eScholarship Combinatorial Theory

Title

Paths of given length in tournaments

Permalink <https://escholarship.org/uc/item/89b7027k>

Journal Combinatorial Theory, 3(2)

ISSN 2766-1334

Authors

Sah, Ashwin Sawhney, Mehtaab Zhao, Yufei

Publication Date 2023

DOI 10.5070/C63261981

Supplemental Material

<https://escholarship.org/uc/item/89b7027k#supplemental>

Copyright Information

Copyright 2023 by the author(s).This work is made available under the terms of a Creative Commons Attribution License, available at <https://creativecommons.org/licenses/by/4.0/>

Peer reviewed

PATHS OF GIVEN LENGTH IN TOURNAMENTS

Ashwin Sah^{∗1}, Mehtaab Sawhney^{†2}, and Yufei Zhao^{‡3}

1,2,3*Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.* asah@mit.edu *,* msawhney@mit.edu *,* yufeiz@mit.edu

Submitted: Dec 14, 2020; Accepted: Mar 13, 2023; Published: Sep, 15 2023

© The authors. Released under the CC BY license (International 4.0).

Abstract. We prove that every *n*-vertex tournament has at most $n\left(\frac{n-1}{2}\right)$ $\left(\frac{-1}{2}\right)^k$ walks of length k . **Keywords.** Paths, tournaments **Mathematics Subject Classifications.** 05C38, 05D99

We determine the maximum density of directed k -edge paths in an *n*-vertex tournament. Our focus is on the case of fixed k and large n . The expected number of directed k -edge paths in a uniform random *n*-vertex tournament is $n(n-1)\cdots(n-k)/2^k = (1+o(1))n(n/2)^k$. In this short note we show that one cannot do better, thereby confirming an unpublished conjecture of Jacob Fox, Hao Huang, and Choongbum Lee. The *length* of a path or walk refers to its number of edges.

Theorem 1. *Every n*-vertex tournament has at most $n\left(\frac{n-1}{2}\right)$ $\left(\frac{-1}{2}\right)^k$ walks of length k.

Every regular tournament (with odd *n*) has exactly $n\left(\frac{n-1}{2}\right)$ $\left(\frac{-1}{2}\right)^k$ walks of length k, thereby attaining the upper bound in the theorem. On the other hand, the transitive tournament minimizes the number of k -edge paths (or walks) among *n*-vertex tournaments. Indeed, a folklore result (with an easy induction proof) says that every tournament contains a directed Hamilton path. So every $(k + 1)$ -vertex subset contains a path of length k. Hence every *n*-vertex tournament contains at least $\binom{n}{k+1}$ paths of length k, with equality for a transitive tournament.

Figure [1](#page-2-0) provides a "proof by picture" of Theorem [1.](#page-1-0) A more detailed proof is given later. A different proof, using entropy, by Dingding Dong and Tomasz Slusarczyk, is given in the ´ appendix.

Let us mention some related problems and results. The most famous open problem with this theme is Sidorenko's conjecture [\[ES83,](#page-5-0) [Sid93\]](#page-5-1), which says that for a fixed bipartite graph H ,

[∗]Supported by NSF Graduate Research Fellowship Program DGE-1745302.

[†]Supported by NSF Graduate Research Fellowship Program DGE-1745302.

[‡]Supported by NSF Award DMS-1764176, the MIT Solomon Buchsbaum Fund, and a Sloan Research Fellowship.

 [−]¹ · · · k edges 2 ⩽ · · · k − 1 edges Cauchy–Schwarz ⩽ · · · k − 2 edges 2ab ⩽ a ² + b 2 ⩽ · · · k − 2 edges · n−1 2 2 d ⁺(x)d [−](x) ⩽ n−1 2 2 · · · Iterating · · · ⩽ · n−1 2 ²k−² .

Figure 1: A "proof by picture" of Theorem [1.](#page-1-0)

among graphs of a given density, quasirandom graphs minimize H-density. For recent progress on Sidorenko's conjecture see [\[CKLL18,](#page-5-2) [CL21\]](#page-5-3).

Zhao and Zhou [\[ZZ20\]](#page-5-4) determined all directed graphs that have constant density in all tournaments; they are all disjoint unions of trees that are each constructed in a recursive manner, as conjectured by Fox, Huang, and Lee. As discussed at the end of [\[ZZ20\]](#page-5-4), it would be interesting to characterize directed graphs H where is the H -density in tournaments maximized by the quasirandom tournament (such H is called *negative*), and likewise when "maximized" is replaced by "minimized" (such H is called *positive*). Our main result here implies that all directed paths are negative. It would be interesting to see what happens for other edge-orientations of a path. Starting with a negative (resp. positive) digraph, one can apply the same recursive construction as in [\[ZZ20\]](#page-5-4) to produce additional negative (resp. positive) digraphs, namely by taking two disjoint copies of the digraph and adding a single edge joining a pair of twin vertices.

