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Modeling the Cellular Response of Lung Cancer to Radiation 
Therapy for a Broad Range of Fractionation Schedules
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Andrew N. Fontanella1, Shyam S. Rao4, and Joseph O. Deasy1,*

1Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 
New York, NY 10065, USA 2Department of Radiation Oncology, The Netherlands Cancer 
Institute, Postbus 90203, 1006 BE, Amsterdam, The Netherlands 3Department of Radiation 
Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, MO 63110, 
USA 4Department of Radiation Oncology, University of California, Davis Comprehensive Cancer 
Center, 4501 X Street, Sacramento, CA 95817, USA

Abstract

Purpose—To demonstrate that a mathematical model can be used to quantitatively understand 

tumor cellular dynamics during a course of radiotherapy, and to predict the likelihood of local 

control as a function of dose and treatment fractions.

Experimental Design—We model outcomes for early-stage, localized non-small cell lung 

cancer (NSCLC), by fitting a mechanistic, cellular dynamics-based tumor control probability that 

assumes a constant local supply of oxygen and glucose. In addition to standard radiobiological 

effects such as repair of sub-lethal damage and the impact of hypoxia, we also accounted for 

proliferation as well as radiosensitivity variability within the cell cycle. We applied the model to 

36 published and 2 unpublished early stage patient cohorts, totaling 2701 patients.

Results—Precise likelihood best-fit values were derived for the radiobiological parameters: α 
(0.305 Gy-1; 95% CI: 0.120-0.365), the α/β ratio (2.80 Gy; 95% CI: 0.40-4.40), and the oxygen 

enhancement ratio (OER) value for intermediately hypoxic cells receiving glucose but not oxygen 

(1.70; 95% CI: 1.55-2.25). All fractionation groups are well-fitted by a single dose-response curve 

with a high χ2 p-value, indicating consistency with the fitted model. The analysis was further 

validated with an additional 23 patient cohorts (n=1628). The model indicates that 

hypofractionation regimens overcome hypoxia (and cell-cycle radiosensitivity variations) by the 

sheer impact of high doses per fraction, whereas lower dose-per-fraction regimens allow for 

reoxygenation and corresponding sensitization, but lose effectiveness for prolonged treatments due 

to proliferation.

Conclusions—This proposed mechanistic tumor-response model can accurately predict over-

treatment or under-treatment for various treatment regimens.

*Corresponding author: Joseph O. Deasy; Address: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 
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Introduction

Until recently, the standard treatment for lung cancer, even localized disease, has been to 

give 60 Gy total in 30 weekday fractions, with poor resulting local control rates (1,2). 

However, the ongoing trend towards hypofractionated radiotherapy (called stereotactic body 

radiation therapy, or SBRT), for early stage disease, has resulted in a range of higher rates of 

local disease control (3–7), often as high as 95%. In SBRT, advanced imaging localization 

and immobilization techniques are used to deliver dose distributions that are highly 

conformal to the disease target volume, while exposure to the surrounding normal tissues is 

reduced due to the use of multiple converging beams. SBRT is mostly prescribed for 

localized, early stage tumors requiring limited treatment volumes thereby resulting in 

tolerable normal tissue damage. However, the precise dose and number of fractions needed 

have not been well-established and a wide variety of dose-fraction schemes are currently 

employed.

The goal of this research is to address this need, at once providing a quantitative model to 

predict the likelihood of local control for different fractionation schemes while also moving 

towards a more mechanistic radiobiological understanding of tumor response to radiation 

therapy.

Previous efforts to model the likelihood of local control for early stage lung cancer divide 

into two categories that can be labeled empirical or mechanistic. Empirical models usually 

invoke a fitted linear + quadratic dependence on fractional dose (the so-called L-Q model), 

sometimes adding an empirical proliferation effect (8–11). Empirical models typically yield 

shallow dose response curves, resulting in limited clinical usefulness. The dispersion of data 

points around such models is typically large, indicating that the data cannot be drawn from 

(i.e., “explained by”) the proposed empirical distributions (12). Mechanistic models of the 

tumor cellular response to radiotherapy have been previously published for multiple tumor 

sites (13–16). However, none has been fit to extensive clinical datasets.

Our model introduces the driving assumption that hypoxia vs. proliferation is mediated via a 

local competition for chemical resources (17). Furthermore, we explicitly introduce a 

category of cells experiencing intermediate levels of hypoxia in which glucose, but not 

oxygen, is adequately present to provide metabolic viability. Thus, we go beyond the model 

of Borkenstein et al., who stated: “Intermediate levels of hypoxia, resulting in a gradient in 

proliferative activity and intermediate OER (oxygen enhancement ratio) values, are not 

accounted for, even though they are considered to be important for tumor response” (14).

