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Abstract We propose a simple measure of neural sensitivity
for characterizing stimulus coding. Sensitivity is defined as
the fraction of neurons that show positive responses to n
stimuli out of a total of N . To determine a positive response,
we propose two methods: Fisherian statistical testing and
a data-driven Bayesian approach to determine the response
probability of a neuron. The latter is non-parametric, data-
driven, and captures a lower bound for the probability of
neural responses to sensory stimulation. Both methods are
compared with a standard test that assumes normal probabil-
ity distributions. We applied the sensitivity estimation based
on the proposed method to experimental data recorded from
the mushroom body (MB) of locusts. We show that there is
a broad range of sensitivity that the MB response sweeps
during odor stimulation. The neurons are initially tuned to
specific odors, but tend to demonstrate a generalist behav-
ior towards the end of the stimulus period, meaning that the
emphasis shifts from discrimination to feature learning.

Keywords Sensitivity · Bayes test · Neural response ·
Olfaction · Statistical testing · Neural coding · Fisher test ·
Likelihood ratio test
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1 Introduction

With recent advances in multi-unit recording techniques,
there is a growing need for quantitative methods that can
accurately detect stimulus-specific neural activity. In this
paper, we propose a quantification of the sensitivity of neural
responses to external stimuli. We consider two approaches:
one based on Fisherian statistical testing, and another esti-
mating a bound on the probability of a neural response.

The concept of sensitivity can be better understood by
the contrast between “specialist” and “generalist” of neu-
rons (Wilson et al. 2004). Specialists respond to specific stim-
uli and are vital for discrimination, when, for example, the
animal needs to decide between odors. Generalists, on the
other hand, respond to multiple stimuli and play a key role
in extracting and discovering common features.

We formulate sensitivity measures and apply them to data
provided by Perez-Orive et al. (2002) to assess the sensitivity
of Kenyon cell responses over time in the mushroom body
(MB). This area is the second processing layer in the insect
brain and is known to be critical for memory formation and
the discrimination of odors (de Belle and Heisenberg 1994;
Zars et al. 2000; Pascual and Preat 2001; Dubnau et al. 2001;
Connolly et al. 1996; Heisenberg 2003; Huerta et al. 2004;
Nowotny et al. 2005).

The insect olfactory pathway starts at the antenna, where
a massive number of receptors encode the odor stimulus in
a high-dimensional code. In locusts, this number is approxi-
mately 90,000. This information is then sent to the antennal
lobe (AL) for additional processing. In the locust AL approx-
imately 1,000 neurons perform this task. The AL exhibits
complex dynamics produced by the interaction of its excit-
atory and inhibitory neural populations (Daly et al. 2004;
Galan et al. 2004; Laurent 2002). The excitatory cells are
called projection neurons because only they transmit the
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Fig. 1 Description of the structural organization of the first few
processing layers in the olfactory system of the locust

result of AL processing to deeper regions. The projection
neurons deliver the AL output to the 50,000 cells of the
MB. This is the area where the data under analysis was
obtained (Perez-Orive et al. 2002). We present a schematic
representation of the insect olfactory pathway in the locust
in Fig. 1.

The paper is organized as follows. First, we outline the
analyzed data set. Next, we define neural sensitivity and
describe a method to estimate the response probability, which
is required in quantifying the sensitivity. Finally, we apply
the proposed method to real data from the olfactory system
of the locust and show how it can be used to analyze the
temporal evolution of sensitivity.

2 Description of experimental data

The recorded MB neurons are the Kenyon cells (KCs). In the
experimental setup, 17 different odors were presented to the
antenna of the locust for 1 s each. On average each odor was
presented ten times and odor presentations were spaced 20 s
apart (see Fig. 2 for a typical trial time protocol in the odor
presentation). Tetrode recordings were obtained from KCs
and a spike-sorting algorithm was used to detect individual
spikes (Perez-Orive et al. 2002).

3 Sensitivity and detection of the neural response

We define sensitivity as the distribution of neurons that
respond to n out of N stimuli. This definition requires the
detecting whether or not a neuron responds to a particular
stimulus. The straightforward approach is to use statistical
testing by discriminating between two mutually exclusive
hypotheses: response and the absence of it.

