the web [78],
and the expanded resources of the Cloud enables new research into remote human opera-
tion [247, 142, 219] (see Figure 2.9).

2.6 Open-Source and Open-Access

The Cloud supports the evolution of Cloud Robotics and Automation by facilitating hu-
man access to a) datasets, publications, models, benchmarks, and simulation tools, b) open
competitions for designs and systems, and c) open-source software.

The success of open source software [44] [92, 174] is now widely accepted in the robotics
and automation community. A primary example is ROS, the Robot Operating System, which
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Figure 2.8: (Left) Schematic architecture of the Lightning path planning framework. Beren-
son et al. show a system that is able to learn from experience from pre-computed motion
plans, which could be stored in the Cloud. The planner attempts to find a brand-new plan
as well as find an existing plan for a problem similar to the current one. Whichever finishes
first is chosen [20]. Lightning uses the Big Data, Cloud Computing, and Collective Robot
Learning aspects of Cloud Robotics and Automation. (Image reproduced with permission).

Figure 2.9: Tiered human assistance using Cloud-based resources for teleoperation. Leeper
et al. developed an interface for operators to control grasp execution using a set of different
strategies. The results indicate humans are able to select better and more robust grasp
strategies [247, 142]. (Image reproduced with permission).

provides libraries and tools to help software developers create robot applications [200, 188,
176]. ROS has also been ported to Android devices [202]. ROS has become a standard akin
to Linux and is now used by almost all robot developers in research and many in industry,
with the ROS Industrial project created to support these users [199].

Additionally, many simulation libraries for robotics are now open source, which allows
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Figure 2.10: Crowdsourcing object identification to facilitate robot grasping. Sorokin et
al. developed a Cloud robot system that incorporates Amazon’s Mechanical Turk to obtain
semantic information about the world and subjective judgments [219]. This work uses the
Human Computation aspect of Cloud Robotics and Automation. (Image reproduced with
permission).

Figure 2.11: Lollibot, designed by Tom Tilley of Thailand, won the Grand Prize in the $10
Educational Robot Design Challenge organized by the African Robotics Network. This de-
sign can be built from surplus parts for US $8.96. [227]. (Image reproduced with permission).

students and researchers to rapidly set up and adapt new systems and share the resulting
software. There are many open source simulation libraries, including Bullet [28], a physics
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simulator originally used for video games, OpenRAVE [177] and Gazebo [72], simulation en-
vironments geared specifically towards robotics, OOPSMP, a motion-planning library [182],
and GraspIt!, a grasping simulator [162]. The open source nature of these libraries allows
them to be modified to suit applications and they were not originally designed for.

Another exciting trend is in open source hardware, where CAD models and the tech-
nical details of construction of devices are made freely available [51, 203]. The Arduino
project [14] is a widely-used open source microcontroller platform with many different sen-
sors and actuators available, and has been used in many robotics projects. The Raven [91]
is an open-architecture laparoscopic surgery robot developed as a research platform an order
of magnitude less expensive than commercial surgical robots [13]. Recent advances in 3D
printing (also known as additive manufacturing) are poised to have a major impact on many
fields, including development of open source hardware designs [110, 74, 148].

The Cloud facilitates open challenges and design competitions that can draw on a diverse
and geographically distributed population of innovators.

Figure 2.12: The DARPA Robotics Challenge (DRC) used CloudSim, an open-source Cloud-
based simulation platform for testing the performance of the Atlas humanoid robot (shown)
on a variety of disaster response tasks [72, 40]. The Cloud permits running interactive, real-
time simulation tasks in parallel for purposes such as predicting and evaluating performance,
validating design decisions, optimizing designs, and training users. This competition also
resulted in enabling sharing of robotics research efforts. (Image reproduced with permission).
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The DARPA Robotics Challenge (DRC) is “a competition of robot systems and software
teams vying to develop robots capable of assisting humans in responding to natural and
man-made disasters”, supported by NIST and the Southwest Robotics Institute (SwRI) [96].
The DRC simulator is provided to all contestants through CloudSim, an open-source Cloud-
based simulation platform for testing the performance of the Atlas humanoid robot (shown
in Figure 2.12) on a variety of disaster response tasks [72, 40]. The Cloud permits running
interactive, real-time simulation tasks in parallel for purposes such as predicting and evalu-
ating performance, validating design decisions, optimizing designs, and training users [5].

Another example of an open competition is the “Ultra-Affordable Educational Robot
Challenge” organized by the African Robotics Network with support from the IEEE Robotics
and Automation Society in the summer of 2012. It attracted 28 designs from around the
world including the Grand Prize winning design shown in Figure 2.11 where a modified
surplus Sony game controller uses the vibration motors to drive wheels and lollipops as
inertial counterweights for contact sensing by the thumb switches. This robot can be built
from surplus parts for US $8.96 [227].
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Chapter 3

Grasping with Uncertainty in Shape
and Pose

3.1 Introduction

Automation focuses on quality and reliability of processes in repetitive tasks. We present an
approach to reliable grasp analysis and planning based on highly-parallelizable Monte Carlo
sampling that enables cloud-based execution.

A fundamental challenge, even with perfect recognition, is variation in part shape, be-
cause of manufacturing constraints, and variation in mechanics, because of limits on sensing
during grasping.

The need to determine robust grasps is especially important in Automation, where the
cost of failure can be high, but is offset by the ability to perform extended analysis offline.
This situation is ideal for Cloud Computing, where vast computing power is available but
high latency impairs real-time operation.

This chapter describes a method that leverages Cloud Computing to analyze grasps on 2D
polygonal parts with shape tolerances. We take a conservative approach: we use a statistical
sample of part shape perturbations to find the value of a quality metric that estimates a lower
bound on the probability of force closure for a class of grasps called conservative-slip push
grasps, which can be rapidly evaluated without simulation. We then combine the results of
the retained candidate grasps, weighting their success on a given part perturbation by the
probability of that perturbation, to estimate a lower bound on the probability of achieving
force closure.

We provide a grasp planning algorithm that uniformly samples from our simplified grasp
configuration space on a simplified version of the part shape. We improve the grasp plan-
ning by adaptively reducing the candidate grasp set after testing a small number of part
perturbations, reducing the overall number of grasp evaluations.

We explore properties of the algorithm by performing a sensitivity analysis on the pa-
rameters of the algorithm, determining the effect of these parameters on grasp quality; by
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Figure 3.1: Part tolerance model and example results. On the upper left, circles with a
radius of one standard deviation of an isotropic Gaussian distribution are drawn around
each vertex and the center of mass. On the upper right, the nominal part is plotted over 100
sampled perturbations (shown in gray). The lower center is a sample “whisker diagram”,
which is used to show algorithm results. Each line segment represents a candidate grasp, and
indicates its contact point on the part. The line segment indicates the direction of approach
for the grasp, and is orthogonal to the gripper jaw. The length corresponds to the lower
bound on the probability of a stable grasp.

evaluating the adaptive grasp reduction; and by developing a procedure for finding toler-
ance bounds based on a quality threshold. We evaluate the scalability of the algorithm in
Cloud-based parallel execution in Section 3.6. We test the algorithm on a PR2 robot in
Section 3.7.

In Section 3.8, we present an alternative method with a less conservative, simulation-
based grasp analysis under pose uncertainty. This method uses a novel quasi-static simulator
based on the Box2d game physics engine. We present a sensitivity analysis for uncertainty
parameters.
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3.2 Related Work

In “Algorithmic Automation” [77], abstractions can allow the functionality of automation
to be designed independent of the underlying implementation and can provide the foun-
dation for formal specification and analysis, algorithmic design, consistency checking and
optimization. Algorithmic Automation thus facilitates integrity, reliability, interoperability,
and maintainability and upgrading of automation.

Several studies use contact sensors to improve grasp quality in the presence of uncertain
part geometry [48, 66, 97, 172]. However, many robotic grippers do not have contact sensing
capability. Sensing is often implicitly assumed to be present, such as when pinch grasps are
required, since the part must not be moved by contact with the gripper [36, 132, 216, 232].

Studies have explored properties of polygonal parts for grasping [34, 35, 43], but focus on
point grasps, which ignores the complex interaction created by a gripper of nonzero width,
as is the case with parallel-jaw grippers.

Push manipulation of parts has been extensively investigated by Mason [154] and oth-
ers [8, 151]. Performing pushing operations with a gripper to reduce pose uncertainty has
been demonstrated by Dogar and Srinivasa [57]. However, these methods, again, do not take
into account part shape tolerance.

Similarly, many recent studies in robotic grasping focus on improving grasps on known
parts [198, 201, 213] that do not take into account tolerances. The work in robotic grasping
that addresses tolerance largely focuses on part pose [21, 57, 129, 184]. Methods for sensorless
part orientation [27, 79, 250] can also be used in the presence of uncertain part pose. However,
these methods do not take into account tolerances for the geometry of the part

An explicit part tolerance model for grasping was proposed by Christopoulos and Schrater
[36] that approximates the part boundary with splines but does not account for motion
induced by contact from the gripper. Models exist for tolerance [32, 116] that use worst-case
bounds rather than probability distributions. Other work considers uncertainty for unknown
parts [114], or defines topological tolerance models but does not apply it to grasping [192].

The introduction of Cloud Computing can allow computation to be offloaded from
robots [16], as well as development of databases that allow robots to reuse previous computa-
tions in later tasks [38]. While networked automation has a long history [124], only recently
has research focused on networked robots sharing information to accomplish tasks widely
separated in time and space [155, 236]. Grasping could benefit from this effort, since grasps
computed for a part can be applied to similar parts encountered later [39, 76, 85]. This
allows the construction of grasp databases that can be shared and referenced by multiple
robots [85, 134].

3.3 Problem Statement

We consider a parallel-jaw gripper, gripping a part from above. We assume that we have a
conservative estimate of the coefficient of friction between the gripper and the part, denoted
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µ.
We assume that the part can be modeled as an extruded polygon to be gripped on its

edges, resting on a planar work surface, and that the part has an estimated nominal center
of mass, which may not be at the centroid. The gripper–part interaction is assumed to be
quasistatic, such that the inertia of the part is negligible [179].

Part Tolerance Model

Part shape tolerances are modeled as independent Gaussian distributions on each vertex and
center of mass, centered on their nominal values, as shown in Figure 3.1. The variance of the
distributions is an input, denoted Σ, which may be dictated by manufacturing constraints.
One advantage of using probability distributions is that we can use a Monte Carlo approach
to evaluate the effect of higher tolerances on candidate grasps.

We denote the space of possible parts as S0, the space of possible perturbations of a shape
S ∈ S0 as S(S). Note that for any S ∈ S0, S(S) ⊆ S0. We further denote the space of all

(part, part perturbation) tuples as Ŝ = {(S0, S) |S0 ∈ S0, S ∈ S(S0)}.
The input to the algorithm is a list of edges defining a non-intersecting polygon, denoted

S0, and the variance Σ of the Gaussian tolerance distributions for the vertices and center of
mass.

Contact Configuration Space

The contact a gripper jaw makes with a part is defined by the ordered pair c = (p, φ), where p
is the contact point, a point along the one-dimensional boundary of the part, and φ ∈ [−π

2
, π

2
]

is the approach angle. The gripper jaw extends perpendicularly from the contact point. For
φ ∈ [−π

2
, 0], the contact point is the right edge of the gripper jaw, otherwise it is the left

edge. The approach line is the line through p̂ along φ. We denote the space of all contact
points as C. Examples of contact configurations can be seen in Figure 3.2.

We denote sets of similar contact configurations as Tq,ψ ⊆ C, where a configuration c =
(p, φ) is in Tq,ψ if φ = ψ and p lies on the line through q perpendicular to the approach line.
We denote the similar contact configuration set that contains a given contact configuration c
as T (c). We denote the set of all similar contact configuration sets as T. These sets become
useful as conservative-slip pushes result in many initially-dissimilar grasps joining similar
configuration sets.

Candidate Grasp Configuration Space

The grasp configuration space is defined by a starting position and orientation of the first
gripper jaw, and a direction of motion from this position. We assume that orientation of the
gripper jaw face is perpendicular to the direction of motion.

We reduce the configuration space from three dimensions to two using nominal contact
configurations to eliminate some of the redundancies in grasp configurations. A grasp is
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A B
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ϕ
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Figure 3.2: Contact configurations. The contact points are indicated by circles. By conven-
tion, references to left and right are relative to the approach line in the direction from p̂i
into the part, and positive φ is clockwise. By definition, if φj > 0, the gripper jaw’s right
edge must be on the approach line, and if φj < 0, the gripper jaw’s left edge must be on
the approach line. If φj = 0, we define the approach line to be the gripper jaw’s right edge.
Configuration A shows an approach angle of −40◦, which implies a gripper to the right of
the approach line. Configuration B shows an approach angle of 0◦, which by convention has
a gripper to the left of the approach line. Configurations C and D show an approach angle
of 40◦, which implies a gripper to the left of the approach line. Additionally, if configura-
tion C was a nominal contact configuration g, the actual contact configuration g′ would be
configuration D.

defined by a contact configuration g ∈ C on a nominal part S, as if the gripper jaw moved
in along the approach direction from infinity.

As shown by configuration C in Figure 3.2, the actual contact configuration g′ ∈ C for a
grasp g may not be the nominal contact configuration. We define a function

fC : C× Ŝ→ C

that takes a grasp (in the form of a nominal part and nominal contact configuration) and a
perturbation of the nominal part and produces the contact configuration for that grasp on
the perturbation.

Conservative-Slip Push Grasps with Force Closure

We consider a class of push grasps that enhance part alignment, conservative-slip push grasps
with force closure. We define this as grasps in which the gripper pushes the part without
slipping until it rotates into alignment with the first gripper jaw (a zero-slip push), or slips
but is guaranteed to enter a zero-slip push (a conservative-slip push) and then completes
force closure with the second gripper jaw, as seen in Figure 3.3. Under this conservative
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definition, we include slip of the second gripper jaw under limited conditions described in
Section 14.

We define the following notation:

fα : S(S)× C→ P(C)

fβ : S(S)× T→ C× C
fγ : S(S)× C→ {0, 1}

where P is the power set,
fα is a function that, for a given part perturbation and contact configuration, determines the
set of possible conservative-slip push contact configurations that could result, or the empty
set if a conservative-slip push is not possible,
fβ is a function that, given a similar contact configuration set T , returns two disjoint sets
T0 and T1 such that T0 ∪ T1 = T and T0 contains all contact configurations in T that do not
achieve force closure; thus T1 contains all the contact configurations in T that do achieve
force closure, and
fγ is a function determining grasp success; it is the composition of fα and fβ:

fγ(S, c) =


1 if c′ ∈ T1 for (T0, T1) = fβ(S, T (c′))

∀c′ ∈ fα(S, c)

0 otherwise

Quality Measure

We define a quality measure Q(g, S; Σ, θ) as a lower bound on the probability that grasp
g on part S will result in force closure based on the tolerance parameter Σ and parameter
vector θ.

Q(g, S; Σ, θ) =

∫
S(S)

p(s; Σ)fγ(g, s) ds (3.1)

The output of the grasp analysis algorithm is

Q = {Q(g, S; Σ, θ) | g ∈ G} (3.2)

where G ⊆ C is the set of candidate grasps for part S.
The best grasp and Q-value are:

g∗ = arg max
g∈G

Q(g, S; Σ, θ) (3.3)

Q∗(S, θ) = Q(g∗, S; Σ, θ) (3.4)

The adaptive version of our algorithm may reduce the value of Q∗ relative to the non-
adaptive version. The value of Q∗ as found by the non-adaptive algorithm is denoted Q∗max,

and the normalized value of Q∗ for the adaptive version is Q̂∗ = Q∗/Q∗max.
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Figure 3.3: Snapshots of the execution of a conservative-slip push grasp. The green jaw
makes the first contact, and once a stable push is established in frame 3, the red jaw closes.
After making contact in frame 5, the part rotates into slip closure in frame 6.