In non-mechanistic models, a repopulation term is sometimes included in the cumulative 

dose effect calculation based on exponential clonogen repopulation for overall treatment 

times longer than an ad hoc “kick-off” time, typically fixed as 3-4 weeks (18). This 
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repopulation effect emerges in a natural way in our model, which eliminates the need for the 

ad hoc assumption.

The ability of the L-Q model alone to describe cell kill at high fraction doses (greater than 

about 10 Gy), as used in SBRT, has been questioned, leading to proposed modifications of 

the basic cell kill equations (7,19). However, when only a few fractions are given, our 

modeling predicts it is the hypoxic cells that are most important in determining response. In 

this case, the dose effect for hypoxic cells is scaled by 1/OER (20). Thus, if we take into 

account hypoxia, the L-Q equation can still be used (21–23).

Several important studies support the argument showing that there might be other 

tumoricidal effects at high fraction size, including direct vascular damage (24,25) and 

potential immune induction effects (26). Our approach is to leave out these partially 

understood effects to see if they are required to quantitatively model early stage lung cancer 

response.

In this study, we apply the previously developed tumor response model with additional cell 

cycle effect to the extensive clinical outcome data of lung cancer to see if the model based 

on classical radiobiological effects can accurately predict the tumor response likelihood of 

the various fractionation schemes.

Materials and Methods

State-driven tumor response model

A previously developed, time evolution state-driven tumor response model was used to 

simulate a wide range of fractionation regimens (17). The model assumes that a given 

contiguous fraction of the tumor is fed by a supply of chemical resources, which remains 

constant over a course of radiotherapy. Cells are distributed between three compartments: 

proliferating (P), intermediate (I), and (extremely) hypoxic (H) compartments, as shown in 

Figure 1A. Proliferation takes place in the P-compartment, which is assumed to receive 

enough oxygen and glucose to support intermittent cell cycle progression. Cell loss takes 

place in the highly hypoxic H-compartment, which is assumed to receive no oxygen or 

glucose. In the I-compartment, which recieves glucose but not oxygen, neither proliferation 

nor cell loss is assumed to take place (27). A fraction of cells in the P-compartment 

constantly proliferate. Radiotherapy is assumed to doom cells consistent with the L-Q 

model. This results in “doomed” cells that have lost indefinite proliferation capacity after 

sterilization. Thus, each compartment also has a doomed cell sub-compartment. As shown in 

Figure 1B, following the post-mitotic cell death and clearance of proliferating cells, cells in 

the intermediate compartment begin to receive oxygen and therefore move into the 

proliferative compartment. At the same time, any surviving hypoxic-compartment cells 

move into the intermediate compartment (Figure 1C). This naturally results in the process of 

reoxygenation over a course of radiotherapy, allowing us to evaluate treatment response of 

various fractionation schemes based on the interplay between hypoxia and proliferation.
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For the large fraction size in SBRT, known cell cycle variations in radiosensitivity could 

potentially be important (28,29) and have been added to the model in terms of effective 

radiosensitivity and effective OER, as described below.

Effective radiosensitivity and OERs based on the cell cycle

The variability of radiosensitivity within the cell cycle has long been recognized (31–35). In 

general, cells in the S-phase (especially late S-phase) are known to be the most 

radioresistant, and cells near mitosis (G2/M-phases) are known to be most radiosensitive. 

Although the radiosensitivity of the early G1-phase can be as high as the S-phase for cells 

with long G1-phase times, the radiosensitivity of the G1-phase is generally in between those 

two phases (S and G2/M) (36).

To account for the cell cycle effect on radiosensitivity, the population of proliferating tumor 

cells is decomposed into three subpopulations (G1, S, and G2/M). The standard L-Q model 

was used to calculate the survival fraction (SF) as shown in the following equation:

[1]

where α and β are the radiosensitivity parameters in the L-Q model and d is the fractional 

dose.

The total survival fraction for a given fractional dose is obtained as a weighted summation of 

survival fractions of the three subpopulations, from which the effective radiosensitivity 

parameters (αeff and βeff) can be estimated as shown in equation 2. The effective 

radiosensitivity is dependent on both the fraction of cells and the radiosensitivity in each cell 

cycle.

[2]

where, αeff and βeff are the effective L-Q parameters, d is the fractional dose, and fX, αX and 

βX are the fraction of cells, linear parameter, and quadratic parameter for a given cell cycle 

X (G1, S, or G2/M).

