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ABSTRACT 

' 
uc:~:: . : ~: .~·~ :~ 

The analytic structure of two-particle to three-particle production 

. _amplitudes is examined within the framework of analytic s-matrix theory, 

with particular emphasis on the structure of the physical sheet. The basic 

principle used is maximal analyticity, which is both discussed and exe~~lified. 
The knowledge_ of the structure of the physical sheet is used in deriving 

formulas for the discontinuities across the cuts in the two-particle sub-

energies of the three-particle channel and :\;·,,·~- across the cut in the total 

energy. 
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I. INTRODUCTION 

The determination of the precise content of the principle of maximal 

analyticity is an important problem in analytic S-matrix theory .• 1 This 

principle asserts that scattering amplitudes, regarde~ as analytic functions ~ 

of appropriate variables, have only the singularities.required by general 
# 

properties of the amplitudes. 2 Associated with.the problem of determining 

the locations of these singularities are many Q.uestions regarding the sheet 

structure of the Riemann surface and the discontinuities .across branch cuts. 

It remains to be .shown on the basis. of·maximal analyticity that one can 
. . 

·construct a single "physical" sheet, which contains all the physical poi~ts. 
\i 

Moreover, even with the assurance of the existence·ot the physical shee~~ 

. there are .still questions regarding the structure of the singularities on 

that sheet and how one analytically continues from one physical region to 

. another. Though the situation is relatively simple for scattering processes 

involving two particles only, it is not at all'well understood when channels 

containingt three or more particles are taken into consideration. Complications 

arise not only because ·of·the increase in the number of·variables necessary 

to describe tbe processes, but also because of the possibility of:JOVer- · 

lapping normal cuts and the inevitable emergence of complex and anomalous 
.· 

cuts. In this p~per we shall examine for the case of a production amplitude. 

some of the simple·ways in which these problems arise, and how theymay be. 

resolvedo 

Our ultimate aim here is to derive the discontinuit'ies across unitarity 

·cuts associated with all the energy.and subenergy channe~s o~ a product~on 

.'processo ·It is ·ordinarily considered;tha~ the discontinuit~ equation follows 
~ : • : ,: • .•. • • ~ • • < : • ". < • ' •• • • • • • • 
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from unitar1ty and Hermitian analyticity. 
{ 

Recentlys Stapp .. has shown that 

the discontinuity equation can be derived as a direct consequence or the 

superposition principle and the in-out boundary conditions for the s-matrix• 

qu_ite independ_ent ot unitarity and time reversal invariance.3 . In te~s of 

. ·the scattering function M, defined by S a I + M, this equation has the form • 
' . ' 

M(ai+·•~s+~,·~J t> •)M(.o1~. ,s-. • ~j ... ) 
' ;;; 

0 J + )_,' 
., 

(l.l'); ' 

.where s is the total energy squared and the o variables represent the 

squares of -the various subchannel energies. The t: signs~-,designate tie_ • 
II 

and the-intermediate variables o are 'to be integrated over the rangE7s 
k 

allowed by the phase space or the intermediate· state. This is the basic, 

·overall discontinuity equation. It does not, however~ give the-discontinuity 

for any one variable a~one. except in the simplest. case of:.a two-particle 

intermediate channel. Our aim is t6;derive from {1.1) all the single-

variable discontinuity .equations of &;:production amplitud-e. In the course or -
{ . 

the derivation we shall encounter· and must solve some of the problems. 

mentioned in the preceding paragraph. 

Consider the production process as pictured i.n Fig. l(a) and let us use 

- _the scalar variables as indicated -in· that figure. One may ask-what. the 

discontinuity across :the subenergy o cut is. If one assumes that the usual 

two-particle 4iscontinuity equation can be generalized to this ·case, the 

result can be .·shown pictorially as in Fig- l(b). (~ algebraic formulation 

Vill be given-later.) is an energy-like variable and must have ,, 
a value grea~er th~n its tvo•particie threshold-it the production process 

... r' 

, . 

. '' 

~-. ' 
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is physical, certain questions immediately arise. Should be evaluated 

above or below-the two-particle unitarity cut? How does the answer depend 

upon the external variables~ Note that these questions do not arise in model 
. 4 . ~ 

calculations, . where the interaction between only two of the three particles 

in the final state is assumed to be dominant. 
I 

We propose to derive the discontinuity equation for a subenergy variable 

by an analytic continuation from a region where the same variable is the 

total energy of the crossed process, for.which the·two-particle discontinuity 

equation is known by v~rtue of.(l.l). ·In other words we start with_~he 

process for which line 3 in Fig. l(b) is originally on.the sam~ side as lines 
!I 

1 and 2; then keeping 0 fixed above·its two-particle'threshold, we va*y the 

other variables in such a .way that in the .end lj.ne 3 is· effectively swung 

over to the other side. In el~fecting this continuation; the main pro',blem is 

to find all the singularities that may obstruct the path ~nd ~o det~rmine 

• 
the appropriate locations of the associated branch cuts, so-.. that one can . 

avoid contlinuing into unphysical sheets. . The implication is, therefore, that 

we mus..... determine the boundaries of· the physical sheet, at least to a certain 

order in the structure of the singularities. Since, by· ·definition, the 
. . 

· physical sheet must con~ain all the physical points, the boundaries will be 

so chosen that one cab. always analytically continue from one physica.l: point 

to another along paths that stay within the sheet, and that this_ property is 

preserved when the singularity structure of higher order· is considered. In 

fact, we shall adopt a rule for· the placement of the branch cuts of a 

~isconti~uity :function by requiring that the form of .the discont.inuity .. equation 

is the same e:t .all points of the i•p_rincipal11
< sheet bounded by these cuts.· 

., 



r,' ·. 

The singular! ty structure of the scattering function~~ itself can then be . 

determined vith the help of Cauchy's theorem. 

In Section II ve present the cons(Lderati:ons needed for the determination · 

of the singularities of a scattering function and the_boundaries of the 

principal sheet or the associated discontinuity functions. The considerations , 
are illustrated by the study of the first-order singularities of a production 

amplitude. Continuation of a two~particle discontinuity function is studied 

in Section .III; the discontinuity equation in a subchannel energy variable 

is then obtained. The problem is· later extended in Section IV to include 

singularities of higher order.· After the discontinuity equations in subM 
\ 

energy variables are obtainede we then derive (in Section IV) the discont:tnuity: •.. 

across the three-particle cut in ~he total energy variable vith the other 

variables kept fixed. This is quite-simple cince ve understand the structure. 

of the physical sheet and some properties of the two-particle subenergy .. · 

discontinuity equations. 

'I 
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.II. THE PHYSICAL SHEET 

In this section· we consider, by means of a simple example, a procedure 

for determinlng the boundaries of the physical sheet in accordance with the 

principle of maximal analyticity. It will ~e·well to state at the outset 

·our interpretation of this ·principle. We first assume that it·is possible . . . 

to derive f~om (l.l} single-variable discontinuity equations. ~uation. (1.1) 
,. 

itself is such an equation in"the case of two-particle discontinuity in the 

. s variable·. Results of this wor.k (and generalization to more complicated 

processes to be discussed in a later paper) justify the"assumption that 

single-variable discontinuity equations can be derived in any variable. In' 
I 

conjunction with Cauchy's theorem, such a. discontinuity equation allowsqone 
I 

t~ express a. certain contribution to the scattering function M in terms of 
.r-

other M functions. We inter~rete maxim~ analyticity to mean that M can 

be built up as a sum of such contributions, plus, pe~haps., contributions 

from contours at infinity.· The general procedure for ob:ta.ining'the analytic 

structure is to start with contributions coming from the Cauchy contours 

near the physica;l region, first-without regard to singulariti-es of the M 

functions on the right of the discontinuity equations·, and then to introduce 

.the structure 'or these functions by means of an iteration proce~ure. 2 · The 

. singularities are-thereby classified as to order. ·In this section we examine 

in detail th~ singularities obtained by iter_ating once the discontinuity 

equation in a ~ith a pole· in ~i [see ~ig. ~)] • 

·A. ·The Starting Point · 

Let the process shown in !.~g._. ~!(a.),, be repr~sen_ted by the .tunction5 

M(s, a,~>.~ The invariant variables ·are defined in" terms of the momentum 

\ 

; . . . ~ . ... ; ~ 
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four vectors as follows: 

The two-particle disco~tinuity equation in the total energy variable a has 

a form as given by {l.l). 
. , 

On the rig~t-hand side there is implied an 

integration over the intermediate phase-space factor, which, for a two-particle 

inte~ediate channel of masses m6 and m
7

, is 

4 4 
(2w) 6 (k4 + k • k - k ). 

5 ·6 . 7 I 

li· 
I 

The diagram associated with this discontinuity is shown in Fig. 2(b). The 

(2.1) 

normal threshold singularity in the a variable is located at the point where 

the above phase-space factor vanishes, i.e., at a· =at= (m6 + m.,) 2• The 

discontinuity is nonvanishing only along the real axis for a > at' provided 

2 the external momenta ar·e real; it is only in this 'case that the energy-

momentum conservation laws can be satisfied with real internal momenta, and 

that (2.1) is consequently well--·defined. The external momenta are guaranteed 

to be real if the thresholds of the.external channels are lower than the 

internal threshold~ Thu.s, if the masses of the external particles are 

sufficiently small the Cauchy contour will give a contri~ution that reduces 

to a line integr~ over the discontinuity function extending from a to 
t 

infinity along the.real axis. The position of this contour, which defines a 

':·boundary of the physical sheet, will, for .large mass values, be deterlllitned 

~ ' ., 

.. ! 

