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Abstract

Backbone Flexibility in Computational Protein Design

Daniel J. Mandell

Over the past two decades the field of computational protein design has produced
striking successes, both by improving our understanding of the fundamental
principles governing protein structure, dynamics and function, and by engineering
new and modified proteins with useful properties for scientific inquiry and
industrial applications. Generally, these successes have arisen from design
strategies that sample amino side-chains on a polypeptide backbone with fixed
atomic coordinates. Despite the well-known tendency for protein backbones to
adjust in the face of sequence mutations, the fixed backbone assumption is typically
maintained due to the challenge of efficiently sampling backbone and side-chain
conformations, and accurately evaluating their physical favorability. This
dissertation addresses these issues of sampling and evaluating protein
conformations and applies the developed methods to predict proteins with new
functions. The dissertation first provides a quantitative assessment of hydrogen
bonding involving amino acid phosphorylation, a key post-translational

modification that can alter protein function by inducing conformational

vii



rearrangements. The dissertation then introduces a robotics-inspired method for
modeling backbone flexibility in proteins, and demonstrates sub-angstrom accuracy
in an application to predict the conformations of regions lacking secondary
structure in protein monomers and interfaces. Finally, the dissertation describes the
coupling of the developed flexible backbone method with computational sequence
design to predict proteins that dimerize only in the presence of small molecule
targets to act as in vitro or in vivo biosensors. Fusing split reporter fragments to the
chemically induced dimer partners provides a modular approach that can, in
principle, be used to detect any small molecule that has been crystallized in complex
with a protein and drive a variety of enzymatic, fluorescent, and transcriptional

outputs.
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Chapter 1
Introduction

Perspective

The principal goal of computational protein design is to find amino acid sequences
that stably adopt target protein structures. Increasingly, designs are also optimized
with functional constraints in mind, such as interaction selectivity or new catalytic
activity. Several ambitious engineering goals have recently been met, including
designing proteins that catalyze reactions lacking natural enzymes!?, increasing the
affinity of antibody-antigen interactions beyond in vivo levels3, and engineering
peptide transcription factors that oligomerize with high specificity* These successes
arise from concepts developed over several decades®-8 that were highlighted by the
pioneering work of Dahiyat and Mayo on the first computational design of an entire
protein®.

With some notable exceptions!%-13 most early design protocols sample amino
acid side-chain conformations on a backbone template with fixed atomic
coordinates. This simplifying assumption is generally made because of the difficulty
of developing sampling methods and scoring functions to efficiently explore

backbone flexibility. In addition, simulating the vastly enlarged conformational



space when moving from fixed to flexible backbone models requires substantial
computational resources. Nevertheless, experiments have long demonstrated that
protein backbones often adjust to sequence mutations'#16, These observations
suggest that, depending on the conformational plasticity of the target fold, fixed
backbone methods may neglect a significant portion of sequence space accessible to
folded and functional proteins. Conformational changes to protein backbones also
underlie important biological processes, such as active site gating in enzymes,
switch modulation in signaling proteins, and antigen recognition in antibodies.
Consequently, for computational protein design to meet the next generation of
engineering challenges, as well as to improve understanding of the relationships
between variations in protein sequence, structure, dynamics, and function, it is
critical to develop and validate efficient methods to model varying levels of

backbone flexibility.

Synopsis

This dissertation addresses the incorporation of backbone conformational
variability into protein modeling and design. Enabling backbone flexibility in high-
resolution protein modeling requires developments both in efficiently exploring
protein conformational space (‘sampling’, Figure 4.1), and in evaluating the
favorability of sampled conformations (‘scoring’, Figure 1.1). Chapter 2 focuses on
the scoring issue, using multiple levels of theory to quantify the relative strengths of
hydrogen bonds involving amino acid side-chains that have wundergone

phosphorylation, a key post-translational modification that often effects function by



inducing conformational changes. The subsequent chapters focus on high-resolution
sampling. Chapter 3 begins with a history of approaches to modeling backbone
flexibility that enabled early successes and illuminated challenges ahead. The
chapter then describes the significant methodological advances that have occurred
in recent years, and reports on newly enabled biological and engineering
applications. Chapter 4 introduces a robotics-inspired technique for modeling
protein conformations, and describes its application to predicting the conformations
of protein regions lacking secondary structure in both monomeric proteins and
protein interfaces. Chapter 5 describes the application of the developed methods to
reshaping protein-protein interfaces around small molecule targets so they may
function as in vitro or in vivo biosensors. Finally, Chapter 6 looks toward future
challenges in flexible backbone design, and proposes how current and forthcoming
approaches might be harnessed to design new functions and incorporate concepts

from protein evolution.
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Figure 1.1: Dominant scoring terms used in computational protein design

(a) Atomic packing interactions. The well-packed core of a PDZ domain (top left) would be
destabilized by changes in side-chain size, such as an alanine-to-phenylalanine substitution (top
right, phenylalanine shown in green). Packing interactions are typically described using van der
Waals potentials (bottom). The backbone is shown in transparent cartoon representation, and
side-chains are shown as spheres. (b) Hydrogen bonding. The intricate geometry of a hydrogen
bond network in the interface between the DNAse E7 (orange backbone) and its inhibitor Im7
(grey backbone) (PDB code 7cei) (left) would be disrupted by changes in side-chain
donor/acceptor groups and their orientations (right). The bottom panel shows parameters used in
a geometry-dependent hydrogen bonding potential”: the distance between the hydrogen (H) and
the acceptor (A) (dna), the angle at the hydrogen (@), the angle at the acceptor (¥), and the donor
(D)-hydrogen (H)—acceptor (A)—acceptor base (AB) torsion angle (X). Side-chains are shown in
stick representation. (c¢) Solvation. The hydrophobic core of a PDZ domain (left) would be
destabilized by an isoleucine-to-glutamate substitution (right). Solvation potentials favor the
exposure of polar groups to the solvent and associate a penalty with burial of polar groups
(bottom). Core side-chains are shown as sticks with a transparent surface representation.



Chapter 2

Strengths of hydrogen bonds involving
phosphorylated amino acid side-chains

Introduction

Protein phosphorylation is a key signaling mechanism in diverse cellular processes
including metabolism18, ion channel regulation!®29, and cell cycle progression?1-23.
In eukaryotes, the main sites of phosphorylation are tyrosine, serine and threonine
side-chains, while aspartate and histidine side-chains are phosphorylated in the
‘two-component’ signaling pathways of prokaryotes?324. Addition of the phosphate
group, which typically carries a -2 charge at physiological pH, perturbs the local
electrostatic potential in the protein and often induces conformational changes that
influence function?? or modulate protein-protein interactions!8.

A critical property of phosphorylated residues is their propensity to accept
hydrogen bonds through their phosphate oxygens, frequently with positively
charged side-chains to form ‘salt bridges’. Salt bridge energetics depend sensitively
on the identity, proximity and orientation of the participating side-chains and their
surrounding environment. Quantitative measurements of salt bridge contributions

to protein stability have provided different results depending on the experimental



system and experimental design, with estimates ranging from -5.0 to -0.5 kcal/mol
of stabilization in T4 lysozyme?>26, to 2.0 to 4.0 kcal/mol of destabilization in coiled
coils and Arc repressor?’28. There have also been a number of previous
computational studies aimed at quantifying the strength of interaction of small
ions?9-32, In particular, Masunov and Lazaridis3? used molecular dynamics methods
to estimate the free energies of salt bridges between likely orientations of all
charged naturally occurring amino acid side-chains.

This chapter investigates the strengths of hydrogen bonds and salt bridges
involving phosphorylated amino acid side-chains using small molecule analogs for
common acceptors (methyl phosphate for pSer and pThr, acetyl phosphate for
pAsp) and donors (butyl ammonium for a Lys side-chain, propyl guaninidinium for
Arg, and N-methylacetamide for backbone amide NH groups). Interactions of all
donors with propionic acid (Glu analog) are also considered for comparison to a
carboxylate receptor with -1 charge.

Multiple levels of theory are utilized, including explicit solvent molecular
dynamics (MD), implicit solvent molecular mechanics (Poisson-Boltzmann), and
quantum mechanics with a self-consistent reaction field treatment of solvent. This
approach allows the identification of trends that are consistent across the methods,
as well as to uncover the sensitivity of each method to different forces governing
hydrogen bond strengths. Continuum solvent methods, primarily those based on the
Poisson-Boltzmann equation33 or more heuristic methods such as Generalized
Born34, offer substantial speed advantages relative to explicit solvent models in

applications such as molecular dynamics. However, treating the solvent as a



continuum dielectric is an approximation and neglects important first-shell
solvation effects related to the finite size and asymmetry of a water molecule3>-37.
The results of the explicit solvent calculations cannot be considered free of error
either. Notably, molecular mechanics methods using fixed-charged force fields, as
employed in the present molecular dynamics calculations, ignore the effect of
electronic polarizability on hydrogen bond strengths. Even in high dielectric solvent,
the strong electric field exerted by a -2 phosphate group can be expected to lead to
significant polarization of the electrons on nearby molecules. To assess the potential
impact of electronic polarizability on the strengths of the hydrogen bonds
considered here, this work employs quantum mechanics with a large basis set,
electron correlation treated at the ‘local’ Moller-Plesset second order perturbation
theory3® (LMP2) level, and solvent treated using a self-consistent reaction field
(SCRF) method.

The central results of this chapter consist of potentials of mean force (PMFs)
from the explicit solvent molecular dynamics calculations, which are one-
dimensional free energy landscapes for a pair of interacting groups as a function of
distance between the phosphate and hydrogen bond donors. The PMFs cannot be
used trivially to predict the absolute free energies of association of the small
molecules in solution (which requires extensive averaging over translational and
rotational degrees of freedom) or the absolute strengths of hydrogen bonds in a
protein environment (which depend on the local environment, such as solvent

accessibility). However, the PMFs do provide insight into the relative intrinsic



strengths of the various types of hydrogen bonds considered, and help to address

the following issues:

(1) The conditions under which conditions Arg or Lys make stronger hydrogen bonds
with a phosphorylated side-chain. There is ample albeit indirect evidence that the
ability of guanidinium ions to form bidentate hydrogen bonds with carboxylate
or phosphate ions leads to particularly strong interactions3°-41. This property of
guanidinium ions has been extensively employed in the design of synthetic
receptors for phosphate-containing ligands#2. Bidentate hydrogen bonds
between Arg and pSer/pThr are also commonly observed in the relatively small
number of crystal structures of phosphorylated proteins?3. However, previous
computational studies have suggested that interactions of phosphorylated
groups with Lys may be intrinsically stronger#344. This issue is revisited here

using multiple levels of theory.

(2) The effect of phosphate protonation state on hydrogen bond strength. The ~6 pKa
of phosphate suggests that both -1 and -2 charged species may coexist at
physiological pH. This work investigates the effect of phosphate protonation

state on all hydrogen bonding interactions considered.

(3) The energetic consequences of substituting a carboxylate for a phosphate. In cases
where phosphorylation of a protein leads to its activation, it is frequently useful

to engineer a constitutively active mutant, e.g., for use in in vitro studies. Simply



substituting a Glu or Asp for the phosphorylated residue(s) is sufficient to
achieve constitutive activation in many cases*>-4, but in other cases this simple
strategy results in only partial activation or none at all>%51, The relative
strengths of hydrogen bonds involving carboxylates and phosphates is also
relevant to the design of inhibitors of SH2 domains®2°3, which bind
phosphorylated peptides. Here, the differences in the intrinsic hydrogen bond
strengths of carboxylates vs. phosphates with common hydrogen bond donors is
examined in some detail. These results provide a foundation for understanding
why Asp/Glu can sometimes substitute for phosphorylated amino acids,

although other physicochemical differences will undoubtedly also play a role.

The strengths of hydrogen bonds to the phosphate backbone of RNA5* and DNA>>
are not directly addressed here, although the results presented may have some

relevance to this issue.



Figure 2.1: Hydrogen bond geometries considered

Only the unprotonated methyl phosphate acceptor (representing the pSer side-chain with a -2
charge) is shown. In the case of protonated phosphate groups, the hydrogen is placed on one of
the oxygens not directly involved in hydrogen bonding. These geometries are referred to as (a)
‘Lys coplanar’, (b) ‘Arg coplanar’, (c¢) ‘Lys collinear’, (d) ‘Arg collinear’, and (e) ‘amide NH
collinear’.

Methods

MD simulation materials and parameters

MD simulations were performed using GROMACS 3.2.1%¢. The 2001 OPLS all atom
force field>7 was used for stretch, bend, torsional and Lennard-Jones parameters, as
well as partial charges for the glutamate, acetate, arginine, lysine, and N-
methylacetamide backbone analogs. Partial charges for pSer (-1, -2) and pAsp (-1, -
2) analogs were obtained from quantum mechanical calculations®®5°. Molecules
were solvated with TIP3P60 water molecules in a 40 A cubic box under periodic
boundary conditions. The cut-off distance for the short-range neighbor list was set

to 10 A. Long-range electrostatics were calculated with particle mesh Ewalds! with a
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real-space cutoff of 9 A for nonbonded interactions. Na* counterions were fixed at
the corners of the solvent box as necessary to obtain electroneutrality. Prior to
running molecular dynamics, the potential energy of each configuration was relaxed
by steepest descent minimization, followed by 100 ps of molecular dynamics
equilibration. Molecular dynamics was then run for 2.1 ns with a time step of 2 fs.
Interaction energies and atomic coordinates were recorded every 500 fs. The
system was propagated in time with a velocity version of the Verlet algorithm®2.63.
During and subsequent to equilibration, Nose-Hoover temperature coupling® and
Berendsen pressure coupling®® were used to maintain system temperature and
pressure, with a reference temperature of 298 K, a reference pressure of 1.0 atm, a
time constant of 1 ps, and an isothermal compressibility of 1.1 x 106 (kcal mol- A-3).
The various acceptors, donors, charge states, and geometries comprised a total of 25
hydrogen bonding configurations representing more than 1 us of molecular

dynamics simulation time.

MD simulation constraints

Umbrella sampling® using distance and position restraints was employed to
calculate a one-dimensional PMF for one of two common interaction geometries,
either a coplanar approach or a collinear approach (Figure 2.1). These orientations
consistently arose in simulations of the side-chain analogs without position
restraints (data not shown). For collinear geometries, the donated hydrogen and its
covalently bonded atom, and the accepting oxygen and its covalently bonded atom,

were constrained to move on a line. For coplanar geometries, donated hydrogens
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and accepting oxygens were constrained to a plane, and two additional heavy atoms
from each molecule were constrained to move along a line. These constraints kept
the interacting moieties facing each other, and in the case of lysine allowed the
donated hydrogens to rotate slightly through the plane of interaction to sample
optimal hydrogen bonding orientations. Hydrogen atom-heavy atom covalent bond
lengths were constrained only in the backbone analog using the LINCS algorithm®”
to stabilize the N-H bond.

The distance between the molecules was constrained using a biasing
potential at 0.5 A intervals. A nearby heavy atom from the donor molecule was
constrained to that of the acceptor using a quadratic biasing potential, V(r) = k(r - i)
where k = 143.5 (kcal/A?) is the biasing force constant and r; is the point about
which the molecules are constrained. In cases with guanidinium in a coplanar
orientation, additional simulation with a higher force constant of 263.0, 430.4, or

860.8 (kcal/A?) was necessary to sample adequately around the solvation barrier.

MD analysis

The potential of mean force was calculated using probability distributions of the
constrained distance, r, obtained from the umbrella sampling, as described by
Souaille and Roux®8. Trajectories from each window i were converted to biased
population distributions Pi(r) with a bin width of 0.1 A. The weighted histogram
analysis method (WHAM)% was used to merge histograms P;(r) into a single
unbiased curve P(r). The algorithm was considered to converge after the free energy

constants for all the windows changed by less than 0.01 kcal/mol. The PMF, AG(r),
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was then calculated using the standard relationship AG(r) = -k, T In[P(r)] where kj is
Boltzmann's constant. Each PMF was shifted vertically so that the average potential
between 10 A and 11 A was 0 kcal/mol. Block averaging’® was used to calculate
errors. The trajectories in each of the constrained windows were divided into N
shorter trajectories. The distribution P(r) for each of the N trajectories was then
calculated using the methods described above. The resulting N P(r) were averaged
and used to calculate the standard deviation, which is reported as the error. N=20

was chosen to minimize the correlation between neighboring blocks.

Implicit solvent continuum electrostatics

Implicit solvent calculations were performed using the DelPhi program’! to solve
the linearized Poisson-Boltzman equation. In order to compare with the explicit
solvent PMFs, DelPhi calculations were performed on each configuration used in the
MD simulations except that the molecules were fixed at a defined distance from 2.5
A to 11.0 A at 0.25 A intervals. The Coulombic and solvation (reaction field)
components of the free energy from DelPhi were added to Lennard-Jones energies
calculated separately to obtain the implicit solvent PMF. The nonpolar component of
the solvation free energy was computed with a solvent-accessible surface area
model. The partial charges and atomic radii in the explicit and implicit solvent
simulations were the same; that is, the default charges and radii from Delphi are not
used, in order to compare more directly with the molecular dynamics results. The
Delphi calculations used 4 grid points per A, an internal dielectric of 1, an external

dielectric of 80, and an ionic strength of zero.
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Quantum mechanics

Quantum mechanics calculations were performed using the Jaguar software
package’?. Ab initio single-point energy calculations were performed on the same
coordinates employed using implicit solvent molecular mechanics. A self-consistent
reaction field (SCRF) method’? was used to mimic the condensed phase
environment. The procedure starts by calculating atomic charges for the molecule in
a vacuum using electrostatic fitting’47>. This step entails a Hartree-Fock calculation
and subsequent electron correlation correction to evaluate the electrostatic
potential. The response from the surrounding dielectric and corresponding surface
charges is calculated. Atomic charges are then re-calculated taking into account the
dielectric response. The solvation energy is calculated at each iteration until it
converges. The basis set for the Hartree-Fock and electron correlation calculations
was cc-pVTZ(-f). Electron correlation was treated at the level of local Moller-Plesset

second order perturbation theory (LMP2)38.

Results and discussion

Each level of theory employed in this study captures different aspects of hydrogen
bonding with varying computational expense. Although not free from error, the
explicit solvent molecular dynamics results include substantial averaging over
conformational and rotational degrees of freedom for both solute and solvent, and
comprise the core results of this chapter. The explicit solvent PMFs take a form
typical to those of oppositely charged ions (e.g., Figure 2.2). The lowest free energy

is generally seen when the ions are directly in contact (separation distance roughly
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equal to the sum of the van der Waals radii); this minimum is referred to as the
‘contact minimum’. As the separation between the ions increases, the free energy
rises sharply to a solvation barrier. In many cases, as the separation between the
molecules increases further the free energy reaches a second minimum, in which
the solute ions are separated by approximately one water molecule, which is refered
to as the ‘solvent-separated minimum’. In cases with particularly well-ordered
waters, a second barrier and second solvent-separated minimum may exist with
further separation. At distances beyond these features the potential energy
approaches zero. The free energy of the hydrogen bond or salt bridge is calculated
as the difference in energy between the largest separation sampled (11 A) and the
contact minimum. The free energies of all orientations, charge states, and acceptor-

donor pairs as calculated by MD in explicit solvent are summarized in Table 2.1.

Table 2.1: Hydrogen bonding free energies computed from explicit solvent MD and WHAM
Free energies with standard errors are shown in kcal/mol.

Lys Collinear Arg Collinear Lys Coplanar Arg Coplanar Amide NH Collinear
Glu -3.1+0.3 -3.4+0.2 -2.6x0.4 -8.5+0.1 -1.8+0.6
pSer(-1) -3.7+0.2 -3.7+0.3 -3.5+0.1 -9.3+0.4 -1.6x0.7
pSer(-2) -4.2+0.3 -4.7+0.3 -4.5+0.3 -10.6+0.6 -1.0+0.6
pAsp(-1) -3.2+0.3 -3.0+0.4 -2.4+0.4 -6.3+0.4 -1.8+0.7
pAsp(-2) -4.620.2 -4.5+0.3 -4.9+0.4 -7.3+0.2 -1.1+0.6
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Figure 2.2: PMF for a coplanar interaction between phosphoserine and lysine

PMFs for a coplanar interaction between methyl phosphate (representing pSer?®) and butyl
ammonium (Lys) computed using MD in explicit solvent (squares with error bars, computed as
described in ‘Methods’), and using molecular mechanics with implicit solvent (dotted line and

circles). The distance along the x-axis is measured between the phosphorus atom and the
ammonium nitrogen.

Control study of NaCl

A one-dimensional PMF between Na* and Cl- ions, a very well studied system, serves
as a control. This experiment allows for comparisons to previous studies without
the rotational degrees of freedom and multiple partial charges inherent to
polyatomic systems. The calculations yielded a free energy at the contact minimum
of -1.7 kcal/mol and a free energy at the top of the solvation barrier of 1.7 kcal/mol.

Masunov and Lazaridis3? found a contact minimum free energy of about -1.3
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kcal/mol and a solvation barrier free energy of about 2.0 kcal/mol when using a
Spherical Solvent Boundary Potential’® for long-range electrostatics, and -2.0
kcal/mol and 1.5 kcal/mol respectively for the free energy when using Ewald
summation. Other comparable studies from Smith and Deng’’, Lyubartsev and
Laaksonen?? (at 0.5 M concentration), and Martorana et al.3° found comparable

results, with contact minima of about -1 to -2 kcal/mol.

Effect of interaction geometry on energy landscapes

Examples of the collinear and coplanar geometries used for the PMFs are depicted in
Figure 2.1. In cases where the phosphate is protonated, the proton is placed on an
oxygen not involved in the hydrogen bonding; it serves only to change the overall
charge on the phosphate. In the coplanar orientation the molecules are constrained
to move along the axis of the distance constraint, and the planarity constraint
prevents rotation about this axis. In contrast, the collinear orientation allows for
rotation about the collinear axis. The height of the solvation barriers and the
stability of the solvent-separated minima depend on the relative rotation of the
molecules about the collinear axis, so integrating out this degree of freedom
produces a PMF with less pronounced maxima, and frequently no secondary
minima, in comparison to the coplanar PMFs. Note that the free energy computed
for the hydrogen bond in this type of PMF explicitly includes entropic contributions

from rotations about the collinear axis.
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Salt bridge interactions of Glu/Asp

The strengths of salt bridges between positively charged Lys or Arg with negatively
charged carboxylate groups on Glu and Asp have been considered in several
previous studies3278. Similar calculations are performed here only to obtain
internally consistent comparisons with the results involving phosphate groups.
Taking a collinear approach, propyl guanidinium (Arg) and butyl ammonium (Lys)
yield similar free energies as hydrogen bond donors to propionic acid (Glu), at -3.4
kcal/mol and -3.1 kcal/mol respectively. In a planar approach, Arg is much more
stable, at -8.5 kcal/mol. The enhanced stability of Arg is largely due to the ability of
its guanidinium moiety to form nearly idealized bidentate hydrogen bonds with the
carboxylate moiety of Glu. Moreover, the free energy of the bidentate bonds is
slightly greater than double that of the single collinear bond, suggesting some
cooperativity as there is less of an entropic cost to pay in forming the second
hydrogen bond. Entropic cooperativity in bidentate bonding interactions,
sometimes referred to as the chelate effect, has been observed elsewhere
experimentally”°.