3.4 Algorithm

The optimization in Equation 3.3 is difficult to solve. The problem is nonconvex over G,
and fγ is discontinuous with no simple closed form available. This means the integrand of
Equation 3.1 cannot be solved for directly. Our approach is to use Monte Carlo integration
for Equation 3.1 and to use a discrete set of grasps for G.

Our grasp analysis algorithm, shown in Algorithm 1, calculates the quality metric for a
set of grasps and part perturbations, evaluating Equation 3.1 over multiple grasps simulta-
neously. For each part perturbation, the candidate grasps are evaluated to estimate if they
result in conservative-slip pushes (see Section 14). The successful conservative-slip pushes
are grouped into sets of similar configurations (see Section 14), and conservative conditions
for force closure are evaluated. Finally, the overall probability of achieving force closure for
each candidate grasp is estimated.

Our grasp planning algorithm, shown in Algorithm 2, uses the analysis algorithm on a
part using a Monte Carlo method: it generates a set of candidate grasps, and creates part
perturbations drawn from the distribution. These grasps and perturbations are passed to
the analysis algorithm.

The analysis algorithm uses a single parameter, the grasp elimination criterion R, which is
used in adaptively reducing the candidate grasp set. The planning algorithm also uses several
additional parameters, denoted as the vector θ = [dC , ρ,Φ,M, R]. The part tolerances for the
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Algorithm 1: Grasp Analysis Algorithm. Highlighted line numbers indicate paralleliz-
able steps.

Input: candidate grasp set G1, part perturbations S1, S2, . . . , SM ∈ S(S0);
1 for Part perturbation set Sm = S1,S2, . . . ,SM do

22 for Part Sk = S1, S2, . . . , Sl ∈ Sm do
3 for Candidate grasp gij ∈ Gm do
4 Determine actual contact configuration g′ = fC(gij, Sk);
5 Estimate if gij results in conservative-slip push of Sk, finding push

configurations Cij = fα(Sk, g
′);

end
6 For all push configurations C, collect similar push configurations T ;

77 for Similar configuration set Tq,ψ ∈ T do
8 Estimate regions of force closure success on Sk, finding

(Tq,ψ,0, Tq,ψ,1) = fβ(Sk, Tq,ψ);
9 for Contact configuration cij,Sk

∈ Tq,ψ do
10 Predict force closure success sijk ∈ {0, 1} of gij for Sk as cij,Sk

∈ Tq,ψ,1;

end

end

end
11 for Candidate grasp gij ∈ Gm do
12 Compute intermediate grasp quality Qm(gij, S0; Σ, θ);

end
12 Produce grasp set Gm+1 by removing low-quality grasps from Gm according to

parameter R;

end
13 for Candidate grasp gij ∈ G1 do
14 Compute grasp quality Q(gij, S0; Σ, θ);

end
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Figure 3.4: Push failures. In the left example, the gripper contacts outside the friction cone,
pushing away from the center of mass. In the center example, the contact is inside the
friction cone, but the direction of pushing is to the wrong side of the center of mass. In the
right example, the contact is inside the friction cone, but the push will rotate the object
away from alignment.

vertices and center of mass described in Section 3.3 are also parameters. Three parameters
are used for generation of candidate grasps. A filtering parameter dC and a configuration
density parameter ρ are used to determine the set of candidate grasp positions, and the set
of candidate grasp orientations is a third parameter, denoted Φ. The algorithm iteratively
tests part perturbations; the number of iterations and part perturbations in each iteration
is set by the parameter M, where M = |M| is the number of iterations, and Mi is the
number of perturbations tested in iteration i. The total number of part perturbations is
N =

∑
iMi. The final parameter is the grasp elimination criterion for the grasp analysis.

We describe these parameters and each step of our algorithms below.

Evaluating Part Perturbations

For each part perturbation in a part perturbation set, the candidate grasps are evaluated to
estimate whether they achieve conservative-slip push grasps with force closure.

Conservative-Slip Push Conditions

Determining if a stable push can be achieved for a candidate grasp is a multipass process.
The first pass (Stable Edge Pushes) used in this work determines analytically all stable
pushes satisfying certain criteria for an edge. Additionally, a second pass is used to capture
some simple cases not covered by the first pass. Additional passes can be added, all the way
to simulating each candidate grasp to determine stable push success.
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Stable Edge Pushes

The algorithm uses geometric properties of the part to determine all candidate grasps re-
sulting in conservative-slip pushes aligned with a part edge for a given gripper width.

The conditions for success of a zero-slip push are as follows: the part purely rotates about
the contact point without slipping, the part rotates towards stability with the gripper jaw
(that is, the edge rotates toward alignment with the gripper), and once the gripper has two
points of contact, the center of mass must be between these points. This means that either
the gripper jaw can align with the initially-contacted edge or that the gripper jaw contacts
another edge or a convex vertex.

For a conservative-slip push, the gripper must be guaranteed to align with the initially-
contacted edge. Unlike a zero-slip push, the exact motion of the contact point is not known,
so any possible contact with another edge or convex vertex cannot be guaranteed to occur
in any particular configuration.

As shown by Mason [154], the motion of a part pushed at a given contact point is
determined by the friction cone and the direction of pushing. The resulting constraint on
candidate grasps is shown in Figure 3.5. In the conservative-slip regions, the motion of the
gripper is guaranteed to be towards a 0 angle and the center point along the edge. Therefore,
the configuration of the gripper as it slips must stay in the region or enter the zero-slip region,
in which case a zero-slip push occurs. If the gripper becomes aligned without entering the
zero-slip region, the gripper is guaranteed to cover the center of mass, so a successful push
occurs. Because the slip analysis does not predict the exact aligned position of the gripper,
the force closure tests for a slip push must succeed over all possible aligned positions of the
gripper.

Collecting Similar Conservative-Slip Push Configurations

Before evaluating force closure on the candidate grasps that result in conservative-slip pushes,
the conservative-slip push configurations for those candidate grasps are collected into sets
of similar configurations. A similar configuration set often contains all the conservative-slip
pushes for some edge of the part. Because our estimation of force closure for all positions
on an edge can be determined analytically, the estimated closure success of all elements of a
similar configuration set can be evaluated simultaneously, as shown below.

Conditions for Force Closure

Force closure on a part is achieved when the line between the contact points on each side
lies inside the friction cones of both contact points [170]. If there are multiple contact points
on a side, there need be only one successful contact point for force closure.

In our algorithm, force closure is considered to be achieved under three conditions, shown
in Figure 3.6. First, if the second gripper jaw contacts an edge and the contact direction is
within the friction cone, the gripper completes force closure. Second, if the second gripper
jaw contacts a convex vertex, and this convex vertex is opposite a section of the first gripper
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Figure 3.5: Configuration space for fast analysis. The upper half of the figure shows a gripper
of width w contacting the part at position d with (negative) contact angle φ = 30◦, inverse
friction cone bounds b1 and b2 and perpendicular distance r from the center of mass. Contact
with this edge of the part results in the configuration space shown below it; the shaded area
is the region where a conservative-slip push occurs. The red lines in the lower region show the
configuration-space path for a zero-slip push (A) and possible paths for two conservative-slip
pushes (B and C) from initial contact at the points shown. Conservative-slip paths are not
predicted specifically, but cannot increase in contact angle or move away from the center of
mass. If the path intersects the zero-slip region, it follows a zero-slip path, shown by path
B.
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Force closure success

Figure 3.6: Force closure modes. Slip closure is shown by the gripper pair on the right;
friction closure is shown by the gripper pair in the middle; and convex vertex closure is
shown on the right.

jaw that contacts the part, force closure is successful. The third condition involves slip of
the second gripper jaw. If the second gripper jaw can slip along the edge it contacts and
come into contact with an adjacent edge, and this configuration produces valid force closure,
the gripper is considered successful. While this condition is restrictive, it can be determined
for ranges of gripper contact points, whereas more general slip conditions require each grasp
to be tested individually. This allows our conservative-slip push test, which returns a range
of possible aligned positions, to have force closure estimated efficiently for the entire range.

Lower Bound on Probability of Achieving Force Closure

Once the candidate grasp conditions have been evaluated for all part perturbations, the lower
bound on the probability of achieving force closure for that candidate grasp is estimated
using a weighted percentage, where the estimated success or failure on a part perturbation
is weighted by the probability of that situation occurring.

Adaptive Candidate Grasp Removal

Adaptive grasp candidate removal was added to the algorithm after the observation that the
best grasps were already part of the top candidate grasps after only a few part perturbations
had been tested, although their final Q-values were not predictable from their Q-values earlier
in the analysis. Therefore, the adaptive procedure was developed to remove unpromising
grasps, while still testing the promising grasps to refine their Q-values.

After all the part perturbations in a part perturbation set are tested, candidate grasps
with low Q-values are removed from further testing. The criterion for removing a grasp is
the parameter R. The number of grasps eliminated at step m is R |Gm|, giving the total
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grasp evaluations as

η =
M∑
m=1

|Gm|Mm (3.5)

where |Gm| = R |Gm−1| for m = 2, . . . ,M .
The algorithm checks the minimum Q-value of the top (1 − R) |Gm| candidate grasps,

Qmin. If the set of candidate grasps {g |Qg ≥ Qmin} is bigger than (1−R) |Gm|, ties between
the lowest-Q grasps are broken randomly. The elimination criterion balances maximizing
grasp elimination for faster execution with preventing the elimination of grasps that may
eventually prove to have high Q-values. Other elimination criteria are possible; ties could be
included rather than broken randomly, or all grippers above a certain fraction of the current
best Q-value could be retained. However, these criteria do not guarantee a fixed number
of grasp evaluations. We denote the number of grasp evaluations in the adaptive algorithm
normalized to the number of evaluations in the non-adaptive algorithm as η̂ = η

N |G1| .

Algorithm 2: Grasp Planning Algorithm. Highlighted line numbers indicate paral-
lelizable steps.

1 Filter S0 into SC ;

2 Determine nominal contact points P̂ on S0 using SC ;

3 Create candidate grasp set G1 from P̂ and Φ;
44 Create part perturbations S1, S2, . . . , SN of S0;
5 Compute quality of candidate grasps Q using Algorithm 1;

Grasp Planning

The grasp planning algorithm shown in Algorithm 2 uses two additional steps to generate
candidate grasps and part perturbations, which are then analyzed using our grasp analysis
algorithm.

Generating Candidate Grasps

The grasp planning algorithm generates an initial candidate grasp set

G1 = {gij = (p̂i, φj) | p̂i ∈ P̂ , φj ∈ Φ} (3.6)

While each (p̂, φ) pair could be independently generated, we use a fixed set of φ values as
a parameter, and apply them to a generated set of p̂ values, using the method in [123], which
takes as parameters a configuration density ρ, a set of approach angles Φ, and a filtering
parameter dC .

We use a scale-invariant parameter to determine the number of p̂ values (i.e., |P̂ |) for the
part, sample density, denoted ρ. For each edge, a set of p̂ values is generated, linearly spaced
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with the number of points equal to ρ× length of edge
mean edge length

. To reduce the effect of complexity on
ρ, this is computed on a filtered shape SC .

Figure 3.7: Filtering a noisy object. The blue line is the original, noisy polygon, and the red
line is the filtered polygon.

The filtered shape SC is generated using an extension of the Ramer–Douglas–Peucker
(RDP) algorithm [60] [190]. The RDP algorithm smooths a polyline using a distance pa-
rameter (here, dC) that defines the maximum distance a removed vertex can be from the
resulting new edge. In our extension to polygons, every pair of adjacent vertices are tested
by removing the edge between the vertices, smoothing the resulting polyline, and forming a
new polygon with fewer edges by reconnecting the two vertices. The filtered polygon with
the fewest edges is selected. Examples of filtering can be seen in Figure 3.7.

Sampling Part Perturbations

Before testing the candidate grasps, part perturbations are created by sampling from the
distributions of each vertex and the center of mass. The number N of part perturbations is
determined by a parameter to the algorithm, M. The part perturbations are collected into
part perturbation sets S1, . . . ,SM , where |Si| =Mi. In Section 3.5 we determine that using
100 part perturbations provides reliable results. We explore values of M in Section 3.5.

3.5 Experiments

To test the algorithm in simulation, a set of images of brackets were found on Google Image
Search, and manually contoured by tracing a polygon over the image. The shapes produced
by this method are shown as Parts A through I in Figure 3.8, along with three simpler,
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manually-created parts. A comparison with the approach of ignoring uncertainty is presented
in Section 3.5. We evaluated a large number of parameter combinations, which is detailed
in Section 3.5. In Section 3.6, we report results from testing a Cloud-based implementation
of the algorithm.

Except for where noted, tests used vertex variance of 0.2 times the maximum shape
radius (measured from the centroid to the vertices), a center of mass variance of 0.7 times
the maximum shape radius, a gripper width 25% of the maximum shape diameter (measured
between vertices), and a coefficient of friction of 0.7. The variance values are above those
that would likely be encountered in a manufacturing setting, but allow us to more clearly
illustrate the benefits of our algorithm. The tests were run on an four core 3.40 GHz machine
with 16 GB of RAM, using MATLAB R2013a, and on PiCloud, a cloud computing provider.

Analysis of Parts

For one parameter combination, the full results for two parts are shown in Figures 3.9 and
3.10, and best grasp for each of the shapes are shown in Figure 3.8. The parameters for
these figures were dC = 0, ρ = 1.5, and |Φ| = 5.

We observed that the algorithm did not choose edges close to the center of mass when
only zero-slip pushes were allowed. While this result can seem counterintuitive, grasps close
to the center of mass are less robust under our assumptions because an edge close to the
center of mass has a smaller region in which zero-slip pushes can be achieved. A perturbation
in the center of mass will move this region, invalidating a large number of zero-slip pushes
originally in the region. This effect was observed on Part D. The maximum Q-value for a
zero-slip push on the two horizontal edges of Part D is 43.6, but with slip, the maximum is
94.2. The maximum Q-value for a zero-slip push on the vertical left edge is 90.3. The best
grasp on Part J is on an edge close to the center of mass because the edges on either end of
the part are too angled to each other for reliable force closure.

Part B, shown in Figure 3.10, demonstrates the effect of requiring a conservative-slip
push. Grasps on the edges marked α and β only have very low Q values, because most of
each edge is outside the inverse friction cone from the center of mass, meaning any contact
will result in slip. The large angle between edges γ and α causes successful pushes on edge
γ to fail to achieve our conservative force closure conditions. However, force closure can be
achieved against the vertex labeled τ , and this is reflected in the high Q value of some grasps
on edge γ.

Parts F and H show how the differences in the shape can have a large effect on the quality
of grasps, given equal uncertainty. Part F has a very high quality grasp that contacts a flat
edge and closes against a small edge with a convex corner. The best grasp on Part H has
the same properties, but a much lower Q value. The difference between the parts is that
the first edge contacted by the gripper is further from the center of mass on Part F, which
as mentioned above can be problematic, and that the uncertainty in the opposite edges on
Part H can cause the gripper to contact edges that are more angled.
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Figure 3.8: The test set of brackets. The g∗ grasps for parameters dC = 0, ρ = 1.5, and
|Φ| = 5 are depicted. The grasps are indicated with the pushing jaw in contact with the part,
and the closing jaw opposite it away from the part. “Whisker diagrams” showing detailed
results for Parts A and B can be seen in Figures 3.9 and 3.10, respectively.
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Part G has a problematic shape for the algorithm. The size of the gripper prevents it
from contacting the edges very near the center of mass. The long, straight edges are outside
the inverse friction cone of the center of mass, meaning an contact on them will slip beyond
the allowable region that the algorithm can guarantee will end in a stable push. The ends
of the part are narrow and consist of several different edges, which, under perturbation, can
prevent conservative-slip pushes or force closure from being achieved.