•• 

'· 
--------------..,-----'---,--~~...,. ~-~--··--.--i-~· 

'· 
--·.,.-:-_.,._., __ 

r -- _.. -------' 
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by continuation in the external masses. The Justification of this procedure 

will be discussed later. Thus, neglecting contributions associated with · 

othe~ pos~ible singularities in the a· plane, we have as our starting point 

the formula 

M{s, a, w) = i
Po . 

1 . dOt 6 

2ifT · - M0 { s .• a ' , w) , 
a '• a ·,. 

. .t . 

(2.2) 

6 
which is valid if the (e:ffective)(·external masses are small enough. This 

is the normal or first-order contribution to r.( associated with this· two

particle intermediate state. This contribution will always remain for \~M. 

but it may; for larger values of the external masses, be augmented by'higher= 

order contributions, which come from possible added segments of the path 

of integration that detour around cuts of M0 • Although the_normal 

contributions are called the first-order contributions they are much more 

coll\prehensiive than the first-order perturbation ·contributions, as they in

fact constitute the entire function for small values of ·the. external' effective 

' , I 
L 

' L · masses. 1 

The discontinuity function M0 appearing in (2.2) ·is 
c 

{2.3) 

where I • 

(2.4) 

,( 
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Here, P is the magnitude of the three-momentum of particle 7 71, in the· 

rest frame of the a' channel, and the integration is to be taken over all 

. possible directions of_ this momentum. A(o', ~2 ) represents the left-hand 

bubble in Fig. 2(b); M(s~ o', w
1

) represents the right. 

The first problem is to determine the locations of the singularities of 
' 

M:· in the o' plane. These are obtained by substituting into the r-ight-hand 
CJ 

side of (2.3) various contributions to A · and l-1 • One proceeds by iteration, 

starting with contributions to A. and M coming from poles and normal 

contributions. Contributions with singularities only at very large a' have 

no singularity structure in the region of small a' and therefore act in 
' . q 

this region effectively as constants vith respect to the singularity structure. 
# 

We shall consider first the singularities of M that are associ.a.ted with the 
0 

constant part of A and the ·'pole term 

(2.5) 

in M • The corresponding diagram is shown in Fig. 3. We shall insert 

these contributions into (2.2) for "small external masses,.then continue the 

masses to their actual values, and finally study the function M as an 

analytic function of s and -~ •. Before·so doing, however, we discuss 

briefly the procedure of continuation in external mass. 

B. Continuation in External 1-iass 

The problem of justifying continuation in the masses of external particles 

7 
within the framework of analytic s-matrix the.ory ~as been considered by Stapp. ""~ 

We describe here the main idea. 

~ ., 
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Suppose we want to continue in m
3 

the .• M·: function corresponding to 

the diagram given in Fig. 2(a.). Then f'irst.consider the M function of a 

larger. process, involving six external particles instead of' five; let us 

call it M'(s, a, t) where .:i is.the effective mass squared of the two ... 

particles as indicated in Figo 4. The analytic structUre of M! 
. . 11 

can be 

determined in the same way as that of · M~ and for every contribution to M 

there will be a~ analogous contribution to M'. Now, general properties of t 

the analytic S-matrix theory requi:ner.~.that M' have a pole at t = m 2 • 
3 

. Moreover, the residue at any such pole must be factorizflble. 8 In particular, 

(' 

2 
Lim (t - m

3 
) M' (s, a, i:) = GM(s, a) • 2 

t-+m3 

where G is a constan~. rt· follows· that M(st a) defined in this way can 

have cuts and singularities only at. the limit points of the cuts and· singu- . 

larities or M'(s, a, T) as T .... m32 • If M'(s, a·, T) is analytic in T 

as T -+ m 2 , its singularities in· s and a must mqve continuously. · Thus 
3 

one can determine the locations of singularit'ies of M by tracing the 
2 

corresponding singularities of M' as t -+ m • It i~ in this sense that 
3 

we shall.discuss continuation in the external masses. Note that w~ have in 

no way implied that the actual scatte~ing functions are defined for unphysical 

values of the masses • 

C. Loca~ions of Singularities 

We now proceed with .the prob~m of determining the locations··:of' the 

singularities.of M(s, a) corresponding·to the diagram in Fig.). Define e 

as the angle between ~3 and .~ ·in the rest frame of the a' channel. 

:,, 

,, 
i 
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Thus, ve have 

(2.6) 

vhere 

' 

'Equ~tion (2.3) may ~ov be written in.~he,form 

l 

M
0
(s, a')= g(s,a') \ dz 

..) z-a(s,o')' 
-l 

where z - cos e • (2.9) 

(2.10) . 

or 

'{ . . l/2 2 l/2. 2 . 2 } -1/2 
X [.a -(s + tn

3
) ](a .-(s - m

3
) ](o •(tn6+~.) )[o -(m6-m..,} 2 ]_ • 

(2.11) 

·Since A(a', w2) is a. con~ta.nt here,,.,(2.8) hasno dependence on w. A dis

cussion of the relaxation. of this restriction is;given in Section IVo 

-------------~------"-';--·-.--------··-·--------~---.::---. -.- ~--·-

'( ~.. . 

·I 
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1/2 2 

The singularities of· g(s,a') are located at (a' t m) in the s 
l/2 3 

.plane and at (s t m )2 in the a' plane. The integral in (2.8) also 
3 

has square~root branch points at these positions, which cancel the singular 

behavior of g(s, a'), resulting in the fact that Ma(sl a') is regular there. 

Thd.s is, of course, true only- in the principe.1 branch of the logarithm 

coming from the integration. In addition, the integral has. square-root. 

branch poi~ts at a'· = (m6 * mr-) 2 ~ which are in Ma(s, a') also. 
I 

M (s, a.'~ ·has, furthermore, the end-point singularities, which occur(. a . . . 

when 

B{s, a')=. *1 • 

. 
Using (2.11), it can be shown that (2.12) can;be::satisfied onl;y· by a' ='0 , oo , 

and by the roots of .. 

f( s, a •) = 0 , 

where 
l 2 2 2 2 2 ? 2" 

f(s,a)=sam +:sm +·am +m-:m 
3· 7 8 3 6 

. ' 

2 2 2 2 2 
+ m (m6 - m., )(m - m8 ) 

3 6· 

. . 
It is straightforward· to establish the equivalence of (2•13) to the following 

equation, 



. .,. ., .. 

. ... 

(2.14) 

.. 
x2 = (s - m62 - ma2)/2m6 m8J 

. . 9 . 
This equ~tion has been derived previously by examining the analytic property 

of the Feynman amplitude for a·triangle diagram in the perturbation the~ry. 

The derivation here is based on the consideration of the pole contribution 

to the discontinuity equation according to the iteratiOn•1procedure in the 

analytic S-matrix theory.· 

From (2.13) we see that there are two singularities in the o' plane 

whose positions depend on s and m
3

; let us denote them by '':t: o~(s, llj.3). 
I . 

They are given by 

(2.15) 

If the value of .x
3 

is in the interval (-1, +1), the real solutions of x1 r 

as a function of real . x2 form an ellipse inside the square whose sides are 

x1 = ~1 and' x
2 

;, ~1;' this is shown in Fig. 5(a). If lx
3

1 > l , then the 

intersection of the soiution surface with'the real . ~ 

hyperbola, as indicated in'~igs. 5(b) and (c). In all cases, the points of 

tanl)ency with the lines ... x
1 

:::: +x or 
. 3 

' .. 

·) 

,. 
I 

I 
t· I 

1 
)• I 

________ ... _..,_.-,.. .. ----- - ..... - ·-·--···- ~. -- ··- -- --..- _....- . ~- v. .. - ·- .. -··. - ·- . 



.. 

' .. 
·.! 

~ ... s .... 

... -13-

The. s·~ii~~ Point of the study is at small values of s and m 2 ; 
.. -· t. ,.·. ... 3 

thus, ·x
2 

', an<! ,_x
3

; ',ma~· be· tak~n to:-be less than -1 initially. We 
. . 2- ' . ' . 

increase _. m3. ~---~p 4ts physical value first, -and then study ·the'· analytic 
• ' ' .,1 • ·-

. struet~e~· ~t -.. -~~(s, .o' ). in the two variables s and 'ci• • We assume that. 
' " . . 2 i 

the phys_i~al va.~ue,-.of -m3 satisfies the stabd.lity constraints 

I~ -mal ~ m3 .< ~ + ma·. The co~responding value ~r x3 is therefore 

restrieted to'the interval (-1, +1}~ In the continuation of x from a 
' 3 

value less than -l 'to a value in the interval (-1, +l), the solution curve . : . 
. t ,. . . ' 

for x
1 

(x2 , -~ -) -c_n~ge~· ~radually fr()ni a ~erbola {Fig~ 5(b)] to-·a straight 
. . · .. 3 . . . .. . 

line [wne~-- x~_:a,~ll.'a~d-then to· an ellipse [_Fig. 5(a}]•_ -~e branch poi~ts 
t . _.. . ' . , ' 

x
1 

(x
2

, x3) in 'the_ "i plane for- x2 < -1 are initi~ly real' and _not_ ~ 

greater ·tl1M ··~~ ., this ~e~s ·that -i~ the a! plane the:- singuia:ri ties are 
•' ' • I • o. . ,···- . . -

below. the norma.l.\th:ieshold, a while the a' .integration 'eontotir lies .: . ' t . 
. • • ' • ~ • .•• : •~\. • II • , " 

1 

undistorted ~~g-- t:h
1
': reai ax~s" from at to + co : As 'the hyperbola becomes 

a straight: ·1:1.~-e~.- x_i ~l- = ~2 · :: t~e .'br~nch points at ( s ,m
3

) -~~incid~ 'at a·· real 
• • ,. • ••. '-!>· ' . • . - ' • 

point belbw~' a:t .. • · ~tllll,~a~i~ :the· contour undistorted. , As the straight 
~ r • ,1 •1 ') ... , I ' 

line develq_ps =in~ ·ah·.eni·p~e·, thes-e. singularities go into the complex a' 
' . 