Masunov and Lazaridis computed one-dimensional PMFs between ionizable
side-chain analogs similar to the configurations used here32. In particular, the Glu-
Arg coplanar approach used similar ionic structures and positional restraints as
employed by Masunov and Lazaridis in a corresponding calculation. Their analysis
yielded a contact minimum free energy and solvation barrier free energy of about -
4.3 kcal/mol and 3.0 kcal/mol respectively, roughly half the magnitude obtained

here. This discrepancy is likely attributable to differences in force fields and
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simulation protocol. Importantly, their simulations were run with the CHARMM 19
force field®® for side-chain analogs, while the present work used the OPLS-AA 2001
force field (see ‘Methods’). Notably, the charges for the donated Arg hydrogens are
0.35e in CHARMM as opposed to 0.46¢ in OPLS, and the accepting Glu oxygens take a
charge of -0.60e in CHARMM in contrast to -0.80e in OPLS. Further, Masunov and
Lazaridis handled long-range electrostatics with a Spherical Solvent Boundary
Potential’6 (SSBP) over a spherical cluster of 200 waters with an 11 A radius, while
particle mesh Ewald over a 40 A cubic box of roughly 2150 water molecules was
employed here. Figure 2 of the Masunov paper shows that SSBP produces a contact
minimum about 0.7 times the depth as Ewald summation when calculating a one-
dimensional PMF for Na* and Cl- ions. Rodinger et al.8! found that the interface
between an explicit water droplet and a continuum solvent field appearing in
models like SSBP polarizes the explicit waters up to 10 A away from the solvent-
vacuum boundary. Lattice summation methods like particle mesh Ewald can also
introduce small artifacts related to periodicity-induced perturbations in Coulombic
and solvation energies, although given the quantity and permittivity of the solvent
in the present study these perturbations should nearly cancel each other82.
Additionally, the earlier paper reports the typical use of 7 umbrella sampling
windows constructed at 1 A intervals from 3 A to 9 A and simulated for 200 ps. In
the present study, 18 windows were used, ranging from 2.5 A to 11 & at 0.5 A
intervals, and each window was equilibrated for 200 ps followed by 2.1 ns of

simulation.
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Rozanska and Chipot’8 calculated a PMF for guanidinium and acetate using
Ewald lattice summation for long-range electrostatics, which corresponds
geometrically to the Glu-Arg coplanar orientation. Their simulations produced a
contact minimum free energy of -2.7 kcal/mol and a solvation barrier free energy of
3.4 kcal/mol. The atomic partial charges were computed from quantum mechanics
and more closely resemble those of OPLS than CHARMM, with the donated
hydrogens at 0.49e and the accepting oxygens at -0.87e. Importantly, their
guanidinium and acetate moieties were biased to face one another through torsional
restraints. This would allow some degree of rotation through the plane of
interaction, in contrast to the C-C-C-N linearity constraint imposed on the
corresponding ions of the present study, which enforces nearly constant bidentate
hydrogen bonding. The present work found that removing this linearity constraint
reduces the stability of the salt bridge by at least 1.5 kcal/mol. Other notable
differences include Rozanska and Chipot’s use of 4 umbrella sampling windows
rather than 18, the AMBER force field®3 for the potential energy function rather than

OPLS-AA, and the TIP4P water model rather than TIP3P.

Salt bridge interactions of pSer

The central results of this chapter are quantitative assessments of the strengths of
hydrogen bond interactions involving phosphorylated amino acid acceptors. As is
the case with carboxylate serving as the acceptor ion, butyl ammonium (Lys) and
propyl guanidinium (Arg) donors yield similar contact minima free energies in a

collinear orientation with protonated methyl phosphate (pSer1), at -3.7 kcal/mol.
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When pSer is deprotonated, the energies of the collinear orientation become more
distinguishable, with pSer?-Arg forming a salt bridge worth -4.7 kcal/mol,
compared to -4.2 kcal/mol for pSer?-Lys. In the planar approach, Lys and Arg
produce substantially different free energy profiles. When the accepting pSer is
protonated, the contact minimum reaches -9.3 kcal/mol with Arg. If pSer takes a -2
charge, the free energy for this geometry is -10.6 kcal/mol.

The depth of the pSer-Arg contact minima further demonstrate the
significance of bidentate hydrogen bonding in a coplanar approach. Similar to the
effects observed with Glu-Arg, a coplanar pSer-Arg salt bridge provides more than
twice the stability of one that is collinear. Coplanar pSer-Lys salt bridges yield
similar energies to their collinear counterparts, which was also observed with Glu-
Lys. PMFs with all permutations of pSer charge states with different donors also
suggest that the effects of pSer protonation are small but significant. In a collinear
approach, deprotonation of pSer stabilizes a pSer-Lys salt bridge by -0.5 kcal/mol
and pSer-Arg by -1.0 kcal/mol. The effect appears stronger in a coplanar approach,
with deprotonation stabilizing pSer-Lys by -1.0 kcal/mol and pSer-Arg by -1.3
kcal/mol.

Mavri and Vogel*3 used PM3 semi-empirical molecular orbital calculations
with the SM3 reaction field treatment of solvent8* to investigate the strengths of
interactions for methylammonium and methylguanadinium with mono- and
divalent methylphosphate in several orientations. Their coplanar calculations
correspond geometrically with the coplanar pSer-Lys and pSer-Arg orientations.

Although the authors conclude that phosphate interactions with Lys are generally
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stronger than with Arg, their PM3-SM3 calculations show interaction free energies
of +6.1 kcal/mol with coplanar pSer-l-Lys and +3.6 kcal/mol for coplanar pSer1-
Arg. The authors also found that phenyphosphate? in complex with Lys or Arg
produces an interaction free energy stronger than -28.0 kcal/mol in both cases. The
findings clearly contradict the present results, both those generated using molecular
mechanics and using quantum mechanical methods, which are largely consistent
with each other. It should be noted that the authors of this study speculated that the
semi-empirical quantum mechanical model may not have been well parameterized
for phosphate groups.

Luo et al3! computed strengths of salt bridge interactions for Arg and Lys
with phosphate using the CHARMM 22.0 empirical force field and a generalized
Born implicit solvent model. In particular, they computed a PMF between
monovalent phosphate and guanidinium that corresponds geometrically to the
coplanar pSer-1-Arg orientation. The authors found a contact minimum of about -3.8
kcal/mol, less than half the depth of the contact minimum of -9.3 kcal/mol for pSer-
1-Arg obtained here. Several differences in simulation protocol may contribute to
this discrepancy. The CHARMM force field places a weaker charge on the
unprotonated phosphate oxygens (-0.82e) than the charge obtained from
electrostatic potential fitting (-1.032¢). Further, the authors used the protonated
phosphate oxygen to accept one of the planar hydrogen bonds, while the present
work used deprotonated oxygens to accept both hydrogen bonds. Additionally,
because the authors were trying to mimic experiments involving ion pairs in high

ionic strength (1 mol/L) aqueous solution, they applied an ionic shielding correction

22



to their ion pair calculations that weakened their interactions on the order of 1
kcal/mol. Finally, the authors used a generalized Born implicit solvent model
instead of Poisson-Boltzmann and explicit solvent used here.

Some efforts have also aimed to quantify the strengths of phosphate
interactions with charged side-chain analogs experimentally. Springs and Haake®>
extracted free energies of association for guanidinium-phosphate and butylamine-
phosphate from pKi shifts. The absolute free energies cannot be directly compared
to the present work, because the experimental free energies are for free ions,
whereas the computational PMFs represent constrained geometries, which is more
appropriate to understanding hydrogen bonding in a macromolecule. In addition,
the experiments were carried out in solution with 1 mol/L ionic strength, creating
significant ionic shielding. However, the relative free energies can be profitably
compared. Specifically, the experimentally determined free energies show a
stronger interaction for guanidinium-phosphate (-0.6 kcal/mol) than butylamine-

phosphate (-0.4 kcal/mol), in agreement with the results obtained here.

Salt bridge interactions of pAsp

Response regulators in bacterial ‘two component’ signaling systems use Asp side-
chains to accept a phosphate group from a sensor histidine kinase®. Resonance
structures involving the pi orbitals of the covalently linked carboxylate and

phosphate groups suggest that the electron density on the phosphate group on pAsp
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may be significantly different from that of pSer/pThra. This conjecture is confirmed
by the partial charges obtained by electrostatic potential fitting, as discussed in
Methods. The effect of this difference on hydrogen bond strengths with the panel of
hydrogen bond donors was examined next.

As with propionic acid (Glu) and methyl phosphate (pSer) acceptors, the
energies for acetyl phosphate (pAsp) with propyl guanidinium (Arg) and butyl
ammonium (Lys) in a collinear approach are very similar (within 1 kcal/mol). The
more striking comparison arises from different charge states of pAsp. Deprotonating
pAsp when accepting from collinear Lys stabilizes the interaction by -1.4 kcal/mol,
and by -1.5 kcal/mol when the donor is Arg. In contrast, deprotonating pSer in a
collinear salt bridge stabilizes the interaction by only -0.5 kcal/mol with Lys and -
1.0 kcal/mol with Arg. The deprotonation effect increases in the coplanar approach
only for lysine. Coplanar pAsp-2-Lys shows a 2.5 kcal/mol stabilization over pAsp-1-
Lys, while coplanar pAsp-2-Arg yields only a 1.0 kcal/mol stabilization over pAsp-1-
Arg. Bidentate hydrogen bonding continues to produce strong effects, with coplanar
Arg showing a 3.3 kcal/mol stronger salt bridge than a collinear approach with
pAsp! and a 2.8 kcal/mol stronger interaction than collinear with pAsp-2. Coplanar
Arg also bonds stronger than coplanar Lys to pAsp in the -1 and -2 charge states by
3.9 kcal/mol and 2.4 kcal/mol respectively, as Lys cannot form bidentate bonds due

to the same geometric constraints inhibiting them with Glu and pSer acceptors.

a A similar argument could be made regarding pTyr, ie., that there could be some conjugation between the pi electronic
systems in the benzene ring and on the phosphate. However, quantum calculations on benzyl phosphate followed by
electrostatic potential fitting (see Methods) suggested that the electron density on the phosphate group in pTyr is minimally
different than in methyl phosphate (pSer), and this issue further was not pursued further.
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The greater sensitivity to charge state of pAsp over pSer might be attributed
to differences in the charge distribution for the -1 and -2 ions. The quantum
mechanically calculated partial charges for the acceptor oxygens on pSer remain at -
1.032e regardless of protonation of the remaining phosphate oxygen. In contrast,
partial charges of the corresponding oxygens of pAsp decrease to -1.016e from -
0.949¢ upon phosphate deprotonation. These differences in partial charges can be
attributed to protonation effects on electron density due to resonance between the
carboxylate and phosphate pi-electron systems; this effect of course does not occur

in methyl phosphate (pSer).

Hydrogen bond interactions with amide NH groups

An earlier survey (data not shown) identified backbone amides as the second most
common hydrogen bond partner after Arg with phosphates in phosphorylated
proteins in the Protein Data Bank (PDB)®8’. N-methylacetamide (CH3-NH-CO-CH3)
was employed as an analog of the protein backbone to investigate the free energy of
backbone hydrogen bonds to the carboxylate and phosphate hydrogen bond
acceptors. In all simulations the amide hydrogen was placed in a collinear geometry
with its acceptor. The glutamate analog was truncated to acetate because
hydrophobic interactions were observed between the aliphatic tail of Glu and the
methyl caps of N-methylacetamide. In contrast to the behavior observed with Arg or
Lys donors, the interaction weakens slightly when the acceptor is deprotonated. A
weakened hydrogen bond arising from a stronger P-O dipole may appear

counterintuitive. However, hydrogen bond formation depends on a delicate balance
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between the free energy gain of bonded pairs and the loss of hydrogen bonds to
surrounding waters, and the desolvation penalty is significantly lower for the
protonated phosphate group. This effect was also observed by Wong et al.>8 in a
study involving phosphate-amide interactions with phosphate acceptors possessing

both -1 and -2 charges.

Implicit solvent Poisson-Boltzmann calculations

While continuum solvent models can provide substantial speed advantages relative
to explicit solvent in performing free energy calculations, the merits and
shortcomings of implicit solvent models remain a subject of interest and some
contention. Treating the solvent as a dielectric continuum neglects important first-
shell solvation effects arising from the finite size and asymmetry of a water
molecule35-37. In particular, the very strong ionic interactions between a -2 charged
phosphate with positively charged ions presents a challenging test of implicit
solvent models.

Poisson-Boltzmann (PB) implicit solvent calculations were performed on all
configurations (see ‘Methods’) to compare with the explicit solvent MD simulations.
These calculations retained the same geometries, atomic radii, Lennard-Jones
parameters, and partial charges as in the MD simulations. Figure 2.2 shows one
example of a comparison between the explicit solvent PMF and the implicit solvent
results. As has been seen in other work3233, the implicit solvent potentials generally
contain less structure than the explicit solvent PMFs, i.e,, no secondary minima,

consistent with the fact that the implicit solvent model treats water as a continuum.
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In addition, the implicit solvent results tend to exaggerate the energy barrier
required for separating the ions from contact to infinite separation.

The primary concern here, however, is the depth of the contact minima
(Table 2.2) and in this respect the implicit solvent results generally recapitulate
most of the key trends observed in the explicit solvent PMFs. In particular, the
implicit solvent results agree that protonating the phosphate group weakens
hydrogen bonds with charged donors but strengthens interactions with the amide
NH group, and that the strongest hydrogen bond of the phosphate group is the
bidentate interaction with guanidinium. Overall, the implicit solvent calculations
predict stronger hydrogen bonding interactions of the phosphate group than
explicit solvent MD, with the largest discrepancies observed for Arg forming
bidentate interactions with unprotonated phosphate. It may be possible to reduce
the general over-prediction of the hydrogen bond strengths by empirically adjusting
the radii used to define the dielectric surface in the implicit solvent calculation, but
such an optimization has not been performed in this work. It should also be
reiterated that the explicit solvent PMFs cannot be considered to be free of error
either and will depend on the choice of explicit solvent model and other simulation

parameters.
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Table 2.2: Hydrogen bonding free energies computed from continuum electrostatics
Free energies are shown in kcal/mol.

Lys Collinear Arg Collinear Lys Coplanar Arg Coplanar 2:11;3;2?
Glu -5.1 -39 -2.7 -10.6 -2.3
pSer(-1) -6.7 -6.1 -3.6 -13.0 -2.1
pSer(-2) -7.7 -6.7 -5.6 -15.4 -1.2
pAsp(-1) -5.5 -5.1 -2.4 -10.8 -2.6
pAsp(-2) -7.2 -6.5 -5.8 -15.5 -1.3

Self-consistent reaction field quantum mechanics calculations

To investigate the possible effects of electronic polarization on the energetics of
hydrogen bonding, quantum mechanics (QM) calculations using a self-consistent
reaction field to mimic the condensed phase (see ‘Methods’) were employed. One
limitation of this method with respect to the MD calculations is the use of implicit
solvent. An advantage, however, is that atomic partial charges are recomputed at
each distance to account for electronic polarizability. For instance, the donated Arg
hydrogens in the pSer?-Arg coplanar configuration increase in charge from 0.54¢e
and 0.51e at 11.0 A separation to 0.69¢ and 0.62e at the contact minimum distance
of 4.25 A.

As with the PB analysis, the QM calculations were carried out on fixed
orientations at 0.25 A intervals. The total interaction energies, computed from the
difference between potentials at 11.0 A separation and the contact minima, are
presented in Table 3. As observed in the explicit solvent MD results, bidentate
hydrogen bonds with coplanar arginine tend to produce salt bridges about twice as

strong as the monodentate collinear approach. On average, QM found 1.5 kcal/mol
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stronger interactions than MD with a fixed charge force field and explicit solvent.
The largest differences occur for configurations with a -2 charged receptor. The
mean difference in free energy between QM and MD for -2 charged receptors is -3.1
kcal/mol, while the same figure for -1 charged receptors is -0.9 kcal/mol. It is of
course reasonable that the larger charge on the -2 anions would induce larger
polarization effects.

Since the quantum mechanical and PB calculations both employ an implicit
solvent model], it is informative to compare trends between these methods as well.
The average difference between QM and PB is -1.4 kcal/mol, similar to the
difference observed when comparing to MD. As expected, the QM calculations are
substantially more sensitive to polarization effects than PB. The mean free energy
difference between QM and PB for -2 charged receptors is -3.0 kcal/mol, while for -1
charged receptors it is 1.0 kcal/mol.

Overall, the quantum mechanical calculations show a significant role for
polarization in hydrogen bond stability, and suggest that the explicit solvent
molecular dynamics simulations, using a fixed charge force field, might
systematically underestimate the strengths of hydrogen bonds involving the
phosphate group with a -2 charge, relative to -1 phosphate or carboxylate groups.
Generally, the quantum mechanical calculations support the conclusions from the
explicit solvent molecular dynamics. One key limitation of the quantum calculations,
however, is that solvent is treated as a dielectric continuum, as in the implicit
solvent results. Quantum mechanical simulations are possible with explicit solvent,

but extensive sampling of the water is required to obtain reasonable free energies of

29



solvation, making this approach computationally extremely intensive. A more
tractable way to assess electronic polarizability effects in explicit solvent may be to
perform molecular dynamics using the new generation of polarizable force fields88

with polarizable explicit water®°.

Table 2.3: Hydrogen bonding free energies computed from SCRF quantum mechanics
Free energies are shown in kcal/mol.

Lys Collinear Arg Collinear Lys Coplanar Arg Coplanar 2:11;3;:?
Glu -4.5 -3.7 -4.3 -10.2 -2.1
pSer(-1) -4.4 -4.1 -2.5 -8.1 -0.8
pSer(-2) -8.6 -6.8 -8.8 -13.6 -2.6
pAsp(-1) -3.8 -3.5 -2.4 -8.2 -0.8
pAsp(-2) -7.8 -6.4 -8.5 -12.6 -2.7
Conclusions

Calculating hydrogen bond free energies using multiple levels of theory has
provided an internally consistent survey of hydrogen bond strengths for common
hydrogen bonding partners, charge states, and geometries involving phosphorylated
amino acid side-chains. Additionally, the results suggest relative merits and
shortcomings of each level of theory for this application. The chapter concludes by

returning to the issues raised in the introduction:

(1) The conditions under which Arg or Lys make stronger hydrogen bonds with a
phosphorylated side-chain. Lys forms as strong or slightly stronger hydrogen
bonds than Arg with most of the acceptors studied in the collinear approach,

probably because the ¢-amino group of lysine has a denser positive charge field
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than the arginine guanidinium moiety. However, the results are unambiguous
that the bidentate interactions available to guanidinium (Arg) with phosphate
provide much stronger interactions than can be formed between ammonium

ions (Lys) and phosphate in either a monodentate or bidentate geometry.

(2) The effect of phosphate protonation state on hydrogen bond strength. Phosphate
protonation (i.e., to the -1 charge state) produces a small but significant
destabilizing effect with Arg and Lys donors (~1 kcal/mol for pSer), particularly
when the acceptor is pAsp (up to 2.5 kcal/mol). In contrast, the interactions with
the amide NH group were mildly stabilized by acceptor protonation (~0.6
kcal/mol); this is consistent with previous work of Wong et al.>8. Altogether,
however, the hydrogen bond strengths of the phosphate groups in the -2 and -1
charge states are strikingly similar. This is remarkable because the hydrogen
bond strength results largely from near-cancellation of two very large quantities:
the strong Coulombic attraction between the ions, and the dielectric screening
(and first-shell solvation effects) exerted by the water. Changing the charge state
of the phosphate ion perturbs both of these quantities significantly, but
apparently the changes are such that the overall strengths of the hydrogen

bonds are not greatly affected.

(3) The energetic consequences of substituting a carboxylate for a phosphate. All of
the pSer-? orientations with charged residue donors form stronger salt bridges

than these charged residue donors do with glutamate suggesting that Asp/Glu
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substitution might not mimic phosphorylation. In contrast, the strengths of the
hydrogen bonds of the phosphate groups in the -1 charge state are generally
closer to the corresponding hydrogen bonds of the carboxylate group, especially
for pAsp-L. Table 4 lists hydrogens bonds with phosphate acceptors that are at
least 0.5 kcal/mol as strong when the acceptor is a carboxylate. Of course, in the
protein microenvironment the local electrostatic field, steric restrictions,
exposure to various solvent and ion concentrations, departure from ideal
orientations, and other factors will significantly impact the hydrogen bond
strengths computed here. Nevertheless, these calculations provide a quantitative
framework for beginning to assess when substitution with Glu or Asp might
mimic phosphorylation, at least when a protein structure is available, and

suggest that the protonation state of the phosphate may be a critical parameter.

Table 2.4: Change in salt bridge free energy when a carboxylate is substituted for a
phosphate

Charged—charged ion pairs with carboxylate acceptor substitutions worth at least 0.5 kcal/mol as
with a phosphate acceptor are shown.

Ion Pair Orientation Predicted AAG with Glu
acceptor (kcal/mol)

pAsp(-1)-Lys Collinear 0.1

pAsp(-1)-Lys Coplanar 0.2

pAsp(-1)-Arg Collinear 05

pAsp(-1)-Arg Coplanar 22

pAsp(-2)-Arg Coplanar 1.2

pSer(-1)-Arg Collinear 0.3
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Chapter 3

Approaches to modeling backbone
flexibility in protein design

History of backbone flexibility in protein design

This chapter now turns from ‘scoring’ issues regarding the favorability of side-chain
interactions to the ‘sampling’ problem of modeling backbone conformations in the
context of protein design. Early approaches to incorporate backbone flexibility into
design relied on well-characterized parameterizations of secondary structural
elements!011, These methods produced a striking success - the first experimentally
verified designed novel protein topology, an a-helical tetramer by Harbury and co-
workers!! - but cannot easily be applied to protein structures lacking defined
parametrical descriptions. Desjarlais and Handel'? generalized the task by
incorporating random phi, psi, and omega torsion moves into a flexible backbone
design protocol. Their work showed the potential for flexible backbone methods to
model conformational adjustments in response to mutations that significantly alter
amino acid side-chain size, as measured by agreement to experimentally
determined T4 lysozyme variant stabilities. In general, however, modeling backbone

flexibility showed poorer correlation to the entire set of mutations than fixed
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backbone calculations, consistent with observations from protein structure
prediction that refinement and minimization techniques frequently move models
further away from the target structure®0. The authors noted that flexible backbone
simulations improved agreement with experimental data only after applying a
restraining potential based on wild-type structural features, and suggested that
maintaining local structural motifs may be a key to successful designs.

Recognizing that preserving local features would provide a dramatic
advantage in conformational sampling, Baker and colleagues suggested that short
structural fragments encoded sufficient physical properties such that their careful
assembly could significantly improve related efforts in ab initio protein tertiary
structure prediction. Their ‘fragment insertion’ method, wherein stretches of
successive backbone torsions are set to values from other crystal structure
fragments with similar sequence and secondary structure, was automated in the
program Rosetta®! and used in early Critical Assessment of Structure Prediction
(CASP) experiments with some success’.. However, while global backbone
remodeling by fragment insertion could reproduce course-grained tertiary features,
higher-resolution structure prediction and sequence design required compensatory
torsion adjustments to residues adjacent or distal to the insertion site to help
localize backbone moves®3. Such fragment insertion techniques with compensating
torsion moves enabled the seminal design of a globular protein fold not found in
naturally occurring proteins!3. This engineering success thus highlights how

advances in structure prediction® contribute to efforts in flexible backbone protein
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design, and vice versa, as protein design and structure prediction can be seen as

inverse problems®>.

