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28Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

29Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy
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We search for the decays B� ! �K�� and �B0 ! � �K0� in a data sample of 228� 106 B �B pairs
collected at the ��4S� resonance with the BABAR detector. We measure the branching fraction B�B� !
�K��� � �3:5� 0:6� 0:4� � 10�6 and set an upper limit B� �B0 ! � �K0��< 2:7� 10�6 at the 90%
confidence level. We also measure the direct CP asymmetry in B� ! �K��, ACP � ��26� 14� 5�%.
The uncertainties are statistical and systematic, respectively.

DOI: 10.1103/PhysRevD.75.051102 PACS numbers: 13.25.Hw

-Measurements of the branching fractions and CP asym-
metries of b! s� decays provide a sensitive probe of the
standard model (SM), in which these decays are forbidden
at tree level but allowed through electroweak penguin
processes. They are sensitive to the possible effects of
physics beyond the SM manifesting as new virtual particles
contributing to loops. These additional contributions to the
decay amplitudes could affect branching fractions and CP
violation [1]. The SM theoretical prediction [2] and ex-
perimental measurements [3] of the b! s� inclusive
branching fraction have uncertainties of about 10% and
are consistent with each other. Although exclusive b! s�
branching fractions are experimentally easier to determine
than inclusive ones, calculations for the exclusive modes
are theoretically challenging due to large nonperturbative
quantum chromodynamic effects. The expected direct CP
asymmetry between B� and B� decay rates in the SM is
��0:1–1�% [4], while the time-dependent CP asymmetry
in neutral CP eigenstates such as B0 ! �K0

S� should be a
few percent [5]. A significantly larger CP asymmetry of
either type would be a sign of new physics.

There have already been results published for branching
fraction and/or CP asymmetry measurements in several
exclusive modes: B! K�� [6], B0 ! K0

S�
0� [7], B!

��0�K� [8], and various B! K��� [9] modes. The
Belle Collaboration has measured B�B� ! �K��� �
�3:4� 0:9� 0:4� � 10�6 and B� �B0 ! � �K0��< 8:3�
10�6 at the 90% confidence level using 96� 106 B �B pairs
[10]. We present the first BABAR measurement of the
branching fraction for the charged mode B� ! �K��
and a search for the neutral mode �B0 ! � �K0� [11] using
228� 106 B �B pairs. We also measure for the first time the
direct CP asymmetry in the charged mode ACP �
	N�B�� � N�B��
=	N�B�� � N�B��
, where the flavor
of the B is determined by the charge of the kaon.

The data used in this analysis were recorded with the
BABAR detector at the PEP-II asymmetric storage rings, in
which 9.0 GeV electrons collide with 3.1 GeV positrons to
produce ��4S� mesons. The BABAR detector is described
in detail elsewhere [12]. Most important to this analysis are
the tracking system composed of the silicon vertex tracker
and drift chamber inside a 1.5 T magnetic field, the ring-
imaging detector of internally reflected Cherenkov light
(DIRC), and the electromagnetic calorimeter (EMC). The

tracking system can reconstruct a B decay vertex with a
resolution of 70 �m along the direction of the beam and
has a transverse momentum resolution of 0.52% at
500 MeV=c. The DIRC provides kaon-pion separation of
at least 4� significance for momenta up to 3 GeV=c. The
EMC detects photons over an energy range from 20 MeV
to 9 GeV, with a resolution of 2.6% at 2.5 GeV. A detailed
Monte Carlo (MC) simulation of signal and background
processes was performed using the EVTGEN generator [13]
and the GEANT4 package [14].