· plane taking ·eonJugate· positions. · 
'{ .. . -

This is ine 'situation trom vhich ve start investigating the analytieity 
' ' . 

or M(s, a) w~tl_t ali the_.external masses having ·physieal values. The value 
. . ~ .. 

of s at· this p'cint .'is ·suialu~ Let us now increase 
• ~ • - '. • ~ • • • . • ' 1 •• ~· .... ', 

s along a··path just above 

the re~l axls;·. ab, ~1?-~- 1~ }ig. _ 6(a). , The trajectories or the singularit~es . 
• •. !- J' •• ,-

at(s) of M0 (~·(~·-·)._~n~ ~h~ :· o• · .. p-l~ne ar~as indicated in Fig •. 6(b). 
. '\. . -

Correspond~~g to ~2 ~ :x
3

. is.t~e point 
' - . ~ . . - '::. ~ ·. .... . . . 

s a si ~ ~~~~ ~f ~6~ ~. m~r:i ·+. m'6(~a? - ,m3 2) 'rr:-r <· (~6 + ~a>~; 
--~ .. {' . 

\. 

. ·~ '• 

•• J- 1 _, 

.{._ 

I· 

i' 
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at this point a_(s) reaches the threshold at which is the lover,limit of 

the integratiort in the dispersion formula (2.2). However, M(s,a) has no 

.end-point singularity at . s
1 

, as ca~ be verified by taking the two possibl~ 

ways of contin\ling s around· s
1 

and shoving that the difference is zero. " 

Continuation past s
1 

vith a small positive i~aginary part. has. the result that 

a_( s+.} go.es :around· at in the clockvise direction, dr.agging the dispersion 

contour with it as it retreats. Corr.esponding to s = 
where at(s) meet and pinch the.contour; indeed, st is a branch point. of 

. i-t{s, a). Clockwise continuati.on in s around s leads ·a_( s+) to the 
t 

lover half.. a'· plane_, ·so the o' contour is distorted downward, The 

trajectories of a :i ( s~-) are complex conjugate to those of 0 :i ( s+) • 
I 

'I 

For;· 

s > st , th~ deformations of the dispersion contour are shown in Figs. 7(a) 

and (b•). for the two cases of · s + it and .s - it . • We remark that _the 

distortion is forced by the movement 'or the singularity o_{s); the particular 

vay in which the contour in Fig. 7 is drawn is not meant to imply an appropriate 

position or the branch cut ending.at o_(s), vhich"is" as yet undetermined. 

When s is suffidently small, the dispersion contour in ~he· a'.plane 

is along the-real axis undistorted, This contour in a' corresponds to a 

branch cut in M(~, a) along the real axis of 'a plane for a > at , 

~across vhic·h the discontinuity M is no~va.nishing. Physical region is 
a 

just above this cut. For the process indicated in Fig. 2(b), this 

is at values of a greater than max {(m4 + m
5

)2 , (s1/ 2 + m
3

)
2

, 

region 

a } • 
t 

\{hen s is sufficiently large, there is also another region above -the cut 

on the real axis, vhich is also physical, correspondiag to the process shown 

in Fig. l('b). The bounds of this region ~re 

lower end and (s1/ 2 - m )
2 

on the upper end. 
. . 3 ' 

"' . . . ' 

. 2 
max {(m4'+m )., a}. on the 

: . 5 t. 

For the convenience of 

~- \ ' 
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discussion, we define two sheets, I and II, of H(s, o), connected by the· 

branch cut on the real a axis. ·Since "t is a two-particle threshold, 

this cut connects only two sheets and no more. Let sheet I contain the 

physical point.s above the cut; ; hence, it must contain also the physical 

sheet. Gonversely, the unphysical sheets must contain sheet II. 
I 

We can now give.the locations of the moving singularities of M(s, o) 
•, 

in sheets I and II of the a plane for· fixed s. They are at those 

points where the pole-in.the integrand of (2.2) pinches the contour of 

· integration with the · singulat;i ties a ( s) 
:t 

Since the pole 
. -l 

(a' - a) appears as a multiplicative factor in the integrand, it is on 
li 

all sheets of We find there~ore a' ~efined by branch cuts of M (s, a'). 
0 

with the help of F~g. 7 that, for s + ie ~ a (s+) is in the lower half 

of the a plane in sheet I 

II. For • a (s .. ) 

I (II). 

, while .a (s+) is in the upper half of sheet· 
+ 

[a ( s-)] is ·in the upper( lower) half of sheet 
.+ 

Singu~~rities of. M(s, o) in the s plane for fixed a .can be found 

in a-similar way.. Let 'the solutions of (2.13) for fix~d o' be denoted by 
. . 

T~en, because. of ~he s~etry of Fig• :5 under interchange of. x1 

and x2• the· trajectories-·of .. · s:t (a')· are· analogous .. ~o· ·those shown in Fig. 6 · 

except that the roles of s and o' are interchanged.· Det us use the 
. .. ( 

notation in which · s + (a'). is associated with the solution of o' = a+ ( s) • 

and s (a' ) with a I = ·O ( s) • She-ets. I and :n can be defined in a similar 

way as before o · They are connected by the branch cut on the real axis· of the 

s plane starting from 

M( s, a) · are then located. as follows: .: for o ·+ i£ where 
.> . 

a > at' s_(o+) 

. . 
.... 

' 
I 
I 

I 
' 

I 
.. ! 

i 
.. I· 

·i 

I 

! 

. i 
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is. i.n the lower halt' oi' sheet I, while s+(a+) is in the· upper half' of 

II. For a - ie • s _(a-) is in the upper halt of· sheet I and 

s · (a'; J) is in the lo,-rer half of sheet II. 
+~ -

D. Placement of Branch Cuts • I 

Having found the locations of the branc~points, ve nov proceed to 

investigate the appropriate choice of the positions or the branch cuts 

connected to t})ese singularities. Consider the a plane for" •:s fixed at a 

value gl"eater than st and just above the real axis. ·Aside from the normal 

threshold the ·only singUlarity of M(s,a) on sheet I is a (s.+) in the . 

lo~er half plane. Since this· singularity enters into sheet I by emerging 
t: 
:, . 

through the branch cut on the l"eal axis in a downward direction, it is natural 

to take the branch cut attached to it·to connect to the lover side of the 

·cut along the real axis. A necessary condition that the position or any 

branch cut m~st satisfy is that the resultant physical sheet contains all 

·. the physical points. If the physical regions corresponding to the tvo 
I .. 

physical.processes represented by Figs. land 2 are analytically connected 

by a path that runs on a straight line just above the real axis of the . 

a plane,· then any branch cut connecting to the bottom of the normal cut 

would be acceptable, at least as far as these tvo regions are conc·erned. 

In order to determin~vhether a straight path of continuation just above 

the real axis, in fact, leads from one physical. region to another, one must 

have some criterion for determining in general the analytic connection 

between various phys~cal regions. We discuss this·question n~v. 
·1 

Consider 'the' ·SCattering proces.s or. four particles into four particles, 

and denote its function by M(s,· a, ·T),· where. T" ·is as indicated in Fig. 8(a.). 
'· . 

• .. . 
. . 

. '. · .. 

'. 
• ~-:- • • -'<'· . ' 

·--- ___ ... __ ,.,.._....__ o f I • 0 

--:---~--~~--.---:---... - ... ------. • ----~---·-r·--· .. ·-~- .. -;--'"-"'!'- ··----
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For s large enough and t positive, there are two physical regions in. 

the a plane above the real ax~s. Let us call the lower region B, which 

ranges from max · .{(m4 + m
5

) 2 , at J to ( s1/ 2 - lt
112 ) 2, . and call the upper 

region A, which extends fr.om (J./2 + .(l/2 )2 to + oo. When t is reduced, . 

the gap separating the two regions narrows, and when t becomes negative, , 
A and B become connected •.. For fixed s + i£ , the physical region of 

M(s,·.'a, t) as a function of. a· and t is shown in Fig~ 9. Now, it can be 

Sho·~~7 • 8 that th ~ 1 t 2 f M( ) i th ".. e presence o. a po e a t = m3 . o s, a, t n . e 

physical regi"on is the ·necessary and sufficient condition for the existence 

Moreover, the residue of such a pole 

must factorize into two factors, which are scattering amplitudes. 
I . ,, . 

Poles, in 

regions A and B correspond to processes represen~ed in Figs. 8(b) 'and 
~· . 

(c), respectively. 

In Fig. 9 a path of continuation staying in or very near the physical 

region defines the connection between the physical. regions A and B. Such · 

a path is ~hown by the solid line. A continuation of the eight-particle 

amplitude from A to ·B with t staying at. the pole position at all times 
I 

is indic.ated by the dashed line in Fig. 9; it 1·.must necessarily .pass through 

an unphysical region. By virtue of the factorizability of the residue, the 

''~'analytic structure of the ·eight-particle amplitude at the pole is composed of 

the analytic structures of· the two component five-particle amplitudes. The 

continuation along.the dashed line in Fig. 9 is achieved:by continuing the 

component amplitudes in their own variables, along paths.not yet determined. 