Recent approaches to backbone flexibility in protein design

Attempts to insert fragments into polypeptide chains are frequently rejected - even
after compensation - because the altered torsions can lead to significant non-local
structural perturbations. To address this problem, Wang and colleagues®® aimed to
localize backbone changes by following fragment insertions with a numerical
peptide closure technique termed cyclic coordinate descent (CCD)?’. This method
optimizes successive backbones torsions until the break in the peptide chain
resulting from the fragment insertion falls below a set threshold. Hu and
colleagues®® iterated sequence design with structure prediction by this method and
designed three tenascin loop sequences that were experimentally verified to form
stable folded protein structures; one predicted loop conformation matched the
determined crystal structure to sub-angstrom accuracy. Murphy and co-workers®?
combined fragment insertion with CCD closure together with active site side-chain
constraints to redesign a loop in human guanine deaminase with non-native length
that induced a 2.5 x 10°-fold substrate specificity switch from guanine to ammelide.
An X-ray crystallographic structure of the redesigned loop was within 1 A Co. rmsd
(root mean squared deviation) of the computational design.

The methods of Kuhlman, Hu, Murphy and colleagues highlight an
unresolved issue in flexible backbone protein design: when iterating sequence

design and structure prediction, it is often unclear how many iterations of each
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stage are optimal. One solution is to employ methods that simultaneously optimize
backbone conformations and sequences. Fung and colleagues®® developed an
integer linear programming model to calculate optimal sequences for a set of
backbone templates extracted from sources such as molecular dynamics
trajectories. The sequence selection model includes an energy term accounting for
atomic distance statistics observed in the templates. The best scoring sequences are
ranked by specificity to the target fold by generating structural ensembles of the
designed sequences using a constrained simulated annealing protocol, and
comparing them to an ensemble produced by the same method but applied to the
native sequence. The authors employed this framework to predict sequences for
human (-defensin 2 and showed that the dominant clusters of top scoring designs
from different flavors of their methodology comprised a subset of the sequence
variation observed in some homologs of that protein.

Georgiev and Donald!%! noted that the approximate force field and reduced
side-chain representations of Fung and co-workers may result in sequences with
high energies. Instead, they introduced a flexible backbone design method with all-
atom side-chain detail based on dead-end elimination (DEE)192, a search method for
finding the global minimum energy sequence and conformation. Georgiev and
Donald extended existing fixed-backbone DEE to consider backbone flexibility by
varying torsion angles continuously over a range that confined residues to a
predefined volume. The authors proved that, within this range, the DEE method
exclusively prunes conformations that are not part of the global energy minimum.

Applied to the 1 domain of protein G, their method found sequence mutations with
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lower predicted energies than fixed backbone DEE without side-chain energy
minimization, and another version of their method3 that performs fixed backbone
DEE with side-chain minimization.

In the work by Georgiev and co-workers, the implementation of backbone
flexibility perturbs all residues N-terminal to an adjusted phi torsion, or C-terminal
to an adjusted psi torsion. Thus, non-local effects propagate through the backbone,
as described earlier for fragment insertion-based methods. In contrast, purely local
backbone moves may have important advantages for sampling efficiency.
Inspiration for such local perturbations came from a naturally occurring backbone
move characterized by Davis and colleagues!'®* when inspecting high-resolution
crystal structures. This so-called ‘backrub’ motion applies to tripeptide segments,
where the atoms between the first and third Ca atoms of the segment rotate about
the axis connecting those Ca atoms. Additionally, the atoms between the first and
second Ca atoms, and those between the second and third Co atoms, rotate about
their respective axes to relieve bond angle strain induced by the primary rotation.
Davis and co-workers showed that this move enabled side-chain fitting into
alternate electron densities observed in ultra-high-resolution crystal structures.
This result suggests that the local backrub motion may describe biologically
relevant correlated movements of side-chains and the corresponding backbone.
Georgiev and colleagues> integrated an automated backrub mover into a DEE
protocol for flexible backbone protein design, where backrub moves provide a
small, discrete backbone ensemble for residues under design. They found that DEE

with backrub applied to non-adjacent tripeptides produced more sequences and
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better energies than fixed backbone DEE, although the earlier non-local flexible
backbone method found a larger number of sequences with even lower energies.

In parallel to these efforts, Smith and Kortemme!% implemented a backrub-
like move in the Rosetta framework. The ‘generalized backrub’ applies to peptide
segments (typically 2-12 residues in length) and rotates the atoms internal to the
first and last Co atoms about the virtual axis between those Co atoms. Since the
primary backbone rotation comes at the expense of N-Ca-C bond angle strain at the
hinge residues, Smith and Kortemme introduced into Rosetta a molecular
mechanics-based bond angle potential. Additionally, they developed quadratic
equations closely approximating the molecular mechanical relationship between
torsions and bond angles involving hinge Cf and Ho atoms to optimize placement of
those atoms after the backrub rotation. After demonstrating that the move
successfully models many of the backrub-enabled side-chain fluctuations observed
by Davis and colleagues!?4, the authors predicted backbone and side-chain
perturbations observed in a large dataset of point mutations (taken from¢). In the
majority of well-packed cases, the lowest energy backrub structure moved the
mutated side-chain closer to the mutant crystallographic conformation than the

fixed backbone prediction.

Applications recently enabled by flexible backbone methods

Given the significant advances in sampling and evaluating backbone conformations
- and their successful integration into computational design frameworks - I now

turn to biological applications enabled by recent developments in flexible backbone
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design. As noted in the introduction, flexible backbone methods are needed to
accurately model the structural adjustments observed in proteins in response to
sequence mutations. Encouragingly, recently developed tools to predict changes in
protein energetics arising from point mutations have shown improved agreement to
experimentally observed changes in free energies by accounting for backbone
adjustments to varying degrees. Yin and co-workers107 showed good correlation to
experimentally determined changes in free energy of folding (R = 0.75) by relaxing
backbone torsions through conjugate gradient descent while modeling mutations.
Benedix and colleagues 198 predicted changes in free energies of folding and binding
by designing mutants against structural ensembles produced by a method that
generates random structural variations satisfying experimentally observed
interatomic distance constraints10. This approach yielded a similar correlation to
experimentally observed free energies of folding as Yin and co-workers while
reducing the standard deviation, although comparable results were obtained using a
fixed backbone method1°.

Not all sequence mutations significantly affect protein structure and function.
Instead, many protein folds ‘tolerate’ a considerable number of mutations!11112,
Proteins exploit this robustness!!3 to accumulate sequence changes allowing them
to vary and expand their functional repertoirell* while preserving sufficient
stability. Computational methods that reproduce the tolerated sequences of protein
folds might therefore improve not only our understanding of the relationship
between sequence, structure, and function!!> but also our ability to engineer

proteins with modified and new properties. For example, predicting a number of
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low-energy sequences tolerated by a protein fold can suggest sequence mutations to
increase selectivity for a particular binding partner. To this end, Fu and
colleagues1® designed helical peptides against an ensemble of backbones -
generated by normal mode analysis (NMA) of helices in the PDB - targeting the
protein Bcl-xL. Several designed peptides showed selective binding to Bcl-xL in pull-
down assays while binding more weakly to other Bcl family members. Notably,
sequences designed against conformations arising from NMA applied to the native
binding peptide showed greater affinity for Bcl-xL than sequences generated on
conformations from NMA on an idealized helix, highlighting challenges in de novo
ligand design where no native template is available.

While generating large sets of designed sequences by flexible backbone
methods can improve the utility of computational design, the difficulty of validating
the broadened range of predictions increases commensurately. One way to assess
sequences computationally designed for a protein fold is to compare the diversity
obtained to the natural family of protein homologs. If computationally generated
sequence libraries reasonably reproduce the tolerated sequence profiles of protein
folds, statistics on residue frequencies appearing in computational simulations
could be used to significantly reduce the sequence space that must be sampled in
screening experiments!!’. Larson and colleagues!!® applied flexible backbone
methods to explore the correlation of variability in computationally designed
sequence libraries to natural protein families. The authors found that designing on
an ensemble of backbones - generated by random phi/psi moves as described by

Desjarlais and Handel!? - increased the diversity of predicted sequences compared
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to a fixed backbone method. PSI-BLAST searches showed similarities between
designed sequences and natural family members. Subsequently, design methods
were also applied to aid homology modeling. Here, designed sequences from fixed!1?
and flexible!?? backbone predictions generated multiple sequence alignments to
detect remote homologs, thereby providing initial template structures as starting
points for comparative modeling. Following the work of Larson and co-workers,
Saunders and Baker!?! used the Rosetta iterative flexible backbone design method!3
to explore the agreement of sequences generated by their fragment-based method
to natural protein families. They concluded that the Rosetta protocol better
recapitulated naturally occurring sequence variation than a fixed backbone
approach, as well as a random phi/psi perturbation protocol. None of the methods,
however, produced sequences very similar to the natural families, and the authors
speculated that the lack of functional and evolutionary constraints in the
simulations makes this problem particularly challenging.

Friedland and colleagues'?? extended the analysis of sequence and structure
variation to solution-state dynamics. They showed that a backrub model
parameterized to produce a structural ensemble of ubiquitin with good agreement
to residual dipolar coupling experiments also produced sequence variation
capturing a superset of the sequence diversity observed in naturally occurring
ubquitin homologs. Ding and Dokholyan!?3 explored the relationship between
sequence identity and conformational plasticity by examining the similarity of
sequences designed on structural ensembles generated by discrete molecular

dynamics simulations. The authors found some correlation between the
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computationally designed sequences and 3 natural families, with correlation
coefficients between computational and experimental sequence entropies ranging
from 0.15 to 0.46, which increased to 0.23 to 0.62 when functional residues were
excluded.

The mild correlations described above underscore the challenge of validating
computationally designed sequences by comparison to naturally occurring protein
families that may have been subject to a range of known and unknown functional
constraints during evolution. Experimental selection techniques can produce large-
scale libraries of protein sequences subject to some prescribed functional
constraints, such as catalytic turnover and substrate binding. Humphris and
Kortemmel?4 compared sequences designed against an ensemble of backbones
produced by the backrub method described abovel® to sequences obtained from
comprehensive phage display experiments!25> scanning the human growth hormone
(hGH) interface against its receptor (hGHR). Notably, the experimentally observed
hGH sequences must bind hGHR, in addition to folding into stable structures. The
computational method explicitly models these constraints by designing the hGH
interface in complex with hGHR. The authors found that the method was able to
capture 92% of the experimentally observed sequence diversity at the 35 sequence
positions in the hGH interface. Moreover, at several positions in the interface, the
flexible backbone method predicted experimentally observed residues that were not
found with a fixed backbone model. A computationally designed library of 6 x 10°

sequences generated by this method (out of a possible 6 x 1044 sequences for the
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entire 35 position interface, excluding cysteines) covered on average 50% of the

experimentally observed sequence space at each position.

A role for robotics

While there are some differences in the backrub-inspired approaches described
above - Georgiev and co-workers’ technique works on non-overlapping tripeptides
with DEE, whereas the generalized backrub can rotate larger peptide segments in a
Monte Carlo protocol - in general backrub strategies are most appropriate when the
desired structural perturbations are relatively small. However, functional regions in
proteins can display considerably greater flexibility through variations in backbone
torsion angles. For example, alternative structures of interface loops in protein
switches suggest that effective modeling and design methods must capture
conformational changes on the order of several angstroms. Given that backbone
torsions are substantially more variable than bond angles, conformational sampling
might be improved by local techniques operating on all backbone torsions in a
peptide segment while keeping bond lengths and angles at or near ideal values.
Commonly referred to as ‘loop closure’, Go and Scheragal?¢ first applied
these concepts to biomolecules with a numerical formulation for determining
allowable values for 6 torsions of peptide chains - specifically, tripeptides and cyclic
peptides. Subsequent closure techniques 127-131 find conformations for longer chains
using related ideas from inverse kinematics, a subfield of robotics. Finding
accessible conformations of linked objects subject to constraints has been well-

studied in inverse kinematics, such as determining the possible rotations of the
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internal joints of a robotic arm that satisfy fixed positions for the shoulder and hand
(Figure 3.1a). The ‘kinematic closure’ method of Coutsias and colleagues!?”
analytically determines conformations for peptide chains of any length by varying 6
torsions and keeping the remaining torsions, bond lengths, and bond angles fixed.
This method was extended by techniques based on polynomial resultants!3? to
enable sampling of interior torsions, bond angles, and bond lengths while solving
the complete ensemble of values for the 6 closure torsions (Figure 3.1b). The
remaining chapters of this dissertation will describe the adoption of kinematic
closure to modeling regions of proteins lacking secondary structure, and to

designing proteins with new functions.
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Figure 3.1: A robotics inspired method for modeling protein conformations

(a) Kinematic closure (KIC) on a robotic arm with seven rotatable joints (analogous to a seven-
residue peptide) places the robotic hand at the same position across five conformations. The
lengths of the linkages between the joints remain constant (analogous to bond lengths). The
angles formed by two successive linkages are also maintained (analogous to bond angles). The
conformations arise by rotating the linkages around the joints (analogous to backbone torsions).
(b) KIC on a peptide chain (shown as transparent) following the same constraints as in a. Three
Ca atoms are designated as pivots (green spheres). The torsions of the four non-pivot Ca atoms
(black arrows) are set to values drawn probabilistically from the Ramachandran map for each
residue type. KIC then finds values for the pivot torsions (green arrows) that close the chain while
maintaining prescribed values for the bond lengths and bond angles. Three solutions (red, brown,
and yellow) have pivot torsions in disallowed Ramachandran regions, or have steric overlap. One
solution (opaque with spheres) satisfies these physical criteria. All solutions are found in a single
KIC calculation.
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Chapter 4

A robotics-inspired approach to modeling
flexible regions of proteins and protein
interfaces

Introduction

Proteins exploit the conformational variability of regionslacking secondary
structure termed ‘loops’ to carry out diverse biological tasks including molecular
recognition and signal transduction. New algorithms to engineer these functions by
combining loop building and sequence design therefore have enormous practical
applications, but require high-resolution loop reconstruction: the modeling of
protein loop conformations given amino acid sequences. Loop reconstruction in
protein design may be simplified conceptually by restricting changes to the
functional loop regions. However, despite significant progress in loop
prediction133.134, design applications are limited by the difficulty to model purely
local conformational moves and by the need for advances in sampling and
evaluating loop conformations.

Here [ address these challenges with a robotics-inspired local loop

reconstruction method for peptide chains, called kinematic closure (KIC).
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Calculating the accessible conformations of objects subject to constraints, such as
determining the possible positions of the interior joints of a robot arm given fixed
positions for the shoulder and fingertips, has been well-studied in inverse
kinematics, a subfield of robotics. Building on the first126 and subsequent127-131,135-137
applications of kinematics to proteins, the KIC method presented here provides the
key advantages of analytically determining all mechanically accessible
conformations for 6 torsions of a peptide chain of any length, while simultaneously
sampling the remaining torsions and N-Ca-C bond angles using polynomial
resultants!38 (Figure 4.1a, Figure 4.4).

To enable a range of applications, I coupled KIC to the Rosetta method for
protein structure modeling®. The loop reconstruction protocol iterates KIC
calculations as Monte Carlo moves first with loop backbone minimization in a low-
resolution stage, in which side-chains are represented as centroids, and then in a
high-resolution all-atom stage with minimization of the loop backbone and all side-
chains in the loop environment (Figure 4.3). At the beginning of each KIC simulation,
[ discard all native loop bond lengths, bond angles, and torsions. In addition, I
perform reconstructions without knowledge of native side-chain conformations in
both the loop and the protein scaffold (see ‘Methods’), which makes prediction
substantially more challenging, but broadens the range of applications to designing

new loop conformations that may interact differently with neighboring side-chains.
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Figure 4.1: Loop reconstruction with KIC

(a) In the KIC move, 3 Ca atoms of an N-residue chain are designated as pivots (green spheres);
the remaining N — 3 are non-pivot Ca atoms (cyan spheres; left). In a 12-residue loop, 24 torsions
are modeled. Non-pivot torsions are sampled from a residue type-specific Ramachandran map,
opening the chain (middle). KIC then finds all values for the pivot torsions that close the loop, if
any exist, keeping the endpoints fixed (right). The previous state is shown in outline. (b)
Performance of the Rosetta KIC protocol and standard protocols on a 12-residue loop (PDB
1stp). Only KIC densely sampled regions <1.0 A rmsd from the crystallographic loop. Asterisks
mark the lowest-scoring reconstructions from the two methods. The Rosetta all-atom score
includes the enthalpy plus the solvation contribution to the entropy but not the configurational
entropy. (c) The lowest scoring reconstructions from b are shown. KIC improved reconstruction
accuracy to 0.6 A from 2.6 A using the standard protocol.

Results

[ found that KIC substantially improves model accuracy over the standard loop
building method in Rosetta, which combines insertion of torsion segments from
homologous proteins and a numerical closure techniquel3¢. I generated 1,000
models by KIC, and compared the performance to the standard Rosetta method with

the same number of Monte Carlo steps on 25 12-residue protein loops (dataset
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1139). For each protein, [ computed the root mean squared deviation (rmsd) of the
backbone atoms of the best scoring loop model to the crystallographic loop, after
superimposing the non-loop regions of the model onto the crystal structure. The KIC
protocol frequently sampled regions of conformational space that were <1.0 A from
the crystallographic loop, which were not sampled by the standard protocol (Figure
4.1b). In the majority of cases (15/25), these conformations very close to the
crystallographic loop could be identified as the best scoring models (Figure 4.1b,c).
Over the entire 25-loop set, KIC improved the median accuracy to 0.8 A rmsd from
2.0 A rmsd when I applied the standard method (Figure 4.2b, Table 4.1). Since both
methods use the same scoring function, these results suggest that KIC increases
accuracy by improved conformational sampling (although sampling and scoring
errors cannot be considered entirely independently as scoring guides the simulation
trajectories; see ‘Discussion’ for further analysis of method performance and error
sources).

To compare KIC loop reconstruction directly to the state-of-the-art molecular
mechanics method!33, | applied the Rosetta KIC and standard protocols to the same
20 12-residue starting structures with perturbed loops and side-chain
environments used to assess the molecular mechanics method (dataset 2133; Figure
4.2a). The Rosetta KIC protocol improved median accuracy to 0.9 A from 1.2 A using
the molecular mechanics method and from 2.0 A using the standard Rosetta method

(Figure 4.2b, Table 4.2).
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Figure 4.2: Performance of the KIC loop reconstruction protocol

(a) Representative set of 12-residue loop reconstructions (blue). PDB identifiers and rmsd to the
crystallographic loop (cyan) are shown. (b) Box-plot comparison of the standard Rosetta and KIC
Rosetta protocols on dataset 1 (left), both Rosetta protocols with the molecular mechanics
method on dataset 2 (middle), and the KIC Rosetta protocol on dataset 3 (right). Boxes span the
interquartile range (IQR, 25th—75th percentiles), black lines represent the median, whiskers
extend to furthest values within 0.8 times the IQR, and open circles are outliers. (¢) KIC
reconstruction of conformational changes in the Rac switch | loop when bound to ExoS toxin (blue
reconstruction on cyan crystal structure, blue partner; PDB 1he1) or Rho guanine dissociation
inhibitor (orange reconstruction on purple crystal structure, orange partner; PDB 1hh4).

Functional loops in signaling proteins in complex with their partners exhibit
conformational plasticity against a relatively structured core. To assess the ability of
KIC to model such regions, I applied the method to interface loops from 4 proteins

crystallized with 18 different partners (dataset 3). KIC reconstructed the loops to
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0.8 A median rmsd (Figure 4.2b). Notably, the KIC protocol produced high-accuracy
reconstructions of the same switch protein loop adopting different conformations
when bound to different partners (Figure 4.2c, Table 4.3). This result highlights the
potential of KIC for modeling functional conformational changes. Sub-angstrom loop
reconstructions by the local robotics-inspired sampling protocol described here
could now be coupled with the Rosetta design method?> to model and engineer
protein loops precisely matching a particular binding partner, creating highly

selective protein interfaces. Chapter 5 describes such an approach.

Methods

Datasets

[ used two independent benchmark datasets for loops in monomeric proteins:
dataset 1, a set of 40 12-residue loops originally compiled by Fiser et al.14%, and later
studied by Rohl et al.14! and Wang et al.®, to facilitate comparison to previous work
using the Rosetta loop modeling methodology, and dataset 2, a set of 20 12-residue
loops compiled by Zhu et al.’#? to allow direct comparison to studies by Jacobson et
al. 143, Zhu et al.'%?, and Sellers et al.133 The latter dataset was selected from high
quality structures (resolution < 2.04, R < 0.25) for loops with diverse sequences
(<40% sequence identity), low temperature factors (<35), lack of contacts to
heteroatom groups (>4A for neutral ligands, >6.5A for metal ions), lack of secondary
structure within the loop, lack of more than 4 loop residues adjacent to either loop
endpoint, and pH 6.5 - 7.5. The monomer loop datasets are shown in Table 4.1 and

Table 4.2, respectively. Dataset 1 contained 15 loops with neutral ligands or charged
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ions within contact distance of the loop, using the criteria specified by dataset 2, so
while these loops are included in Table 4.1 they are separated from the ‘filtered’
dataset used for most subsequent analyses. Dataset 2 was simulated in two ways,
first by the ‘de novo’ method used on the Rosetta dataset, where KIC is used to place
the loop into a random starting conformation, and second, by the ‘perturbed’
method, where the perturbed loops used in the simulations by Sellers et al.133 were
obtained from that group’s website!44 and served as starting conformations for the
Rosetta simulations. The perturbed approach was used to enable direct comparison
between the Rosetta and molecular mechanics methods, since the degree of initial
backbone perturbation will influence the degree to which the side-chain
environment is perturbed. The ‘de novo’ and ‘perturbed’ columns of Table 4.2 refer
to this distinction.

A third independent dataset (dataset 3) was compiled to assess loop
reconstruction of the same protein crystallized in complex with different partners
(Table 4.3). This dataset contains 4 proteins (Rac, Ras, Cdc42, ubiquitin) crystallized
with 18 different partners where the interface contains a loop that changes
conformation across partners. For each of the four proteins, the loop regions to be
reconstructed were defined by consecutive residues that contained any heavy atoms
that were within 7A of the binding partner in any crystal structure, and that lacked
secondary structure in one or more of the crystal structures of that protein (7
residues minimum). Thus, the loop definitions were the same across complexes of

the same protein, facilitating assessment of reconstruction accuracy with different
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partners. Nucleotides and metal co-factors were modeled explicitly, and GDP-

aluminum fluoride was modeled as GTP.

Structure preparation

Structures were prepared by first discarding all native side-chain information
(including side-chain bond lengths, bond angles, and chi angles) and replacing them
with rotameric conformations from the Dunbrack backbone-dependent rotamer
library4> and ideal bond lengths and angles; these rotamers were then
simultaneously optimized by Metropolis Monte Carlo (MC) simulated annealing
(‘repacking’) using Rosetta, as described in reference!3. Each side-chain was then
independently optimized by replacing it with the lowest energy conformation from
the Dunbrack library and iterating through all positions until convergence was
reached (‘rotamer trials’). These procedures were followed by quasi-Newton all-
atom energy minimization using the Davidon-Fletcher-Powell method4¢ (DFPmin)
on the loop backbone and side-chains within 10A of the loop. The repacked, energy
minimized structures served as input to the loop modeling protocol, which is

depicted in Figure 4.3 and described below.