Increased radioresistance of hypoxic cells can be quantified in terms of the OER, which is 

the ratio of the required dose in hypoxic conditions to the dose in normoxic conditions (37). 

Carlson, et al. have shown that the dependence of radiosensitivity on alpha and beta 

coefficients is inversely related to the first and second order of the OER, respectively (20). In 

the current study, for simplicity, all the hypoxic cells are considered to be in a non-

proliferating (quiescent) state (38), and therefore, have constant radiosensitivity. Based on 

Jeong et al. Page 4

Clin Cancer Res. Author manuscript; available in PMC 2018 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the OER value applied to conventional 2 Gy/fx (OERref), the effective OER (OEReff) can be 

found as a function of the fractional dose, as given in the following equation:

[3]

where SFhyp is the survival fraction of hypoxic cells, αeff and βeff are the effective L-Q 

parameters derived from the normoxic cells in the cell cycle (Eq. 2), OEReff is the dose 

dependent effective OER value, αref and βref are the reference L-Q parameters at 2 Gy/fx, 

and OERref is the reference OER value at 2 Gy/fx.

Model parameters for lung cancer

A few key variables are fitted to the data, but most model parameters do not have a 

significant impact on the model fit, and are therefore set once based on other publications or 

plausibility. In the model, the relative degree of proliferation vs. hypoxia-caused cell death is 

determined by the initial size of each compartment, derived through exact algebraic 

relationships with the well-known parameters of initial growth fraction (GF) and initial 

volume doubling time (TD). Representative GF and TD values of 0.25 and 100 days, 

respectively, were used for the simulation, based on measured data for lung cancer (39,40). 

The cell cycle time (TC) was assumed to be two days. The cell cycle distribution was taken 

as 78%, 12% and 10% for G1-, S-, G2/M-phases, respectively, based on a flow cytometric 

analysis of 187 surgical specimens of non-small cell lung cancer (41). Because the exact cell 

cycle-dependent radiosensitivity values are not available for lung cancer, the ratios of 

radiosensitivity of G1- and G2/M-phases, with respect to the most resistant S-phase, were 

taken to be 2 and 3, respectively, (αG1/αS=2 and αG2/M/αS=3), based on the radiosensitivity 

analysis of synchronized cell populations (32,33). The radiosensitivity of each cell cycle 

phase was therefore derived from the overall fitted radiosensitivity value (42).

The OER value at 2 Gy/fx for the H-compartment cells was expected to be significantly less 

than the theoretical maximum of about three, considering the lower OER observed of G0/G1 

phase and reduced repair capability of chronically hypoxic cells (43). Parameter values used 

for the model simulation were summarized in Table 1. The α value, the α/β ratio, and the 

OER value for intermediately hypoxic cells (OERI) were derived by fitting the dataset.

Clinical outcome data

Individual clinical outcome data included in the study of Mehta et al. were reviewed and 

filtered with the goal of increasing consistency (44). Patient cohorts were separated into 

three groups: conventional fractionation RT (1.8-3 Gy/fx); SBRT with several fractions 

(3-10 fxs); and single-fraction SBRT. The cohorts of conventional RT included in Mehta et 
al.'s analysis exhibit excessively heterogeneous outcomes in a narrow dose range, which 

makes the comparison with other groups difficult. For consistency within the group, trials 

were excluded that: used fraction sizes larger than 3 Gy/fx; used twice-a-day fractionation 

(bid); or used split course RT, as indicated in Table S1. This resulted in nine excluded 
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cohorts. We also included three additional cohorts in the conventional group with two from 

our institutions. A total of 38 cohorts (2701 patients) were included in the analysis, 

comprised of 10 conventional, 22 multi-fraction SBRT, and 6 single-fraction SBRT cohorts, 

as summarized in Table S2.

From each cohort, detailed treatment and outcome information was extracted for model 

simulation and analysis, including the number of patients, total dose, fractional dose, 

number of fractions, treatment schedule, dose prescription method, and local control rate. 

Some cohorts employed multiple fractionation schemes, but reported only the integrated 

total outcome. For those, separate fractionation schemes were simulated with the model and 

the population-weighted mean was used to represent the whole cohort. When separate 

outcomes were available for different fractionation schemes, the patient cohort was divided 

into separate cohorts.