The question 

of a pole ~t 

•'". 

is. ~bet her such _:a: path ~xists. If it does 1 then the existence . 

2 
· t a m . in one of the two regions, A or B, must imply the ·. 

3. ., . 
. - .. 

.. ,,,· '. 
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existence of the pole in the other region·as weil~ This then implies the 

· existenc~ of a second partic~e of mass m 2, ·which may be identified as the 
3 .... 

antiparticle. It is in this way that the existence.of the antiparticle follows 

from S-matrix principles. Moreover, the:path of continuation from A to B 

that stays at T • m 2 defines the. continuation from the original region to 3 . 
. . ' 

·the cross-process region for the five-particle scattering amplitudes appear~ng 

in Figs. 8(b) and (c). 

The above con~lusions follow if one can fina a-path from A to B that 

stays at The problem, then, is to construct such a path. The 

way to do this.:.isJ;to take the path from A' to B' in Fig. 9, which is a.;t a 

negative value of T and which lies in or very near the physical region·, 

and to gradually increase· T • For the singularities that will be present 

in the five-particle amplitudes this continuation is just the continuation in 

T. that was already considered. Thus the.connection betwen·the· two physical 

regions of the five-particle amplitude is defined by a pa~h of continuation 
. t 

obtained by distorting the straight line above the real o axis at T < 0 · 

in such a\ way as to avoid singularities that emerge when T is increased to 

m
3 
2• The path defined in this way will give a path in the- -eight-particle · 

amplitude that is (homotopicaliy) equivalent to the original path from 

A to B via A' and B', as is required. 

Consider the present specific. example. When T. is negative, there is no 

.unphysical.gap separating physd.cal regions· -in the· o plane, a.s we have 

already n~ted. Thus, the path of continuation.may be placed just above the 

real axis, imbedded in the physical region. By considerations similar to 

those given in the preceding subsection, t~e singularities ot(s+) can be found 

' 

"· 

! 
! 
i 
I 
I 

I· 

I 

I. 

. ' 
' 

.. 

'· 

------------~-'----,----·----- ·-·c· • -.-.... ,_. ---~·-• ..... ··--·~--------~·--·- --- ~ ·--·--·---• .. -- --- ·-· 
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to be lo~ated in sheet II ju~t above the real axis. As 't is increased 

to.a positive value, the physical region breaks up into two disjointed 

sections A and B. The singularities at(s+) become complex for 

't > (m.T ... m8 )
2; 0' +(s+.) goes to. th.e upper hal,f plane of sheet II, while 

a (s+) goes· through· the real axis and enters into the lower half plane 

of sheet I. Neither_ of these singularities·disturbsthepath of continuation 

between. A and B .just above the real o. axis in ·sheet I. There is no 

need to consider the singularities associated with s - i£ •· since the 

physical regions are for s + it • ·Hence; to the extent of first·-order 

iteration of the discontinuity equation in a • no_ singularity of M( s ,~) 
,i 

deforms the straight path of continuation between A and B. These ~eg'ions . 

will both be on the physical·sheet if the branch cut attached to a (s+) 'is 

taken connected to any point on the-lower side of the normal cuts along the 

real axis. · ': · ~ 

The abov·e arguments do not specify the exact point of the real axis 
I 

at which the exit. point. should lie •. In _Fig~. lO(a) we show two poss.ible positions 

. of the complex bran~h cut in the a :plane. Clearly, the disco~tinuity across 

the real axis is the same in_the two cases except along the segment bounded 
. . 

by the two alternative exit points. Neither choice is incorrect, but one. 

particular location is more-convenient-than the other. We establish the 

following rule: the branch cuts of the discontinuity function associated-with . 

singularities arising from iteration of the disc.ontinuity equation are to 

be placed along the images of the real interval [-1, +1] of co.s e under the 
;, 

, ·appropriate mapping, which in the present example is· the inverse of· -=·:J.~ 

cos e = a( s • a' ) • -as ·defined by ( 2.11) •.. Let _us refer to these images as the 



I' 
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"natural" poSitions ot the branch cuts, and the sheet of the discontinuity 

function defined by these natural branch cuts as the "principal" sheet. The 

·' generalization to.more complicated-problems is rather clear: the natural 
' ' 

' · :· positions·of·tne·boundaries or· the· principal sheet are such that on this 

sheet the phase-space integrations of a discontinuity equation are never , 
distorted by the sing~arities of th~ M fUnctions in:the integrand, which 

•. ' or course move as one changes· the external parameters. Any disto~tions of 

the contour of integration in. (2.2) "ill be taken to· run along these cuts. 
' 

The physical sheet.defined by this representation will therefore have, in 

'-

I 

addition to the normal cut• possible added cuts that will run along positionq 
I 

or 'these (natural) cuts that bound the principal sheet. · 
1
\ • .. I 

.. 

,_ 

' 

• J •. 

. . 
For our example the physdcal sheet defined in this way certainly sa~isf~es 

the homotopy condition. The natural position of the com~lex branch cut of : 

Ma(s+,o'-) d~ the a' · plane connects a ( s+.) with a ( s+), as shown 
- + 

approximately in Fig. lO(b). Since the aispersion contour is distorted 

d6wnward fbr s +is· [cr. Fig. 7(a)] 1 the resultant branch cut or M(s+, a) 

in· the ·o plane ·is in ·the lower half of sheet I 1 ~s indicated by the solid 

curve in Fig. lO(a). That·the homotopy requirement ~ill-always be satisfied 

by this rule for placing cuts remains to be established. 

. The rule has many advantages. Firstly, the second type of singulari-
10 

·· tie_s, corresponding to internal momenta being distorted to infinity, must 

be on an unphysical sheet. This is-because integrations ove~ undistorted,_ 

real internal momenta correspond to phase-space integration.taken over 

I' 

I ~ . 

·physical·angles,· and a second type of singularity occurs when some contour of 1. 

, this integration is. di~t~rted to infinity; ~s we shall se~ ~n the next secti<;m. 
1 

.• -- ~. ~tt·· ·~·""• ·~· ~ ... - t'"'- ·~ .. ..J.!': ·'· ~ . :,• 
""'< 0 ' ~ • 0 • ' • ~ I ... .~} f , ~ ; , .• a' 

~ • I j ' 
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-·· , .. ,· ~-
' 
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• ... fo. t. -.- ~" I· 
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• If, , \ 
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~· ' ... 

l I ). · 
.j 

.. 
'y·~ • •I ... f i ~ ........... "l·~ 

. 4 ~~ 
I ,• ~ .. 

'• 
I ... 

I 

li 

__ "!'"1'1..,_ ____________ --:-_~ _ __,.._~....---_.....,--~-__,.,...---- _...,.........,_~-~· -~------'''-·-,-----

I 
I 



Secondly• the natural position of the complex cut of Ma(s, a') in our 

. ( l/2 2 example intersects with the real axis at a point between s - m
3

} 

and (s1 / 2 + m
3

}2 [see Fig. lO(b}]; consequently, at least in the order 

considered,, the discontinuity functions in the physical regions A and B 

never have discontinuities themselves in the same :v.ariable a• • The 
6 

position of this exit point can be found by recognizing that the point or 

intersection corresponds to B{s, o') = o, whose solution. according to 

(2.10) 1 is 

Since E
7 

is greater than m
7 

if a' >at • and m
3

2 is restricted by 

stability constraints 1 E · must be less than m
3 1 thus limiting. the inter• 

.3 

section poi11t to be within the . unphysical gap between A and. . B . • 'rhirdly 1 

the boundaries of the physical sheet determined by this rule make possible 

11 an integra1 representation of the production amplitude involving real 

contours only. To achieve this, conformal transformations on some of the 

variables are clearly needed. Lastly• the discontinuity equations in the 

physical regions are simple, as we shall see in the following sections. 

Adopting this rule• we make. several:•comments concerning the natural 

positions of the branch cuts or M(s, o). Because (2.11) can be put in the 

form or a fourth-order. algebraic equation in a' with real coefficients if 

s is real~ the natural cuts of Mois, a') in the o' plane must· have 

mirror symmetry about the real.axis, ·as we have indicated in Fig. lO(b). 

For M(s+• o), the lower half of the cut Joining a (s+) with a {s~) is 
- + 
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in sheet I, the upper half being in sheet II, and vice-versa for M(s•, o). 

In both case& there is. another cut in the unphysical sheet connecting 

a • 0 vith -oo along some path vhich may have complex parts. The situation ·· 

since it is the physical region of the process indice.ted in Fig. '!(b) • . . 

normal position of the branch cut of M
0
(a, a') for a' > a . t 

I 

1!. 
is a:Leo ar.ched; 

' .. . 
1 t intersects the real ~·.a1t<:axis in the gap between A and B. , . \ 

. ' 

.... • • I 
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III. THE DISCONTINUITY EQUATIONS 
I, 

In the immediately preceding section we have given a rule for the 

-. placement of branch cuts of_ di~continlrl,ty functions, compatible with the 

. i 

. 
. homotopy condition on paths of continuation between physical points. 

\ •, ! Th~se natural positions of· the branch cuts define the principal sheet, . ' 

! which has the ·property that at any point on this sheet the normal, real 
# . 

· I integrations over phase space in the discontinuity formulas are not 
I. 

I I . . . . .. 
·i distorted. In this section we derive the discontinuity equation for the 
. f • 

i production ampli t~e M( s, ;a, ·w) in the subchalll)el energy· a by an 

f analytic contit;l.'ua tion in s, for fixe~ . a , from the region (A) where the 

I crossed process . (a being the. total energy) is physical, and where we 

know what the discontinuity in ··a is. 
. , II 

In particular~~ we want to answe~, 

the questions -raised in Section I, regarding the sign of the small 

imaginary p.3.rt· of _w
1 

in _H(s, .a', w
1

) . in (2.3). 

