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Abstract 

People learn new categories on a daily basis, and the study of 
category learning is a major topic of research in cognitive 
science. However, most prior work has focused on how people 
learn categories over abstracted, artificial (and usually 
perceptual) representations. Little is known about how new 
categories are learnt for natural objects, for which people have 
extensive prior knowledge. We examine this question in three 
pre-registered studies involving the learning of new categories 
for everyday foods. Our models use word vectors derived from 
large-scale natural language data to proxy mental 
representations for foods, and apply classical models of 
categorization over these vectorized representations to predict 
participant categorization judgments. This approach achieves  
high predictive accuracy rates, and can be used to identify the 
real-world settings in which category learning is impaired. In 
doing so, it shows how existing theories of categorization can 
be used to predict and improve everyday cognition and 
behavior. 

Keywords: categorization; learning; distributional semantics; 
word vectors; exemplar model 

Introduction 

Categorization is one of the fundamental functions of human 

cognition (Ashby & Maddox, 2005; Estes, 1994, Smith & 

Medin, 1981), and much research has focused on developing 

models of how people learn new categories over multi-

dimensional representations. Most of this work has been 

limited to perceptual, and usually highly abstract and 

artificial, stimuli (e.g. geometric figures and line drawings). 

Although this design choice gives researchers considerable 

control over the experimental stimuli, it also limits the 

application of categorization models to naturalistic domains 

of real-world importance (see Nosofsky et al., 2017, 2018b, 

c for an extended critique).  

Consider, for example, the task of learning whether or not 

a food item contains a newly discovered nutrient. People may 

be given some examples of foods with and without the 

nutrient, but must extrapolate from these examples to make 

predictions for hundreds of other common food items. Good 

predictions lead to better food choices, and success at 

category learning has direct implications for health outcomes. 

Similar types of learning are at also play in other health 

settings (e.g. learning which activities transmit a newly 

discovered virus), in social domains (e.g. learning which 

movies are liked or disliked by a new friend), and in various 

economic and financial settings (e.g. learning which stocks 

will be adversely affected by a new political or social 

development).  

All of these tasks involve category learning processes that 

operate over multidimensional representations. Although 

existing models of categorization have been shown to be 

successful at modeling category learning over such 

representations, applying these models to naturalistic tasks 

has been difficult. The reason for this involves the complexity 

of the mental representations that people have for natural 

objects. Category learning models often assume that 

categories are learned based on similarities between objects. 

Such similarities are easy to measure when the stimuli 

involve simple geometric shapes. But it is much harder to 

specify the multidimensional representations that guide and 

constrain similarity (and in turn, category learning) for 

natural objects.  

 Previous attempts at constructing multidimensional 

representations for natural objects have applied techniques 

such as multidimensional scaling to matrices of similarity 

ratings data (Nosofsky, 1992; Nosofsky et al., 2018c). 

Although these methods yield reasonable representations for 

natural objects, they are costly to implement, and are hard to 

extend to objects for which similarity data are not available. 

More importantly, human knowledge about natural objects is 

far richer than what can be captured by a small number of 

dimensions derived from similarity ratings.  

In a recent line of work, researchers have been using 

representations derived from convolutional neural networks 

to predict human categorization decisions of natural images 

(e.g., Battleday et al., 2017, 2019; Guest & Love 2017; 

Peterson et al., 2016; Sanders & Nosofsky, 2020). The key 

idea is that machine learning models can be applied to large 

scale digital data, such as images obtained from the internet, 

in order to specify the representational structures for items 

and objects at play in naturalistic categorization tasks. These 

representations can serve as inputs into established category 

learning models to model human category learning and 

predict categorization performance.  