Since SBRT dose distributions are not uniform, fractional doses at the center and at the PTV 

margin were averaged and used as the representative dose in the model simulation, which 

assumed a homogeneously irradiated tumor. For example, when a 10 Gy fractional dose was 

prescribed to the 80% isodose encompassing the PTV, the maximum dose at the central PTV 

becomes 12.5 Gy, while the dose at the periphery of the PTV is 10 Gy. The prescribed dose 

inside the PTV is therefore between 10 and 12.5 Gy and we average these values (11.25 Gy) 

to represent the dose to the tumor. Analyses in which full dose-volume histograms are 

available would afford greater accuracy in this regard, but could only be carried out for 

smaller cohorts and a much more limited range of fractionation schedules.

Model-derived equivalent dose in conventional fractionation

In order to compare the outcomes of various fractionation schemes, the treatment effects of 

all non-standard regimens were normalized in terms of a model-derived equivalent dose in 

conventional fractionation (2 Gy/fx, 5 fx/week), for variable α/β ratios, e.g., for a ratio of 10 

(EQD210,model). The estimation of the EQD2α/β,model was carried out with two separate 

model simulations: first, an overall cell survival fraction was estimated based on the fraction 

size and the fractionation schedule; then, a corresponding conventional 2 Gy-fractionation 

schedule was simulated to find the dose at which the same level of stem cell surviving 

fraction would be achieved, resulting in a model-derived equivalent dose at 2 Gy/fx. The 

process is shown schematically in Figure 1D-E.

Dose-response curves

The maximum likelihood (MLE) method (see below) was used to find the best fit dose-

response curve, either for the total group or for separate fractionation groups. The slope of 

the dose-response curve (γ50) was fixed and assumed to be 1.5, which is known to be a 

clinically relevant value for NSCLC (42), which was found to adequately describe the data.

In radiotherapy, radiation dose is not the only factor that determines treatment efficacy. In 

reality, it might be difficult to achieve 100% of tumor control, even with a very high 

radiation dose, due to the potential to geographically miss a small fraction of occult cells. 

For example, Chao et al. summarized pathology reports showing the fall off of occult disease 

with increasing distance from the gross disease boundary (45). We observed empirically 
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that, even at the highest obtained effective doses, local control typically saturated at 95%, 

which was therefore set as an upper bound in the logistic model (46), as follows:

[4]

where TD50 is the tumor dose at which 50% of TCP is expected, γ50 is the slope of the 

curve at TD50, and D is the total dose of the treatment, which is EQD2α/β,model in this 

analysis.

To test the validity of the fit, chi-square tests were performed. A p-value close to unity 

would indicate the dose-response curve was statistically representative for the fitted data; in 

contrast, small p-values indicate that the dose-response curve is not statistically drawn from 

the observed data.

Fitted parameters: α, α/β, and OERI

Among the parameter values in the model, we found that the simulation results were most 

sensitive to radiosensitivity-related parameters such as the α value, α/β ratio, and OERI 

value. Therefore, data fitting focused on these assumed parameter values, as well as a TD50 

value. For possible ranges of these parameter values, simulations were performed to see if 

the dose responses of the different groups could be fit into a logistic function with a high log 

likelihood value in the scatter plot of the tumor control rate vs. EQD2α/β,model. The tests 

were performed iteratively for α values vs. α/β ratios and α/β ratios vs. OERI values, until 

all the values were stabilized with a maximum log likelihood value. The 95% confidence 

intervals of the parameter estimates were found through the profile likelihood method. 

Optimal fit values and uncertainty ranges are reported.

MLE method and the estimation of 95% confidence interval of TD50 value

For the m cohorts in each group, the overall log likelihood can be found from the following 

equation:

[5]

where, pi is the predicted TCP by the logistic fit, ni is the total number of patients, and yi is 

the number of patients with local control in each ith cohort.

For increasing TD50 values of the logistic curve with a fixed γ50 value of 1.5, the overall log 

likelihood values were found. The TD50 value that maximizes the overall log likelihood was 

searched and the 95% confidence interval was found according to the “profile likelihood 

method” (47,48).
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Results

Effective radiosensitivity and OER

For proliferating tumor cells in the P-compartment, the radiosensitivity of each cell cycle 

phase was estimated from equation 2, based on the relevant cell cycle phase distribution for 

lung cancer and the assumed ratios of radiosensitivities (αG1/αS=2 and αG2/M/αS=3). For 

the reference radiosensitivity of 0.35 Gy-1 at 2 Gy/fx, the radiosensitivity of each cell cycle 

was calculated to be 0.376, 0.188, and 0.564 for G1-, S-, and G2/M-phases, respectively.

