
eScholarship
Combinatorial Theory

Title
Paths of given length in tournaments

Permalink
https://escholarship.org/uc/item/89b7027k

Journal
Combinatorial Theory, 3(2)

ISSN
2766-1334

Authors
Sah, Ashwin
Sawhney, Mehtaab
Zhao, Yufei

Publication Date
2023

DOI
10.5070/C63261981

Supplemental Material
https://escholarship.org/uc/item/89b7027k#supplemental

Copyright Information
Copyright 2023 by the author(s).This work is made available under the terms of a 
Creative Commons Attribution License, available at 
https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89b7027k
https://escholarship.org/uc/item/89b7027k#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


combinatorial theory 3 (2) (2023), #5 combinatorial-theory.org

Paths of given length in tournaments
Ashwin Sah∗1, Mehtaab Sawhney†2, and Yufei Zhao‡3

1,2,3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.
asah@mit.edu , msawhney@mit.edu , yufeiz@mit.edu

Submitted: Dec 14, 2020; Accepted: Mar 13, 2023; Published: Sep, 15 2023
© The authors. Released under the CC BY license (International 4.0).

Abstract. We prove that everyn-vertex tournament has at mostn
(
n−1
2

)k walks of length k.
Keywords. Paths, tournaments
Mathematics Subject Classifications. 05C38, 05D99

We determine the maximum density of directed k-edge paths in an n-vertex tournament. Our
focus is on the case of fixed k and large n. The expected number of directed k-edge paths in a
uniform random n-vertex tournament is n(n− 1) · · · (n− k)/2k = (1 + o(1))n(n/2)k. In this
short note we show that one cannot do better, thereby confirming an unpublished conjecture of
Jacob Fox, Hao Huang, and Choongbum Lee. The length of a path or walk refers to its number
of edges.

Theorem 1. Every n-vertex tournament has at most n
(
n−1
2

)k walks of length k.

Every regular tournament (with odd n) has exactly n
(
n−1
2

)k walks of length k, thereby at-
taining the upper bound in the theorem. On the other hand, the transitive tournament minimizes
the number of k-edge paths (or walks) among n-vertex tournaments. Indeed, a folklore result
(with an easy induction proof) says that every tournament contains a directed Hamilton path.
So every (k + 1)-vertex subset contains a path of length k. Hence every n-vertex tournament
contains at least

(
n

k+1

)
paths of length k, with equality for a transitive tournament.

Figure 1 provides a “proof by picture” of Theorem 1. A more detailed proof is given later.
A different proof, using entropy, by Dingding Dong and Tomasz Ślusarczyk, is given in the
appendix.

Let us mention some related problems and results. The most famous open problem with this
theme is Sidorenko’s conjecture [ES83, Sid93], which says that for a fixed bipartite graph H ,
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Figure 1: A “proof by picture” of Theorem 1.

among graphs of a given density, quasirandom graphs minimize H-density. For recent progress
on Sidorenko’s conjecture see [CKLL18, CL21].

Zhao and Zhou [ZZ20] determined all directed graphs that have constant density in all tour-
naments; they are all disjoint unions of trees that are each constructed in a recursive manner,
as conjectured by Fox, Huang, and Lee. As discussed at the end of [ZZ20], it would be inter-
esting to characterize directed graphs H where is the H-density in tournaments maximized by
the quasirandom tournament (such H is called negative), and likewise when “maximized” is re-
placed by “minimized” (such H is called positive). Our main result here implies that all directed
paths are negative. It would be interesting to see what happens for other edge-orientations of a
path. Starting with a negative (resp. positive) digraph, one can apply the same recursive con-
struction as in [ZZ20] to produce additional negative (resp. positive) digraphs, namely by taking
two disjoint copies of the digraph and adding a single edge joining a pair of twin vertices.

The problem of maximizing the number of directed k-cycles in a tournament is also inter-
esting and not completely understood. Recently, Grzesik, Král’, Lovász, and Volec [GKLV23]
showed that quasirandom tournaments maximize the number of directed k-cycles whenever k
is not divisible by 4. On the other hand, when k is divisible by 4, quasirandom tournaments
do not maximize the density of directed k-cycles. The maximum directed k-cycle density is
known for k = 4 [BH65, Col64] and k = 8 [GKLV23] but open for all larger multiples of 4.
See [GKLV23] for discussion.

A related problem is determining the maximum number P (n) of Hamilton paths in a tour-
nament (the problem for Hamilton cycles is related). By considering the expected number
of Hamilton paths in a random tournament, one has P (n) ⩾ n!/2n−1. This result, due to
Szele [Sze43], is considered the first application of the probabilistic method. This lower bound
has been improved by a constant factor [AAR01, Wor]. Alon [Alo90] proved a matching upper
bound of the form P (n) ⩽ nO(1)n!/2n−1 (also see [FK05] for a later improvement).

Proof of Theorem 1. We may assume that k ⩾ 1. Let f(x, y) = 1 if (x, y) is a directed edge
in the tournament, and 0 otherwise. Let gt(x) denote the number walks of length t ending at x.
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Let d+(x) and d−(x) denote the out-degree and the in-degree of x, respectively. We have, for
each t ⩾ 1,

gt(y) =
∑
x

gt−1(x)f(x, y).

Define
At :=

∑
y

gt(y)
2d+(y). =

∑
y,z

gt(y)
2f(y, z).