Loop modeling protocol

Loop endpoints for protein monomers were defined as in references?%133 and shown
in Table 4.1 and Table 4.2, and loop endpoints for the complexes set were defined as
above (see ‘Datasets’) and shown in Table 4.3. The simulation proceeds through two

stages of MC simulated annealing, as shown in Figure 4.3. In the first, low-resolution

53



stage, all side-chains are represented as centroids for coarse-grained
conformational sampling. An initial KIC move is performed on the entire loop to
place it into a non-native starting conformation with randomly chosen phi and psi
torsion angles at non-pivot residues and phi/psi torsion angles at pivot residues
determined by the kinematic closure algorithm (see ‘Kinematic closure’, below).
During this step, native phi and psi torsions in the loop region are discarded, and
bond lengths, bond angles, and omega torsions are set to ideal values. The 720
simulated annealing MC steps consist of applying KIC to a random subsegment of
the loop region of length 3 to N (for an N residue loop). KIC moves are followed by
line minimization of backbone torsions. The new conformation is scored and
accepted or rejected by the Metropolis criterion. In the centroid stage the
temperature decays exponentially from 2.0 kT to 1.0 kT, where k is Boltzmann’s
constant. The lowest energy conformation proceeds to the high-resolution all-atom
stage. The repacked, minimized side-chains from the input conformation (see
‘Structure preparation’) are restored and those in the loop and on the surrounding
scaffold with any heavy atoms within 10 A of the new loop conformation are then
repacked and subject to rotamer trials. If the loop is part of an interface (i.e., on
dataset 3), side-chains from the binding partner within 10 A of the loop are
optimized as well. Relaxing the neighboring side-chains around a non-native loop
conformation has the effect of starting the full-atom stage in a perturbed side-chain
environment. This step makes loop reconstruction considerably more difficult, since
neighboring side-chain conformations must be sampled and evaluated in addition to

the loop side-chains and backbone conformations. The utility increases, however,
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because in many applications (e.g., homology modeling, interface redesign) it cannot
be assumed that the neighboring side-chain conformations are known a priori. 1
compared the standard and KIC Rosetta results to the method presented by Sellers
et al.133 that also reconstructs loops in a perturbed side-chain environment. I note
that applications to comparative modeling may be even more challenging, as the
loop endpoints and surrounding backbones can also be substantially perturbed,
which I do not consider here. This does not preclude the application of KIC in high-
resolution refinement and comparative modeling, as shown by a successful example
of using the Rosetta KIC method in the most recent CASP experiment!47.

The 720 MC steps of the high-resolution stage consist of kinematic closure on
random subsegments of the loop region, with one exponential simulated annealing
cycle from 1.5 kT to 0.5 kT. In this high-resolution stage, KIC is followed by side-
chain repacking (every 20 steps) and rotamer trials within 10 A of the new loop
conformation, and DFPmin on the loop backbone and side-chains within 10 A of the
new loop conformation. The lowest energy conformation explored during the high-
resolution stage is recorded. The protocol is then iterated, and may be run over
multiple processors in parallel. Reported loop reconstructions represent the lowest
energy structure out of 1000 separate simulations (Figure 4.3), costing an average
of ~320 CPU-hours per protein on a single 2.2 GHz Opteron processor. Each
simulation trajectory is independent from the others, so they may be parallelized to
dramatically speed up the protocol (up to one CPU-core per trajectory requiring less
than 20 minutes per protein on average). Datasets 1 and 2 were simulated with

Rosetta revision 24219, and dataset 3 was simulated with revision 27114.
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Command line loop modeling options for datasets 1 and 2 were
-loops::kinematic -loops::nonpivot_torsion_sampling -in::file::fullatom -

out::file::fullatom -exlaro -exl -ex2.

For dataset 3, the loop modeling options used were

-loops::remodel perturb_alc -loops::refine refine alc -in::file::extra_res_fa -

in::file::extra_res_cen -in::file::fullatom -out::file::fullatom -loops::strict_loops -

exlaro -exl -ex2.
Descriptions of all command line options used in this dissertation are given in the

Appendix.
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Figure 4.3: The Rosetta KIC loop reconstruction protocol
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Kinematic closure

The atomic coordinates of the backbone atoms (N, Ca, C) of a random loop sub-
segment of length 3 to N (for a loop of N residues) are supplied to the kinematic
solver. The Ca atoms of the first, middle, and last residues are designated as pivots,
and the remaining N-3 Co atoms are designated as non-pivots. Torsions for each
non-pivot Co are sampled according to the Ramachandran probabilities for the
residue type, and N-Ca-C bond angles are set to random values within one-half the
standard deviation (o = 2.48") above and below the mean (110.86") observed in
ultra-high-resolution crystal structures (<1.0 A resolution) in the PDB. This step
effectively opens the loop segment at the pivots, breaking the continuity of the
peptide chain. To close the loop, the kinematic solver finds values of the six pivot
torsions for which the perturbed segments may be rejoined to form a new closed
loop. As discussed in the next section (Polynomial resultants), there may be up to
sixteen sets of such solutions, or none. Solutions are randomly applied to the loop
segment until two filters are passed. The first filter computes the Rosetta
Ramachandran score, which is a statistical potential derived from a smoothed,
highly flattened version of the residue- and secondary structure-specific frequency
with which a given (phi/psi) pair occurs in a set of high-resolution crystal
structures??, and accepts or rejects the conformation by the Metropolis criterion.
The second filter is a backbone steric screen that ensures the distance between loop
backbone atoms (N, Ca, C, O, and Cf if not glycine) and all other backbone atoms is

greater than the sum of the Lennard-Jones radii of the atoms times an overlap factor
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(set to 0.7). The accepted solution is returned to the protocol for minimization and
scoring. If no solution passes the filters, new values for the non-pivot torsions and
N-Ca-C bond angles are drawn and closure is attempted again. Closure calculations
execute 2,000 times per second on a 1.8 GHz Opteron processor.

Kinematic techniques were first applied to proteins!?¢ by calculating the
accessible torsion angles of tripeptides with fixed bond angles, bond lengths, and
endpoints. Other kinematics-inspired approaches have since been used in protein
modeling®7.127-131,135137  Applications have included calculating conformations of
cyclic peptides!?6, exploring loop motions in one protein test casel?”.128, and
correlating loop models with spectroscopic observables from nuclear magnetic
resonance experiments like order parameters and residual dipolar couplings in two
proteins!3’. These methods have not been tested on large datasets on the problem of
loop reconstruction, and each of these methods has lacked an analytical
solution?7:126,129.137 'hag been applicable only to tripeptides or required consecutive

pivot residues26127135 or has not been coupled to a full-atom energy

function?7.126,128-131,135

Polynomial resultants

The details of the geometric steps taken by the algorithm are given in referencel32.
The construction proceeds by identifying 3 atoms before the N-terminus of the loop,
and 3 atoms after the C-terminus. These two triads are assumed to have known
positions in space. Together, they constitute the anchoring hinges for the two ends

of the loop. They are denoted A, and 4, (Figure 4.4a). The loop atoms are augmented
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by the hinge atoms. Together they form the extended loop, which on the outset is
considered to be in an extended conformation with all bond lengths and bond angles
set to canonical values and all torsions set to 180.0 degrees. Three nonconsecutive
atoms (not on the hinges), indexed p,,p,,p; with p, +2 =< p, < p, -2 are chosen as
the pivots for loop closure, and the loop is partitioned into four fragments: (1) F;,
including atoms from 4, (the first atom of 4 ) to p;; (2) F, including atoms from p,
to p,; (3) F, including atoms from p, to p;; and (4) F;, including atoms from p; to
h,, (the third atom of &) (Figure 4.4b). Next, the four fragments thus defined are

constructed using prescribed values for all their internal degrees of freedom (bond
lengths, bond angles, and torsions). Arbitrary values can be chosen. At this stage, the
bond angles at the three pivot atoms and the torsions about the bonds adjacent to
pivot atoms (i.e., the ‘pivot bond angles’ and the ‘pivot torsions’) are not defined.
Since the two hinges are anchored to the (known) rest of the molecule and thus

have known absolute positions in space, the fragments F

3.a°

F,, are thus constructed
with known positions in space for all their atoms relative to the hinges (and thus to
the rest of the molecule). Their end atoms ( p;,p; +1,p; +2,p, -2,p, - 1,p,) are now
fixed in space (Figure 4.4c).

The other two fragments, F, and F, are completely determined in their own
body frames (Figure 4.4d), but their placement relative to the molecule is still to be
determined. Each fragment is characterized by certain geometrical quantities that
will enter as parameters in the loop closure equations. Referring to Figure 4.4e

these are: (1) &, the angle formed by atoms (p,+Lp,p,,); (2) 7, the angle
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(PisPissPia —1); (3) d,, the virtual bond length (p,,p,,); and (4) &, the dihedral
angle (p,+Lp,,p,,..P,,1—1). The Rosetta implementation uses virtual segments
composed from only the first and last triads of atoms in each segment, avoiding

unnecessary reconstructions. These virtual segments must be assembled into a

closed triangle (Figure 4.4f), provided the three lengths d,.d,,d, satisfy the triangle
inequalities. If the triangle can be constructed, the three exterior angles o,,a,,;,

are among the parameters defining the loop closure equations below. An additional
requirement for the proper assembly of the loop is that the pivot bond angles

0.,i =1,2,3 must assume their prescribed values. That may be possible to accomplish
by rotating segment F, about the virtual bond joining pivots (pi,pm) by angle 7,
(Figure 4.4g). The additional atoms, p, +2,p,,, —2 that are included in each virtual
segment allow the calculation of the six pivot torsions, once the virtual segments
have been rotated to their correct positions, so that the angle (p,-1,p,,p,+1)=6,.

Note that the loop closure equations are formulated in the body frame of the three
pivot atoms. To convert to the space frame of the rest of the molecule, the fragment
F, is assumed fixed, and the rest of the loop (fragments F,F,) is rotated about
( Dss pl) by the angle —7,. Determining the pivot torsions completes the specification
of all internal degrees of freedom for the missing loop, which can now be

constructed, closing the gap (Figure 4.4h).
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The bond angle constraints lead to the loop closure equations?’. These are a
system of three polynomials that are quadratic in each of the variables:

Lz(u3)ul2 + Ly (uy )u, + Lo(uy) =0,
(Mo + My, + Mo Vui? + (Mol + Myyuy + Mg Ju, + (Mgt + Moty + M) =0,
Nz(u3)u§ + N1(143)Lt2 + No(u3) =0.

The variables are u, = tan(%),i =12,3. The L,,N,,i =0,1,2 are quadratic polynomials

in u;, while the M;,i,j=0,12 are constants. Each polynomial depends on only two of

the u,. Throughout, the notation of Coutsias et al'?’ is followed, and the reader is
referred to that reference for the values of the polynomial coefficients. The code
encodes the atomic coordinates of each virtual segment as a set of triaxial
parameters as in Coutsias et al.’?” These parameters are used to populate a matrix
R(u3) called the Dixon Resultant (DR) that results from eliminating the variables
u,,u, (any two of the variables could have been eliminated in favor of the remaining
one). The necessary and sufficient condition that the above system of three
polynomials in the three variables u,,u,,u; has a common solution is expressed by

the equation!32

[0 A, A A, 0 B, B B 1
A, A, A, 0 B, B B, O u
0O B, B B, 0 C, C G| u
RV (1) = B, B B, 0 C, C, C, O ¢ o
0O 0 0 O O D, D Dl u
O 0 O O Db, D D, O0||luu,
O Db Db D, 0 0 0 O ||4u,
D, DO D, 0 0 0 0 O ||uu,
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where

A;=MyN, - MN,,
B;:=M,N, - MyN,,
C,=M;,N,- M;N,,
D, =L,.

Since its coefficients are quadratic polynomials in u, the DR can be written as a
matrix polynomial
R(u;)=R,u; + Ru, +R,.

The above matrix equation can be recast as a generalized eigenvalue problem

AT A

This eigenproblem can be solved directly using the QZ factorization algorithm. An

attractive feature of this approach is that the remaining variables u,,u, are also
found directly from the solution of this generalized eigenproblem, since they appear
explicitly as particular components (resp. V,,V;) of the corresponding generalized
eigenvector while u, is the generalized eigenvaluel32. Sixteen solutions are always
found, but some or all may be complex. To have geometrical meaning the solutions
must be real, so complex solutions are discarded. The eigenproblem has the
advantage of robustness and conceptual simplicity, but it can be computationally
expensive, as each step of the iterative QZ algorithm scales with the cube of matrix
size. As an alternative, we can get u, from the condition that the determinant of the
DR must vanish. Having found values for u, for which R(u,) becomes singular, we
can determine the desired components of its null-vector V by Cramer’s rule. Since

the coefficients of R are quadratic polynomials in u;, its determinant is a polynomial
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of degree 16 in u;, and by examining the existence of real solutions only, a
substantial speedup can be accomplished. The polynomial conversion has been
carried out optimally by careful regrouping of the terms and employing Lagrange
expansions in complementary minors. By a rearrangement of rows, we have the

equivalent form

D, Db D, 0 0 0 0 0
A, A A, O B, B, B, O
B, B B, 0 C, C, C, O
det(R) 0O 0 0 0 D, D D, O
€ = .
O Db D, D, 0 0 0 O
0O A, A A, O B, B B,
O B, B B, 0 C, C, GC,
O 0 0 0 0 D, D D,

In this form we get a compact expansion in terms of 4 x 4 minors

2
det(R) = _P1235P3567 + P1256P2367 - P1257P2357 - P1356P1367 + P1357 - P1567Pm7
where P, is the determinant of the minor formed by rows 1,..,4 and columns i, j, k

and I. We have

D0 D, D, 0 D, 0 0 0
D, D D,B, B B,
A0 A1 A2 B0 A2 Bo B, B,
P1235P 3567 = DoDz Ao A1 Az Co C1 Cz =
B, B, B, Co B, Co C, Cz
B, B, B,D, D D,
0 0 0 D, 0 D, D D,
B, B B, B B, B D D D, D D, D
DoDz(Co 1 2_C1 0 2+C2 0 1)(A0 1 2_Al 0 2+A2 0 1
D1 Dz Do Dz Do D1 Bl Bz Bo Bz Bo Bl
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D, Db 0 O0|D, D, O
A, A B, B|A A, B B,
PysePssy = =
B, B C, C|B B, C C,
0O 0 D, D|0O 0 D D,
D, D\|C, C| D, D|B, B|\|D, D,)C, C, D D,B B,
A, A|D, D) |B, B,|D, D|\A A, D D, |B B,D D,
D, bb 0 0/b, D, 0 0
A, A B, B,A A, B, B,
Pys1Pssy = =
B, B C, C,B B, C, C,
0O 0 Db, DO O D, D,
D, D\|C, G, |D, D|B, B|\(|Di D,C, C,| |D D,B, B,
A, A|D, D, |B, B,|D, D)\A A,)\D, D, |B, B,D, D,
D, b, 0 O0/b, D, 0 O
A, A, B, B|A, A, B B,
PseBagr = =
B, B, C, C|B, B, C G,
0 0 Db, D|O 0 D D,
D, D,C, C| |D, D, B, B|\(|D, D,C, GC,| |D, D,B B,
A, A)\D, D)\ |B, B,|D, D|\|A, A)|D D, |B, B,|D, D,
D, D, 0 Of
P2 A, A, B, B, D, D,|C, C,| |b, D,|B, B, ’
7B, B, C, G| \|A, A|D, D, |B, B,|D, D,
0 0 D, D,
D, 0 0 O0|\b, D D, 0
B, B, B, D, D D,
A, B, B, B,|A, A A, B,
P1567Plzs7 :=B C. C clB B B C =D2D0C0 C1 Cz Ao Al Az
2 0 2|Po 1 2 0
! D, D, D,|B, B, B,
0 D, D DjJoO 0 0 D,
=P3567P1235'

There are only 9 different 2 x 2 determinants involved in these calculations,

each resulting in a quartic polynomial in u,. The computation of the coefficients of

the characteristic polynomial can be carried out in under 1800 flops. The
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polynomial is solved efficiently by the method of Sturm chains!4® and each solution
results in a set of torsions for the pivot residues that close the loop. The

determination of the variables u,,u, now requires additional calculation. Briefly, the
generalized eigenvectors are null vectors of the DR matrix R. Once u; has been
found for which det(R) vanishes, we may determine specific components of the null
vectors of R(u3) by using Cramer’s rule. Most of the determinant minors involved in

this computation are already known from the calculation of the characteristic

polynomial.

D, b, b, 0 0 0 O Of 1]
A, A, A, 0 B, B B, 0] u
B, B B, 0 C, C, C, O] u
0 0 0 O D, D D, Ofu

=0=

0O Db Db D, 0 0 0 O u
0 A, A A, 0 B, B B,j|luu,
0O B, B B, 0 C, C GC,l|uu,
0 0 0 0 0 D, D D,|uu,
D D, 0 0 0 0 Ofu] [D]
B, B, 0 C, C, C, O u | |B,
0O 0 0 D, Db D, O u 0
D, bb D, 0 0 O Of u, |=|0O
A, A, A, 0 B, B B,|uu,| |0
B, B B, 0 C, C C,|uu,| |0
0O 0 0 0 D, D D,j|uu,| |0]

where we have omitted one of the equations since it is dependent on the others and
moved the first column to the RHS of the resulting system of 7 equations in the 7
unknowns. We only need to solve for the first and fourth components; in a generic

situation one would apply LU factorization. However here Cramer’s rule can be used
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effectively, since most of the necessary determinantal computations have already

been done for finding the characteristic polynomial. We have
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As the P, and the various 2x2 determinants in these expressions have already

been computed in the calculation of the characteristic polynomial, the computation

of the d,,i =1,2,3 can be accomplished with an additional cost of under 400 flops.
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Figure 4.4: Geometric steps taken by the kinematic closure solver

(a) Hinge N-Ca-C triads hy, h, are defined flanking an arbitrary peptide chain. (b) The chain is
partitioned into four fragments Fy, F», F3 5 and F3, defined by the three pivot Ca atoms ps, p» and
ps. (c) The hinges are fixed in space, and the fragments F;, and F;, are constructed from the
hinges using prescribed geometry. (d) The other two fragments, F; and F,, are determined in their
body frame with prescribed internal bond lengths, bond angles, and torsions, but are yet to be
positioned with respect to F3, and F;,. (e) Geometrical parameters for the kinematic closure
equations are defined for the 4 fragments. (f) The fragments are assembled into a triangle such
that three lengths d;, db, and d; satisfy the triangle inequality. The resulting exterior angles a4, a,
and a3 form additional parameters for the loop closure equations. (g) The atoms of the 3
segments connecting two adjacent pivot atoms are rotated about the axis between the two pivots
by an angle 7; so that the prescribed pivot bond angles 6; are satisfied. (h) The chain is converted
from the body frame of the pivots to the space frame of the hinges by assuming the fragment F; is
fixed and rotating the remaining fragments by angle —.
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Elimination of native bias

For loop reconstruction to have broad applicability it is important to carry out
predictions with minimal knowledge of the native side-chain environment. The
Rosetta KIC protocol first discards all native side-chain chi angles, bond angles, and
bond lengths and repacks the side-chains using conformations from a rotamer
library!4>. This initial repacking (without the presence of any native side-chains at
any position) is carried out against the native backbone (dataset 1) or on the
perturbed backbone in dataset 2 obtained from Sellers et al’33. Subsequently, an
initial kinematic closure discards the native loop backbone torsions, bond angles,
and bond lengths, and places the loop into a non-native starting conformation with
idealized bond lengths and bond angles (except for N-Ca-C bond angles, which have
been sampled without knowledge of the native values). After the protocol completes
the centroid stage, all side-chains within 10 A of the predicted loop conformation
are discarded and repacked. This step entails that at the beginning of the full-atom
stage, side-chains within 10 A of the loop have been optimized against a predicted
non-native backbone in datasets 1 and 3, and all side-chains have been optimized

against an initially perturbed backbone in dataset 2.

Discussion

Both conformational sampling and accurate scoring are significant challenges for
high-resolution protein modeling. In the following sections I discuss examples of

successes and failures of loop reconstruction arising in both areas, and evaluate the
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sensitivity of the KIC method to modified sampling parameters, together with the

required computational cost.

Conformational sampling

Accurate loop reconstruction requires substantial conformational sampling, owing
to the extensive conformational space accessible to protein loops. If conformations
near the crystallographic loop are not sampled, reconstruction accuracy will be
poor. Even if near-native conformations are sampled, the scoring function must
discriminate them from the ensemble of conformations explored during the course
of the simulation (insofar as the crystallographic structure represents the lowest
free energy conformation of the protein). [ sought to determine which failure cases
(reconstruction accuracy 21.0 A) were attributable to insufficient sampling, and
which suffered from incorrect scoring for both Rosetta methods on datasets 1°¢ and
2133 (accuracy is measured as global loop rmsd to the native backbone N, Ca, C, O
atoms throughout this chapter). To do so, I compared the scores of the lowest-
scoring reconstructions to the scores of the crystallographic loops. If the
crystallographic loop scored lower (better) than the lowest-scoring model, the
failure resulted at least in part from insufficient conformational sampling, because
the scoring function would have discriminated very-near crystallographic
conformations had they been sampled. Conversely, if the lowest-scoring
reconstruction was lower in score than the crystallographic loop, the failure was
attributable to the scoring function, since near-crystallographic conformations

scored worse than conformations 1.0 A away. The scores of the crystallographic
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loops were obtained by relaxing the repacked, minimized input structures through
100 independent trajectories of the full-atom stage of the KIC protocol fixed at a
temperature of 0.5 kT and recording the lowest scoring conformations within 0.5 A
of each crystallographic loop. On the 25 loops in the filtered dataset 1, I found that
16 out of 18 failure cases were due to poor conformational sampling using the
standard protocol, compared to 5 out of 10 such cases using KIC (Table 4.4). On
dataset 2, all 15 failures were attributable to insufficient sampling using the
standard protocol, compared to 6 out of 10 using the KIC protocol (Table 4.5).
Contributions from scoring and sampling cannot be completely decoupled since
Metropolis Monte Carlo simulations accept or reject conformations with a
probability dependent on the score. Since both protocols use the same number of
steps over identical simulated annealing schedules with the same scoring function,
however, these results suggest that the KIC protocol, while imperfect, substantially
improves conformational sampling compared to the standard protocol. Additionally,
the results show that the enhanced torsion sampling enabled by KIC can reveal
scoring errors by finding low scoring structures distant from the crystallographic
loop. Cases 4ilb and 1tgh in Table 4.4 and 1my?7, 2pia, 1m3s and loyc in Table 4.5
are examples where scoring errors become apparent when sampling is enhanced
with the KIC protocol.