' 

ln the-specific example considered in 'the preceding 'section, where the 

discontinuity equation in a'. is iterated with a pole_ in the . ·w1 channel,.·.~ 

we find that the c~plex branch cut has its natural ·p~sition in between the 
' 

two ·physical region's A and B in the s plane. The discontinuity equation 

in· a• in region A where a' 
. l/2 2 . 2 
> max {( s + 1,11

3
) 1 (m

4 
+ m

5
) 1 at } is· 

p:iven by (2 •. 3.); in this region the contribution to the dispersion formula. 

for M(s, a) is on the real a' axis and is undistorted because the external 

momenta are real. · Sinee, by ·definition. the discontinuity function on the . 

principal sheet is given by the normal form-~£ the discontinuity equation, 

we can continue·~ M (s 11• a') in s to region B where s > (a•
1' 2 + m )2 

a · · . .· · _-_. 3 
·.. . 

:along any path in the principal. sheet and obtain-the result that (2.3) is 

also valid the~e. The sign ot .t._i~.:·· for. : w
1 

:in' the.-.. i~tegrand. of .(2.3). is 
• • ~~ • • < • • .., ~. '. .. •• • " • • • ' • ' 

" .. 
.' 

I.·, ' .. 

. . ' 

. ' . ,, 
~. \1,.,, :I i . • ~ • • 

·,. ·,. 



immaterial ·even for s in B , since the pole in w that is considered 
1 

is not near the (.physical) region of integration. This will become evident 

later, as we consider other singularities. in the w variable. ··· 
1 

··· .. · · We:now:·co.nsider. the· :sfngularit~es· that .are associated with the normal 

two-particle contribution to the ~ction ·M 
1
appearing on the right-hand 

side of (2.3). That is, instead of a pole, we take Mis, a•, w
1

) in (2.3) 

to.have the form 

M(s, a• 1 ' Mw ( s '. C1 t t wj_; ) ' 
1 

{3.1) 

where wt is the lowest two-particle threshold and Mw is the discontinuity 
l 

across the associated two-particle branch cut on' the real a.Xi.s or' the 11)1 

. •, 

plane. The diagram for. this case is shown in Fig. 11, Putting (3.1) in (2.3~. 

and ignoring the singularity structure ·o£ A(C1'• w
2
), as before, we have 

I 1 

M (s, a•) s g(s, o.Q). ) dz F(s, a•, •>· (3.2) 

·l 

Here F(s, a•, z) has a square-root branch point at z = B'(s, o•), where 

B•(s, a•) is given by (2.11) with m8
2 replaced by wt. The iqtegral is 

therefore singular when B'(s, a')= tl, Let the moving singularities in the 

a! plane be called e1~ {s)t;,their positions may be round by solving (2.14) 

. where, again, m82 is. to be .. replaced by wt. 

If wt is less than· (m
3 

+ m.,> 2, 'whic.h is the w
1
.·threshold .of the 

I. 

external lines· of··· M(s, a•, w1 ), and ~f s is greater than sV then e.s 

-,............---·- -·---- -·-
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before we have x2 > +l, and.-l ~ x~ < l , so the singularities a! (s) 

are at conjugate points in the complex a' plane. The natural.position 

of the cut joining them intersects the real axis in the unphysical gap 

between A a~d . B. 
2 

When (l)t becomes· equal to (m3 + m7) •. ~~3 becomes -1, anQ. (2.15}· 
t 

becomes simply x1 a x2 • Thus, a; (s) coincide for all·values of s. 

For s greater than the three-particle threshold st a (m3 + m6 +.~}
2 , 

a! (s) are greater.than at) • The image of the point S'(s, o') = 0 . 

in the. a' plane is on the real axis between (s1/ 2 - m3)2 and (s1/ 2 + m
3

)
2

, 

as before. It can be verified that the natural position of the branch cut 
t \I 

connecting at {s) is a closed loop, as shown approximately in Fig.- 12.:' If 

s is above the cut on the real axis, then the contour of integratd;on in the 

dispersion representation (2.2) is distorted downward, also shown in the 

figure. Otherwis~, for s - i£ , the contour is distorted upward. It is easy 

to see that no singularity of M(s, a) ·can be in the physical region, sin~e 

the contour cannot be pinched there. 

Let us now fix a 1 at· a point a 
0 

in region A and determine the 
./" 

natural branch cuts of M (s, a') in the s plane. a . It is not difficult to 

obtain the result; we sketch it in Fig. 13. The natural complex cut in the 

s plane also forms a closed loop, enclosing the threshold (a•112 + ·m )2 of 
. 3 

t 
the physical region B. The singularity s (a'), given by -

is located in region B. It divides the physical region into two sections: 

, and B where (a112 + m )2 < s < s '(a') .•. The ' - (a') 
2 3 .-

B1 where s > 8 
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section B is inside the loop cut •. 
2 

We are now in a position to examine the c.ontinu~tion of the discontinuity 

tormula from the region A , where it is originally given, to the region B 

corresponding .to the crossed reaction. For the discont.inuity function evaluated 

at a , a continuation in s from A to i that stays on the principal 
0 

sheet of the discontinuity function, as shown in Fig. 13, will leave the 
. t 

form of the discontinuity at o
0 

unchanged; this is how the ~rincipal sheet 

of 'M
0
(s 1 a') ~e.s defined. One can follow the corr.esponding motion of the. 

cuts in the a' plane .as they move to the right; these cuts must avoid the ~ 

fixed point • a , since the path or continuation in 
0 

natural branch cuts in the s plane. 

s detours around .the 
:I 

1' 
\ 

Since the contour of integration in the equation (3.2) for the discon~l·. 

tinuity function is undistorted, it lies along the real interval [•1, '+1] in 

the . z plane. In this plane there is a pole and a branch cut belonging to . 

F(s, o•, z). The positions of these singularitiea depend on the. values of · 

s and .a• 1 and are guaranteed not to distort the real contour of integration, 

as long as s and a' stay on the principal sheet. However, we shall need 

to know the positions of these singularities and associated cuts relative to 

the contour of integration, in order to determine the sign of tic of the 

argument w1 appearing in the discontinuity equation (2.3). 

Let us consider .the movement of the branch point B'(s, o') in the z 

plane. The value of av is·fixed at a 
0 

Initially, s is in region A, and so we have E3 > p
3 

> O. Substituting 

ma2 + wt - (m
3 

+ ~)2 into (2~10}, ve. find that B~(s, o') is real, positive 

and greater than +l, when s is ·in A •. The cut in the . w1 plane ·starting 

' '· i 

. ' 

. 
1 

' ' 
I 
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at w

1 
= wt maps into a cut in the z plane, running from that value of 

a' ( s, a') to + oo, and hen.ce ·!· ~·. v ,. never passes near the interval [ -1, +1]. 

Consequently, sign of ti£ on w is immaterial in this region. 
l 

Now we 

12 
continue in. s to t~e region B1 , taking a path as shovn in Fig. 14(a). 

With the help of the formula for S'(s, a'h-L·e., (2.11) withm
8

=m+m-,• . . 3 7 
we find that the image or this path in the z plane is as shown by the 

dashed line in Fig. 14(b). The segment along the straight line between 

[(a ')112 - m ] 2 and [(a 
1 

)
112 + m

3
]·2· is mapped onto the negative imaginary 

0 3 0 . 

z axis. The part just above th~ loop cut corresponds to the section just 

below [-1, 0] ·in the z plane, as it is required._ The r~sion··Bi'.is·tb~re,fore 

mapped onto the region just below the negative real z axis between 
t 

B' (oo, a ) and -1 , where . 
0 

' B' (oo ,a0 ) 
-l/2 

• 

On account of (2.6), we see that w1 = + oo goes over to z = + oo for 

p
3 

> o, whether s is _i~ region A 
t 1/2 2 

z • -i oo for [ (a 0 ) - m
3

] · < s 

or B , but it corresponds to 

< [(~0
1 ) 112 + m

3
]2 •. Hence, whe~ 

•• 

s is 

' continued to region B
1 

, the branch cut in the z plane runs from S'(s+,a
0 

) 

to + oo, passing the real interval [-1, +1] on its lower side. The inte

gration o~ z in (3.2) should, therefore, be above 'the branch cut of 

F(s, a', z) in z .; See Fig. 1.5.(a). Transformation to the w1 variable 

by (2.6) yields the result that in (2.3) the integration is to.be performed 

over a range of values . o-, w1 which should be .. evaluated above the two

particle branch cut of M(s+, a'+• w1 ). See Fig. 15(b). -That is, w1 should 

------~--------------------~---------- -- --- -- ---.-- --J·-- ---:---·--·~~.- ~--- ~ . -



be specified by w1 + 1£ • It is to be emphasized that this is true no 

matter which sign of tic ·is associated with Wll(the external variable), 

so long as we have s + 1£ • Furthermore, it can be shown by the same 

method that for s-it we must use M(s-, a'+, w -) in (2.3). These 
1 

properties turn out to be crucial to the derivation of the discontinuity 
I 

across s , as we shall show in the next section. · 

Consider now the continuation to region B in the interior of the loop 
. . 2 

t 
by passing through an infinitesimal gap between s (a') made possible by 

t 
. 2 

letting wt be (m3 + m
1 

• c) • A path leading from B1 to B
2 

, s.s 

indicated by the dotted line in Fig, 14(a), then maps into a path in the·· ~ 
I 

plane starting .. from just ~.below .. the. n,egati ve real axis; 1 t '.leads up to ..:~~"" t 

and then· retreats to lower· values above the real axis without going around 

z = -1 point. Hen~e, for· s in B2 on the pr'incipal sheet, Fig. 15(a) 

and (b) are still applicable. Throughout the whole region B , therefore, 

the discontinuity equation in a' should read 

t t 

M {st, a +,w) = h(st,a +) 
a 

' 

X 

where h(s,a ) = wp(a')/p
3
p
7

., and x and y are 

(3.3) 

physical minimum and 

maximum values o.f w
1 

for a fixed tot.al energy s •1/2 2 
> (a + m

3
) and a 

fixed subenergy· a' > at• The simplicity of the.equation is a consequenc~ 

of the choice of natural position for the branch cut. The price to be paid 

is that the integral formula tor M{s,a) has complex parts. 