We search for B! �K� candidates based on charged
track combinations and the presence of a high-energy
photon using a kinematic fitter [15] to reconstruct the
intermediate mesons and the B. Each decay vertex is
required to have a �2 probability greater than 0.1%.
Candidates for �! K�K� are selected from pairs of
oppositely charged tracks that have been distinguished
from pions based on a particle identification (PID) like-
lihood selection algorithm that uses dE=dx and Cherenkov
light measurements. The same PID algorithm is used for
the single K� from the B� in the charged mode. We keep
� candidates with masses within a�10 MeV=c2 ( ’ 4:6�)
window of the nominal � mass [16]. In the neutral mode,
pairs of oppositely charged tracks are accepted as K0

S
candidates if they have a combined invariant mass within
�10 MeV=c2 ( ’ 2:9�) of the K0

S mass and if the K0
S flight

length is greater than 3 times its uncertainty. We require the
combined �K invariant mass to be less than 3:0 GeV=c2.
In the neutral mode a D0 veto is applied by removing
candidates with combined �K invariant mass within
�10 MeV=c2 of the D0 mass. Photon candidates are re-
constructed from EMC clusters that are not associated with
charged tracks, are isolated from other clusters, and have
the expected photon lateral shower shape. We require an
energy of 1.5–2.6 GeV in the e�e� center of mass (CM)
frame and we veto photon candidates that form a �0���
candidate with invariant mass between 115–155 MeV=c2

(470–620 MeV=c2) when combined with another photon
of energy greater than 50 MeV (250 MeV).

We identify signal B decays through the distributions of
two quantities, missing mass and reconstructed mass, that
peak around the nominal B mass. The missing mass is

mmiss �
������������������������������
jp��4S� � pBj2

q
, where p��4S� is the ��4S� four-
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momentum and pB is the four-momentum of the B!
�K� candidate after a mass constraint on the B is applied.
The reconstructed mass mrec is the B candidate invariant
mass calculated from the reconstructed energy and mo-
mentum. We require 5:12<mmiss < 5:32 GeV=c2 and
4:98<mrec < 5:48 GeV=c2. We use this set of variables
instead of mES and �E, which are more commonly used in
BABAR, because the mass constraint in mmiss gives better
resolution. More information can be found in Ref. [17]. To
further discriminate B decays from continuum e�e� ! q �q
(q � u, d, s, c) background we use two topological quan-
tities: the ratio of Legendre moments L2=L0 and the cosine
of the angle between the B candidate and the e� direction
in the CM frame j cos	�Bj. We require L2=L0 < 0:55, where
Li �

P
jjp
�
j jj cos	�j j

i, p�j is the CM momentum of each
particle j not used in the B candidate, and 	�j is the CM
angle between the particle’s momentum and the thrust axis
of the B candidate. We also require j cos	�Bj< 0:9.

The selection criteria described above are chosen to
optimize NS=

�������������������
NS � NB
p

in the signal region, where NS
and NB are the MC simulated signal and background
yields, respectively, and the signal region is defined by
5:05<mrec < 5:4 GeV=c2, 5:27<mmiss < 5:29 GeV=c2,
j cos	�Bj< 0:8, and L2=L0 < 0:48. Signal MC is based on
inclusive B! Xs� events generated according to the
model of Kagan and Neubert [18], using mb �
4:62 GeV=c2 for the effective b quark mass. Only the
part of the hadronic mass spectrum above the�K threshold
of 1:52 GeV=c2 is used, with Xs forced to decay to �K.
This model does not take resonances into account.

After all criteria are applied, the average candidate
multiplicity in events with at least one candidate are 1.01
and 1.07 in the neutral and charged modes, respectively. If
multiple B candidates are found in an event, we select the
best one based on a �2 formed from the value and uncer-
tainty of the mass of the � candidate and, in the neutral
mode, the K0

S candidate. Based on signal MC we find the
probability of multiple candidates due to alternate charged
kaons or photons to be less than 0.1% and therefore neg-
ligible. The remaining background comes from continuum
combinatorics, nonresonant B! KK�K��, B! �K�0,
B! �K�, and a small contribution from b! c decays.

