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ARTICLE

Evidence for Weyl fermions in a canonical
heavy-fermion semimetal YbPtBi
C.Y. Guo1, F. Wu1, Z.Z. Wu1, M. Smidman1, C. Cao2, A. Bostwick3, C. Jozwiak 3, E. Rotenberg 3, Y. Liu1,

F. Steglich1,4 & H.Q. Yuan1,5

The manifestation of Weyl fermions in strongly correlated electron systems is of particular

interest. We report evidence for Weyl fermions in the heavy fermion semimetal YbPtBi from

electronic structure calculations, angle-resolved photoemission spectroscopy, magnetotran-

sport and calorimetric measurements. At elevated temperatures where 4f-electrons are

localized, there are triply degenerate points, yielding Weyl nodes in applied magnetic fields.

These are revealed by a contribution from the chiral anomaly in the magnetotransport, which

at low temperatures becomes negligible due to the influence of electronic correlations.

Instead, Weyl fermions are inferred from the topological Hall effect, which provides evidence

for a Berry curvature, and a cubic temperature dependence of the specific heat, as expected

from the linear dispersion near the Weyl nodes. The results suggest that YbPtBi is a Weyl

heavy fermion semimetal, where the Kondo interaction renormalizes the bands hosting Weyl

points. These findings open up an opportunity to explore the interplay between topology and

strong electronic correlations.
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The presence of topologically non-trivial electronic band
structures in condensed matter systems leads to a number
of unusual consequences1. A rich variety of phenomena

have been discovered in gapless topological materials, such as
those exhibiting Dirac-fermion excitations near the points of
linear crossings of bands close to the Fermi energy EF2,3. The
breaking of either spatial inversion symmetry or time reversal
symmetry splits the degeneracy of the Dirac points, leading to a
pair of topologically protected Weyl points4,5. Weyl fermions
have been found to cause distinct experimental signatures, such as
the chiral anomaly in transport measurements6–8, a topological
Hall effect9–11, and Fermi arcs12.

Weyl fermions have mainly been studied in weakly correlated
electron systems, while strong electronic correlations are fre-
quently found to lead to novel electronic properties beyond those
of simple metals or insulators, and heavy fermion systems are the
prototype examples showing phenomena characteristic for
strongly correlated electron systems. Here, due to strong Kondo
coupling between the f-electron and conduction-band states,
below the Kondo temperature (TK), the electronic bands in the
vicinity of EF may become strongly renormalized, showing a
strong f-character and a huge enhancement of the quasiparticle
mass. When the chemical potential lies within the hybridization
gap, insulating behavior is found at low temperatures and in the
topological Kondo insulators, such as has been proposed for
SmB6, the resulting electronic structure is topologically non-tri-
vial, again leading to conducting states on the surface13–15. It is
therefore of particular interest to look for topological heavy fer-
mion semimetals with gapless excitations, i.e. Weyl fermions in
the presence of strongly renormalized bands. Such a Weyl–Kondo
semimetal phase has been predicted from calculations based on
the periodic Anderson model with broken inversion sym-
metry16,17. While it was proposed that Ce3Bi4Pd3 displays the
low-temperature thermodynamic signatures of a Weyl–Kondo
semimetal16,18, other signatures of Weyl fermions such as the
chiral anomaly have not been reported. A Weyl heavy fermion
state was also proposed for CeRu4Sn6 from ab initio calcula-
tions19, but no experimental evidence for Weyl fermions has been
demonstrated. Consequently, whether Weyl fermions exist in the
presence of a strong Kondo effect needs to be determined
experimentally. Furthermore, the influence of electronic correla-
tions on Weyl fermions is to be explored, specifically how such a
system evolves from high temperatures, where the f-electrons are
well localized, to low temperatures where there is a strong Kondo
interaction and a reconstruction of the electronic bands.

The cubic half-Heusler compounds (space group F�43m) can be
tuned by elemental substitution from trivial to topological insu-
lators20,21. It was recently found that the half-Heusler GdPtBi,
which has a strongly localized 4f-electron shell, shows evidence
for Weyl fermions in an applied magnetic field due to the pre-
sence of the chiral anomaly22 and topological Hall effect9. Here,
we examine the isostructural compound YbPtBi. Although at high
temperatures the Yb 4f-electrons are localized similar to GdPtBi,
upon cooling YbPtBi becomes a prototypical heavy-fermion
semimetal23–25, where the enormous Sommerfeld coefficient of
γ ≈ 8 J mol−1 K−2 demonstrates the enhanced effective mass of
the charge carriers23. This compound is therefore highly suited to
look for Weyl fermions, which are strongly affected by electronic
correlations.