Dataset 3 provides an additional perspective on conformational sampling
with KIC because all the loops were crystallized in multiple conformations bound to
different protein partners. Since protein modeling and design methods frequently

transplant existing structures into new contexts as templates, it is useful to know
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how often the predicted loop more closely resembles the crystallographic loop than
the same loop crystallized with different partner proteins. [ pairwise-superimposed
the cores of all loop proteins in dataset 3 and computed the global backbone N, Ca,
C, O rmsds between the conformations of the loops bound to different partners.
These rmsds, which show that even shorter 7-residue loops are capable of assuming
significantly different conformations across complexes, are reported in Table 4.3. In
57 of 68 cases, the predicted loop was closer to the crystallographic loop than the
same loop crystallized with another partner (shown in bold). This result highlights
the potential of the method in refinement applications (predicting a conformation
closer than the template structure) and also for modeling loop changes in important

conformational switch proteins.

Factors not modeled

Errors in loop reconstruction can result from structural features that are not
explicitly considered by the modeling method. For the Rosetta KIC protocol, such
factors include crystallization conditions at pH values outside the neutral range,
amino acid residues with shifted ionization constants, and residues with cis peptide
bonds (since the protocol currently does not sample cis peptide bonds). Other errors
could result from interactions between loop residues and neighboring protein
copies in the crystal lattice, since the simulations are not performed within the
crystallographic unit cell. To check for possible crystal packing effects, I
reconstructed the crystal lattice using Pymol'#® and computed the changes in

solvent accessible surface area (SASA) with and without the crystal context using
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Surface Racer!50 (1.2 A probe radius, using Richards 1977151 van der Waals radii)
for all loop residues in datasets 1 and 2. Cases where the delta SASA with and
without the crystal context was >200 A2 were considered to have significant crystal
packing. Table 4.6 and Table 4.7 show which failure cases had significant crystal
packing by this measure, cis peptide bonds, or pH values well outside the neutral

range.

Energy function simplifications and errors

The most significant scoring function failure in Table 4.5 involves a protein loop
with specific interactions with a buried water molecule (Old Yellow Enzyme, PDB
1oyc, 2.0 A resolution). The crystal structure suggests that this water molecule (Hz0
609), which has a B-factor (~24) that is lower than the average B-factor for waters
in this structure (~29), forms a hydrogen bonding network with the backbone
carbonyl of loop residue Ser 206, the side-chain hydroxyl group of Ser 136, and the
backbone amide of Ser 138 (Figure 4.5). The loop reconstruction deviates
substantially from the crystallographic loop in the region where the buried water
molecule interacts with the loop backbone. Interactions with water molecules are a
common source of error associated with the use of an implicit solvent model such as
the one implemented in Rosetta (see next paragraph) that ignores effects resultant
from the discrete size and asymmetry of water molecules and the geometric

constraints of water-mediated hydrogen bonding interactions.
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. Crystallographic loop
[l Reconstructed loop

Reconstruction
Ser 206

Figure 4.5: Effect of specific interactions of loop atoms with a buried water molecule

The loop residues subject to reconstruction from Old Yellow Enzyme (PDB 1oyc) are colored
cyan in the crystal structure conformation, and the reconstruction is shown in blue. The backbone
carbonyl of loop residue Ser 206 is shown in sticks, along with the side-chains of Ser 206, Ser
136, and the backbone amide of Ser 138 in the crystal structure. The backbone carbonyl and
side-chain of Ser 206 on the reconstructed loop are also shown in sticks. Hydrogen atoms are
included in the crystal structure. Explicit water molecules are not included in the loop
reconstruction simulations, and this protein produces the most significant scoring error with the
KIC protocol on dataset 2.

Even when all atoms are explicitly represented, evaluating the energetic
contribution of charged and polar interactions is a significant challenge for any
scoring function. The Rosetta all-atom scoring function uses a combination of an
orientation-dependent hydrogen bond term!” with an implicit solvation model’>2 to
assess hydrogen bonding in protein structures. As Chapter 2 describes in detail, it

can be difficult to reconstruct the complex hydrogen bonding networks observed in
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some protein structures, due to the delicate energetic balance between forming
inter-residue hydrogen bonds and losing hydrogen bonds to solvent (in addition to
the absence of polarization effects that are ignored by most methods). Figure 4.6a
shows an example of two loop residues that participate in a hydrogen bonding and
polar interaction network with two other residues in human 5'-deoxy-5'-
methylthioadenosine phosphorylase (PDB 1cb0). A loop side-chain (Asp 43) accepts
hydrogen bonds from the backbone and side-chain of Arg 63, which in turn interacts
with Glu 31 and another loop side-chain, Tyr 33. In the KIC reconstruction of this
loop and the surrounding side-chain environment (Figure 4.6b, 0.6 A rmsd to the
crystallographic loop), the hydrogen bonds and polar interactions between loop
residue Asp 43, and neighbors Arg 63 and Glu 31 are recovered, suggesting that
Rosetta sufficiently samples these side-chain conformations and that the hydrogen
bonding terms can successfully evaluate the hydrogen bonding interactions in the
presence of a perturbed backbone. Nevertheless, the reconstruction orients the
side-chain of Tyr 33 out into bulk solvent, demonstrating that some electrostatic
effects are too subtle for the Rosetta hydrogen bonding and solvation terms to

model accurately.
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a [CJ Non-loop residue b [J Non-loop residue
M Loop residue B Loop residue

Arg 63 Arg 63

2.9 Asp 43

Glu 31

Tyr 33

Figure 4.6: Loop reconstruction with a complex hydrogen bonding and polar network

(a) Loop residues Asp 43 and Tyr 33 form a hydrogen bonding and polar network with the
backbone amide of Arg 63 and the side-chains of Arg 63 and Glu 31 in the crystal structure of
human 5'-deoxy-5'-methylthioadenosine phosphorylase (PDB 1cb0). (b) The loop reconstruction
of 1¢cb0 recovers the hydrogen bonds and polar interactions between loop residue Asp 43 with
the amide backbone of Arg 63 and the side-chains of Arg 63 and Glu 31, but orients the side-
chain of Tyr 33 toward bulk solvent. The loop was reconstructed to 0.6 A accuracy.

Sensitivity to simulation parameters

As described above in ‘Methods’, the Rosetta KIC protocol samples N-Ca-C bond
angles. To assess the importance of bond angle sampling to reconstruction accuracy,
[ re-ran the simulations on the combined 45 loops from datasets 1 and 2 using the
same KIC protocol except I fixed the loop N-Ca-C bond angles at canonical values
(110.86°). The fixed bond angle protocol achieved similar performance (1.0 A
median rmsd) as the protocol that sampled bond angles (0.9 A rmsd), suggesting
that the contribution of bond angle sampling is small (Table 4.8). This result of the
relatively small effect of bond angle sampling is consistent with the overwhelmingly
greater variability of backbone torsions compared to bond angles, and Laskowski et

al.'>3 have shown that the observed variability of bond angles decreases at very high
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crystallographic resolution. Additionally, Coutsias et al.l?’” showed in an earlier
analysis of their KIC method that while N-Ca-C bond angle sampling increases the
number of closable loops, it does not produce more native-like conformations.
These results also suggest that bond angle sampling is not a significant bottleneck to
the performance of the standard Rosetta method. In general, high-resolution
structure prediction may not require sampling far from canonical bond angles,
although it may be important in cases of experimentally observed bond angle strain,
as in small cyclic peptides.

[ also considered the effect of the simulated annealing schedule - originally
performed on a fairly narrow range - on reconstruction performance. Rather than
varying the temperature as described above in ‘Loop modeling protocol’, I fixed the
temperature for both centroid and full-atom stages at 1.0 kT. Again, the modified
protocol performed nearly as well as the original protocol with simulated annealing
(Table 4.8), achieving a median accuracy of 1.0 A with fixed temperature compared
to 0.9 A with annealed temperature. Taken together, these results show that the
protocol is quite robust to changes in some simulation parameters, and suggest that

the most important feature is the enhanced torsion sampling provided by KIC.

Computational cost

As noted above in ‘Loop modeling protocol’, the KIC protocol requires ~320 CPU-
hours on a single 2.2 GHz Opteron processor to generate 1,000 models. The
standard protocol requires ~280 CPU-hours to generate the same number of

models on the same processor. To assess the performance of both Rosetta methods
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as a function of CPU time, I performed shorter constant-time simulations on
datasets 1 and 2. Each protocol was run for 120 CPU-hours on each protein using
the same parameters as in the longer simulations. The rmsd of the best-scoring
reconstruction to the crystallographic loop was computed in the same manner as
the longer simulations. I found that using equal computational time, KIC improved
the median reconstruction accuracy to 0.9 A from 1.9 A using the standard protocol
on dataset 1 and improved median accuracy to 1.2 A from 1.9 A using the standard
protocol on dataset 2. When both protocols were started from the perturbed loops
from ref!33 on dataset 2, KIC improved median accuracy to 1.2 A from the standard
protocol value of 2.2 A.

The molecular mechanics method required ~260 CPU-hours for each 12-
residue loop simulation (B. Sellers, personal communication). As noted by Sellers et
al.133, the reported results employ side-chain optimization in a 7.5 A shell around
the reconstructed loops. The Rosetta KIC and standard protocols optimize side-
chains within 10.0 A of the loops. As additionally noted in Figure 3 in reference!3s,
the molecular mechanics method requires roughly twice the computational time to
optimize side-chains within 10.0 A of the loop compared to 7.5 A on 8-residue loops.
[t can thus be expected that the molecular mechanics method will require at least as
much computational time as the KIC protocol when optimizing side-chains within

10.0 A of 12-residue loops.
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Longer loops

The number of geometrically accessible loop conformations grows exponentially as
loop length increases. Modeling loops much longer than 12-residues might require
sufficient sampling resources as to render the problem currently intractable. To
investigate this issue I performed de novo loop reconstructions on 10 18-residue RT
loops from the SH3 protein domain family. The dataset, summarized in Table 4.9,
contains 5 cases with RT loops bound to different peptides, and 5 unbound cases.
The average pairwise sequence identity across the proteins is 34%, and the modeled
loops are even more divergent, with an average pairwise sequence identity of 27%.
The average pairwise backbone rmsd of the loops after superposition onto one of
the cases (PDB 1abq) is 1.42 A. For each case I generated ~4000 structures (instead
of 1000 structures) with Rosetta revision 34279, and otherwise applied the same
loop modeling protocol used for the protein complexes dataset. Thus, the peptide
backbones were fixed, but their interfacial side-chain conformations were
reconstructed together with the loop and neighboring side-chains.

KIC reconstructed the 18-residue loops to 0.9 A median rmsd to the
crystallographic loops across the set, similar to the performance observed on the
other datasets. A representative set of reconstructions is shown in Figure 4.7. The
only case modeled to >1.5 A rmsd from native (PDB 1i1j, 3.5 A rmsd accuracy)
includes a disulfide bond that was not explicitly modeled. These results demonstrate
that KIC can model at least one family of 18-residue loops to sub-angstrom accuracy
using a tractable amount of sampling (roughly 4-fold as compared to 12-residue

loops). Success on these cases may arise from energy landscapes that funnel Monte
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Carlo trajectories toward near-native conformations. Other 18-residue cases, like
some 12-residue cases, may have more rugged energy landscapes that require
substantially more sampling to consistently find native-like conformations, or may
have energetic features that are not accurately modeled by the Rosetta scoring

function.

10eb - 0.34 A
'/

1uj0 - 0.60 A
N /’ \

1fyn - 0.76 A

1abqg - 1.39 A

Figure 4.7: Representative set of 18-residue SH3 domain loop reconstructions

Backbone RMSD for each reconstruction (cyan) to the crystallographic loop (blue) is shown
together with the PDB identifier. Peptide partners are shown in orange when present. One case
not shown (PDB 1i1j; 3.5 A accuracy) contains a disulfide bond from the crystallographic loop to
the protein scaffold that was not explicitly modeled.
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Table 4.1: KIC and standard protocol loop reconstruction accuracy on dataset 1

Lonpresidues | et | et teom naive) | ™"
1541 153-164 1.6 3.3 No
larp 201-212 2.3 0.5 No
lctm 9-20 5.4 2.9 No
1cyo 12-23 0.8 5.2 Yes
1dts 41-52 5.8 6.4 Yes
leco 35-46 0.6 0.4 Yes
lede 150-161 1.2 0.7 Yes
lezm 122-133 2.4 2.7 Yes
1hfc 165-176 8.5 8.2 No
livd 365-376 7.4 2.1 No
Imsc 9-20 3.7 3.2 Yes
lonc 23-34 3.8 0.5 Yes
1pbe 129-140 2.0 0.6 Yes
1pmy 77-88 2.6 2.6 No
1prn 15-26 7.0 6.6 No
1rcf 88-99 5.0 0.6 No
1rro 17-28 2.2 0.4 Yes
1scs 199-210 2.3 2.9 No
1srp 311-322 2.6 0.6 Yes
1tca 305-316 2.6 0.6 Yes
1thg 127-138 1.6 1.1 Yes
1thw 178-189 2.4 2.7 Yes
1tib 99-110 0.7 1.2 Yes
1tml 243-254 0.7 0.4 Yes
1xif 203-214 1.8 0.7 Yes
2cpl 145-156 0.4 0.2 Yes
2cyp 191-202 0.8 0.5 No
2ebn 136-147 3.9 2.1 Yes
2exo 293-304 1.2 0.8 Yes
2pgd 361-372 3.3 5.1 No
2rn2 90-101 1.1 0.8 Yes
2sil 255-266 2.0 1.0 Yes
2sns 111-122 3.3 3.6 No
2tgi 48-59 4.6 3.1 Yes
3cla 176-187 0.7 1.0 Yes
3cox 478-489 1.0 1.1 No
3hsc 72-93 0.5 0.5 Yes
451c 16-27 4.7 5.8 No
4enl 372-383 2.7 3.6 No
4ilb 46-57 5.1 3.8 Yes

Mean 2.8 2.3

Median 2.4 1.2

Filtered mean? 2.2 1.6

Filtered median? 2.0 0.8

a For cases that pass the ligand/ion filter (loop heavy atoms are 24.0A from ligand heavy atoms and 26.5A from charged ions).
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Table 4.2: Performance of standard Rosetta, KIC Rosetta, and molecular mechanics
protocols on dataset 2

Standard KIC protocol Standard KIC protocol Moleculfalr

PDB Loo'p protocol de de novo rmsd protocol perturbed rmsd mechanics

residues novo rmsd (A) @A) p:erturbeda rmsd @A) perturlged

(A) rmsd (A)®
1a8d 155-166 5.4 6.9 5.3 0.6 2.8
larb 182-193 1.6 1.0 5.1 1.4 2.6
1bhe 121-132 7.1 0.8 49 0.7 0.7
1bn8 298-309 2.5 0.7 1.7 0.6 2.6
1c5e 82-93 0.8 0.5 5.1 0.4 1.7
1cb0 33-44 1.0 0.6 1.1 0.7 0.3
lenv 188-199 2.3 1.4 2.8 2.1 3.3
lcs6 145-156 2.5 3.0 4.0 3.0 3.5
1dqz 209-220 1.9 0.7 1.8 2.6 0.6
lexm 291-302 0.6 0.9 2.8 0.9 0.5
1f46 64-75 2.1 2.5 0.7 2.3 1.1
1i7p 63-74 0.7 2.7 0.8 0.4 0.3
1m3s 68-79 3.6 6.3 2.2 5.6 5.6
1ms9 529-540 2.5 0.4 2.8 1.0 2.5
1my7 254-265 2.0 2.3 0.6 2.3 0.9
loth 69-80 0.6 0.6 1.9 0.6 0.7
loyc 203-214 3.2 4.0 1.7 3.9 1.2
1qlw 31-42 3.3 1.0 5.0 0.9 1.4
1t1d 127-138 0.5 0.8 0.6 0.8 1.0
2pia 30-41 1.1 1.0 1.0 0.9 0.5
Mean 2.3 1.9 2.6 1.6 1.7
Median 2.1 1.0 2.0 0.9 1.2

a‘Perturbed’ means simulations began with starting structures used in Sellers et al., 2008.

b Values taken directly from Table S4 in Sellers et al., 2008.
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Table 4.3: Performance of the KIC protocol on dataset 3

R Loop rmsds to the 1:
Loo m loop conformation n
PDB P Partner Chains S in the other complex | PDB loop Ligand Cofactor
protein s g
d structures (in order f
A) listed)®
h
1doa Cdc42 Rho GDI AB 2.2 3.7,29,1.7,4.1 30-40 11 GDP Mg2+
lgm Cdc42 CDC42 GAP AB 0.9 3.7,5.0,3.6, 1.1 30-40 11 GDP/AF3 Mg2+
1gzs Cdc42 SOP-.E AB 2.1 2.9,5.0,2.3,6.2 30-40 11 none none
(Toxin)
1kil Cdc42 Intersectin AB 43 1.7,3.6,2.3,54 30-40 11 none none
1nf3 Cdc42 Par A,C 1.5 4.1,1.1,6.2,54 30-40 11 GNP/MG Mg2+
1g4u | Rac GAP SPTP R,S 0.7 0.8,4.6 30-39 10 GDP/AF3 Mg2+
1hel Rac Toxin C,A 0.4 0.8,4.6 30-39 10 GDP/AF3 Mg2+
1hh4 | Rac Rho GDI A,D 0.8 4.6,4.6 30-39 10 GDP Mg2+
1bkd | Ras Son of R.S 64 | 99,98,9.6 28-37 10 | none none
Sevenless-1
1he8 Ras PI-3 Kinase B,A 1.7 9.9,0.5,1.0 28-37 10 GNP Mg2+
1k8r Ras BRY-2RBD AB 1.5 9.8,0.5,0.9 28-37 10 GNP Mg2+
1wql | Ras Ras-GAP R,G 0.6 9.6,1.0,0.9 28-37 10 GDP/AF3 Mg2+
lemx | Ubiquitin | Modified B.A 03 | 33,23,13,1.0,1.1 | 306-312 7 | none none
Ubiquitin
Ifxt | Ubiquitin | CoMugating | g o 0.7 | 33,23,25,31,15 | 6-12 7 | none none
Enzyme
Inbf | Ubiquitin | Deublquitinat- | p 10 | 23,23,24,3.0,27 | 306312 |7 | none none
ing Enzyme
1wr6 | Ubiquitin GGA3-GAT EA 0.5 1.3,2.5,2.4,4.3,09 6-12 7 none none
Iwrd | Ubiquitin TOM-GAT B,A 0.6 1.0, 3.1,3.0,4.3,0.6 6-12 7 none none
2d3g | Ubiquitin HRS-UIM A,B+P 0.6 1.1, 1.5,2.7,0.9, 0.6 6-12 7 none none
Mean 1.5
Median 0.8

aThe core of the loop protein was pairwise-superimposed onto the structures of the loop protein bound to other

partners. Global loop rmsds to the loop protein in the other structures are shown in the order listed in the table

(descending from top). Cases where the predicted loop rmsd is less than the rmsd to the loop bound to another partner
are shown in bold (57 / 68 cases).
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Table 4.4: KIC and standard protocol sampling and scoring errors on dataset 1
Cases where reconstruction accuracy is =1.0 A are shown. Gray boxes are primarily scoring

errors, white boxes are primarily due to insufficient sampling.

KIC Protocol Standard Protocol
PDB crystallographic loop score | PB erystalographicloop score
lezm 9.47 1tca 21.74
2ebn 4.94 lezm 15.75
2tgi 4.41 1srp 15.32
1thw 2.03 2exo 12.77
1tib 1.63 1pbe 10.73
4ilb -0.76 2ebn 8.28
1thg -1.17 2tgi 7.19
1cyo -1.58 2rn2 7.18
1dts -8.64 1thw 6.87
1msc -39.53 1thg 6.64
lede 6.38
1rro 3.09
1xif 3.05
2sil 2.55
4ilb 2.52
lonc 1.46
1dts -3.50
Imsc -36.09

Table 4.5: KIC and standard protocol sampling and scoring errors on dataset 2
Cases where reconstruction accuracy is =1.0 A are shown. Gray boxes are primarily scoring

errors, white boxes are primarily due to insufficient sampling.

KIC Protocol Standard Protocol
PDB crystallographic loop score | PB erystalographic loop score
1a8d 9.36 1a8d 21.98
1f46 7.91 lenv 18.88
lcnv 5.25 1qlw 16.86
1i7p 4.69 1dqz 16.66
1qlw 4.18 1bhe 14.89
lcs6 2.41 1f46 9.63
1my7 -0.56 larb 6.32
2pia -1.63 1bn8 6.12
1m3s -3.89 lcs6 5.36
loyc -5.58 1cb0 5.33
1m3s 2.82
1ms9 1.39
loyc 1.13
1my7 0.61
2pia 0.61
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Table 4.6: Potential error sources from benghmark dataset 1
Cases where reconstruction accuracy is =1.0 A using the KIC protocol are shown. Scoring errors
are shaded gray as defined in Table 4.4.

PDB Non-modeled factor(s) Reconstruction rmsd (A)
1dts Crystal packing 6.4
1cyo Crystal packing 5.2
4ilb 3.8
1msc Crystal packing 3.2
2tgi Crystal packing, low pH (4.2) 3.1
lezm 2.7
1thw 2.7
2ebn Cis proline 2.1
1tib low pH (4.0) 1.2
1thg 1.1

Table 4.7: Potential sources of error from benchmark dataset 2
Cases where reconstruction accuracy is =1.0 A using the KIC protocol are shown. Scoring errors
are shaded gray as defined in Table 4.5.

PDB Non-modeled factor(s) Reconstruction rmsd (A)
1a8d 6.9
1m3s Crystal packing 6.3
loyc 4.0
1cs6 Cis proline 3.0
1i7p 2.7
1f46 Crystal packing, Cis proline 2.5
1my7 2.3
lcnv low pH (3.0-5.0) 1.4
1qlw 1.0
2pia Crystal packing 1.0

Table 4.8: Sensitivity of reconstruction accuracy to simulation parameters

Mean and median rmsds are shown for the 3 protocols over all 45 loops from dataset 1 (filtered)
an<1133dataset 2. The input structures for dataset 2 are the perturbed starting structures used in
ref

KIC Protocol KIC Protocol with fixed N-Ca.-C KIC Protocol with
rotoco bond angles temperature fixed at 1.0 kT
Mean (A) 1.6 1.7 1.6
Median (A) 0.9 1.0 1.0
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Table 4.9: Performance of KIC protocol on 18-residue SH3 domain loops

PDB Chains PDB loop Peptide ligand sequence ﬁ_f)?lr:aci’i‘g‘j)rms‘i
labq A 68-85 none 1.4
1bb9 A 28-45 none 0.8
1fyn AB 89-106 PPAYPPPPVP 0.8
1i1j B 26-43 none 3.5
loeb AD 6-23 PAPSIDRSTKPPL 0.3
loot A 6-23 none 1.1
1ssh AB 8-25 EGPPPAMPARPT 0.9
1uj0 AB 209-226 TPMVNRENKPP 0.6
luti AD 6-23 GQPPLVPPRKEKMRGK 0.4
1zx6 A 7-24 none 0.9
Mean 1.1
Median 0.9
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Chapter 5

A method for flexible backbone design of
protein-based small molecule biosensors

Concept and rationale

As a challenging test of engineering new functions by flexible backbone design, I
have coupled KIC conformational sampling with protein sequence design to predict
protein-based constructs to serve as small molecule biosensors. Here, the goal is to
reshape the interfaces of existing heterodimeric protein complexes so that
association of the protein partners becomes dependent on the presence of a small
molecule target, similar to the rapamycin-induced association of FKBP12 and
FRB154, This process is termed ‘chemically induced dimerization’, and the
constituent proteins are called CIDs. Each CID partner is linked to one component of
a split reporter (e.g., split-GFP, split-DHFR, yeast two-hybrid) so that small
molecule-induced association of the partners is detectable by optical, enzymatic or
transcriptional readouts (Figure 5.1). These constructs have two key features: First,
the CID pairs can in principle be coupled to any split reporter in a modular fashion
to drive a variety of outputs, and second, the sensors may be transcriptionally linked

to pathways regulating cell survival or biosynthesis of the small molecule target.
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These features are particularly advantageous for engineering cells to efficiently
synthesize products such as biofuels and other value-added chemicals. Enzymatic or
fluorescent outputs enable facile screening of many cell strains for high target yield.
Further, detection of small molecule outputs of biosynthetic pathways in vivo can
actuate downstream synthesis pathways, or regulate cell survival as a selection
mechanism for directed evolution to optimize target production or conversion.

a Small molecule
Protein A Protein B target

Redesigned
N interface

/<—--" —

P

Reporter Reporter
fragment | fragment Il

») )

Modular output
(fluorescence,
gene expression,
catalysis)

Figure 5.1: Schematic of a modular protein-based small molecule biosensor

(a) The interface of an existing heterodimeric protein complex is redesigned around a small
molecule target. Each protein partner is linked to a fragment of a split reporter. In the absence of
the target, the redesigned surfaces are unmatched, so the proteins do not associate. (b)
Introduction of the small molecule target drives association of the redesigned protein partners,
reconstituting the split reporter and generating an output signal. The split reporter component is
modular and could produce fluorescent, enzymatic, or transcriptional readouts.