To code the neural output, we count the number of neu-
ral spikes s1, s2, . . . , sn in n different presentations of the
same odor in a given time window. Thus, the observable
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High Baseline=12 sec
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Fig. 2 Stimulation protocol: the first odor pulse was initiated at t = 3 s
and lasted for 1 s. Each odor was repeated ten times. We estimate the
probability of response to spike recordings of 43 Kenyon cells (KC)
from 6 experiments reported in Perez-Orive et al. (2002). The response
of each KC was recorded in the presence of each of the 17 odors. The
time frames ∆t3 and ∆t3.5 are explained in Sect. 4

is the neural activity represented by the number of spikes
observed in certain equal-length intervals. The probability
distribution of the number of spikes, s1, s2, . . . , sn , depends
on whether a neuron is responsive to a presented stimulus
r = R or not r = R. The null hypothesis H0 : r = R is
the default activity which is the case when the neuron does
not respond. The alternative hypothesis, H1 : r = R, repre-
sents the response to the stimulus. We now consider testing
the simple null hypothesis H0 : r = R versus an alternative
hypothesis H1 : r = R. Now, we have a decision problem
between two alternative hypotheses.

Let us discuss different approaches that can help by tack-
ling the problem from different angles. The simplest method
is the Fisherian test (Christensen 2005), which is known as
the standard tail test of the null hypothesis. It is possible
to use this because the probability distribution of the null
hypothesis, P(s1, s2, . . . , sn|r = R), is known. Basically,
by using this test, one can examine whether the number of
neural spikes s1, s2, . . . , sn is uncommon or infrequent with
respect to what is measured as normal to a given confidence
level α. The results of this test are in Sect. 6 and will be
compared to others.

One can argue that this test misses all the information
available during the stimulation window, although Fisherian
supporters would say this extra information is not necessary.
There is some debate about Fisherian testing versus other
tests (Christensen 2005), nevertheless it is not our goal to
enter the debate here.

The second statistical test, we consider derived from the
Neyman–Pearson lemma (Neyman and Pearson 1933).
Unfortunately, this test cannot be used on our experimental
data but is worth explaining to state what is missing in our
formulation. Neyman and Pearson show that the optimal test
function is the ratio of the likelihood functions corresponding
to the hypotheses. This statistical test is named the likelihood
ratio test and in terms of our problem can be formulated as

λ = L(r = R|s1, s2, . . . , sn)

L(r = R|s1, s2, . . . , sn)
≥ λc.
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We define the probability of having s1, s2, . . . , sn

responses in n different presentations of the same odor when
we know for a fact that there is response to the presented odor
as P(s1, s2, . . . , sn|r = R). The likelihood function L(r =
R|s1, s2, . . . , sn) corresponds to this conditional probability
function, P(s1, s2, . . . , sn|r = R), considered as a function
of its second argument with its first argument held fixed in the
observed sample of the experiment. We can use the analogous
conditional probability, P(s1, s2, . . . , sn|r = R), in order to
calculate the likelihood function L(r = R|s1, s2, . . . , sn)

in the context of the null hypothesis. Within traditional tail-
testing, we can reject the null hypothesis when λ ≥ λc, where
λc is determined by a confidence level P(λ ≥ λc|R) = α ≤
1/λc (Dempster 1997).

In order to apply the likelihood ratio test, we need to cal-
culate the likelihoods of the hypotheses. We need to esti-
mate the conditional probabilities P(s1, s2, . . . , sn|r = R)

and P(s1, s2, . . . , sn|r = R). While we can comfortably
assume that P(s1, s2, . . . , sn|r = R) is equivalent to the
baseline activity, the density P(s1, s2, . . . , sn|r = R) is out
of reach because it is not necessarily possible to force a neu-
ral response by means of external stimulation. This is the
main problem that makes impracticable the application of a
likelihood ratio test to decide if a neuron is responsive or not
to a given stimulus.