The problem of maximizing the number of directed k -cycles in a tournament is also inter-esting and not completely understood. Recently, Grzesik, Král', Lovász, and Volec [[GKLV23\]](#page-5-5) showed that quasirandom tournaments maximize the number of directed k -cycles whenever k is not divisible by 4. On the other hand, when k is divisible by 4, quasirandom tournaments do not maximize the density of directed k-cycles. The maximum directed k-cycle density is known for $k = 4$ [\[BH65,](#page-5-6) [Col64\]](#page-5-7) and $k = 8$ [\[GKLV23\]](#page-5-5) but open for all larger multiples of 4. See [\[GKLV23\]](#page-5-5) for discussion.

A related problem is determining the maximum number $P(n)$ of Hamilton paths in a tournament (the problem for Hamilton cycles is related). By considering the expected number of Hamilton paths in a random tournament, one has $P(n) \geq n!/2^{n-1}$. This result, due to Szele [\[Sze43\]](#page-5-8), is considered the first application of the probabilistic method. This lower bound has been improved by a constant factor [\[AAR01,](#page-4-0) [Wor\]](#page-5-9). Alon [\[Alo90\]](#page-5-10) proved a matching upper bound of the form $P(n) \leq n^{O(1)}n!/2^{n-1}$ (also see [\[FK05\]](#page-5-11) for a later improvement).

Proof of Theorem [1.](#page-1-0) We may assume that $k \ge 1$. Let $f(x, y) = 1$ if (x, y) is a directed edge in the tournament, and 0 otherwise. Let $q_t(x)$ denote the number walks of length t ending at x. COMBINATORIAL THEORY $3 \left(2 \right) \left(2023 \right)$, $\#5$ 3

Let $d^+(x)$ and $d^-(x)$ denote the out-degree and the in-degree of x, respectively. We have, for each $t \geqslant 1$,

$$
g_t(y) = \sum_x g_{t-1}(x) f(x, y).
$$

Define

$$
A_t := \sum_y g_t(y)^2 d^+(y) = \sum_{y,z} g_t(y)^2 f(y,z).
$$

We have, for each $t \geq 1$,

$$
A_{t} = \sum_{x,x',y} g_{k-1}(x)f(x,y)g_{k-1}(x')f(x',y)d^{+}(y)
$$

\n
$$
\leqslant \sum_{x,x',y} \left(\frac{g_{k-1}(x)^{2} + g_{k-1}(x')^{2}}{2} \right) f(x,y)f(x',y)d^{+}(y)
$$

\n
$$
= \sum_{x,x',y} g_{k-1}(x)^{2} f(x,y)f(x',y)d^{+}(y)
$$

\n
$$
= \sum_{x,y} g_{k-1}(x)^{2} f(x,y)d^{-}(y)d^{+}(y)
$$

\n
$$
\leqslant \left(\frac{n-1}{2} \right)^{2} \sum_{x,y} g_{k-1}(x)^{2} f(x,y) \qquad \text{[since } d^{-}(y)d^{+}(y) \leqslant \left(\frac{n-1}{2} \right)^{2} \text{]}_{x,y}
$$

\n
$$
= \left(\frac{n-1}{2} \right)^{2} A_{t-1}.
$$

So, for all $t \geqslant 0$,

$$
A_t \leqslant A_0 \left(\frac{n-1}{2}\right)^{2t} \leqslant n \left(\frac{n-1}{2}\right)^{2t+1}.
$$

Let W_k be the number of walks of length k. Applying the Cauchy–Schwarz inequality,

$$
W_k = \sum_{y} g_{k-1}(y) d^+(y) \leq \sqrt{\sum_{y} g_{k-1}(x)^2 d^+(y)} \sqrt{\sum_{y} d^+(y)} \leq \sqrt{A_{k-1} A_0} \leq n \left(\frac{n-1}{2}\right)^k \square
$$

The above proof also gives the following stability result.

Theorem 2 (Stability). For $k \geq 2$, an *n*-vertex tournament satisfying

$$
\sum_{x} \left| d^{+}(x) - \frac{n-1}{2} \right| \geqslant \varepsilon {n \choose 2}
$$

has at most $\left(1 - \frac{\varepsilon^2}{2}\right)$ $\frac{\varepsilon^2}{2})n\left(\frac{n-1}{2}\right)$ $\left(\frac{-1}{2}\right)^k$ walks of length k.