Suppose we do not· take the cont'our of integration in Fig. 12 to be 
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distorted·by the complex natural cut, but collapse the branch cut and take 

· the contour to be straight, lying just above the real. axis' {ignoring the 

moon cut. due to pole iteration) but below the collapsed cut. This collapsed 
. . 

cut runs from. a: (s+) to [(s+)1/ 2 - m
3

].2 , vhich is a·;singular point as 

will become clear later •. · Let the section beneath this cut and above the 
I 

I 

real axis be denoted by B2 .·.The corresponding region in the s plane is 
. . . ·. '. l/2 

reached by approaching the r~a.l. axis between [ (a +) . . : + m
3

]2 and ' . s (a'+) -
from above by collapsing th7 loop cut in Fig. 13. Now,it is clear from 

Fig. 14(a) and (b) that the inter~or of the loop cut in·l.the s plane maps 

' onto the upper half Z'l· plane under the transformation z = B ( s, a' ) .for fixed 

.. 

li .. 
·. a 1 > 0~• A continuation that distorts the natural cut and thereby lead~lto 

. 
·the region that is originally on the inside of the cut has the result that fP' 

goas through the interval [ -1,+1] on the real axis. f~om below and enters. 'into .::. · 

the upper half plane •. This means that in the z plane the contour. of 
t . 

integration from •l to +1 must be deformed·upward. Thus, to reach B
2 

in the s I plane by collapsing·the.loop from above, the branch .Point 
t a in '· 

the ;·.z plane must go to the negative· real axis - · oo < z < -1 by dragging 

the integration contour along with· it. The resultant· picture is as shown 

in Fig. l5(c). The impact on the discontinuity equation (2.3) is that w1 
. . 13 i4 

must be integrated along_a path ' that loops around its threshold wt 

as is indicated·in Fig. 15(d). 

In t~e case of Fig. ·15(b), for which s is in B1 , w1 is integrated 

·' · .. over the physical ~egion. from x to .. y '. In fact, as .a.' · is reduced to the 

threshold a ; x .and y approach·each other, corresponding to the fact 
t 

that the ·two~par:ticle ph~se'space.of.the .o 1 channel vanishes and the 

normal threshold is reached •. · !n·the ease of Fig. l5(d), however,. the 

'.·.,( 

.. ... 
,·· 



( 

integration between x and y. haa an extra.anomalou~ piece. .. Equation (2.3} 

should then be written as 

X 

(3.4) 

where M 
Call 

is the discontinuity of M(st o', w
1

) across the·two-parti¢te 
'I 

unitarity.cut in the w
1 

channel, defined in a vay analogous to (2.3},. \· 

Evidently, the complex part of the contour integration in Fig. 12 is 

eliminated 'at the expense .of complicating the discontinuity equation. 
1/2 2 

As s+ approaches [(a'+) + m ] , th~ branch point a' pushes the . 
3 

contour of integration in the z plane to ·-oo.· Thus, a singularity occurs 

at s • 
t • 1/2 2 

((a+) + m
3
]; this 

. 10 
is a singularity of the second type. 

If we fix the branch cut along its natural position, then this singularitY: 

can be reached only by continuation across the cut, and is therefore not · 

on the principal sheet. 

If the amplitude A(o, w2) in (3.3) is not regarded as a constant but 

has, in fact, a two-particle unitarity cut in the ·~a·· channel, one m~y 

question whether the integrand A(a-) M(o+) can be written· equivalently 

as A(a+) M(a-.}@ To shov that they a.re.equivalent, we use the convention 

s(·a-) S(a+) = l and find that, i~ the. abbrevi_ated notation where phe.se• 

space integrations.over products of am~litudes are implied, 

--------------------~~ ·-· ~-- ··--·- --· 
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F(o-) ~ A(o+) M(o-) • A(§~) M(o+) 

= [A(a+).- A(a:..)] M(a .. )- A(a-) [M(o+) -·ma-)] «! A(o-) F(o-). 

I 
. "2 . 

· This being an integral equation with an ,v kernel' except at the poles of 

A(a) 1 F(o) vanishes everywhere except at certain isolated points; analyticity 

then requires that i~ be identically zero. 

Finally, we make some remarks regarding the.sit~ation ~here wt is 
. 2 . . 

greater than (m
3 

+ m.,) .• In this case x3 is less than -1, ~o the solution 

· x t is a hyperbola, shown in·Fig. 5(b). The· associated singularities 
1 1~ 2 I 

" st (a') in' the, s plane are real ~f. a' >at • The natural branch cut 
« . " 

joining: st (a') is as s.hown in Fig. 16(a). The value of. B at which the 

cut turns complex can be determined by solving (2110) .for E
3
(s,o 1 ) 1 whic}) 

gives 

I . 
. 2 II [ 4 4 . 2 ( 2 . 2. II ~) ]1/2 

. :-;~7 M t p7 B M - m3 E7 • p7 B ,: 

E3(s 1 o 1
) .a ----.-,----------------., 

2 . 2 n2 
2(E - p7 'B ) 7 . 

·. 

2 . 2 2 
where M D wt -.m3· ~ ~ •. Defining Bo. to be the positive value of a 
ror which the square root is zero~ i. e., .. 

·-,·, 

... 

" 
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we see that for real a' > at and ~ sufficiently small positive value of 

2 wt- {m3 + ~) , 8
0 

is in the interval (o, 1) ; clearly, E
3
(s, a') 

(and therefore s itself) is complex if -80 <a".< 80 • but is real if 

" 80 ~ Is I ~ l • Similar behavior can be round for the branch cut in the 

a• plane~· A sketch or it is shown in Fig.·l6(b). I~ is interesting to note , 
that when x2 is reduced to a value less than -x

3 
but greater than +l, i.e., • 

" the singularity o_ (s) moves ~o the left, goes counterclockwise around the 

threshold at, and then retreats to the·right again,staying just.below ~he 

real axis. At this point this singularity of M• can.produce a pinch . . . a 

singularity for the M(s,a) amplitude in the physical region.15 The 

branch cut attached to it is in the unphysical she~t. as is requi~ed by the 

homotopy condition. 

,. 

_,.....,--------------..--~---. ·-------- --·-
... , 

r 
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IV. DISCONTINUITY EQUATIONS FOR THE THREE-PARTICLE CliANNEL · 4 •• •• • ·~ • •• t 

.· ·. · .. -~. ... , 

In this section·we want to derive the discontinuity across the· 
. .. 

,,· .· . 
I ' • ' \1 

•. , •• 1,, ~' .. : ••. : : \.' • -·· :.. .... • ;, • 

;.: .. ~ : :·.. ·· · three-particle uni tari ty cut in the .s-channel. ·The ··two-particle - a' -channel,. :.:",>>: 
•, 

0 

1 I • •• ' ~~· \ , ' 
0 

" • • 1 ', 0 
0 

' ' 
0 

0 
, •• ~ .. :. 00 ; ·, : 

·: ·:· · · .·:discontinuity equati'on in the principal sheet is given ·by'(3.3),.which we • · 
:·, , 

0 
~ •' : • 0 • • ' ' ' • ' • _, • • # • 

0 

I ._ + ' • 

0 

~ t 
0 

• j • ' ~ ' 

_ .;,::.· . .'·;. ·> ':"_.·:-:·:rewrite .·he~e in _terms of. angular integration as.. .__..-.:~·; _:.--:_ · .: ;· '.' ~· .. ·.::::· · ·. :-<·.:· .. ·· 
,,· I • : ._ \. • • 't ·~ • • : • ; • • '• .· ,; '·.'.' .. :.·· .· .. :•:_ ... ·-·· ·.·· .· ·':\ .. l.>;.;,·:.-~:·.·.i.:_ ..... ,. 

0 '··:. .~·~·~·· >."~~:··~A~J·:·-~ .·:~ \.. · .. 0 0 'j ·.. . .>· ·.·· : . .-·:····.:··· -;_.·; ·'.).<:·, ·. ::::)':-.·:-:<-:~ 

.·' :./,).~;;:!::}:;:;:?': , :Ma( s• •"a+, w) a p( a+) dn~ A( a-, w2) M( B~ ~. a+ wl•) ~ , :·., , .'., : (' .< ~l'~~ : n ' ; 
• ; • \., • ~· ... ! • • : •• ' ~ ~ :. ~ :.. • 

. : ~ ·-~ !··:· ~- :-., i ~. • • ·, . 0 

,._ ::--:: ~ .· .. ~ .. : '·: _This equation has t~: ~ol3.owing two propert.ies :. . . . . ~: : ·, .;-. ·_:,/(.·:.~~~ :/!: · .... 
/ · : : .· [.'; ~ a. . In. the physical regions the M function in the inte.grand is ·1 ( ?-: -~ .. )J. : ·-. 

f \ : ' ,, 10 "'"• •• • i '• • I I' J • o • • l >, ~ 0 o t' • o r o ' 

.·:, ;·, ;.):; ;.~·: 'k jevaluated ~bo-~e (or ~low). t~~- <A). unitarity cut according as · s . iis_. ·:. -:~:- . .: ...... . 