To avoid these problems, we develop a different approach
which is based on a data-driven Bayesian framework. The
Bayesian approach enables the estimation of a bound on
the probability of having a response. This is an additional
advantage in contrast to straightforward Fisherian testing. In
order to infer a possible positive response to perturbation, we
observe some random variable of this system, i.e. an observ-
able that we will name O . An observable is a property of
the system state that can be determined by some sequence
of physical measures. Therefore, the density P(r = R|O =
o, S = s) is the probability of a neural response given a spe-
cific observation O = o of the system and the specific stim-
ulus applied S = s. When this probability is close to one, the
system has a positive response to the applied stimulus. The
complementary probability or negative response probability,
r = R, to the stimulus is given by P(r = R|O = o, S = s)
= 1 − P(r = R|O = o, S = s). Let us apply Bayes’ the-
orem (P(A|B)P(B) = P(B|A)P(A)) to the conditional or
posterior probability P(r = R|O = o, S = s) to obtain

P(r = R|O = o, S = s)

= P(O = o|r = R, S = s)P(r = R|S = s)

P(O = o|S = s)
, (1)

where P(r = R|S = s) the “prior” probability for the non-
response random variable. It is “prior” in the sense that it
does not take into account any information about the stimu-
lus. The estimation of P(O = o|r = R, S = s) represents

the probability distribution of the observable when we know
for a fact that the system does not respond to the stimulus.
At this point, we count on the probability distribution of the
observable in the absence of the stimulus (i.e. S = no), which
is the resting state or baseline activity of the system and is
available in our data set. Then, we can write P(O = o|r =
R, S = s) = P(O = o|S = no). This equality follows
from two assumptions: if the system is not responding to a
specific stimulus, it may be because (i) the stimulus is actu-
ally absent (i.e. P(O = o|r = R, S = s) = P(O = o|r =
R, S = no)); or, (ii) because the observation o is indeed irrel-
evant whether the system responds or not in the absence of
stimulus, which is to say that P(O = o|r = R, S = no) =
P(O = o|S = no).

In a great variety of problems, another unknown proba-
bility which is difficult, if possible, to estimate is the “prior”
probability P(r = R|S = s). However, we know that P(r =
R|S = s) ≤ 1 such that

P(r = R|O = o, S = s) ≤ P(O = o|S = no)

P(O = o|S = s)
. (2)

Finally, we can express the complementary probability for
no response as

P(r = R|O = o, S = s) ≥ 1 − P(O = o|S = no)

P(O = o|S = s)
. (3)

We name the right-hand side of this equation as the lower
bound of the probability of positive responses to the stimu-
lus. In the following section we specify the lower bound for
the problem which is needed to estimate the sensitivity of the
neuron responses.

4 Derivation of the lower bound of the response
probability to odors

We are going to describe the estimation of the response prob-
ability for the example of insect odor stimulation. The prob-
abilistic framework can be adapted to detect generic neural
responses to any external stimulation. Let us start by defining
the window where we can measure the conditional response
to a external stimulation. This probability estimation will be
used later to determine whether a neuron responds or not to
the stimulus and will be compared to Fisherian testing and
to another standard method.

A given neuron can spike s times in a time window of
∆t p seconds where s = [0,∞), and the index p denotes the
time placement of the window measured in seconds from the
beginning of the trial. For instance, in Fig. 2, two examples
of ∆t p = 1.5 s located at times p = 3 and 3.5 s, respec-
tively (∆t3 and ∆t3.5) are shown. To determine whether a
given activity is the result of noise or indeed due to the
applied stimulus, we first analyze the baseline activity of
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individual neurons. We denote by R the event that represents
the response of the neuron to the odor, and R is the lack of
response to the external stimulation. We then proceed to esti-
mate the probability of having s responses given that the odor
is not present for all the KCs under analysis. We calculate the
probability that a neuron responds given a specific odor and a
set of spike observations s1, s2, . . . , sn in n different presen-
tations of the odor, that is, P(R|s1, s2, . . . , sn, odor). Hence
odor in the formula represents a particular odor from the
space of all possible odorant stimuli. As we will see below
it is easier to tackle the problem if we calculate P(R|s1,

s2, . . . , sn, odor) and then use it to estimate a lower limit of
the response probability.

In order to calculate the probability P(R|s1, s2, . . . ,

sn, odor), we apply Bayes’ theorem (P(A|B)P(B) =
P(B|A)P(A)) to obtain

P(R|s1, s2, . . . , sn, odor)

= P(s1, s2, . . . , sn|R, odor) P(R|odor)

P(s1, s2, . . . , sn|odor)
.