Using the calculated cell cycle-dependent radiosensitivity values, the surviving fraction of 

cells in each cycle phase was estimated as shown in Figure 2A, along with the total 

surviving fraction. As the fractional dose increases, relatively sensitive cells in G2/M- and 

G1-phases are preferentially killed, followed at higher doses by more resistant cells in the S-

phase. Cells in the S-phase become dominant after about 5 Gy/fx and the total surviving 

fraction in the proliferative (P) compartment is mainly governed by the S-phase surviving 

fraction. From the overall surviving fraction, the effective alpha value was derived and 

presented as a function of the fractional dose in Gy as shown in Figure 2B. As the fractional 

dose increases, the effective alpha values decrease and approach the alpha value of the most 

resistant S-phase (αS).

Hypoxia was considered in the model with two hypoxic compartments (I- and H-

compartments). Since hypoxic cells were assumed to be only in G0/G1 phase (38,49,50), the 

surviving fractions of hypoxic compartments are determined by a single radiosensitivity 

value, while the surviving fraction in the proliferating compartment is composed of three 

different cell cycle phases (G1, S and G2/M) with different radiosensitivities. The survival 

fraction of each compartment is estimated as shown in Figure 2C. Due to the relatively 

resistant S-phase in the P-compartment, the slope of the surviving fraction of the P-

compartment becomes shallow as the fractional dose increases, and becomes similar to that 

of the H-compartment. Although the survival fraction of the I-compartment is still shallower 

than that of the P-compartment, the relative resistance decreases with the increasing 

fractional dose. This decreases the effective OER values for the hypoxic compartments, as 

shown in Figure 2D.

Estimated EQD210,model

Because α/β=10 is often quoted as a reasonable parameter for tumors, we included it as a 

reference. EQD210,model values were estimated through model simulation for all the non-

standard fractionation schemes. In Figures 1D-E, an example of EQD210,model estimation 

was shown for a SBRT regimen from Takeda et al. (30). The model simulation was 

performed for the SBRT regimen (11.3 Gy × 5 fxs in 9 days), in which the survival fraction 

was estimated to be 1.39×10-8 (Figure 1D). Another simulation with the conventional 

fractionation (2 Gy/fx, 5 fx/wk) was performed and the same level of survival fraction could 

be achieved at about 77.6 Gy (Figure 1E), from which the EQD210,model of the SBRT 

regimen was determined.

To compare the evaluated treatment efficacies of SBRT regimens between BED and 

EQD210,model, the ratio of EQD210,model/BED was computed with respect to the number of 
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fractions, the treatment duration, and fraction sizes. As shown in Figure S1, the ratio of 

EQD210,model/BED increased with a larger number of fractions, longer treatment duration, 

and smaller fraction size, due to cell cycle reassortment between fractions and increased 

reoxygenation with longer schedules. The largest differences were seen for single-fraction 

regimens, due to the impact of hypoxic cells, with ratios of about 0.5.

Derived dose-response curves

The EQD210,model values of the 38 cohorts were computed through model simulation and 

tumor control rates were fitted on a logistic function via the MLE method for the separate 

groups or the total group. For comparison, in Figure 3A, we plot results using values of 

α=0.35 Gy, the commonly quoted value of α/β=10/Gy, and an OERI value of 2. A grid 

search was performed to find the best fits. As supported by the resulting small uncertainty 

intervals, overfitting was not an issue given a dataset this large. Although the different 

groups follow clear logistic dose-responses, with different TD50 values, we find that 

combining all the fitted data points into a single logistic dose response curve yields a χ2-test 

of the fit yielding a p-value of much less than 0.001 (Figure S2A). This indicates that the 

data could not be drawn from the model with those parameters.

Parameter variability effects

Figures 3B and 3C show the landscape of best-fit log likelihood values for varying 

parameters. As shown in Figure 3D, when we choose optimal values of α, α/β, and OERI, 

all the best fit curves from the fractionation groups are closely aligned, which indicates that 

the fit is not driven by any single group and represents all three groups well. The best fit 

radiobiological parameters were α=0.305 Gy-1 (95% CI: 0.120-0.365), α/β=2.80 Gy (95% 

CI: 0.40-4.40), and OERI=1.7 (95% CI: 1.55-2.25). In units of EQD22.8,model, the TD50 was 

62.1 Gy (Figure S2B). Hence, a typical early stage lung tumor had a 50% chance of local 

control if given 62 Gy in 2 Gy/weekday fractions. As shown in Figure S2B, these parameters 

result in an excellent fit when using a single curve for all fractionation groups, with a high 

resulting χ2 test p-value (p≈1.00). Through the profile likelihood method, the 95% 

confidence intervals (95% CI) of the TD50 values were estimated for each group and the 

total cohorts, as shown in Figure S3.