Note that by symmetry, we can replace d^+ by d^- in the hypothesis of Theorem [2.](#page-3-0)

Proof. We use the notation from the earlier proof. We have

$$
W_2 = \sum_x d^+(x)d^-(x) \le \sum_x d^+(x)(n-1-d^+(x))
$$

=
$$
\sum_x \left(\left(\frac{n-1}{2} \right)^2 - \left(\frac{n-1}{2} - d^+(x) \right)^2 \right)
$$

$$
\le n \left(\frac{n-1}{2} \right)^2 - \frac{1}{n} \left(\sum_x \left| \frac{n-1}{2} - d^+(x) \right| \right)^2
$$

$$
\le (1 - \varepsilon^2)n \left(\frac{n-1}{2} \right)^2.
$$

From the proof of Theorem [1,](#page-1-0) we have

$$
W_k^2 \le A_{k-1}A_0 \le \left(\frac{n-1}{2}\right)^{2(k-2)}A_1A_0.
$$

Using $A_0 \le n(n-1)/2$ and $A_1 = \sum_x d^-(x)^2 d^+(x)$, we obtain

$$
W_k^2 \leqslant n \left(\frac{n-1}{2}\right)^{2k-3} \sum_x d^-(x)^2 d^+(x).
$$

In the proof of Theorem [1,](#page-1-0) we defined $g_k(x)$ to be the number of k-edge walks ending at x. By running the same proof for the number of k -edge walks starting at x , we deduce

$$
W_k^2 \leqslant n \left(\frac{n-1}{2}\right)^{2k-3} \sum_x d^-(x) d^+(x)^2.
$$

Taking the average of the two bounds, we obtain

$$
W_k^2 \leqslant n \left(\frac{n-1}{2}\right)^{2k-3} \sum_x d^-(x) d^+(x) \left(\frac{d^-(x) + d^+(x)}{2}\right)
$$

$$
\leqslant n \left(\frac{n-1}{2}\right)^{2k-2} \sum_x d^-(x) d^+(x)
$$

$$
\leqslant (1 - \varepsilon^2) n^2 \left(\frac{n-1}{2}\right)^{2k} \leqslant \left(\left(1 - \frac{\varepsilon^2}{2}\right) n \left(\frac{n-1}{2}\right)^k\right)^2.
$$

References

[AAR01] Ilan Adler, Noga Alon, and Sheldon M. Ross. On the maximum number of Hamiltonian paths in tournaments. *Random Structures Algorithms*, 18(3):291–296, 2001. [doi:10.1002/rsa.1010](https://doi.org/10.1002/rsa.1010).

- [Alo90] Noga Alon. The maximum number of Hamiltonian paths in tournaments. *Combinatorica*, 10(4):319–324, 1990. [doi:10.1007/BF02128667](https://doi.org/10.1007/BF02128667).
- [BH65] Lowell W. Beineke and Frank Harary. The maximum number of strongly connected subtournaments. *Canad. Math. Bull.*, 8:491–498, 1965. [doi:10.4153/](https://doi.org/10.4153/CMB-1965-035-x) [CMB-1965-035-x](https://doi.org/10.4153/CMB-1965-035-x).
- [CKLL18] David Conlon, Jeong Han Kim, Choongbum Lee, and Joonkyung Lee. Some advances on Sidorenko's conjecture. *J. Lond. Math. Soc. (2)*, 98(3):593–608, 2018. [doi:10.1112/jlms.12142](https://doi.org/10.1112/jlms.12142).
- [CL21] David Conlon and Joonkyung Lee. Sidorenko's conjecture for blow-ups. *Discrete Anal.*, pages Paper No. 2, 13, 2021. [doi:10.19086/da.21472](https://doi.org/10.19086/da.21472).
- [Col64] Umberto Colombo. Sui circuiti nei grafi completi. *Boll. Un. Mat. Ital. (3)*, 19:153– 170, 1964.
- [ES83] Paul Erdős and Miklós Simonovits. Supersaturated graphs and hypergraphs. *Combinatorica*, 3(2):181–192, 1983. [doi:10.1007/BF02579292](https://doi.org/10.1007/BF02579292).
- [FK05] Ehud Friedgut and Jeff Kahn. On the number of Hamiltonian cycles in a tournament. *Combin. Probab. Comput.*, 14(5-6):769–781, 2005. [doi:10.1017/](https://doi.org/10.1017/S0963548305006863) [S0963548305006863](https://doi.org/10.1017/S0963548305006863).
- [GKLV23] Andrzej Grzesik, Daniel Král', László M. Lovász, and Jan Volec. Cycles of a given length in tournaments. *J. Combin. Theory Ser. B*, 158(part 1):117–145, 2023. [doi:](https://doi.org/10.1016/j.jctb.2022.07.007) [10.1016/j.jctb.2022.07.007](https://doi.org/10.1016/j.jctb.2022.07.007).
- [Sid93] Alexander Sidorenko. A correlation inequality for bipartite graphs. *Graphs Combin.*, 9(2):201–204, 1993. [doi:10.1007/BF02988307](https://doi.org/10.1007/BF02988307).
- [Sze43] Tibor Szele. Kombinatorische Untersuchungen über den gerichteten vollständigen Graphen. *Mat. Fiz. Lapok*, 50:223–256, 1943.
- [Wor] N. C. Wormald. Tournaments with many Hamilton cycles. manuscript [https:](https://users.monash.edu.au/~nwormald/papers/hamtourn.pdf) [//users.monash.edu.au/~nwormald/papers/hamtourn.pdf](https://users.monash.edu.au/~nwormald/papers/hamtourn.pdf).
- [ZZ20] Yufei Zhao and Yunkun Zhou. Impartial digraphs. *Combinatorica*, 40(6):875–896, 2020. [doi:10.1007/s00493-020-4280-0](https://doi.org/10.1007/s00493-020-4280-0).