Part K is also problematic. As shown in Table 3.1, a 100% successful grasp is possible,
but is only found with a very dense grasp set. With the grasp set used for Figure 3.8, the
best grasp only has a Q-value of 52.0. This is because the shape of part means grippers
that are in good position relative to the center of mass are in areas that are very sensitive
for force closure. This shape shows the effect of using push grasps: while a pinch grasp
could grasp either of the “legs” of the shape, a push grasp contacting these areas will, due
to the location of the center of mass, cause the shape to rotate away from alignment with
the gripper, eventually causing the shape to slip out of the gripper.

Comparison with Ignoring Shape Uncertainty

We compared our results to a first-order grasp planner ignoring shape uncertainty, which
ran the algorithm simply on the nominal part, without considering perturbations. Generally,
many candidate grasps are predicted to achieve force closure on the nominal part. However,
when subject to uncertainty, many of these grasps become considerably less desirable. For
comparison, we ran 84 tests using various parameter values (described in Section 3.5), and
for each run, the candidate grasps predicted to achieve force closure on the nominal part
were tracked and their final quality compared. On average, only 4% of these candidate
grasps were also the best grasps after 100 iterations of the algorithm. After 100 iterations,
the average Q-value of these candidate grasps was only 58% of the value of Q∗.

Sensitivity Analysis

We performed a sensitivity analysis on the parameters for the candidate grasp generation
step in the algorithm, which are the maximum distance for the filtering step dC , sample
density ρ, and the approach angle set Φ.

The number of nominal contact points is critical to maximizing the value ofQ∗ grasps. For
a given edge in contact with the first gripper jaw, force closure depends on the opposite edges,
which define regions where closure is or is not achieved. With increasing part complexity,
the regions become smaller and more numerous, and edges must be covered more densely
with contact points to ensure that the regions in which force closure is achieved are found.

To evaluate combinations of values for the parameters, the parameter space was gridded
and tested. For filtering, the scale-invariant measure used was fraction of maximum part
radius. Increasing values were used until it was judged that large features of the test parts
were being filtered out. For the approach angles, a wide, dense range of approach angles were
tested, 15 linearly spaced directions from −45◦ to 45◦, inclusive, along with a high value of
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Figure 3.9: “Whisker diagram” showing algorithm results for Part A, using dC = 0, ρ = 1.5,
and |Φ| = 5. Each line segment represents a candidate grasp, and indicates its nominal
contact point on the part. The line segment indicates the approach lines for the grasp,
and is orthogonal to the gripper jaw. The length indicating the Q-value relative to other
segments. The approach line with the highest Q-value (i.e., the longest line segment) is
labeled, and the jaw positions for this grasp is illustrated in Figure 3.8.
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Part Q∗ runtime (s) dC ρ |Φ|
A 86.0 47.6 0.03 1.5 5
A 91.3 102.9 0.03 5 5
A 92.7 48.8 0 1.5 5
B 65.9 19.4 0.09 1.5 5
B 80.6 32.7 0.03 1.5 5
B 85.7 34.8 0 1.5 5
C 76.6 40.4 0.06 1.5 5
C 85.0 31.5 0.09 1.5 5
C 89.1 110.8 0.09 7.5 5
C 90.0 156.5 0 5 5
D 93.2 27.3 0.09 1.5 5
D 98.2 75.8 0.03 7.5 5
D 98.3 219.6 0.06 15 9
E 88.4 28.1 0.09 1.5 5
E 98.1 47.4 0.03 1.5 5
E 100.0 71.4 0 3 5
F 97.3 37.2 0.09 1.5 5
F 99.0 281.5 0.03 7.5 9
G 5.2 15.5 0.09 1.5 5
G 12.2 61.7 0 3 5
G 17.1 184.6 0.06 15 9
H 77.8 30.3 0.09 1.5 5
H 93.2 78.5 0.03 5 5
H 94.0 236.7 0.06 15 9
I 81.1 35.9 0.09 1.5 5
I 98.0 57.5 0.06 1.5 5
I 99.0 118.4 0 1.5 5
J 100.0 14.7 0 1.5 5
J 100.0 125.3 0.03 20 9
K 99.0 37.0 0.09 7.5 5
K 99.5 99.9 0.06 15 9
K 100.0 123.4 0 20 9
L 90.6 16.6 0.09 1.5 5
L 91.0 146.2 0 20 9
L 95.2 17.0 0 1.5 5

Table 3.1: Selected results from the sensitivity analysis for parts in Figure 3.8, showing part
name, value of Q∗, runtime using MATLAB R2013a on an four core 3.40 GHz computer with
16 GB of RAM, filtering parameter dC , sample density ρ, and number of approach angles
|Φ|, using µ = 0.7.
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Figure 3.10: “Whisker diagram” showing algorithm results for Part B, using dC = 0, ρ = 1.5,
and |Φ| = 5. The labels are used in Section 3.5 to illustrate various aspects of the results.
Each line segment represents a candidate grasp, and indicates its nominal contact point on
the part. The line segment indicates the approach lines for the grasp, and is orthogonal to
the gripper jaw. The length indicating the Q-value relative to other segments. The approach
line with the highest Q-value (i.e., the longest line segment) is labeled, and the jaw positions
for this grasp is illustrated in Figure 3.8.

points per mean edge and no filtering. For all parts tested, the maximum magnitude was
never above 13◦. We subsequently chose ±15◦ as the range bounds. For sample density (ρ),
the value was increased until no further gain in Q∗ was seen, and this was used as an upper
bound.

The parameter grid included four filtering distances, three sets of approach angles, and
seven values for points per mean edge. The filtering distances were 0 (i.e., no filtering other
than combining collinear edges), 0.03, 0.06, and 0.09. For approach angles, three sets of
linearly spaced points between −15◦ and 15◦, inclusive, were used, with 5, 9, and 15 points,
respectively. Only odd values were chosen such that 0◦ would be included. For sample
density, the following seven values were used: 1.5, 3, 5, 7.5, 10, 15, and 20.

The results from the gridded parameter space illustrated the trade-off between Q∗ and
runtime; selected results can be seen in Table 3.1. Additionally, the discontinuous nature of
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force closure on polygonal parts was apparent: holding other parameters constant, increasing
the sample density sometimes decreased Q∗, when a small region of an edge had the highest
probability, and was alternately hit or missed by the spacing of the nominal contact points.

Figure 3.11: Q∗ vs. number of part perturbations evaluated for parts A-I in the test set.
The point at which g∗ stops changing is marked with an asterisk.

Number of Part Perturbations

Reducing the set of part perturbations reduces the runtime of the algorithm, but runs the
risk of individual samples having a large effect on the result. We investigated the effect
of this trade-off by generating 500 part perturbations and running the algorithm on each
sequential subset of 1 to 500 perturbations. The value of Q∗ over this range can be seen in
Figure 3.11. In the first few iterations, there are some candidate grasps that are predicted to
achieve force closure for all part perturbations tested so far, so the maximum probability is at
1. By the point where 100 part perturbations had been processed, the maximum probability
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was always within 5% of its value at 500 perturbations. Additionally, g∗ stopped changing
before 100 perturbations for all but one part (that is, the best grasp was identified early).
This suggests a convergence heuristic: once the Q∗ stops changing by more than 5% after
testing a new part perturbation, perhaps measured over a moving window, the best grasp
has likely been found and the algorithm can terminate.

Tolerancing

To test the effectiveness of our algorithm for estimating part tolerance bounds, we developed
a procedure to find tolerance limits that allow a grasp to stay above a given Q threshold.
Because the variance of different aspects of the part may affect a grasp to a greater or lesser
degree, the variances for the parts were split into two groups: the variance of the vertices
for the initial contact edge, and the variance of the remaining vertices. The vertices for the
initial contact edge along with the center of mass determine the success of the stable push,
while other vertices determine the success of closure.

To test this tolerance bounding procedure and the effect of variance on closure, three
simple parts were created with different features. These parts are shown in Figure 3.12.
Part A, a simple rectangle, tested closure on a flat edge. Part B introduced a single convex
vertex instead of a flat edge, to test closure against a vertex. Part C used a set of three
vertices to test the effect of complex edges on closure. A fourth part, Part D, was created
to test the effect of variance on the initial push. It is a thin rectangle, with the edge to be
tested close to the center of mass, creating a smaller valid region more sensitive to higher
tolerances. The best grasp on the highlighted edge shown in Figure 3.12 was found, and this
grasp was tested under increasing variance for the near-edge vertices and the other vertices.
The center of mass was fixed to the centroid of each perturbation.

The results for Parts A, B, and C suggest that Q-values are significantly more sensitive to
near-edge variance. As shown in Figure 3.13, as the variance of near-edge vertices increases
while the remaining variances are kept constant, the value of Q∗ reduces significantly. Keep-
ing the near-edge variance constant while increasing the others had a smaller effect on Q∗,
staying within 14% of its initial value.

While the response of these parts was similar when considering the relative change of
Q∗, the absolute value showed differences between the parts. The minimum Q∗ for Part A
was 28.2, for Part B, 46.3, and for Part C, 43.9. Part A had lower Q∗-values because it used
only friction closure. Large movements of the vertices can cause the angle between the near
edge and the far edge to exceed frictional limits. Closure against a convex vertex is more
robust to variance, since such closure does not depend on an angle with the gripper, and if
it becomes concave, slip closure may allow force closure.

Part D retained Q∗ = 100 for tests with high tolerances in the opposite vertices and
center of mass, but low tolerances in the adjacent vertices.

We found that the initial contact edge vertices required lower variances, suggesting that
success of the stable push was the component of the grasp most sensitive to higher toler-
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Figure 3.12: Tolerancing results for selected parts. The best grasps on the highlighted edge
were found with small tolerances shown as the smaller circles around the vertices with radius
two standard deviations (95% confidence interval). The gripper width used for all parts is
shown next to the part. Tests were performed as described in Section 3.5 using dC = 0,
ρ = 4, and |Φ| = 5, and for the indicated tests from that section, the tolerance for each
vertex and center of mass is shown along with 100 perturbations of each part. Parts A
and B are shown with tolerances that give comparable Q̂∗ (64.5 and 66.9, respectively), and
suggest that friction closure is more sensitive to increased tolerances. Part D suggests that,
relative to Part A, narrow parts have greater sensitivity to near-edge tolerances.

ances. In designing a part, tolerance specifications could be defined using the results of this
maximum allowable variance test.

Adaptive Sampling

The adaptive removal procedure introduced two new parameters, so we tested these param-
eters to determine their effect on the algorithm’s performance.

The adaptive grasp candidate removal step involves a tradeoff between low execution time
and high-quality grasps. In particular, if a fixed number of grasp evaluations are allowed,
then the larger the initial part perturbation set, the more aggressive the grasp candidate
removal step must be. To explore this tradeoff, we tested the adaptive grasp candidate
removal step by varying the parameters for both initial part perturbation set size and the
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Figure 3.13: Effect of increasing tolerances on quality. Tolerance is shown as vertex variance
normalized to the initial variance. Each set of three lines show the results for Parts A, B,
and C. The solid lines show the average Q̂∗ for increasing near-edge vertex variance, keeping
other variance constant. The dashed lines show the average Q̂∗ for increasing values of the
non-near-edge vertex variance, keeping the near-edge variance constant.
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Figure 3.14: Candidate grasps eliminated by the adaptive candidate grasp removal. Elim-
inated grasps are marked in red. The parameters for this test were dC = 0, ρ = 1.5, and
|Φ| = 5, R = 0.9, and M1 = 19.

grasp elimination criterion. We used a single grasp reduction step (that is, |M| = 2) to do
initial testing; our tests using more steps are described at the end of this section.

First, we ran the non-adaptive algorithm (i.e., |M| = 1) on the dataset of parts from
[123]; each of the twelve parts was tested using twenty separately generated perturbation
sets (giving a total of 120 part/perturbation set combinations), using dC = 0.06, ρ = 6, and
|Φ| = 5, and N = 70. The value of Q∗ for each test was thus the maximum Q∗ that could
be found by the adaptive algorithm (i.e., it was Q∗max). Then, for each initial perturbation
set size M1 = 1, . . . , 70 all possible distinct values of the adaptive elimination threshold were
found. For each test, the unique Q-values at the M1-th iteration were found, and the values
of the elimination threshold that would select those Q-values were found. Then, for each
initial perturbation set size, all of the distinct values of the adaptive elimination threshold
R from all of the tests were combined into a set, and for each threshold value (which was
determined from a single part/perturbation set), the outcome of the adaptive algorithm on
all of the 120 part/perturbation sets using that threshold value was analyzed.

To analyze the outcome of the adaptive algorithm on a part/perturbation set, we used
data from the already-run non-adaptive test. At the given M1-th iteration, the grasp re-
duction step was simulated from the Q-values calculated previously. However, because the
grasp elimination criterion randomly breaks ties, it couldn’t be used directly. Instead, the
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Figure 3.15: Tradeoff between execution time and grasp quality, showing Q̂∗ vs. percent
of grasp candidate evaluations performed (100 × η̂) for multiple test parts and adaptive
parameters. The graph is truncated at 10% on the x axis because all per-part expected and
worst-case values after this have a Q̂∗ of 1. A value of 1 on the y axis indicates the overall
best gripper was still found by the adaptive algorithm. The Pareto curve of average expected
Q̂∗ over all parts tested is shown as a solid magenta line, and the Pareto curve of worst case
is shown as a dashed black line. The red and blue lines show the lower bound of the Pareto
curves for per-part expected and worst-case values, respectively.
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worst-case and expected values were found. The worst value was found by retaining the tied
candidate grasps with the lowest final Q-values. The expected value was calculated as the
sum over all combinations of the maximum final Q-value in that combination weighted by
the likelihood of occurrence of the combination.

Figure 3.16: Tradeoff in worst-case quality (color) and execution time (lines) over parameter

combinations. The color of each dot indicates the average worst-case Q̂∗ for the parameter
values. For example, the point in the upper left represents M1 = 1 and 99.85% of grasps
eliminated (i.e., R = 0.0015), meaning after one part perturbation is tested, one grasp is
selected from the successful grasps on that perturbation, and tested on the remainder of
the perturbations. This point has a Q̂∗ of 0.577. Contours of η̂ between 0.05 and 0.25 are
shown. The parameter values at any point along a contour require the same number of grasp
evaluations.

The result of this analysis is shown in Figure 3.15. The adaptive sampling was able
to aggressively reduce the candidate grasp set without reducing Q̂∗. Considering the best
parameter values for each part individually, the results suggest a very low number of per-
turbations must be tested to find high quality grasps. Above η̂ = 0.031 (that is, 3.1% of
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the possible grasp evaluations are performed), the expected value of Q∗ was within 10% of
the maximum, and the worst case values reached the maximum by η̂ = 0.08. Averaging
Q̂∗ across all parts for each parameter combination, the performance reduces slightly: the
expected value of Q̂∗ does not reach the maximum until η̂ = 0.277, and the worst case did
not reach maximum until η̂ = 0.285. However, for η̂ ≥ 0.08 (when the per-part worst case

Q̂∗ reaches 1), the best expected value of Q̂∗ averaged over all parts was 0.978, and the worst
case was 0.926.

This analysis would allow a designer to choose the best adaptive parameters satisfying
design constraints, either reducing the number of evaluations given a minimum worst case
or expected value, or maximizing worst case or expected value given a maximum number of
evaluations.

Figure 3.15 does not indicate what parameter values produce the displayed Pareto curves.
Figure 3.16 shows the average worst-case value of Q̂∗ over all tests for parameter ranges
M1 ∈ [1, 10] and R ∈ [0.85, 1]. The contours of η̂ are shown for several values between 0.05
and 0.25. Given a low limit on grasp evaluations, this analysis allows the best parameter
combination satisfying the constraint to be found.