Several naturally occurring examples of CIDs exist. Besides rapamycin,
Brefeldin A is a fungal toxin that stabilizes an inactive complex between ARF1 and
Sec7 to repress vesicle transport!>>156, Fusicoccin, another fungal toxin, increases
the affinity of the activated C-terminus of the plasma membrane proton pump to a

14-3-3 protein by 90-fold1>7, leading to permanent activation of the H* ATPasel>8.
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Aside from natural examples, some groups have produced synthetic small molecules
to control CIDs based on natural products such as FK50615%, cyclosporinl®?, and
coumermycin!®l. The synthetic compounds typically serve as bivalent dimerizers of
CIDs fused to proteins regulating processes ranging from apoptosis and gene
transcription’6? to cell proliferationl®3. Reverse dimerization (chemically induced
dissociation) has also been demonstrated as another potential regulatory tool6%.
Additionally, RNA aptamers have been selected that recognize the shared surface of
a protein-small molecule complex165,

Despite the existence of naturally and synthetically controlled CIDs,
engineering chemical dependency into existing heterodimers remains challenging.
Protein interfaces are notoriously resistant to small molecule interference due in
large part to their typically broad, flat character!%6. Much can be learned, however,
from the many proteins that have evolved to associate with small molecules. In
order to benefit from the rich structural data on naturally occurring small molecule
binding sites, I have pursued a ‘motif directed’ strategy toward the design of
modular small molecule biosensors. In this approach the side-chain geometries of
structurally characterized small molecule binding sites are ‘transplanted’ onto
existing protein-protein interfaces, termed ‘scaffolds’. Similar strategies have been
used to introduce a copper binding site into E. coli thioredoxinl®’, to graft the
interleukin-4 binding epitope onto the coiled-coil domain of the yeast transcription
factor GCN4168, to transplant ‘hot spot’ residues from erythropoietin for its receptor
onto a PH domain'%®, and to replace residues in TEM1 pB-lactamase that bind its

inhibitor with a core module from another protein yielding wild-type affinity!7°.
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Notably, a motif-based approach similar to the methods described below was
recently employed to create enzyme active sites that catalyze reactions not
observed in naturel?. The key distinctions of my approach are that the motif
residues are transplanted across protein interfaces rather than into monomeric
proteins, and that the interactions are optimized for binding rather than catalysis.

The process is depicted graphically in Figure 5.2.
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Select templates and motifs

Select scaffolds

10" motifs

\ 4

Match motifs to scaffolds.
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For each motif:
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design and rigid body
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104 designs

A 4
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l 10" designs

Generate KIC ensemble

1103 conformations

Refine complexes by
interface sequence design
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ligand across KIC ensemble
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Compute residue frequencies
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sequences

N

Figure 5.2: Process model for generating small molecule biosensors from existing protein

complexes
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I chose to pursue farnesyl pyrophosphate (FPP) as a small molecule target. As a
member of the terpene class of isoprenoids, FPP is a metabolic intermediate in a number
of key biosynthesis pathways!’1. Since the pathway products serve as commodity
chemicals and biofuels, but the intermediates are inconspicuous (i.e., are not
chromophoric, fluorescent, or essential for growth), there is a growing need for in vivo
biosensors that enable high-throughput screening and directed evolution of pathways
producing and converting isoprenoid intermediates like FPP. These practical
considerations together with the availability of rich crystallographic data on FPP
complexed with several different proteins (29 X-ray structures with <2.8 A resolution in

the PDB) suggest that FPP is a strong target for a proof of principle.

Methods

Selection of scaffolds

[ searched the PDB for protein interface scaffolds suitable for accommodating small
molecule binding sites. I focused on heterodimeric complexes to avoid issues of
solubility arising from splitting homodimeric protein partners. The search criteria
specified X-ray structures of heterodimeric protein complexes with <95% sequence
identity solved at <2.8 A resolution between chains of 75 to 300 residues that were
expressed in E. coli. The resulting 612 structures were filtered to remove HETATM
records and multiple densities (only the first densities listed were kept).
Selenomethionines were converted to methionines. While the scaffold set is
matched against the FPP binding site in the present work, in general it can be

searched against any small molecule binding motif.
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Selection of templates

Binding motifs are transplanted from existing small molecule-protein complexes
termed ‘templates’. The PDB contains 29 X-ray structures of FPP-protein complexes
at <2.8 A resolution to serve as templates. I visually inspected each interface to
identify cases where 4 residues could define an encompassing portion of the FPP
binding surface. 18 potential templates were discarded because FPP bound in
complex with an inhibitor or other small molecule, forming a binding site that
cannot easily be reproduced by amino acid side-chains. Other cases were discarded
because the binding site was formed by small contributions from too many residues
to define a motif. Ultimately, 4 template motifs were selected for subsequent
matching and design (Table 5.1). Note that for PDB templates 1kzo and 3dpy, one of
the motif residues comes from a co-associated peptide substrate, and the motif from
1t0a contains residues from a homotrimeric interface. In all cases non-polar
hydrogens were added to FPP, and a single polar hydrogen was placed on the 05

oxygen.

Matching of motif residues

[ scanned the scaffold set for backbones that might accommodate the small molecule
target and binding motif using a geometric matching procedure!’?. For each
template, the relationship between the motif side-chains and the target is uniquely
defined by 6 geometric constraints, shown in Figure 5.3. The matching algorithm
scans the first motif residue constraints across a set of scaffold positions (here, all

positions with Co. atoms within 15 A of the other chain). At each position, the motif
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residue is placed into rotameric conformations from the Dunbrack backbone-
dependent rotamer library!4>. For each side-chain conformation, the small molecule
target is placed relative to the motif residue using the geometric constraints defined
from the template. Conformations that place the target without introducing steric
clashes between the motif side-chain, the target, and the scaffold backbone are
recorded as ‘hits’. The process is iterated for the remaining motif residues,
comparing the clash-free target positions to those from the previous motif residues
using an efficient geometric hashing technique. After all selected scaffold positions
have been screened against all motif conformations, cases where hits for each motif
residue place the target into the same geometric bin are recorded as ‘matches’. Only
matches where at least one motif side-chain is placed on a different chain than the
other motif side-chains (i.e., across the scaffold interface) are considered further.
Many matches may be found for a set of scaffold interface residue positions,
corresponding to highly similar target placements. One such match is randomly
selected for design, which is termed a ‘unique match’. The numbers of unique
matches arising from each template motif for FPP are shown in Table 5.1.

The quality and quantity of matching results are tuned by a number of
parameters. To slightly relax the angle and torsion constraints, I sampled 5 degrees
above and below the values computed from the template. There are also Euclidean
and Euler parameters that determine the bin size for geometric hashing, which I set
to 2.0 A and 20.0 degrees, respectively. A bump tolerance parameter allows for
some steric overlap - to be resolved in the design stage - which I set to 0.6 A within

the van der Waals radii of two contacting atoms. I also allow motif residues to be
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matched by other residue types with similar side-chain moieties. The following
groups of residues may be matched by any residue in the group: ‘DE’, ‘LVI’, ‘FYW’,
and ‘ST'. I set these parameters to produce a reasonable number of unique matches
for design (on the order of several hundred). Evaluating matches directly is not
necessarily informative, since a good match (one that faithfully reproduces the
template motif) may yield poor designs due to an inability of the ‘second shell’
residues to accommodate the motif and target, while less precise matches may yield
more promising designs after being subjected to rigid body optimization of the
ligand and backbone relaxation of the scaffold by KIC. Thus, all unique matches are
passed on to design.

A number of parameters control Rosetta-specific matching options including
the number of side-chain conformations sampled. Command line options used for

Rosetta revision 35441 follow:

match.linuxgccrelease -database minirosetta_database —s 1SVX.pdb -match:1lig_name LGl -
match:grid_boundary 1SVX.gridlig -match:scaffold_active site_residues 1SVX.pos -
match:geometric_constraint_file 3bnx.cst -extra res_fa 3bnx LG.fa.params -
output_matches_per group 10 -exl -ex2 -extrachi_ cutoff 0 -euclid bin_size 2.0 -
euler_bin_size 20.0 -bump_ tolerance 0.6 -match:output format PDB -

match:consolidate _matches -match:output_matchres_only

Descriptions of all Rosetta command line options appearing in this dissertation are

provided in the Appendix.
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Torsion B

Figure 5.3: Geometric constraints employed by the matching algorithm

(a) A small molecule target (ibuprofen) is shown in complex with a protein monomer (Ovine COX-
1, PDB 1eqg). The target (center) and four motif residues comprising the dominant binding
surface are shown as sticks. (b) For each motif residue (here, the arginine), six geometric
constraints are encoded (one distance, two angles and three torsions) that uniquely place the
target given the position of the motif residue. The atoms involved in the constraint calculations are
shown in polar colors with oxygen in red, nitrogen in blue and carbon in cyan; the remaining
atoms are in silver.

Initial designs and analysis

The matching algorithm places the motif residues and target into a scaffold interface
while avoiding clashes with the backbone (Figure 5.4a). However, the procedure
will likely introduce unfavorable interactions with the residues surrounding the
motif, or ‘second shell’ residues (Figure 5.4b). In order to accommodate the target
and binding motif, [ applied a protocol that iterates between rigid body optimization
of the target!’3 and sequence design of the second shell residues’2. In the design
step, all residues with a Co atom within 6.0 A of any ligand heavy atom are
designable (they may change residue type), as well as any residue with a Ca atom
within 8.0 A of any ligand heavy atom that also has a Cp atom closer to the ligand
than the Co atom. Additionally, all residues with a Ca atom within 10.0 A of any

ligand heavy atom are subject to repacking (simulated annealing Metropolis Monte
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Carlo optimization of side-chain conformations) together with any residue with a Cat
atom within 12.0 A of the ligand with a Cp atom that is closer to the ligand than the
Ca atom. The protocol iterates rigid body optimization and sequence design 3 times,
producing interfaces with more favorable interactions between the motif, target,
and second shell residues (Figure 5.4c). Command line options used for Rosetta

revision 36129 follow:

EnzdesFixBB.linuxgccrelease -database minirosetta database -s 1BH9_R33Y94L120F121.pdb -
extra_res_fa 3bnx_LG.fa.params enzdes:detect_design_interface -enzdes:cutl 6.0 -
enzdes:cut2 8.0 -enzdes:cut3 10.0 -enzdes:cut4 12.0 -enzdes:cst_opt -enzdes:cst_design -
enzdes:cst_min -enzdes:cstfile 3bnx.cst -enzdes:bb _min -enzdes:chi_min -
enzdes:design min _cycles 3 -exl -ex2 -use_input_sc -nstruct 999 -

enzdes:start_from_random rb_conf

Figure 5.4: Accommodating a target and motif after geometric matching

(a) FPP (center in sticks, farnesyl tail in magenta) and its binding motif from aristolochene
synthase (PDB 3bnx; silver sticks, labeled mutations) is transplanted into a complex (PDB 1svx)
between an engineered ankyrin repeat protein (green) and maltose binding protein (cyan). (b)
After matching, the motif and target clash with nearby side-chains in the scaffold crystal structure.
(c) An iterative rigid body optimization and sequence design protocol reshapes the interface to
accommodate the target and motif residues while maintaining the relationship between the motif
and target.

For each template I produced on the order of 10* designs and created

distributions over computed structure quality measures. Four of these distributions
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from the 3bnx template are shown in Figure 5.5. The ligand score corresponds to
the predicted binding energy between the ligand and scaffold interface (lower is
better, Figure 5.5a). The ligand solvent accessible surface area (SASA) score (Figure
5.5b) measures the burial of the ligand from 0.0 (completely solvent exposed) to 1.0
(completely buried), and is calculated from the fraction of surface area accessible to
a probe with a 1.4 A radius, roughly the size of a water molecule. The number of
hydrogen bonds between the scaffold and the ligand (Figure 5.5c¢) and the number
of buried unsatisfied hydrogen bonds on the ligand (Figure 5.5d) are also shown.
For FPP, visual inspection of representative members of the distributions across all
templates suggested the following filter for selecting designs for further refinement:
ligand score < -6.0, ligand SASA > 0.6, ligand hydrogen bonds > 1, unsatisfied buried
ligand hydrogen bonds = 0. The number of designs passing the filter for all FPP
templates is shown in Table 5.1. Passing designs were then further filtered to
remove scaffolds imposing additional challenges such as cases with small molecules
crystallized at the predicted target binding site that stabilize nearby structural
features, like GTPases with bound nucleotides. Complexes that were purified from
inclusion bodies or were expressed in the E. coli periplasm for crystallization were
also discarded.

[ also repeated the motif-directed design process using only 3 motif residues
from 3bnx (R314, W308 and L184). Since each additional motif residue reduces the
number of well matched scaffolds, motifs of 3 residues could match more scaffolds
with greater fidelity to the template. As a disadvantage, however, the matcher

transplants less of the template binding site to the scaffolds, and so maintains fewer
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binding site features, including ligand burial. This issue dominated the designs
resulting from matching the 3-residue motif from 3bnx. None of the designs passed
the filters at the thresholds described above. The design closest to passing the filters
matched the 3 residues to a colicin-immunity protein interface (PDB 1v74) with a
ligand score of -3.9 and a ligand SASA score of 0.4, suggesting insufficient ligand
burial and less favorable ligand-scaffold interactions. Figure 5.6 compares the
surfaces of this 3-residue motif design and the 4-residue motif design that passed
the filters with the best ligand score.

Ultimately, a design passing all filters with the best ligand score on a complex
(PDB 1svx) between an engineered ankyrin repeat protein and maltose binding
protein (MBP) with a transplanted 4-residue motif from template 3bnx was selected
for refinement by generation of KIC conformational ensembles and additional

sequence design.
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Figure 5.5: Score distributions for designs on matched scaffolds
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(a) The ligand score measures the predicted binding energy between the target and the scaffold
interface (lower score is more favorable predicted binding). (b) The solvent accessible surface
area (SASA) score measures burial of the ligand from 0.0 (completely solvent exposed) to 1.0
(completely buried). (¢) The number of hydrogen bonds formed between the scaffold and the
target. (d) The number of buried unsatisfied hydrogen bond donors and acceptors on the target.

Table 5.1: Matching and design performance for FPP binding motifs
The filter requires that designs have a ligand score < -6.0, SASA score > 0.6, at least 2 hydrogen
bonds with the target, and no buried unsatisfied target hydrogen bonds.

. Number Number of
Template . . . Resolution X . .
Protein partner Motif residues Iy of unique designs passing
PDB (A) .
matches filter
. chain B: R291, Y251,
1kzo Protein farnesyltransferase W303. chain C: 110 2.2 79 31
1t0a 2C-Methyl-D-Erythritol-2,4- | chain A: 1101, FO. 16 371 0 (1 if SASA filter
cyclodiphosphate Synthase chain B: F9. chain C: F9 ’ relaxed to 0.5)
. chain A: R314, W308,
3bnx Aristolochene synthase 1184, F153 2.1 370 81
. chain B: R291, Y251, 0 (2 if SASA filter
3dpy Protein farnesyltransferase W303. chain C: 12008 2.7 43 relaxed o 0.5)
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Figure 5.6: Comparison of designs resulting from 4- and 3-residue motif matches

FPP is shown in sticks with a magenta farnesyl tail in both panels. (a) Surface representation of
the best ligand score design after matching a 4-residue FPP-binding motif from aristolochene
synthase and filtering for features such as hydrogen bond satisfaction. The scaffold (PDB 1svx)
consists of an engineered ankyrin repeat protein (green) and maltose binding protein (cyan). (b)
Surface representation of the best ligand score design (also after filtering for features such as
hydrogen bond satisfaction) from matching 3 of the 4 FPP-binding residues used in a. The
farnesyl tail is less buried and makes fewer favorable interactions with the scaffold (colicin D,
green and colicin D immunity protein, cyan; PDB 1v74) in comparison to a.

KIC ensemble design

To model the conformational adjustments that may occur in concert with sequence
mutations'416, matched scaffold designs are subject to KIC over their entire
backbones producing conformational ensembles. A second round of Rosetta
sequence design is then applied across the ensembles to the side-chains
surrounding the binding site in order to accommodate the transplanted motif
residues and the small molecule target. Designing across a conformational
ensemble, rather than a single backbone, can improve agreement between the
transplanted motif and the template, and generates a diversity of predicted low-

energy sequences.
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[ generated near-native conformational ensembles with KIC (200
conformations with 0.9 A average rmsd to the X-ray structure) using a modified
protocol compared to de novo loop reconstruction. The ensemble generation
protocol skips the low-resolution centroid stage and sets the starting temperature at
1.2 kT. Instead of modeling only loop regions, KIC moves are applied to any segment
of 3-12 residues in the protein. Further, to focus sampling on near-native
conformations, non-pivot torsions are sampled within a vicinity of 3 degrees of their
input values before each kinematic move, instead of sampling from the allowable
Ramachandran space. A KIC ensemble for the ankryin repeat-MBP complex
described in ‘Initial designs and analysis’ is shown in Figure 5.7. The command line

used to generate the ensemble with Rosetta revision 36129 follows:

loopmodel.linuxgccrelease -database minirosetta_database -loops:refine refine kic -
loops:input_pdb 1SVX R134W103L78Y286__DE_19.pdb -loops:loop file

1SVX_R134W103L78Y286_ DE_19.loop -extra_res_fa 1SVX_R134W103L78Y286__ DE_19_LG.fa.params -
in:file:extra_res_cen 1SVX_R134W103L78Y286__ DE_19_ LG.cen.params -in:file:native

1SVX R134W103L78Y286__ DE 19.pdb -loops:kic_max_seglen 12 -loops:outer cycles 1 -

loops:refine_init temp 1.2 -loops:vicinity sampling -loops:vicinity degree 3 -exl -ex2
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Figure 5.7: KIC conformational ensemble for a designed small molecule-binding complex
(a) A single backbone conformation after matching FPP (colored sticks) into a scaffold complex
between an engineered ankyrin repeat protein (green ribbons) and maltose binding protein (blue
ribbons) is shown. (b) A KIC ensemble of the designed complex consisting of 200 conformations
is shown.

A similar protocol for small molecule rigid body optimization and scaffold
sequence design from ‘Initial designs and analysis’ is applied to refine every
member of the KIC ensemble. The selection of residues to be redesigned, fixed, or
modeled as wild-type is performed manually rather than selected by distance
cutoffs to focus side-chain optimization around the motif and target while
minimizing perturbations to nearby networks of scaffold side-chain interactions
(redesigned positions for the 1svx scaffold are shown in Figure 5.9). Designs
resulting from this step, e.g., Figure 5.8d, are predicted to improve small molecule
binding as constraint satisfaction and ligand scores improve. Moreover, designing
across a conformational ensemble, rather than a single backbone, produces a diverse

124

sequence library “" that can be assayed in vivo for biosensor activity.
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A sample command line for this step used with Rosetta revision 36129 follows:

EnzdesFixBB.linuxgccrelease -database minirosetta database -s
1_1SVX_R134W103L78Y286_ DE_19 0001.pdb -resfile resfile -in:file:extra res_fa
3bnx_LG.fa.params -enzdes:cst_opt -enzdes:cst_design -enzdes:cst_min -enzdes:cstfile
3bnx.cst -enzdes:bb_min -enzdes:chi_min -enzdes:design min_cycles 3 -exl -ex2 -ex3 -ex4 -
use_input_sc -score:hbond His_Phil fix -score:no_his_his_pairE -nstruct 50 -

enzdes:start_from_random rb_conf

Results

The process of matching, design, ensemble generation, and refinement described in
‘Methods’ produces dimeric protein complexes with predicted interfacial small
molecule binding sites transplanted from high-resolution X-ray structures. In this
work, I redesigned the interface between an engineered ankyrin repeat protein and
maltose binding protein (MBP) to depend on FPP for association. Key individual
steps are depicted in Figure 5.8. Of note, Figure 5.8d shows improved recapitulation
of the template binding motif after designing on a KIC ensemble compared to the
initial fixed backbone design, and Figure 5.8f shows the surface of a designed
interfacial binding site with similar features to the surface of the template binding
site (Figure 5.8e).

