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ABSTRACT

An equation of state for chain fluids has been derived through the r-particle cavity-
cofrelation-ﬁmction (CCF) for chains obtained from sticky spheres; here # is the chain
length. The r-particle CCF is approximated by a product of effective two-particle
CCFs, accounting for nearest-neighbor correlations and next-to-nearest-neighbor
correlations. For hard-‘sphere chain fluids (HSCF), the density dependence for
nearest-neighbor effective two-particle CCFs is determined by the equation of
Tildesley,—Streett for hard-sphere dumbbells and that for next-to-neare§;-neiglxbor.
effective two-particle CCFs by computer-simulation results for hard-sphere trifners.
- The final equation of state has a simple form which gives compressibility factors and
second virial coefficients for homonuclear HSCFs covering a wide range of chain
| length (up to 7=201) in excellent agreement with computer simulations. ‘Satiéfactory
compérisons are also obtained between predicted and computer-simulation results for
homonuclear HSCF mixtures, HSCFs containing side-chains and rings, and

heteronuclear HSCFs (copolymers).

a:. To whom correspondence should be addressed.



I. INTRODUCTION

In recent years, much attention has been given toward development of an
equat(i/on of state for an assembly of chain-like molecules. Numerous studies are
based on modifications of the lattice theoryl (e.g. Sanchez and Lacombe, Kleintjens
and Koningsveld, Hu, Ying, Wu and Prausnitz), but most recent efforts are of the
free-space (off-lattice) forms; they tend to be based on the perturbation theory and the
integral theory of ﬂuids (e.g. Wertheim?, Chapman, Gubbins, Jackson and Radosz’,
Chang and Sandler®, Phan, Kierlik, Rosinberg, Yu and Stell’, Walsh and Gubbins®,
Amos and Jackson7, Johnson, Mueller and Gubbins®, Ghonasgi and Chapman’,
Chiew!®, Song, Lambert and Prausnité”), or on generalized Flory theory coupled
with the concept of insertion probability (e.g. Dickman and Hall'?, Bokis, Donohue
and Hall®?, Yethiraj and Hall'*).

The equation of state derived here follows from idgas that are somewhat
diﬂ"er;nt from those typically found in the literature. We do not use lattice theory, nor
the perturbation theory and the integral' theory of ﬂuids, nor insertion probabilities.
Instead, similar to Zhou and Stell'>, we define an r-particle cavity-correlation function
(CCF) for chains formed by sticky spheres; here r is the chain length. In terms of r-
particle CCF, we obtain expressions for the Helmholtz function and the equation of
state. To make progress, we require information concerning the density dependence

of the r-particle CCF. We establish that information in two steps. First, we use an

idea similar to Kirkwood’s superposition approximation wherein we retain nearest-



neighbor and next-to-nearest neighbor correlations. Second, we establish those
correlations using th¢ dumbbell equation of Tildesley and Str.eett16 for nearest-
neighbor correlations and computer-simulation results for hard-sphere trimers for
next-to-nearest-neighbor correlé.tions.

II. THERMODYNAMIC PROPERTIES FROM THE

r-PARTICLE CAVITY CORRELATION FUNCTION

We consider a multicomponent system composed of r different species S, ,
‘where i=1, 2, 3"“;"" These species can form an r-mer by the’reactién
S;+S,+...+S, =5,S,...S,

The configuration of the r-mer is shown in Figure 1, where n is the number of
segrﬁents m the mam chain; s is the number of segments in the side chaiﬁ
which starts from the fth segment iﬁ the mam chain; n+s=r. For each nearest-neighbbr
pair Si-S;, thére are my; different interaction configurations; each configuration is
characfen'zed by an inter-segment distance vector L, whére k=1,2,3,..., m; . These
vectors originate .from .a definite number of interaction .sites on each segment. The
corresponding magnitude is L;; , irrespective of k.