Good grasps are identified after testing a small number of part perturbations, as shown
in Section 3.5. This allows the adaptive grasp elimination step to cull unpromising grasp
candidates, and use the remaining part perturbations to refine the Q-value of the good grasp
candidates. We experimented with using more than one iteration of grasp candidate removal,
but the extra reduction in number of grasp candidates was of minimal benefit.

3.6 Cloud Computing Experiments

We tested the scalability of our algorithm in the Cloud using PiCloud, a platform that
automates high performance computing through Cloud-based computation using Amazon
EC2 [180]. PiCloud allows for an executable, along with its environment, to be replicated
across any number of nodes in the Cloud and run in parallel.

Our Cloud-based implementation is modeled on MapReduce [52]. It uses a set of nodes, all
started in parallel, to each process a portion of the part perturbation set for the non-adaptive
algorithm. This corresponds to parallelizing Step 2 of Algorithm 1, as well as parallelizing the
actual perturbation sampling itself. The results from each node were collected and combined
to produce the algorithm results.

In our tests, the executable was a compiled MATLAB script, with input parameters spec-
ifying the part, algorithm parameters, and number of perturbations to test. The executable
was placed in an environment with the appropriate part data, and this environment was
replicated across all the nodes in the test. PiCloud would then start all the nodes and run
the executable on each one. The executable outputs a results file; all the results files were
then collated locally to produce the overall output of the algorithm. The PiCloud nodes
used “c2” cores, which have 800 MB of memory and 2.5 “compute units” [181] as defined by
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Amazon for EC2. A compute unit provides “the equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor” [10].

Measuring Running Time

PiCloud provides the total running time of each node, which includes the time to start up the
node itself as well as the time to start the MATLAB script. We also measured the running
time of the algorithm within MATLAB (on each node). However, PiCloud does not have
any mechanism for including node-identifying information with the results files, we could
not match a MATLAB running time to a specific PiCloud node running time. Therefore,
we have two sets of timing information, one of just the algorithm and one including the
overhead of Cloud-based execution. Because of the inability to match this information on a
per-node basis, they can only be compared in aggregate.

The total running time of the algorithm when running in parallel is the longest time
taken by any node, which is called synchronous parallelism. This is because they are all
started at the same time, but the algorithm is only finished once all nodes have returned
their data. We explore an alternative to this in Section 3.6.

We measured speedup in three values: the average MATLAB runtime and the overall
PiCloud and MATLAB runtimes (that is, the maximum over nodes in each test).

Test Runs

Using three configurations, we ran two sets of tests, one to test the run times over all parts,
and one to test the variability of run times on a single part.

Configuration 1 was dC = 0, ρ = 1.5, and |Φ| = 5. Configuration 2 was dC = 0.03,
ρ = 7.5, and |Φ| = 9. Configuration 3 was dC = 0.09, ρ = 20, and |Φ| = 15. We chose Con-
figurations 1 and 3 as corners of the parameter grid used in Section 3.5, and Configuration 2
as midway between them. Thus Configuration 1 has a very sparse candidate grasp set, and
Configuration 3 has a very dense candidate grasp set.

Speedup

The speedup for the average node MATLAB running time for all parts is shown in Fig-
ure 3.17. The plot shows that the denser the configuration, the closer the speedup is to
being completely linear. The best speedups achieved for 500 nodes were 515× for Part A
and 512× for Part C, both with Configuration 3. The best speedup for the much sparser
Configuration 1, however, were 263× for Part I. These are lower because of overhead in
the algorithm; the average running time for Configuration 3 was 8.2 times longer than for
Configuration 1.

The overall running time is dependent on the maximum node running time, rather than
the average, i.e., it is the worst-case running time. The speedups for overall MATLAB
running time are shown in Figure 3.18. The best speedups, 393× for Part C and 393×
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Figure 3.17: Average MATLAB runtime speedup vs. number of nodes. The average, mini-
mum, and maximum are shown for 1, 10, 50, 100, 250, and 500 nodes. The highest speedup
is 515×, for Part A with Configuration 3.

for Part A, are much less than for the average running time. By increasing the number of
nodes, the average running time goes down, but the probability of one node taking much
longer than the average (and thus driving up the overall running time) goes up. We discuss
a strategy to reduce this effect in Section 3.6.

The speedups for overall PiCloud running time are shown in Figure 3.19. The best
speedup, 97×, is nearly an order of magnitude lower than the MATLAB speedups. The
reason for this is that the PiCloud node startup time is a large overhead, so even as the
MATLAB runtimes reduce, the overall time taken including the PiCloud node overhead
does not decrease as much.
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Figure 3.18: Overall (i.e., worst case) MATLAB runtime speedup vs. number of nodes. The
average, minimum, and maximum are shown for 1, 10, 50, 100, 250, and 500 nodes. The
highest speedup is 393×, for Part C with Configuration 3. The speedups are less than for
the average times because with increasing numbers of nodes, the probability increases of a
node taking significantly longer than average, increasing the overall (i.e., worst case) running
time.

Overhead estimation

Since we could not match PiCloud node running times to the MATLAB running times, we
looked at the aggregate over each test. For each test, we subtracted the average MATLAB
runtime from the average node runtime. Then, we took the minimum value over all tests,
since this is a lower bound on the running time. We found this value to be 41.6 seconds.
However, it ranged up to 133 seconds; this variability is a fundamental characteristic of
on-demand computing. It could be ameliorated by using more expensive reserved Cloud
computing infrastructure.
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Figure 3.19: Overall (i.e., worst case) PiCloud runtime speedup vs. number of nodes. The
average, minimum, and maximum are shown for 1, 10, 50, 100, 250, and 500 nodes. The
highest speedup is 97×, for Part C with Configuration 3. In addition to lower speedups due
to the probability of an outlier that increases the overall (i.e., worst case) runtime increasing
with increasing numbers of nodes, the overhead of starting a PiCloud node is large relative
to the algorithm running time. We estimate this overhead in Section 3.6.
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Configuration 1 Configuration 2 Configuration 3

Number PiCloud MATLAB PiCloud MATLAB PiCloud MATLAB

of nodes runtime (s) runtime (s) runtime (s) runtime (s) runtime (s) runtime (s)

10 139.4 ± 9.2 72.6 ± 3.7 1022.2 ± 75.1 944.2 ± 66.5 1109.1 ± 106.6 1023.9 ± 96.1

25 98.1 ± 21.7 29.5 ± 5.4 496.3 ± 77.9 407.8 ± 60.5 197.7 ± 26.6 140.1 ± 19.7

50 74.8 ± 18.0 14.2 ± 2.1 291.5 ± 56.6 208.9 ± 38.1 289.3 ± 39.5 218.3 ± 30.1

100 71.3 ± 18.7 8.0 ± 1.5 195.2 ± 30.5 107.2 ± 15.6 182.3 ± 29.8 106.2 ± 17.7

250 62.8 ± 12.8 4.1 ± 0.8 135.3 ± 18.9 44.1 ± 5.7 118.2 ± 18.7 42.8 ± 6.7

500 60.3 ± 11.5 2.6 ± 0.5 105.7 ± 20.9 20.0 ± 3.8 90.9 ± 19.9 18.8 ± 6.2

Table 3.2: Results for variation in running times for Cloud-based implementation. The tests
were run on Part A with 500 part perturbations divided evenly over the nodes. Configura-
tion 1 is dC = 0, ρ = 1.5, and |Φ| = 5; Configuration 2 is dC = 0.09, ρ = 20, and |Φ| = 15;
and Configuration 3 is dC = 0.09, ρ = 20, and |Φ| = 15. Each test was run five times, and
the average node runtimes for both PiCloud and MATLAB are reported here.

Variability

We ran a test to determine the variability of running times. We used Part A, the same three
configurations and five node numbers used above, and ran each combination of configuration
and number of nodes five times. The results are shown in Table 3.2. We found that the
average node runtimes had a larger variance as the number of nodes increased. For 10 nodes,
the variance was 7.9% of the mean, but this increased up to 20.3% for 500 nodes. This is
likely due to the variance in processing time for individual perturbations, which are averaged
out over larger sets of perturbations when using fewer nodes.

Asynchronous Parallelism

The overall runtime of the algorithm is the maximum node runtime, since all nodes are
started in parallel at the same time, but the algorithm is only finished once the results
from all nodes are in. With more nodes, even though the average node runtime may drop
considerably, it is more likely for a node to be further from the mean, driving up the overall
runtime relative to the average. In a production setting, the possibility of nodes never
completing due to network failures or other causes must also be taken into account. With
this factor considered, we expected speedups for the overall runtime to be less than the
speedups for the average node runtime.

This method of parallelism is called synchronous parallelism. To improve the overall
running time relative to the average node runtime, we considered the practice of only waiting
for a subset of nodes to finish, called asynchronous parallelism. A usual approach is to set
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Figure 3.20: Experimental setup for Object M.

a time limit, and only nodes that finish within the time limit are used. However, for this
algorithm, the running time is not well-known in advance. Therefore, we considered starting
a set of nodes to process 500 part perturbations, but only waiting for enough nodes to finish
to obtain 100 perturbations (i.e., 1

5
of the nodes). We tested this approach using 10, 50, 100,

250, and 500 nodes.
This reduces the vulnerability of runtime to outliers. We found that on average, this

method would have reduced the overall PiCloud runtime on average 1.43×. The speedup
ranged between 1.04× to 2.00×. It is possible that there is a correlation between the results
of the algorithm and the PiCloud node runtime; in this case, taking the earliest nodes to
complete may produce biased results. In future work, we will explore this possibility.

3.7 Physical Grasp Execution Experiments

An object was tested with the Willow Garage PR2 robot [248], a two-armed mobile manip-
ulator. The experimental setup can be seen in Figure 3.20. Using a whiteboard as a work
surface, the object was imaged and contoured to get the shape using the OpenCV image
processing library. The algorithm was run using parameters dI = 0.002, dC = 0, ρ = 10, and
|Φ| = 5.

For Object M, an electrical plug, three representative grasps were tested (shown in Fig-
ure 3.21), with five trial runs each. The first grasp, with Q = Q∗ = 84.4, achieved force
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Figure 3.21: Grasps tested for Object M.

closure for all five trials. The second grasp, with Q = 54.5, also achieved force closure for
all five trials. The third grasp, with Q = 23.3, caused the object to rotate out of alignment
and failed to achieve force closure for all trials. This grasp failed in the test because of
positioning error in the gripper and in the actual center of mass versus in the model.

These experiments were performed with a single part, which means there is no actual
variance present. In future work, we will use 3D printing to create perturbations of a nominal
part, which will allow us to more precisely test the predictions of our algorithm.

3.8 Simulation-based Analysis

The geometric analysis presented in this chapter is conservative. It considers zero-slip and
conservative-slip pushes, but only those that align with the gripper corner remaining on the
originally-contacted edge. It is possible for stable pushes to result from many other modalities
that are difficult to analyze geometrically. Additionally, we considered only very conservative
closure conditions that, at most, involve minimal movement of the gripper relative to the
object.

To explore if we could analyze push and closure conditions in a less conservative manner,
we developed a quasi-static simulation engine based on Box2d, a commonly-used physics
engine.

There is a large body of work on computing grasp quality metrics [24, 67, 163]. However,
the vast majority of these methods do not consider uncertainty in the pose of the part.
Previously in this chapter, we have considered grasping with shape uncertainty for polygonal
parts using a very conservative geometric test to speed the evaluation of grasps. Other
approaches have allowed for grasping of parts where the pose is completely unknown due to
absence of sensing [79]; however, this requires multiple grasps to be executed. Confidence
levels can also allow different sensing modalities to be combined for grasp planning [26].

Grasping with pose uncertainty has also been explored for general 3D parts [48, 98,
129]. While this work could, in theory, be used for parts that can be modeled as extruded
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polygons, there are two aspects which motivate our approach. First, planar grasping on
a surface requires reasoning about pushing the part on the work surface using the gripper
surface, which can be very difficult to model with a dynamic simulator. Second, efficiency is
important when the grasp quality evaluation is part of an iterative design procedure. A cycle
time of hours or greater reduces the ability of the designer to test different configurations,
limiting their flexibility.

In this section, we present a framework for efficient evaluation of push-grasps for extruded
polygonal parts on a planar work surface using a parallel jaw gripper. While the exact inter-
action between the gripper and part is difficult to determine or model, the relative motion
between them can be calculated. We use a quasi-static simulation to predict this relative
motion. We use a Monte Carlo approach similar to Kim et al. [129] to accommodate pose
uncertainty. We sample poses from the uncertainty distribution, and execute simulations to
evaluate grasp success. Instead of just using the average of grasp success across the samples
[129], the overall grasp quality is calculated using a weighted average, where the weight for
each sample is the probability of that sample occurring.

With a Monte Carlo approach, every sample could be processed independently. This
aspect means that the algorithm can take advantage of the massively parallel computing
power available in the Cloud, dramatically shortening the execution time [126].

Our experiments suggest that while position uncertainty has a direct effect on quality,
orientation uncertainty has complex effects which depend on part shape and symmetry.
This supports our hypothesis that a simulation-based grasp quality metric is important for
comparing different grasps under varying levels of pose uncertainty.

Problem Statement

We consider the extruded polygonal shapes and parallel jaw gripper as used previously in this
chapter. However, for this section we consider only uncertainty in pose, to reduce the dimen-
sionality of the sampling. We assume that the uncertainty in the part pose can be modeled
as independent Gaussian distributions on the position and orientation; because of the nature
of parallel jaw grippers, we only consider uncertainty in the direction perpendicular to the
closing axis of the gripper.

The input to the algorithm is a polygonal part, the gripper width and friction, a pre-grasp
pose, and the standard deviation for both position and orientation uncertainty. The output
of the algorithm is a quality between 0 and 1, estimating the probability of success of the
grasp on the object under the given pose uncertainty.

Method

We use a quasi-static simulation to determine grasp quality based on a Monte Carlo sampling
approach. We use Box2D [29], a dynamic simulation engine written in C++, to efficiently
simulate push-grasps. Accurately simulating the interactions between the part and work
surface as part of the push-grasping procedure is difficult since it requires calculation of the
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center of rotation, which requires empirical testing to determine the pressure distribution
on the surface. This is not provided in Box2D. Instead, we model quasi-static motion using
Box2D with a model similar to that proposed by Dogar et al. [58].

The quasi-static simulation is distinguished from using slow-moving objects in a dynamic
simulation in that the relative motion of the objects in simulation is correct, but the absolute
motions of the objects required to produce these relative motions cannot be accurately
predicted by the simulation.

Once the simulation has converged, i.e., the part and gripper jaws have stopped moving,
we determine if force-closure is achieved using the test provided by Nguyen [171]. We note
that other grasp quality measures can also be used for the force-closure test [24, 67].

A fixed number of samples are drawn from the pose distribution, and the simulation is
used to analyze if force closure is achieved for each one, resulting in a quality of either 0 or
1. The grasp quality is calculated as a weighted average of these 0s and 1s, where the weight
for each result is the value of the probability density function for the pose of that sample.

Results

We demonstrate an example analysis of a single grasp, using the grasp and polygonal part
shown as A1 in Figure 3.22 under varying levels of position and orientation uncertainty.
In this section, the uncertainties are all zero-mean Gaussians and are specified in terms of
standard deviation.

We tested the part under varying both the position and orientation uncertainty, where
each position-orientation uncertainty pair was tested using 100 samples. We tested 100
such uncertainty pairs, using 10 linearly-spaced values for position uncertainty, ranging from
0.055d to 1.11d, where d is the diameter of the part, and 10 linearly-spaced values for
orientation uncertainty, ranging from 5◦ to 60◦.