This is a promising solution to the problem of naturalistic 

category learning, and our goal is to apply a variant of this 

solution to settings with concepts that are communicated to 

participants verbally, and thus can be proxied by 

representations obtained from large scale natural language 

data. For this purpose, we use word vector models, which 

have had great successes in modeling human similarity 

judgments for words (Landauer & Dumais, 1997; Jones & 
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Mewhort, 2007; Mikolov et al., 2013; see also Griffiths et al., 

2007). Such models uncover multidimensional 

representations for words using cooccurrence statistics in 

natural language. As words that usually occur together, or 

occur in similar contexts, are given similar vector 

representations, similarity in word vector space accurately 

predicts human assessments of similarity. For this reason, 

vector similarity also predicts semantic memory search, free 

association, semantic priming, and other memory phenomena 

that are influenced by similarities in representation (see e.g. 

reviews in Günther et al., 2019; Jones et al., 2015; Mandera 

et al., 2017). The ability of word vector models to proxy 

mental representations for natural objects also makes them 

useful for modeling everyday cognition and behavior. Recent 

work has shown that models based on word vectors are able 

to accurately predict social judgments (Caliskan et al., 2017; 

Bhatia, 2017); probability judgments and forecasts (Bhatia, 

2017); risk perception (Bhatia, 2019a); multiattribute 

decisions (Bhatia, 2019b; Bhatia & Stewart, 2018) and health 

judgments (Gandhi et al., 2020) (see also Bhatia et al., 2019 

and Richie et al., 2019 for reviews and discussion of this 

work).  

Building on these insights, we  combine word vectors for 

natural objects with a widely used psychological model of 

categorization – the Generalized Context Model (GCM, 

Medin & Schaffer, 1978; Nosofsky, 1986). GCM has already 

been shown to be a good model for studying category 

learning of natural images with high-multidimensional image 

vectors (e.g., Battleday et al., 2017, 2019; Nosofsky et al., 

2018a, b, 2019), and can be similarly used to study category 

learning of natural objects with highly multidimensional 

word vectors. In three pre-registered studies involving binary 

categories of foods, we test the adequacy and applicability of 

this combined GCM-word-vector approach in predicting 

human performance for both experimenter-constructed and 

naturally occurring categories. We also use this approach to 

identify the types of tasks in which category learning is 

impaired. Our results shed light on the generalizability of 

established psychological models of categorization to 

everyday categorization decisions, and evaluate the 

applicability of word vectors for modeling naturalistic 

categorization and other high-level cognitive phenomena.  

Modeling Approach 

Word Vectors  

We used the pre-trained Word2Vec semantic space model 

(Mikolov et al., 2013) to obtain vector representations for 

food items. This model was trained on a large dataset of 

Google News articles (roughly 100 billion words in size with 

a vocabulary of three million unique tokens) using the 

continuous bag-of-words (CBOW) method (which predicts 

words from their neighbors) and the skip-gram method 

(which predicts neighboring words of a given word). These 

two methods allow words that appear in similar contexts and 

share related meanings to be located in close proximity in the 

resulting Word2Vec semantic space.  

Each of the three million words and phrases in the 

Word2Vec vocabulary is described using a 300-dimensional 

vector. This vocabulary includes a large number of food 

items, which we use in our studies. Specifically, for each food 

item, we used the Word2Vec vector representation 

corresponding to the lower case of the food word (e.g. 

walnuts). We took the plural form only for foods that are 

normally consumed in bulk (e.g. walnuts and blueberries). 

Everything else was in the singular form. It is also worth 

noting that in the Word2Vec model, singular and plural forms 

have very similar vectors. Foods with multiple words in their 

names had each word separated by an underscore (e.g. 

cream_cheese). Although the vectors in the original 

Word2Vec vocabulary have different magnitudes, we 

normalized all vectors to unit norm prior to analysis. 

Generalized Context Model 

The Generalized Context Model (GCM) assumes that 

categorization decisions are made based on the overall 

similarity between the to-be-classified object and all 

exemplars within the category. Although attention weights on 

dimensions are often included in GCM, we assumed equal 

attention weights on all 300 dimensions, since it is 

computationally intractable to fit attention weights on such 

high-dimensional data. We fit a simplified GCM with two 

free parameters – a sensitivity parameter, c, and a response-

scaling parameter, 𝛾 . This model specifies the similarity 

between objects i and j as: 

 

                                    𝑠𝑖𝑗 = 𝑒−𝑐𝑑𝑖𝑗                                 (1) 

 