In this work, we report evidence for Weyl fermions in YbPtBi,
where the bands hosting the Weyl points are strongly modified as
the Kondo coupling strengthens at low temperatures. Electronic
structure calculations and angle-resolved photoemission spec-
troscopy (ARPES) measurements indicate the presence of triply
degenerate fermion points in the high-temperature regime, which
will each split into a Weyl node and a trivial crossing in applied
fields. At these temperatures, evidence for the chiral anomaly is
revealed by field-angle-dependent magnetotransport measure-
ments. As the temperature is lowered, the chiral anomaly is not
detected in the magnetotransport, but experimental signatures of
Weyl fermions are found in measurements of the specific heat.
This is consistent with a greatly reduced Fermi velocity due to the
influence of the Kondo effect on the electronic bands near the
Weyl points. Furthermore, the observation of a topological Hall
effect contribution, which can arise from the Berry curvature
generated by the Weyl nodes, provides additional evidence for the
existence of Weyl fermions at both low and elevated
temperatures.

Results
ARPES and electronic structure calculations. At higher tem-
peratures, the band structure of YbPtBi can be calculated treating
f-electrons as core states, as displayed in Fig. 1. The bulk Fermi
surface consists of hole pockets centered at the Γ-point and
electron pockets slightly away from Γ. Along Γ-L, the four-fold
degenerate Γ8 state splits into two non-degenerate hole bands,
and a pair of degenerate Λ6 electron bands, mainly consisting of
Yb-t2g and Bi-p orbitals. The Λ6 bands cross the two hole bands
near EF, forming two triply degenerate fermion points26. Under a
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magnetic field, each triply degenerate point will further split into
a Weyl point and a trivial crossing, with energies close to the
bottom of the electron bands. The calculated bulk band structure
with triply degenerate points is in good agreement with the
ARPES results in Fig. 1b, which shows the energy–momentum
dispersion relations along the surface �Γ �M direction. Note that the
sample can only be cleaved well with the (111) orientation. Along
this orientation, the symmetry-equivalent bulk ΓL direction
projects on the surface �Γ �M direction at a slanted angle, allowing
for the dispersion in the vicinity of the triply degenerate points to
be revealed via a careful comparison with the projected bulk band
structure calculations (Fig. 1c). Two hole bands crossing EF can
be clearly identified in the ARPES experiments, as well as an
additional electron band with a band bottom right below EF.
These experimentally observed bands are confirmed to be three-
dimensional bulk bands based on their photon energy depen-
dence, and they correspond well to the theoretical calculations.
The direct observation of both electron and hole pockets and
their close proximity with different group velocities confirms the
existence of the triply degenerate fermion points near EF, which is
not affected by the slight discrepancy between the experimental
results and calculations. This discrepancy is mainly related to the
details of the separation and slope of the two hole bands, which
could be caused by the limitations of frozen f-shell calculations
and correlation effects not taken into account by the local density
approximation. The good correspondence between ARPES mea-
surements and density functional theory (DFT) calculations
therefore provides evidence for Weyl fermions at elevated
temperatures.

Probing the chiral anomaly using magnetotransport. Magne-
totransport measurements were performed to look for the chiral

anomaly associated with Weyl fermions (Fig. 2). Figure 2a–d show
the field dependence of the resistivity of YbPtBi at selected tem-
peratures with a current I along [100] and a magnetic field B
applied parallel and perpendicular to I. For temperatures between
25 K and 170K, the longitudinal magnetoresistance (B || I) is
positive at low fields but becomes negative in the higher field region,
while the transverse magnetoresistance (B ⊥ I) is positive, which
together are evidence for the chiral anomaly. The negative long-
itudinal magnetoresistance cannot be explained by either current
jetting (Supplementary Fig. 2 and Supplementary Note 1)27, nor the
sample anisotropy since similar behavior is found for other cur-
rent directions (Supplementary Fig. 3). The negative longitudinal
magnetoresistance above 20 K could be well fitted using a con-
ductivity σ(B)= (1+ caB2)σWAL (Fig. 2a–c, Supplementary Fig. 4
and Supplementary Note 2), where ca is the chiral constant and
σWAL ¼ σN þ a