By adoptiné the sticky;p,oint model of Cummings and Steli'7 for each nearest-
neighbor pair, the Mayer function for a group of  segments can be expressed as:

. | m; . :
S(:S')z..,S, =-1+ H(Lygs(ru —L,-}-J()/IZT,J-] ) % < G

J=i+l

1

: (r)
=-1+ exp(—Bes|Sz...s, ) > rlj > Gy



where the product covers all p_ossible nearest-neighbor segment pairs. For example,
for an r-mer shown in Figure 1, when i=n, n should be changed to f and j=n+1.
Variables r; and r; are the inter-segment distance vector and the corresponding

magnitude, respectively. Symbol & is a Kronecker delta; o is the collision diameter;

7,' is the stickiness parameter, and &5 s is the attractive energy at distances

beyond the collision diameter; €s,s,.s, 1S Not a constant but a function of r;;. When

r, <o, , the corresponding r-particle total correlation function can be written as :

i=1
j=i+l

r=1- my;
hss,.s, ==1+ [1 (7‘9'140,‘;15(1?' _Lij,k)/lz) ; | ry<ocy Q)

where 4, is a distribution parameter related to r,; .

To form chains, we start with a mixture of monomers. ( The monomers
comprising a chain are not necessarily identical.) In general, an r-mer may contain r
diffefent monomers. Our initial mixture of monomers contains r species. All chains
formed from this mixture of monomers have the same chain length ». For complete
aggregation, the mole fractions of all different monomers must be the same; the

number density for each species, associated or unassociated, equals a constant:

Pos, = Pos, = --- = Pos, =Po - 3)



It is convenient to define o, the degree of association, by

A= Pgs, s, /[ po = PS-‘I +g§:§2 S, (r12,Tp35-..T, 1, )Arpdrys. dr, 4)
where g{J ¢ is the r-particle radial distribution function; hs(') gé’gz -1

5,$,..8,

“ The integration should cover all possible configurations of an r-mer. Substitution of

eq.(2) into eq.(4) yields

| ) r=1 r-1 .

o= op;! q [y Ly 11247 13)] = wpp? H (A= 12 /3) L (5)
' jl=7+l ) —z+l

where @ , the number of possible configurations for an r-mer, is a constant that .

cancels out in the final results. The association ratio X is defined by

a
K=pss, s Hps —“—.71—_—&;:{ - - (6)

Whén all number densities approach zero, K approaches Ko which is determined by

the Mayer function:
Ky = J:: i e.xP(—Bsg,)sz..s,)drlzdr23 o1, = J: a+ S(gz 5, )Anpdy,...dr,_,, IR

Substitution of eq.(1) yields



r=1 r=l '
Ko=o]] [(L,.,./121,.,.)(47cL,2.j)]_-_-mHl (m L /3ty) . 8)
i=1 i=
=i+l =i+l

We are now able to define the r-particle cavity correlation function (CCF):

W&y s =exp(Bels, s )glk s, ©)

When r;=L; L, ..(k=123,..,m,;), the assembly of r particles becomes an r-mer. By

substimting egs.(1),(2),(5),(6) and (8) into eq.(9), we have a useful expression for the

r-particle CCF for an r-mer associate:

r=1

W (L)= I;I(r,x )——;(1 o)’ | (10)
J=i+l

where L represents a set of L;;4.

To obtain the Helmholtz function, we use its functional derivative with respect
to the Mayer function for an r-particle group, which is related to the r-particle CCF

by

A =TToos x

U] v
af(,) X Vss,.s, (T2sPa3se5by,) (11
5;5,.8

From eq.(1) we have



r-1 n; _
afgfgz = Hl (L,.jkaIS(r,.j -L; ,c)/lzjar,;.‘ . (12)
ji+l ) ' |

Substituting eq.(12) into eq.(11), integrating twice, first from Ly~ to Ly,+ and then

from 0 to 7', we have

—_ = r-l T r ' .
A Nf(a ON*%H(@OL / 3)f 7 v, Wdidud act, . (13)

=1+I

Here Nj is the total number of monomers prior to association. From eqs.(5) and (10),

r=l - r=1 _ -1 o .
|| vy = H oy 1, s,(L)J= [T o7 (rpoL, /3) a0
Ji_j‘l*‘l -:+1 N jx==i-l+.1 Vss,.s, ( )

Substitution into eq.(13) yields

PA)-A@=01__1{y0 o W/ 3 5 L)

NO - ' | (15)
__2 j I“=“ (r 1 J‘“w )
= Fda- [T adiny@, s w)=-1fa-Tadmy, o @)
To obtain the equation of state, we use the thermodynamic relation: |
"J(Al N,) J(A/IN,) ~
=(r ){————. ? ) = 2(————0 16
p ’ pO a(rpo) - po 5’00 et ) ( )