The results are shown in Figure 3.23. As expected, the quality decreases with increasing
position uncertainty. The quality does not, however, uniformly decrease with increasing ori-
entation uncertainty. With varying orientation, different features of the part are contacted
by the pushing gripper jaw. Depending on the shape of the part, higher orientation un-
certainty could in fact be beneficial to grasp quality if it makes features amenable to push
grasps more likely to come into contact with the pushing gripper jaw.

The maximum quality, 0.550, was achieved with a position uncertainty of 0.172d and
an orientation uncertainty of 60◦. The minimum uncertainty, 0.055d and 5◦, had a quality
of 0.452. The minimum quality, 0.033, occurred with a position uncertainty of 0.874d and
an orientation uncertainty of 41.7◦. This suggests that the relationship between the level of
uncertainty in part pose and grasp quality is not trivial, and that simulation-based evaluation
of the grasp quality can be beneficial.

The overall execution time for this test, which tested a single grasp on a total of 10, 000
samples, was 317 seconds. This time could be substantially reduced through elimination
of simulation steps. For example, the grippers start at a distance guaranteed to be out of
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Figure 3.22: Example of execution of the same grasp on two different poses for a part
modeled on a tape dispenser. The pre-grasps are labeled A1 and B1. Grasp A is successful
at achieving force closure, as shown in A2. Grasp B is unsuccessful, with the part being
pushed out of the gripper, as shown in B2. We use quasi-static simulation to evaluate grasp
success/failure.

collision with the part; the position of initial collision could be determined and the gripper
could start at that position.

3.9 Discussion

We have presented an approach for quickly analyzing conservative-slip push grasps on planar
parts by finding the value of a quality metric that estimates a lower bound on the probability
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Figure 3.23: Simulation results for the part and grasp shown in A1 of Figure 3.22. Each
dot indicates a test using 100 samples from the distribution using the parameters indicated,
with the position uncertainty ranging from 0.055d to 1.11d, where d is the diameter of the
part, and the orientation uncertainty ranges from 5◦ to 60◦. The color of the dot indicates
the quality, with a fully black dot indicating a quality of 1 (i.e., all samples successful) to
white for a quality of 0. The dots shown range in quality from 0.550 to 0.033.

of force closure. This sampling-based algorithm is well-suited for cloud-based execution
as shown in Section 3.6. We investigated the number of perturbations needed to reliably
evaluate the quality of a grasp, and the effect of increasing tolerance on grasp quality. We
have also presented an adaptive elimination procedure to remove low-quality grasps after
a number of part perturbations have been tested. The adaptive elimination step reduces
grasp evaluations by 91.5% while maintaining 92.6% of grasp quality. We reported results
from a Cloud-based implementation, obtaining a maximum of 445× speedup with 500 nodes,
suggesting our algorithm scales well with increasing parallelism.
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Chapter 4

Cloud-Based Grasping with Google
Goggles

4.1 Introduction

Consider the goal of a household robot that can reliably declutter floors, tables, and desks
by identifying objects, grasping them, and moving them to appropriate destinations such as
shelves, cabinets, closets, or trash cans. Errors in object recognition could be costly: an un-
wrapped chocolate bar could be mistaken for a cellphone and moved to the charging station,
or vice versa—a cellphone could be placed in the trash can. Recognition in unstructured
environments such as homes is challenging as the set of objects that may be encountered
dynamically grows as our global economy designs new products at an increasing pace to
satisfy consumer and shareholder demands.

The Cloud—the Internet and its associated data and users—is a vast potential source
for computation and data about objects, their semantics, and how to manipulate them [62]
[90]. People upload millions of digital photos every day and there are several image labeling
projects using humans and machine learning [206] [220] [6]. In this chapter we propose an
architecture that integrates Google’s object recognition engine with open-source toolkits and
a sampling-based grasping algorithm to recognize and grasp objects.

Although networked robotics has a long history [105] [83] [82], Cloud Computing facil-
itates massively parallel computation and real-time sharing of vast data resources. Cloud
Robotics has potential to improve robot performance in at least five ways [81]: 1) Big Data:
indexing a global library of images, maps, and object data [20] [38], 2) Cloud Computing:
parallel grid computing on demand for statistical analysis, learning, and motion planning
[16], 3) Open-Source / Open-Access: humans sharing code, data, algorithms, and hardware
designs [202] [227] [236], 4) Collective Robot Learning: robots sharing trajectories, control
policies, and outcomes, and 5) Crowdsourcing and call centers: offline and on-demand human
guidance for evaluation, learning, and error recovery [39] [219].

This chapter considers how Big Data and Cloud Computing can enhance robot grasping.
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Figure 4.1: After training, when an object is presented to the Willow Garage PR2 robot,
the onboard camera sends an image to a Google server which returns a (possibly empty) set
of recognized objects with associated 3D models and confidence values. For each object, the
server also returns an associated set of grasps with associated confidence values. A set of
measured 3D depth points is processed with this data locally to estimate object pose and
select a grasp for execution or a report that the confidence values are insufficient for grasp
selection. After executing a grasp, the robot assesses the outcome and stores results in the
cloud server for future reference.

We train an object recognition server on a set of objects and link it with a database of CAD
models and candidate grasp sets for each object, where the candidate grasp sets are selected
using a variant on the quality measure from the work in Chapter 3, where we studied how
parallel computation in the cloud can facilitate computing of optimal grasps in the presence
of shape uncertainty. We extend the sampling based approach to consider 3D objects with
uncertainty in pose.

We report two sets of experiments, the first with a set of six household objects and the
second with 100 objects. We used the Willow Garage PR2 robot [248] and created reference
3D mesh models and sets of candidate grasps, which were uploaded to the server.
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Figure 4.2: System Architecture for offline phase. Digital photos of each object are recorded
to train the object recognition server. A 3D CAD model of each object is created and used
to generate a candidate grasp set. Each grasp is analyzed with perturbations to estimate
robustness to spatial uncertainty.
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Figure 4.3: System Architecture of online phase. A photo of the object is taken by the robot
and sent via the network to the object recognition server. If successful, the server returns
the stored data for the object. The robot then uses the measured 3D point set with the
pressured 3D Mesh model to perform pose estimation, and selects a grasp from the reference
set of candidate grasps. After executing the grasp, the robot assesses the outcome and stores
results in the cloud server for future reference.
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4.2 Related Work

There has been significant progress in object recognition, from identifying features that
are rapidly computable and invariant to translation, scale, and rotation, to learn the vi-
sual representation by incorporating semantic attributes and context information [197, 159].
Researchers are working to improve both the scalability and accuracy of large-scale image
recognition [33, 138, 141, 113, 235], making object recognition systems commercially viable.
An annual challenge is held to test and compare such algorithms [205]. The purpose of
this chapter is to show how such a high-quality large-scale object recognition server can be
incorporated into part of a cloud-based pipeline to improve grasping in robotics.

There is substantial research on grasping [24], and we refer the reader to the grasping
related work in Section 3.2. While some research has looked at object recognition for grasping
in isolation [106, 223], most work approaches it as a unified task. Approaches for object
recognition for grasping include using local descriptors based on training images [41], and
3D model reconstruction involving 3D object primitives for pose estimation [95]. Saxena
et al. [210] developed a method for calculating grasp points for objects based on images,
where the grasps were learned from prior grasps for similar objects. This approach removed
the need for a full 3D reconstruction of the object, but didn’t take advantage of existing
commercial object recognition systems.

4.3 Problem Statement

In the offline phase, the system considers a set of physical objects O: o1 to oNO
. For each

object oi, we use 3D sensing to obtain an associated reference 3D point set Θi and construct
a 3D triangular mesh model vi. We then use the Columbia University GraspIt! toolkit to
pre-compute a set of candidate grasps Gi = {gi,k | k ∈ [1, NG]} for each object and assign an
associated confidence value sGi,k

to each grasp.
For each object oi, we also capture a set of reference images at different viewpoints φi,j

for j ∈ [1, Noi ]. We define the training set of images Φ = {φi,j | i ∈ [1, NO], j ∈ [1, Noi ]}.
Given this set, the Google object recognition engine applies machine learning methods to
analyze the set. Also during the offline phase, semantic information about each object such
as an identifier key, name, weight, surface properties such as friction, etc. can be stored in
the cloud server.

The online phase uses confidence thresholds for image recognition, pose estimation, and
grasping, denoted cI , cT , and cG, respectively. In the online phase, when an object from the
set O is presented to the robot, an image of the object φ and 3D point set Θ are taken,
and the image is sent to the Google object recognition engine. The robot receives back
a match set consisting of matched training images with associated confidence measures:
M = {(φi,j, si,j) |φi,j ∈ Φ}. We define the match object set as the set of objects for which
at least one image was matched, along with the highest confidence score for each object:
MO = {(oi, soi) | ∃j : (φi,j, si) ∈M ∧ soi > s′ ∀j′, s′ : (φi,j′ , s

′) ∈M}
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If |MO| = 0 , this is called a null recognition. If |MO| = 1, this is called a single
recognition. If |MO| > 1, this is called a multiple recognition. If the confidence sI < cI ,
we stop and report that the object cannot be identified. Otherwise, the system identifies
the object as o = argmaxoi soi , with confidence sI = maxoi soi . If the identified object is
correct and sI ≥ cI , the trial is successful. If o is incorrect and sI ≥ cI , it is a false positive.
If o is correct but sI < cI , it is a false negative. If the recognition confidence is above
threshold, we retrieve the associated 3D point set Θo and estimate object pose T with an
associated confidence measure sT . If the pose estimate confidence sT < cT , stop and report
that the pose cannot be determined. Otherwise, the system uses the pose and associated
pre-computed grasps Go and grasp confidence values to select the feasible grasp g∗ with the
highest confidence s∗G. If the confidence s∗G < cG, stop and report that no grasp is found.
Otherwise, the robot executes the grasp, attempts to lift the object, uses the gripper state
to estimate the success of the grasp, and stores the data and results.

4.4 System Architecture

The system architecture of the offline phase is illustrated in Figure 4.2. The offline phase
includes training of the object recognition server, as described in Section 4.4, the creation
of object reference data as described in Section 4.4 and the creation and analysis of the
candidate grasp set as described in Section 4.4.

The system architecture of the online phase is illustrated in Figure 4.3. This phase begins
when an object is detected by the robot system. It takes a photo and captures a 3D point
cloud and sends this to the object recognition server, as described in Section 4.4. Online
pose estimation and grasp selection are described in section Section 4.4.

Offline Phase: Object Recognition

Google Goggles is a popular network-based image recognition service accessible via a free
app for Android and iPhone smartphones [88]. The app sends a photo of an unknown object
or landmark to the server, which rapidly analyzes it to return a ranked list of descriptions
and associated web links or a report that no reference can be identified (Figure 4.4).

We use a custom version of this system that runs on Google’s production infrastructure.
Our version can be trained on specific image sets and given a new image, returns the match
set with confidence values. The server is exposed as two HTTP REST [68] endpoints—one
for training, and one for recognition. The training endpoint accepts a set of 2D images of
objects with labels identifying the object. The recognition endpoint accepts an image and
returns a (possibly empty) set of matches. Each match is a stored image (from training)
with its corresponding label and a confidence measure between 0 and 1.
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Figure 4.4: A photo taken by a smartphone can be uploaded to the Google object recognition
engine where it is analyzed, and results such as a list of relevant websites are returned to
the user. We use a variant of this system where results determine object identity, pose, and
appropriate grasp strategies.

Offline Phase: Object Model

For each object, we construct two 3D models: a point set Θ and a triangular mesh v. For
our experiments, we selected one stable reference orientation for each object, and use two
Microsoft Kinect sensors to scan a point set, which is filtered using tools from PCL, the
Point Cloud Library [178] to define Θ, which is processed with surface reconstruction tools
in PCL to create a reference 3D triangular mesh model. The 3D mesh model, reference
point set, and candidate grasp sets are hosted on Google Cloud Storage [86], which is a
multi-tenant and widely-replicated key-value store. Each object’s data is associated with
the same unique string used to train the object recognition server. From this key, a REST
URL can be constructed to retrieve the data. In future work, we will explore alternative
methods based on precise object geometry that may be used to compute stable poses on the
planar worksurface and more accurate pose estimation and grasp generation.

Offline Phase: Robust 3D Grasp Analysis

The candidate grasp sets are generated using the Columbia University GraspIt! system
[162]. GraspIt! takes as input the 3D triangular mesh model v and a model of the gripper
that includes desired contact locations. We specify the built-in model of the Willow Garage
PR2 parallel-jaw gripper. For each object model, GraspIt! generates a set of grasps that
are feasible for a disembodied gripper. GraspIt! generates the set by randomly sampling
a starting pose for the gripper in its open state surrounding the object, and then uses a
simulated annealing method to iteratively improve the quality of the grasp [37]. This is
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repeated for a number of starting poses to produce a grasp set G = {gk | k ∈ [1, NG]}. In
our experiments, 60 grasps were generated for each object. Each grasp gk is evaluated by
GraspIt! to estimate a grasp “quality” qk as described in [37].

To estimate robustness to pose uncertainty, we use a variant of our previous sampling-
based algorithm that models 2D shape uncertainty [122] and [123]. We extend that algorithm
to model uncertainty in object pose as follows. Given the object’s triangular mesh model v,
we generate NP perturbations in object pose by considering Gaussian distributions around
the nominal position and orientation of the object. GraspIt! estimates grasp quality, qk,l, for
each perturbation. The weighted average of these values for a grasp over all perturbations,
where the weights are the probability of a perturbation occurring, is used as the confidence
measure for each candidate grasp:

sGk
=

∑
l

p(vl)qk,l

Online Phase: Object Recognition

In the online phase, the system submits an image to the Google object recognition server
to retrieve the match set. After filtering matches below the confidence threshold, the best
remaining match is taken. If there are no matches above the threshold, the robot stops and
reports no matches found. Otherwise, the robot queries Cloud Storage for the reference data
for the object. In the future, if no matches above threshold are found, the robot may take
appropriate action such as moving its camera to obtain a better image.

Online Phase: Pose Estimation and Grasp Selection

If the object recognition server identifies the object with sufficient confidence, the reference
data is used in the following steps. First, estimating the pose of the object using a least-
squares fit between the detected 3D point cloud and the reference point set using the iterative
closest point method (ICP) [204] [207]. We use the ICP implementation from PCL. The
ICP algorithm performs a local optimization and therefore requires a reasonable initial pose
estimate to find the correct alignment. We run ICP over a series of initial pose estimates.
Ideally, the object data would include information about the stable poses of the object and
these would be used as the initial pose estimates. We approximate this by using a fixed set
of rotations for our pose estimates. We include 72 rotations about an internal vertical axis
and for each of these rotations, we additionally include 8 rotations of 90◦ pitch down, to
transform each object from an “upright” pose to a “horizontal” one.

Then, the initial estimate is computed by aligning the rotated reference point set to the
detected point cloud such that the reference point set is on the work surface and the sides
of the point cloud and point set are roughly aligned. For each initial pose estimate, the ICP
algorithm generates an alignment and confidence score for that alignment, which is the sum
of squared distances for all point correspondences it found. The alignment with the highest
confidence score is chosen.
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Using each estimated object pose, a candidate grasp is chosen from the candidate grasp
set based on feasibility as determined by the grasp planner. The robot arm movement for
the grasp then is planned using the inverse kinematics planner from OpenRAVE, a robotics
motion-planning library [177]. Once the grasp is executed, success is determined based on
the final position of the gripper jaws. The outcome data, including the image, object label,
detected point cloud, estimated pose, selected grasp, and success or failure of the grasp, is
uploaded to the key-value store for future reference.