The success of motif-directed design is predicated largely on the fidelity of
transplanted residue conformations to the original binding site. It is also critical to
engineer favorable interactions between the transplanted motif and target with the
surrounding ‘second shell’ residues. There is frequently, though not always, a
tradeoff between designs that faithfully reproduce the binding motif and those

predicted to have more favorable energies. For this reason, as well as due to
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imperfections in computational scoring functions, it is useful to generate a broad set
of sequences to assay experimentally. By computing sequence profiles from designs
performed on KIC ensembles (Figure 5.9, top panel), [ produced a sequence library
for the ankyrin repeat-MBP complex predicted to act as a CID for FPP. Note that
sequence profiles are computed from the lowest energy sequence and conformation
from simulated annealing Metropolis Monte Carlo simulations in the design step.
For comparison, I also generated an equal number of sequences using a fixed
backbone approach on the 3bnx crystal structure with the motif residues and target
transplanted from the initial design used to generate the KIC ensemble. Sequence
profiles for the fixed backbone designs are shown in Figure 5.9, bottom panel. The
profiles show a greater amount of variation than might be expected from fixed
backbone design due to the translational and rotational freedom of the target. At
several key positions, however, the KIC ensemble designs show clear advantages.
The predicted structural basis for these distinctions is shown in Figure 5.10. V152
and Y122 are well represented only in the KIC designs (Figure 5.9). Using fixed
backbone design, N156 orients toward the target, similar to the wild-type
conformation, where it orients toward the interface and hydrogen bonds with K122.
In the KIC ensemble, small backbone adjustments allow N156 to flip out from the
interface, as designed positions V152 and Y122 form the side and top of the FPP
binding pocket. Although Y122 appears in the fixed backbone design with the best
ligand score, V152 is absent, and a sequence library built only from the dominant
residues in the fixed backbone designs would omit these potentially favorable

interactions.
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Figure 5.8: Design of protein-based biosensors for farnesyl pyrophosphate (FPP)

Panels a and e are X-ray structures, remaining panels are models. (a) Key side-chains forming a
binding motif for FPP (shown as sticks in all panels with the farnesyl tail in magenta, hydrogens
shown in e and f) are identified in a template complex with aristolochene synthase (PDB 3bnx).
(b) Geometric constraints relating the key side-chains to FPP are encoded and matched against a
scaffold dataset of heterodimeric protein interfaces. Here, the motif residues are transplanted into
an existing complex (PDB 1svx) between an engineered ankyrin repeat protein (green) and
maltose binding protein (cyan). The matched motif residues are shown as sticks (F153 is
matched by a tyrosine for more favorable predicted solvation energy). An overlay of the matched
side-chains and the original binding motif (silver) after superimposing the FPP atoms is shown
inset. (¢) Backbone flexibility is modeled by a KIC ensemble to better accommodate the motif
residues and target. Ribbon representations of 200 backbones generated by KIC are shown. (d)
Sequence design is applied to the shell of residues surrounding the motif residues and the target
across all backbones in the KIC ensemble. A design that closely recapitulates the original binding
motif is shown with designed side-chains in sticks. An overlay of the matched side-chains and the
original binding motif (silver) after superimposing the FPP atoms is shown inset. Designing on the
KIC ensemble improves overall agreement to the known motif in comparison to b (the arginine
reorients slightly in concert with a small adjustment to the pyrophosphate moiety arising from
energy minimization of FPP). (e) Surface representation of the wild-type FPP binding site in
aristolochene synthase from a. (f) Surface representation of a designed FPP-dependent
heterodimer modeled from the KIC ensemble reproduces features of the aristolochene synthase
binding site in e.
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Figure 5.9: Sequence profiles for flexible and fixed backbone design of FPP biosensors
Sequence profiles for residues observed in 12 positions of a redesigned CID pair for FPP are
shown for flexible (top panel) and fixed (bottom panel) backbone designs. Wild-type scaffold
residues (PDB 1svx) are shown at the bottom. Profiles are computed over 10* designs for each
protocol. KIC sequences were produced in equal numbers across the members of the KIC
ensemble, and fixed backbone design was applied to the 3bnx crystal structure with the motif
residues and FPP transplanted from the same initial design used to generate the KIC ensembile.
Valine at position 152 and tyrosine at position 122 are predicted only in the KIC ensemble
profiles.

Figure 5.10: Comparison of best scoring models from flexible and fixed backbone design
(a) The KIC ensemble design with the best ligand score is shown. N156 flips away from the
target, making room for V152 and Y122 to form the side and top of the FPP binding pocket. V152
and Y122 are well represented only in the KIC designs. (b) The fixed backbone design with the
best ligand score is shown. N156 stays oriented toward the interface, similar to the wild-type
crystal structure (PDB 1svx). This configuration partially buries the N156 amide group in a
hydrophobic environment and leaves room only for alanine or glycine at position 152.
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The dominant residues in the KIC sequence profiles can be used to design a
sequence library. I am currently pursuing this approach to produce FPP biosensors
in collaboration with Jay Keasling’s lab. Fuzhong Zheng from the Keasling lab and I
have designed a library of size 10° using degenerate codons that well covers the
observed sequence profiles. Note that the library includes most of the dominant
residues, but does not reproduce their relative frequencies, which is difficult to
control. The library also does not take into account covariation among the residues
that may appear in the designs. An advantage, however, is that the CID library can
be genetically fused to split-DHFR as a life-or-death experimental selection for
complexes with maximal dependence on FPP for association. Fuzhong Zheng is
currently testing the designed library in vivo, together with in vitro characterization
of several of the top scoring designs by FPP-dependent pull-down assays. The
Keasling lab plans to use the most sensitive DHFR-activating biosensors to optimize

E. coli cells for high yield of FPP conversion by directed evolution.
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Chapter 6

Conclusion

This dissertation has addressed fundamental issues in high-resolution sampling of
backbone conformations and evaluating the favorability of inter- and intramolecular
interactions to extend computational protein design techniques toward flexible
backbone models. Chapter 2 assessed the strengths of hydrogen bonds involving
residues that have been phosphorylated, a key post-translational modification that
frequently affects protein function by inducing conformational perturbations. The
chapter compared calculations of free energies using multiple levels of theory,
consisting of explicit solvent molecular dynamics, implicit solvent molecular
mechanics, and quantum mechanics, and discussed the strengths and shortcomings
of each approach in computing hydrogen bonding strengths across a panel of
donors, acceptors and orientations. Chapter 3 introduced the sampling problem in
flexible backbone design, and summarized current and prior approaches together
with recently enabled applications. Chapter 4 introduced a robotics-inspired
method for modeling protein conformations, and demonstrated sub-angstrom
accuracy in reconstructing loops in monomeric proteins and protein interfaces, with

the latter result suggesting that the method might be used to model functional
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conformational plasticity. Chapter 5 coupled the flexible backbone methods from
Chapter 4 with computational sequence design to predict modular, protein-based
small molecule biosensors, which are currently being validated experimentally. The
modular nature of the described sensors enables the constituent protein pairs to
drive association of any split reporter, in principle, allowing for a diversity of
fluorescent, enzymatic, and transcriptional output behaviors.

While the biosensors described in Chapter 5 are designed with outputs
directed toward efficient cellular production of their targets, future work could
focus on new approaches to drive cellular processes by chemical induction of
dimerization. For example, it may be useful to enable spatiotemporal control of a
transcriptional activator, or to localize two components of a signaling pathway. The
known natural chemicals that induce dimerization events frequently have side-
effects (as noted in Chapter 5 many derive from natural toxins), and light-inducible
interactions cannot be used in animals like mice. A new set of rationally designed
protein interactions induced by non-toxic chemicals would thus be invaluable to
deconstructing cellular processes.

In general, flexible backbone design provides powerful tools to predict vast
numbers of sequences consistent with a given protein fold, subject to stability and
binding constraints. It is now critical to consider techniques to validate these
developments in ways that improve understanding of current shortcomings. While
functional characterization of folding or binding activities of single or a few designs
demonstrates outstanding achievements in engineering, such validation provides

only case studies. More comprehensive comparisons of medium- to large-scale
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libraries computationally designed against functional constraints to experimentally
screened sequence libraries are needed. By examining over- and under-represented
portions of experimentally observed sequence space, such studies can reveal
fundamental flaws in computational scoring functions and sampling techniques.
Only when methods improve to consistently identify functional molecules as top
predictions will researchers likely adopt these approaches more broadly for
engineering new and modified protein functions. In addition, difficult engineering
goals can potentially be met by bringing flexible backbone methods to the powerful
combination of computational design and experimental selection!17.174,

Presently, the major design successes using flexible backbone approaches
have focused on creating new structures!-13 rather than functional conformations.
Recent flexible backbone methods have produced sequences that fold into predicted
stable loop structures?® or adopt multiple distinct conformations!’5>. With the
development of improved high-resolution methods to represent structural
variability in design frameworks, the field is now poised to make significant
contributions to broadening the functional repertoire by engineering new functional
conformations into proteins. For instance, the current seminal successes in enzyme
designl? involve fixed backbone models with catalytic activity toward a single
substrate. Flexible backbone methods could be used to find backbone conformations
providing a range of selectivity toward multiple related substrates, yielding modular
enzymes that may be linked into pathways to perform sequential partial reactions.
Other functional conformations might involve interface loops in signaling proteins.

Flexible elements in such switch proteins (Figure 4.2c) could be redesigned!’¢ to
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vary signaling activity in response to posttranslational modifications or to alter
binding to downstream effectors. Further, flexible backbone methods could reshape
or extend protein interfaces to increase selectivity and affinity.

There is also much to be gained by further exploring the relationship between
protein evolution and computational design. It has been suggested that related protein
folds evolve through small numbers of obligate transitional sequences'’’.
Computationally, as Kuhlman and colleagues have demonstrated”, it is possible to
produce entirely new topologies without progressive transitions through sequence space.
Nevertheless, protein design methodologies might benefit from following an evolutionary
model'”® wherein new sequences and backbone conformations are obtained through a
progression of functional design checkpoints (e.g., designs to carry out successive partial
reactions). Such an approach might demonstrate particular utility in producing enzymes
that bind new substrates or perform new reactions'”’, since the step-wise accumulation of
partial reaction mechanisms through evolutionarily accessible trajectories would be

explicitly modeled.

113



Bibliography

1. Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme
design. Nature 453, 190-5 (2008).

2. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science
319, 1387-91 (2008).

3. Lippow, S.M., Wittrup, K.D. & Tidor, B. Computational design of antibody-
affinity improvement beyond in vivo maturation. Nat Biotechnol 25, 1171-6
(2007).

4, Grigoryan, G., Reinke, AW. & Keating, A.E. Design of protein-interaction
specificity gives selective bZIP-binding peptides. Nature 458, 859-864
(2009).

5. Ponder, ].W. & Richards, F.M. Tertiary templates for proteins. Use of packing
criteria in the enumeration of allowed sequences for different structural
classes. ] Mol Biol 193, 775-91 (1987).

6. Richardson, |.S. & Richardson, D.C. The de novo design of protein structures.
Trends Biochem Sci 14, 304-9 (1989).

7. DeGrado, W.F., Wasserman, Z.R. & Lear, ].D. Protein design, a minimalist
approach. Science 243, 622-8 (1989).

8. Hellinga, H.W. & Richards, F.M. Construction of new ligand binding sites in
proteins of known structure. I. Computer-aided modeling of sites with pre-

defined geometry. ] Mol Biol 222, 763-85 (1991).

114



10.

11.

12.

13.

14.

15.

16.

17.

Dahiyat, B.I. & Mayo, S.L. De novo protein design: fully automated sequence
selection. Science 278, 82-7 (1997).

Su, A. & Mayo, S.L. Coupling backbone flexibility and amino acid sequence
selection in protein design. Protein Sci 6, 1701-7 (1997).

Harbury, P.B,, Plecs, ].J., Tidor, B., Alber, T. & Kim, P.S. High-resolution protein
design with backbone freedom. Science 282, 1462-7 (1998).

Desjarlais, ].R. & Handel, T.M. Side-chain and backbone flexibility in protein
core design. ] Mol Biol 290, 305-18 (1999).

Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level
accuracy. Science 302, 1364-8 (2003).

Baldwin, E.P., Hajiseyedjavadi, O., Baase, W.A. & Matthews, B.W. The role of
backbone flexibility in the accommodation of variants that repack the core of
T4 lysozyme. Science 262, 1715-8 (1993).

Lim, W.A,, Hodel, A., Sauer, R.T. & Richards, F.M. The crystal structure of a
mutant protein with altered but improved hydrophobic core packing. Proc
Natl Acad Sci U S A 91, 423-7 (1994).

Bordner, A.J. & Abagyan, R.A. Large-scale prediction of protein geometry and
stability changes for arbitrary single point mutations. Proteins 57, 400-13
(2004).

Kortemme, T., Morozov, A.V. & Baker, D. An orientation-dependent hydrogen
bonding potential improves prediction of specificity and structure for

proteins and protein-protein complexes. ] Mol Biol 326, 1239-59 (2003).

115



18.

19.

20.

21.

22.

23.

24,

25.

Audette, G.F. et al. The 1.9 A resolution structure of phospho-serine 46 HPr
from Enterococcus faecalis. ] Mol Biol 303, 545-53 (2000).

Patel, A.J. & Honore, E. Properties and modulation of mammalian 2P domain
K+ channels. Trends Neurosci 24, 339-46 (2001).

Martens, J.R., Kwak, Y.G. & Tamkun, M.M. Modulation of Kv channel
alpha/beta subunit interactions. Trends Cardiovasc Med 9, 253-8 (1999).
Vermeulen, K., Van Bockstaele, D.R. & Berneman, Z.N. The cell cycle: a review
of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36,
131-49 (2003).

Feng, M.H., Philippopoulos, M. MacKerell, A.D. & Lim, C. Structural
characterization of the phosphotyrosine binding region of a high-affinity SH2
domain-phosphopeptide complex by molecular dynamics simulation and
chemical shift calculations. Journal of the American Chemical Society 118,
11265-11277 (1996).

Johnson, L.N. & Lewis, R.J. Structural basis for control by phosphorylation.
Chemical Reviews 101, 2209-2242 (2001).

Johnson, L.N. & Oreilly, M. Control by phosphorylation. Current Opinion in
Structural Biology 6, 762-769 (1996).

Anderson, D.E., Becktel, W.J. & Dahlquist, F.W. Ph-Induced Denaturation of
Proteins - a Single Salt Bridge Contributes 3-5 Kcal Mol to the Free-Energy of

Folding of T4-Lysozyme. Biochemistry 29, 2403-2408 (1990).

116



26.

27.

28.

29.

30.

31.

32.

33.

Sun, D.P,, Sauer, U., Nicholson, H. & Matthews, B.W. Contributions of
engineered surface salt bridges to the stability of T4 lysozyme determined by
directed mutagenesis. Biochemistry 30, 7142-53 (1991).

Schneider, ].P., Lear, ].D. & DeGrado, W.F. A designed buried salt bridge in a
heterodimeric coiled coil. Journal of the American Chemical Society 119,
5742-5743 (1997).

Waldburger, C.D., Schildbach, J.F. & Sauer, R.T. Are Buried Salt Bridges
Important for Protein Stability and Conformational Specificity. Nature
Structural Biology 2,122-128 (1995).

Lyubartsev, A.P. & Laaksonen, A. Osmotic and activity coefficients from
effective potentials for hydrated ions. Physical Review E 55, 5689-5696
(1997).

Martorana, V., La Fata, L., Bulone, D. & San Biagio, P.L. Potential of mean force
between two ions in a sucrose rich aqueous solution. Chemical Physics Letters
329,221-227 (2000).

Luo, R, David, L., Hung, H., Devaney, ]. & Gilson, M.K. Strength of Solvent-
Exposed Salt-Bridges. Journal of Physical Chemistry B 103, 727-736 (1999).
Masunov, A. & Lazaridis, T. Potentials of Mean Force between lonizable
Amino Acid Side Chains in Water. Journal of the American Chemical Society
125,1722-1730 (2003).

Gilson, M.K. Theory of Electrostatic Interactions in Macromolecules. Current

Opinion in Structural Biology 5, 216-223 (1995).

117



34.

35.

36.

37.

38.

39.

40.

41.

42,

Ghosh, A.,, Rapp, C.S. & Friesner, R.A. Generalized born model based on a
surface integral formulation. Journal of Physical Chemistry B 102, 10983-
10990 (1998).

Chorny, I, Dill, K.A. & Jacobson, M.P. Surfaces Affect lon Pairing. Journal of
Physical Chemistry B 2005, 24056-24060 (2005).

Asthagiri, D., Schure, M.R. & Lenhoff, A.M. Calculation of Hydration Effects in
the Binding of Anionic Ligands to Basic Proteins. Journal of Physical Chemistry
B 104, 8753-8761 (2000).

Yu, Z., Jacobson, M.P., Rapp, C.S. & Friesner, R.A. First-Shell Solvation of lon
Pairs: Correction of Systematic Errors in Implicit Solvent Models. Journal of
Chemical Physics 108, 6643-6654 (2004).

Saebo, S. & Pulay, P. Local Treatment of Electron Correlation. Annual Review
of Physical Chemistry 44, 213-236 (1993).

Singh, ]., Thornton, J.M., Snarey, M. & Campbell, S.F. The geometries of
interacting arginine-carboxyls in proteins. FEBS Letters 224, 161-171 (1987).
Saenger, W. & Wagner, K.G. An X-ray Study of the Hydrogen Bonding in the
Crystalline  L-Arginine  Phosphate = Monohydrate  Complex. Acta
Crystallographica B28, 2237-2244 (1972).

Lewin, S. lonic Linkages in Protein Interactions. Journal of Theoretical Biology
23, 279-284 (1969).

Schug, K.A. & Lindner, W. Noncovalent binding between guanidinium and

anionic  groups: Focus on  biological- and  synthetic-based

118



43.

44,

45.

46.

47.

48.

49,

arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate
residues. Chemical Reviews 105, 67-113 (2005).

Mavri, J. & Vogel, H.J. lon pair formation of phosphorylated amino acids and
lysine and arginine side chains: A theoretical study. Proteins-Structure
Function and Genetics 24, 495-501 (1996).

Deerfield, D.W., Nicholas, H.B., Hiskey, R.G. & Pedersen, L.G. Salt or Ion
Bridges in Biological-Systems - a Study Employing Quantum and Molecular
Mechanics. Proteins-Structure Function and Genetics 6, 168-192 (1989).
Charbon, G., Breunig, K.D., Wattiez, R., Vandenhaute, ]. & Noel-Georis, 1. Key
role of Ser562/661 in Snfl-dependent regulation of Cat8p in Saccharomyces
cerevisiae and Kluyveromyces lactis. Mol Cell Biol 24, 4083-91 (2004).
Kassenbrock, C.K. & Anderson, S.M. Regulation of ubiquitin protein ligase
activity in c-Cbl by phosphorylation-induced conformational change and
constitutive activation by tyrosine to glutamate point mutations. J Biol Chem
279,28017-27 (2004).

Huang, W. & Erikson, R.L. Constitutive activation of Mek1l by mutation of
serine phosphorylation sites. Proc Natl Acad Sci U S A 91, 8960-3 (1994).
Klose, K.E., Weiss, D.S. & Kustu, S. Glutamate at the site of phosphorylation of
nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates
the protein. ] Mol Biol 232, 67-78 (1993).

McCabe, T.J., Fulton, D., Roman, L.J. & Sessa, W.C. Enhanced electron flux and
reduced calmodulin dissociation may explain "calcium-independent” eNOS

activation by phosphorylation. J Biol Chem 275, 6123-8 (2000).

119



50.

51.

52.

53.

54.

55.

56.

57.

Zhang, ., Zhang, F., Ebert, D., Cobb, M.H. & Goldsmith, E.]J. Activity of the MAP
kinase ERK2 is controlled by a flexible surface loop. Structure 3, 299-307
(1995).

Mansour, S.J., Candia, ].M. Matsuura, J.E., Manning, M.C. & Ahn, N.G.
Interdependent domains controlling the enzymatic activity of mitogen-
activated protein kinase kinase 1. Biochemistry 35, 15529-36 (1996).
Garcia-Echeverria, C. Antagonists of the Src homology 2 (SH2) domains of
Grb2, Src, Lck and ZAP-70. Current Medicinal Chemistry 8, 1589-1604 (2001).
Cody, W.L., Lin, Z.W.,, Panek, R.L.,, Rose, D.W. & Rubin, ]J.R. Progress in the
development of inhibitors of SH2 domains. Current Pharmaceutical Design 6,
59-98 (2000).

Calnan, B.J., Tidor, B., Biancalana, S., Hudson, D. & Frankel, A.D. Arginine-
mediated RNA recognition: the arginine fork. Science 252, 1167-71 (1991).
Frigyes, D., Alber, F., Pongor, S. & Carloni, P. Arginine-phosphate salt bridges
in protein-DNA complexes: a Car-Parrinello study. Journal of Molecular
Structure (Theochem) 574, 39-45 (2001).

Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. ] Comput Chem 26,
1701-18 (2005).

G.A. Kaminski, R.A'F,, ]. Tirado-Rives, and W.L. Jorgensen. Evaluation and
reparametrization of the OPLS-AA force field for proteins via comparison
with acccurate quatum checmical calculations on peptides. Journal of Physical

Chemistry B 105, 6474-6487 (2001).

120



58.

59.

60.

61.

62.

63.

64.

Wong, S.E., Bernacki, K. & Jacobson, M. Competition between intramolecular
hydrogen bonds and solvation in phosphorylated peptides: Simulations with
explicit and implicit solvent. Journal of Physical Chemistry B 109, 5249-5258
(2005).

Groban, E.S., Narayanan, A. & Jacobson, M.P. Conformational changes in
protein loops and helices induced by post-translational phosphorylation.
PLoS Comput Biol 2, e32 (2006).

Jorgensen, W.L., Chandrasekhar, ]., Madura, ].D., Impey, RW. & Klein, M.L.
Comparison of Simple Potential Functions for Simulating Liquid Water.
Journal of Chemical Physics 79, 926-935 (1983).

Darden, T., York, D. & Pedersen, L. Particle Mesh Ewald - an N.Log(N) Method
for Ewald Sums in Large Systems. Journal of Chemical Physics 98, 10089-
10092 (1993).

Swope, W.C.,, Andersen, H.C. Berens, P.H. & Wilson, KR. A Computer-
Simulation Method for the Calculation of Equilibrium-Constants for the
Formation of Physical Clusters of Molecules - Application to Small Water
Clusters. Journal of Chemical Physics 76, 637-649 (1982).

Verlet, L. Computer Experiments on Classical Fluids .I. Thermodynamical
Properties of Lennard-Jones Molecules. Physical Review 159, 98 (1967).
Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions.

Physical Review. A 31, 1695-1697 (1985).

121



65.

66.

67.

68.

69.

70.

71.

72.

Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Dinola, a. & Haak, J.R.
Molecular-Dynamics with Coupling to an External Bath. Journal of Chemical
Physics 81, 3684-3690 (1984).

Torrie, G.M. & Valleau, ].P. Nonphysical sampling distributions in Monte Carlo
free-energy estimation - Umbrella Sampling. Journal of Computational Physics
23,187-199 (1977).

Hess, B., Bekker, H., Berendsen, H.J.C. & Fraaije, ].G.E.M. LINCS: A linear
constraint solver for molecular simulations. Journal of Computational
Chemistry 18, 1463-1472 (1997).

Souaille, M. & Roux, B. Extension to the weighted histogram analysis
method: combining umbrella sampling with free energy calculations.
Comput. Phys. Commun 135, 40-57 (2001).

Kumar, S., Bouzida, D., Swendsen, R.H., Kollman, P. & Rosenberg, ].M. The
weighted histogram analysis method for free-energy calculations on
biomolecules. |: The method. Journal of Computational Chemistry 13,
1011-1021 (1992).

Allen, M.P. & Tildesley, D.J. Computer Simulation of Liquids, (Oxford
University Press, 1989).

Nicholls, a. & Honig, B. A Rapid Finite-Difference Algorithm, Utilizing
Successive over-Relaxation to Solve the Poisson-Boltzmann Equation. Journal
of Computational Chemistry 12, 435-445 (1991).

Jaguar. 5.0 edn (Schrodinger, L.L.C., Portland, OR, 1991-2003).

122



73.

74.

75.

76.

77.

78.

79.

80.

Tannor, D.J. et al. Accurate First Principles Calculation of Molecular Charge-
Distributions and Solvation Energies from Ab-Initio Quantum-Mechanics and
Continuum Dielectric Theory. Journal of the American Chemical Society 116,
11875-11882 (1994).

Chirlian, L.E. & Francl, M.M. Atomic Charges Derived from Electrostatic
Potentials - a Detailed Study. Journal of Computational Chemistry 8, 894-905
(1987).

Woods, R.J., Khalil, M., Pell, W., Moffat, S.H. & Smith, V.H. Derivation of Net
Atomic Charges from Molecular Electrostatic Potentials. jJournal of
Computational Chemistry 11,297-310 (1990).

Beglov, D. & Roux, B. Finite Representation of an Infinite Bulk System -
Solvent Boundary Potential for Computer-Simulations. Journal of Chemical
Physics 100, 9050-9063 (1994).