ffiffiffi
B

p
is due to the weak antilocalization7,8. As

shown in Fig. 2e, the temperature dependence of ca is well fitted
with the expected behavior of ca / v3Fτv= T2 þ μ2=π2ð Þ, where τv
is the chirality-changing scattering time and μ is the chemical
potential28, yielding v3Fτv ¼ 134 m3 s−2 and μ= 1.5 meV. σ(B) for
various angles θ between B and I are displayed in Fig. 2f–h as a
function of B2, where the high field linear behavior indicates a B2

contribution, while the very small a values lead to a negligible
component / B

5
2 (Fig. 2e). As displayed in Fig. 2i (and Supple-

mentary Fig. 5), the extracted ca(θ) shows the expected angular
dependence of ca(θ) ~ cos2 θ. Therefore, both the angle and
temperature dependence of the magnetoresistance are highly
consistent with the presence of a chiral anomaly in YbPtBi.

Meanwhile either by changing the Bi flux concentration or by
Au doping, the carrier concentration can be tuned, as shown in
Fig. 3. The Hall resistivity for various samples shows that more
strongly hole-doped samples exhibit one band behavior with
larger hole densities (nH), but upon electron doping, EF is shifted
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and eventually crosses the electron bands, leading to two band
behavior (Fig. 3a, Supplementary Figs. 6, 7). As shown in Fig. 3b,
c, in the vicinity of the crossover between one and two band
behavior, the negative longitudinal magnetoresistance is most
prominent. For more strongly electron-doped or hole-doped
samples, no negative magnetoresistance is seen at elevated
temperatures, indicating that this negative longitudinal magne-
toresistance arises when EF is close to the Weyl points (Figs. 1a,
3d). Measurements of the transverse resistivity (with the
voltage measured perpendicular to I) for fields rotated in
the plane of the voltage drop and I (ρPAMR

xy ) provide an alternative
method for probing the chiral anomaly, which is much less
sensitive to spin scattering than the magnetoresistance
(Fig. 3e–h)29,30. For two samples with evidence for the chiral
anomaly in the magnetoresistance (S7 and S9), the oscillation
amplitude of ρPAMR

xy is greatly enhanced above 20 K, while this
remains small for the more electron-doped sample, which is
another signature of the chiral anomaly in samples where EF is
near the band crossing. Interestingly, at 2 K the oscillations have
very small amplitudes and are not sample dependent (Fig. 3f).
This suggests that evidence for the chiral anomaly disappears
from these measurements at low temperatures, leaving only a
small contribution likely from the orbital magnetoresistance.
Similar conclusions are drawn from the magnetoresistance in
Fig. 2d, which at low temperatures is negative at all θ, and the
behavior is well accounted for by single impurity Kondo scaling31

(Supplementary Fig. 9 and Supplementary Note 5). This
disappearance may be related to the drop of the effective Fermi
velocity to v� � vF as the quasiparticles gain mass in the heavy
fermion state, since ca / v3F and therefore decreasing vF will
greatly reduce the chiral anomaly contribution. As a result, the

disappearance of the chiral anomaly at low temperatures suggests
a significant modification of the Weyl points by the electronic
correlations.

Topological Hall effect. Even in the case when vF is small, the
Berry curvature induced by the Weyl points can still contribute to
the anomalous Hall effect (AHE)32. We analyzed the Hall resis-
tivity between 0.3 and 30 K by considering the total Hall resis-
tivity as the sum of three terms9,10,33

ρxy ¼ ρNxy þ ρAxy þ ρTxy ð1Þ

where ρNxy , ρ
A
xy , and ρTxy are the normal Hall effect, anomalous term

from the magnetization, and the topological Hall effect term
arising from the Berry curvature, respectively9,34. Figure 4a shows
the anomalous contribution to the Hall resistivity ρAxy þ ρTxy

� �
after subtracting the ordinary band part ρNxy ; the data are taken
from measurements of sample S6 which exhibits single band
behavior and evidence for the chiral anomaly. Here the ρAxy term
shown by the dashed lines is proportional to the magnetization,
which dominates at higher temperatures due to an increased
resistivity (Supplementary Fig. 8), while the topological part ρTxy
gives rise to the maxima as shown in Fig. 4a at low temperatures.
After subtracting ρAxy , the topological Hall angle ΘT

xy ¼ ΔσTxy=σxx
is obtained and is displayed in Fig. 4b. Here a peak in ΘT

xy can be
resolved up to temperatures of at least 30 K, which is very similar
to the behavior observed in the magnetic Weyl semimetals
GdPtBi9 and Mn3Sn11. The large maximum value in ΘT