Additionally, in a binary categorization task, it specifies the 

probability of classifying object i in category A (vs. B) as:  

 

                    𝑃(𝐴) =
(∑ 𝑠𝑖𝑗𝑗∈𝐴 )

𝛾

(∑ 𝑠𝑖𝑘𝑘∈𝐴 )𝛾+(∑ 𝑠𝑖𝑘𝑘∈𝐵 )𝛾                            (2) 

 

Here the probability of categorizing an object i as A is equal 

to the summed similarity of i to all exemplars of category A 

divided by the summed similarity of i to all exemplars in both 

categories A and B (Equation 2). The similarity of objects i 

and j is an exponential decay function of the Euclidean 

distance between i and j, 𝑑𝑖𝑗  (Equation 1). In our case, we 

measure 𝑑𝑖𝑗  using the distance between unit normalized word 

vectors on the 300-dimensional Word2Vec space.  The 

sensitivity parameter, c, determines how sensitive perceived 

similarity is with respect to change in the distance in the 

space. The response-scaling parameter, 𝛾 , measures the 

degree of determinism in the participant responses.  

We evaluated the GCM model on a category learning task 

which offered participants a set of training examples, with 

objects categorized as A and B. This was followed by a 

testing phase in which participants categorized other objects 

as A or B without feedback. We estimated model parameters 

by minimizing the summed deviations between predicted 

categories and true categories in the training data. To find the 

best-fitting parameters of GCM, we used the Python function 
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Table 1: Three pairs of category structures generated by three different methods, food items that are closest to the category 

prototypes, and example foods in different categories. 

 

scipy.optimize.fmin which minimizes summed deviations 

using the downhill simplex algorithm with 100 iterations and 

random starting points for each iteration. We also fit a 

prototype analogue of GCM, in which classification 

probability was given by: 

 

                                𝑃(𝐴) =
𝑠𝑖𝐴

𝛾

𝑠𝑖𝐴
𝛾+𝑠𝑖𝐵

𝛾                              (3) 

 

Here 𝑠𝑖𝐴 is the similarity between object i and a prototype of 

category A. 𝑠𝑖𝐵 is likewise the similarity between object i and 

a prototype of category B. We calculated the vector 

representation for the prototype of a  category by taking the 

arithmetic mean of the word vectors of all training exemplars 

in that category. After training the models on the training 

items, we applied the best-fitting parameters to predict 

classification probabilities and category labels for the test 

items. We evaluated our model fits by comparing the 

proportion of correct responses predicted by the models with 

the observed proportion of correct responses from human 

participants. We also calculated the Pearson correlation 

between item-level classification probabilities predicted by 

the models and the observed classification probabilities.  

Before proceeding, it is useful to note that we did not fit 

our models to subject-level responses. The training task was 

passive, and model parameters were based only on the 

training data. It is likely that some of these parameters vary 

across participants, reflecting individual difference in noise, 

response scaling, and other variables.  

Methods 

Participants 

We recruited a total of 302 participants – 101 participants 

(mean age = 32.26, 51.49% were female) in Study 1, 100 

participants (mean age = 34.68, 44% were female) in Study 

2, and 101 participants (mean age = 33.31, 41.58% were 

female) in Study 3 from Prolific Academic. All participants 

were from the U.S. and had an approval rate of 80% or above. 

They were paid at a rate of approximately $11 per hour. 

Stimuli 

The stimuli were 100 food items. We chose food to test out 

our approach because this is a domain that most people have 

extensive knowledge about. The Word2Vec model has also 

been shown to provide accurate representations for foods 

(e.g. Gandhi et al., 2020; Richie et al., 2019). To generate 

new binary categories, we used three different methods, each 

of which yielded one simple and one complex category 

structure. The simple and complex categories were offered to 

participants in between-participant conditions in the three 

studies. For all studies, we labeled the resulting binary 

categories as either with nutrient X or without nutrient X.  