Smith, D.E. & Dang, LX. Computer-Simulations of Nacl Association in
Polarizable Water. Journal of Chemical Physics 100, 3757-3766 (1994).
Rozanska, X. & Chipot, C. Modeling ion-ion interaction in proteins: A
molecular dynamics free energy calculation of the guanidinium-acetate
association. Journal of Chemical Physics 112, 9691-9694 (2000).

Breslow, R., Belvedere, S., Gershell, L. & Leung, D. The chelate effect in
binding, catalysis, and chemotherapy. Pure Appl. Chem. 72, 333-342 (2000).
Brooks, B.R. et al. Charmm - a Program for Macromolecular Energy,
Minimization, and Dynamics Calculations. Journal of Computational Chemistry

4,187-217 (1983).

123



81.

82.

83.

84.

85.

86.

87.

88.

Rodinger, T., Howell, P.L. & Pomes, R. Absolute free energy calculations by
thermodynamic integration in four spatial dimensions. Journal of Chemical
Physics 123(2005).

Hunenberger, P.H. & McCammon, ].A. Effect of artificial periodicity in
simulations of biomolecules under Ewald boundary conditions: a continuum
electrostatics study. Biophysical Chemistry 78, 69-88 (1999).

Cornell, W.D. et al. A 2Nd Generation Force-Field for the Simulation of
Proteins, Nucleic-Acids, and Organic-Molecules. Journal of the American
Chemical Society 117,5179-5197 (1995).

Cramer, C.J. & Truhlar, D.G. Am1-Sm2 and Pm3-Sm3 Parameterized Scf
Solvation Models for Free-Energies in Aqueous-Solution. jJournal of
Computer-Aided Molecular Design 6, 629-666 (1992).

Springs, B. & Haake, P. Equilibrium-Constants for Association of Guanidinium
and Ammonium-lons with Oxyanions - Effect of Changing Basicity of
Oxyanion. Bioorganic Chemistry 6, 181-190 (1977).

Hoch, J.A. & Silhavy, T.J. (eds.). Two-Component Signal Transduction, (ASM
Press, Washington, DC, 1995).

Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235-42
(2000).

Halgren, T.A. & Damm, W. Polarizable Force Fields. Current Opinion in

Structural Biology 11, 236-242 (2001).

124



89.

90.

91.

92.

93.

94,

95.

96.

Yu, H. & van Gunsteren, W.F. Charge-on-spring polarizable water models
revisited: From water clusters to liquid water to ice. Journal of Chemical
Physics 121, 9549-9564 (2004).

Jagielska, A., Wroblewska, L. & Skolnick, ]. Protein model refinement using an
optimized physics-based all-atom force field. Proc Natl Acad Sci U S A 105,
8268-73 (2008).

Simons, K.T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein
tertiary structures from fragments with similar local sequences using
simulated annealing and Bayesian scoring functions. /] Mol Biol 268, 209-25
(1997).

Simons, K.T., Bonneau, R., Ruczinski, I. & Baker, D. Ab initio protein structure
prediction of CASP III targets using ROSETTA. Proteins Suppl 3, 171-6
(1999).

Rohl, C.A., Strauss, C.E.M., Misura, K.M.S. & Baker, D. Protein structure
prediction using Rosetta. Methods Enzymol 383, 66--93 (2004).

Bradley, P., Misura, K.M.S. & Baker, D. Toward high-resolution de novo
structure prediction for small proteins. Science 309, 1868-71 (2005).
Schueler-Furman, O., Wang, C., Bradley, P., Misura, K. & Baker, D. Progress in
Modeling of Protein Structures and Interactions. Science 310, 638-642
(2005).

Wang, C., Bradley, P. & Baker, D. Protein-protein docking with backbone

flexibility. ] Mol Biol 373, 503--519 (2007).

125



97.

98.

99,

100.

101.

102.

103.

104.

Canutescu, A.A. & Dunbrack, R.LJ. Cyclic coordinate descent: A robotics
algorithm for protein loop closure. Protein Sci 12, 963--972 (2003).

Hu, X, Wang, H., Ke, H. & Kuhlman, B. High-resolution design of a protein
loop. Proc Natl Acad Sci US A 104, 17668--17673 (2007).

Murphy, P.M,, Bolduc, ].M,, Gallaher, ].L., Stoddard, B.L. & Baker, D. Alteration
of enzyme specificity by computational loop remodeling and design. Proc
Natl Acad Sci U S A 106, 9215-20 (2009).

Fung, HK, Floudas, C.A.,, Taylor, M.S., Zhang, L. & Morikis, D. Toward full-
sequence de novo protein design with flexible templates for human beta-
defensin-2. Biophys ] 94, 584-99 (2008).

Georgiev, I. & Donald, B.R. Dead-end elimination with backbone flexibility.
Bioinformatics 23,1185-94 (2007).

Desmet, J., Demaeyer, M., Hazes, B. & Lasters, . The Dead-End Elimination
Theorem and Its Use in Protein Side-Chain Positioning. Nature 356, 539-542
(1992).

Georgiev, I, Lilien, RH. & Donald, B.R. A novel minimized dead-end
elimination criterion and its application to protein redesign in a hybrid
scoring and search algorithm for computing partition functions over
molecular ensembles. Research in Computational Molecular Biology,
Proceedings 3909, 530-545 (2006).

Davis, .LW., Arendall, W.B.r,, Richardson, D.C. & Richardson, ].S. The backrub
motion: how protein backbone shrugs when a sidechain dances. Structure 14,

265-74 (2006).

126



105.

106.

107.

108.

109.

110.

111.

112.

113.

Georgiev, I, Keedy, D. Richardson, ].S. Richardson, D.C. & Donald, B.R.
Algorithm for backrub motions in protein design. Bioinformatics 24, i196-
204 (2008).

Smith, C.A. & Kortemme, T. Backrub-like backbone simulation recapitulates
natural protein conformational variability and improves mutant side-chain
prediction. /] Mol Biol 380, 742-56 (2008).

Yin, S., Ding, F. & Dokholyan, N.V. Eris: an automated estimator of protein
stability. Nat Methods 4, 466-7 (2007).

Benedix, A., Becker, C.M. de Groot, B.L., Caflisch, A. & Bockmann, R.A.
Predicting free energy changes using structural ensembles. Nat Methods 6, 3-
4 (2009).

de Groot, B.L. et al. Prediction of protein conformational freedom from
distance constraints. Proteins 29, 240-51 (1997).

Guerois, R, Nielsen, J.E. & Serrano, L. Predicting changes in the stability of
proteins and protein complexes: a study of more than 1000 mutations. ] Mol
Biol 320, 369-87 (2002).

Koehl, P. & Levitt, M. Protein topology and stability define the space of
allowed sequences. Proc Natl Acad Sci U S A 99, 1280-5 (2002).

Taverna, D.M. & Goldstein, R.A. Why are proteins so robust to site mutations?
] Mol Biol 315, 479-84 (2002).

Wagner, A. Robustness, evolvability, and neutrality. FEBS Lett 579, 1772-8

(2005).

127



114.

115.

116.

117.

118.

119.

120.

121.

122.

Gupta, R.D. & Tawfik, D.S. Directed enzyme evolution via small and effective
neutral drift libraries. Nat Methods 5, 939-42 (2008).

Xia, Y. & Levitt, M. Simulating protein evolution in sequence and structure
space. Curr Opin Struct Biol 14, 202-7 (2004).

Fu, X,, Apgar, J.R. & Keating, A.E. Modeling backbone flexibility to achieve
sequence diversity: the design of novel alpha-helical ligands for Bcl-xL. ] Mol
Biol 371, 1099-117 (2007).

Hayes, R/J. et al. Combining computational and experimental screening for
rapid optimization of protein properties. Proc Natl Acad Sci U S A 99, 15926-
31 (2002).

Larson, S.M., England, ].L., Desjarlais, ]J.R. & Pande, V.S. Thoroughly sampling
sequence space: large-scale protein design of structural ensembles. Protein
Sci 11, 2804-13 (2002).

Pei, ]J., Dokholyan, N.V., Shakhnovich, E.I. & Grishin, N.V. Using protein design
for homology detection and active site searches. Proc Natl Acad Sci U S A 100,
11361-6 (2003).

Larson, S.M., Garg, A., Desjarlais, ].R. & Pande, V.S. Increased detection of
structural templates using alignments of designed sequences. Proteins 51,
390-6 (2003).

Saunders, C.T. & Baker, D. Recapitulation of protein family divergence using
flexible backbone protein design. ] Mol Biol 346, 631-44 (2005).

Friedland, G.D., Lakomek, N.A., Griesinger, C., Meiler, |. & Kortemme, T. A

Correspondence Between Solution-State Dynamics of an Individual Protein

128



123.

124.

125.

126.

127.

128.

129.

130.

and the Sequence and Conformational Diversity of its Family. Plos
Computational Biology 5, - (2009).

Ding, F. & Dokholyan, N.V. Emergence of protein fold families through
rational design. PLoS Comput Biol 2, €85 (2006).

Humphris, E.L. & Kortemme, T. Prediction of protein-protein interface
sequence diversity using flexible backbone computational protein design.
Structure 16, 1777-88 (2008).

Pal, G. Kouadio, ].-L.K., Artis, D.R., Kossiakoff, A.A. & Sidhu, S.S.
Comprehensive and quantitative mapping of energy landscapes for protein-
protein interactions by rapid combinatorial scanning. | Biol Chem 281,
22378-85 (2006).

Go, N. & Scheraga, H.A. Ring Closure and Local Conformational Deformations
of Chain Molecules. Macromolecules 3, 178-187 (1970).

Coutsias, E.A., Seok, C., Jacobson, M.P. & Dill, K.A. A kinematic view of loop
closure. ] Comput Chem 25, 510-28 (2004).

Cortes, J., Simeon, T., Remaud-Simeon, M. & Tran, V. Geometric algorithms for
the conformational analysis of long protein loops. ] Comput Chem 25, 956-67
(2004).

Lee, A, Streinu, I. & Brock, O. A methodology for efficiently sampling the
conformation space of molecular structures. Phys Biol 2, S108-15 (2005).
Noonan, K., O'Brien, D. & Snoeyink, ]. Probik: Protein Backbone Motion by
Inverse Kinematics. The International Journal of Robotics Research 24, 971-

982 (2005).

129



131.

132.

133.

134.

135.

136.

137.

138.

139.

Milgram, RJ., Liu, G. & Latombe, ].C. On the structure of the inverse
kinematics map of a fragment of protein backbone. ] Comput Chem 29, 50-68
(2008).

Coutsias, E.A,, Seok, C., Wester, M.J. & Dill, K.A. Resultants and Loop Closure.
International Journal of Quantum Chemistry 106, 176-189 (2005).

Sellers, B.D., Zhu, K., Zhao, S., Friesner, R.A. & Jacobson, M.P. Toward better
refinement of comparative models: predicting loops in inexact environments.
Proteins 72,959-971 (2008).

Felts, A.K. et al. Prediction of Protein Loop Conformations Using the AGBNP
Implicit Solvent Model and Torsion Angle Sampling. /. Chem. Theory Comput.
4,855-868 (2008).

Wedemeyer, W.]. & Scheraga, H.A. Exact analytical loop closure in proteins
using polynomial equations. Journal of Computational Chemistry 20, 819-844
(1999).

Canutescu, A.A. & Dunbrack, R.L, Jr. Cyclic coordinate descent: A robotics
algorithm for protein loop closure. Protein Sci 12,963-72 (2003).

Shehu, A., Clementi, C. & Kavraki, L.E. Modeling protein conformational
ensembles: from missing loops to equilibrium fluctuations. Proteins 65, 164--
179 (2006).

Coutsias, E.A,, Seok, C., Wester, M.J. & Dill, K.A. Resultants and Loop Closure.
Int. ]. Quant. Chem. 106, 176-189 (2006).

Wang, C., Bradley, P. & Baker, D. Protein-protein docking with backbone

flexibility. ] Mol Biol 373, 503-519 (2007).

130



140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

Fiser, A., Do, RK. & Sali, A. Modeling of loops in protein structures. Protein Sci
9,1753--1773 (2000).

Rohl, C.A,, Strauss, C.E.M., Chivian, D. & Baker, D. Modeling structurally
variable regions in homologous proteins with rosetta. Proteins 55, 656--677
(2004).

Zhu, K., Pincus, D.L., Zhao, S. & Friesner, R.A. Long loop prediction using the
protein local optimization program. Proteins 65, 438--452 (2006).

Jacobson, M.P. et al. A hierarchical approach to all-atom protein loop
prediction. Proteins 55, 351--367 (2004).

Jacobson, M.P. Loop decoy sets. (2008).

Dunbrack, R.LJ. & Cohen, F.E. Bayesian statistical analysis of protein side-
chain rotamer preferences. Protein Sci 6, 1661--1681 (1997).

Press, W., Teukolsky, S. & Vetterling, W. Numerical Recipes: The Art of
Scientific Computing, Third Edition, (Cambridge University Press, Cambridge,
2007).

Raman, S. et al. Structure prediction for CASP8 with all-atom refinement
using Rosetta. Proteins 77 Suppl 9, 89-99 (2009).

Hook, D.G. & McAree, P.R. Using Sturm Sequences to Bracket Real Roots of
Polynomial Equations in Graphics gems (Academic Press, New York, 1990).
Delano, W.L. The PyMOL Molecular Graphics System. (DeLano Scientific LLC,

San Carlos, CA, USA).

131



150.

151.

152.

153.

154.

155.

156.

157.

158.

Tsodikov, 0.V., Record, M.T. & Sergeev, Y.V. Novel computer program for fast
exact calculation of accessible and molecular surface areas and average
surface curvature. Journal of Computational Chemistry 23, 600-609 (2002).
Richards, F.M. Areas, volumes, packing and protein structure. Annu Rev
Biophys Bioeng 6, 151-76 (1977).

Lazaridis, T. & Karplus, M. Effective energy function for proteins in solution.
Proteins 35, 133-52 (1999).

Laskowski, R.A., Moss, D.S. & Thornton, ].M. Main-chain bond lengths and
bond angles in protein structures. ] Mol Biol 231, 1049-67 (1993).
Banaszynski, L.A., Liu, CW. & Wandless, T.J. Characterization of the
FKBP.rapamycin.FRB ternary complex. ] Am Chem Soc 127, 4715-21 (2005).
Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7
domain protein complex: involvement of specific residues of the Sec7
domain. Mol Cell 3, 275-85 (1999).

Mossessova, E., Corpina, R.A. & Goldberg, J. Crystal structure of ARF1*Sec7
complexed with Brefeldin A and its implications for the guanine nucleotide
exchange mechanism. Mol Cell 12, 1403-11 (2003).

Wourtele, M., Jelich-Ottmann, C., Wittinghofer, A. & Oecking, C. Structural view
of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO | 22, 987-94
(2003).

Jahn, T. et al. The 14-3-3 protein interacts directly with the C-terminal region

of the plant plasma membrane H(+)-ATPase. Plant Cell 9, 1805-14 (1997).

132



159.

160.

161.

162.

163.

164.

165.

166.

167.

Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R. Controlling
signal transduction with synthetic ligands. Science 262, 1019-24 (1993).
Belshaw, P.J., Ho, S.N., Crabtree, G.R. & Schreiber, S.L. Controlling protein
association and subcellular localization with a synthetic ligand that induces
heterodimerization of proteins. Proc Natl Acad Sci U S A 93, 4604-7 (1996).
Farrar, M.A,, Alberol, . & Perlmutter, R.M. Activation of the Raf-1 kinase
cascade by coumermycin-induced dimerization. Nature 383, 178-81 (1996).
Amara, |.F. et al. A versatile synthetic dimerizer for the regulation of protein-
protein interactions. Proc Natl Acad Sci U S A 94, 10618-23 (1997).

Whitney, M.L., Otto, K.G., Blau, C.A., Reinecke, H. & Murry, C.E. Control of
myoblast proliferation with a synthetic ligand. J Biol Chem 276, 41191-6
(2001).

Rollins, C.T. et al. A ligand-reversible dimerization system for controlling
protein-protein interactions. Proc Natl Acad Sci US A 97,7096-101 (2000).
Plummer, K.A,, Carothers, ].M., Yoshimura, M., Szostak, ] W. & Verdine, G.L. In
vitro selection of RNA aptamers against a composite small molecule-protein
surface. Nucleic Acids Res 33, 5602-10 (2005).

Wells, J.A. & McClendon, C.L. Reaching for high-hanging fruit in drug
discovery at protein-protein interfaces. Nature 450, 1001-9 (2007).

Hellinga, H.W., Caradonna, J.P. & Richards, F.M. Construction of new ligand
binding sites in proteins of known structure. II. Grafting of a buried transition
metal binding site into Escherichia coli thioredoxin. ] Mol Biol 222, 787-803

(1991).

133



168.

169.

170.

171.

172.

173.

174.

175.

176.

Domingues, H., Cregut, D., Sebald, W., Oschkinat, H. & Serrano, L. Rational
design of a GCN4-derived mimetic of interleukin-4. Nat Struct Biol 6, 652-6
(1999).

Liu, S. et al. Nonnatural protein-protein interaction-pair design by key
residues grafting. Proc Natl Acad Sci U S A 104, 5330-5 (2007).

Potapov, V. et al. Computational redesign of a protein-protein interface for
high affinity and binding specificity using modular architecture and naturally
occurring template fragments. ] Mol Biol 384, 109-19 (2008).

Kirby, J. & Keasling, ].D. Biosynthesis of plant isoprenoids: perspectives for
microbial engineering. Annu Rev Plant Biol 60, 335-55 (2009).

Zanghellini, A. et al. New algorithms and an in silico benchmark for
computational enzyme design. Protein Sci 15, 2785-94 (2006).

Davis, LW. & Baker, D. RosettaLigand docking with full ligand and receptor
flexibility. ] Mol Biol 385, 381-92 (2009).

Treynor, T.P., Vizcarra, C.L., Nedelcu, D. & Mayo, S.L. Computationally
designed libraries of fluorescent proteins evaluated by preservation and
diversity of function. Proc Natl Acad Sci U S A 104, 48-53 (2007).

Ambroggio, X.I. & Kuhlman, B. Computational design of a single amino acid
sequence that can switch between two distinct protein folds. ] Am Chem Soc
128, 1154-61 (2006).

Ambroggio, X.I. & Kuhlman, B. Design of protein conformational switches.

Curr Opin Struct Biol 16, 525-30 (2006).

134



177.

178.

179.

Meyerguz, L., Kleinberg, ]. & Elber, R. The network of sequence flow between
protein structures. Proc Natl Acad Sci U S A 104, 11627-32 (2007).
Weinreich, D.M., Delaney, N.F., Depristo, M.A. & Hartl, D.L. Darwinian
evolution can follow only very few mutational paths to fitter proteins. Science
312,111-4 (2006).

Yoshikuni, Y. & Keasling, ].D. Pathway engineering by designed divergent

evolution. Curr Opin Chem Biol 11, 233-9 (2007).

135



Appendix

Descriptions of Rosetta command line
options

Descriptions for all command line options appearing in this dissertation are shown.
Parentheticals note options that have been deprecated or activated by default in the

current release of Rosetta, version 3.1.

Revision 24219 options

Description

loops:kinematic

Activates KIC loop modeling (deprecated in favor of loops:remodel
perturb_Kkic and loops:refine refine_kic)

loops:nonpivot_torsion_sampling

Activates sampling of non-pivot torsions from Ramachandran space
(active by default)

Revision 27114 options

Description

loops:remodel perturb_alc

Activates centroid stage of KIC loop modeling protocol (deprecated in
favor of loops:remodel perturb_kic)

loops:refine refine_alc

Activates full atom stage of KIC loop modeling protocol (deprecated in
favor of loops:refine refine_kic)

loops:strict_loops

Prevents random growing of loops (active by default in KIC loop
modeling)

Revision 35441 options

Description

match:lig_name

Name of target used for matching

match:grid_boundary

Location of file with Cartesian bounding box defining scaffold regions
available to matcher

match:scaffold_active_site_residues

Location of file listing scaffold positions available for matching

match:geometric_constraint_file

Location of file describing the geometry of the target relative to the motif
residues

match:euclid_bin_size

The bin width for the 3-dimensional coordinate hasher, in angstroms

match:euler_bin_size

The bin width for the euler angle hasher, in degrees

match:bump_tolerance

The permitted level of spherical overlap between any two atoms, in
angstroms

match:output_format PDB

Tells the matcher to output PDB files

match:consolidate_matches

Instead of outputting all matches, group matches by matched motif
sequence and similarity of target placement, and then record only the top
match:output_matches_per_group from each group

match:output_matches_per_group

Number of matches to output from each consolidated group

match:output_matchres_only

Only output the matched residues and target, rather than the whole pose,
for every match (active by default)
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Revision 36129 options

Description

S

Starting structure for design

enzdes:detect_design_interface

Automatically detect design/repack region around target based on
distance cutoffs

enzdes:cutl

Design any residue with a Co within this distance of a target heavy atom

enzdes:cut2

Design any residue with a Co within this distance of a target heavy atom
and a CP closer to that target atom

enzdes:cut3

Repack any residue with a Ca within this distance of a target heavy atom

enzdes:cut4

Repack any residue with a Ca within this distance of a target heavy atom
and a Cf closer to that target atom

enzdes:cst_opt

Minimize motif-target interactions before design. All designable non-
motif residues are mutated to alanine and a reduced energy function that
does not contain vdW-attractive or solvation terms is used for
minimization

enzdes:bb_min

Allows the backbone to be slightly flexible during minimization

enzdes:chi_min

Allows the dihedrals of the motif residues to move during minimization

enzdes:cst_design

Activates the iterative minimization / design protocol

enzdes:design_min_cycles

Number of minimization / design iterations

enzdes:start_from_random_rb_conf

Start with a random target conformation if a multi-model PDB file is
supplied

score:hbond_His_Phil_fix

Alters the hydrogen bond angular dependence for histidines

score:no_his_his_pairE

Sets the pair term for histidine-histidine to zero

loops:loop_file

Path to loop definition file

loops:kic_max_seglen

Maximum number of residues in KIC move segments (12 by default)

loops:outer_cycles

Number of outer cycles in KIC Monte Carlo protocols

loops:refine_init_temp

Initial temperature for the KIC full-atom Monte Carlo protocol

General options shared across revisions

Description

database

Location of Rosetta database

in:file:fullatom

Enables full atom input of PDB or centroid structures (including side-
chain conformations)

resfile Path to file specifying the residues to design and repack

ex1 Includes extra chil sub-rotamers (+/- one standard deviation, 3 samples)
ex2 Includes extra chi2 sub-rotamers (+/- one standard deviation, 3 samples)
ex3 Includes extra chi3 sub-rotamers (+/- one standard deviation, 3 samples)
ex4 Includes extra chi4 sub-rotamers (+/- one standard deviation, 3 samples)
exlaro Includes extra chil sub-rotamers (+/- one standard deviation, 3 samples)

for aromatic residues (implied by ex1)

extrachi_cutoff

Number of neighbors a residue must have before extra rotamers are used

in:file:extra_res_fa

Specifies path to full atom parameter file for non-protein molecules

in:file:extra_res_cen

Specifies path to centroid parameter file for non-protein molecules

out:file:fullatom

Enables full atom output of PDB or centroid structures (active by default
in KIC loop modeling)

use_input_sc

Use rotamers from input structure in packing

nstruct

Number of models to produce
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