4.5 Experiments Without Confidence Measures

Figure 4.5: The first set of objects used for the tests in Section 4.5 and Section 4.6. The
objects were selected as representative of common household objects and are easily graspable
by a parallel-jaw gripper.

We performed two sets of experiments. The first included a set of six objects and included
end-to-end testing of image recognition, pose estimation, and grasping. The second set of
experiments focused on evaluating the confidence measures for image recognition, using a
larger set of 100 objects, and pose estimation, using the first set of objects. The confidence
measure experiments are presented in Section 4.6.

We experimented with the set of six household objects shown in Figure 4.5. We used the
Willow Garage PR2, a two-armed mobile manipulator. We selected these objects because
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they represent common object shapes and are graspable by the PR2’s parallel-jaw gripper.
The experimental hardware setup is shown in Figure 4.1. We used a robot-head-mounted
ASUS Xtion PRO sensor, similar to a Microsoft Kinect, as our 3D sensor, and used the
PR2’s built-in high-definition Prosilica camera.

Object Recognition

We evaluated the performance of the Google object recognition server using a variety of
training image sets.

We used the PR2’s camera to capture 615 object images for training. We took images
of objects in different poses against solid black and wood grain backgrounds, and under
ambient florescent lighting and bright, diffuse incandescent light.

Test Results

We created 4 different training sets—a set of images randomly sampled from our pool (R),
and three rounds of hand-selected training images (A,B,C). We trained the server on each
set and used the remaining images in our pool to evaluate recognition performance. The
hand-selected sets used human intuition about what would make a representative set of
images.

Training Set Size Recall Recall Rate Training Time (s) Recall Time (s)

R 228 307/387 0.79 0.45 0.29
A 92 247/422 0.59 0.40 0.29
B 52 215/422 0.51 0.39 0.28
A+B 144 317/422 0.75 0.40 0.29
C 49 199/422 0.47 0.39 0.30
A+B+C 193 353/422 0.84 0.40 0.29

Table 4.1: Image Recognition Performance for Image Training Sets. Set R was randomly
sampled. Sets A, B, and C were hand-selected. The average call times for training and
matching a single image are given.

Table 4.1 shows the recall on the test set for the three training sets. We were able
to achieve higher recall than random sampling through multiple rounds of hand-selected
training images, but we were surprised to see that random sampling performed nearly as
well (79% vs. 84%). Although there were many images for which the system was unable
to make any identification (i.e., null recognitions), there were no false positives among the
images we tested. For images where no object was recognized, such as those shown in
Figure 4.6, lighting or the camera angle often obscured the text on labels.
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Figure 4.6: Example images where no object could be identified.

Pose Estimation

Object Total Trials Failures Failure Rate Average Time (s)

Air freshener 15 2 0.13 7.4
Candy 15 0 0.00 1.4
Juice 15 1 0.07 10.2
Mustard 15 2 0.13 10.6
Peanut butter 15 2 0.13 2.1
Soap 15 0 0.00 3.6

Table 4.2: Pose Estimation Results. We manually determine failure when the estimated pose
is more than 5 mm or 5 degrees from the true pose.

We evaluated the system’s pose estimation using 15 stable poses for each object. We
manually declare failure when the estimated pose is more than 5 mm or 5◦ from the true
pose. We observed that rotational symmetries of the object can cause the ICP algorithm
to find a well-fitting but incorrect pose; most often this occurred with the estimated pose
being inverted vertically from the true pose. For example, the shape of the mustard bottle
is roughly symmetric above and below the waist of the bottle if the spout is disregarded.
The ICP algorithm discards the spout this as part of its outlier rejection step, and produces
a high quality score with an inverted pose for this object. We analyze this situation further
in Section 4.6.
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Object
Candidate

Grasp Set Size
Total Trials Failures

Failure
Rate

Air freshener 76 13 2 0.15
Candy 30 15 3 0.20
Juice 105 14 1 0.07
Mustard 61 13 3 0.23
Peanut butter 80 13 2 0.15
Soap 30 15 0 0.00

Table 4.3: Grasp Execution Results. For cases where pose estimation is successful, the
system attemps to grasp and lift the object off the worksurface. We declare failure if the
robot does not achieve a grasp or drops the object during lifting.

Grasping

We evaluated grasping with cases where pose estimation is successful by having the system
execute a grasp and attempt to lift the object off the worksurface. We declare failure if the
robot does not achieve a grasp or drops the object during or after lifting. For some objects
such as the air freshener and mustard bottle, small errors in pose estimation had a significant
effect on grasp outcome. This is not surprising since in stable horizontal poses, the mustard
bottle is nearly the width of the PR2’s gripper opening. For the air freshener, the rounded
and curved shape made it prone to rolling out of the gripper as it closed.

4.6 Experiments With Confidence Measures

We also studied the confidence measures generated by image recognition using a larger data
set of 100 objects and 14,411 images. We also revisited pose estimation using the original
data set from Section 4.5.

Image Recognition

The second, larger data set included objects for which we only had images, not the physical
objects. The data set consists of 100 objects, with approximately 140 images of each object.
The set consists of photos of each object in a single stable pose, brightly lit against a white
background. The images were taken at two low-elevation angles in 5◦ increments around the
object, and from directly above in 90◦ increments. The confidence measure associated with
image recognition is a match score returned by the Google server. This score, which falls
between 0 and 1, is calculated based on a log likelihood passed through a transfer function
that is used to maintain stability of the scores when the log likelihood formulation is updated.
We randomly sampled a subset of images from the set for training and then tested all the
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Figure 4.7: Objects from the second data set used in Section 4.6. This set includes 14,411
images of 100 objects that are commercially available household products and toys. The
images include photos of the object in a single pose, brightly-lit against a white background.
The images were taken at two low-elevation angles in 5◦ increments around the object, and
from directly above in 90◦ increments.

remaining images. We repeated this procedure for sample set sizes ranging from 100 images
to 7000. This larger data set provided us with conditions that did not exist in the smaller
set used for end-to-end testing. For example, some of the objects were different models of
the same products, differing only in color scheme or text. Other objects had similar shapes
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Figure 4.8: Recall rate vs. training set size as a percent of total image set size. The image
set consists of 14,411 images of 100 different objects. The image set was tested by randomly
sampling a number of images to train the object recognition server, and using the remaining
images for testing. The recall rate is the fraction of the images tested that the object
recognition server correctly identified.

and colors.
The recall rate is plotted in Figure Figure 4.8, which shows much better results than in

the first experiment. In Table 4.1, set R was 37% of the total image set size, and resulted
in a recall rate of 0.79. With our larger set, training with 35% of the images resulted in a
recall rate of 0.90. The rate of false positives, which was below 1% for all training sets, is
plotted in Figure 4.9.

Because the object recognition server returns multiple matches with confidences, we
considered how this data might be used to recognize false positives. We trained the system
using 3000 randomly selected images, roughly 20% of our image set. We considered two
separate cases: when only a single object is matched (a single recognition), and when multiple
objects are matched (multiple recognition). In the single recognition case, the average score
of a correct recognition was 0.49, whereas the average score of a false positive was 0.06. This
suggests a threshold could be used to identify false positives. For example, if the maximum
false positive score, 0.15, was used as the threshold, only 6% of correct recognitions would
have been erroneously identified as false positives. When the server returns multiple possible
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Figure 4.9: False positive rate vs. training set size as a percent of total image set size. The
image set consists of 14,411 images of 100 different objects. The image set was tested by
randomly sampling a number of images to train the object recognition server, and using
the remaining images for testing. The false positive rate is the fraction of images tested for
which the object recognition server identified an object that was not correct. Note that the
maximum false positive rate is under 1%.

object matches, the relative confidences of the different matches can be considered. In our
experiments, we found that, on average, the second best object had a score 30% of the
best object for a correct recognition, but for a false positive, the second best object had a
score 79% of the best object. This also suggests a threshold could be used to identify false
positives.

Pose Estimation

The confidence measure associated with pose estimation using ICP is the sum of the squared
distances of corresponding points in the sensed and reference point clouds. This is calculated
by the ICP algorithm. In our implementation, this value was used to rank ICP alignment
solutions for different initial poses. Occasionally, incorrect alignments received high scores.

The sensed point cloud only includes one side of the object, whereas the reference model
includes all sides. When properly aligned, there are occluded points on the reference cloud
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Figure 4.10: Two examples of false positives, which occur less than 1% in our experiments.
The images on the left are the measured images, and the images in the right column are
what was matched.

with no correspondences on the sensed point cloud. The ICP has thresholds that allow for
these points to be filtered out so that they do not affect the score. However, this also allows
incorrect alignments to receive good scores in some cases. In a baseline test of three objects
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where this occurred: the air freshener, mustard, and peanut butter as shown in Figure 4.5,
4 out of 10 pose estimations were found to be incorrect.

To address this, we extended our pose estimation algorithm to compute the aspect ratios
of the aligned reference cloud and the sensed cloud. We first project the measured and
reference point clouds onto the camera plane. For each of the resulting 2D point sets, we
compute the second order moment to find the principal axis in the 2D plane. We reject the
alignment if the angle between the principal axes is above a threshold (in our tests, we used
π/10). Using this new method, 9 of 10 pose estimations were correct. In the failure case,
the estimate was 180◦ from the correct pose. The shapes are very similar in this case, and
the second order moment was not sufficient to detect it.

4.7 Discussion

We have presented a system architecture, implemented prototype, and initial experiments
and analysis for Cloud-based object recognition and grasping. Object recognition is per-
formed in the cloud using a variant of the Google Goggles proprietary object recognition
engine. We incorporated open-source software for pose estimation and grasping and intro-
duce a sampling-based approach to pose uncertainty in 3D grasping.

This project highlighted the impact that integration can have on a project’s timeline and
required effort.

GraspIt! Integration

Our use of GraspIt! revealed that the integration time is not necessarily reduced by an
increased level of usability in a software component. GraspIt! is a very refined piece of
software, with a comprehensive user interface and well-developed capabilities.

However, GraspIt! was not designed for our use case. It is designed primarily as a
user-facing graphical interface, connected to a pre-existing SQL database containing object
meshes. It provides a ROS interface, but this interface takes in an object identifier (that is, it
assumes the mesh already exists in the database to which it is connected). For our system,
we needed an interface taking in a mesh and returning grasps. This required significant
changes to the GraspIt! source code to be feasible.

Object Detection as a Service

In contrast, the availability Google Object Recognition Engine as a web service for this
project greatly reduced integration time. Without this web service, integrating object de-
tection would have required us to seek out and compare object detection algorithms, which
then would have to be downloaded and integrated. Instead, using a web service only re-
quired us to write a small amount of code, using standard HTTP libraries, to call the object
recognition service and retrieve the results.
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Chapter 5

Robotics and Automation as a Service
(RAaaS)

5.1 Introduction

This chapter defines Robotics and Automation as a Service (RAaaS). RAaaS is analogous to
Software as a Service (SaaS), exemplified by the difference between Google Docs, a Cloud-
based word processor, and Microsoft Word, which must be downloaded and installed locally.
We present Brass (Berkeley RAaaS Software), a working framework for providing robotics
and automation algorithms as web services, as a step towards RAaaS.

To illustrate the concept of RAaaS, consider the following: a graduate student is setting
up a robot workcell. The workcell contains a 7-DoF Fanuc industrial arm, using a parallel-
jaw gripper, and a Microsoft Kinect RGBD sensor. The purpose of the workcell is to pick
up and inspect parts as they come down an assembly line, a procedure that requires sev-
eral components to function, including object recognition and localization, grasp planning,
and motion planning. The graduate student is a software end-user who plans to integrate
algorithms in software packages written by algorithm implementers.

In Scenario 1, the software runs locally. The software for the system must be located
and set up. Many algorithm implementers have shared their software, but for the graduate
student, as a software end-user, using these libraries requires several steps. First, the algo-
rithm implementer must have shared his library. Then, the software end-user must locate the
library. Finally, she must integrate it with her other software, and possibly deploy it before
executing. The integration step may involve several tasks, including downloading, building,
resolving dependencies, and installation. Each of these steps can take tens of person-hours.

Software engineering efforts in robotics and automation have attempted to reduce the
effort needed for each of these steps. One of the biggest advances in the past decade has been
the introduction of robotics software frameworks and the success of ROS [188]. ROS pro-
vides three key benefits that reduce person-hours. First, the middleware (message-passing
system) allows separate software components, possibly on different machines, to communi-
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Figure 5.1: Example Robotics and Automation as a Service (RAaaS) application. In this
example, an industrial arm robot with an RGBD sensor must pick up and inspect parts on
an assembly line. The robot sends point clouds into the Cloud, and receives back detailed
object models, grasps, and motion plans. Following the execution of these grasps and motion
plans, outcomes are sent back into the Cloud to improve future performance. Multiple robots
use the service.

cate through standardized interfaces that are convenient for developers to use. This reduces
the effort needed to integrate separate software components and networking by up to an or-
der of magnitude. Second, ROS provides a build system that handles many common tasks,
reducing the effort needed to compile C++ software. Finally, ROS provides a software
ecosystem for sharing software packages through Ubuntu’s package distribution system.

In Scenario 2, the software used in Scenario 1 is run in the Cloud instead. Cloud Comput-
ing offers increased capability for software end-users, including massively parallel computing
and data storage. It can also involve a reduction in time and costs spent on local computer
setup and administration. However, this comes at the cost of additional effort required to
configure Cloud resources, and deploy and manage the software in the Cloud, increasing the
person-hours needed for the project.

In contrast, Scenario 3 uses RAaaS, as shown in Figure 5.1. Algorithm implementers
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have deployed their software to the Cloud, eliminating the need for the graduate student
to download and install them. She visits a website to input the robot, sensor, and gripper
models. She then selects her desired object recognition and localization, motion planning,
and grasping algorithms, and uses a graphical interface to connect these algorithms together
into a pipeline. Her robot begins sending up data, in the form of point clouds from the
Kinect. The robot receives and executes motion plans and grasps, reporting back outcomes
to the Cloud-based pipeline, which are combined with similar feedback from other robots to
improve the software over time.

5.2 Cloud Computing Models

Cloud Computing provides computation resources using a number of different models. These
models are commonly separated into Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). Comparatively, in that order, they decrease in
overhead needed for use (i.e., reduce the effort needed to deploy and run software), but
increase in the restrictions they place on software that may be run.

With Infrastructure as a Service (IaaS), the user is provided with bare computing re-
sources, which may be actual or virtualized machines in the Cloud. These resources may
or may not have a specific operating system installed. This model offers the most flexibil-
ity. At the most basic level, any local computer setup could be replicated on a machine in
the Cloud and connected to the local network via a Virtual Private Network (VPN). Any
Cloud Computing application is implementable on IaaS, but requires that the user set up
and manage all of the software needed for the application. Examples of IaaS are Amazon’s
EC2 and Google Compute Engine (GCE).

Platform as a Service (PaaS) provides more structure than IaaS, generally geared towards
an intended use, such as web servers or parallel computation. Software can be deployed and
run on the Cloud more easily, but must conform to the requirements of the platform. This
places restrictions on the programming languages, system architectures, and database models
that can be used.

Google App Engine is a PaaS platform for developing and hosting web applications in
Google-managed data centers. GAE provides databases and features such as automatic
scaling. While it provides support for a wide range of programming languages and web
frameworks, it does not provide the level of flexibility and control that GCE provides.

Another example of PaaS is PiCloud [180]. With PiCloud, a software developer can run
their Python code in the Cloud with very few changes. For example, consider the following
code to call a function named my function with input stored in the variable arguments:

output = my function ( arguments )
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This could be run in PiCloud by loading the PiCloud library (named cloud) and then
changing just that line:

import c loud
output = cloud . c a l l ( my function , arguments )

This would package up the code for the function and the data for the arguments, send
this information to the Cloud, run the function (optionally with Cloud-based parallelism),
and return the output back to the local system.