.. :. ::·<:·'>" .: above- (or below) its unitarity out, independent· or which side or the .... .. . .. 
• ': .... 4 • ~ ..... ,t •• : 

't;. 

. ·.: •. 1 ; real· axis w is on •. 
. :. .'· .. •. ~ ~ '! .. .~ ... ,: ; "o~ ,~ • 

o,' I 

.. ; :: .. : .··. <:.,: ... ~ ,· . ;-~. 
' . I o o I~ ,f 

_Ma(s, a,· w) can have no singularities -in the physical region of 
' . t': ~, / ··; .. - .. 

· .. ,, · ~·· ·. · .. ~ ·'the w··~ variable when s and a are physical. . . '. ,·. ,- :. ~ · .. \ . .' ·( .. :.:-<· I . . . :'< _'j )., 

· · '· : .. ~-.-~·: · .. ;-.: .. The first property above has already been .established by_ the .analysis- .:.· ::. 
' ·: :.~. ~:~ · . . '.:_,r •'"' ·,, .' , ' • • ' 

0 0 \ • y ' • •• :. ~.:· ... : • }· 

_·:-;··:~·:<:: .. :.;_/.~.::~:_.made in the last section.· we· now give arguments to establish.the second< ... ··;-':·:· .. 
• ':.: t '·.\-••. ~o. ~. '•\. 'o. • . . . • . . ·.~ ... ~ J·.: ... ··.~,·· · . 
. :·... .. .. ': • • .. :-·. <.:' ' ·.Referring to ·Fig. l(b), let us consider the three momentum-vectors of · · · . ~i 
.... ·.:~).i:·;· ·:·.:-'~: .. :.:.::. . .. ··.; ·' ·:;~ ..... 

· .. ~:. ···:: ·· ,;;, ·._· particles 3 1 4, and 7 in the rest frame of 'the a channel·. Denote -the ~. · :: ·:· · · 

<\£~-~L·};>_·.;:.".'~~-.. ~:~:I·:·ang~es. between 3 and 4 by ljl , between 3 .::andT 7 by·· e. , and betveen -:_:: .. ··.··:_:.,·:,···.·!~.~;.: .. ;_;·.·_:_ .. ,' . ·:\ :.~·;-~ .. !·~: '~~: ........ :;·t·· . \ -
· .. .'·<:;.~;:;.~·::~:::;_:·:.!,·,;._ 4 and .7 by· X • ,··clearly, the variables ~· w

1
, and w2 depend on the ··· · 

... :~ .: :,. ~-:·.>;:>,'~ ::'-.. . . ' . '·. :1.: .-; 
··:-~-·.:.:·:>:::.'·.·~··_.;i:t-:=\::·;·_~; ... ~gles .111, e 1 and x: · 1 respectively. If the· polar. axis is placed along the . :].:'(< 

·: .· .::- •·,':··'.:; :··:·direction of vector.· 7 ·. then··ljl can'be expressed- in te:rms of e, X and : f·._.-, 
·:··i_::~::. ~·7~·::.'-··'>·: . . .. · .e: · ... ·' .. 

:·.~<:,,;··\ .. :>···:~:'!'<:.the azimutha:l a~gle: ~e ·_ .. _·4»X ~: I~·(4 .• ~), tbe:~n.gles·of.'integration .can be , ;. _.:·:.-) 
'" , . . i . .. : '"\ • . .,., .. • . ,~ ' ~ . ) • .. . • ' ' 

:·· •.· .. ~ .... ·:_(·.~·,:.:·.'\F'~·,y: either e ~ . 9a 1 or·· ':xi' ~~ :.·:Nov~· the integral ·can. have a 'singularity in the .' ::. 
~·: ./ ~: ~_.:\~.:,:-•• : •• :_:: > • • • • ' • • : . ·:". ~ ... i : ·. 1... . . :~ ': '· .... ~ · .. { '. '. . . . . . ·' : . .. . . • ·. . 

...... ·'··~~··.: .';,_:;-:.;·,·: ... w._·v~iable_only.if b~th .. _._A(a·, w2 ~_and.:~~-~· ~· ~1 ) -in the int~gttand_contribute 

· · -, \:):··~-~-~-_: .. _!··;~ .. :: :,"·->. :.~ ··::·~ ·: > ... ~ .. < ~>::, ):~,t·:~·:>;~~~H :-:::=i~.~-.. -.-:\\::·.~-: ~.;~ r .: ·.·_;· .<::... · ·~· ·. ~- : .. : .; · 
~~,. . ~ . ..· ·~ -~-4 .~. • ... ~., .. ' - ... ·, ... \.'~ ... ,:, 

.. • "· ~ J ~. ~ • •• : • • ~... . '· .. ·" : .... • • • • ' .. 
; I• 

'. ..... ,. - : ·.:- f •• '''a. . . , . ... .... 



,,.~ ... -,~·-..·.• i.":'', .. "/.1 ," 1 ·:•1:· ~ 1 ~-··· •'·•r·.~··~ ,: ·. . .. , .... .,i'••'· -~-,~·:"'·.:·]· - -•-• "'''" •• .-,•· ,. ••·,~~-., .., 
i • ·\\:· .. ~--·~ ·::1 -~ .... -•• _ • ... ~ • , • • -:i. • .. , .. :'~~~~J~~· r 

·' . ' . :.:i' ~· .· . '. .•' . ·· .. -34- : ·.. . . •' ..... ,·, .··.:·: .· .>.-.:~.~~ .. ·:;.·~.i:.·i·~.~:.), ... ;t_._:·.\ ~-
.. ~·;, :. ;_~_·:·::·:.;::, ::.::·.· '"· . j: 

· · :.· .. >.~·. ·:·~·· ·:. terms that depend on the angle of integration; otherwise, the integrand can<?Y~!:~:;:~::. t 
·: ::·:· i'-. -~/':·. ~-:: .- . . . . ' . - .<:,",f~ 'i-',\~,'l 

.. :\•;:-::; ,}:\>be mad~ indepen<\e~t ot: .. and the' .intesr~ 1~ then no longer a t:~not_ion ... t·;;~{:~;~·I 
., .. ·,_.· .. ·. · .. Since w ia a momentum trnnstcr variable of a ·tour-line amplitude, singu-·.-::.:t ~~~.~·~· ·~ . . .. <::.<;·.~~:::~-~-~: :.' 2 . . . · . . . · . . :,l:.;;Y:~>: ... r 

I·'·:~ .. ·~: .. : ... ,"··:,: larities· ·Of ... A(a;.·w2) in the· ·(1,)2 channel are always located at unphysical:·k-''~~~-~::;': r 
i· ·::'/·:_:·:·.~~:·\".:): .:··.l. . . ; .... ; ~~{::,:~ ... f: 
1• • ••• , •• ......... • angles of .. X • whereas M(s; a, w1 ) can.have singularities at physical . :~, .... ~.-·~::·'· " 

1.;:{/?}~~w;;,:. :~:::.:f toe y:.l:h:•:i:::: t::~ :u;: .~::·:) i:: :. :::t~~: :~:::::~~::~SJ~~~r~ I 
): ~.i:.:;···.:~~:.: :\': ::~·:' · · .·. · . · a , .· · · : · ·.. . . ·.· ~· · .;.,,, · .. · , ,,~.:.·~-1<~':··;·~:.:·:;!: 
: .. . :. I '::) .. :":··.':·clear from the angu+~ .relationship between .. ,P, :~,·.and x that 'it ,is: ;~:_··.; :;· .. ·} ·:.~:y~:i·;;:,Vi 

·.··: ~-:::/;:; .~>.:.·;)··.~I. impossi bie t~- ~~tain ·physi~al··~al~es ·of . ·. ~ ···~rom··~ c~~inatiori :~~- :::a, f:·~~~ ::;·~~~~f.;~¥+1T~J 
. ~:.~:":'-')~/-: ~-;·i . .' .. ·, . . .... ! • < ',·''; '·:·: • •.• :~-·>~'.'./~~:~·. t; 

· · .. ·. _. ... :. · .. -' ·, '·.:. where X. is unphy,s'i9al. Hence 1 we find that in general 1-! ( s, a, II)) does •.-~: .:::i :~/-·:. f' 

~ ~- ~:~;~ ~.::/.~~:~:/·/ .. :·,.:.:·not. have· discontinuities ~~':physical values or···_·w· ', · i. e ~ • ·:.:: .. /:::: .. : ·:: ·:· · .. ) L · .. ·<\~· .. ;('~.-;~,'f·j 
. · :..; ·. ·-~· ... ;·· "··. :::· ;· · · . · ·· · · · · . · . . . . ·: . .~ :. :·. ·;. ·: · .. ··.r .· \~/}.:;.;H·> l 
:' · ; ··· .. ~ .. ~·.;. ·· ·''M (s a ·w+) :s M (s a II)-) for w. physical. -~his 'is tru. e_ .. ro_r.·a;_ . ._in bo~_h ___ :;:::~·.:/;;.·~:.·1 

· ! . , ... -:.~ ~.:·-i .. :. a • • a • • . · · ' 
: : · ::.: ~~;·.~,;~: .:~~~~·. :-·~:· sections of .region B (see .Fig. 12). ..· . . ''. · · .: ~- .. . . ·. ~.': · . ."· · · ~- :,: ~~~ ~:(:~:~?;~~· :\~~:·!: 

·:·.. . . . ... . . . . . · . . =./~:·:::; ·:;<r.:·. :. ;~; f?\.t r:. On-the basi a . ot: prop0rtiea (d.) and (I>) 0 thO der~~ation of the discon~,O·~,~;. ;:,;>}' : 
.. _ :·. >'. :' ..... >··: : tinuity equation in the s variable in the physica.l\region Of. a three- · · · .:· ,;''- ··. · · ·~t··· ~ 

'" ,·<J/'o •. •:~:. ;t_f"'"\':!' • 1 •' • '•.', ' . • ' ,. .' ,· ',·,·~.,,J '·I,i'.· .. -~.:•.·; .. ···.;·; .. •, ... './ I; ·., .; ... ;~·:'"·~t'~·~;,:~-:,;~:,.;:···. . . . .. ~· .:. . ~ 
• •· .•• (··,,: .. !." .. ::.··particle state. is extremely simple. To specify the i .. s~benergies·of the·::-:21 ~\·.:~:;·.,:·[,:·! 