Signal and background yields are extracted from a fit to
an unbinned extended maximum likelihood function de-
fined by

 L �NS;NB; ~
� � e��NS�NB�
YN
i

	NSP S� ~xi�

� NBP B� ~xi; ~
�
; (1)

NS and NB are the number of signal and background
events, respectively, the index i labels each event in the
data set, and N is the total number of events used in the fit.
P S and P B are products of the one-dimensional signal and
background probability density functions (PDFs) for each

of the observables ~x � fmmiss; mrec; L2=L0; cos	�Bg. The
signal shape parameters are fixed in the fit while the
background parameters ~
 are allowed to vary. In order to
fit the CP asymmetries of signal and background in the
charged mode, the number of B� and B� events is deter-
mined separately: N�j �

1
2 �1�Aj

CP�nj, where j � S or
B, nj and Aj

CP are the total yield and CP asymmetry of
species j, respectively, and the upper (lower) signs corre-
spond to the positively (negatively) charged B mesons.

The signal PDFs for mmiss and mrec are parametrized by

 f�x� � exp
�

�x2

2�2
L;R � 
L;Rx

2

�
; (2)

where the parameters �L;R and 
L;R determine the core
width and variation of the width on either side of x � 0, x
being the difference from the nominal B mass of mmiss or
mrec. The mmiss background PDF is an ARGUS function
[19], with the end point calculated event-by-event as

���
s
p
�

mB, where
���
s
p

is the center of mass energy. The mrec

background PDF is modeled as a 2nd degree polynomial.
The signal and background models for L2=L0 both use a
binned PDF with eight bins. The cos	�B distribution is
modeled as a 2nd degree polynomial in both signal and
background; true B candidates follow a 1� cos2	�B distri-
bution if the detector efficiency is flat in cos	�B.

To determine the signal PDF parameters we use a high-
statistics B0 ! K�0�! K����� sample. Once deter-
mined, these parameters are fixed for the fit to B! �K�
data. We determine the selection efficiency by performing
a fit of the yields on signal MC, with the shape being that of
the MC.

We apply several corrections to the signal yield and
efficiency before determining the branching fractions.
Studies of simulated events show that the main sources
of signal-like (peaking) backgrounds are nonresonant B!
KK�K�� events, and B! �K�0 or B! �K�, where
one of the photons from the �0 or � decay is lost and
the other is picked up as the signal high-energy photon.
We estimate the amount of B! KK�K�� contamination
by fitting for the yield in � mass sideband regions
defined by 989<m� < 1009 MeV=c2 and 1029<m� <
1049 MeV=c2. By interpolating into the signal region, we
find and correct for 0:0� 1:5 and 5� 4 events for the
neutral and charged modes, respectively. These contribu-
tions are subtracted from the event yields determined in
the fit. From the known branching fraction [3] of B!
�K��! K�0� we correct for a contamination of 0:27�
0:16 neutral and 1:98� 0:32 charged events, based on an
ensemble of simulated experiments using embedded MC
events of this type. There have been no branching fraction
measurements of B! �K�0 or B! �K�. We assume
that the branching fraction of the first is no more than one-
third that of B! �K� and that of the latter is no more than
B! �K�. Based on this we assign an uncertainty of 0.5
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neutral and 2.9 charged events due to nonresonant B!
�K��0=�� background. The small b! c background is
absorbed into the floating shape of the continuum back-
ground. To correct for our limited knowledge of the form of
the background PDF, we generate 1000 simulated experi-
ments using PDFs with separate components for B �B and
continuum, and embedding signal events from the full
simulation. The background components are generated
using shape parameters determined from the full MC
simulation. We correct for a bias of �4:1� 0:5 events in
the charged mode, due to correlations among the observ-
ables in signal MC events that are not accounted for in the
fit. In the neutral mode we find a bias of �0:06� 0:20, so
we apply no correction but include 0.20 events in the
systematic uncertainty of the yield. We find no bias in
the number of background events in a fit to the full MC
simulation.