Substitution df eqs.(5),(10) and (13) into eq.(16) yields

Blp) - pp(g 2O _ - Da-(r- D Tadiny, 5, (L)

+ o[ (0 y$, 5, (L) / 3po)da (17)
— ol a(@In y$, 5 (L)/ dpo)dln y2, s, (L)]

Eq. (15) gives the generalized Helmholtz function and | eq.(17) gives the
generalized equation of state for an equimolar mixture of original monomers where
some monomers have associated into r-mers. When the degree of association «
equals unity, eqs.(15) and (17) are generalized equations for a chain fluid. Because
neither the sizes of monomers nor the configurations of a chain have been restricted,
those equations can be 'applied to homonuclear eham fluids with or without side
chains and rings, as well as to heteronuclear chain fluids such as random or block

copolymers.

III. THE r-PARTICLE CAVITY CORRELATION FUNCTION

As shown in egs.(15) and (17), the key to obtaining the Helmholtz function and
the equation of state is provided by information on the r-particle CCF for an r-mer
chain with a particular configuration. In principle, the r-particle CCF could be

determined by the inter-segment potential function or the Mayer function. In effect,



Cummings and Stell'” havé done so using the Percus-Yevick approximation for
dimers. However, at present it is not possible to use la similar approachvfor polymers.
Zhou and Stell'® adopted a linear approximation and simplified the r-particle
CCF by .usin.g the nearest-neighbor two-particle CCF raised to an empirical power.
Following Zhou and Stell, and inspired by Kirkwood’s euperposition approximation,
we propose to calculate the r-particle CCF as the product of two contributions: a
chemical contrioution (1- a)” dependent on the degree of association, and a physical
contribution expressed by the product of nearest-neighbor effective two-particle

CCFs y&  and the product of next-to-nearest-neighbor effective two-particle CCFs

y&o . The chemical term (1- )" satisfies the boundary condition that when all

number densmes approach zero, 5, s L)=(1-a) according to eq.(10) while the
physrcal contribution to CCF is reduced to unity. As for the physrcal term, this
procedure retains the most essential part of the r-particle CCF. It provrdes a
reasonable approximation because it makes a first-order attempt to mclude higher
correlations between segments in a chain; it neglecta only correlations between two

segments that are separated by more than one segment.
T M.,eo (2¢)
)’ss2 S, (L)=(1‘a)rHYSs,+,HYSsi+2 : © (18)
]=

In this equation, the first product covers all possible nearest-neighbor segment pairs;
the second product covers all possible next-to-nearest-neighbor segment pairs. The

generalized Helmholtz function becomes



10

,B[A(a)—A(éz:O)]/N0=1n(1—a)+a(r—l)/r . (19)

However, this equation is of no use when a=1. We obtain a useful equation for the

residual Helmholtz function later.

The generalized equation of state is

=1 Oyl L omyge. ]

20
=t dpy P 5 ape J (20)

Blp@)-p(@=0)] «
oo ¥

To obtain a useful result, we require the density dependences of nearest-neighbor and

next-to-nearest-neighbor effective two-particle CCFs and an equation of state for

monomers.

IV. EQUATION OF STATE FOR HOMONUCLEAR HARD-SPHERE-

CHAIN FLUIDS AND FLUID MIXTURES
Pure Homonuclear Hard-Sphere-Chain Fluids

For a homonuclear chain, we designate the total number of nearest-neighbor
segment pairs by r%s,,, ; neglecting end effects, all segment pairs have approximately

the same éﬁe'ct_ive two-particle CCF. We designate the total number of next-to-

10
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nearest-neighbor ‘segment pairs by 7, and again we do not distinguish between
different homonuclear pairs. Eqs (19) and (20) can be further simplified. For a pure

homonuclear HSCF, o =1 ; the equation of state and the residual Helmholtz function

are :

(2¢) (2e)
Bp o diny SiSin —_d In V58112
ZEp_0= rZ(a:O)—[(r"l)’*'rs'SHln __dT—+rSiSi+2n dT] ] (21)
24" 4 (a=0) - . e
ﬂN =r ﬂ rN —Bisin In B4 éizsiil ~ K812 In B¢ ér‘zsi)ﬂ : (22)

where r =r-1; K, =r-2; A" is the residual Helmholtz function; 7 is the
'redupéd density; .‘ n=mrp,0c’/6; and N is the total number of chain molecules.
Eq.(21) comes directly from eq.(20). Eq.(22) is obtained by integration of eqj.(16)\
with the pressure éubstimted by eq.(21). The cqnesponding monomer system is a

hard-sphere fluid. Therefore,. for =0, .we use the well-known Carnahan-Starling

equation.