xy of 0.18
at 0.3 K in YbPtBi is comparable to the respective values of 0.17
and 0.4 for the two other compounds9,11. We note that in the
regions where the Hall resistivity is linear (below around 0.2 T
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and above 4.6 T at 0.3 K), the slope of ρxy is very similar. This
indicates that the carrier concentration does not change sig-
nificantly up to the maximum measured field, and therefore the
observed ΘT

xy does not likely arise due to a significant change in
the electronic structure. Consequently, these results provide evi-
dence that even at low temperatures, the Berry curvature from the
Weyl points is still manifested in the anomalous Hall effect.

Evidence for Weyl nodes from the specific heat. Evidence for the
presence of Weyl points in the heavy fermion state is also found
in specific heat measurements. While in zero field there is an
upturn of C(T)/T prior to the onset of antiferromagnetic order in
zero-field at 0.4 K (Supplementary Fig. 10)23,35, for larger applied
fields C(T)/T reaches a maximum before decreasing at lower
temperatures. However, as also shown by the solid lines in Fig. 4c,
the low temperature C(T)/T at higher fields deviates from a spin-
1/2 resonance-level model for Kondo impurity systems (Supple-
mentary Note 6)36, where two levels of width Δ are split by a
Zeeman field. This model can be widely applied in heavy fermion
systems, both in the coherent heavy Fermi liquid state and the
dilute limit37. In higher fields, C/T of the Kondo impurity model
becomes nearly temperature independent at low temperatures,
but the data are instead well described by a T3 dependence of the
specific heat, C ~ (kBT/ħv*)3 (Fig. 4d), which was proposed for a
Weyl–Kondo semimetal16, as a result of the linear dispersion
ϵk ¼ �hv?k in the vicinity of the Weyl nodes. We note that this

term is too large to arise from acoustic phonons since it would
correspond to an unreasonably small Debye temperature of θD=
32 K, compared to the much larger value of θD= 190 K for iso-
structural LuPtBi35. With increasing field there is a decrease of
the Sommerfeld coefficient γ and an increase of v*, consistent
with the applied field reducing the effective mass of the quasi-
particles (Supplementary Table 1). However, even at B= 13 T a
value of γ= 89 mJ mol−1 K−2 is obtained, indicating that a sig-
nificant mass enhancement persists in this field region, which is
consistent with the single impurity Kondo scaling present up to
the maximum measured field of 9 T (Supplementary Fig. 9).
Correspondingly, fitting the data yields low effective Fermi
velocities of v*= 213 m s−1 at 7 T and v*= 394 m s−1 at 13 T,
which are significantly reduced compared to the Fermi velocity of
vF= 2.3 × 105 m s−1 estimated from vF ¼ �h=með Þ 3π2nHð Þ13 at
50 K (Fig. 3c).

Discussion
Based on the above experimental findings, we propose the dia-
gram shown in Fig. 5 to describe the Weyl fermions in YbPtBi. At
high temperatures there are Weyl nodes formed from the con-
duction bands, while the f electrons are well localized. This is
consistently shown from electronic structure calculations, ARPES,
and magnetotransport measurements. At lower temperatures, the
strong band renormalization due to Kondo coupling enhances
the effective quasiparticle mass, which modifies the dispersion of
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the bands in the vicinity of the topologically protected Weyl
points, as shown schematically in the diagram. The renormali-
zation also leads to a greatly reduced effective Fermi velocity v*

compared to the bare band value, which eventually causes the
disappearance of the chiral anomaly in transport measurements,
but allows for the observation of a sizeable specific heat con-
tribution C ~ (kBT/ħv*)316. Importantly, there is evidence for the
Berry curvature associated with the Weyl nodes from the
anomalous Hall effect, which can be detected in both the inter-
mediate and low-temperature regimes.

Our results highlight the existence of Weyl fermions in YbPtBi,
where we find evidence for their modification as the Kondo
coupling is strengthened upon lowering the temperature. How
precisely the Weyl points are modified as the electronic correla-
tions become stronger needs to be determined by future studies.
While the topological Hall effect and specific heat provide evi-
dence for the survival of Weyl fermions at low temperatures,
looking for spectroscopic evidence from ARPES or scanning
tunneling spectroscopy is very important. One possible approach
to reveal Weyl fermions in the heavy fermion state from f-bands
is resonant photoemission. However, our measurements across
the Yb N edge do not show obvious resonance contrast (Sup-
plementary Fig. 11). Although ARPES measurements with hν >
100 eV (including with soft X-rays) indeed reveal the bulk f bands
near EF (Supplementary Fig. 12), resolving the (fine) hybridized
bands deep inside the heavy fermion state is still challenging, and
therefore further ARPES measurements with greater energy and
momentum resolution are highly desirable.