We correct for efficiency differences between data and
MC in charged track, single photon, andK0

S reconstruction.
Charged-track efficiency differences are obtained from a
large sample of � pairs with 1 versus 3 topology. Single
photon corrections are based on �0 samples. K0

S correc-
tions are based on a large, pure K0

S sample and are a
function of transverse momentum, transverse flight dis-
tance, and azimuthal angle. The above multiplicative effi-
ciency corrections are 0.956 in the neutral mode and 0.975
in the charged mode. The corrected efficiencies are
�15:3� 0:8�% in the neutral mode and �21:9� 1:6�% in
the charged mode, where the uncertainties are systematic
(discussed below).

The signal yields, efficiencies, branching fractions, and
charged mode CP asymmetry are reported in Table I. We

calculate the central value of the branching fractions by

 B i �
Ni
S

NB �B � "i � bi
; (3)

where i labels either the neutral or charged mode, Ni
S is the

corrected signal yield, NB �B � �228:3� 2:5� � 106 is the
number of B �B pairs recorded, "i is the corrected efficiency,
and bi is B��! K�K��	12 B�K

0
S ! �����
 in the neutral

mode and B��! K�K�� in the charged mode. The world
average branching fractions are taken from Ref. [16]. We
measure B�B� ! �K��� � �3:5� 0:6� 0:4� � 10�6

and B� �B0 ! � �K0�� � �1:3� 1:0� 0:3� � 10�6. In the
charged mode we measure ACP � ��26� 14� 5�%. In
Fig. 1 we show fits to the data projected onto mmiss and
mrec. In all cases, the displayed distribution is created with
the signal region selection applied to all other fit variables.
We determine the consistency of the branching fraction
measurements with the assumption of isospin symmetry
using 1000 simulated experiments in each mode with the
number of signal events determined by the average branch-
ing fraction, Bav � 2:8� 10�6. From the distribution of
the differences in branching fraction between the modes
we find an 8.9% probability to measure a difference greater
than or equal to that observed in data.

For the neutral mode we compute the 90% confidence
level upper limit on the branching fraction. We use a
Bayesian approach with a flat prior probability for the
branching fraction in the physical region 0  B  1 and
zero elsewhere. As the likelihood [Eq. (1)] is a function of
several parameters, we determine its dependence on NS by
fixing NS to a series of values and recomputing the like-
lihood at each one, allowing NB and ~
 to be reoptimized to

TABLE I. Summary of the branching fractions and direct CP asymmetry. In �B0 ! � �K0� the
90% confidence level upper limit is also given.

Decay mode Yield Efficiency (%) B�10�6� ACP (%)

B� ! �K�� 85� 15� 7 21:9� 1:6�syst� 3:5� 0:6� 0:4 �26� 14� 5
8� 6� 2 1:3� 1:0� 0:3

�B0 ! � �K0� 15:3� 0:8�syst�
<16 <2:7
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FIG. 1 (color online). Missing mass (a) and reconstructed mass (b) fits in the signal region for the charged mode and the neutral
mode (c,d). The dotted curves show the background contribution while the solid curves show the sum of signal and background.
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obtain the maximum likelihood at each point. We convolve
this function with a Gaussian distribution of width equal to
the systematic uncertainty of the yield. Similarly, for the
efficiency uncertainty we also use a Gaussian distribution
of width equal to the efficiency systematic uncertainty. We
determine the branching fraction upper bound BUB from
the following expression:

 

Z BUB

0
L�B�dB

�Z 1

0
L�B�dB � 90%: (4)

After applying the previously discussed corrections to the
yield and efficiency, and including systematic uncertain-
ties, we obtain B� �B0 ! � �K0��< 2:7� 10�6.