We have, for each t ⩾ 1,

At =
∑
x,x′,y

gk−1(x)f(x, y)gk−1(x
′)f(x′, y)d+(y)

⩽
∑
x,x′,y

(
gk−1(x)

2 + gk−1(x
′)2

2

)
f(x, y)f(x′, y)d+(y)

=
∑
x,x′,y

gk−1(x)
2f(x, y)f(x′, y)d+(y)

=
∑
x,y

gk−1(x)
2f(x, y)d−(y)d+(y)

⩽

(
n− 1

2

)2∑
x,y

gk−1(x)
2f(x, y) [since d−(y)d+(y) ⩽

(
n−1
2

)2]
=

(
n− 1

2

)2

At−1.

So, for all t ⩾ 0,

At ⩽ A0

(
n− 1

2

)2t

⩽ n

(
n− 1

2

)2t+1

.

Let Wk be the number of walks of length k. Applying the Cauchy–Schwarz inequality,

Wk =
∑
y

gk−1(y)d
+(y) ⩽

√∑
y

gk−1(x)2d+(y)

√∑
y

d+(y) ⩽
√

Ak−1A0 ⩽ n

(
n− 1

2

)k

.

The above proof also gives the following stability result.

Theorem 2 (Stability). For k ⩾ 2, an n-vertex tournament satisfying∑
x

∣∣∣∣d+(x)− n− 1

2

∣∣∣∣ ⩾ ε

(
n

2

)

has at most (1− ε2

2
)n
(
n−1
2

)k walks of length k.

Note that by symmetry, we can replace d+ by d− in the hypothesis of Theorem 2.
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Proof. We use the notation from the earlier proof. We have

W2 =
∑
x

d+(x)d−(x) ⩽
∑
x

d+(x)(n− 1− d+(x))

=
∑
x

((
n− 1

2

)2

−
(
n− 1

2
− d+(x)

)2
)

⩽ n

(
n− 1

2

)2

− 1

n

(∑
x

∣∣∣∣n− 1

2
− d+(x)

∣∣∣∣
)2

⩽ (1− ε2)n

(
n− 1

2

)2

.

From the proof of Theorem 1, we have

W 2
k ⩽ Ak−1A0 ⩽

(
n− 1

2

)2(k−2)

A1A0.

Using A0 ⩽ n(n− 1)/2 and A1 =
∑

x d
−(x)2d+(x), we obtain

W 2
k ⩽ n

(
n− 1

2

)2k−3∑
x

d−(x)2d+(x).

In the proof of Theorem 1, we defined gk(x) to be the number of k-edge walks ending at x. By
running the same proof for the number of k-edge walks starting at x, we deduce

W 2
k ⩽ n

(
n− 1

2

)2k−3∑
x

d−(x)d+(x)2.

Taking the average of the two bounds, we obtain

W 2
k ⩽ n

(
n− 1

2

)2k−3∑
x

d−(x)d+(x)

(
d−(x) + d+(x)

2

)
⩽ n

(
n− 1

2

)2k−2∑
x

d−(x)d+(x)

⩽ (1− ε2)n2

(
n− 1

2

)2k

⩽

((
1− ε2

2

)
n

(
n− 1

2

)k
)2

.
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where the conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
x∈Ω

P(X = x)H(Y |X = x).

Here H(Y |X = x) is the entropy of the conditional distribution of Y given X = x.

Entropy proof of Theorem 1. Consider a random walk X1, . . . , Xk+1 chosen uniformly from
the set of all Wk walks of length k in the given tournament. This random walk is Marko-
vian in the sense that the distribution of (Xi, . . . , Xk+1) conditional on (X1, . . . , Xi) is the
same as the distribution of (Xi, . . . , Xk+1) conditional on Xi. Indeed, this conditional distri-
bution is uniform over all walks (Xi, . . . , Xk+1) with a given starting vertex Xi. In particular,
H(Xj|Xj−1, . . . , X1) = H(Xj|Xj−1).

Applying the chain rule, we have

logWk = H(X1, . . . , Xk+1) = H(X1, X2) +
k∑

j=2

H(Xj+1|X1, . . . , Xj)

= H(X1, X2) +
k∑

j=2

H(Xj+1|Xj).

Likewise,

H(X1, . . . , Xk+1) = H(Xk+1, Xk) +
k∑

j=2

H(Xj−1|Xj).

Taking the average of the two bounds, we obtain

H(X1, . . . , Xk+1) =
H(X1, X2) +H(Xk+1, Xk)

2
+

1

2

k∑
j=2

(H(Xj−1|Xj) +H(Xj+1|Xj)).

For each 2 ⩽ j ⩽ k and vertex x, by the uniform bound, H(Xj−1|Xj = x) ⩽ log d−(x) and
H(Xj+1|Xj = x) ⩽ log d+(x). Also, d−(x)d+(x) ⩽ (n− 1)2/4. Thus

H(Xj−1|Xj = x) +H(Xj+1|Xj = x) ⩽ log d−(x) + log d+(x) ⩽ 2 log

(
n− 1

2

)
.

Thus
H(Xj−1|Xj) +H(Xj+1|Xj) ⩽ 2 log

(
n− 1

2

)
.

Also H(Xj, Xj+1) ⩽ log
(
n
2

)
by the uniform bound. Therefore

logWk = H(X1, . . . , Xk+1) ⩽ log

(
n

2

)
+ (k − 1) log

(
n− 1

2

)
= log

(
n

(
n− 1

2

)k
)
.
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