1 ‘ ' 2 3 - -
Z(a=0)=£‘:'= *’(7:777)3 T 23)

ﬂAr(a=o)='3n-—1+ 1
rN (1_,7) (1_77)2,

(24)

11
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The density dependence of the effective two-particle CCF yg  for the nearest-
neighbor pair can be derived from the Tildesley-Streett equation'® * for hard

dumbbells. The result is.

3+a )n—(1+b ) 1+5
(2e) _( 20 20 20 _ Din(1- 25
lnyS,S,-H - 2(1_1,]) +2(1_n)2 (C20+ )n( n) | ( )

ay=—a,+b, -3¢, , by=-a,-b+c, , oy=¢ (26)

a,=045696 , b,=210386 , ¢,=175503 . - | Q7)

To obtain the density dependence of the effective two-particle CCF g, for the

next-to-nearest-neighbor pair, we assume a similar expression.

2oy (r=1) asm—1bs bs,
= - — 2
Inygs . ’ [_2(1_,” ) + 2(1-1 )2 c3oln(1 | n)l (28)

where parameters aj,, b, ¢5, are obtained by fitting computer-simulation data for
compressibility factors for linear” homonuclear hard-sphere trimers (Amos and

Jackson'®; Muller and Gubbins').

Ay =—a3+by—3cy , byy=-a;-by+c; , cy=¢ (29)

a,=-074745 | by=349695 | c,=483207 . (30)

12
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For homonucléar HSCEFs, the final equation of state and excess Helmholtz function

are given by remarkably simple forms:

o gpr l+c§r7+b772—c773
po ~ (d-7m) GD
ﬁA’_(3%a—b+3c)n—(1+a+b—c) l+a+b-c _
e or) + ATE +(c=1)1n(1-7) (32)

where a, b and ¢ are functions of chain length r only:

r—1 r—-1r-2 :
a=r(’1+,r G+ a,) (33)
f—l r=1r-2 . |
b=r(l+ " bz-f a—— b,) - (34)
r=1  r=1r-2 _ | _ |
c=r(l+ PR S g) . (35)

To test the reliability of the above equations, we compare ﬁredicted results with
coﬁlputer-shnulatioﬁ data. Figures 2, 3 and 4 compare calculated corhpressibilit_y
factors for homonuclear HSCFs (with chain length r.,= 16, 51, 201) with those from
computer\;sirnulation data (Denlinger and Hall®®; Dickman and Hall'’, Gao and
Weiner?'; Yethiraj and Hall'%;) Also shown are calculated results by

TPT1(Wertheim®), GFD" (Yethiraj and Hall) and PY-CS of Chiew',

13
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Compressibility factors predicted by eq.(31) are in nearly perfect agreement with

simulations, over a wide range of chain length.

From eq.(3 1), the reduced second virial coefficient for homonuclear HSCFs is

r(3+a) . (36)

AR

B,
Bip =535 =

Figure 5 compares second virial coefficients predicted by this work to those
obtained by TPT1 (Wertheim?), Zhou-Stell'>, GFD (Honnell and Hall?®®) with MC

data (Yethiraj et al.?®).

Homonuclear Hard-Sphere-Chain Fluid Mixtures

- For hard-sphere-chain fluid mixtures, eqs.(21) and (22) can be extended. For a K-

component mixture,

| X Cdlnygd o & diny&o
Z = FZ(a = 0) _[r - 1 + i___zlxirSijH‘(i)ﬂ—_—a#’--i— i=zlxirsjsj+2(")r7___62;7_jz_" (37)
PAT ,BA’.(d =0) & | (2e) & e
N -7 N ;xi@,s,-+,(i) an’s,-s,,,,(i) - izz;'xirs,-s,,,z(i) IHJ’gs;a(z—) (38

14
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‘where 7, and x; are the chain length and the mole fraction of component . i
respectively; x, = Ni / N ; N; and N are numbers of molecules for component / and

. - K . : . (2¢)
the whole system, respectively; 7 = 2., x,7; is the average chain length; Ys,5,0) and

Yoo @ are two-particle CCFs for component / which can be calculated from
egs.(25) and (28). Because monomers for different components may have different

sizes, instead of the Carnahan-Starling equation, Z(a=0) and 4"(a= O) are now

calculated from the Mansoori-Carnahan-Starling-Leland equation®*.