We assign a systematic uncertainty to the yield due to
the fixed signal parameters in the fit. We vary these pa-
rameters within the ranges allowed by the K�� sample to
determine the total uncertainty of the yields. We account
for other systematic uncertainties due to the previously
mentioned efficiency differences between data and MC
in charged kaon tracking, kaon PID, photon selection,
and K0

S selection efficiency. Uncertainties in � selection
efficiency are determined by fitting the�mass peak in data
and MC. There are small uncertainties assigned to the
L2=L0 selection and the �0=� veto, also due to data-MC
efficiency differences.

Figure 2 shows the efficiency-corrected �K invariant
mass distributions, using the background subtraction tech-
nique described in Ref. [20]. In the charged mode, we find
that no more than 50% of the spectrum in the
1:6–3:0 GeV=c2 range can come from the K2�1770� reso-
nance, and we use this information to bound the uncer-
tainty due to the assumed MC �K mass spectrum. We
determine what the efficiency would have been if half of
the mass spectrum came from resonant K2�1770� ! �K
production, while the other half came from the signal MC
model. We assign the relative efficiency difference be-
tween this and the nominal model as an uncertainty.
Adding all of the previously discussed uncertainties in

quadrature, we find a total multiplicative uncertainty of
5.2% in the neutral mode and 7.1% in the charged mode.
The complete systematic uncertainties for each mode are
summarized in Table II.

For the direct CP asymmetry measurement we bound
the K�=K� efficiency asymmetry of the detector by using
the measured combinatoric background asymmetry, which
is consistent with zero within an uncertainty of 1.8%. To
account for uncertainty due to various peaking background
sources we assume that each source can have a CP asym-
metry of up to�58%, which is the root mean square width
of a flat distribution between�1 and 1. We multiply this by
the expected fractional contamination in the data sample to

TABLE II. Summary of the systematic uncertainties. Except
where noted, all uncertainties are given as percentages.

Uncertainty (%)
Source �B0 ! � �K0� B� ! �K��

KK�K�� Subtraction 19.7 5.2
Peaking background 6.4 3.4
Fit bias 2.6 0.6
Fit PDF parameters �7:0

�5:9
�5:9
�5:2

Yield uncertainty �1:8
�1:7 events �7:3

�6:9 events

Kaon tracking 2.8 4.2
K0
S efficiency 1.5 0

� efficiency 1.7 1.7
Particle ID 2.8 4.2
Single photon efficiency 1.8 1.8
Photon spectrum model 0.4 2.6
L2=L0 cut 1.2 1.2
�0=� veto 1.0 1.0

Efficiency uncertainty 5:2 7:1

B �B counting 1:1 1:1

Total �23
�22 �11
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FIG. 2. The background-subtracted and efficiency-corrected �K mass distributions (points with uncertainties) for the charged mode
(a) and the neutral mode (b). The signal MC model for the mass spectrum, based on Ref. [18], is shown as a histogram without
uncertainties and is normalized to the efficiency-corrected signal yield obtained in data.
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obtain the systematic uncertainty. For B� ! �K���0=��
we assign 1.8% uncertainty, while for B� ! K�K�K��
we assign 3.5% uncertainty. For resonant B!
�K��! K�0� events, the previous BABAR and Belle mea-
surements [21] show that the CP asymmetry is consistent
with zero to within 15%. We therefore consider it to be
negligible. As was done with the branching fraction mea-
surement, we vary the fixed signal parameters of the fit to
obtain a 2.2% uncertainty for the signal CP asymmetry.
Adding the uncertainties in quadrature we find a total ACP
systematic uncertainty of 5%.

In summary, we have performed the first BABAR studies
of B! �K� decay modes. We measure B�B� !
�K��� � �3:5� 0:6� 0:4� � 10�6, consistent with the
result from Belle. We have set a limit B� �B0 ! � �K0��<
2:7� 10�6 at the 90% confidence level. Lastly, we have
made the first measurement of the direct CP asymmetry in
B� ! �K��: ACP � ��26� 14� 5�%.
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