In Study 1, we applied k-means clustering with k = 2 and k 

= 10 on the Word2Vec vectors of the 100 food items. In the 

k = 2 case, we simply classified one of the clusters as 

corresponding to one of the categories, and the other cluster 

as corresponding to the other category. In the k = 10 case, we 

divided ten clusters into two equal-size categories in a way 

that maximized the average pairwise distance between cluster 

centroids that were grouped into the same category. This 

method yielded a complex category structure on the word 

vector space. In both cases, each of the resulting categories 

had 50 food items and category labels (with nutrient X or 

without nutrient X) were assigned at random. 

In Study 2, we adopted two category structures from 

Shepard et al. (1961). Shepard et al., showed that all possible 

binary classifications of eight stimuli defined in a three-

dimensional binary-value space can be summarized into six 

basic types (Figure 1). We decided to use the type I and type 

V category types from Shepard et al., as prior empirical work 

has shown that people consistently perform worse at type V 

than at type I. We constructed these two category structures 

by first reducing the 300-dimensional Word2Vec vectors to 

three dimensions using principle components analysis. Then 

we separated stimuli along each dimension by the median 

value of that dimension. This procedure resulted in eight 

regions of three-dimensional space (corresponding to the 

eight points described in Shepard et al. (1961)). Using the 

scheme illustrated in Figure 1, we generated the two binary 

category structures corresponding to the type I (simple) and 

type V (complex) problem. The category labels were then 

assigned randomly. Note that the resulting categories were  

Study 
Generating 

Method 

Category 

Structure 

Prototypical food in 

“With Nutrient X” 

Prototypical Food in 

“Without Nutrient X” 

Example Food 

“With Nutrient 

X" 

Example Food 

“Without Nutrient 

X" 

1 
K-means 

clustering 

k = 2  Pear Shrimp Apricot Chicken liver 

k = 10 Asparagus Tomato Coconut Turkey 

2 
Shepard et 

al. (1961) 

Type I Broccoli Tomato Rabbit Abalone 

Type V Shiitake mushroom Tomato Peanut Sour cream 

3 Nutrient 
Cholesterol Shrimp Mango Snail Tofu 

Lutein Tomato Shiitake mushroom Eel Trout 
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Figure 1: Schematic illustration of the six-type problems 

from Shepard et al. (1961). Each dot represents a stimulus 

and dots of the same color fall into the same category. 

Figure is from Shepard et al. (1961). 

 

not balanced – the type I structure had 52 food items 

classified as with nutrient X and type V structure had 49 food 

items classified as with nutrient X. These minor differences 

should not influence our results. 

In Study 3, we created two category structures based on 

whether foods have a certain real-world nutrient. Foods can 

be classified as either having cholesterol or not (a simple 

category structure, as most plant-based foods don’t have 

cholesterol). They can also be classified as either having 

lutein or not (a complex category structure as there are some 

animal products that have lutein and some animal products 

that do not). There were 46 food items with cholesterol and 

50 food items with lutein. They were labeled as with nutrient 

X in the simple and complex conditions respectively. The 

remaining foods were labeled as without nutrient X. 

Participants were not told that the nutrient was actually 

cholesterol or lutein. Table 1 summarizes the three generating 

methods, with the top item in each study corresponding to the 

simple structure and the bottom item in each study 

corresponding to the complex structure. Table 1 also provides 

examples of foods in different categories as well as foods 

whose word vectors are the closest to the word vectors of the 

category prototypes.   

Procedure 

Participants were randomly assigned to either the simple 

condition (k = 2 condition in Study 1, type I condition in 

Study 2, and cholesterol condition in Study 3), or the complex 

condition (k = 10 condition in Study 1, type V condition in 

Study 2, and lutein condition in Study 3). At the beginning of 

each condition in each study, we gave participants the 

following instruction: “We recently discovered a nutrient X 

that may be found in some food items. In this study, we will 

show you food items that do or do not have this nutrient. Your 

task is to predict whether some other food items have this 

nutrient or not.” Participants were then shown 50 training 

examples and asked to make predictions for 50 test examples. 

We also incentivized participants to make good predictions 

by paying an additional $1 to those whose predictive 

accuracy on the test items achieved the top 10% among all 

participants.  