Effect of dose calculation algorithm and follow-up time

The human lung is a very heterogeneous tissue, which causes secondary electrons set in 

motion by incident photons to be scattered with disparate distributions (51,52). Simple, ray-

trace algorithms are known to misestimate dose as well as underestimate required field 

widths (53,54). Hence, we might expect that dose calculation algorithms capable of 

modeling such differences (i.e., the convolution-superposition algorithm family) could 

provide dosimetric data that produces less residual error. Five cohorts were identified to have 

used more advanced dose calculation algorithms such as convolution or superposition 

algorithms. As shown in Figure 4A, those five cohorts showed better agreement with the 

dose-response curve, compared to other cohorts with a less accurate dose calculation 

algorithm.
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To test if differences in follow-up time affected the results, a plot of median follow-up time 

vs. the residual of the best logistic fit is shown in Figure 4B for 28 cohorts with available 

follow-up time information. No discernible pattern was noted for all groups, which 

establishes that ignoring differences in follow-up time was appropriate.

Validation of the model with additional dataset

For validation of the model analysis, more recently published outcome data were reviewed 

for stage I lung cancer treated with SBRT. Fifteen relevant studies were identified and 

included into the validation dataset, which is comprised of 23 different patient cohorts with 

1628 patients (Table S3). The best-fit parameter values derived from the original datasets 

were used for the modeling. As shown in Fig 5, the dose response curve derived from the 

original datasets perfectly fits the validation datasets with the Chi-squared p-value of 1.00.

Discussion

The motivation of this work is to establish the usefulness of a radiobiological model to 

describe and predict response to radiotherapy for localized lung cancer. The fitted results 

show that the model is successful in this regard, despite being an oversimplification of the 

response of complicated biological entities to non-uniform dose distributions given under 

widely-varying conditions. Despite this, for the first time, a mathematical model robustly 

reproduces tumor dose-response across the complete range of clinical fractionation 

regimens, which has been further validated with additional dataset.

To quantify uncertainty in the resulting dose-response curve for single-fraction SBRT, we 

plot the change in log likelihood of the overall fit when the TD50 is varied, assuming the 

other best-fit parameters are still valid. The result is that the 95% confidence interval 

envelope is relatively wide (53.0-67.3Gy); see Figure S3C. Thus, non-standard “new 

biology” effects could potentially emerge as a component to the lung dose-response curves, 

but only with the collection of further single fraction results will be able to clarify this 

situation. Nonetheless, in the absence of any disagreement between the model and single-

fraction clinical results, such effects should be considered theoretical.

The OER of hypoxic cells is a crucial variable in the model. Palcic and Skarsgard found that 

the OER is dependent on dose (55–57), and others have shown that the dose dependency of 

OER is a consequence of the variation of OER across cell cycle phases, for example Freyer 

et al. who showed that the OER of Chinese hamster ovary (CHO) cells was highest in S-

phase (2.8-2.9) and lowest in G1-phase (2.3-2.4) (58). As dose increases, the most resistant 

S-phase cells dominate the surviving fraction; this causes an increase of OER at a higher 

fractional dose.

Our in situ-derived value (OERI=1.70) is lower than the commonly quoted maximum of 

about 3, as measured in vitro, where cell cultures are, typically, briefly exposed to nitrogen 

or argon gas (55,57). However, there are several reasons to believe that the effective value of 

OER in a tumor is significantly less than the theoretical maximum of 3. Wouters and Brown 

discuss the importance of intermediately hypoxic cells, with effective OERs between 1 and 2 

(59). In tumors, the vast majority of (chronically) hypoxic cells are thought to be in a 
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quiescent, though metabolically active, phase, and cannot proliferate (38). Similarly, 

confluent (plateau phase) cell cultures, in which nutrient or space is limited to imitate the in 

vivo condition of the tumor, consist mostly of cells out of cell cycle (G0/G1-phase), and 

yields decreased OER values (38,60). Other studies show that cells in G0 might be more 

sensitive to radiation damage compared to cells in G1 (61,62). It has also been suggested 

that repair mechanisms for hypoxic cells are less effective than normoxic cells (43,63,64). 

Perhaps most saliently, cells experiencing chronic hypoxia have been shown to have OER 

values similar to what we find (65). Hence, our result of an OER of 1.7 for cells receiving 

glucose, but not oxygen, is consistent with established results.