.... :· .> ·~'~:.·:. :.'_.. . . . ' . . . · .. • .. ; . . . •.,·. :' . '::;_'.::< -~-: ·-:· .. ! 
\ ... : .. ·~,~: ... ···function more completely 1 we need also the variabl~ .v~ ·: , 'defined .to ;be . .: ·. . · .. t 

•
·, ,: ••.• ,~ '.~.•','•.<".', .• ::, :,, ·,.··.·.il> 4 ~ • ' • 2 ''. • • , . .'~ •·' ~.~ ,...\-...:. • ~- ,.· ' •. I '• ,o,. -: \I ~ • ~ ~ ~' ~ • • ~ 

~-· , :·<:·- -,~·.'· · .. ;: •. :: ... :.~ ... ;.' .. '·':.~·--· .. ·~., .. ·l 
~./:.:: ... ·.--~·<·:·:; .. ~· .... <~3 +'k

5
) •. Although it.satistie~ tlie constraint_:.::··;< · .. : .. -r·:··. 

•·:_ ·:~:· ~-~- 7,·.· .. _:··: '~--~ .. (.:: -.~:_···_.· ~ ,::,·.:·..... "I, • • • /l'' .J......... . ;,: f.· '1 •• • ... :· -> ~· ' t~ ~· ~ 
•.. 3 . . ' .::.· .. ;' .. ,;:': .. 

' .··:::[;;\:;,~:L'.:·i.'·~ a ~ mt+s ~ a ~ w 
0

' ·. :',' ,: i• .: ., ·.: .'.' .. . ,.·; . . ... :;(:::'·. 'i 
-·.' ,·.:; ::·.>,<_ .. :; :-~~:·<:.·~e .~ust independen~ly sp_ecify vh~~he~ it ·i~. abo~e·:.~:r. belo~ i~s o~ .. ·~b.it~.i~~- \; .':·.~ ~:·::·1 

.; .......... ·";<·.~ -~,,--< ..... ' . : . , . . .... . .. '. ::·. :.·:'· .. ~ ···! . .'· ·~ ... . :,· .!~:~.··,. : ... : .. ·,':;~~:.··I 
· .. , .. ,\~'~.-<-·: -cut.::Thus. in abbreviated notation. we have .. y·,:;.'· . .',.-:.·· ·; ;··.' ·:·· .... . · ;:._: .. :.;.. .. ·: ·: 

. ., .. • 

... ··'l' •• 
'I • • ~ '' 

•. ~ . 
. ' ~ . i' .. •. 

I • • ',:, o • ' .. "-; ... ':• • :::';· 

.. ,; .· 
.... . ·,' . .. ~ 

• ' ;, •• • .::.... • .- 1 ·, \ .:.- ·-

·1 .. ·' .. ; . ;" 

;·. .. ..... 
'. '· ,· 

. :. . t • . • ... ·; . ~ • . .... .. .. 

-~ ·.' ;> ':;)?:.,· .. ·,~ :;_;:-.:: .... \, ·'::· .<.:·': ·.:-:.-:: · .. ' ·:: .. : .. ·' 
• o 0 o 0 • 0 o • L ~ o ., ... ·"" f.. 0 0 I ' ~ t o • o 0 • 
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. 
M(s+, a+, w+, v+) .. M{s+, a-, w+, ·V+) = A{a-) M(s+, a+, w'+, v'+ ), 

. 
M(s+, a-·, w:t-, v+) - M( s+, a-, w-, v+) == A(w-) M(s+, a'+, w+,v 9+), 

M(s+, a-, w-, v+) - M(s+, a-, w- 0 v-) =A(~-) M(s+, a'+, w'+, v+), 

Adding the expressions yields . ' 

(4.2) 

where ai designates o, w, and v collectively, and T is the sum of 
D , , .I 

the disconnected parts of the three-particle amplitude. The over-all I, 
' • I . I 

• 3 I ' 

discontinuity equation (1.1) derived b~ Stapp on general grounds without 

using unitarity or Mermitian analyticity .states that 

a ... , 
l. 

I I 

o
1 

-) M(s+~ oi +), (4.3) 

., 
where T( at, oi, a -)- is the general. three-in, three-out scattering amplitude. 

:l. 

Subtracting (4·~2) from ·(4.3), we have finally 

. (4.4). 

. where TC.( a • o. , o. 1 ) represents the connected part pf the three-particle 
. l. l. 

scatter~ng amplitude. In a simllar way we can derive 

t t 

M(~~. a
1
+) - M(s•, a1+) = Tc(s+, a1+, oi +) M(s-, a1 -) 

Eq~tions (4.4) a·nd (4.5), are the discontinuity equations in the s 

va'riable ·across the. ~hre~-particle linitar~ty cut with the subenergy 

.variables kept fixed.· • I 

... ' 
... 

. ·. 

. (4.5). 

------~---------------------r------------------~----------------------.. -.~--------------~.-
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VI. CONCLUSION 

~mximal ~nalyticity is interpreted to mean that a representation or· . 

the. M function on the physical sheet can be developed by.starting·with; 

contributions from cauchy contours associated with discontinuities across .. . 

the various normal cuts (poles'included) 1 ·and
1
then·introducing these· 

,. 
contributions iteratively into the·· formulas expressing the discontinuities. 

The physical sheet·is bounded by the normal euts.together with additional 

cuts that emerge from these· as one increases· the· effective external masses 

from zero. These additional cuts come from extra parts of the contours, 

which run along the cuts of the discontinuity functions. The cuts of the 
I 

I 

discontinuity functions are determined by defining the func~ion everywh~re .. 
:. · (i. e. 1 on its principal sheet) by. means of the original integral formula, 

... 

.. 
., 

. . , ' 

,. 
•, 

--·· 

• 't, 
I • 

with fixed (undistorted) contours. The M functions are expressed to a -:::: 

certain "order" by using the exact M functions in the discontinuity formulas 

across the various cuts, but including contributions from only those cuts 
I 

·obtained by carrying the iteration scheme to a certain order. 

This procedure has been applied to the case of a two•par.ticle to three-

particle production amplitude in certain lowest nontrivial. orders. It has· 

been verified that the physical sheet defined in this way contains the 

physical regions corresponding to various crossed reactions, and that the 
. . 

cuts do not prevent continuation between the physical regions. The knowledge 

of the analytic· structure is then ~sed to determine from original discon-

tinuity formulas, which give the simultaneous discontinuities-across all ,, 
. . 

cuts, the simple formulas for the discontinuities across the individual 

cuts in~the.two-particle'subenergies -?-f ~~e three-particle channel and across 

the cut in the total energy. ' . 
... •'-

... 
, .. 

. ·. 
< • .. ·. .. ~ 

•'\: . 

.. 

·. 

., ... 
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FIGURE CAPTIONS 

Fig. 1. Production process,with s being the total energy:vari'able. 

Fig. 2. Production proces~with a being the total energy variable • 

Fig. 3. Diagram associated with iteration of the two-particle 
, 

discontinuity equation in a' with a pole. · 

Fig. 4·. A six-particle amplitude. 

·Fig. 5• Real sections of the singularity surface for three different ranges 

of values of 

Fig. 6. (a) Path of continuation in s ; (b) 'the. corresponding trajectories 

of the singularities in the o' plane. 
I 
~ j 

I 

Fig. 7. Distortions of the contour of integration or the dispersion formula. 

Fig. 8. (a) An eight-particle amplitude; (b) and (c) a. pole in ·r in two 

different physical regions. , 

Fig. 9. A section of the physical region of the eight-particle. amplitude. 

F.ig •. 10. · fa) Two _alternative positions of the complex branch cut of M 

function in t~e a ·plane. (b) Distortion of the o' contour 

of integration by the natural positiop of the complex branch 

Fig. 11. 

Fig. 12. 

cut of Ma in the o' plane. 

Diagram associated with iteration of M with·a two-particle 
a 

, normal cut in . w
1 

• 

Principal sheet of Ma(s 1 o') in the o• 

s+ > (m3 + m6 + ~)2 • 

plane for fixed . ·. 

• . Fig. 13. Principal sheet or Ma(s. o') in the s plane for fixed' o• • Oo • I 
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Fig. 14. (a) A path of continuation in s in the princtpal sheet. (b) The 

corresponding· path of the branch point . B'(s, o') in the z plane. 

Fig. 15 •. Ranges of integration of M relative to the branch cut of the 
0 

integrand for the various cases • ·' • 

Natural positions of the branch cuts of M in 8 and a.' planes 
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