As explained in the previous section, the estimation of
P(s1, . . . , sn|R, odor) captures the activity of the neuron
when we know for a fact that there is no response to the
odor. Since we count on the baseline activity, we can assume
that it is equivalent to estimating P(s1, s2, . . . , sn|R, odor =
baseline). In other words, we take the baseline activity as an
estimator of the typical activity to R to an odor. Let us con-
tinue by using P(s1, s2, . . . , sn|R, odor) = P(s1, s2, . . . ,

sn|baseline). The event si depends on the previous events
(si−1, . . . , s1), which means that P(s1, s2, . . . , sn|odor) =
P(s1|odor)

∏n
i=2 P(si |si−1, . . . , s1|odor). It is the case that

for a given odor presentation we have a unique sequence
(sn, . . . , s1) which is not enough to build an estimation of the
conditional probability. If the stimulus presentations are well
separated in time the assumption of statistical independence
can be appropriate. Nonetheless, there can be some other
processes in the system as a result of adaptation and learning
that can carry over correlations. In order to account for this
situation we can use a first order dependence P(s1, s2, . . . ,

sn|odor) = P(s1|odor)
∏n

i=2 P(si |si−1, odor). As we will
show on the analyzed data set, there may be no need for this
addition, but we include it in the formulation for the sake
of the generality of the response probability derivation. One
could use higher order dependencies as well, but this requires
larger amounts of data to populate the conditional probabil-
ities.

Using the first order dependence we obtain:

P(R|s1, s2, . . . , sn, odor)

= P(s1|baseline)
∏n

i=2 P(si |si−1, baseline) P(R|odor)

P(s1|odor)
∏n

i=2 P(si |si−1, odor)
.

(4)

The probability P(si |si−1, odor) will be estimated for dif-
ferent time window sizes, ∆tp, from different starting points
after the odor presentation in 10 different trials of the same
odor. The a priori probability of having a response given a
specific odor, P(R|odor) = 1 − P(R|odor), is unknown.
However, we do not need this prior, because the lower bound
on the probability distribution masks it. We know that

P(R|s1, s2, . . . , sn, odor)

≤ P(s1|baseline)
∏n

i=2 P(si |si−1, baseline)

P(s1|odor)
∏n

i=2 P(si |si−1, odor)
. (5)

Since we want to determine whether a given KC responds to
the odor, we fix a probability response bound pr such that

P(R|s1, s2, . . . , sn, odor) ≥ pr ,

which together with (5) and the fact P(R|s1, s2, . . . , sn,

odor) = 1 − P(R|s1, s2, . . . , sn, odor) leads to

P(R|s1, s2, . . . , sn, odor)

≥ 1 − P(s1|baseline)
∏n

i=2 P(si |si−1, baseline)

P(s1|odor)
∏n

i=2 P(si |si−1, odor)
≥ pr .

As a result, every KC that fulfills the above inequality is
declared as being responsive to the odor with at least pr

probability value. We define the lower bound estimator of
P(R|s1, s2, . . . , sn, odor) as:

Φ(R|s1, s2, . . . , sn, odor)

= 1− P(s1|baseline)
∏n

i=2 P(si |si−1, baseline)

P(s1|odor)
∏n

i=2 P(si |si−1, odor)
≥ pr .

(6)

In other words, first we set the probability response bound
pr and then we build up the probability distributions in the
absence of the odorant P(si |si−1, baseline) and under its
presence P(si |si−1, odor). Then, we calculate Φ(R|s, odor)
at a specific odor presentation for the given KC.

For our particular data set, the correlations from one pre-
sentation to the next are very small. The time separation
between presentations is long enough and the activity of
the neurons is very low. In addition, when the Kolmogorov–
Smirnov test is run to reject the hypothesis that P(si |si−1) =
P(si ) for all the KCs we do not find a KC that can reject the
hypothesis at the 10% significance level. In fact, the average
p-value is 0.8 for the baseline activity and 0.7 during odor
stimulation.