IF1+3BE E3 3BE77 E3 '253 1|
-T2 T2 R
Zla=0)=1+7 e S (39)
] 7 (1-7) (l—n)J
3BEn E* E°
U (=0 " F N 2 2 E?
ﬂK J__F _F | F 2+(—2—l)ln(1—77) (40)
- XN, I-n - (1-p)" \F
where
K K K
' ,ZNi’?O'i ZNi’;'o-x? . ,ZNi’?'o'? T K
B="tg——, E=*g——, F="Sg——, n="72ip0; . (D)
LN 2N 2N =

15
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Figures 6 and 7 show comparisons between predicted compressibility factors of
homonuclear HSCF mixtures and corresponding MC data (Honnell and Hall*®). The

prediction is nearly perfect.

Homonuclear Hard-Sphere-Chain Fluids With Side Chains

We consider a homonuclear chain molecule with side chains. Of the total
segments, there are r; segments in the main chain which are bonded to one sidé-chain
(single branch), and 7, segments in the main chain which are bonded to two side-
chains (double branch). If we ignore the steric hindrance between different side-
chains, Similarly, all CCFs for nearest-neighbor segment pairs are then equal to each
other, all CCFs for n¢xt—to-nearest—neighbor segment pairs are equal to eéch other.
The total number of nearest-neighbor segment pairs is the same as that in a linear
hqmonuclear chain. with the same number of segrnenfs. However, the total number of
next-to-nearest-neighbor segment pairs is different from that of the corresponding
linear chain. Each single branch has one more next—to-nearest-néigﬁbor segment pair,
each double branch has three more pairs, m comparison with the corresponding linear
chain with the same number of segments. Egs.(21) and (22) can then be used for the
equation of state and the residual Helmholtz function as a reasohable approximation

for homonuclear HSCFs with side chains, while rg = r-1 and

Bsy =V =241 +3n.

16
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To test the reliability of the proposed e(juations, we compare predictéd results
with computer-simulation data. Muller and Gubbins'® have reported simulation
compressibility factors for homonuclear plaﬁar branched Y-type tetratomic and T-
type tetratoﬁﬁc molecules. Comparisons of results predicted b}."this wo}k and those

by computer simulation, shown in Figure 8, indicates good agreement.

Hard-Sphere-Chain Fluids With Rings

We consider a ring molecule composed of r ﬁard spheres. There are r nearest-
neighbor and r next-to-nearest-neighbor segmént pairs. Egs.(21) and (22) are again
uséd with 7 ;r and %s., = However, for ring trimers, there is no next-to-
vnearest-neighbor segment pair, ie., %, = 0. For ring tétramers, the number of neﬁt-
to-ne&est—nei_ghbdr segment pairs is 2, i.e., Vs, =2

Sear and Jackson®® have reported MC compressibility factors for equilateral
triangle trimer , planar-square and tetrahedral tetramer and planar pentamer
hard-sphere ring molecuies. Figure 9, comparing predicted results with computer-

simulation data, indicates good agreement.

V. EQUATION OF STATE FOR HETERONUCLEAR HARD-SPHERE-

CHAIN FLUIDS AND FLUID MIXTURES

17
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Next we consider a more general case. We consider a K-componént mixture

of hard-sphefe-chains. Each component i contains N; molecules; each chain is
composed of 7 tangent hard spheres with different diameters. The total number of
chains is denoted by N = 2.° N,. Altogether there are M different hard-sphere spécies
in the mixture with different diameter o, j=1, 2, 3,...,M. The number of hard spheres
] in a molecule of component / is denoted by ¥, . Let 7,, and r,,,, represent the
humber of ne’arest-neighbor segment pairs of hard sphere j and hard sphere k, and the
number of next-to-nearest-neighbor segment pair of hard-sphere j and hard sphere /

with hard sphere & in between for a molecule of component /, respectively. We have

M M M MMM
Z”J(;) =K > erjk(i) =r-1 , ZZZ’}kl(i) =r-2 , i=1..,K. 42)
j=1 J=lk=j J=lk=ll=j .