Software as a Service (SaaS) streamlines interaction for users even further. The term
SaaS covers two related but different concepts in software: Standalone apps, and software
libraries, which can be used as part of other software programs.

5.3 Related Work

Cloud Robotics and Automation has its origin in “Networked Robotics” over two decades
ago [124]. In 1997, work by Inaba et al. on “remote brained robots” described the advantages
of remote computing for robot control [107]. In 2010, James Kuffner introduced the term
“Cloud Robotics” and described a number of potential benefits [134]. An article in IEEE
Spectrum quickly followed [90] and Steve Cousins summarized the concept as “No robot is
an island.”

Previous PaaS approaches to Cloud-based computation for Robotics and Automation
have focused on moving the existing computational setup onto cloud-based infrastructure.
An important motivation for this approach is the ubiquity of ROS. The design of ROS gives
developers powerful, convenient ways to connect software components together to form ROS
networks. The code for software components that use ROS can be distributed through the
ROS software ecosystem. However, due to the architecture of the ROS messaging system,
when that code is run as a process, that process cannot be shared between ROS networks.
This means that when using ROS or a ROS-like design, the processes that are running in
the Cloud are dedicated to the software end-user that deployed them, or, at most, other
end-users that must be allowed access to each other’s data. This means that using ROS or
a ROS-like design generally requires a PaaS architecture.

In 2009, the RoboEarth project was announced. It envisioned “a World Wide Web for
robots: a giant network and database repository where robots can share information and
learn from each other about their behavior and environment” [237, 245]. The RoboEarth
project includes a PaaS component named Rapyuta for cloud-based computation that pro-
vides secured customizable computing environments with ROS integration [165]. Rapuyta
uses Linux containers, which are the underlying technology of the Docker containers used
by Brass, to provide isolation and platform independence for end-user code running on its
servers.

DAvinCi is another Cloud Computing framework, designed for service robots [16]. It
provides PaaS in the form of parallel computation for map-reduce tasks created and submit-
ted by the end-user, but also assumes that all of the robots connected to the service are in
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Figure 5.2: PaaS and Brass process flowcharts. The upper figure shows the usage of PaaS
frameworks: algorithm implementers share their algorithms such that software end-users
can download, build, and install them. Then, the software end-users must integrate the
algorithms with their own code, deploy this code into the PaaS Cloud. The lower figure
shows the usage of Brass: algorithm implementers deploy their code, in the form of services,
directly into the Cloud using Brass. This code is then immediately available for software
end-users to access.

the same environment, and can therefore share all data between them. This assumption is
appropriate for the robotics application it was designed for, but limits the possibility that it
could be used by many end-users with different robots and applications.

In contrast to PaaS approaches, previous work in Cloud-based SaaS computation systems
implement a specific algorithm or set of algorithms [121, 149, 193]. These systems are
convenient for the end-user, but do not provide a platform on which other SaaS computation
can be provided. An example is CloudSim, from the Darpa Robotics Challenge [40], which
illustrates the benefits of SaaS. All the teams in the DRC were provided with access to
identical simulators through a Cloud-based interface. This eliminated the need for teams to
develop or run the simulator themselves, allowing them to spend more time on completing
the challenge.

Brass is similar in many ways to Algorithmia [9], a web site in private beta that also
intends to allow algorithms to be provided as web services. There are several key differences:
Brass leverages Docker to allow algorithm implementers to use any programming language,
software architecture, and dependencies to build services, whereas Algorithmia requires code
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be written in Java in the browser. Brass provides common robotics data types for use as
inputs and outputs, including matrices, poses, images, and point clouds.

5.4 Goals and Approach

Brass aims to reduce the effort needed to share and integrate algorithms for 1) algorithm
implementers and 2) software end-users. Below are twelve potential advantages:
For 1) algorithm implementers:

1.1) Brass can allow developers to write services in any programming language on any Linux
operating system, requiring only minimal wrapper code written in Python.

1.2) Brass can facilitate porting packages currently offered in ROS.

1.3) Brass can provide a convenient interface for services to call other Brass services.

1.4) Brass can allow developers to maintain confidentiality about details of their algorithms
and source code, if desired, while allowing end-users to test and use these algorithms.

For 2) software end-users:

2.1) Brass can provide algorithms as web services, so that any Brass service can be used from
any operating system and robot hardware with minimal local installation of packages
or libraries.

2.2) Brass aims to make available a comprehensive set of services/packages for robotics and
automation applications, eventually a superset of those available in ROS.

2.3) Brass includes multiple communications formats, including verbose for debugging and
binary for fast operation.

2.4) Brass provides automatic replication and load-balancing of services that is transparent
to end-users.

For 3) both algorithm implementers and software end-users:

3.1) Algorithm implementers can update their services to improve capability and perfor-
mance; end-users can begin using these updates immediately.

3.2) Service and dataset versioning will be provided to allow end-users to select a specific
version that will not change in functionality, content, or interface.

3.3) Brass can enable benchmarking between algorithms and datasets.

3.4) Brass can facilitate collective robot learning with datasets that evolve over time.
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Brass is a hybrid of Cloud Computing models: we provide PaaS for algorithm imple-
menters to deploy their code such that it can be shared with software end-users. These
implemented algorithms are then available to software end-users through a SaaS model.

For a service that has been uploaded to Brass, no existing deployment of computational
resources are required by the software end-user. Configuration information is sent with a
service call, and the appropriate computational and data resources are created or reused as
necessary. To accomplish this, we require that services not maintain any mutable internal
state. Additionally, services only run when responding to input from an end-user. This
is different from other PaaS approaches, as illustrated in Figure 5.2, and enables Brass to
provide transparent scaling and replication of services, while restricting it from providing
on-going computational resources that can be created with PaaS.

Challenges

In designing a framework that seeks to reduce the effort necessary to share and integrate
algorithms, a delicate balance between algorithm implementers and software end-users exists
in the amount of structure required of implemented algorithms uploaded to the framework. If
too much structure is used, the amount of effort needed to convert an existing codebase into
a service will deter algorithm implementers from sharing their software. Too little structure
will cause services and datasets to vary so widely that too much effort will be required of
software end-users to learn about any particular service, and also impair the ability to change
between services offering similar functionality.

Representing data presents a particular challenge. In a perfect world, there would be a
single common schema for representing any kind of data, such that all datasets would be
interoperable if they contained similar data (e.g., images of objects). With this in mind,
the initial datasets we have provided are interoperable. However, we recognize that no one
can foresee all possible use cases, and that if an algorithm implementer seeks to upload an
existing dataset to work with a service they are creating, that process should be available.

5.5 Brass Design

To add an algorithm or library of code to Brass, it is defined as a service. A service is a
collection of methods, where a method is a function that has a defined set of inputs and
outputs. Each method of a service uploaded to Brass is accessible through a specific URL.
Brass services are not allowed to keep a mutable internal state.

When writing a service, an algorithm implementer can declare that the service requires
one or more data resources. Each data resource is given a name, along with the type of
data resource and whether it will be used as read-only or writable. Then, when the service
is used, the software end-user gives the specific data resources for the service to use. This
allows the service to be written in a data-agnostic manner. For example, a manipulation
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planning service may declare that it requires a data resource for the robot model, giving it
the name robot model.

In the future, Brass could support multiple types of data resources, including SQL
databases and the RoboEarth knowledge repository [224]. The primary type of data re-
source for Brass, and the only type currently implemented, are termed datasets. Datasets
provide hierarchical storage similar to filesystems, and any existing file-based data can be
directly uploaded to Brass to create a dataset. Given the manipulation planning service
described above, a software end-user then may connect to the service, specifying that the
robots/PR21 dataset should be used as the robot model data resource.

To achieve the goals of Brass, we have imposed a restriction on the way services can
store state. When a service is loaded, it may create an internal state for faster processing.
Examples of this are loading information from a data resource into memory. However, when
a method is called on the service, it is not allowed to make any modifications to the internal
state that persists after the end of the method call. Any information that persists beyond
the duration of the method call must be stored in a writable data resource attached to the
service. This requirement means that for any service that uses no data resources or only
read-only data resources, the service can be replicated any number of times to provide for a
higher traffic volume.

The restriction on internal mutable state and the fact that Brass services are only run in
response to a software end-user calling a method on the service means that, in comparison
with PaaS approaches, some algorithmic architectures are not feasible with Brass. As an
example, consider a Kalman filter that may not be updated at every timestep. With a
PaaS approach, the filter can run between new observations from the end-user, so that when
the end-user sends an observation, the amount of computation required to produce a new
estimate is fixed. With Brass, the service would have to compute the updates for all the
timesteps since the last call to get the current estimate.

Pipelines

With a simple service-based architecture, information only transits between a service and
the software end-user. However, consider the scenario where a second service is used for
preprocessing the input to the first service. For example, a service to remove self-occlusions
by the robot from a point cloud may be used before the point cloud is sent to an object
recognition service. With a naive approach, the original point cloud would be sent to the
filtering service, which would return a filtered point cloud to the software end-user. This
filtered point cloud with then be sent to the object recognition service. To reduce the
communication bandwidth, Brass provides for the creation of pipelines, which in this example
would allow the filtered point cloud to be sent directly to the object recognition service.

1Service and dataset names in Brass take the form <namespace>/<name> to allow similar names from
different users to be distinguished.
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5.6 Implementation

Brass consists of a framework for the deployment, hosting, and serving of services and
datasets on cloud-based infrastructure, a library for algorithm implementers writing services,
tools for uploading and managing services and datasets, and a client library for software end-
users to conveniently integrate with services.

The Brass framework (see Figure 5.3) is built on Google Compute Engine (GCE), but in
principle could be built on any Infrastructure as a Service provider, such as Amazon Web
Services.

Docker

Brass allows algorithm implementers to reuse existing code or write new code with any
programming language, software architecture, dependencies, and on any Linux-based oper-
ating system. This is possible through our use of Docker Engine, a portable, lightweight,
open-source application runtime and packaging tool [56].

Docker Engine provides a virtual machine-like environment within Linux that runs di-
rectly on the host OS, but still in an isolated container. Additionally, it uses a special system
for storing files so that if one file is changed between Docker images, only that file needs to
be stored.

Using Docker Engine allows algorithm creators to choose the Linux-based OS that works
best for them, package up all of the dependencies for their code, and upload it to Brass in a
simple way. Within Brass, Docker Engine provides simple, secure isolation of code originating
from outside sources, as well as deployment tools. Brass then provides the framework that
allows code within the Docker containers to be used through web services.

Creating a Service

Algorithm implementers create services locally within Docker containers. Services are defined
in Python as subclasses of a Service base class. Using Python’s declarative “decorator”
syntax, algorithm implementers annotate their service class to define the inputs, outputs,
and data sources of the methods, as well as startup and shutdown methods.

Although the service must be defined in Python, because of the use of Docker, there is no
restriction on how the service works internally. Python has extensions to interoperate with
many other common programming languages, including C, C++, and Java. In the most
general case, a separate executable could be invoked through system calls.

Brass provides a set to tools for deploying and managing these services, which internally
use Docker Engine’s deployment tools.
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Figure 5.3: Brass framework architecture. Calls to services are handled by an HTTP server,
which places the requests in queues based on the service and data resources required. A
number of worker nodes host Docker-based workers, each running an instance of a service.
Worker nodes also attach datasets to workers. Datasets are stored as Cloud-based disks, and
can be shared between multiple workers on a worker node. Though this is not shown, they
can also be shared between workers on different worker nodes. An orchestrator manages the
workers and worker nodes in response to system load.

Service Hosting

The Brass framework hosts services using a number of worker nodes, each of which runs
multiple workers, where each worker runs an instance of a service.

A service worker is a Docker container for that service, with the appropriate datasets
connected. Workers process method calls through queues. Each worker can perform one
method call at a time, but multiple workers can be running for any given service; all of
the workers for a service share the same queue. If there is a method call waiting in the
queue associated with a worker, it will process the call, deserializing the data, calling the
appropriate method, serializing the output, and returning that information. The server then
converts this information to the appropriate output format and returns the response.

Brass uses an HTTP server written with Tornado, a non-blocking-I/O-based web server
that is designed to handle tens of thousands of open connections [229]. This is important, as
services may be created for long-running algorithms, such as grasp generation and analysis,
that hold open the connection for an extended length of time. The server does not perform
any processing itself, but simply transfers the incoming and outgoing data to and from the
task queues.

Datasets are stored as individual Cloud-based disks, or volumes, on GCE. These volumes
are attached to worker nodes, which then attach them to the worker Docker containers. This
allows for multiple workers to access a read-only dataset across any number of worker nodes.
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Orchestration

In Cloud Computing, the term for automatic management of computation resources is or-
chestration. In Brass, management of workers, worker nodes, and datasets is performed
by the Orchestrator node. The Orchestrator monitors the task queues to determine when
workers must be created, or when existing workers have been idle long enough to shut down.

Connecting to a Service

To use a service, the end-user makes an HTTP call to the URL for a method on the service.
The HTTP request contains the input data, as well as the datasets to use for the data
resources needed by the service (if any). The response returned by the server contains the
outputs, or, if an error occurred, details on the error. The request and response can be in any
of several formats, including JSON, a standard format for web-based information exchange,
BSON (a compressed binary version of JSON), ROS messages, or Multipart MIME (the
result of a web form submission).

For user convenience, Brass provides a Python client library for creating proxy objects
to call services. The library contains a connect function, which, when provided a URL,
contacts the server for the definition of a service and generates a proxy object that replicates
the methods of the service class.

5.7 Example

In this section, we detail an example service named example/Kinematics for forward kine-
matics using the OpenRAVE library, along with a dataset for the PR2 robot model. The
code in this section is functionally complete; no code has been omitted for convenience or
space purposes.

Algorithm Implementer

This section details the necessary code for an algorithm implementer to create the service
and the dataset, and upload these to Brass.

First, the algorithm implementer defines a Service subclass named Kinematics, which
requires a binary data resource. On startup, it loads the robot model from the data re-
source and sets up the OpenRAVE environment. The service has a single method named
forwardKinematics, which takes a manipulator name (that is, which end effector to calcu-
late the pose for, since the robot may have more than one) and the joint angles to use, and
returns the pose of the end effector as a 4×4 matrix, calculated using OpenRAVE.
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The following code is placed in a file named example.py:

import openravepy
from bras s import ∗

@data resource ( ‘ robot ’ , type=‘ binary ’ )
class Kinematics ( S e r v i c e ) :

@startup
def l o ad robo t ( s e l f ) :

s e l f . env = openravepy . Environment ( )
robot = s e l f . d a t a r e s o u r c e s [ ‘ robot ’ ]
s e l f . env . Load ( robot . g e t f i l e p a t h f o r ( ‘ / model ’ ) )

@input ( Str ing , ‘ manipulato r ’ )
@input ( Float [ . . . ] , ‘ j o i n t s ’ )
@output ( Pose , ‘ pose ’ )
de f forwardKinematics ( s e l f , ∗∗ inputs ) :

robot = s e l f . env . GetRobots ( ) [ 0 ]
with robot :

manipulator name = inputs [ ‘ manipulator ’ ]
manipulator = robot . GetManipulator ( manipulator name )
robot . SetDOFValues ( inputs [ ‘ j o i n t s ’ ] ,

manipulator . GetArmIndices ( ) )
r e turn manipulator . GetEndEffectorTransform ( )

The SetDOFValues method modifies the robot state. Per the rules of Brass, this mod-
ification is not allowed to persist beyond the end of the method call. The statement with

robot: uses an OpenRAVE feature that will reset the robot state when the method returns.
This file is put in a Docker container with OpenRAVE installed. The following code is

placed in a file named example.docker:

FROM ubuntu
RUN add−apt−r e p o s i t o r y ppa : openrave / r e l e a s e
RUN apt−get update
RUN apt−get i n s t a l l openrave
COPY kinemat ic s . py / s e r v i c e s /example . py
ENV PYTHONPATH / s e r v i c e s :$PYTHONPATH

In the shell, the following commands are given to create the Docker container, and then
push the container to the Brass server and load it into the Brass system:

> b r a s s b u i l d d o c k e r example/ Kinematics example . docker
> b r a s s l o a d s e r v i c e example/ Kinematics
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Dataset

The service requires that the robot model be loaded from a data resource. Since the PR2
model is present in the OpenRAVE library, it can be loaded from there. First, a Python
script to connect to the dataset and load the model is created as load robot.py:

import bras s

datase t = bras s . c o n n e c t t o d a t a s e t ( ‘ robots /PR2 ’ )

path = ‘/ usr / share / openrave / robots /pr2−beta−s t a t i c . zae ’
with open( path ) as m o d e l f i l e :

datase t . put ( ‘/ model ’ , m o d e l f i l e )

Then, in the shell, the following commands are run to create a dataset named robots/PR2

and run the script inside the Docker container (where OpenRAVE is available):

> b r a s s c r e a t e d a t a s e t −−binary robots /PR2
> docker run − i t example/ k inemat i c s \
> / usr /bin/env python < l o ad robo t . py

Now, both the example/Kinematics service and the robots/PR2 dataset are available
in the Brass system.