Therefore, the inequality (6) can be expressed in a simpler
form as

Φ(R|s1, s2, . . . , sn, odor)

= 1 −
∏n

i=1 P(si |baseline)
∏n

i=1 P(si |odor)
≥ pr . (7)

The main advantage of the lack of correlations across trials
is that the conditional probabilities can be populated with
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Fig. 3 Sensitivity curve calculated from the recorded KCs when 17
different odors were presented to the antennae of the locust for 1 s each
(see Sect. 2). The discrete sensitivity distribution for a specific high
baseline value of 12 s is presented as bars. We used for this analysis a
time window of ∆t3 = 1 s. The response bound was pr = 0.99. It is
the lower bound of the probability of having the neuron respond to a
given odor. We use a Gaussian distribution with dispersion equal to 0.6
to smooth the discrete sensitivity distribution

fewer trials. To calculate the lower bound estimator in the
above equation we need to estimate the probability distribu-
tions P(si |baseline) and P(si |odor). Although it is common
to assume that neurons follow a Poisson process, the MB
neurons do not follow a Poisson distribution. As suggested
by Kass et al. (2005) and Brown et al. (2004), instead of
assuming a parametric probability distribution (as used, for
example, in Bayesian decoding schemes) we use direct boot-
strapping to obtain non-parametric distributions.

Bayesian bootstrap with non informative priors has been
used to estimate posterior distributions (Donald 1981). Para-
metric probability distributions can be handled theoretically,
but for this paper, we opted out of that path and decided to
pursue the avenue opened by Kass et al. (2005). In Fig. 3 we
calculate a typical sensitivity curve from the recorded KCs
when 17 different odors were presented to the antennae of
the locust for 1 s each (see Sect. 2). As we defined in Sect. 3,
neural sensitivity is the probability that a neuron responds to
n out of N odors, P(n|N ). In other words, P(n|N ) is the
number of neuron responses divided by the total number of
available neurons in the experiment. The neuron responses
used in this sensitivity curve have been calculated using the
above formalism for a specific time window of ∆t3 = 1
and probability response bound pr = 0.99. In this example,
the maximal sensitivity corresponds to a two-odor response.
The next significant bump in this curve corresponds to a
positive response of 9 odors out of the 17 presented during
the experiment. One can see that this event is less likely than
the response to two odors. Basically, we can see that most
of the KCs are sensitive to two odors, while there are others
that have a broader tuning.

Fig. 4 Sensitivity surface as a function of the time window ∆t3. We
use a Gaussian distribution with dispersion equal to 0.6 to smooth the
sensitivity distribution. One can see the difference between the transient
stage (for values of ∆t3 between 0.1 and 1.0 s) and the stationary state
(see blow up in figure for values of ∆t3 between 1.0 and 2.0 s)

5 Estimating the conditional response to Kenyon cell
data

We have used several KC recordings published in
Perez-Orive et al. (2002) in order to build a distribution of
the sensitivities of the KCs to odor’s presentation. Each neu-
ron responded to a percentage of the presented odors. At
every data point in the sensitivity distribution, we placed a
Gaussian distribution to densely populate the curve. We ana-
lyzed spike recordings of 43 KCs from 6 experiments, in
which 17 odors were presented to the animal. For each odor
10 trials were recorded.

The goal of the analysis is to determine the level of sen-
sitivity of the KCs as a function of the time interval ∆t p

(see Sect. 4). In Fig. 4 we show that for small sizes of ∆t3

(between 0.1 and 1.0 s) there is a transient in the sensitivity
curves. At the early stages of the odor presentation the KCs
are very selective. After half-a-second, the KCs widen their
selectivity to quite a few odors. Thus the response curves
become quite stationary for sizes, ∆t3, between 1.0 and 2.0
sec. To analyze the transient response after odor stimulation
we run the response window, ∆tp, at different starting points
between p = 3 and p = 4.6 with constant ∆tp = 1. This
helps in understanding the temporal coding properties of the
KC response. In the initial stages, the KCs are very selective
to the odors (see Fig. 5), but after half-a-second, the selec-
tivity to odors broadens (see right panel in Fig. 5). Thus, the
KCs become more sensitive to more odors as time passes.
After the odor is removed, the selectivity distribution returns
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Fig. 5 a The sensitivity as a
function of the placement of the
time window at time t . The size
of the sliding window is 0.5 s.
This graph helps to elucidate the
role of time during the transient
response to odors in the KCs.
b A blow up for values of
number of odors between 6 and
17. c The maximum number of
odors that the neurons respond
to as a function of the placement
of the time window. It follows
that the sensitivity of some
neurons becomes broader in
time

Fig. 6 An example of a spike raster for one KC. The time window used
was ∆t3 = 1 s (indicated by vertical bars). In the PSTHs, we show the
probability distributions used to calculate the lower bound estimator. Φ
on (7). The values of the factorized probabilities can be seen in Table 1.
These probabilities are estimated by means of a bootstrap procedure
(see for details Efron 1979). This neuron responds significantly for this
particular odor with the lower bound of the probability response to 1.0.