In the model, the primary determinant of the surviving fraction following SBRT is the 

fraction of hypoxic cells in the intermediate compartment at the beginning of therapy, 

whereas 2 Gy/weekday regimens have the advantage of eventual reoxygenation and 

elimination of the hypoxic component. Because hypoxia reduces the effective dose seen by 

irradiated cells, departures from the linear-quadratic model that have been proposed to take 

effect at high doses are seemingly not relevant (66–68).

We freely acknowledge various uncertainties in model parameters. We assumed that a 

growth fraction of 25% and a tumor doubling time of 100 days would be representative. In 

fact, this data is not available for most human tumors and, although it is consistent with 

some publications (39,40), there is also undoubtedly substantial heterogeneity in the 

parameters, within and between tumors.

Recently, it was argued that SBRT outcomes are consistent as conventional RT (using the L-

Q model) without considering hypoxia or proliferation (44). However, we previously 

addressed this, having shown that the proposed dose-response curve was not a good 

statistical fit to that dataset (12). Our model p-values show that the available data is entirely 

consistent with our mechanistic model. Other papers have attempted to model the same or 

similar datasets (69,70). However, those papers show poor fits overall (with no computed fit 

p-values), with much wider uncertainties on fitted parameters. When those models were 

applied to our dataset, both models provided poor fits with very low p-values (p<0.001), as 

shown in Figure S4.

It has been proposed that vascular endothelial cell damage might play an important role in 

the SBRT regimen. If this takes place during therapy, blood supply may decrease and the 

assumption of invariable blood supply would not apply. Although it seems likely that there 

would be a vascular effect, we do not see it in our data analysis.

Despite the idealized nature of the model, the resulting radiological parameters have 

reasonable values and small uncertainty bands. The excellent fit results supports the 

hypothesis that the model, incorporating standard radiobiological principles plus a novel 

chemical conservation principle, provides a rational basis to understand radiation dose-

response for early stage lung cancer across a very wide range of fractionation and dose 

prescription treatment regimens. The model may be useful in the rational selection of 

optimized lung cancer radiotherapy protocols, potentially extended even to personalized 
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fractionation schedules and dose prescriptions. As seen in the fitted results, many clinical 

protocols either over-treat of under-treat early stage lung disease.

In conclusion, we have shown for the first time that a mechanistic mathematical model can 

quantitatively predict the tremendous differences in response seen in early stage lung cancer 

across the range of clinical dose and fractionation schemes. Fitting of the model to a large 

range of reported clinical cohorts results in reasonable radiobiological parameter values with 

small uncertainty intervals. The model can therefore be used to predict which fractionation 

schemes over- or under-treat lung tumors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Modern radiotherapy techniques often utilize a small number of fractions 

(hypofractionation) rather than the previously standard approach of many daily fractions. 

However, the tumor sterilization rates for different fractionation schemes vary 

dramatically in a poorly-understood fashion. This paper applies a detailed mechanistic 

mathematical model of cellular evolution and response to radiotherapy, including variable 

microenvironmental conditions, cellular competition for resources, and cell cycle 

dependent radiosensitivity, that are usually ignored. The resulting prediction model 

accurately predicts tumor response likelihood for a broad range of fractionation regimens 

for lung cancer, a result that has not previously been achieved. This cellular response 

model therefore clarifies the mechanism of radiotherapy action and could be used to 

avoid over- or under-treatment for a given fractionation schedule.
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Figure 1. 
Schematic diagrams of the state-driven tumor response model and the estimation of 

equivalent dose for non-standard fractionations based on the model. (A) Three different 

compartments in the model based on the microenvironment of a tumor with respect to the 

blood supply. Due to a limited blood supply, there are limited supplies of oxygen and the key 

nutrient, glucose. Cells with adequate oxygen and glucose are actively proliferating, while 

cells distant from vessels are starving and dying. In the model, theses populations of cells 

were simplified into three different compartments (P, I, and H), which have different levels 

of proliferation, hypoxia, cell death, and radiosensitivity. Note that uniform levels of glucose 

and O2 were assumed for each compartment. (B) After radiation therapy begins, a fraction of 

cells in each compartment becomes doomed depending on compartment-specific 

radiosensitivity and die in an attempt of mitosis in the proliferative P-compartment. (C) Re-

compartmentalization and reoxygenation pattern after the post-mitotic death of doomed cells 

in the P-compartment. As long as cells are available, the P-compartment “tops up” at each 

time step. (D-E) An example of EQD210,model estimation based on two separate simulations, 

in which the fraction size-dependent radiosensitivity, proliferation, and hypoxia effects are 

incorporated: (D) after the cell survival fraction was estimated for a SBRT regimen 