Software End-User

This section shows the code necessary for a software end-user to connect to the service
created in the previous section. The following code snippet connects to the service and calls
the forward kinematics to get the pose (getting the joint angles of the robot, which is a local
procedure not involving Brass, is left as an exercise to the reader):

import bras s

s e r v i c e = bras s . connect ( ‘ b ras s : // example/ Kinematics ’ ,
data mapping={ ‘ robot ’ : ‘ robots /PR2 ’ })

# get j o i n t ang l e s from robot . . .

pose = s e r v i c e . forwardKinematics ( ‘ r ightarm ’ , j o i n t s )

To use the service the software end-user uses connect function in the Brass library,
providing the location of the service and directing it to use the robots/PR2 dataset as the
robot data resource required by the service.
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Figure 5.4: Demonstration web app using kinematics and motion planning services. The
web page consists only of browser-executed JavaScript code for the user interface, and relies
on Brass services to perform forward and inverse kinematics and motion planning.

Figure 5.5: Demonstration web app using grasping service. The web page consists only
of browser-executed JavaScript code for the user interface, and relies on Brass services to
perform grasp analysis.
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5.8 Available Services

We have implemented three initial services and a demonstration website to demonstrate
the usage of Brass. The first service, example/Kinematics, extends the example given in
Section 5.7 to provide forward and inverse kinematics. The code is more complex than
in the example to provide for error checking. The second service, example/Trajopt, is a
service around trajopt, an optimization-based motion planning library [212]. Trajopt uses
OpenRAVE for robot modeling, and therefore works with the same datasets used by the
kinematics service. The third service, example/Grasping, is a service for planning grasps for
2D polygonal objects under pose uncertainty, using the sampling-based algorithm presented
in Chapter 3. This algorithm takes as input a 2D polygon, nominal pose and pose variance,
and number of grasps to generate, and returns a set of grasps, each with the calculated
probability of force closure.

We have created a demonstration website to showcase these three services. The interface
for kinematics and motion planning, shown in Figure 5.4, allows the user to choose between
an arm and a point robot, the models for which are stored in different datasets. Obstacles
can be placed in the environment. In the kinematics mode, the pose of the robot is displayed
on the screen as an arrow. The interface for grasping, shown in Figure 5.5, allows the user
to create and modify a 2D polygon, use the service to generate and analyze grasps on the
polygon, and then visually browse through the grasps and their associated calculated quality
measures.

5.9 Discussion

We have presented an architecture for Robotics and Automation as a Service (RAaaS); Brass,
an implementation of RAaaS as a framework for creating algorithms as web services; and a
case study demonstrating the feasibility of using Brass to reduce integration effort. RAaaS
can provide twelve potential benefits to algorithm implementers and software end-users,
including providing algorithms as web services, automatic replication and load balancing,
maintaining source code confidentiality, algorithm benchmarking, and collective robot learn-
ing. Brass aims to complement ROS in the robotic software space, enabling Cloud-based
robotics software that is not convenient under the architecture of ROS, while also allowing
ROS packages to be easily provided in the Cloud through Brass.
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Chapter 6

Conclusion

The main contributions of this dissertation are algorithms and frameworks that demonstrate
the advantages of using Cloud Computing for robotics and automation. The increasing con-
nectivity of computers and robots is enabling advances in robotics and automation through
parallel computing, big data, and web services in the Cloud. We present four case studies
that demonstrate the potential of Cloud robotics and automation: two Cloud-based grasping
algorithms for uncertainty in part shape and pose using parallelizable Monte Carlo sampling
methods, a Cloud-based robot grasping system using a web service-based object recognition
engine and open-source components for the grasping pipeline, and a framework for providing
algorithms as Cloud-based web services.

6.1 Summary

In Chapter 3, we designed and implemented the first algorithm for grasping 2D polygonal
parts with shape uncertainty defined with Gaussian vertex/center-of-mass distributions. The
algorithm computes a grasp that maximizes a lower bound on the probability of force closure
using Cloud-based Monte Carlo sampling and fast geometric grasp analysis, and includes an
adaptive candidate grasp elimination step. We tested this algorithm on multiple part shapes,
finding counterintuitive grasps, and performed a sensitivity analysis on algorithm parameters.
We tested a Cloud-based implementation with varying numbers of nodes, obtaining a 515×
speedup with 500 nodes in one case. We also evaluated the algorithm on the PR2 robot.
To consider cases missed by the conservative analysis, we developed a novel quasi-static
simulation based on Box2d, an open-source game physics engine [29]. This simulator models
only the relative motion of the part and the gripper. We performed a sensitivity analysis
on pose uncertainty parameters. Our results suggest that simulation-based evaluation of the
grasp quality can be beneficial. By considering 2D polygonal parts, our method runs over
100× faster than general sampling-based grasp planners with pose uncertainty.

In Chapter 4, we demonstrated how cloud-based data and computation can facilitate 3D
robot grasping. We developed a system architecture, implemented prototype, and performed
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experiments for a cloud-based robot grasping system that incorporates a Willow Garage PR2
robot with onboard color and depth cameras, Google’s proprietary object recognition engine,
multiple open-source libraries and our prior approach to sampling-based grasp analysis to
address uncertainty in pose. We reported data from experiments in recognition (a recall
rate of 80% for the objects in our test set), pose estimation (failure rate under 14%), and
grasping (failure rate under 23%), as well as results on recall and false positives in larger
data sets using confidence measures.

In Chapter 5, we presented the concept of Robotics and Automation as a Service (RAaaS).
RAaaS can provide twelve potential benefits to algorithm implementers and software end-
users, including providing algorithms as web services, automatic replication and load balanc-
ing, porting ROS packages, maintaining source code confidentiality, algorithm benchmarking,
and collective robot learning. We designed and implemented Brass (Berkeley RAaaS Soft-
ware), a framework for providing algorithms as web services, along with proof-of-concept
services using Brass.

6.2 Future Work

Cloud-based Grasping

The sampling-based method presented in Chapter 3 is a flexible one, and can be extended for
other grasping algorithms. The quasi-static simulator method could work on curved surfaces
with modifications to the underlying physics engine.

A 3D grasp analysis can use Monte Carlo sampling to handle uncertainty, as in Kim et al.
[129]. Using sampling for shape uncertainty on three dimensional objects is more compu-
tationally intensive, but pose uncertainty is more tractable. Other grasp analysis methods
for shape uncertainty in three dimensions, including using uncertainty representations like
Gaussian Process Implicit Surfaces, could be used in conjunction with sampling-based pose
uncertainty methods [139, 152].

For parallel jaw grippers, uncertainty in part pose is similar to uncertainty in gripper
kinematics. For multi-DoF grippers, more complex approaches will be needed. Design of
compliant grippers is a fruitful avenue for robustness to uncertainty [59]; similar to push
grasping, it allows for a “funneling” of uncertainty where a range of possible initial configu-
rations lead to a single common end configuration. Future work is needed on grasp analysis
for compliant grippers under uncertainty (including uncertainty in the compliant aspects of
the gripper).

For sampling-based Monte Carlo algorithms, because the non-uncertainty-aware grasp
analysis is the inner loop, performance of that analysis can be critical. A small improvement
in the running time of the algorithm can greatly lower the overall running time with non-
parallelized sampling. With Cloud-based parallel sampling, the analysis running time has
a lesser effect, but lowering the running time helps with increasing the number of samples
that can be processed per node.
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Adaptive sampling is a promising direction for future work. Through adaptive sampling,
the number of processed samples that do not contribute to finding a good grasp can be vastly
reduced. It can do this by eliminating unpromising regions of the grasp configuration space
and upsampling regions with high-quality grasps to refine the search.

Belief Space-based Optimization

In Section 3.5 we demonstrated a procedure for finding the maximum tolerance that would
allow for a given desired probability of success. In an automation setting, however, these two
quantities may each have an associated cost; tighter tolerances incur higher manufacturing
costs, and a lower probability of success means more grasping failures, also incurring costs.
Because these two quantities are at odds with each other, we can formulate an optimization
problem to determine the best balance given the costs.

To create this optimization problem we change the tolerance Σ from a parameter to a
variable. The quality of a grasp g on a part S, Q(g, S,Σ; θ), is then a distribution defined
by the tolerance Σ. The technique of optimizing over distributions with the variance in the
state is termed a belief space optimization [118].

We define two costs, the scalar failure cost cF and the tolerance cost matrix CΣ. The
optimal grasp and tolerance are then found as follows:

g∗,Σ∗ = arg min
g∈G,Σ

cF (1−Q(g, S,Σ; θ)) + CΣΣ

This optimization problem is difficult to solve using the techniques presented in Chap-
ter 3; if the value of Q is determined using Monte Carlo methods, calculating the gradient
would involve repeated evaluation of the function. While the expansion of cloud computing
infrastructure and capability in the future may allow sampling-based techniques to calculate
the gradient in a timely manner, future work could explore methods to more efficiently solve
this optimization problem.

Big Data

New algorithms are needed that scale to the size of Big Data. One aspect of large datasets
is that they often contain “dirty” data, that is, misleading data that would skew the results.
Dirty data gets included in datasets for a variety of reasons, including noise, transcription
errors, or even malicious contributors. While small datasets can be cleaned by hand, Big
Data requires new approaches to clean or sample effectively [69, 239].

When the Cloud is used for parallel processing, it is vital that algorithms oversample to
take into account that some remote processors may fail or experience long delays in returning
results. When human computation is used, algorithms are needed to filter unreliable input
and balance the costs of human intervention with the cost of robot failure.
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Robotics and Automation as a Service (RAaaS)

Creating a Robotics and Automation as a Service (RAaaS) framework presents many inter-
esting challenges and areas for future work.

Networking

As the Cloud fundamentally relies on networking, new algorithms and methods are needed
to cope with time-varying network latency and Quality of Service. Faster data connections,
both wired internet connections and wireless standards such as LTE [17], are reducing la-
tency, but algorithms must be designed to degrade gracefully when the Cloud resources
are very slow, noisy, or unavailable. For example, “anytime” load balancing algorithms for
speech recognition on smart phones send the speech signal to the Cloud for analysis and
simultaneously process it internally and then use the best results available after a reasonable
delay. Similar algorithms will be needed for robotics and automation systems [20].

Scaling

Cloud Computing generally implies connectivity on the scale of millions of systems. The
communication between these systems may be with a central system or peer-to-peer, but
most likely is a mix of both. With a central system, of which Brass is an example, the
number of connections the system needs to handle is very large. This is a problem that
has been tackled by the web community [1]. However, robotics and automation introduce
additional elements to the situation that are typically not present in web applications. The
size of the data being sent is often very large (for example, point clouds), and processing
times can be seconds, minutes, or even longer. This means that connections last orders of
magnitude longer than those typical of web applications. New systems and approaches will
be needed to perform RAaaS at this scale.

Datasets

Creating a RAaaS framework that can allow robotics and automation researchers to create,
use, and share data in the ways they need is a nontrivial problem. There are many different
types of datasets.

First, consider databases of images, objects, and/or grasps, possibly with associations
between different elements (e.g., similar objects) and elements of different types (e.g., as-
sociating a grasp with an object). How to represent these elements and their associations,
especially at a scale of thousands or millions of objects, in a way that can be queried ef-
ficiently, is an open research problem. Large-scale databases that attempt to provide this
functionality are being created [196]. However, an aspect not yet addressed is management
of the underlying data. For benchmarking, a snapshot of the database must be taken, such
that a later date, the same snapshot could be used to test other algorithms. For a new
project with a specific focus, a new, empty database may be created, or perhaps could be
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forked from a current or past snapshot of the database, which may then be pruned of un-
needed data. Later, the additions to this branch could be merged with other branches of the
database. This must be able to happen at a scale where it is infeasible for a single user to
review the whole database by hand. Automated or crowdsourced resolution of merge con-
flicts for these data types and database structures (including detecting possible problems in
addition to definite conflicts) must be developed. This is related to the “dirty data” problem
described above.

Second, consider the representation of a robot’s environment. This representation is
often shared among several components of the robot’s pipeline [31]. In a simple scenario, the
representation may be updated by a sensing component and then read by motion planning
and grasping components. However, robotics techniques may require multiple components to
update the representation, and possibly revert those changes as well. For example, different
sensing components may add information. A grasp planner may want to copy the current
environment state, simulate a grasp, and determine the outcome of the grasp as well as its
effect on other objects. After this, the copy can be destroyed. New frameworks are needed
to make these systems possible while ensuring they can function in a timely, highly-available
manner.

Surgery

An exciting application for Cloud Robotics is robot surgical assistants (RSAs). Robotic
surgical assistants, such as Intuitive Surgical’s da Vinci R© system, have proven highly effective
in facilitating precise minimally invasive surgery [50, 234]. The da Vinci is used in thousands
of surgeries every year. Currently, these devices are primarily controlled by surgeons in a
local tele-operation mode (master-slave with negligible time delays). Introducing autonomy
of surgical sub-tasks has potential to assist surgeons, reduce fatigue, and facilitate supervised
autonomy for remote tele-surgery. Automating manipulation and cutting presents challenges
due to the difficulty of modeling the deformation behavior of highly nonlinear viscoelastic
substances and the precision required for cutting.

The Cloud presents an opportunity to advance these goals of supervised autonomy. The
uncertainty introduced by kinematics and modeling can be approached using Cloud-based
parallelized Monte Carlo methods and other massively parallel offline computation. The
thousands upon thousands of hours of video produced by surgeries form a Big Data corpus
that could be mined for techniques that improve clinical outcomes.

Privacy and Security Concerns

Using the Cloud for robotics and automation systems introduces many new challenges. The
connectivity inherent in the Cloud raises a range of privacy and security concerns [191, 211].
These concerns include data generated by Cloud-connected robots and sensors, especially as
they may include images or video or data from private homes or corporate trade secrets [242,
187]. Cloud Robotics and Automation also introduces the potential of robots and systems



CHAPTER 6. CONCLUSION 95

to be attacked remotely: a hacker could take over a robot and use it to disrupt functionality
or cause damage. For instance, researchers at University of Texas at Austin demonstrated
that it is possible to hack into and remotely control UAV drones via inexpensive GPS spoof-
ing systems in an evaluation study for the Department of Homeland Security (DHS) and
the Federal Aviation Administration (FAA) [101]. These concerns raise new regulatory, ac-
countability and legal issues related to safety, control, and transparency [187, 147]. The “We
Robot” conference is an annual forum for ethical and policy research [241].
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