The right panel is a baseline control for the same neuron. 1 − Φ is
represented on a logarithmic scale as a function of the placement of
the time window. It can be seen that the maximal reliability occurs pre-
cisely on the window of the stimulation. The dashed line corresponds
to a probability response bound of pr = 0.99. All the points that are
below this line are classified as responses

slowly to normal. The reason is that the AL is known to pro-
duce complex spatio-temporal patterning after odor removal
(see Mazor and Laurent 2005 for details).

5.1 An example of the calculation of neuron response
probability

To illustrate the neural response calculation, let us show
an example of our method applied to a specific neuron. In
this example, we choose a time window of ∆t3 = 1. In
Fig. 6, the spike raster and its peristimulus time histograms
(PSTHs) are depicted. The calculation for the lower bound
estimator of response probability gives us a value of

Φ(R|s1, s2, . . . , sn, odor) = 1, which means that this KC
responds with high probability to the specific odor presen-
tation. One can see that the KC is significantly excited by
the stimulus. In the corresponding PSTHs, one can see the
probability distributions used to obtain the lower bound esti-
mator, Φ. The factors of these probability distributions of (7)
are calculated by means of a bootstrap procedure and some
of them are shown in Table 1. The right panel in the same
figure represents the control for the baseline activity. We cal-
culate the lower bound estimator (1-Φ) as a function of the
placement of the time window response at time t . The max-
imal probability of the response is precisely situated on the
stimulation period.
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Table 1 Non-parametric probability distributions calculated through a
bootstrap procedure from the spike rasters shown on Fig. 6

# of spikes in ∆t3 = 1s P(s|odor) P(s|baseline)

s = 0 0.1019 0.846327

s = 1 0.2045 0.119967

s = 2 0.3976 0.026

s = 3 0.0962 0.00680667

s = 4 0.1998 0.0

We use these distributions to calculate the lower bound estimator, Φ, of
P(R|s1, s2, . . . , sn, odor)

6 Method comparison

A method commonly used to detect whether a neuron
responds to a stimulus or not consists of measuring the mean
firing rate over fixed periods of time during baseline activ-
ity. This set of mean firing rates is used to estimate the
standard deviation of the baseline activity. For example, in
Perez-Orive et al. (2002), neural baseline statistics were used
as a reference to determine a yes/no response. When the
stimulus is presented, if the firing rate becomes significantly
higher than the baseline activity then it is said that the neu-
ron has fired. The arbitrary part of the method is to deter-
mine how much significance is needed. The strategy consists
of fixing n times the standard deviation and then by “visual
inspection” determining whether it is good enough. This stan-
dard method resembles Fisherian or tail testing under the
assumption that the firing distribution respect to the baseline
activity is Gaussian. Then the confidence level to reject the
null hypothesis (baseline activity) is 1

2 (1 − er f (n/
√

(2))).

This method itself does not provide an estimate or proba-
bility of how accurate the arbitrary determination of n is.
Rather than relying on visual inspection, the most straight-
forward method is Fisherian testing directly calculated from
P(s1, s2, . . . , sn|r = R) as mentioned in Sect. 3. In addition,
one can use our lower bound estimation (7) as an alterna-
tive that provides more information about the probability of
response of a neuron.