In each study, 50 foods (25 in each category) were  training 

items. The remaining foods were test items. Training and  

 
 

Figure 2: Mean observed proportions of correct responses in 

the three pairs of category structures as summarized in 

Table 1. Blue dots represent predicted proportions of correct 

responses by GCM (labeled “Exemplar”). Orange crosses 

represent predicted proportions of correct responses by the 

prototype analogue of GCM (labeled “Prototype”). Error 

bars represent standard errors. 

 

tests items were the same for all participants in a given study. 

Thus, participants in both the simple and the complex 

conditions received the same training and test sets (though of 

course the category labels assigned to items in these sets 

changed based on the condition). This was done to ensure that 

item-specific effects in training and test sets did not influence 

our results.  

We used an observational training procedure in which 

training items were shown on the same screen as the test 

items. Specifically, we presented participants with two tables, 

which listed the 25 training items in each of the two 

categories. We then asked participants to categorize the 

remaining 50 test items one at a time. The order of the 50 test 

items was randomized. The observational training procedure 

yields similar response patterns to a standard training 

procedure (in which participants respond to training stimuli 

one at a time following a corrective feedback   

until a certain number of correct responses are recorded 

successively) (Estes, 1994). Moreover, compared to the 

traditional paradigm, the observational paradigm is more 

similar to real-world environments where people have access 

to previously encountered exemplars when categorizing a 

new object. All three studies were pre-registered at 

aspredicted.org. 

Results  

Our three studies allow us to test whether or not GCM applied 

to word vector representations for foods is a good model of 
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how people learn new category labels for foods. Study 1 tests 

this in a setting in which the category labels involve either 

simple or complex boundaries on the underlying word vector 

space. If this space proxies people’s actual mental 

representations for foods, then it should be easier for our 

participants to learn category labels in the k = 2 condition than 

the k = 10 condition. Study 2 attempts a similar test, but 

instead uses previous findings regarding the types of category 

structures that are easy or hard to learn by human subjects. 

Again, if the Word2Vec space proxies people’s mental 

representations for foods, then it should be easier for our 

participants to learn category labels in the type 1 condition 

than the type V condition. Finally, Study 3 uses real-world 

categories that we expect to be easy or hard to learn. If the 

Word2Vec provides good representations for foods then we 

should observe higher accuracy rates for both our participants 

and our models in the cholesterol condition relative to the 

lutein condition.  

In Figure 2, we plot mean observed and model-predicted 

proportions of correct responses on the test data in all three 

studies. Here we see that human participants typically 

performed better in the simple category condition (k = 2 

condition in Study 1, type I condition in Study 2, and 

cholesterol condition in Study 3) than the corresponding 

complex condition (k = 10 condition in Study 1, type V 

condition in Study 2, and lutein condition in Study 3). We 

also conducted t-tests to evaluate these differences. These 

tests show that mean participant accuracy was significantly 

higher when the category structure was simple than when it 

was complex (t(49,50) = 6.15 in Study 1; t(49,49) = 8.5 in 

Study 2; and t(48,51) = 7.41 in Study 3, all p < 10-5).  

Importantly the GCM (exemplar) model mimicked these 

patterns, and achieved higher accuracy rates in the simple 

condition relative to the complex condition. The prototype 

analog of GCM also captured this trend in all studies. Note 

that  both GCM and its prototype analogue fail to accurately 

predict precise proportions of correct responses by human 

participants. In most conditions, both models overpredict 

human accuracy, except in the type V condition where GCM 

underpredicts accuracy. This is due to the fact that we did 

note calibrate our model parameters on human data. Rather 

the parameters were fit to optimize performance on the 

training items, and made purely out-of-sample predictions for 

the test items. In this way, the models did not reflect 

participant tendencies. If we had, for example, fit the 

response scaling parameter to optimize fit to the participant 

data, the GCM model would likely have reflected a higher 

degree of noise and thus would have generated predictions 

closer to the observed participant accuracy. Nonetheless, the 

finding that the directional predictions are accurate across all 

three studies provides supporting evidence for our modeling 

framework.  