(11.3Gy×5fxs) from Takeda et al. (30), (E) a conventional 2 Gy-fractionation was simulated 

until the same level of survival fraction was achieved, resulting in EQD2 α/β,model. (Figures 

A, B, and C are used with permission). Panel A reprinted from Jeong J, Deasy JO. Modeling 

the relationship between fluorodeoxyglucose uptake and tumor radioresistance as a function 

of the tumor microenvironment. Comput Math Methods Med 2014;2014:847162. Panels B 

and C reprinted from Jeong J, Shoghi KI, Deasy JO. Modelling the interplay between 

hypoxia and proliferation in radiotherapy tumour response. Phys Med Biol 2013;58:4897–

919. © Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP 

Publishing. All rights reserved.
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Figure 2. 
Estimation of the cell cycle-dependent effective radiosensitivity and OER values depending 

on the fraction size: (A) the surviving fraction (SF) of each cell cycle phase and the total SF 

for proliferating cells in the P-compartment are computed based on individual 

radiosensitivities (αG1/αS=2 and αG2/M/αS=3) assuming an initial cell cycle distribution of 

[G1: 56%, S: 24% and G2/M: 20%]; (B) the effective alpha value as a function of fractional 

dose for the assumed cell cycle distribution, resulting in cell cycle dependent 

radiosensitivities. At 2 Gy/fx, the reference alpha value of 0.35 Gy-1 was used; (C) the 

surviving fraction of each compartment, including a cell cycle phase-dependent SF in the P-

compartment for the cell cycle distribution and cell cycle-dependent radiosensitivities; (D) 

the resulting effective OER values for the I- and H-compartments as a function of the 

fractional dose. As fractional dose increases, the effective radioresistance increases in P-

compartment and the effective OERs decrease.
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Figure 3. 
Derivation of best-fit dose-response curves. (A) Dose-response curves estimated from a 

maximum likelihood method for reference radiosensitivity values (α=0.35, α/β=10, and 

OERI=2), with the goodness-of-fit p-values based on Chi-square test. (B-D) Sensitivity test 

for various values of α, α/β ratio, and OERI, and the resulting best-fits for the separate 

groups: (B) best-fit α/β ratio and OERI values estimated from iterative sensitivity test for the 

total group; (C) the best-fit α value and α/β ratio estimated from iterative sensitivity test for 

the total group; and (D) dose-response curves for the separate groups for the best-fit 

parameter values, which are very close to each other.

Jeong et al. Page 20

Clin Cancer Res. Author manuscript; available in PMC 2018 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Effect of dose calculation algorithm and follow-up time. (A) Effect of dose calculation 

algorithm: five cohorts with more accurate convolution or superposition dose calculation 

algorithms (shown in red) show better agreement with the best-fit dose-response curve. (B) 

Effect of follow-up time: no discernible pattern was noted for any group and four cohorts 

with convolution/superposition (CS) algorithm (shown in red) have lower residuals.
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Figure 5. 
Validation dataset with 23 patient cohorts (n=1628) overlaid with the dose-response curve 

derived from the original dataset for the best-fit parameter values (α=0.305 Gy-1, α/β=2.8 

Gy, and OERI=1.7). Chi-square test shows the validation datasets are in great agreement 

with the dose response curve derived from the original dataset (p=1.0).

Jeong et al. Page 22

Clin Cancer Res. Author manuscript; available in PMC 2018 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jeong et al. Page 23

Table 1
The parameters used for the model simulation for lung cancer

Parameters Values

Growth fraction (GF) 0.25 (40)

Tumor doubling time (TD) 100 days (39)

Cell cycle time (TC) 2 days (37)

Fraction of cells in P-compartment (f P) 50a %

 G1-phase in P (f PG1) 28 % (41)

 S-phase in P (f PS) 12 % (41)

 G2/M-phase in P (f PG2/M) 10 % (41)

Fraction of cell in I-compartment (f I) 27a %

Fraction of cell in H-compartment (f H) 23a %

Ratio of alpha of G1- to S-phase (αG1/αS) 2b

Ratio of alpha of G2/M- to S-phase (αG2/M/αS) 3b

Reference radiosensitivity at 2Gy/fx (αref) 0.35c Gy-1

Alpha-beta ratio (α/β) 10c Gy

OER of I-compartment at 2 Gy/fx (OERI,ref) 2c

OER of H-compartment at 2 Gy/fx (OERH,ref) 1.37 (43)

a
Estimated from GF and TD in the model

b
Assumed parameters based on radiosensitivity analysis of synchronized cell population (32,33)

c
Initially assumed values; various values of these parameters were tested in the sensitivity test
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