In the Fig. 7, we present the overall comparison among
all methods. We use the same critical values for all methods.
For our method, we chose the different probability response
bounds of pr = 0.9, 0.99. In the standard method, we use
1.281 and 2.326 standard deviations which correspond to
90 and 99% of Gaussian area respectively. Last, we have
introduced the standard tail test (see Sect. 3) as the lower
bound in the comparisons using values of α = 0.1, 0.01.
Black boxes in each panel mean that a response to the odor
exists. One can see that the probability bound method is the
most restrictive of the three in assessing whether a neuron
responds to certain stimulus. For instance, our method gives
a total of 197 responses for pr = 0.99. The standard method
has 236 for the equivalent case and 250 for the Fisherian
test. All the responses produced by the lower bound limit
for pr = 0.99 are present in the Fisherian testing, while
there are three cases that differ with respect to the standard
method (nSDs = 2.326). In the same figure, it is observed
that the Fisherian test is least restrictive. Remember that the
Fisherian test only has information about the probability dis-
tribution of spikes in the baseline, P(s1, s2, . . . , sn|r = R).
In this sense, the Fisher test is a mask for the lower bound
method. However, the lower bound method with additional
information during the stimulation window makes the deci-
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Fig. 7 Here we provide a direct comparison among the lower bound estimation (pr = 0.9, 0.99), the standard method of n standard deviations
(nSDs = 1.281, 2.326) and the Fisher test (α = 0.1, 0.01). The sensitivity curve for pr = 0.99 is plotted in Fig. 3. The stimulus time window
used was ∆t3 = 1 sec
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sion process more restrictive. Additionally, when one com-
pares the different methods it can be estimated by visual
inspection which is the probability of response that corre-
sponds to the arbitrary selection of the n times the standard
deviations or the α parameter for the Fisherian test. We can
see that values of 2.326 standard deviations and α = 0.01
for the Fisherian test are associated with a probability of
response less than pr = 0.9. This provides an idea for the
cutoff for response probability when one chooses parameters
in the other methods.

Within the scope of the methods analyzed in this work
there are techniques based on statistical change-point detec-
tion. They are normally used to estimate the latency of the
neural response after presentation of a stimulus (Commenges
and Seal 1985; Friedman and Priebe 1998; Ritov et al. 2002).
A useful approach for detecting abrupt changes in the spike
activity in real time is given by Ratnam et al. (2003). This
method requires knowledge of the the nature of the interspike
interval (ISI) probability distribution to compute the detec-
tion delay of the neural abrupt response to specific stimuli.
The method needs some assumptions about the probability
distribution of ISIs before and after presentation of a stimulus
(normally the gamma distribution). With these assumptions
this method is optimal for solving the detection problem for
neural responses to stimuli when we have independent and
identically distributed samples of ISIs before and after pre-
sentation of a stimulus. In our current approach, we did not
want to make assumptions regarding the parametric structure
of the probability distribution.

Determining which method works best depends on many
factors related to the assumptions of the parametric depen-
dence of the probability distributions, the amount of data, and
the system under analysis. It is possible that the best answer
to this problem is to use combinations of methods to gain
confidence in decisions about neural responses. The method
proposed in Sect. 4 does not assume a parametric probability
distribution for spike trains and it also gives a bound for the
response probability.

7 Conclusions

We propose a novel method to estimate the sensitivity of
neural responses by using the lower bound of the response
probability. As discussed in Sect. 3, we can circumvent the
problems derived from likelihood ratio testing (determining
the conditional probability distribution to the stimulus and
the prior probabilities) by estimating a lower bound of the
probability of response and the use of data-driven methods
to calculate the probability distributions.

The application to the spiking neurons of the locust MB
is just an example. The method can be applied to any record-
ings of neural responses in the presence and the absence of

stimuli. It can be applied to very active spiking neurons or
sparse ones. It can also provide high-resolution detection of
whether the response is significantly above or below baseline
activity.

In addition to the conclusions drawn in Perez-Orive et al.
(2002), it has been shown that the KCs of the MB have
distinct patterns of selectivity depending on whether they
fire at the beginning of the simulation (transient dynamics)
or at the very end (fixed point). During the transient, KCs
are extremely selective while at the end they become more
broadly tuned to different odors (see for details Fig. 4). This
fact suggests that initial stages of the recognition phase car-
ried out in the MB has mostly a quick discriminative role
while at the end of the stimulation a more integrative repre-
sentation is used. The fact that different neurons are broadly
tuned allows the system to produce associations between dif-
ferent odors, and permits the extraction of common features
across odors.

Finally, we would like to add that, in the process of under-
standing neural coding and its function, the quantification of
neural sensitivity can reveal insights into cortical function.
If neurons with low sensitivity dominate, one could suggest
the existence of an area whose main function is discrimina-
tion. On the other hand, high sensitivities (generalists) may
indicate abstraction or predictive areas.
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