Egs.(21) and (22) for the equation of state and the residual Helmholtz function are

then extended. as follows:

KMM d ‘?‘)i
Z= ﬂp:?Z(a:O)—[(?—1)+ZZ 2 X nT] o %mo
-~ Po i=1j=lk=y | JRO) d17 43
Ky %% | dlnys(f;ZS,(i) (43)
+ ;jglk=”=jx.-”,m(n77 dn '
Ar — Ar(a=0) KMM 0 KEMMM . :
1"’3 =r : & - 22 inrjk(i) lnygs,)‘m -2 z.xirjkl(i) lnyézs,zs,(i) 44)

i=1j=1k=1i=; i

SN, ZpN,  SAS

18
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where Z(a=0) and A"(a=0) are calculated by the Mansoori-Camnahan-Starling-

Leland equation, i.e., €qs.(39,40), while B, E and F in those equations are calculated

from
KM KM KM
ZEI 00 %%N 7007 %lezrj(oO} T EM
B=_'—J—§:—-—-—-, E= JﬁN , F= JfN , 77__6_21,21’(’)/0'03 (45)
N, XNy N, -

=1 i=1 i=1

.

Considen'ng the difference between thé Cémahan-Starling equation, i.e., eqs.(23,24),
and the Mansoori-Camahan-Starling-Leland equation, we can revise the effective two
particle CCF for a nearest-neighbor segment pair and a next-to-nearest-neigﬁbor
segment pair, gs.(25) and (28) for a homonuclear chaiﬁ molecule, for application to

heteronuclear chains:

‘ B,E E3 E3
o0 (3‘*' azo) '%'ﬂ (1 bzo) (1+b20)’F—2§‘ | E3
Inyss, : + - -(1+¢ 46
Vs si0) 2(1"71) 2(1_11)2 ( 20)F22 In(1-n) (46)
[ BE, E3 | E3 1
In yg’s) '(nnl)} L, bsoh—: R c E;I(l—n)} (47)
Vs 8,:8,0) = " [ 2(1—71) 2(1""!)2 30 12 n J
where
Bz=(0',-+0'k)/2 . E2=(0'12-+0',f)/2 . E'2=.(raj3-+a,f)/2 (48)

By=(o;+0,+0)/3, Ey=(c?+0}+0})/3, F3=(a§+a,§+a,3)/3 @)

19
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Pure Hard—Sphere Copolymers

We consider a fluid of pure hard-sphere copolymers which consist of two
monomers A and B with different sizes. Under different polymerization conditions,
three common types, 1.e., alternating, block and random copolymers, can be obtained.
In those copolymers, there are three different nearest-neighbor segment pairs: A-A,
B-B and A-B. The numbers of these in a molecule are r,,,7,; and r;, respectively.
There are six ‘different next-to-nearest-neighbor segment pairs: A-A-A, A-A-B, A-B-
A, B-B-A, B-A-B and B-B-B; the numbers of these in a molecule are 7444, 7445,
V484, ¥BBA, ¥BAB and rggg, respectively. Assuming there are 4, monomer A and r3
monomef B in a linear copolymer molecule, the following constraints must be

obeyed:

Y rg=r-2 , (a,By=4,B) . (50)

ratrg=r a%rap=r—-1 >

The equation of state and the residual Helmholtz function for those copolymers can

then be written as:
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dln y2 dln y3o dlny%)
=rZ(la=0)-[r-1+r,n dfy + Fpn dfyAB + Fgpl] dJr;

dln y%) diny%) = diny$E)
+ V447 dzm’“’wﬂ df] + Vypq?] df] (51)

dn y& dlny) dln y&)
BBA'? dﬂBBA LR/-YT./ A dﬂ +rBBB77 dnBBB]

'B AT _ r /A (;= 0 —[FuIn Yy +r,, In Y3 41, In y 3O + rMA In y&) (52
(2e)

+ 7 YD + Fipa INYEE) + Fopg INYE) + 1 IN VS + Py In Y52
For an alternating copolymer, the only nearest-neighbor segment pair is A-B. The

only two different next—to-nearestfneighbor segment pgirs'are A-B-A and B-A-B. The

numbers of different segment pairs in a molecule are:

¥y =0, tap=r-1, rgp =0 | ' (53)

Yaua =0, 7us =0, Fp =r=1, ryp,=0, rp=r—1 =0 . (54)
For a block copolymer, the numbers of different segment pairs in a molecule are :

Cry=re-1, re=1, Fop =15 —1 | " (55)

Fua=ti=2, Pup=1 rp.=0, Fp=1 rpp=0, rp=r-2 . (56)

For a random copolymer, the sequence is determined in a statistical sense. If the

| copolymer is completely random, the number of A-B nearest-neighbor segment pairs
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is proportional to the product of Xy , the probability of finding a segment A, and Xp

the probability of finding a segment B in the copolymer. These probabilities are given

by

XA=rA/r R XB=1-XA=I’B/F (57)
Therefore, the numbers of different nearest-neighbor segment pairs in a molecule are:

Similarly, X, X ﬂX,(a, B.y=A, B) is the probability of finding segments «, 8 and
y. The numbers of different next-to-nearest-neighbour segment pairs in a molecule

arc:

rua=(r=-2)X3 , rup=2Ar-2)X3Xg , rpa=(r-2)X3X,4

. (5
roa = 20— DX, X2 | o =(r=DX XD . rp=(r-2)X3 (59)

For any other type of copolymer, the numbers of different nearest-neighbor and next-

to-nearest-neighbor segment pairs can be determined if the sequence is known.
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Figure 10 compares predicted compressibility factors of a heteronuclear hard-
sphere dumbbell fluid with Archer and Jackson's “computer simulation results?’.
Figures 11 and 12 show comparisons for heteronuclear linear triatomic hard-spheres.

8

Computer-siinulation results are from Amos and Jackson'®. The prediction is

r

satisfactory.
V1. DISCUSSION AND CONCLUSION

Recent moleculai—thermodynamic methods are characterized by twb steps.
We use statistical mechanicé to derive analytical expressions as a first step. However,
even for a simple hard-sphére fluid, analytical expressions cannot be obtained withdut
introducing mathematical simplifications. To avoid mathematical problems, the
common précedure is to introduce a reasénable model. The final expression 'obtained
may then include some unknown coefficients which must be determined. In this
work, we ad/opt a sticky-point model and approximate the r-particle cavity-correlation
function by z;product of nearest-neighbor and next-to-nearest-neighbor effective tWo-
particle cavity- céxre_lation functions. The density dependences of those two-particle
cavity correlatibn functions are unknown. Therefore, as a second step, we use
computer- ‘simulation results to determine those dependences.
In this work, to obtain the unknown density dependénce of CCFs, we use

the Tildesley-Streett equation for hard-sphere dumbbells and computer-simulation
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results for hard-sbhere trimers. Our final molecular-thermodynamic model has
predictive value as indicated by satisfactory comparisons wiﬂl computer-simulation
results for homonuclgar hard-sphere-chain fluids and fluid mixtures with or without
side chains and rings as well as for heteronuclear hard-sphere-chain fluids.

The procedure in this work can be extended to chain fluids with attractive
potentials. For example, for square-well chain fluids, we can use Alder’s work?® for
square-well spheres as a reference. We can then use some computer-simulation
results to determine the density dependence pf effective two-particle cavity-
correlation functions for sqﬁare-well chain fluids.

The present work can be used as a basis for developing practical equation of state

for polymer solutions and polymer blends.
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FIGURE CAPTIONS

Fig. 1 r-mer with a side chain.

Fig. 2. Compressibility factors of 16-mer HSCF.

Fig. 3. C;mpressibility factors of 1-mer HSCF.

Fig. 4. Comp;t.assibility factors of 201-mer HSCF.

Fig. 5. Second virial coefficients of HSCF.

Fig. 6. Compressibility factors of homonuclear HSCF mixture.
Fig. 7 Compressibility factors of homonuclear HSCF mixture.
Fig. 8. Compressibility factors of homonuclear i)lanar Y-type and T-type tetratomic HSCF.
Fig. 9. Compressibility factors of 4-mer ring HSCF.

Fig. 10. Compressibility factorIs of heteronuclear Z-ﬁer HSCF. |
Fig. 11. Compressibility factors of heteronuclear 3-mer HSCF.

Fig. 12. Compressibility factors of heteronuclear 3-mer HSCF.
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