Another way to test GCM (and its prototype analogue) is 

to compare the observed probabilities of a food item being 

classified in a given category against the predicted 

classification probabilities by the model. This is shown in 

Figure 3. Each point in each scatterplot represents a test item;  

 
Figure 3: Scatterplots of observed probabilities of food 

being classified as “without nutrient X” vs. predicted 

classification probabilities by GCM (left column) and by the 

prototype analogue of GCM (right column) in the three pairs 

of category structures as summarized in Table 1, along with 

Pearson correlations. 
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thus, there are 50 points in each plot. For each category 

structure, we used separate OLS regressions to calibrate the 

classification probabilities from the outputs of Equation 2 

(with the best-fitting parameters based on the training data) 

to human data. The left column shows the results of GCM 

(exemplar); the right column shows those of GCM’s 

prototype analogue. Here we see high correlations for the 

GCM model (above r = 0.70), and somewhat lower 

correlations for the prototype analogue. The Pearson 

correlations are all significant (all p < 10-6). Six paired t-tests 

show that the sum of squared residuals of GCM are 

significantly lower than those of its prototype analogue in the 

k = 10, type I and lutein condition (p < 0.05), suggesting 

GCM predicts the item-level classification probabilities 

much better than its prototype analogue in these conditions. 

When we control for the correct responses in multivariate 

regression analysis, the Pearson correlations are still all 

significant (all p < 10-6), indicating that GCM and its 

prototype analogue predict human classification probabilities 

for both categories in consideration.  However, the sum of 

squared residuals of GCM are significantly lower than those 

of its prototype analogue in the k = 10 and lutein condition (p 

< 0.05).  

Discussion 

We have proposed a modeling approach to study category 

learning for natural objects. Our approach uses word vector 

representations derived from large-scale natural language 

data as inputs into a psychological model of categorization. 

In three pre-registered studies, we evaluated this combined 

approach for both experimenter-generated and real-world 

categories of food items. We showed that the combined GCM 

and word vector model  provided a good account of human 

data. Both GCM and its prototype analogue were able to 

capture observed patterns of accuracy in six category 

structures and accurately predicted aggregate human 

accuracy and item-level classification probabilities. The 

success of our approach suggests that word vector 

representations approximate human knowledge well and 

GCM provides a reasonable account for category learning. 

Although at such an early stage of the project, we have only 

considered a simplified version of GCM with two free 

parameters assuming equal attentional weights, future 

research should examine a more complex model that is 

trained on individual responses when corrective feedback is 

provided and holds different probabilistic assumptions for 

attentional weights. In addition, even though we did not 

intend to contrast exemplar and prototype models, our results 

appeared to support an exemplar-based classification 

process, as GCM consistently outperformed its prototype 

analogue. This finding replicates recent results of Nosofsky 

and colleagues (e.g. Nosofsky et al., 2018b, 2020) who find 

strong support for exemplar-based process in learning rock 

categories.  

By integrating cognitive models of categorization and 

word-vector-based representations, our combined approach 

not only enriches our theoretical understanding of category 

learning, but also provides opportunities for real-world 

applications in many domains. For example, if we can predict 

how humans learn new categories of food items, we can 

identify food items that are easily misclassified or categories 

that are harder to learn, and subsequently improve health and 

risk communication by focusing on these food items or 

categories in public health campaigns. Similar applications 

are also possible for other domains in which new categories 

are learnt over (already known) natural objects. As noted by 

Goldstone (1994) everyday categories can range from natural 

kinds (e.g., animals, plants), to man-made objects (e.g., 

furniture, vehicles), to ad hoc categories (e.g., occupations 

that will likely be replaced by machines in the future), and to 

abstract concepts (e.g., food sources containing a particular 

nutrient). Thus, applying this combined approach to study 

everyday categorization will provide opportunities for real-

world applications in many domains of policy and 

commercial relevance. Future research should extend this 

combined approach to more diverse category structures and 

other naturalistic domains. Furthermore, combining theories 

from cognitive psychology with new methods in machine 

learning and computational linguistics will open up a range 

of new research questions including how natural categories 

are represented in human mind, how knowledge of these 

categories is retrieved, and how new categories emerge. 
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