A. An entropy proof by Dingding Dong and Tomasz Slusarczyk ´

Here is another proof of Theorem [1](#page-1-0) using entropy. Given a discrete random variable X taking values in Ω , its entropy is defined as

$$
H(X) = -\sum_{x \in \Omega} \mathbb{P}(X = x) \log \mathbb{P}(X = x).
$$

We have the uniform bound

 $H(X) \leq \log |\Omega|$.

The chain rule says that if X and Y are jointly distributed random variables, then

 $H(X, Y) = H(X) + H(Y|X),$

6 **Ashwin Sah et al. Ashwin Sah et al. Ashwin Sah et al. Ashwin Sah et al.**

where the conditional entropy $H(Y|X)$ is defined as

$$
H(Y|X) = \sum_{x \in \Omega} \mathbb{P}(X = x) H(Y|X = x).
$$

Here $H(Y|X=x)$ is the entropy of the conditional distribution of Y given $X=x$.

Entropy proof of Theorem [1.](#page-1-0) Consider a random walk X_1, \ldots, X_{k+1} chosen uniformly from the set of all W_k walks of length k in the given tournament. This random walk is Markovian in the sense that the distribution of (X_i, \ldots, X_{k+1}) conditional on (X_1, \ldots, X_i) is the same as the distribution of (X_i, \ldots, X_{k+1}) conditional on X_i . Indeed, this conditional distribution is uniform over all walks (X_i, \ldots, X_{k+1}) with a given starting vertex X_i . In particular, $H(X_j|X_{j-1},\ldots,X_1)=H(X_j|X_{j-1}).$

Applying the chain rule, we have

$$
\log W_k = H(X_1, \dots, X_{k+1}) = H(X_1, X_2) + \sum_{j=2}^k H(X_{j+1} | X_1, \dots, X_j)
$$

= $H(X_1, X_2) + \sum_{j=2}^k H(X_{j+1} | X_j).$

Likewise,

$$
H(X_1, \ldots, X_{k+1}) = H(X_{k+1}, X_k) + \sum_{j=2}^k H(X_{j-1} | X_j).
$$

Taking the average of the two bounds, we obtain

$$
H(X_1, \ldots, X_{k+1}) = \frac{H(X_1, X_2) + H(X_{k+1}, X_k)}{2} + \frac{1}{2} \sum_{j=2}^k (H(X_{j-1} | X_j) + H(X_{j+1} | X_j)).
$$

For each $2 \leq j \leq k$ and vertex x, by the uniform bound, $H(X_{j-1}|X_j = x) \leq \log d^-(x)$ and $H(X_{j+1}|X_j = x) \leq \log d^+(x)$. Also, $d^-(x)d^+(x) \leq (n-1)^2/4$. Thus

$$
H(X_{j-1}|X_j = x) + H(X_{j+1}|X_j = x) \le \log d^-(x) + \log d^+(x) \le 2\log\left(\frac{n-1}{2}\right).
$$

Thus

$$
H(X_{j-1}|X_j) + H(X_{j+1}|X_j) \le 2\log\left(\frac{n-1}{2}\right).
$$

Also $H(X_j, X_{j+1}) \leq \log {n \choose 2}$ $\binom{n}{2}$ by the uniform bound. Therefore

$$
\log W_k = H(X_1, \dots, X_{k+1}) \leq \log {n \choose 2} + (k-1) \log \left(\frac{n-1}{2} \right) = \log \left(n \left(\frac{n-1}{2} \right)^k \right). \quad \Box
$$