The presence of Weyl fermions in YbPtBi is different from the
cases of both CeSb38 and GdPtBi22, where the bands hosting
Weyl fermions do not have a significant f-electron contribution.
Meanwhile, evidence for Weyl fermions has also been found in
some magnetic d-electron systems such as Mn3Sn39 and
YbMnBi240,41, where in the case of Mn3Sn a significant topolo-
gical Hall effect is also observed10,11. On the other hand, it is of
great interest to look for the kind of dichotomy observed here for
YbPtBi in other potential Weyl heavy-fermion semimetals, such
as Ce3Bi4Pd3 where a similarly small v* was inferred from the
specific heat18, yet evidence for the chiral anomaly at elevated
temperatures has not yet been reported. Furthermore, the
strength of the Kondo interaction in heavy fermion systems can

be readily tuned by non-thermal control parameters, such as
pressure and magnetic field, and in particular, a quantum critical
point can be reached in YbPtBi at a critical field of 0.4 T35.
Therefore, our findings may open up the opportunity to explore
the exciting relationship between Weyl fermions,
electron–electron correlations and quantum criticality.

Methods
Sample synthesis. Single crystals of YbPtBi were prepared using a Bi self flux42.
Elemental Yb, Pt, and Bi were combined in a range of molar ratios from 1:1:7 to
1:1:20 and heated to 1150 °C, before being slowly cooled to 500 °C at a rate of 4 °C/
h. For some samples, Au was also added up to a maximum ratio of Au:Pt of 1:19.
The single crystal quality and orientation were checked using Laue diffraction,
which was measured along the [100] direction (Supplementary Fig. 1).

Physical properties characterization. The magnetotransport was measured using
the four-probe method in a Quantum Design Physical Property Measurement
System (9T-PPMS) with the sample rotation option, where Pt wires were attached
to the sample. Hall effect measurements for determining the AHE were performed
in a 3He cryostat with a 15 T magnet. As shown in Supplementary Fig. 2, for some
samples multiple voltage contacts were made, so as to rule out current inhomo-
geneities and the current jetting effect. The temperature dependence of the resis-
tivity was checked for several samples (Supplementary Fig. 1), which are similar to
previous reports35. The resistivities at 2 K range from 27 to 37 μΩ-cm with
ρ(300 K)/ρ(2 K) ≈ 10.

Specific heat measurements were performed using a 14T-PPMS using a 3He
option, while magnetization measurements were carried out using the vibrating
sample magnetometer (VSM) option. The magnetic susceptibility data are well
fitted by the Curie–Weiss expression between 10 and 300 K (Supplementary Fig. 1),
yielding a Curie–Weiss temperature of θCW=−2.3 K and an effective moment of
4.29 μB/Yb, again consistent with previous results35.

ARPES measurements and electronic structure calculations. ARPES mea-
surements, including resonant photoemission across the Yb N edge, were per-
formed at the Advanced Light Source, BL7 micro-ARPES beamline. The (111)-
oriented YbPtBi samples were cleaved in situ and measured at around 20 K with
75 eV photons, unless noted otherwise. A detailed photon energy dependence study
was carried out to confirm the bulk nature of the bands reported here. The typical
domain size after cleavage is only a few tens of μm for the Yb termination. The
surface termination (either Yb or Bi terminated) is determined by core level ana-
lysis, as well as a detailed comparison with DFT calculations. The soft X-ray ARPES
measurements (Supplementary Fig. 12) were performed at the ID29, Advanced
Photon Source. The DFT calculations were performed with plane-wave basis and
projected augmented wave method as implemented in VASP. The f-electrons are
treated as core states in these calculations. To ensure convergence, plane-waves up
to 480 eV and 12 × 12 × 12 Γ-centered K-mesh was employed. The generalized
gradient approximation is known to overestimate the band inversions in crystal,
therefore we have employed modified Becke–Johnson potentials to calculate the
band structure.

Data availability
All the data supporting the findings are available from the corresponding author upon
reasonable request.
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